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Abstract: Offshore operations can be harsh and demanding and set personnel and equipment at
risk. Ships will be exposed to the elemental forces of wind, waves and current, which will influence
offshore crane operations considerably. This paper addresses the use of a crane head, constructed
as a Delta parallel robot, to compensate for the motions of the ship in three axes. This type of
robot has a rigid and accurate structure, but because of its highly nonlinear nature, advanced
control algorithms must be derived. This paper includes both forward and inverse kinematics for
the robot, as well as velocity kinematics and workspace analysis. The kinematics of a full crane
system, with the robot as its head, has been modelled, and a simulator which includes a model
of a supply vessel is created. The disturbances on the system from the elements are translated
and rotated to the crane head frame of reference for use in the compensation procedure. PID
controllers are used to control the crane head, and simulations are conducted to verify that the
crane head is able to compensate for the motions created by waves.
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1. INTRODUCTION

Offshore crane operations in harsh environments are chal-
lenging and put crew and equipment at risk. Heave com-
pensated crane systems in marine vessels have been exten-
sively used to cultivate easier and safer offshore operations.
Examples of such operations are surface crane operations
for installing equipment on the seafloor, launching and
retrieving systems (LARS) and delivering supplies from
vessels to platforms. Motion compensation in such systems
are generally limited to one axis, i.e the vertical heave
motion, (Fang et al., 2014; Küchler et al., 2011; Messineo
and Serrano, 2009; Johansen et al., 2003).

This paper considers the development of a crane head
control designed for motion compensation in all three axes.
This Three Axis Compensator (TAC) is a Delta type
parallel robot (Clavel, 1988). A parallel robot consists of
two or more closed kinematic chains linking the base to
the end effector, whereas a serial robot arm consists of just
one kinematic chain (Spong et al., 2005). The advantages
of a parallel structure are its high rigidity and accuracy,
making it very attractive for crane operations, whereas the
disadvantages are narrower workspace and more difficult
control than its serial counterpart (Laribi et al., 2008). The
Delta robot consists of three kinematic chains connected
on either end at a top- and bottom plate, and these plates
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stay in parallel with each other (Codourey, 1988). It is
most commonly used for precise and stationary actions
such as item picking or 3D printing (Williams, 2015), but
in this paper it will be seen that it can also be used for
motion compensation of crane operations on ships, which
is a novel application.

It will be discussed how to use the TAC to compensate
for the motion of a load suspended in a crane on a ship
at sea. First a mathematical model of the crane head will
be provided. Section 2 deduces the crane head geometry
which is used in Sections 3, 4 and 5 to find the inverse,
forward and velocity kinematics of the TAC, respectively.
The workspace limits of the TAC are explored in Section 6.
The kinematics of the full crane system, including how the
measurements from the Inertial Measurement Unit (IMU)
are related to the states of the system is detailed in Section
7, whereas Section 8 will tie together all the different parts
required to control the TAC. The simulation setup and
results are presented in Sections 9 and 10.

2. TAC GEOMETRY

To fully understand how the TAC can be used for motion
compensation, it is imperative that the TAC’s configu-
ration can be explained and designed precisely. Fig. 1
shows a geometrical representation of the TAC with the
different parameters further explained in Table 1. The Tool
Center Point (TCP) is where the load is suspended, and
its position is denoted pc.

The main frame of orientation, denoted {t} with coor-
dinates (xt, yt, zt), is shown in Fig. 2, with the x-axis



Fig. 1. TAC Geometry.

Table 1. TAC parameters.

Notation Unit Description

lk m Length from center of the bottom
plate to the arm

la m Length of the arm
lr m Length of the rod
lp m Length from the center of the top

plate to the rod
αi rad Angle between bottom plate and

arm i
ui rad input to DC-motors
ki - Knee-point between arm and rod i
ci - Indented Knee-point i
pi - Point connecting rod and top plate
pc - Center-point of the top plate,

position of the TCP
i - Jointed-arm number,

i ∈ {1, 2, 3}.

