
Revealing the Dark Side of WebRTC Statistics
Collected by Google Chrome

Abstract—Google Chrome provides a built-in tool to collect
real-time session-related performance statistics of Web-based
Real-Time Communication (WebRTC). Although the Chrome
statistics have a number of limitations, we believe that they can
be used in studies of Quality of Experience (QoE) aspects of
WebRTC services. In this paper, we first reveal the limitations
of the collected statistics and its consequences. We then discuss
how to overcome these issues.

Keywords—WebRTC, QoE, performance statistics

I. INTRODUCTION

Web Real-Time Communication (WebRTC) has attracted
much attention recently due to its simplicity in developing
and delivering services such as multimedia communication ser-
vices, without the need for proprietary plug-ins or applications.
Compatible with HTML5, WebRTC allows direct audio, video,
and data communications between participating parties. The
communications functionality is embedded in a browser, which
provides a set of buildings blocks for interactive communi-
cations to application developers through a JavaScript API.
In addition to the web and smartphone platform (Chrome,
Firefox, Opera, Android, and iOS), WebRTC can also be
integrated into the existing IMS (IP Multimedia Subsystem)
network architecture [1]. The communication protocols are
specified by the IETF whereas the JavaScript API specification
is done in the W3C.

Similar to other services delivered over a best effort
network, it is challenging to provide service guarantees for
WebRTC and for WebRTC based services (e.g. google hang-
outs, appear.in). Therefore, IETF Working Group (WG) RTP
Media Congestion Avoidance Techniques (RMCAT) develops
proper congestion control algorithms that are the key to
optimize Quality of Service (QoS) of WebRTC and Quality
of Experience (QoE) of WebRTC based services, and IETF
has specified packet markings for QoS in [2] to monitor the
performance of WebRTC.

The objective of the paper is to present the potential and
challenges with using the WebRTC statistics that is embedded
in the Chrome browser, and to discuss how this can be used
in studies of QoE aspects of WebRTC services.

II. WEBRTC STATISTICS IN CHROME

W3C specifies a set of APIs that provide performance
statistics of the audio, video, and data packets that are trans-
mitted over peer-connections in WebRTC services. The W3C
WebRTC statistics defines PeerConnection objects for RTP
statistics for the data channels and media streams between
two browsers. Media (audio, video, screen sharing) content is
represented in the MediaStream interface. Each MediaStream

contains several tracks for specific audio and video content.
Non-media data exchange is recorded in the DataChannel
interface. For a comprehensive description see [3].

Chrome provides functionality for WebRTC monitoring.
The webrtc-internals (chrome://webrtc-internals) partly imple-
ments the statistic identifiers of WebRTC peer-connections as
defined by W3C [3]. It is primarily developed as a tool for
testing and bug fixing while implementing WebRTC based
services, but can also be applied for measuring quality of
WebRTC services and facilitate QoE studies. The webrtc-
internals records to a JSON file all the PeerConnection ob-
jects defined in W3C APIs as well as some Google-specific
statsitics. End users can view statistics in real-time or offline
by downloading the JSON file any time during or immediately
after a session. The webrtc-internals functionality enables
observation of the performance of the WebRTC connections
locally in the browser. The main objective of webrtc-internals
is to help WebRTC application developers to understand the
features and functions of their WebRTC services, but it can
also be used in studies of QoE aspects of WebRTC services.

As an example, consider a WebRTC connection implement-
ing a two-party video conference call. The media stats of each
end point’s contain at least four tracks, which are identified
by a unique SSRC ID. The SSRC ID links the two parties in
a PeerConnection, including two audio and two video tracks
(one for sending and one for receiving). See Figure 1 for an
illustration.

T1 T2Network

SSRC 1

SSRC 2

SSRC 3

SSRC 4

SSRC 1

SSRC 2

SSRC 3

SSRC 4

audio

video

send
send
rec

rec

Figure 1: A two-party video conference call opens four tracks

III. THE DARK SIDE OF THE STATISTICS IN CHROME

In this section, we list the challenges that we have encoun-
tered in [4] with the use of the WebRTC statistics in Chrome.

A. Manual download of statistics: The statistics in Google
Chrome are fully visualized when observing in real-time, and
can also be downloaded to perform post-processing analysis,
which is a crucial task in knowledge discovery. End users must
download the statistics before closing the browser window
or before quitting the session in the application to prevent
data loss. Crashed sessions entail loss of the corresponding
statistics. The manual download of the statistics is cumbersome



and must be automated, in particular for longitudinal “living
lab” empirical study.

B. Limited number of sample points: The downloaded statistics
are limited to 1000 sample points, which means only the latest
1000 sample data are recorded and the older data will be lost.

