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Abstract: In this work, we present the control and optimization of a network consisting of
two gas-lifted oil wells, a common pipeline-riser system and a separator. The gas-lifted oil wells
may be open-loop unstable. The regulatory layer stabilizes the system by cascade control of
wellhead pressure measurements without needing bottom hole sensing devices. An economic
Nonlinear Model Predictive Control (NMPC) based on the Multiple Shooting (MS) formulation
is applied for optimization of the network operations. The optimization layer thus provides
optimal settings for the regulatory controllers. The control structure has been validated by
using the realistic OLGA simulator as the process, and using simplified models for Kalman
filtering and the NMPC design. The simplified models are implemented in Modelica and fit to
the Olga model to represent the main dynamics of the system. The proposed two-layer controller
was able to stabilize the system and increase the economical outcome.
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1. INTRODUCTION

In an offshore platform, the flow control of the oil wells
is a key to attain good overall operational performance.
The control of the producers assisted by gas-lift may
be challenging due to oscillatory flow patterns known as
casing heading and density wave (Bin and Golan, 2003).
Moreover, even under stable well operations, oscillations
known as riser slugging may originate in the pipeline-riser
system that transport the production from the wellhead
to the platform (Taitel, 1986).

The oscillatory flow behavior can be reduced or eliminated
by increasing the pipeline back-pressure, i.e., reducing the
opening of the choke vale (Schmidt et al., 1980), or by
increasing the lift-gas injection rate (Golan and Whitson,
1991). However, these solutions are not necessarily optimal
from an economical point of view, and automatic feedback
control has emerged as a viable alternative (Havre and
Dalsmo, 2002).

Dynamic multiphase flow models are required to develop,
analyze and tune well flow controllers. These models are
typically built based on physical assumptions and vary in
complexity. Detailed models are implemented in commer-
cial multiphase flow simulators such as OLGA (Schlum-
berger, 2014). However, simplified low-order models are
typically preferred for model based controllers (Eikrem
et al., 2008; Jahanshahi and Skogestad, 2014). Moreover,
when appropriately tuned, such models are sufficiently
accurate for use in such controllers.

Feedback control solutions for wells assisted by gas-lift
and pipeline-riser systems have been studied thoroughly
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during the last 30 years. Most of these works consider
decoupled or independent wells and risers, for instance
stabilization of slug flow in wells (Eikrem et al., 2008)
or in pipelines/riser systems (Jahanshahi and Skogestad,
2014). Wells sharing the same riser may affect a common
manifold pressure, hence, it is then required to analyze
the dynamics of the sub-systems performing as a whole.
Willersrud et al. (2013) addresses control and optimiza-
tion of an oil gathering network with several wells, ris-
ers, a compressors and a separator with nonlinear model
predictive control. However, the regulation capability in
closed-loop was not studied. Nonlinear predictive control
applied for regulatory control to such systems may be
prohibitively computationally expensive. Therefore, in this
work we assess the applicability of the simplified gas-lifted
well and riser models described by Jahanshahi (2013) for
dynamic optimization of a coupled system of wells feeding
a riser. To this end, Nonlinear Model Predictive Control
(NMPC) is applied to steer set-points of a regulatory layer
implemented with PI controllers.

It is preferable to use a structured software platform for de-
velopment and analysis of NMPC. Modelica is a convenient
non-proprietarymodeling language that assists to generate
balanced-complexity models (Elgsæter et al., 2012). The
models by Jahanshahi (2013) are translated to indepen-
dent Modelica sub-models. The boundary conditions of
these sub-models, which are given by pressures and flows,
can be coupled to other sub-models or set to a constant.
Moreover, Modelica compilers, such as OpenModelica 1 ,
are able to check the consistency of the sub-models, and
their interconnections. Therefore, Modelica assists in a
bottom-up model development. Modelica compilers gen-
erate a functional mock-up unit (FMU), which is a stan-
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dard model component that can be shared with other
applications. Subsequently, the resulting model may be
imported to CasADi (Andersson, 2013) via the integration
to the JModelica.org compiler. Casadi implements efficient
automatic differentiation techniques and is interfaced to
other numerical packages. This enables fast development
of NMPC solutions, without needing deep knowledge on
the implementation of Nonlinear Programming solvers or
Automatic Differentiation tools.

