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Abstract6

Process measurements are of vital importance for monitoring and control of7

industrial plants. When we consider offshore oil production platforms, wells8

that require gas-lift technology to yield oil production from low pressure oil9

reservoirs can become unstable under some conditions. This undesirable phe-10

nomenon is usually called slugging flow, and can be identified by an oscillatory11

behavior of the downhole pressure measurement. Given the importance of12

this measurement and the unreliability of the related sensor, this work aims13

at designing data-driven soft-sensors for downhole pressure estimation in two14

contexts: one for speeding up first-principle model simulation of a vertical15

riser model; and another for estimating the downhole pressure using real-16

world data from an oil well from Petrobras based only on topside platform17

measurements. Both tasks are tackled by employing Echo State Networks18

(ESN) as an efficient technique for training Recurrent Neural Networks. We19

show that a single ESN is capable of robustly modeling both the slugging20

flow behavior and a steady state based only on a square wave input signal21

representing the production choke opening in the vertical riser. Besides, we22

compare the performance of a standard network to the performance of a mul-23

tiple timescale hierarchical architecture in the second task and show that the24

latter architecture performs better in modeling both big transients and small25

oscillations.26
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1. Introduction1

In order to achieve enhanced oil production in offshore oil wells, the well’s2

downhole conditions must be monitored. For that, permanent downhole3

gauge sensors (PDG) are usually installed at the bottom of the well pro-4

viding measurements for temperature and pressure. The downhole pressure5

measured is one of the most important variables for monitoring, optimization6

and control of oil well production, being essential in assessing the dynamics7

of the oil well.8

One important phenomenon observed in pipelines and oil wells corre-9

sponds to high oscillatory flow or slugging flow. This is usually the case for10

gas-lift oil wells, which employ the gas-lift technique in order to extract the11

oil from deepwater or low pressure wells. The artificially injected gas dimin-12

ishes the density of the well fluid, which, in turn, makes possible its extrac-13

tion with the created difference in pressure. Stabilization techniques which14

tackle these oscillatory behaviors in multiphase flows are necessary and have15

been designed by experts in academia and industry [25, 19, 29, 32, 14, 12].16

These methods are usually based on the stabilization of the downhole pres-17

sure through choke actuators on the gas-lift flow rate and the well production.18

Unfortunately, PDG sensors, as they are installed in hazardous environments,19

have a prohibitive cost for maintenance or replacement [13], and also their20

premature failure is not uncommmon. Additionally, perturbations and noise21

can affect the PDG sensor measurements, making it an unreliable information22

source.23

Given the importance of measuring or estimating the downhole pressure24

and the unreliability of the PDG sensor which measures this pressure, there25

have been several works which seek to create models that can estimate the26

downhole pressure based on other topside measurements. These predictive27

models, usually called soft-sensors, are important for quality control and pro-28

duction safety and have been extensively developed in the past decades [34].29

Some of them use knowledge of the oil well physics [1] to design a nonlin-30

ear observer for the states of the multiphase flow in order to estimate the31

downhole pressure, while others are based on black-box system identification32

approaches [33, 31]. While the first approach can take advantage of the a33

priori knowledge for a refined analysis and more advanced control schemes34

[12], the latter approach is quicker, does not require extensive modeling, be-35

ing well suited to identify unknown models. The current work follows the36

latter approach and assumes hardly any a priori model knowledge.37
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Much of the literature in system identification relies on the use of NAR-1

MAXmodels [8] or feedforward artificial neural networks (ANNs) with tapped2

delayed lines at the input layer [33] to account for dynamic behaviors or3

temporal processing. Although it is possible to introduce dynamics into the4

model using a time-window of previous inputs, a more interesting general way5

is to use Recurrent Neural Networks (RNNs) as universal approximators for6

dynamical systems [17]. However, training RNNs is not straightforward since7

gradient descent on the cost function, implemented as the backpropagation-8

though-time (BPTT) technique [41], has drawbacks which include a slow9

training process, no global convergence guarantee, possibility of bifurcations10

and problem of the vanishing gradient [20]. It also requires substantial expert11

practice to do it correctly.12

RNNs can provide a type of state-dependent computation much like cor-13

tical functioning in the brain [10], where the trajectory of a high-dimensional14

dynamical system reflects both the current input as well as previously re-15

ceived input stimuli. Reservoir Computing (RC) [38] is a term recently coined16

to designate this paradigm of computation based on transients of a fixed dy-17

namical system (such as an RNN). Most common RC models are the Echo18

State Networks (ESNs) [23] when analog neurons are used and Liquid State19

Machines (LSMs) [28] when spiking neurons are considered as dynamical20

reservoirs. In RC, the network (see Fig. 1) should be composed of two main21

parts, a recurrent high-dimensional pool of neurons, with randomly generated22

and fixed synaptic weights, called reservoir 1, and a linear adaptive readout23

output layer which projects the reservoir states to the actual system’s output.24

As only the output layer needs to be trained, usually via linear regression25

methods, the training is simplified and global convergence guaranteed (un-26

like in BPTT). The reservoir can be viewed as a dynamic nonlinear kernel,27

projecting the input to a high-dimensional dynamic space, in which linear28

regression or classification can be more easily performed. Numerous applica-29

tions, relying on the powerful temporal processing capabilities of RC, have30

been derived: navigation and localization of mobile robots in partially observ-31

able environments [5], periodic signal generation with nanophotonic reservoir32

computing [15], hierarchical control of robotic arms [40], speech recognition33

1The term reservoir is used to designate the randomly generated RNN in RC through-
out this paper, and is not related to reservoirs in oil and gas industry unless explicitly
stated.
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[35], etc.1