Fig. 2. TAC top plate seen from above, frame {t}.

pointing out of the paper plane, z-axis up and the y-
axis to the right. In Fig. 3 the individual frame for any
joint is shown, denoted {ti}= (xti , yti , zti) for i ∈ {1, 2, 3},
where the y-axis points from the knee into the center.
Both {t}- and {ti}-frame have the same origin, ot, thus
transforming between these frames is done by rotations,
with the rotation matrices

Rt
t1 = Rx, 5π6

, Rt
t2 = Rx, 3π2

, Rt
t3 = Rx,π6

. (1)

Fig. 3. TAC arm i seen from one of the sides, frame {ti}.

The position of the TCP in the different frames is denoted
as

ptc = [xc yc zc]
T

and ptic = (Rt
ti)
Tptc = [xci yci zci]

T .
(2)

Each of the three kinematic chains consists of an arm and
a rod, connected by a knee joint. The position of the knee,
ki, can be derived, when knowing the corresponding angle
αi, as

kti = Rt
ti [la cosαi, −lk − la sinαi, 0]

T ∀i ∈ {1, 2, 3},
(3)

whereas the position of the top plate cannot be found
without knowing all three angles. The length of the rod,
lr, is constant, a fact that can be exploited to derive the
relation between all angles and the TCP. By placing an
indented knee-point, ci, a distance of lp in the yti -direction
in the {ti}-frame yields a point which will be at a constant
distance of lr from pc. ci can be described as

cti = Rt
ti [la sinαi, a− la cosαi, 0]

T
, ∀i ∈ {1, 2, 3},

(4)

where a = lp − lk. The vector sti is defined as the vector
from cti to ptc, i.e.

sti ≡ ptc − cti ∀i ∈ {1, 2, 3}. (5)

ptc can be seen as the crossing point of three spheres with
radius lr and center in each indented knee point cti, as
presented in Fig. 4. With this information, the vector-loop
closure equation can be found as

‖sti‖22 = l2r ∀i ∈ {1, 2, 3}, (6)

Eq. (6) is a useful tool for describing the system dynam-
ics (Codourey (1988); Williams (2015); Andrioaia et al.
(2012)).

3. INVERSE POSITION KINEMATICS

The Inverse Position Kinematics (IPK) solution of the sys-

tem is a way of finding the joint angles, α = [α1 α2 α3]
T

,
given the Cartesian coordinates of the TCP, ptc (Williams,
2015). This is done in the {ti}-frame, where

ctii = [xi yi zi]
T . (7)

Eq. (6) can be expanded,

‖ptic ‖22 + ‖ctii ‖
2
2 − l2r − 2(xcixi + yciyi + zcizi) = 0, (8)



Fig. 4. Tool Center Point ptc described by three spheres.

where

‖ctii ‖
2
2 = l2a + a2 − 2ala cosαi. (9)

Eq. (8) is then expanded for all three joints in the individ-
ual {ti}-frames

‖pt1c ‖22 + ‖ct11 ‖22 − l2r − 2xc1la sinα1

+ (
√

3yc1 − zc1)(a− la cosα1) = 0,

‖pt2c ‖22 + ‖ct22 ‖22 − l2r − 2xc2la sinα2

+ 2zc2(a− la cosα2) = 0,

‖pt3c ‖22 + ‖ct33 ‖22 − l2r − 2xc3la sinα3

− (
√

3yc3 + zc3)(a− la cosα3) = 0,

(10)

where the three equations are of the form

ei cosαi + fi sinαi + gi = 0 ∀i ∈ {1, 2, 3}, (11)

with
f1 = f2 = f3 = −2xcila,

e1 = (−
√

3yc1 + zc1 − 2a)la,

e2 = −2(zc2 + a)la,

e3 = (
√

3yc3 + zc3 + 2a)la,

g1 = ‖pt1c ‖22 + l2a + a2 − l2r + (
√

3yc1 − zc1)a,

g2 = ‖pt2c ‖22 + l2a + a2 − l2r + 2zc2a,

g3 = ‖pt3c ‖22 + l2a + a2 − l2r − (
√

3yc3 + zc3)a.