In this work, the control structure is divided into two
layers. A regulatory layer is designed after controllabil-
ity analysis of the unstable system. This consists of cas-
cade controllers for wells and SISO controllers for the
pipeline-riser system. Then, the second layer implements
production optimization by providing set-points to the
lower layer. To this end, the simplified sub-models are
parametrized and adjusted to a detailed model in OLGA.
An Extended Kalman Filter (EKF) is developed using the
simplified models and tuned to track the detailed model.
Then, the NMPC is implemented using state feedback.
In order to assess the performance of the controller, the
network system is steered from an initial predetermined
fixed set-point to an optimal point by the NMPC.

The paper is organized as follows. In Section 2, the network
system is described, and then the simplified models and the
modeling fitting are presented in Section 3. The control
structure and its building blocks are described in Section
4. The numerical results are presented in Section 5, and
finally, the main conclusions and remarks are summarized
in Section 6.

2. SYSTEM DESCRIPTION

The oil gathering system to be studied is modelled in
the OLGA simulator and is represented in Figure 1. The
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Fig. 1. OLGA-model: Oil gathering system with low level
control structure.

network consists of two wells operated by gas-lift which
feed a common pipeline-riser to a separator. The network
contains 7 control inputs:

• Gas injection controlled by mass flow rate at the
annulus top of each well.

• Production choke valve opening of each well.
• Top-side valve opening.
• Two valves downstream to the separator.

The wells are considered to be geometrically identical.
These are vertical with tubing and annulus length of 2048
m. The tubing diameters are equal to 0.124 m., the annuli
are represented by a cylindrical not-annular pipeline of
0.2 m. diameter, and the roughness coefficients are equal
to 4.5E-5 m. The reservoir temperature is equal to 108
◦C while the well inflow relation is considered linear with
a coefficients of 2.47E-6 kg/s/Pa. The produced gas-oil-
ratio (GOR) and water fraction (WCUT) are considered
negligible. However, the reservoir pressures are different,
being 160 bar for well 1 and 170 bar for well 2.

The pipeline length is 4300 m, where the last 2300 m has a
negative inclination of 1◦ to mimic an undulated seabed.
The riser has a height of 300 m. The pipeline and riser
have a diameter of 0.2 m and a roughness of 2.8E-5 m. The
separator is controlled to operate at a constant pressure of
5 bar.

In the OLGA simulator, the fluid properties can be speci-
fied by a black-oil model or can be supplied as PVT Tables.
We use the PVT option in this work. The PVT tables
are generated by PVTSim c�. These tables store the fluid
properties such as gas density (ROG), oil density (API),
and gas mass fraction (RS) as functions of the pressure
and temperature. The viscosity of the fluid model range
from 0.2 to 1 cP, which is not sufficient to classify the
fluid as heavy oil. The produced fluid is saturated and
does not have free gas in a wide range of pressures. Due
to this fluid conditions and the low reservoir pressure, the
wells considered in this work are not naturally flowing.
Therefore, gas-lift is required to assist the production.

3. SIMPLIFIED MODELS AND FITTING

The OLGA model described in Section 2 acts as the real
system and is treated as a black-box model. However, we
assume that some commonly available parameters of the
system are given, such as the geometry and fluid properties
at a given pressure and temperature.

Simplified models are built using representative parame-
ters and first principles. We choose the models developed
by Jahanshahi (2013) since these were successfully fit to
the OLGA model. However, parameters of the simplified
model had to be modified due to changes in the boundary
conditions and the fluid model. Hence, in this section we
present and discuss the simplified model parametrization
and suitability to control the OLGA model.

3.1 Generalized submodel

We treat the gas-lift well and pipeline-riser as independent
building components of the gathering network system.
From a general perspective, any of these subsystems can
be represented by the following ODE structure:

ẋs = fs (xs, us) (1a)

ys = hs (xs, us) (1b)
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where the subscript s refers to any subsystem in S =
{w1, w2, r1} which contains a reference to the wells and
pipeline-riser. The separator is assumed to be operating
at a constant pressure, which is the usual and reasonable
assumption. The differential states xs represent the mass
of the phases liquid and gas contained in the subsystem s
which evolve according to fs. The function hs defines the
variables ys which gathers the input pressures, and output
mass flow rate variables for each phase.

The physical assumptions on each submodel are similar.
The liquid phase is considered incompressible and the gas
phase is modeled assuming the ideal gas law, with constant
temperature and gas molecular weight.