This work builds on previous results [3, 2] to elaborate on an unified RC-2

based approach for estimation of the downhole pressure in oil wells. Two main3

cases are addressed in this paper: system identification of a simulated vertical4

riser model and the design of a soft-sensor for gas-lift oil wells using real-world5

data. Both tasks are solved by using the same efficient black-box RC-based6

architecture [23] for modeling the particular input-output mappings of the7

target dynamical nonlinear system (i.e., the oil well). The motivation to use8

RC for building soft-sensors of downhole pressure is four-fold:9

1. it can be applied to problems when the model is unknown (most real-10

world processes can not be completely modeled or a considerable mod-11

eling effort is needed) when compared to an observer design approach;12

2. RC allows the addition of new output units at the output layer (using13

the same reservoir) which can be trained separately, without corrupting14

previously trained units, being useful if additional output estimation15

units are required with time;16

3. inverse models can easily be built so that even a subset of the input17

measurements can be predicted in case some sensors become faulty,18

ultimately improving overall performance (as shown in [6] for a robotic19

task);20

4. lastly, RC provides a quick and efficient training for RNNs when com-21

pared to methods based on gradient descent.22

The first task in this work is motivated by the fact that the simulation23

of nonlinear process models in optimization tasks usually requires a signifi-24

cant computational effort, especially when the model is composed of many25

inter-related higher-order components. Thus, the replacement of the rela-26

tively computationally expensive simulation by a trained RC network yields27

a significant economy on execution time (as it will be shown in Section 3).28

The second task tackles modeling dynamical nonlinear relationships from29

real-world oil well data obtained from Petrobras in order to design a soft-30

sensor which estimates the downhole pressure (given by the PDG sensor un-31

der ordinary situations) based on measurements from the seabed production32

platform.33

This paper is organized as follows. Section 2 presents the RC model used34

in the rest of this work: the Echo State Network. The following section35

(Sec. 3) introduces the problem and relevance of vertical riser modeling, the36

experimental setup and corresponding results. Section 4 tackles the second37
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Fig. 1: Reservoir Computing (RC) network. The reservoir is a non-linear dynamical
system usually composed of recurrent sigmoid units. Solid lines represent fixed, randomly
generated connections, while dashed lines represent trainable or adaptive weights.

task of designing a soft-sensor for estimating the downhole pressure in a1

gas-lift oil well. Conclusions and future work are drawn in Section 5.2

2. Reservoir Computing3

2.1. ESN model4

An ESN is composed of a discrete hyperbolic-tangent RNN, the reservoir,
and of a linear readout output layer which maps the reservoir states to the
actual output. Let ni, nr and no represent the number of input, reservoir
and output units, respectively, u[n] the ni-dimensional external input, x[n]
the nr-dimensional reservoir activation state, y[n] the no-dimensional output
vector, at discrete time n. Then the discrete time dynamics of the ESN is
given by the state update equation

x[n+ 1] =(1− α)x[n] + αf(Wr
rx[n] +Wr

iu[n]+

Wr
oy[n] +Wr

b), (1)

and by the output computed as:

y[n+ 1] = g (Wo
rx[n+ 1] +Wo

i u[n] +Wo
oy[n] +Wo

b) (2)
= g

(
Wout (x[n+ 1],u[n],y[n], 1)

)
(3)

= g
(
Woutz[n+ 1]

)
, (4)

where: α is the leak rate [24, 30]; f(·) = tanh(·) is the hyperbolic tangent ac-5

tivation function, commonly used for ESNs; g is a post-processing activation6
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function (in this paper, g is the identity function); Wout is the column-wise1

concatenation ofWo
r , Wo

i , Wo
o andWo

b; and z[n+1] = (x[n+1],u[n],y[n], 1)2

is the extended reservoir state, i.e., the concatenation of the state, the pre-3

vious input and output vectors and a bias term, respectively.4

The matrices Wto
from represent the connection weights between the nodes5

of the complete network, where r, i, o, b denotes reservoir, input, output,6

and bias, respectively. All weight matrices representing the connections to7

the reservoir, denoted as Wr, are initialized randomly (represented by solid8

arrows in Fig. 1), whereas all connections to the output layer, denoted as9

Wo, are trained (represented by dashed arrows in Fig. 1). We disregard the10

connectionsWr
b andWo

o. The non-trainable connection matricesWr
r,W

r
i are11

usually generated from a Gaussian distribution N(0, 1) or a uniform discrete12

set {−1, 0, 1}. During this random initialization, the matrix Wr
i is multiplied13

by the parameter called input scaling υri (or υro for Wr
o).14

The weights from the reservoir connection matrix Wr
r are obtained ran-15

domly through a Normal distribution (N(0, 1)) and then rescaled such that16

the resulting system is stable but still exhibits rich dynamics. A general rule17

to create good reservoirs is to set the reservoir weights such that the reservoir18

