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Abstract:
This paper presents a scheme for proactive accommodation of incipient actuator faults in
nonlinear process plants operated with economic model predictive control (EMPC). The control
scheme implements a switching from nominal economic operations to a safe-transition mode
when receiving a warning about an incipient fault in one of the actuators, thereby ensuring that
the plant is proactively steered to a steady-state point where the suspect control actuator
is inactive. Upon reaching this safe steady-state point, the faulty actuator can be safely
disconnected and repaired without shutting down the plant, before the controller subsequently
resumes nominal economic operation. To steer the plant to the safe steady-state point, we impose
an `1 penalty function in order to achieve dead-beat control and reach the steady state in finite
time. We provide a lower bound on the penalty parameter to ensure exactness of the penalty
function, and analyze stability and convergence properties of the proactive fault-tolerant EMPC
scheme. We demonstrate application of the proposed scheme on a non-isothermal continuously
stirred tank reactor.

Keywords: Fault-tolerant MPC, Economic Optimization, Process Plants, Exact penalty
functions

1. INTRODUCTION

The ability to retain safe and fault-free operations while
optimizing the process economics is of prime importance
in process control. Faults in actuators, sensors and com-
ponents may be detrimental for product quality, in addi-
tion to being potentially dangerous for process operations,
and should thus be addressed in conjunction with opti-
mization of the process economics. Currently, the trend
in dynamic economic optimization of process plants is
the development of economic model predictive control
(EMPC) schemes, e.g. Rawlings and Amrit (2009); An-
geli et al. (2012), seeking to directly optimize the plant
economics in a receding horizon manner and thereby omit
the traditional hierarchical separation of steady-state real-
time optimization (RTO) and set-point tracking MPC.
At the same time, by being an optimal-control scheme
solved online, MPC is a suitable controller in terms of
directly adapting to faults in the system. Consequently, an
attractive approach for integrating fault tolerance and eco-
nomic receding-horizon control is to develop fault-tolerant
economic MPC (FTEMPC) schemes.

In this paper, we present a proactive FTEMPC scheme for
handling incipient actuator faults in nonlinear multiple-
input process plants. A proactive fault-tolerant control
(FTC) scheme seeks to detect and accommodate slowly
degradation of performance or suspicious process in order
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to minimize negative impact on the plant if the incipient
fault develops into a critical fault. Reactive approaches, on
the other hand, rely on reconfiguration of the controller
after the fault occurs. In this context, it is important to
emphasize that proactive FTC schemes can only comple-
ment and not replace a reactive scheme capable of handling
any type of (abrupt) faults in the control system. Yet, there
are fault scenarios where a reactive approach may fail. If
an MPC controller operates the plant close to the feasible-
region boundary to maximize profit, or at an unstable
steady state to for instance avoid high temperatures in an
exothermic reactor (Mhaskar et al., 2008), then a sudden
dropout of an actuator may shrink the feasible region of
the MPC controller, or reduce the controllability of the
remaining of the m− 1 actuators, such that the controller
is unable to reactively steer the plant to a safe region.
Proactive FTC schemes are also suitable for controlling
plants in a safety mode during inspection or replacement
of suspicious or faulty actuators, or during scheduled main-
tenance.

An essential property of proactive FTMPC schemes is to
allow plants to operate in nominal mode until a fault detec-
tion and isolation unit (FDI) sends a warning about an in-
cipient fault. Such fault diagnosis can be obtained through
parameter estimation or dedicated observer schemes, see
e.g. Blanke et al. (2006). Using these methods to detect
incipient faults require that the threshold values used for
defining a fault event in the associated fault-detection
filters are set sufficiently high to warrant early warning.