(12)

Tangent Half-Angle Substitution (Williams, 2015) is a
method that can be used to solve (11). By defining a
variable γi ≡ tan(αi2 ), cosαi and sinαi can be substituted
with

cosαi =
1− γ2i
1 + γ2i

, sinαi =
2γi

1 + γ2i
. (13)

Inserting (13) into (11) leads to

(gi − ei)γ2i + (2fi)γi + (gi + ei) = 0. (14)

One can recognize (14) as a second order polynomial which
can be solved with the quadratic formula

γi1,2 =
−fi ±

√
e2i + f2i − g2i
gi − ei

(15)

This yields two solutions for γi, and two solutions for
αi since αi = 2 arctan(γi). One solution has the knees
pointing outwards, αi < π/2 and the other has the knees
pointing inwards, αi > π/2. As long as the TCP is inside

the workspace, the solutions are well-defined and real.
When the solutions are different this will in total yield
eight different configurations for the TAC, but the solution
chosen should be the one with all knees pointing outward,
i.e. satisfying |αi| < π

2 . The IPK solution can be formed
into a function such that

α = IPK(ptc). (16)

4. FORWARD POSITION KINEMATICS

The Forward Position Kinematics (FPK) solution is the
inverse of the IPK as it yields ptc given α. It can be solved
analytically with Gaussian Elimination (Coope, 2000). Eq.
(6) can be rewritten as

(ptc)
Tptc − 2(ptc)

T cti + (cti)
T cti = l2r . (17)

One want to reformulate the quadratic parts of the equa-
tion to make it easier to solve. This can be done by
introducing the variables

r = (ptc)
Tptc, bi = (cti)

T cti − l2r , (18)

which gives

(ptc)
T cti = (r + bi)/2, ∀i ∈ {1, 2, 3}. (19)

By changing the notation to

C =
[
ct1 ct2 ct3

]
, 1 = [1 1 1]

T
, b = [b1 b2 b3]

T
, (20)

and introduce the substitution variables

u = C−T1, v = C−Tb, (21)

a solution for ptc can be found as

ptc = (ru + v)/2. (22)

A solution for ptc is now presented, but r is still unknown.
r can be obtained by inserting (22) into (18)

r = (ptc)
Tptc =

1

4
(ru + v)T (ru + v). (23)

This can again be rewritten to

(uTu)r2 + (2uTv− 4)r + vTv = 0, (24)

which can be recognized as a second order polynomial.
This can be solved for r as

r =
2− uTv±

√
(2− uTv)2 − (uTu)(vTv)

uTu
(25)

If the solution from (25) is inserted in (22) two analytical
solution for ptc given α appears. To understand why two
solutions appears one can look back at Fig. 4 where it can
be observed that the three spheres intersect in two points.
One solution is the intersection above the TAC base plate,
the other is beneath. The valid solution for the crane head
is the one over the TAC base plate i.e satisfying xtc > xti
∀i ∈ {1, 2, 3}.

5. KINEMATIC JACOBIAN

The relationship between the velocity of the TCP, ṗc,
and the joint velocities, α̇, can be useful for designing
a control system (Codourey (1988); Spong et al. (2005)).
This kinematic relationship can be found by differentiating
(6) as

(sti)
T ṡti = 0 (26)

where ṡi can be found as

ṡti = ṗtc − dtiα̇i, (27)



with
dti = Rt

ti [la cosαi la sinαi 0]
T
. (28)

Inserting (26) into (27) yields

(sti)
T (ṗtc − dtiα̇i) = 0. (29)

Expanding (29) for i ∈ {1, 2, 3} gives(st1)T

(st2)T

(st3)T

 ṗc −

(st1)Tdt1 0 0
0 (st2)Tdt2 0
0 0 (st3)Tdt3

 α̇ = 0, (30)

which finally becomes

ṗtc = J(ptc,α)α̇, (31)

where

J(ptc,α) =

(st1)T

(st2)T

(st3)T

−1 (st1)Tdt1 0 0
0 (st2)Tdt2 0
0 0 (st3)Tdt3

 (32)

is the Jacobian of the system.