3.2 Gas-lift well submodel

The annulus is modeled as a vertical cylindrical tank filled
with gas at a constant temperature. The state of the
annulus is fully defined by the contained mass of gas,

(ṁG)a = (wG,in)a − (wG)inj , (2)

where (wG,in)a is the inlet gas flow rate to the annulus
which is used as a control input and (wG)inj is the injection
rate from the annulus to the bottom of the tubing. The
pressure at the annulus top, where the measurement is
taken, is calculated based on the ideal gas law while the
pressure at the injection point is considered to be the
pressure at the top plus the pressure due to gas gravity.

The well tubing is modeled by two states, the mass of the
gas and liquid in the well,

(ṁG)w =

(

η

η + 1

)

wres + (wG)inj − (wG)wh (3a)

(ṁL)w =

(

1

η + 1

)

wres − (wL)wh , (3b)

where η is the average mass ratio of gas and liquid
produced from the reservoir which is assumed to be a
known constant parameter of the well. (wG)wh and (wL)wh

are the mass flow rates of gas and liquid at the well-head.
The production mass rate wres [kg/s] from the reservoir
to the well is assumed to be described by a linear Inflow
Performance Relationship (IPR). Similar to the annulus
the pressure at the top of the well is calculated assuming
the ideal gas law. Then, the gravity of the two-phase
mixture and the friction in the tuning are taken into
account to get the bottom-hole pressure. See (Jahanshahi,
2013) for the complete formulation.

3.3 Pipeline-riser submodel

The pipeline-riser is modeled by four states which are the
masses of the gas and liquid phases inside the pipeline
and the riser sections. The four state equations of this
submodel are:

(ṁG)p = (wG,in)p − (wG)rb (4a)

(ṁL)p = (wL,in)p − (wL)rb (4b)

(ṁG)r = (wG)rb − (wG,out)r (4c)

(ṁL)r = (wL)rb − (wL,out)r (4d)

Here, the subscripts ‘in’, ‘rb’ and ‘out’ stand for ‘inlet’,
‘riser base’ and ‘outlet’ respectively. The mass flow rates
at the riser base are calculated by valve equations, and

there are four tuning parameters in the pipeline-riser
model which are used to fit the model to a real system
or a detailed OLGA model. The model equations and
the model-fitting procedure are given by Jahanshahi and
Skogestad (2014).

3.4 Coupling submodels

Submodel equations represented by eq. (1) are coupled
with mass and pressure balances. Moreover, every sub-
model has at the output boundary a valve equation:

|wo|1 = k
√

ρo max (po − pi) (5)

where wo = (wo
G
, wo

L
) are the mass flow of gas phase

and liquid phase, respectively and ρo is the estimated
mixture density at the output. The pressures upstream and
downstream the valves are po and pi, respectively. The pa-
rameter k should be tuned following a procedure described
in (Jahanshahi, 2013; Jahanshahi and Skogestad, 2014).

3.5 Model fitting

The simplified models include tuning parameters which are
fit to the process. The tuning parameters must be chosen
to match both the steady-state and dynamic behavior of
the system. A good matching of the steady-state behavior
of pressures and flow rates are necessary to find correct
optimal settings. Moreover, the dynamic behavior (e.g.
stability regions) is required to design the regulatory layer.
We followed the model fitting procedure described by
Jahanshahi and Skogestad (2014).

4. CLOSED-LOOP CONTROL

This work is focused on the control and automation layer of
a multi-level offshore control hierarchy (Foss, 2012) and on
the production optimization layer. Our suggested control
structure is represented in Figure 2.

Process

EKF
State Estimator

Low Level Controllers
+
-

Multiple Shooting
Optimizer

Fig. 2. Control structure

The controller can be separated in three main building
components:

• Low level controller: The wells are controlled by cas-
cade controllers which inner-loop measures the pres-
sure at the top of the annulus and the outer-loop the
pressure at the wellhead. The pressure at the inlet of
the pipeline is controlled by a PI control loop which
manipulates the valve at the top of the riser. Finally,
for the separator, the liquid level is measured and
controlled by a PI controller manipulating a liquid
output valve; in the same way, the pressure is mea-
sured and controlled by a PI controller manipulating a
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gas output valve. The pressure and level set-points are
5 bar and 20% of the separator height, respectively.

• State-estimator: The process measurements y are
used to correct estimated dynamical states x̂ of the
system. This operation is performed on-line with an
Extended Kalman Filter (EKF). The EKF uses the
the simplified models of the wells and risers coupled
to the low level controllers. Thus, the states being
estimated correspond to the states of the simplified
models and the state of the controllers

• Multiple Shooting (MS) optimizer: The MS optimizer
takes as input the estimated states x̂ of the EKF
and computes an optimal trajectory yopt for the
pressure set points and an input flow rate for gas. The
objective function considers the oil being produced
and the gas being injected over a certain period, and
penalizes the control effort being applied.