Incipient fault detection may also be approached with
probabilistic methods based on Markov or Bayesian anal-
ysis, see e.g. Salfner (2007). Upon receiving the warning
about an incipient actuator fault, the objective of the
proactive FTC scheme is to force the plant inside a re-
gion of operation or to a state where stability can be
guaranteed without input from the faulty actuator. Lao
et al. (2013) develop a proactive FTMPC scheme with
set-point tracking using Lyapunov-based MPC, assuming
exact knowledge of the time of an upcoming fault. The
difficulty of this approach lies in the ability to predict when
the faulty actuator will be rendered useless, the need to
predesign stabilizing (Lyapunov) controllers, and that the
time required to reach the safety region will depend on de-
sign and tuning of these controllers. Knudsen et al. (2016)
design a proactive FTEMPC scheme for linear systems
by imposing the maximum controlled invariant set with
the faulty actuator inactive as a polytopic safety set, and
apply an exact penalty function to steer the system inside
this set in minimum time. Proactive FTMPC schemes
may also be put in context of safe-parking techniques for
process plants, see e.g. Gandhi and Mhaskar (2008). These
methods are, however, reactive FTC approaches.
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Fig. 1. Schematic illustration of the proposed proactive
FTEMPC scheme.

In this paper, we extend the approach in Knudsen et al.
(2016) to nonlinear process plants. In particular, we use
an exact penalty function to steer the system from a
nominal economic steady-state to a safe steady-state point
as illustrated in Fig. 1, where the suspect control actuator
can be repaired before resuming economic operations. The
remainder of the paper is organized as follows: In Section
2 we present the problem formulation and set-up of the
proposed proactive FTEMPC scheme. Section 3 contains
analysis of stability properties of the control system. In
Section 4 we demonstrate application of the proposed
scheme on a non-isothermal continuously stirred tank
reactor, while Section 5 ends the paper with concluding
remarks.

2. PROBLEM STATEMENT

We consider nonlinear discrete-time models

xk+1 = f(xk, uk), (1)

where xk ∈ X ⊆ Rn is the state, and where uk ∈ U ⊆ Rm

with m > 1, is the input. The operation of the plant is
subject to pointwise state and input constraints,

(xk, uk) ∈ Z ⊆ X× U, (2)

which may be both physical, economical and safety related
constraints. The set Z is assumed compact and time

invariant. We denote i = 1, . . . n as index for the state
vector xk, and k ∈ I[a,b] as discrete time index where I is
the set of integers on the interval [a, b]. We assume that
the economic objective of the process (1) is described by a
stage-cost l(x, u), which is optimized on a receding horizon
by solving at each sampling time an open-loop dynamic
optimization problem

V nom
N (x) = min

N−1∑
k=0

l(xk, uk) (3a)

s.t. xk+1 = f(xk, uk), k ∈ I[0,N−1], (3b)

x0 = x, (3c)

(xk, uk) ∈ Z, k ∈ I[0,N−1], (3d)

xN = xnom
s . (3e)

In (3c), x is the measured or estimated state of the plant.
According to the conventional MPC policy, only the first
element of the optimal control sequence u∗ is applied,
with reoptimization of (3) at the next sampling time when
new measurements are available. In (3), we add a terminal
equality constraint xN = xnom

s defined by the solution to
the economic steady-state problem

l(xnom
s , unom

s ) = min{l(x, u)| x = f(x, u), (x, u) ∈ Z}. (4)

Let u = (u0, u1, . . . , uN−1) denote a feasible input se-
quence for (3). The set XN of admissible states for (3) is
obtained by projecting onto Rn the set of admissible inputs
and initial states Znom

N = {(x,u) | ∃ x1, . . . , xN satisfying
(3b)–(3e) }. Solving (3) in the described receding horizon
manner defines an implicit feedback control law

unom(x) := u∗0, x ∈ XN . (5)

Directly applying the proactive FTEMPC approach in
Knudsen et al. (2016) to the system (1)–(2) involves com-
puting controlled invariant sets for a nonlinear control
system. This is nontrivial, although some approaches exit.
Instead we utilize the property that a steady-state point as
defined by (4) is controlled invariant with the implicit feed-
back law (5) (Blanchini, 1999). In particular, to compute
a safe, economic steady-state point xsafe

s,j for an incipient
fault in actuator uj , we can solve the modified steady-state
problem

min{l(x, u) | x = f(x, u), (x, u) ∈ Z, uj = 0}. (6)

The problem (6) must be solved (offline) for each set
of actuator fault scenarios. For simplicity, however, we
restrict our study to single actuator faults. We further
make the following assumption:

Assumption 1. The plant described by (1)–(2) admits a
unique steady state pair (xsafe

s,j , u
safe
s,j ) with uj = 0.