has the Echo State Property (ESP) [21], i.e., a reservoir with fading memory.19

A common method used in literature is to rescale Wr
r such that its spectral20

radius ρ(Wr
r) < 1 [21]. Although it does not guarantee the ESP, in practice21

it has been empirically observed that this criterium works well and often pro-22

duces analog sigmoid ESNs with ESP for any input. It is important to note23

that spectral radius closer to unity as well as larger input scaling makes the24

reservoir more non-linear, which has a deterioration impact on the memory25

capacity as side-effect [37]. This scaling of matrices is important because26

it influences greatly the reservoir dynamics [38] and, in this way, must be27

chosen according to the task at hand empirically, analyzing the behavior of28

the reservoir states over time, or by grid searching.29

Most temporal learning tasks require that the timescale present in the30

reservoir match the timescales present in the input signal as well as in the task31

space. This matching can be done by the use of a leak rate (α ∈ (0, 1]) and/or32

by resampling the input signal. For instance, low leak rates yield reservoirs33

with more memory which can hold the previous stimuli for longer time spans.34

When more complex learning tasks are required, which need unbounded-time35

memory and oscillatory dynamics (as the task in Section 3), then feedback36

connections from the output layer to the reservoir layer (Wr
oy[n]) are essen-37

tial. The presence of feedback connections allows the reservoir to enter in a38
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free run mode after training: the predicted output at timestep n will be used1

as input to the reservoir at the next timestep. During the training stage,2

instead, teacher-forcing is used: the target output from the training samples3

is fed back to the reservoir. Furthermore, stabilization of the system with4

output feedback is a concern to be handled. That can be achieved by state5

noise injection [21] or regularizing the readout output [43].6

2.2. Training7

Training the RC network means finding Wout in (2), that is, the weights8

for readout output layer from Fig. 1. That is usually done by linear regression9

methods on the reservoir states generated by simulating (1) with a given input10

signal u[n]. In this work, we use Ridge Regression [9]. See Appendix A for11

more details on the training process.12

The learning of the RC network is a fast process without local minima.13

Once trained, the resulting RC-based system can be used for real-time opera-14

tion on moderate hardware since the computations are very fast (only matrix15

multiplications of small matrices).16

3. Vertical riser modeling17

3.1. Introduction18

In this first part, RC is employed for identifying a model [11] which dis-19

plays the complex phenomena involved in multiphase flow dynamics observed20

in vertical risers. A scheme of the riser can be seen in Fig. 2. The model is21

based on first principles of fluid dynamics to represent the oscillatory flow22

behavior in risers, typically referred to as slugging flow. The oscillations23

arise from the accumulation of gas in elongated bubbles that is formed below24

the bottom of the riser, as a consequence of an obstruction to the gas flow.25

The pressure in the bubbles builds up with incoming of gas until reaching a26

critical pressure, a condition that causes discharge of gas to the riser which27

causes a turbulence in the multiphase flow. A detailed description of the28

model is given in Appendix B.29

The challenge of identifying the vertical riser model from [11] with a single30

network is that it presents two distinct regions: one stable, and another31

area characterized by oscillations (see Fig. 3(a)). The behavior of the target32

signal (the bottom hole pressure) is qualitatively distinct in these two regions33

depending on the value of the actuator input (the production choke opening).34
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Fig. 2: Riser setup.

It has been shown that RC networks can model self-generating attractor1

patterns such as the digit 8 in Cartesian coordinates [43]; and central pat-2

tern generators with modulable amplitude, and shift [42, 27]. The feedback3

connections for this type of task are mandatory, as it requires a long-term4

(non-fading) memory sufficient to sustain either an oscillation or a constant5

value. As far as the authors know, the simultaneous learning of oscillatory6

and stationary signals with a single RC network is first reported here 2.7

3.2. Experimental setup8

The dataset used to train the RC network was generated in Matlab by9

simulating the ordinary differential equations (ODEs) of the vertical riser10

model described by [11] (see Appendix B). The dataset consists of a desired11

single input - single output relationship (u[n], ŷ[n]), where u[n] is the pro-12

duction choke opening (actuator), while ŷ[n] corresponds to the bottom hole13

pressure variable. The input u[n] can take values in (0, 1] and y[n] from14

[3∗106, 17∗106] Pa approximately. We generated n = 24, 000 seconds (about15

six and a half hours) of simulation using the ODE equations to collect the16

pairs (u[n], ŷ[n]) using a randomly created, squared-shaped, input signal u[n].17

For parameter selection, we used grid search with a 9-fold random cross-18

validation over the following set of parameters: leak rate α, input scaling υri ,19

spectral radius ρ(Wr
r) and the regularization parameter λ. Other parameters20

2This paper builds upon a previous conference publication [3].
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are configured arbitrarily, such as the reservoir which has 400 neurons. It is1