4.1 Low level control

Optimal gas-lift operating points under high lift-gas in-
jection price are located in an unstable region where the
casing-heading instability occurs. Therefore, low level con-
trollers are required for stabilization. The gas-lift well has
two degrees of freedom for control, the gas injection rate
and the production choke valve. In this work we use the
production choke for stabilization, see e.g. (Jahanshahi,
2013).

Downhole pressure measurements can be used for stabi-
lizing flow. A simpler alternative are instruments placed
on the wellhead and topside. In this work we combine
wellhead pressure measurements in a cascade structure.
In an earlier controllability analysis (Jahanshahi, 2013), it
has been shown that the pressure measurement at the top
of the tubing is not a suitable controlled variable in a SISO
structure. The reason is the RHP (Right Half-Plane) zero
dynamics associated with the pressure at the top of the
tubing. With a SISO controller, this measurement reacts
with an inverse response to input changes (Skogestad and
Postlethwaite, 2005), that imposes unavoidable large peaks
in the sensitivity transfer functions. However, when the
tubing pressure is combined with other measurements,
such as the annulus pressure, it is possible to design a
controller with a low peak in its sensitivity transfer func-
tion (Jahanshahi, 2013). In the cascade control structure
used in this work, the annulus pressure measurement is
controlled by the valve and its set-point comes from the
master control loop controlling the tubing pressure at a
given set-point.

4.2 State estimation

The EKF is implemented in discrete time as in (Simon,
2006, p. 409). The model used within the filter consists of
coupling the sub-models described in Section 3 and models
for the low level controllers in Section 4.1.

The low level controllers are implemented within the
OLGA-model, and their state variables are not available.
Therefore, similar low level controllers are coupled with
the simplified models and their states are estimated in the
EKF.

All models are written in continuous time and discretized
using the CVODES (Hindmarsh et al., 2005) integrators
and CasADi (Andersson, 2013) for Automatic differentia-
tion of the system equations. The EKF receives measure-
ments every 10 sec., hence CVODES integrates the system
and find the required sensitivities for this period of time.

The measurements used for state estimation are the
wellhead pressures and the pipeline inlet pressure. Al-
though more measurements are available, only measure-
ments which are control variables in the regulatory layer
are considered. The reason is that the regulatory layer
forces these variables to track the same set-points in the
model and in the plant. Thus, these measurements are
unbiased in steady-state and therefore suitable for the
Kalman filter algorithm. Additional measurements which
contain steady-state bias deteriorate the estimation. Here,
the estimation relies on a good model rather than on
aggressive corrections due to measurements.

4.3 Multiple Shooting optimizer

The MS optimizer solves the following problem:

min
Θ

∑

k∈K

(−qo(xk,uk) + αgqinj(xk,uk))+ (6a)

∑

k∈K

(uk−1 − uk)
⊤
Ru (uk−1 − uk) + (6b)

(uK − uopt)
⊤
Rf

u (uK − uopt)+ (6c)

s.t. : xk+1 = F (xk,uk) , k ∈ K, (6d)

yk = Y (xk+1,uk) , k ∈ K (6e)

bx
l ≤ x ≤ bx

u (6f)

b
y
l ≤ y ≤ by

u (6g)

bu
l ≤ u ≤ bu

u, (6h)

where the set of variables to be optimized Θ is composed
of the state variables at the end of the shooting peri-
ods (x2, . . . ,xK+1) and the control variables uk, k ∈ K.
Hence, the problem is divided in K shooting periods
(K = {1, . . . , K}), which are coupled by the MS state
constraints (6d). The function F represents a simulation of
the simplified models over a discretization period, which
is chosen equal to 1 hour. The states xk+1, k ∈ K con-
tains the state of the simplified models at the end of the
corresponding shooting period. The initial state x1 is not
a decision variable and it is estimated by the EKF. The
objective function aim to maximize an economical value,
given by the oil production and the gas injection at a given
price αg. Moreover, a penalty term that penalizes control
changes is included in (6b) which can be tuned with the
positive semi-definite matrix Ru. To this end, u0 is equal
to the current set-points being applied to the process.
Finally, the objective implements a final stage cost (6c),
which penalizes the mismatch between the final inputs uK

and the steady-state optimal input uopt. With this aim,
optimal input uopt is computed off-line and the positive
semi-definite matrices Rf

u is tuned. Output constraints are
implemented as bounds on the states (6f) and with bounds
on the output variables y in the equations (6e) and (6g).
Finally, input bounds are set in (6h).