At time tfw, when an FDI unit sends warning about an
incipient fault in actuator j, a switching logic is triggered
to switch from solving the nominal EMPC problem (3) to
a safe-transition mode. For this safe-transition mode, we
seek to steer the system to xsafe

s,j by a dead-beat control
policy, that is, by a control policy such that the system
is steered to the desired operating point in a minimum
number of time steps and kept there, see e.g. Rao and
Rawlings (2000) or Keerthi and Gilbert (1988). To this
end, we replace xnom

s in the terminal equality constraint
(3e) with xsafe

s,j , and add an `1 penalty term with a penalty
parameter µ > 0 to the economic stage cost l(x, u),

lsafe(x, u) := l(x, u) + µ
∣∣x− xsafe

s,j

∣∣
1
. (7)



By introducing vectors (ε+k , ε
−
k ) ∈ Rn of nonnegative slack

variables, we can reformulate the nonsmooth `1 norm in
(7) to a smooth equivalent formulation. Consequently, at
time tfw when the EMPC controller receives a warning
about an incipient fault in actuator j, we switch from
solving the nominal EMPC problem (3) to the following
NLP safe-transition MPC problem:

V safe
N (x) = min

N−1∑
k=0

(
l(xk, uk) + µ

n∑
i=1

ε+ik + ε−ik

)
(8a)

s.t. xk+1 = f(xk, uk), k ∈ I[0,N−1], (8b)

x0 = x, (8c)

(xk, uk) ∈ Z, k ∈ I[0,N−1], (8d)

xk − xsafe
s,j = ε+k − ε−k , k ∈ I[0,N−1], (8e)

ε+k+1 ≤ ε+k , k ∈ I[0,N−2], (8f)

ε−k+1 ≤ ε−k , k ∈ I[0,N−2], (8g)

ε+k , ε
−
k ≥ 0, (8h)

xN = xsafe
s,j . (8i)

Solving (8) in the aforementioned receding horizon manner
defines an implicit feedback control law

usafe(x) := ū∗0, ∀x ∈ XN . (9)

where ū∗ is the optimal control sequence obtained by
solving (8). For (8), we invoke the following reachability
assumption.

Assumption 2. The system can be steered to xsafe
s,j within

N timesteps with the remaining actuation capacity avail-
able at time tfw.

In addition to a sufficiently large N , this assumption also
implies that the onset of the incipient fault is detected
early, requiring the threshold values used in the fault-
detection filter to be sufficiently high, such that there is
enough remaining actuator capacity to steer the system
to the safe park xsafe

s,j before eventual failure of the faulty
actuator.

Upon reaching the steady state xsafe
s,j , we have steered

the plant to a positively invariant set for the closed-loop
system xk+1 = f(xk, u

safe(x)), defined by singleton, at
which the plant remains safe despite a dropout of actuator
j. As such, the controller can safely continue economic
operation of the process during inspection and replacement
of the faulty actuator. We thereby prevent a shut down
of the plant to recover from an incipient fault, reducing
costs associated with false fault alarms. Observe that at
most one slack variable will be strictly positive for each
corresponding pair (ε+ik, ε

−
ik). Furthermore, note that the

initial condition (8c) at sample time tfw when we switch
to solving (8) in the EMPC controller will be the state
measured or estimated from applying the solution to (3)
at time tfw − 1 to the plant. As there are no differences
between the two EMPC problems except from the `1
penalty term and the terminal condition, there are no
jumps in the states at the time of switching between
nominal and safe-transition EMPC mode.

