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Abstract

In this paper, a fault tolerant control (FTC) strategy for proton exchange mem-
brane (PEM) fuel cells based on the use of virtual actuators and the Takagi-
Sugeno (TS) approach is proposed. The overall solution relies on adding a
virtual actuator in the control loop to hide the fault from the controller point of
view, allowing it to see the same plant as before the fault, such that the stabil-
ity and some desired performances are preserved. The proposed methodology is
based on the use of a reference model, where the resulting nonlinear error model
is brought to a Takagi-Sugeno form using a gridding approach. The TS model is
suitable for designing a controller using linear matrix inequalities (LMI)-based
techniques, such that the resulting closed-loop error system is stable with poles
placed in some desired region of the complex plane. Simulation results are used
to show the effectiveness of the proposed approach.

Keywords: Takagi-Sugeno model, Virtual actuator, Reference model based
control, Gain-scheduling, PEM Fuel Cell, LMIs.

1. Introduction

Proton exchange membrane (PEM, also known as polymer electrolyte mem-
brane) fuel cells are electrochemical devices which directly convert the chemical
energy of hydrogen into electrical energy [? ]. Fuel cell systems offer a clean
alternative to energy production and are a very active research field because
of many possible applications in distributed generation solutions [? ]. A good
performance of these devices is closely related to the kind of control that is
used, so a study of different control alternatives is considered in [? ]. A fuel
cell integrates many components into a power system, which supplies electricity
to an electric load or to the grid. Several devices, such as DC/DC or DC/AC
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converters, batteries or ultracapacitors, are included in the system and, in case
the fuel cell is not fed directly with hydrogen, a reformer must also be used.
Therefore, there are many control loops schemes depending on the devices that
must be controlled. The lower control level takes care of the main control loops
inside the fuel cell, which are basically fuel/air feeding, humidity, pressure and
temperature. The upper control level is in charge of the whole system, inte-
grating the electrical conditioning, storage and reformer (if necessary). Many
control strategies have been proposed in the recent literature, e.g. optimal con-
trol [? ], model predictive control [? ] and sliding mode control [? ], and several
efforts have been put in providing an accurate model for this kind of systems [?
? ].

Since fuel cells are very complex systems, they are vulnerable to faults that
can cause their stop or their permanent damage [? ? ]. Hence, it is interesting to
add some fault tolerant capabilities to the control system, in order to maintain
the fuel cell operating even in the presence of faults [? ? ]. Fault tolerant control
(FTC) systems are able to maintain desirable closed-loop performance, or with
an acceptable degradation, and preserve stability conditions in the presence of
component and/or instrument faults [? ? ]. The existing FTC design techniques
can be classified into passive and active approaches (see [? ] for a review).
Passive FTC techniques exploit the fact that within certain margins, the control
law has inherent fault tolerance capabilities, allowing the system to cope with
the fault presence, while the active FTC techniques compensate the faults either
by selecting a precalculated control law or by synthesizing online a new control
strategy. The adaptation of the control law is done using some information
about the fault so as to satisfy the control objectives with minimum performance
degradation after the fault occurrence.

In recent years, the fault-hiding paradigm has been proposed as an active
strategy to obtain fault tolerance [? ]. In this paradigm, the controller reconfigu-
ration (CR) unit reconfigures the faulty plant instead of the controller/observer.
The nominal controller is kept in the loop by inserting a reconfiguration block
between the faulty plant and the nominal controller/observer when a fault oc-
curs. The reconfiguration block is chosen so as to hide the fault from the con-
troller point of view, allowing it to see the same plant as before the fault. The
reconfiguration block is named virtual actuator in case of actuator faults and
virtual sensor in case of sensor faults. The virtual actuator strategy has been
initially proposed in a state space form for LTI systems [? ], and successfully
extended to linear parameter varying (LPV) [? ], Takagi-Sugeno (TS) [? ] and
piecewise affine [? ] systems. An equivalent formulation in input-output form
has been proposed in [? ].

Recently, the complex and nonlinear dynamics of the power generation sys-
tems based on fuel cell technology, described in detail in [? ], led to the use of
linear models that include parameters varying with the operating point (known
as LPV models) not only for advanced control techniques [? ] but also for
model-based fault diagnosis algorithms [? ]. As an alternative to the LPV
paradigm, TS systems, as introduced by [? ], provide an effective way of rep-
resenting nonlinear systems with the aid of fuzzy sets, fuzzy rules and a set of
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local linear models. The overall model is obtained by merging the local models
through fuzzy membership functions. In some recent works, the TS paradigm
has been successfully applied to the PEM fuel cell system for solving the prob-
lems of modeling [? ], fault diagnosis [? ] and state observation [? ].

In this paper, an FTC strategy based on the use of virtual actuators and
a TS modeling approach for PEM fuel cells is proposed. The fault tolerant
methodology is based on the use of a reference model, where the resulting non-
linear error model is brought to a TS form using a mix of sector nonlinearity and
gridding approaches. The TS model is suitable for designing the controller and
the virtual actuators, which hide the faults allowing to achieve fault tolerance,
using linear matrix inequalities (LMI)-based techniques, such that the resulting
closed-loop error system is stable with poles placed in some desired region of
the complex plane. Simulation results are used to show the effectiveness of the
proposed approach.

The structure of the paper is the following: Section 2 describes the PEM Fuel
Cell and presents its nonlinear model. Section 3 shows how, using a reference
model, a TS error model, suitable for designing a TS controller using LMI-based
techniques, can be obtained. Section 4 presents the proposed FTC strategy
based on virtual actuators. The application of the presented theory to a PEM
Fuel Cell case study is given in Section 5 and the results obtained in simulation
are presented in Section 6. Finally, the main conclusions are outlined in Section
7.