6. WORKSPACE

The IPK solution described in Section 3 will meet diffi-
culties if the position is outside the reachable area of the
TAC, i.e. the workspace. To this end, a check to see if
the desired position is inside the workspace is necessary.
Since the TAC is to be used for motion compensation,
it is imperative that it is reliable. If a desired position
is found to be outside of the workspace, additional crane
joints (if available) must be utilized, operations must be
aborted, or reduced accuracy of the motion compensation
must be accepted. A method for finding the workspace
can be found with the help of Andrioaia et al. (2012). It is
possible to design a TAC based on workspace requirements
(Stan et al., 2011) but this will not be treated in this paper.

The first step in finding the workspace is to make a cube
containing the limits of the maximum reach of the TCP.
The approximated limits stay true to the notion that the
top plate can not go through the bottom plate, nor that
it can be flipped. Hence, the limits are found to be

Xmax = la + lr
Xmin = 0

Ymax ∼= Zmax = lr + lp − lk
Ymin ∼= Zmin = −(lr + lp − lk).

(33)

The limits can be combined to form the intervals that
contain both feasible and infeasible solutions for ptc. These
intervals are then split into individual points in three
dimensions that can be tested as candidate positions for
the TCP. The number of points selected will depend on the
spatial discretization distance h, which acts as the distance
between points in one dimensions. This yields the arrays

xw = [xw1, xw2, ..., xwn]

yw = [yw1, yw2, ..., ywn]

zw = [zw1, zw2, ..., zwn]

(34)

where xw1 = Xmin, xwn = Xmax, yw1 = Ymin, ywn =
Ymax, zw1 = Zmin and zwn = Zmax with fixed step size h.
All the different positions found in these arrays are then
checked by testing if the IPK solution is real, and joint
angles are inside the design range. The positions that are
deemed plausible are kept and serves as the basis for the
approximated workspace. The smaller h, the higher the
resolution of the workspace and the cost of computational

load. The plausible coordinates on the outskirts of the
workspace will serve as the edges, and by finding the
convex hull of all the allowed coordinates, the limits of the
workspace is found. With the limits found, it is possible
to check if the desired position is outside the limits while
the TAC is running. Appropriate actions for transgressing
the limits can be moving the set point back towards the
limits (saturation), involving the rest of the crane in the
compensation action, or aborting the operation, among
other alternatives. This paper will not consider the actions
for transgressing the limits further. As it is a cumbersome
process to find the limits it should be done as an initializing
process, or even done separately and merely entering the
limits as parameters to the TAC’s controller.

7. FULL CRANE KINEMATICS

This section will describe the forward and velocity kine-
matics of a full crane system, from the Center of Origin
(CO) to the TAC. Two more coordinate reference frames
are described. The North-East-Down (NED) coordinate
system, {n} =(xn, yn, zn) with origin on, is defined rela-
tive to the Earth’s reference ellipsoid, and stays fixed as
the ship moves. The body-fixed reference frame, {b} =
(xb, yb, zb) with origin ob (CO), is a moving coordinate
frame that is fixed to the craft (Fossen, 2011).

Table 2. Notation for marine vessels (SNAME,
1950).