C. Undocumented Chrome statistics extensions: The analy-
sis of the downloaded statistics is difficult due to the lack
of clearly documented definitions of the Chrome statistics
attributes. More specifically, the extension of the attributes
defined in WebRTC statistics is undocumented, which causes
some challenges in reliably analyzing the collected data.

D. Imprecise sampling time: Chrome statistics are collected
per browser, which means that in order to assess the perfor-
mance of a multi-party session, the statistics from all browsers
used in the session need to be recorded, downloaded, and
manually combined and synchronized. This implies that the
statistics in the log files must been recorded at the same
time, which means that the devices must use the same sam-
pling times intervals and have synchronized clocks. Currently,
Google Chrome does not provide the possibility to change the
sampling time of the downloaded statistics. Moreover, the sam-
pling time varies with device and OS. We have observed [4]
that the recorded samples at different devices was ranging from
1− 3 seconds, which cause a problem with synchronizing the
data from different parties. Figure 2 shows an example (the
devices used to collect these data are related in Table I) where
packets are apparently received before sending them in a two-
party video conference call. This clearly wrong, but when the
synchronization is off with no such visible effect, this is more
difficult to detect. A general advice is to always address these
issues when performing post-processing analysis.

Table I: Sampling time with two different devices

Device Platform OS Chrome version Sampling time
M1 Macintosh Mac OS X 10.8.5 46.0.2490.71 1 second
W1 Windows Windows 7 45.0.2454.101 random ∈ [1.05; 1.08]

Figure 2: Packet transfer rate (sender M1 to receiver W1)

E. Integrating Chrome statistics with other data sources:
When conducting QoE studies on WebRTC we want to com-
bine different measures from various data sources to gain
valuable insight in root causes and effect on QoE. Chrome
statistics will be one such a source which provides infor-
mation about status and performance of the peering point in
WebRTC based services. Integrating and aligning data sources
with (completely) different data formats, although this is not

unique for Chrome statistics integration, this must be addressed
carefully and will require some effort - in particular if the
format is not well documented.

IV. PROPER USE OF THE STATISTICS IN CHROME

The fact that only the most recent 1000 sample points
are captured (Section III.B) shifts the focus from long-term
to recent time horizons; in particular, experiments should not
exceed 1000 seconds. Indeed, statistics that are downloaded
after the occurrence of a major QoE-relevant event can be
very helpful for root-cause analysis (thinking a.o. of the
“Black Box” in an aircraft). Ideally, this would be initiated
automatically in case of a service and/or browser crash, which
is however not the case so far.

If the clocks of the users’ devices are not properly syn-
chronized, or in case of sampling time mismatches (Section
III.D), the collected statistics need to be adjusted by shifting
them to the correct starting time while taking into account the
time difference between the different devices. For instance,
a procedure for removing non-causality (receiver ahead of
sender, cf. Figure 2) is found in [5]. Here, the availability
of individual time stamps per sample would support such
correction measures.

Increasing averaging time scales reduce the sensitivity to
time-stamping errors. Thus, it may be beneficial to determine
the maximal timescale that still allows to identify the mis-
behaviors of interest. For instance, the investigations for [4]
revealed the applicability of 10 second-averages for indicating
acceptance-critical freezes.

Actually, certain summary statistics, such as moments and
distributions of bit or packet rates, have shown to be rather
robust to timestamp divergences [6], [5]. Still, they are of great
help when it comes to identifying bottleneck behaviour [6].
Thus, we recommend the use of such summary statistics as
much as possible. However, other insufficiently documented
statistics extensions should be used with great care.

REFERENCES

[1] 3GPP Technical Specification Group Services and System Aspects,
“Study on Enhancements to Web Real Time Communication (WebRTC)
Access to IP Multimedia Subsystem (IMS): Stage 2,” Sept. 2015.

[2] P. E. Jones, S. Dhesikan, C. Jennings, and D. Druta, “IETF Draft: DSCP
and Other Packet Markings for WebRTC QoS,” Mar. 2016.

[3] H. Alvestrand and V. Singh, “Identifiers for WebRTC’s Statistics API,”
W3C, W3C Working Draft, Feb. 2015.

[4] “Video QoE killer and performance statistics in WebRTC-based video
communication,” submitted to 2016 IEEE Sixth International Conference
on Communications and Electronics (ICCE), Jul. 2016.

[5] M. Fiedler, L. Isaksson, S. Chevul, J. Karlsson, and P. Lindberg, “Mea-
surement and analysis of application-perceived throughput via mobile
links,” in Proc. HetNets05, Jul. 2005.

[6] M. Fiedler, K. Tutschku, P. Carlsson, and A. Nilsson, “Identification of
performance degradation in IP networks using throughput statistics,” in

Proc. 18th International Teletraffic Congress (ITC 18), Sept. 2003.