2. Description and modeling of PEM fuel cells

2.1. PEM fuel cell description

A fuel cell is an electrochemical energy converter that transforms the chem-
ical energy of fuel into electrical current. It has an electrolyte, a negative elec-
trode and a positive electrode, and it generates direct electrical current through
an electrochemical reaction. Typical reactants for fuel cells are hydrogen as fuel
and oxygen as oxidant that, once the reaction takes place, produce water and
waste heat.

The basic physical structure of a fuel cell consists of an electrolyte layer in
contact with a porous anode and cathode electrode plates. There are different
kinds of electrolyte layers. Here, a PEM fuel cell is used as a case study. The
PEM has a special property: it conducts protons but is impermeable to gas (the
electrons are blocked through the membrane). Auxiliary devices are required to
ensure the proper operation of the fuel cell stack: an air compressor, a hydrogen
tank, a supply manifold and a return manifold.

2.2. PEM fuel cell model

The model used in this work has been presented in [? ] and is widely
accepted in the control community as a good representation of the behavior
of a fuel cell stack (FCS) system. Throughout this work, it is assumed that
local loops control the compressor speed ωcp in order to achieve the desired
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compressor mass flow Wcp, and the hydrogen supplied to the anode mH2 . Hence,
the proposed fault tolerant methodology will be applied to the subsystem made
up by the supply manifold, the return manifold and the cathode.

The supply manifold includes pipe and stack manifold volumes between the
compressor and the fuel cells, and is governed by mass continuity and energy
conservation equations [? ]:

ṁsm = Wcp − ksm,out

[
psm − (mO2RO2 +mN2RN2)Tst

Vca

]
(1)

ṗsm =
γRa
Vsm

{
Wcp

[
Tatm +

Tatm
ηcp

((
psm
patm

) γ−1
γ

− 1

)]

−ksm,outTsm
[
psm − (mO2RO2 +mN2RN2)Tst

Vca

]} (2)

where:

Tsm =
psmVsm
msmRa

(3)

The return manifold pressure is governed by mass conservation and the ideal
gas law through isothermal assumptions [? ]:

ṗrm =
RaTrm
Vrm

kca,out

(
(mO2RO2 +mN2RN2)Tst

Vca
− prm

)
− RaTrm

Vrm
krm,out (prm − patm)

(4)

The cathode flow dynamics is described by the following differential equa-
tions:

ṁO2 = χO2,iksm,out

(
psm − (mO2

RO2
+mN2

RN2)Tst
Vca

)
−χO2,okca,out

(
(mO2

RO2
+mN2

RN2)Tst
Vca

− prm

)
− MO2

nIst

4F

(5)

ṁN2 = (1 − χO2,i) ksm,out

(
psm − (mO2RO2 +mN2RN2)Tst

Vca

)
− (1 − χO2,o) kca,out

(
(mO2RO2 +mN2RN2)Tst

Vca
− prm

) (6)

with:

χO2,i =
yO2,iMO2

yO2,iMO2
+ (1− yO2,i)MN2

(7)

χO2,o =
yO2,oMO2

yO2,oMO2 + (1− yO2,o)MN2

(8)

yO2,o =
mO2RO2

mO2
RO2

+mN2
RN2

(9)

The model used for control purposes presented in the following has three
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state variables, i.e. psm, prm and wca, defined as:

wca = mO2
RO2

+mN2
RN2

(10)

two control inputs, i.e. Wcp and krm,out, and an exogenous input, Ist, that
corresponds to the load, and acts as a disturbance, that can be included in the
reference model in order to generate an appropriate feedforward action.

Notice that the following state equation can be obtained from (10), taking
into account (5) and (6):

ẇca = ksm,out

(
psm − wca

Tst
Vca

)
[χO2,iRO2 + (1 − χO2,i)RN2 ]

− kca,out

(
wca

Tst
Vca

− prm

)
[χO2,oRO2 + (1 − χO2,o)RN2 ]

(11)

Four sensors are available, measuring psm, prm, Tsm and the pressure in the
cathode pca, related to wca by:

pca = wca
Tst
Vca

(12)

The efficiency optimization of the current system can be achieved by regu-
lating the oxygen mass inflow towards the stack cathode [? ]. If an adequate
oxidant flow is ensured through the stack, the load demand is satisfied with min-
imum fuel consumption. In addition, oxygen starvation and irreversible damage
are averted. To accomplish such an oxidant flow is equivalent to maintaining at
a suitable value the oxygen stoichiometry, defined as:

λO2
=
ksm,out

[
psm − (mO2

RO2
+mN2

RN2
) TstVca

]
MO2

nIst
4F

(13)

3. Model reference control using Takagi-Sugeno techniques

3.1. Takagi-Sugeno modeling

Let us consider that the nonlinear model of the PEM fuel cell can be de-
scribed by a TS model, which uses a set of local models merged together using
fuzzy IF-THEN rules [? ], as follows:

IF ϑ1(k) is Mi1 AND . . . AND ϑp(k) is Mip

THEN xi(k + 1) = Aix(k) +Biu(k) i = 1, . . . , N
(14)

where Mij denote the fuzzy sets and N is the number of model rules; x(k) ∈ Rnx
is the state vector of the overall system, xi(k) ∈ Rnx is the state vector of the
ith local model, u(k) ∈ Rnu is the input vector, while Ai and Bi are matrices
of appropriate dimensions. ϑ1(k), . . . , ϑp(k) are premise variables that can be
functions of exogenous variables, endogenous variables (states and/or inputs)
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and/or time. Each linear consequent equation represented by Aix(k) + Biu(k)
is called a subsystem.