Linear and Positions
DOF angular and Euler

velocities angles

1 motions x dir (surge) u x
2 motions y dir (sway) v y
3 motions z dir (heave) w z
4 rotation x axis (roll) p φ
5 rotation y axis (pitch) q θ
6 rotation z axis (yaw) r ψ

Marine vessels are affected by forces and moments in six
Degrees Of Freedom (DOF), which are further described
in Table 2. The IMU normally consists of accelerometers
and gyroscopes, among other sensors, used to estimate the
ship’s position and attitude, and the velocities of these, as

η = [x y z φ θ ψ]
T
,

ν = [u v w p q r]
T
.

(35)

The IMU measures accelerations, which are integrated to
get velocities ν and position η. Sensor biases, misalign-
ments and noise will cause drift, especially in the position
estimations. To obtain measurements of higher quality the
IMU has to be combined with other systems. Combining
the IMU with the kinematic equations for the ship results
in an inertial navigation system (INS), but the measure-
ments still drifts. By including Global Navigation Satel-
lite System (GNSS) measurements in the computations,
the INS drift can be removed. Obviously the acceleration
measurement quality depends on the IMU quality while
the velocity and position measurement quality depends on
the GNSS quality (Fossen, 2011).

The transformation from {b}-frame to {n}-frame can be
found as



Table 3. DH table for a typical crane configu-
ration.

Link aj αj dj θj
1 Lsx π −Lsz 0
2 0 π

2
L0 β∗

0
3 L1 0 0 β∗

1
4 L2 −π

2
0 β∗

2

T nb =

[
Rn
b o

n
b

0 1

]
, (36)

where
Rn
b = Rx,φRy,θRz,ψ,

onb = [x y z]
T
.

(37)

The forward kinematics of the full crane system can be
found by using the DH-convention, with the knowledge
of the crane’s dimensions and configuration (Spong et al.,
2005). The following example, seen in Fig. 5, is considering
the transformation from ob inside the ship, along a three-
joint crane system to ot. With the information available
in Fig. 5, a DH-table can be made, see Table 3. β∗

j are
controllable angles. Each row in the DH-table is inserted
into (38) to garner the transformation matrix Aj from link
j − 1 to link j, and in this example j = 1, 2, 3, 4.

Aj = Rotz,θjTransz,djTransx,ajRotz,α

=

cθj −sθjcαj sθjsαj ajcθj
sθj cθjcαj −cθjsαj ajsθj
0 sαj cαj dj
0 0 0 1

 (38)

The notation for sin(·) and cos(·) in (38) is sx ≡ sinx and
cx ≡ cosx. The transformation matrix between frames can
be found as

T0
n = A0 · · ·An (39)

where n is the number of joints. The transformation matrix
can be further broken down as

T0
n =

[
R0
n o

0
n

0 1

]
=

[
x0
n y

0
n z

0
n o

0
n

0 0 0 1

]
, (40)

where R0
n is a rotation matrix consisting of the three

vectors x0
n, y0

n and z0n , and o0n is the translation vector.

T bt = T 1
4 = A1A2A3A4 =

[
Rb
t o

b
t

0 1

]
. (41)

The inverse kinematics for the full crane is the method
of finding the joint angles, β, knowing the position of the
end-effector, obt . By transforming this to the position of
the first joint, o0t can be found as

o0t = R0
bo
b
t + o0b =

[
x0b y

0
b z

0
b

]
. (42)

From the first joint and up, the crane can be recognized
as the elbow manipulator from (Spong et al., 2005). The
angles of this configuration can be found as

β0 = arctan

(
y0b
x0b

)
, β2 = arctan

(
±
√

1− δ2
δ

)
,

β1 = arctan

(
z0b − L0√

(x0b)
2 + (y0b )2

)

− arctan

(
L2 sinβ2

L1 + L2 cosβ2

)
,

(43)

where

δ =
(x0b)

2 + (y0b )2 + (z0b − L0)2 − L2
1 − L2

2

2L1L2
. (44)

The two separate solutions for β2 give elbow-down or
elbow-up configuration of the manipulator, as the positive
or negative square root, respectively. For this example
elbow-up is desired, as seen in Fig. 5.