known that as the reservoir increases in its number of neuronal units, and if2

accompanied by a properly regularized training procedure to avoid overfit-3

ting, its performance gets better since its memory capacity and processing4

power also increase. We found that a 400 neuron reservoir was enough to5

achieve good results, but the task could be achieved with smaller reservoirs 3.6

The remaining parameters are set according to Section 2.1, that is, all weight7

matrices connected to the reservoir (Wr
i and Wr

o) are randomly generated8

from a uniform distribution [−1, 1] (which means a connection fraction of 1)9

and scaled according to the values given by the input scaling υri and out-10

put scaling υro (in our case, υri = υro). This means that the magnitude of11

the influence of the input production choke opening on the reservoir is the12

same compared to the magnitude of the influence of the output bottom hole13

pressure (note that both signals are normalized). Wr
b is set to zero since14

the experiments have shown that this extra bias non-linearity did not help15

to improve performance. Training the network (computing W̃out) is done16

applying equation (A.1). A test set of 2, 400 seconds (or 40 minutes) was17

used to evaluate the trained network. The experiments were implemented in18

Python using the Oger toolbox [39].19

The optimal parameter configuration given by the aforementioned pro-20

cedure for the results shown in the next figures are as follows: α = 0.1,21

υri = 0.35, ρ(Wr
r) = 1 and λ = 10−2.5 = 0.0032.22

3.3. Results23

Fig. 3(a) shows the estimations of the trained RC network using a training24

dataset consisting of 20, 000 samples (one per second), and a test dataset25

composed of 4, 000 samples (or 66.6 minutes). The first plot shows the input26

signal, i.e., the production choke opening used to test the identified trained27

system. The target and actual network outputs for the bottom hole pressure28

are shown in the next plot in black and blue lines, respectively. The red29

vertical line defines the timestep at which the reservoir starts running in30

free-run mode: using its own output predictions y[n] as feedback signals.31

Previous to that, the target signal ŷ[n] from the samples is teacher-forced in32

order to set the internal reservoir state to an appropriate state (i.e., ŷ[n] is33

3One can use a 30-unit reservoir for this task, but the probability of randomly obtaining
a rich dynamical reservoir (and consequently a good performance) is lower.
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used in (1) in place of y[n]). It can be seen that after the red vertical line,1

the network can adequately model the behavior of the identified system: it2

was able to model both fixed point and oscillatory regions using only a single3

network.4

From these two plots, one can also note that these two behaviors or, also,5

the different operating points which y[n] can achieve depending on the input6

signal u[n] fed to the network are, actually, learned through shifting the7

operating point of the reservoir with the input signal u[n]. This can be seen8

in the third plot of Fig. 3(a), which shows the first three principal components9

from applying Principal Component Analysis (PCA) on the reservoir states.10

As the value u[n] changes, the operating point of the reservoir is taken, for11

instance, from a fixed point region to an oscillatory region between minutes12

10 and 15. The distinction between these dynamic regions is learned during13

the training phase. Apart from the role of u[n] in the reservoir, y[n], by being14

fed back to the reservoir, functions as reinforcing memory for maintaining15

either the fixed point or the oscillatory behavior. Both are very important for16

the final result. Fig. 3(b) shows the prediction of the bottom hole pressure17

zoomed in over an interval of 10 minutes.18

The stability of the generated y[n] output signal is essential for the iden-19

tification task and can be achieved by using noise injection during training20

[21] or finding the optimal regularization parameter λ in ridge regression [43].21

To test the hypothesis of stability, two experiments were devised using the22

test data: the first experiment consisted of adding a single large and increas-23

ing perturbation during 6 seconds, whereas the second was done by adding24

Gaussian noise to y[n] at each timestep. The results in Fig. 4(a) show the25

stability of the generated output in response to two large perturbations dur-26

ing minutes 35 and 48. The perturbations take place during a fixed point and27

oscillatory behavior, and are handled effectively by the RC network which is28

able to bring back the output to the desired value or behavior. In particular,29

during the oscillation, the perturbation affects the reservoir states (Fig. 4(c))30

such that the magnitude of the oscillation is increased and not removed until31

the next change in the input signal u[n]. Further experiments should also32

include the improvement of this issue.33

Fig. 4(b) shows the reservoir stability robustness to random Gaussian34

noise on the output y[n], considering a standard deviation of 10−2 for the35

normalized output signal in [0, 1]. Other magnitude values of Gaussian noise36

were tested and the results summarized in Fig. 4(d). The performance dete-37

riorates only from σnoise = 10−1 on.38
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Fig. 3: Estimation of bottom hole pressure with trained RC network. (a) The first plot
shows the test input fed to the RC network (the production choke opening), whereas the
second plot shows the target and predicted output (the bottom hole pressure) as black
and blue lines, respectively. The red vertical line marks the time at which the reservoir
runs in free-run mode, feeding back its output prediction. The bottom plot shows the
three principal components of the reservoir states over time, resulting from applying the
PCA algorithm. (b) Closer look at the predicted downhole pressure for 10 minutes (the
dashed grey line corresponds to the choke input).
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As a comparison in terms of simulation time, we observed that running1

a 200 unit (400 unit) trained RC network (in Python) is circa 18 times (122

times) faster than running the ODE solver (ode23tb function in Matlab) for3

the same number of time steps and using the same computer.4

4. Soft-sensor for downhole pressure estimation5

4.1. Introduction6

In the previous section, the RC network was trained with simulation data7

in order to estimate the bottom hole pressure only from the production choke8

opening as input signal. To be able to sustain either a constant value or os-9

cillations at the output layer, output feedback connections to the reservoir10

layer were essential. Now, in this section, we deal with noisy and messy11

data originating from a real-world oil well from Petrobras to build RC-based12

soft-sensors [16]. The schematics of the oil well can be seen in Fig. 6. The13

task here is to build a soft-sensor which can infer the downhole pressure y(t)14

based on a set of input sensor measurements u(t) coming only from the more15

easily accessible platform location. Although feedback connections were not16

required, the task here is considerably complex since the underlying process17

generate very nonlinear behaviors which change over time probably due to18

well and oil reservoir changing conditions. Additionally, these signal behav-19

iors present multiple timescales. Because of this, we propose a hierarchical20

deep architecture with 3 hidden layers called H-RC (Fig. 4.1). The first layer21

(Res.1 ) has multiple decoupled small reservoirs, each one having a different22

leak rate. This layer yields a state space sensitive to signals working at differ-23