Given a pair (x(k), u(k)), the state of the TS system can easily be inferred
by:

x(k + 1) =

N∑
i=1

ρi (ϑ(k)) (Aix(k) +Biu(k)) (15)

where ϑ(k) = [ϑ1(k), . . . , ϑp(k)]
T

is the vector containing the premise variables,
and ρi (ϑ(k)) is defined as follows:

ρi (ϑ(k)) =
wi (ϑ(k))
N∑
i=1

wi (ϑ(k))

(16)

wi (ϑ(k)) =

p∏
j=1

Mij (ϑj(k)) (17)

where Mij (ϑj(k)) is the grade of membership of ϑj(k) in Mij and ρi (ϑ(k)) is
such that: 

N∑
i=1

ρi (ϑ(k)) = 1

ρi (ϑ(k)) ≥ 0, i = 1, . . . , N
(18)

3.2. Takagi-Sugeno reference model and control law

For the synthesis of the TS controller, the following TS reference model is
considered:

IF ϑ1(k) is Mi1 AND . . . AND ϑp(k) is Mip

THEN xref,i(k + 1) = Aixref (k) +Biuref (k)
i = 1, . . . , N

(19)

where xref (k) ∈ Rnx is the reference state vector of the overall system, xref,i ∈
Rnx is the reference state vector of the ith local model, and uref (k) ∈ Rnu is
the reference input vector (feedforward action). The reference model generates
the trajectory to be tracked by the real system. Given a pair (xref (k), uref (k)),
the reference state can be inferred as:

xref (k + 1) =

N∑
i=1

ρi (ϑ(k)) (Aixref (k) +Biuref (k)) (20)

Thus, considering the error, defined as e(k) , xref (k) − x(k) and the new

input ∆u(k) , uref (k)− u(k) (feedback action), the following TS error system
is obtained:

e(k + 1) =

N∑
i=1

ρi (ϑ(k)) [Aie(k) +Bi∆u(k)] (21)
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The error system (21) is controlled through a TS error-feedback controller,
defined as follows:

IF ϑ1(k) is Mi1 AND . . . AND ϑp(k) is Mip

THEN ∆uc,i(k) = Kie(k) i = 1, . . . , N
(22)

such that the control action to be applied is inferred as the weighted mean:

∆u(k) =

N∑
i=1

ρi (ϑ(k))∆uc,i(k) (23)

3.3. Controller design using an LMI-based approach

The TS controller (23) is designed using an LMI-based approach, where the
desired specifications (in this case, stability and pole clustering) are guaran-
teed using the results from the quadratic Lyapunov framework [? ]. Despite
the introduction of conservativeness with respect to other existing approaches
(e.g. those where the Lyapunov function is allowed to be fuzzy), the quadratic
approach has undeniable advantages in terms of computational complexity.

In particular, the TS error system (21) with the error-feedback control law
(23) is quadratically stable if and only if there exist X = XT > 0 and Ki such
that: (

−X (Ai +BjKi)X

X (Ai +BjKi)
T −X

)
< 0 (24)

for i, j = 1, . . . , N .
On the other hand, pole clustering is based on the results obtained by [? ],

where subsets D of the complex plane, referred to as LMI regions, are defined
as:

D = {z ∈ C : fD(z) < 0} (25)

where fD is the characteristic function, defined as:

fD(z) = α+ zβ + z̄βT = [αhl + βhlz + βlhz̄]h,l∈[1,m] (26)

where α = αT ∈ Rm×m and β ∈ Rm×m. Hence, the TS error system (21) with
error-feedback control law (23) has poles in D if there exist XD = XT

D > 0 and
Ki such that:[

αhlXD + βhl (Ai +BjKi)XD + βlhXD (Ai +BjKi)
T
]

< 0
h,l∈[1,m]

(27)

for i, j = 1, . . . , N .
Conditions (24)-(27) are bilinear matrix inequalities (BMIs) that can be

brought to LMI form by using a single Lyapunov matrix X = XD > 0 and
through the change of variables Γi , KiX:(

−X AiX +BjΓi
(AiX +BjΓi)

T −X

)
< 0 (28)
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[
αhlX + βhl (AiX +BjΓi) + βlh (AiX +BjΓi)

T
]

< 0
h,l∈[1,m]

(29)

with i, j = 1, . . . , N , that can be solved using available software, e.g. the
YALMIP toolbox [? ] with SeDuMi solver [? ].

Remark 1: In [? ], it has been reported that, despite the idea of poles, as
introduced, does not have a strict mathematical interpretation in the TS case,
it has a strict connection with the dynamical behavior of the system, justifying,
from the engineering point of view, the abuse of language. In fact, using LMI
regions, it is possible to enforce transient performance specifications, such as
decay rates and overshoot suppression (damping).

4. Fault tolerant control using Takagi-Sugeno virtual actuators

4.1. Takagi-Sugeno faulty model

In this work, two types of actuator faults are considered: multiplicative
faults, i.e. changes in the effectiveness of the faulty actuators, and stuck faults,
where the inputs delivered by the faulty actuators are blocked to constant values.
In the first case, the generic subsystem in (14) becomes as follows:

xi(k + 1) = Aix(k) +Bf,i (φ(k))u(k) (30)

with:
Bf,i (φ(k)) = Bidiag (φ1(k), . . . , φnu(k)) (31)

where Bi denotes the nominal input matrix, and φµ(k) ∈]0, 1] represents the
effectiveness of the µ-th actuator, such that the value φµ = 1 represents the
healthy situation.

In the second case, the generic subsystem in (14) becomes:

xi(k + 1) = Aix(k) +B∗i u(k) + (Bi −B∗i ) ū(k) (32)

where ū(k) is the vector containing the values of the stuck control inputs and
B∗i is the matrix obtained from Bi by replacing the columns corresponding to
the stuck actuators with zero vectors.