The Jacobian matrix, Jβ , determines the velocity rela-

tionship between the end effector, ξ, and the joints, β̇ =[
β̇0 β̇1 β̇2

]T
. The velocity kinematics can be found as

ξbt =

[
vbt
ωbt

]
= Jββ̇ (45)

where

Jβ =

[
Jv
Jω

]
=

[
Jv1 ...Jvn
Jω1

...Jωn

]
(46)

in which Jv is the Linear Velocity Jacobian and Jω is the
Angular Velocity Jacobian, where both have a column for
every link in Table 3 (Spong et al., 2005). For revolute
joints, as in this example, the ith column can be found as[

Jvi
Jωi

]
=

[
zi−1 × (on − oi−1),

zi−1.

]
, (47)

and since the first link in Table 3 is not movable, this is
skipped and the Jacobian matrix can be found as

Jβ =

[
z01 × (o0

4 − o0
1) z02 × (o0

4 − o0
2) z03 × (o0

4 − o0
3)

z01 z02 z03

]
,

(48)
where all vectors can be found from (39) after calculating
the transformation matrices for each link.

8. SYSTEM CONTROLLER

The desired position of the TCP, pnd , can be given by
the crane operator, and should be a position that is not
affected by the waves. The desired configuration of the
TAC should be such that the TCP has the largest freedom
of movement in all directions, i.e. in the middle of the
workspace, which gives a desired position in the {t}-frame
of ptd = [xd 0 0]T , where xd can be found by analyzing
the workspace area. The crane joints angle can be found
by substituting L2 in (43) and (44) with L2d = L2 + xd,
as ptd only has value along the x-axis.

The position of the TAC changed by the disturbances of
the sea, ont , can be found as

ont = Rn
b o

b
t + onb . (49)

To compensate for the vessel’s motion, the TCP should be
moved equally in the opposite direction of the disturbance,
thus the positional reference should be a vector from ont
to pnd in the {t}-frame, found as

ptref = Rt
np

n
ref , (50)

where Rt
n = (Rb

t)
T (Rn

b )T and pnref = pnd − ont . After

checking if ptref is inside the workspace, the reference
angles, αref , can be found with the use of the IPK function
found in Section 3, such that

αref = IPK(ptref ). (51)

The velocity reference can be found by differentiating (50)

vtref = ṗtref = Ṙt
npnref + Rt

nṗnref , (52)

where

Ṙt
n = (Ṙ

b

t)
T (Rn

b )T + (Rb
t)
T (Ṙ

n

b )T

= −(S(ωbt)(R
b
t)
T + (Rb

t)
TS(ωnb ))(Rn

b )T
(53)



Fig. 5. Ship with full crane system: An elbow manipulator (Spong et al., 2005) and the TAC.

and

ṗnref = Ṙb
tp
t
d + ȯbt − Ṙn

b obt −Rn
b ȯbt − ȯnb

= S(ωbt)R
b
tp
t
d − S(ωnb )Rn

b obt + (I−Rn
b )vbt − vnb

(54)

with

vnb = [u v w]
T
,

ωnb = [p q r]
T
.

(55)

ωbt and vbt are found from (45). The TCP positional
velocity is translated to the joints angular velocity by use
of the Jacobian matrix from Section 5,

α̇ref = J−1(ptref ,αref )vtref . (56)

With error dynamics as α̃ ≡ αref −α and ˙̃α ≡ α̇ref − α̇,
the input to the DC-motors, uα = [u1 u2 u3], can be
chosen with the use of a PID controller,

uα = Kpα̃+ Ki

∫
α̃(t)dt+ Kd

˙̃α, (57)

where the controller gains are chosen from regulator tun-
ing.

9. SIMULATION SETUP

The simulation setup consists of the controller described in
Section 8, a TAC simulator and a simulated supply vessel
with an IMU. An illustration of this is provided in Figure
6.