By imposing `1 as opposed to a quadratic penalty, we
can ensure that EMPC controller steers the plant to xsafe

s,j

in finite time by a dead-beat control policy (Rao and
Rawlings, 2000; Keerthi and Gilbert, 1988). Moreover,

the `1 penalty term makes it possible to define an exact
penalty function with an associated lower bound on µ.

Proposition 3. Suppose that f and l are continuous func-
tions, and that the LICQ conditions hold at a strict local
solution (xsafe

s,j , u
∗
s ) to the steady-state problem

min{l(x, u) | x = f(x, u), (x, u) ∈ Z, x = xsafe
s,j }, (10)

with Lagrange multipliers ν∗. Then the reformulated `1
penalty function in (8) will be exact if µ > µ∗, where
µ∗ = ||ν∗||∞.

Proof. It is well known that for the `1 penalty function of
an NLP to be exact, we must have µ > ||ν∗||∞, where ν∗

are Lagrange multipliers of the NLP, in which stationary
points of the penalty function are either KKT points of
the corresponding NLP or infeasible stationary points, i.e.
with (ε+k , ε

−
k ) > 0. See e.g. Conn et al. (2000, Ch. 14.5).

For a solution to (8) to be feasible for the corresponding
hard-constrained problem, it must satisfy xk = xsafe

s,j for
all k = 0, . . . N . This problem is equivalent with solving N
steady-state problems (4) with fixed optimal state vector
xsafe
s,j , i.e. as stated by (10). Assuming that the LICQ

condition holds at the solution (10) ensures uniqueness
of ν∗. 2

At time tfw when the safe-transition MPC problem is
invoked, the solution to (8) will clearly be infeasible for
the corresponding hard-constrained problem, i.e. giving
a solution with (ε+k , ε

−
k ) > 0 up to some time index

k̄ ∈ I[1,N−1]. By Proposition 3, the only time the solutions
to the soft-constrained problem (8) and the corresponding
hard-constrained problem will coincide is when x0 = xsafe

s,j .
Exactness of the penalty function will, however, ensure a
locally “least-infeasible” solution, see Conn et al. (2000,
Ch. 14.5).

If the penalty parameter µ is sufficiently large, then the
solution to (10) is a solution to

min{l(x, u)+µ
∣∣x− xsafe

s,j

∣∣ ∣∣∣ x = f(x, u), (x, u) ∈ Z}, (11)

which is the steady-state problem corresponding to (8).
By assumption, the solution to (6) yields a unique steady-
state point (xsafe

s,j , u
safe
s,j ). Consequently, u∗s = usafe

s,j must be
the solution to (10), and hence also solve the steady-state
problem (11). Note that (11) can be reformulated to a
smooth NLP in the same way as (8).

The lower bound on µ provides a means for tuning the
EMPC controller by providing a threshold value to ensure
the desired property of exactness of the penalty function,
while it also prevents numerical issues associated with
setting µ too large. By using Proposition 3, we can solve
(10) to compute ||ν∗||∞ and set µ only marginally larger
than this value. This procedure circumvents the tuning
challenges associated with a quadratic cost in order to
ensure a sufficiently fast convergence to the safe steady-
state xsafe

s,j . A drawback of the `1 penalty is the increase in
problem size caused by reformulation with slack variables.
Generally, however, efficient NLP solvers such as IPOPT
(Wächter and Biegler, 2005) are able to exploit sparsity
structures in the NLP, and thereby limit any additional
computational burden caused by the increase in problem
size.



Remark 4. If the steady-state point (xsafe
s,j , u

safe
s,j ) obtained

by solving (6) is non-unique, that is, there exists steady-
state pairs (xsafe

s,j , ũs,j) with ũs,j 6= usafe
s,j , then the solution

to (10) may yield a steady state with lower cost than
l(xsafe

s,j , u
safe
s,j ) and u∗s 6= usafe

s,j .

Remark 5. In some applications, it may be desirable to
tighten the bounds given by Z on the states and healthy
inputs in a safety mode. In this case the lower bound on
µ given by Proposition 3 is no longer sufficient to ensure
exactness of the penalty function in (8).