Then, in the case of multiplicative faults, the reference model subsystems in
(19) are changed as follows:

xref,i(k + 1) = Aixref (k) +Bf,i

(
φ̂(k)

)
uref (k) (33)

where φ̂(k) is an estimation of the multiplicative actuator faults, while in the
case of stuck faults, they become:

xref,i(k + 1) = Aixref (k) +B∗i uref (k) + (Bi −B∗i ) ˆ̄u(k) (34)

where ˆ̄u(k) is an estimation of the stuck actuator faults.
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Then, under the assumption that φ̂(k) ∼= φ(k) and ˆ̄u(k) ∼= ū(k) (the case
where such an assumption does not hold, i.e. when there is uncertainty in the
fault estimation, will be addressed by future research), the generic subsystem
of the error model takes the form:

ei(k + 1) = Aie(k) +Bf,i

(
φ̂(k)

)
∆u(k) (35)

or:
ei(k + 1) = Aie(k) +B∗i ∆u(k) (36)

for multiplicative or stuck faults, respectively.
Remark 2: The change of the reference model subsystems will also require

a modification of the values of the reference inputs uref (k) used to generate the
desired trajectory.

4.2. Takagi-Sugeno virtual actuator design

Here, the concept of virtual actuator introduced in [? ] is extended to TS
systems. The main idea of this FTC method is to reconfigure the faulty plant
such that the nominal controller could still be used without need of retuning
it. The plant with the faulty actuators is modified adding the virtual actuator
block that masks the fault and allows the controller to see the same plant as
before the fault.

In the case of multiplicative faults, the virtual actuator is static and can be
expressed as:

∆u(k) =

(
N∑
i=1

ρi (ϑ(k))Bf,i
(
φ̂(k)

))† N∑
i=1

ρi (ϑ(k))Bi∆uc,i(k) (37)

where ∆uc,i(k) are the outputs of the controller subsystems in (22), and the
symbol † denotes the Moore-Penrose pseudoinverse. In this case, the fault-
hiding property is achieved thanks to the fact that the product:(

N∑
i=1

ρi (ϑ(k))Bf,i (φ(k))

)(
N∑
i=1

ρi (ϑ(k))Bf,i (φ(k))

)†
(38)

eliminates the effects of the multiplicative faults.
On the other hand, in the case of stuck faults, the fault tolerance is achieved

using the reconfiguration structure expressed by:

∆u(k) =

N∑
i=1

ρi (ϑ(k)) ∆ui(k) (39)

with ∆ui(k) given by:

∆ui(k) = ∆uc,i(k)−Mv,ixv(k) (40)
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where the virtual actuator state xv(k) is obtained through the inference:

xv(k) =

N∑
i=1

ρi (ϑ(k))xv,i(k) (41)

with xv,i(k) provided by the TS virtual actuator subsystems, defined as follows:

IF ϑ1(k) is Mi1 AND . . . AND ϑp(k) is Mip

THEN xv,i(k + 1) = (Ai +B∗iMv,i)xv,i(k)
+(Bi −B∗i )∆uc,i(k) i = 1, . . . , N

(42)

being Mv,i the virtual actuator subsystem gains.
Moreover, in order to achieve the fault-hiding property, the signal entering

into the controller is slightly modified, such that the outputs of the controller
subsystems in (22) become as follows:

∆uc,i(k) = Ki (e(k) + xv(k)) (43)

When the stuck fault appears, the TS virtual actuator reconstructs the vec-
tor ∆u(k) from the outputs of the nominal controller subsystems ∆uc,i(k), tak-
ing into account the fault occurrence. The faulty plant and the TS virtual
actuator are called the reconfigured TS plant, which is connected to the nominal
TS controller. If the reconfigured TS plant behaves like the nominal plant, the
loop consisting of the reconfigured plant and the TS controller behaves like the
nominal closed-loop system.

4.3. Reconfiguration analysis

In the following, it is shown that thanks to the introduction of the virtual
actuator block, the augmented system can be brought to a block-triangular
form.

Theorem 1. Consider the augmented system made up by the faulty error sys-
tem (36), the reconfiguration structure (39)-(40), the virtual actuator (41)-(42)
and the control law (43):(

e(k + 1)
xv(k + 1)

)
=

N∑
i=1

ρi (ϑ(k))·(
Ai +B∗iKi B∗i (Ki −Mv,i)

(Bi −B∗i )Ki Ai +B∗iMv,i + (Bi −B∗i )Ki

)(
e(k)
xv(k)

) (44)

Then, there exists a similarity transformation such that the state matrix of
the augmented system in the new state variables is block-triangular, as follows:

Aaug,i =

(
Ai +BiKi 0

(Bi −B∗i )Ki Ai +B∗iMv,i

)
(45)

Proof: The proof is straightforward, and comes from introducing the new

state variable x1(k) , e(k)+xv(k) and considering the state
(
x1(k) xv(k)

)T
.

�
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Looking at (45), it can be seen that the state x1(k) is affected by Ki through
the matrix Ai + BiKi, while the state xv(k) is affected by Mv,i through the
matrix Ai +B∗iMv,i. Hence, the TS controller and the TS virtual actuator can
be designed independently.

The design conditions presented in Section 3.3 can be applied to the case of
virtual actuator design by making the changes Bi → B∗i and Ki →Mv,i.