ent timescales. A similar approach was shown in [7], where a single reservoir24

with multiple leak rates for individual neurons yielded better performance25

in robot localization tasks than using only one leak rate. The second layer26

(PCA) learns the principal components of the previous Res.1 layer by find-27

ing a linear projection from a high-dimensional reservoir space into a low28

dimension orthogonal space. This is done by Principal Component Analysis29

[26], which computes the eigenvectors of the covariance matrix with largest30

eigenvalues. The third hidden layer (Res.2 ) is composed of reservoir units,31

representing a nonlinear and temporal expansion on the previous PCA layer.32

The final output layer (which estimates the downhole pressure y(t)) receives33

signals from Res.2 layer and optionally from Res.1 layer.34

Among several existing hierarchical RC approaches in the literature, we35

can cite, for instance: [40] for robotic arm control using a hierarchical ar-36

12
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Fig. 4: Noise robustness results during testing (output prediction). (a) 2 large perturba-
tions applied during 6 seconds to y[n], at minutes 35 and 48 (see indication by grey ticks),
are overcome by the trained network. The dashed grey line represents the corresponding
input signal u[n]. (b) Random noise is applied to y[n] at each timestep, sampled from
a Gaussian distribution with zero mean and standard deviation σnoise. (c) The corre-
sponding reservoir states for the same perturbations in (a) whose application moments are
marked with dashed vertical lines. The first two top plots show that the trained system is
very robust to noise. (d) shows the prediction error over different levels of noise (σnoise).
The solid curve corresponds to results for the optimal reservoir from Fig. 3(a) and the
dashed curve considers different randomly generated reservoirs.
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Fig. 5: Proposed H-RC architecture for soft-sensor design. The Res.1 reservoir layer
is composed of multiple decoupled reservoirs with different leak rates. Shaded layers are
trained sequentially: the first one is trained by PCA and the second one by ridge regression.
The Res.2 layer expands non-linearly on the previous PCA layer. See text for a detailed
description.

chitecture which combines motor primitives to achieve control of complex1

movements; [22] for simultaneous signal de-noising and online classification2

using a 3-layer recurrent architecture. [4] for self-organized (unsupervised)3

learning of robot localization from low-dimensional noisy infra-red sensory4

data. Each of them use different unsupervised and/or supervised learning5

techniques and are well suited to different classes of applications.6

As it will be verified below, the H-RC helps to model big transients as7

well as small signal oscillations simultaneously when compared to a plain8

RC network. Besides, the PCA layer has a role of improvement on the9

generalization performance of the model.10

4.2. Experimental setup11

The input of the RC-based soft-sensor consists of 10 inputs normalized12

to the interval [0, 1], corresponding to the 8 platform variables from Table 113

plus the openings of the gas-lift choke and production choke (unless otherwise14

stated). The target output variable y(t) corresponds to the PDG pressure15

sensor. Although there are 5 months of available data (with a sampling16

frequency of 1 sample per minute), in this section we focus on the two most17

interesting months: August/2010 and December/2011. Previously, an RC18

model using all 5 months data [2] has been built, but it does not take into19

account the slugging flow phenomenon which happens in a smaller timescale.20

Furthermore, some unexpected transients were also not investigated more21

closely. The following sections aim to close this gap.22

The results shown below use two types of feature selection: domain knowl-23

edge to combine input variables; or backwards variable removal (also called24

14



Fig. 6: Oil well scheme of a real-world well from Petrobras showing the location of sensors
and chokes. FT3 is a flow rate sensor; PT# and TT# are pressure and temperature
sensors. SDV stands for ShutDown Valve.

backward elimination) to find the minimal set of variables which leads to the1

best generalization performance. The first method substitutes PT6 and PT72

by their average (PT6+PT7)/2 as well as PT3 and PT4 by (PT3+PT4)/2,3

justified by the fact that the SDV valve between them is fully open, mak-4

ing both variables conveying the same information. Another preprocessing5

corresponds to substituting PT5 by the pressure drop (PT5 − PT6) across6

the production choke, since the downhole pressure is more sensitive to this7

pressure drop than a single pressure measurement. Thus, after this domain-8

based preprocessing, we get 8 input variables in total from the initially 109

available variables. On the other hand, backward elimination starts with all10

10 input variables for evaluating the RC architecture, and gradually removes11

the variable which results in the least generalization error. From this, we12

can find a minimum set of variables which better models the signal during a13

particular period.14

For learning slugging flow oscillations in August 2010 (first task), the H-15

RC network is configured as such: Res.1 with 10 reservoirs of 50 units each;16

3 units in PCA layer; 100 neurons in Res.2 layer; output layer connected to17

PCA and Res.1 layers. For learning both oscillations and bigger transients18

15



simultaneously with data from December 2011 (second task), the configura-1

tion is as follows: Res.1 with 10 reservoirs of 50 units each; 10 units in PCA2

layer; two pools of 100 neurons in Res.2 layer; output layer connected only3

to PCA layer. The leak rate for the ten reservoirs in Res.1 layer is as follows:4