Output constraints are required to keep the optimizer
inside the physical limits of the system and away of unsta-
ble regions. Therefore, many constraints are implemented
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to provide robustness to the optimization method. These
include bounds on wellhead pressures, flow rates and mass
fractions within the pipelines. The requirement of a large-
set of output constraints makes the MS formulation the
preferable choice as opposed to the most compact Single
Shooting formulation. The cost of an iteration of the MS
formulation is dictated by the number of state variables,
which is low in this example. However, the cost of an
iteration of the Single Shooting formulation depends on
the number of output constraints being considered.

Problem (6) is solved with IPOPT (Wächter and Biegler,
2005). Observe that fulfilling tight tolerances of the opti-
mality conditions for problem (6) can be computationally
very expensive. Therefore the solver was limit to make 60
major iterations or to process during 30 minutes.

5. CONTROLLER PERFORMANCE

We apply the controller suggested in section 4 to control
the OLGA model. We start the NMPC after 1 hour when
the regulatory layer has settled and the Kalman filter
has converged. The prediction horizon is set to forecast
16 hours and the discretization period of each shooting
interval is 1 hour. We optimize 16 shooting intervals
(K = 16), each containing 20 variables, corresponding to 5
controls and 15 states. However, the MS algorithm returns
only the optimal control inputs for the next 1 hour. The
optimal inputs consist of the gas injection rates of the
two wells and the optimal set-points for the regulatory
controllers.

The performance of the pressure controller for well #1
is shown in Fig. 3. The performance of the controller
related to well #2 is similar. These are cascade controllers
where the set-points for the master loops (tubing pres-
sure) are given by the optimization layer and the slave
loops manipulate the production choke valve openings.
The production valves are opening gradually to increase
the oil production rates. Nevertheless, they respect the
constraints imposed for the controllability purpose. Since
the wellhead pressures are used for the state estimation
and they follow the optimal set-points, the measurements
and estimates are very close. However, the modeling mis-
match causes estimation errors for the annulus pressures
and the openings of the valves.

Fig. 4 and Fig. 5 show the gas injection rates and oil
production rates for the two wells. The optimal gas in-
jection rates are calculated by the NMPC. As shown in
the figures, the optimizer injects more gas to the wells to
reach the optimal operation point which is dependent on
the oil and gas prices. The estimation error is caused by
process/model mismatch. Here, the normalized price of oil
is 1 and the normalized price of gas equals 2.5, for each
kg/s.

Fig. 6 shows the control of the pressure at the pipeline
inlet. This controller manipulates the top-side valve and
the optimal set-points are given by the NMPC. The esti-
mation error of the inlet pressure is negligible because its
measurement is used for state estimation and it is directly
controlled by the regulatory layer. Nevertheless, the valve
opening estimation suffers due to modeling error. More-
over, we observe a constraint violation in the transient
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Fig. 3. Well-head pressure of well #1
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response because the optimization algorithm was halted
(CPU-time limit) before and optimal solution is reached.
However, this constraint is satisfied in steady-state. The
proposed low level control structure and the EKF com-
putational times are negligible compared to the sampling
time of the plant. Hence, these are suitable for on-line
applications. However, the NMPC solution is not solved
to the default tolerances in IPOPT and it is halted after
30 minutes of execution, therefore a sub-optimal solution
is used. Moreover, in order to keep the controller perfor-
mance assessment independent of this computational time,
the process simulator is paused during this computation.
Nevertheless, observe that IPOPT is a general purpose
solver and does not exploit structure of the MS formula-
tion. Therefore, appropriate solvers may solve this problem
in a feasible time for a closed-loop application (Diehl et al.,
2009).
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Fig. 5. Oil production rate of well #2
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Fig. 6. Pressure at pipeline inlet

6. CONCLUSION

To our knowledge, this paper is the first publication
considering regulatory control of a multiple well system
and riser steered by an NMPC optimization layer. The
structure work well by jointly calculating dynamic set-
point trajectories and ensuring stable flow conditions on a
realistic simulator. Thus, it is a promising approach.

However, the optimization algorithm for NMPC is not
fast enough to be used in closed-loop, therefore, further
research developments should be carried out to exploit
the structure of the Multiple Shooting formulation with
specialized Nonlinear Programming solvers.
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