5. Application to the PEM fuel cell case study

5.1. Reference model

Let us define the following reference model:

ṗrefsm =
γRa
Vsm

{
W ref
cp

[
Tatm +

Tatm
ηcp

((
p̂sm
patm

) γ−1
γ

− 1

)]

−ksm,outT̂sm
[
prefsm − wrefca

Tst
Vca

]} (46)

ṗrefrm =
RaTrm
Vrm

kca,out

(
wrefca

Tst
Vca

− prefrm

)
− RaTrm

Vrm
krefrm,out (p̂rm − patm)

(47)

ẇrefca = χO2,iksm,out

(
prefsm − wrefca

Tst
Vca

)
RO2

− χ̂O2,okca,out

(
wrefca

Tst
Vca

− prefrm

)
RO2 − MO2nIst

4F

+ (1 − χO2,i) ksm,out

(
prefsm − wrefca

Tst
Vca

)
RN2

− (1 − χ̂O2,o) kca,out

(
wrefca

Tst
Vca

− prefrm

)
RN2

(48)

where p̂sm, p̂rm, T̂sm and χ̂O2,o are estimations of psm, prm, Tsm and χO2,o,
respectively. The available measurements, denoted by pysm, pyrm and pyrm, are
filtered to deal with the noise, leading to the following filtered variables:

p̂sm(k) = κpsm p̂sm(k − 1) + (1− κpsm) pysm(k) (49)

p̂rm(k) = κprm p̂rm(k − 1) + (1− κprm) pyrm(k) (50)

T̂sm(k) = κTsm T̂sm(k − 1) + (1− κTsm)T ysm(k) (51)

with the filter parameters κpsm , κprm and κTsm chosen to be equal to 0.99.
On the other hand, χ̂O2,o is obtained as (see (8)-(9)):

χ̂O2,o =
ŷO2,oMO2

ŷO2,oMO2 + (1− ŷO2,o)MN2

(52)
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ŷO2,o =
m̂O2RO2

m̂O2
RO2

+ m̂N2
RN2

(53)

where m̂O2
and m̂N2

are estimations of mO2
and mN2

, obtained from steady-
state considerations about (5)-(6):

0 = χO2,iksm,out

(
p̂sm − (m̂O2

RO2
+m̂N2

RN2)Tst
Vca

)
−χ̂O2,okca,out

(
(m̂O2

RO2
+m̂N2

RN2)Tst
Vca

− p̂rm

)
− MO2

nIst

4F

(54)

0 = (1 − χO2,i) ksm,out

(
p̂sm − (m̂O2RO2 + m̂N2RN2)Tst

Vca

)
− (1 − χ̂O2,o) kca,out

(
(m̂O2RO2 + m̂N2RN2)Tst

Vca
− p̂rm

) (55)

Given p̂sm, p̂rm and Ist, (52)-(55) is a system of two nonlinear equations of
variables m̂O2 and m̂N2 , that can be solved using some appropriate solver, e.g.
fsolve in the Matlab Optimization Toolbox [? ].

The reference model provides the state trajectory to be tracked by the real
PEM fuel cell, starting from the reference inputs W ref

cp and krefrm,out. The values
of the reference inputs to be fed to the reference model (feedforward actions) are
obtained from steady-state considerations about the fuel cell system, so as to
keep the supply manifold pressure and the oxygen stoichiometry at some desired
values p∞sm and λrefO2

.
In particular, the following nonlinear equations are obtained:

W ref
cp

[
Tatm + Tatm

ηcp

[(
p̂sm
patm

) γ−1
γ − 1

]]
−ksm,outT̂sm

(
p∞sm − w∞ca

Tst
Vca

)
Tsm = 0

(56)

kca,outw
∞
ca

(
Tst
Vca

− p∞rm

)
− krefrm,out (p̂rm − patm) = 0 (57)

χO2,iksm,out
(
p∞sm − w∞ca

Tst
Vca

)
RO2

−χ̂O2,okca,out
(
w∞ca

Tst
Vca

− p∞rm

)
RO2 − MO2

nIst

4F

+ (1 − χO2,i) ksm,out
(
p∞sm − w∞ca

Tst
Vca

)
RN2

− (1 − χ̂O2,o) kca,out
(
w∞ca

Tst
Vca

− p∞rm

)
RN2 = 0

(58)

λrefO2
−
χO2,iksm,out

(
p∞sm − w∞ca

Tst
Vca

)
MO2

nIst
4F

= 0 (59)

Given p̂sm, p̂rm, T̂sm, χ̂O2,o and Ist, and defined the desired values p∞sm
and λrefO2

, (56)-(59) is a system of four nonlinear equations of variables W ref
cp ,

krefrm,out, w
∞
ca and p∞rm, that can be solved using fsolve [? ].
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5.2. Error model

By subtracting the reference model equations (46)-(48) and the correspond-
ing system equations (2), (4) and (11), and by defining the tracking errors
e1 , prefsm − psm, e2 , prefrm − prm, e3 , wrefca − wca, and the new inputs

∆u1 , W ref
cp −Wcp, ∆u2 , krefrm,out − krm,out, by considering T̂sm ∼= Tsm, and

χ̂O2,o
∼= χO2,o, the error model for the PEM fuel cell can be brought to the

following representation:

ė1 = −γRa
Vsm

ksm,outT̂sm

(
e1 −

Tst
Vca

e3

)
+ b11 (p̂sm) ∆u1 (60)

ė2 = −RaTrm
Vrm

kca,out

(
e2 −

Tst
Vca

e3

)
+ b22 (p̂rm) ∆u2 (61)

ė3 = ksm,out [χO2,iRO2 + (1− χO2,i)RN2 ]

(
e1 −

Tst
Vca

e3

)
+ kca,out [χO2,oRO2

+ (1− χO2,o)RN2
]

(
e2 −

Tst
Vca

e3

) (62)

with:

b11 (p̂sm) =
γRa
Vsm

[
Tatm +

Tatm
ηcp

[(
p̂sm
patm

) γ−1
γ

− 1

]]
(63)

b22 (p̂rm) = −RaTrm
Vrm

(p̂rm − patm) (64)

5.3. Fault definition

In this work, three possible faults are considered.

5.3.1. Fault 1

Loss of effectiveness of the compressor Wcp

By including this fault in the dynamic model of the PEM fuel cell, (2)
becomes:

ṗsm = γRa
Vsm

φcpWcp

[
Tatm + Tatm

ηcp

[(
psm
patm

) γ−1
γ − 1

]]
−γRaVsm

ksm,outTsm

(
psm − wca TstVca

) (65)

where φcp denotes the multiplicative fault of the air compressor flow.