α = (0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1) T (i.e., each element defines the leak rate of5

a 50-units reservoir). We have arbitrarily set υri = 0.06 and ρ(Wr
r) = 0.996

for both Res.1 and Res.2 layers. For the second task, Res.2 layer has one7

pool of units with υri = 0.06 and α = 1, and another pool with υri = 0.1 and8

α = 0.1.9

The experiments are done using the H-RC network as well as a plain RC10

network with one hidden layer of 500 neurons for comparison. The latter is11

called 1-RC architecture, and its parameters are set with the same values as12

for the H-RC, except for the leak rate α = 0.5 for all neurons, and unless13

otherwise stated. The setting of parameters is not very critical, and was14

chosen to give best generalization performance. Note that a decrease in the15

input scaling counteracts an increase in the spectral radius to avoid a possible16

loss of memory capacity and of performance [37].17

4.3. Experimental results18

4.3.1. Slugging flow19

In this section, the results on modeling the slugging flow phenomenon20

for data from August/2010 are presented. The training/test datasets are21

created including primarily the intervals with oscillations while disregard-22

ing other irrelevant behaviors, totalling 21,600 samples (which corresponds23

Table 1: Process variables

Tag Process variable Location Variables Set

PT1 Downhole pressure Seabed Output
TT1 Downhole temperature Seabed —
PT2 WCT pressure Seabed —
TT2 WCT temperature Seabed —
PT3 Pressure before SDV Platform Input
TT3 Temperature before SDV Platform Input
FT3 Instantaneous gas-lift flow rate Platform Input
PT4 Pressure after SDV Platform Input
PT5 Pressure after production choke Platform Input
PT6 Pressure before production choke Platform Input
TT6 Temperature before production choke Platform Input
PT7 Pressure before SDV Platform Input

16



to 15 days of measurements), of which 75% are used for training. The se-1

lection of the training samples is done as in [2], interleaving training and2

test intervals randomly. Besides, the regularization parameter is λ = 0.0001.3

Backward elimination is also employed to select a subset β of the variables4

corresponding to {PT7, TT6, PT5, G.C, TT3, P.C, PT3} as input to the H-5

RC architecture. (see Fig. 7).6

Table 2 shows the NRMSE and RMSE averaged over 30 runs for different7

experiments, where each run considers randomly generated reservoir weights.8

The train and test error rates are shown in the first two rows for the 1-RC9

architecture and in the last two rows for the H-RC network. The asterisks in10

1-RC∗ and H-RC∗ mean that the subset β are used as input variables, whereas11

their absence means the input variables were domain-based preprocessed (see12

previous section). The minimum test errors for 1-RC and H-RC are in marked13

in bold. In both cases, H-RC shows a better generalization performance than14

the 1-RC network. We also note that the backward variable elimination15

helped only slightly to improve the test error.16

The predicted bottom hole pressure using both 1-RC and H-RC and the17

subset β as input variables is shown in Fig. 8 for two particular oscilla-18

tory periods. The overall behavior is captured by both networks, but a19

closer inspection reveals that the H-RC architecture approximates better the20

downhole pressure and also shows a more stable signal on average, i.e., less21

sensitive to noise. For instance, just before hour 56 in time axis (marked by22

a dashed rectangle as well as arrows), the blue line for 1-RC varies quickly23

showing some undesired sensibility whereas the blue line for H-RC has a24

smooth curve. Another example of slight quick variation in the predicted25

signal can be viewed between hours 52 and 54 for the 1-RC network.26

Table 2: Error rates - August 2010

1-RC 1-RC∗ H-RC H-RC∗

NRMSE
Train 0.0881 0.0851 0.0764 0.0773
Test 0.168 0.164 0.155 0.150

RMSE
Train 0.00170 0.00164 0.00148 0.00149
Test 0.00355 0.00338 0.00327 0.00308

17
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Fig. 7: Backwards Variable Removal for August 2010 and H-RC architecture. The set of
variables with minimum error is: {PT7, TT6, PT5, G.C, TT3, P.C, PT3}.

4.3.2. Transients1

Uncommon transients in the downhole pressure can happen for instance2

when some control variables such as the production choke or the gas-lift3

choke are altered. Closing these chokes results in undesirable behavior for4

the downhole pressure. One example is given in Fig. 10, where the unusual5

transient in the downhole pressure is concomitant to the closing of the G.C6

(gas-lift choke). These behaviors are difficult to model because they do not7

occur frequently, which provides few training data for building RC estimation8

models.9

In this section, results consider the whole month in December 2011, total-10

ing 43,200 samples, where the first 70% of the samples were used for training11

and the rest for test. The parameter setting was done as described in Sec-12

tion 4.2, except for the 1-RC network, where the regularization parameter λ13

had to be set higher (λ = 0.05), while the input scaling is set to υri = 0.2 and14

spectral radius is set to ρ(Wr
r) = 0.5 as in [2].15

We can check the effect of the regularization parameter λ in the test error16

rate by inspecting Fig. 9(a). Considering (randomly chosen) fixed weight17

matrices in the reservoir layers, λ can be adjusted so that generalization of18

the model is achieved. We can note that, for this particular initialization of19

the reservoir weights, the 1-RC network needs to be much more regularized20

than H-RC, indicating that the H-RC may have an inherent regularization21

due to the PCA layer in the hierarchical multiple timescale structure. We22

can also verify that the best 1-RC architecture for reservoirs with number23

18



(a) 1-RC

(b) H-RC

Fig. 8: Results for learning the slugging flow phenomenon in August 2010 with the 1-RC
architecture (a) and the H-RC architecture (b). Black and blue lines correspond to the
target and predicted downhole pressure. See text for more details.
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Fig. 9: (a) Effect of the regularization parameter λ on the test error for H-RC and 1-RC
networks for data from December 2011. (b) Test NRMSE by number of reservoir units in
1-RC architecture. Error bars are set by the standard deviation for 10 randomly generated
reservoirs.