In the simulator the DC motors used to manipulate α are
modeled as the first order system

α

uα
(s) =

KDC

TDCs+ 1
, (58)

where values for the motor constants KDC and TDC can
be found in Table 4. Inverse Laplace transformation and
inserting this equation into (31) yields

ṗtc = J(ptc,α)(− 1

TDC
α+

KDC

TDC
uα), (59)

which partially represents the TAC system dynamics.
When designing the ship and simulating the IMU data
used in this simulator, the MSS toolbox (Fossen, 2011)
proved very useful. A supply ship model that takes a
controllable wave spectrum as input, and outputs η and
ν was created from the MSS toolbox. In the simulations
measurement noise was neglected as it is not the focus
of this paper, but in (Henriksen and Røine, 2016) it

was included in the experiments done on a small-scale
prototype of the TAC. Essential parameter values used
in the experimental setup can be found in Table 4. The

Table 4. Parameter values used in simulations.

Parameter Value Unit

lk 2.00 m
la 3.25 m
lr 7.00 m
lp 1.25 m

αmin -40 deg
αmax 70 deg
TDC 0.2 s
KDC 1 -
Kp 10 -
Ki 60 -
Kd 1 -
Lsx -20.70 m
Lsz 3.00 m
L0 3.00 m
L1 19.20 m
L2 9.60 m

simulator also includes the motion of the full crane, where
a path could be generated for the TCP in a pattern such
as loading or offloading, and then finding the joint angles
through inverse kinematics.

10. SIMULATION RESULTS

The conducted experiment used compensation action with
only the TAC, with positive results for significant wave
height, Hs, up to and including 3.0 meters. This cor-
responds to sea state 5 (rough sea) (Fossen, 2011). As
the focus of this paper is the TAC, the crane is in this
simulation placed in a stationary configuration, with

β0 = −π
2

rad, β1 ==
π

4
rad, and β2 = −π

4
rad, (60)

such that the crane points to the starboard side of the
ship, with the TAC in parallel with the ship deck, as seen
in Fig. 7. The figure also demonstrates the dimensions of
the system.

In Fig. 8 the 6 DOF’s simulated by the ship simulator can
be seen. Fig. 9 shows the how the control loop works with
ptc and ptref , whereas Fig. 10 shows this in {n}-frame, and
compares pnc to the uncompensated TCP position pns . Fig.
11 shows the length position error of the compensation,



Fig. 6. Block diagram representation of the experimental setup.
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Fig. 7. 3D rendering ship, crane and TAC.
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Fig. 8. Simulated vessel position and orientation η in {n}-
frame.

ec, compared to the error of the uncompensated case, es,
calculated as

ec = ‖pnd − pnc ‖2, es = ‖pnd − pns ‖2. (61)

Fig. 12 shows the inputs uα along with the corresponding
α. The controller has been tuned such that the position
follows the reference closely, as can be seen in Fig. 9.
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Fig. 9. Simulated TCP position ptc.
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Fig. 10. Simulated TCP position pnc .

11. DISCUSSION AND CONCLUSION

The goal of this paper is to study how the TAC can be used
for motion compensation, and to derive the equations and
algorithms needed. Because of the TAC’s highly nonlinear
nature, this is not a straightforward task, and the solution
requires several steps. Controllers for the compensation
using merely the TAC has been developed, and shown
to be successful in simulations for rough sea. With Hs

higher than 3.0 meters the workspace limits were reached,
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Fig. 12. Simulated angles α and input uα.

which reduces the compensation’s efficiency. The TAC
provides fast and accurate motion compensation inside its
workspace limits. It is reasonable to expect good motion
compensation in higher sea if the rest of the crane is also
included in the control loop.

The maximum sea state, where the crane can have full
mobility, should be determined if it is to be the only
compensating force on the cargo. Since the crane’s job
ultimately is to move its cargo safely to its destination,
and not necessarily to keep the TCP still, the workspace
requirements might differ and the model must be upgraded
to include the suspended load.
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