5.3.2. Fault 2

Loss of effectiveness of the return manifold valve krm,out
By including this fault, (4) changes to:

ṗrm = RaTrm
Vrm

kca,out

(
wca

Tst
Vca
− prm

)
−RaTrmVrm

φrmkrm,out (prm − patm)
(66)
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where φrm denotes the multiplicative fault of the return manifold outlet orifice.

5.3.3. Fault 3

Stuck of the return manifold valve krm,out
In this case, krm,out is stuck to k̄rm,out, such that (4) becomes:

ṗrm = RaTrm
Vrm

kca,out

(
wca

Tst
Vca
− prm

)
−RaTrmVrm

k̄rm,out (prm − patm)
(67)

5.4. Fault detection/estimation

In order to apply the proposed strategy, a fault estimation is needed. Here-
after, the fault estimation is formulated as a parameter estimation problem in
such a way that any parameter estimation algorithm, such as least squares,
could be used. In general, least squares (LS) algorithms can be formulated
either in block or in recursive online form [? ]. Once the equation is put in
regressor form, the recursive formulation [? ] and the block formulation [? ]
are interchangeable.

For estimating the loss of effectiveness of the compressor φcp, the discrete-
time version of (65), obtained using an Euler approach with sampling time Ts,
is considered and put in the following regressor form:

zsm(k) = µsm(k − 1)φcp(k − 1) (68)

with:

zsm(k) = psm(k) − psm(k − 1)

+
γRa

Vsm
ksm,outTsm(k − 1)

(
psm(k − 1) − wca(k − 1)

Tst

Vca

)
Ts

(69)

µsm(k) =
γRa

Vsm
Wcp(k)

Tatm +
Tatm

ηcp

(psm(k)

patm

) γ−1
γ

− 1

Ts (70)

Similarly, for detecting the presence of a fault in the return manifold valve,
the following regressor form is used, that will allow to detect the presence of
either a loss of effectiveness fault as in (66) or a stuck fault1 as in (67):

zrm(k) = µrm(k − 1)φrm,out(k − 1) (71)

with:

zrm(k) = prm(k) − prm(k − 1)

− RaTrm
Vrm

kca,out

(
wca(k − 1)

Tst
Vca

− prm(k − 1)

)
Ts

(72)

1Since the effect of the stuck fault will lead to a difference between the real value of the
return manifold valve outlet constant, and the control input, a change in φrm will appear not
only in the case of a loss of effectiveness fault, but in the case of a stuck fault too.
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µrm(k) = −RaTrm
Vrm

krm,out(k) (prm(k) − patm)Ts (73)

Then, if a block formulation with time window NLS is used, the LS fault
estimations are obtained as:

φ̂sm(k) = Msm(k)†ξsm(k) (74)

φ̂rm(k) = Mrm(k)†ξrm(k) (75)

ξsm(k) =


zsm(k)

zsm(k − 1)
...

zsm(k −NLS + 1)

 Msm(k) =


µsm(k − 1)
µsm(k − 2)

...
µsm(k −NLS)



ξrm(k) =


zrm(k)

zrm(k − 1)
...

zrm(k −NLS + 1)

 Mrm(k) =


µrm(k − 1)
µrm(k − 2)

...
µrm(k −NLS)


withMsm(k)† andMrm(k)† denoting the pseudoinverses ofMsm(k) andMrm(k),
respectively.

5.5. Faulty error model of the PEM Fuel Cell

In the case of loss of effectiveness due to compressor fault, the reference
model equation (46) is modified as follows:

ṗrefsm =
γRa
Vsm

{
φ̂cpW

ref
cp

[
Tatm +

Tatm
ηcp

((
p̂sm
patm

) γ−1
γ

− 1

)]

−ksm,outT̂sm
[
prefsm − wrefca

Tst
Vca

]} (76)

Then, under the assumption that φ̂cp ∼= φcp, the error equation (60) becomes:

ė1 = −γRa
Vsm

ksm,outT̂sm

(
e1 −

Tst
Vca

e3

)
+ b11 (p̂sm) φ̂cp∆u1 (77)

Notice that a slight modification of (56) is needed, i.e. replacing W ref
cp with

φ̂cpW
ref
cp .

On the other hand, when a fault in the return manifold valve is detected,
an estimation of the real value of krm,out, denoted in the following as k̂rm,out, is
obtained using a LS approach similar to the one described in Section 5.4, using
the following regressor equation:

zrm(k) = µkrm(k − 1)krm,out(k − 1) (78)
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with zrm(k) defined as in (72) and µkrm(k) defined as:

µkrm(k) = −RaTrm
Vrm

(prm(k)− patm)Ts (79)

Then, the reference model equation (47) is modified as follows:

ṗrefrm =
RaTrm
Vrm

kca,out

(
wrefca

Tst
Vca

− prefrm

)
− RaTrm

Vrm
k̂rm,out (p̂rm − patm)

(80)

and the control input krm,out(k) is chosen as k̂rm,out/φ̂rm. Then, under the

assumption that φ̂rm ∼= φrm in the loss of effectiveness fault case, and k̂rm,out ∼=
k̄rm,out in the stuck fault case, in both cases the error equation (61) becomes:

ė2 = −RaTrm
Vrm

kca,out

(
e2 −

Tst
Vca

e3

)
(81)

Also, (57) should be modified by replacing krefrm,out with k̂rm,out. Then, the
degree of freedom in the choice of p∞sm is lost, and (56)-(59) become a system of
four nonlinear equations of variables W ref

cp , p∞sm, w∞ca and p∞rm.