of units in the interval [50, 500] is the 500 unit reservoir (Fig. 9(b)). This1

is expected as the training method used, Ridge Regression, regularizes the2

model.3

Note that, although a low error rate is achieved for 1-RC when λ = 0.5,4

this does not mean that the network is always modeling the signal behavior5

correctly. In Fig. 10, we can see the target downhole pressure and the pre-6

dicted output for 1-RC and H-RC networks during two different moments.7

The left plots show a big transient when compared to the smaller oscillations8

in the right plots. Although 1-RC can do well in the left plot, the same9

network does badly for the second oscillatory period. On the other hand,10

H-RC handles both the big transient as well as the second signal behavior,11

probably due to its multiple timescale processing in Res.1 and Res.2 layers.12

In Fig. 11 (a), we can see the error rate according to the number of units13

in the PCA layer in H-RC. Each point in a line uses the same randomly14

generated weights (for Res.1 and Res.2 ) so that different lines correspond15

to differently configured reservoirs. Additionally, each point in a given line16

represents the test error after sequentially training the PCA and the output17

layer. We can note that depending on which (random) weights were chosen18

for the reservoir(s), the minimum test error varies according to the number19

of PCA units in the H-RC architecture. This implies that the number of20
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Fig. 10: Results for learning a particular transient in December 2011 with 1-RC and H-RC
architectures. (a) Black and blue lines correspond to the target and predicted downhole
pressure. The left plots show a transient while the right plots show an oscillatory period
(b) Input variables for the corresponding intervals.
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PCA units is a parameter which may be aiding regularization of the model.1

Indeed, the number of principal components used through PCA has effects2

similar but not equal to ridge regression (for a detailed discussion, see [18]).3

Fig. 11 (b) shows the error rate based on the number of PCA units from a4

different perspective. Now, the H-RC network (solid line) is run 10 times for5

each PCA unit configuration, where each run considers a different randomly6

generated reservoir for Res.2 layer (Res.1 layer is kept fixed). The plotted7

average value of the NRMSE shows a different result: on average, and given8

a particular fixed setting of the Res.1 weights, networks with 7 and 8 PCA9

units produce lower error rates. Note that this solid line is not a general10

behavior for the PCA layer, as seen in Fig. 11 (a). For comparison, the11

removal of the Res.2 layer from H-RC yields the results given by the grey12

line. As Res.1 has fixed weights for each number of PCA units, the results13

are deterministic (no error bars). These 2 curves show clearly that Res.214

layer is important for the improved performance. The dashed horizontal15

line represents the error rate for the Res.1 layer (with the same weights)16

connected directly to the output layer, with PCA and Res.2 layers removed.17

5. Conclusion18

This paper has presented a data-driven RC-based approach for learning19

dynamical nonlinear behaviors present in processes in the oil production sys-20

tem considering both simulation and real-world data. While in the first part,21

a single network was able to reproduce the dynamics of the model based only22

an unidimensional input (the oil production choke) very satisfactorily, and23

was shown to be robust to perturbations, in the second part, a hierarchical24

multiple timescale architecture (H-RC) has been proposed to deal with more25

complex nonlinear phenomena present in the real-world oil well data. We can26

conclude that the H-RC network was better suited to learn big unusual tran-27

sients and small oscillations simultaneously, having a better test performance28

and stability of prediction, when compared to a plain RC network. The cur-29

rent data-driven approach supposes that no a priori knowledge is available.30

Thus, it is an interesting candidate for learning models from real-world noisy31

datasets and eventually speeding up simulation of nonlinear plants.32

With respect to the first part of this paper (Section 3), further research33

includes additional investigation of the capabilities of RC for modeling more34

complex dynamical models, for instance, using the OLGA simulator or sam-35

ples from a real vertical riser. Future work in the context of soft-sensors36
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Fig. 11: Analisys of PCA layer of H-RC network for data from December 2011. (a) Test
NRMSE for different number of units in PCA layer. For each line, a different randomly
generated reservoir was used. (b) The solid line shows the mean test error when considering
different number of PCA units and randomly generated reservoirs (standard deviation
given by error bars). The grey line considers the H-RC network without the last reservoir
layer (Res.2 ). The horizontal line gives the error for the Res.1 connected directly to the
output layer (without PCA and Res.2 layers). See text for more details.
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should tackle the online learning of the readout layer with methods such as1