6. Simulation results

By considering interval bounds for psm and prm, i.e. psm ∈ [1.3Pa, 2.3Pa]
and prm ∈ [1.3Pa, 2.3Pa], minimum and maximum values for b11(psm) and
b22(prm) are obtained, as follows: b11 ∈ [6.54 · 106, 7.96 · 106], b22 ∈ [−2.21 ·
1012,−0.491 ·1012]. Then, by taking into account the bounds for Tsm and χO2,o,
i.e. Tsm ∈ [250K, 400K] and χO2,o ∈ [0.07, 0.21], it is possible to use the sector
nonlinearity approach [? ] for the varying elements of the state matrix obtained
from (60)-(62), the gridding approach for b11(psm) and b22(prm) with N11 = 12
and N22 = 12 points, respectively, and an Euler discretization with sampling
time Ts = 0.01 s for transforming (60)-(62) into an equivalent TS model, as
follows:

IF ϑ1(k) is Mi1 AND ϑ2(k) is Mi2 · · ·AND ϑ4(k) is Mi4

THEN ei(k + 1) = Aie(k) +Bi∆u(k) i = 1, . . . , N
(82)

where ϑ1(k) = T̂sm(k), ϑ2(k) = χ̂O2,o(k), ϑ3(k) = b11(psm(k)) and ϑ4(k) =
b22(prm(k))) are the premise variables, and N = 4N11N22 = 576.

On the other hand, when considering the loss of effectiveness of the com-
pressor (fault 1), the error model becomes:

IF ϑ1(k) is Mi1 AND ϑ2(k) is Mi2 · · ·AND ϑ4(k) is Mi4

THEN ei(k + 1) = Aie(k) +Bf,i(φ̂cp)∆u(k) i = 1, . . . , N
(83)

Finally, in the cases of loss of effectiveness of return manifold valve or stuck
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of return manifold valve (faults 2 and 3, respectively), the error model becomes:

IF ϑ1(k) is Mi1 AND ϑ2(k) is Mi2 · · ·AND ϑ4(k) is Mi4

THEN ei(k + 1) = Aie(k) +B∗i ∆u(k) i = 1, . . . , N
(84)

where the matrices B∗i are obtained from Bi by replacing the second column
(the one corresponding to the input krm,out) with a zero column.

When using a gridding approach to obtain a TS model, as is the case of
premise variables b11(psm) and b22(psm), it is possible to reduce the overall
number of LMIs by requiring the stability and desired performance to be strictly
guaranteed only at the design points. In this case, as long as the gridding is
sufficiently dense, it is reasonable to assume that stability and performance will
still hold at operating points different from the design ones. In the case of the
PEM fuel cell, this allows to reduce the total number of LMIs to be solved from
331777 to 577.

In particular, the nominal controller has been designed to assure stability
and pole clustering in a circle of radius 0.4 and center (0.4, 0). The dynamic
virtual actuator that takes into account the faults 2 and 3 has been designed
using a circle of radius 0.3 and center (0.4, 0).

The results shown in this paper refer to simulations that last 200 s, where
the current in the stack Ist (load) and the desired oxygen stoichiometry vary in
time, as follows:

Ist(t) =



100
70t− 2700
170
−50t+ 4170
120
40t− 4680
160
−10t+ 1760
150

t ≤ 40s
40s < t ≤ 41s
41s < t ≤ 80s
80s < t ≤ 81s
81s < t ≤ 120s
120s < t ≤ 121s
121s < t ≤ 160s
160s < t ≤ 161s
161s < t ≤ 200s

(85)

λrefO2
(t) =



2
−0.3t+ 14
1.7
0.4t− 30.3
2.1
−0.2t+ 26.1
1.9
0.1t− 14.1
2

t ≤ 40s
40s < t ≤ 41s
41s < t ≤ 80s
80s < t ≤ 81s
81s < t ≤ 120s
120s < t ≤ 121s
121s < t ≤ 160s
160s < t ≤ 161s
161s < t ≤ 200s

(86)

and the desired supply manifold pressure is set to p∞sm = 1.5Pa. In addition,
the simulations have been performed assuming uncertainty in some parameters,
as resumed in Table 1. The nominal values have been taken from [? ], and the
uncertainty has been generated for each parameter by considering a uniform
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Table 1: Nominal and real parameter values.

Parameter Nominal value Real value

γ 1.4 =

ηcp 0.8 0.799

χO2,i 0.233 =

kca,out 2.177 · 10−6 2.170 · 10−6

ksm,out 3.629 · 10−6 3.601 · 10−6

n 381 =

patm 101325 101040

yO2,i 0.21 =

F 96485 =

MN2 28 · 10−3 =

MO2 32 · 10−3 =

Ra 286.9 =

RN2 296.8 =

RO2 259.8 =

Tatm 298.15 296.24

Trm 300 298.69

Tst 350 348.87

Vca 0.01 0.0099

Vrm 0.005 =

Vsm 0.002 =

aleatory distribution around 1 % of the nominal value. The noise in the sensor
measurements has been considered as uniformly distributed around 1% of the
measurement. Finally, the dynamic virtual actuator is activated when φ̂rm <
0.8.

Remark 2: The choice of the oxygen stoichiometry λrefO2
and the current in

the stack Ist is inspired by [? ], where the control system is tested against their
changes, due to different required net powers. As remarked in several works, e.g.
[? ? ], the oxygen excess ratio should be regulated around a value of 2 to reduce
the formation of stagnant vapor and nitrogen films in the electrochemical area,
and prevent the oxygen starvation phenomenon, which has serious consequences
on the stack life. In this work, following [? ], a non-constant λrefO2

is considered
in order to show the capability of the proposed approach to deal with operating
point changes. It is also worth noticing that abrupt changes of Ist(t) could be
considered as well, even though they would lead to an increase of the oscillatory
transients, similarly to the results shown in [? ].

6.1. Fault scenario 1

In fault scenario 1, a loss of effectiveness φcp = 0.5 appearing at time
t = 100 s has been considered. Fig. 1 shows a comparison of the oxygen stoi-
chiometry λO2

obtained in both the cases when the nominal controller is used
without the proposed FTC strategy (red line) and when the proposed FTC
strategy is applied (blue line). The improvement in the tracking performance
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Figure 1: Oxygen stoichiometry λO2
in fault scenario 1.

brought by the virtual actuator can be seen clearly. Fig. 2 shows the estimation
of φcp, demonstrating that the least-squares based algorithm proposed in Sec-
tion 5.4 is able to estimate correctly the fault (a steady-state offset appears due
to the uncertainty in the model used for the simulations). The virtual actuator
reconfigures the control input (see blue line in Fig. 3) such that the effect of
the control input taking into account the fault (see cyan line in Fig. 3) matches
the control input that would be obtained in nominal conditions (see black line
in Fig. 3). On the other hand, when no FTC strategy is applied, the intrinsic
robustness of the nominal controller against faults due to the feedback action
(see red line in Fig. 3) is not sufficient to compensate the fault effect, since
there appears a mismatch with respect to the nominal case (see magenta line
in Fig. 3). Finally, Fig. 4 shows the estimation of χO2,o obtained using the
methodology described in Section 5.1. Also in this case, the algorithm succeeds
in estimating correctly the oxygen mass fraction in the outlet.

6.2. Fault scenario 2

In fault scenario 2, a loss of effectiveness φrm = 0.5 appearing at time
t = 100 s has been considered. Similarly to the case of fault scenario 1, an offset
appears in the response of λO2 when no FTC strategy is applied (red line in Fig.
5). Despite not being able to reduce the offset to zero, due to the presence of
estimation errors caused by the uncertainty, the proposed FTC strategy is able
to reduce strongly the effect of the fault on the tracking performance (see blue
line in Fig. 5). The dynamic virtual actuator, activated when the estimation of
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Figure 2: Estimation of φcp in fault scenario 1.

φrm goes below 0.8 (see Fig. 6) achieves the fault tolerance by redistributing
the controller output on the remaining healthy actuator (the compressor), as
shown in Fig. 7.

6.3. Fault scenario 3

In fault scenario 3, the return manifold outlet is stuck starting from time
t = 100 s. As shown in Fig. 8, no effect is visible in the oxygen excess ratio
response until a change in the reference λrefO2

occurs at time t = 120 s. This
fact is reasonable, because in the interval between the fault occurrence and the
reference change, the return manifold outlet is stuck near the correct position
that assures an error approximately zero. After the reference change, it can be
seen that an offset appears due to the fault (red line in Fig. 8). Also in this
case, the reconfiguration brought by the dynamic virtual actuator improves the
tracking performance under fault occurrence (blue line in Fig. 8).

7. Conclusions

In this paper, an FTC strategy based on the use of virtual actuators in the
TS framework for PEM fuel cells has been proposed. The overall solution re-
lies on adding a virtual actuator in the control loop to hide the fault from the
controller point of view, allowing it to see the same plant as before the fault,
in this way keeping the stability and some desired performances. The proposed
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Figure 3: Compressor mass flow Wcp in fault scenario 1.

methodology is based on the use of a reference model, where the resulting non-
linear error model is brought to a TS form using the gridding approach. The TS
model is suitable for designing a controller using LMI-based techniques, such
that the resulting closed-loop error system is stable with poles placed in some
desired region of the complex plane. Simulation results have shown that if no
FTC strategy is applied, undesired offsets would appear. On the other hand,
the proposed FTC strategy allows to improve the overall performance in all the
considered cases. As future work, the proposed approach will be extended to
the case of sensor faults using the virtual sensor technique.
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Nomenclature

- γ denotes the specific heat capacity of gas
- ηcp denotes the compressor efficiency
- χO2,i denotes the oxygen mass fraction in the inlet
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Figure 4: Estimation of χO2,o in fault scenario 1.

- χO2,o denotes the oxygen mass fraction in the outlet
- kca,out denotes the cathode outlet flow constant (ms)
- krm,out denotes the return manifold outlet flow constant (ms)
- ksm,out denotes the supply manifold outlet flow constant (ms)
- mN2

denotes the mass of nitrogen in the cathode (kg)
- mO2 denotes the mass of oxygen in the cathode (kg)
- msm denotes the mass of gas in the supply manifold (kg)
- n denotes the number of cells in the FCS
- patm denotes the air pressure (Pa)
- prm denotes the return manifold pressure (Pa)
- psm denotes the supply manifold pressure (Pa)
- yO2,i denotes the oxygen mole fraction in the inlet
- yO2,o denotes the oxygen mole fraction in the outlet
- F denotes the Faraday constant (C/mol)
- Ist denotes the current in the stack (A)
- MN2

denotes the nitrogen molar mass (kg/mol)
- MO2 denotes the oxygen molar mass (kg/mol)
- Ra denotes the air gas constant (J/ (kgK))
- RN2

denotes the nitrogen gas constant (J/ (kgK))
- RO2

denotes the oxygen gas constant (J/ (kgK))
- Tatm denotes the air temperature (K)
- Trm denotes the return manifold temperature (K)
- Tsm denotes the supply manifold temperature (K)
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Figure 5: Oxygen stoichiometry λO2
in fault scenario 2.

- Tst denotes the stack temperature (K)
- Vca denotes the cathode volume (m3)
- Vrm denotes the return manifold volume (m3)
- Vsm denotes the supply manifold volume (m3)
- Wcp denotes the compressor air mass flow rate (kg/s)
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Figure 6: Estimation of φrm in fault scenario 2.
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Figure 8: Oxygen stoichiometry λO2 in fault scenario 3.
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