Recursive Least Squares (RLS). This is useful for adapting the model in real2

time. Preliminary work has shown that it is very difficult to learn a good3

model through RLS and suggests that regularized online learning approaches4

are necessary to achieve better generalization. Another research direction is5

to create inverse models which take the (predicted) downhole pressure as in-6

put and predict other sensor variables. Given the existence of noisy or faulty7

sensors, this inverse model can then be used to improve the overall (downhole8

pressure) prediction.9

Acknowledgements10

The authors thank CNPq for the supporting fellowship, Petrobras for11

providing the real-world data from an oil well, and Agustinho Plucenio for12

the Matlab code for simulation of the vertical riser dynamics.13

Appendix A. ESN training14

Appendix A.1. Readout Training15

Training the RC network means finding Wout in (2), that is, the weights16

for readout output layer from Fig. 1. For that, the reservoir is driven by an17

input sequence u(1), . . . ,u(ns) which yields a sequence of extended reservoir18

states z(1), . . . , z(ns) using (1) (the initial state is x(0) = 0). The desired19

target outputs ŷ[n] are collected row-wise into a matrix Ŷ. The generated20

extended states are collected row-wise into a matrix X of size ns× (nr+ni+21

no + 1) using (1).22

Then, the training of the output layer is done by using the Ridge Re-
gression method [9], also called Regularized Linear Least Squares or Tikhonov
regularization [36]:

W̃out = (X>X+ λI)−1X>Ŷ (A.1)

where W̃out is the column-wise concatenation of Wo
r , and the optional ma-23

trices Wo
i , Wo

o and ns denotes the total number of training samples.24

In the generation of X, a process called warm-up drop is used to25

disregard a possible undesired initial transient in the reservoir starting at26

x(0) = 0. This is achieved by dropping the first nwd samples so that only27

the samples z[n], n = nwd, nwd + 1, ..., ns are collected into the matrix X.28
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The learning of the RC network is a fast process without local minima.1

Once trained, the resulting RC-based system can be used for real-time opera-2

tion on moderate hardware since the computations are very fast (only matrix3

multiplications of small matrices).4

Appendix A.2. Error measures5

For regression tasks, the Root Mean Square Error (RMSE) and Normal-6

ized Root Mean Square Error (NRMSE) are used as performance measures7

and are defined as:8

RMSE =
√
〈(ŷ[n]− y[n])2〉, (A.2)

9

NRMSE =
RMSE

σŷ[n]
, (A.3)

where the 〈〉 denotes temporal averaging, and σŷ[n] is the standard deviation10

of desired output ŷ[n].11

Appendix B. Vertical riser model12

The model in [11] has three states which are the mass of liquid in the
riser (ml,r), the mass of gas flowing with liquid phase (mg,r), and the mass
of gas stuck in the bubbles (mg,eb). These state variables are related by the
following mass balance equations:

ṁg,eb(t) = (1− ε)wg,in(t)− wg(t) (B.1a)
ṁg,r(t) = εwg,in(t) + wg(t)− wg,out(t) (B.1b)
ṁl,r(t) = wl,in(t)− wl,out(t) (B.1c)

where wg,in and wg,out (resp. wl,in and wl,out) are the mass flow rates of gas13

(resp. liquid) entering (in) and leaving (out) the riser, wg(t) is the flow from14

the bubbles to the riser, and ε ∈ (0, 1) is the fraction of the gas that flows15

straight to the riser, whereas (1− ε) is the fraction that accumulates in the16

bubbles.17

A virtual valve is introduced at the bottom point of the riser to represent18

the obstruction to gas flow: the pressure in the gas bubbles rises when this19

valve is closed; the valve opens when the pressure in the gas bubbles exceeds20

the pressure at bottom of the riser, allowing the gas in the bubbles to flow21

into the riser that, in turn, reduces the bubble pressure until it gets below22

the pressure at bottom of the riser which forces the valve to close. When23
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flowing from the bubbles into the riser, the gas expels the liquid stored inside1

the riser and later causes a burst in oil production.2

A choke at the top of the riser enables the control of the outlet flow.
The control action consists of changing the opening u ∈ [0, 1] of this choke.
The model in [11] assumes a constant flow of gas and liquid into the riser.
Under this assumption, the riser outflows are given by the choke equations
that follow:

wl,out ≈ Ccmax(pr,top − ps, 0)u (B.2a)

wg,out ≈
mg,r

ml,r

wl,out (B.2b)

where pr,top is the pressure at the top of the riser, upstream of the production3

choke, ps is the pressure at the separator, and Cc is a positive choke constant.4

The flow through the virtual valve is defined by:

wg = Cgmax(peb − pr,bh, 0) (B.3a)

where peb is the pressure of the gas in the elongated bubbles, pr,bh is the5

pressure downstream the virtual choke (in the bottom hole), and Cg is a6

positive choke constant.7

The pressures that appear in the equations above are derived from the
ideal gas law and the gravitational pressure caused by the masses, being
defined as follows:

peb =
RT

MVeb
mg,eb (B.4a)

pr,top =
RT

M
(
Vr − ml,r

ρl

)mg,r (B.4b)

pr,bh = pr,top +
g, sin θ

A
ml,r (B.4c)

where Veb is the volume of the elongated bubbles which is assumed constant,8

M is the gas molar mass, R is the constant of the ideal gases, T is the9

temperature inside the riser, Vr is the riser volume, ρl is the density of the10

liquid phase, g is the standard gravity constant, A is the cross section area11

of the riser, and θ is the mean inclination of the riser.12
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