3. STABILITY ANALYSIS

In the following section, we analyze stability and con-
vergence properties of the proposed proactive FTEMPC
scheme. To this end, we need the definition of dissipativity.

Definition 6. (Angeli et al., 2012) The system (1) is dis-
sipative with respect to the supply rate s : X × U 7→ R if
there exists a storage function λ : X 7→ R such that

λ(f(x, u))− λ(x) ≤ s(x, u), (12)

for all (x, u) ∈ Z. If there exists a positive definite
function 1 ρ : X 7→ R such that

λ(f(x, u))− λ(x) ≤ s(x, u)− ρ(x), (13)

then the system is said to be strictly dissipative.

Angeli et al. (2012) prove that if the system (1) is weakly
controllable and strictly dissipative with respect to the
supply rate

s(x, u) = l(x, u)− l(xnom
s , unom

s ), (14)

then xnom
s is an asymptotically stable steady-state point of

the EMPC scheme defined by (3) and (5), provided certain
technical assumptions hold, see Angeli et al. (2012). Hence,
we focus on stability properties of the safe-transition
EMPC scheme defined by (8) and (9). In particular, we
have the following nominal stability result (perfect model
and no disturbances):

Theorem 7. Suppose that µ > µ∗ such that the `1 penalty
function (8a) is exact, and that the system (1) is controlled
with the EMPC scheme defined by (8) and (9). Then the
following holds:

(i) If (8) is feasible at time tfw for an initial condition x ∈
XN , it will remain feasible for all nonnegative times,
and steer the state to xsafe

s,j in a minimum number of

time-steps k̄, where k̄ = {k ∈ I[1,N−1] | (ε+∗k , ε−∗k ) =

0, ∀k > k̄} with (ε+∗k , ε−∗k ) as optimal slack vectors

computed at time tfw.
(ii) If (i) holds, xsafe

s,j is in the interior of XN , and the
system (1) is strictly dissipative with respect to the
supply rate

s(x, u) = lsafe(x, u)− lsafe(xsafe
s,j , u

safe
s,j ), (15)

then xsafe
s,j is an asymptotically stable steady-state

point of the closed-loop system xk+1 = f(xk, u
safe
s (x))

with region of attraction XN .

Proof. Let {(ε+0 , ε−0 ), (ε+1 , ε
−
1 ), . . . , (ε+

k̄
, ε−

k̄
), 0, . . . , 0} be a

sequence of feasible slack vectors computed at sam-
pling time tfw, for some k̄ ∈ I[1,N−1]. By applying

1 A continuous function ρ(x) is said to be positive definite with
respect to some point xs ∈ X if ρ(xs) > 0,∀x 6= xs and ρ(xs) = 0.

the first element ū∗0 of the optimal control sequence
ū∗ to the plant, then at sampling time tfw + 1 the
sequence of slack vectors shifted one step ahead, i.e.
{(ε+1 , ε−1 ), . . . , (ε+

k̄
, ε−

k̄
), 0, 0 . . . , 0}, will be feasible for (8)

with initial condition f(x, ū∗0), due to the terminal equality
constraint (8i). Moreover, due the same terminal equality
constraint, the control sequence {ū∗1, ū∗2, . . . , ū∗N−1, u

safe
s,j }

will be feasible. Feasibility for all nonnegative timesteps
hence follows by induction.

Provided that the `1 penalty function (8a) is exact, then
a solution to the soft-constrained problem (8) will either
satisfy the KKT conditions for the hard-constrained prob-
lem, or it will be a locally least infeasible solution. The
latter means that locally to a feasible solution to the
hard-constrained problem, that is, a solution satisfying
xk = xsafe

s,j ,∀k ∈ I[0,N ], the pairs of optimal slack vectors

(ε+∗k , ε−∗k ) will be nonzero only for those k ∈ I[0,N−1] for
which there does not exist a feasible input sequence such
that xk = xsafe

s,j . Since (ε+∗k , ε−∗k ) computed at sampling

time tfw shifted one step ahead will be feasible for (8) at
time tfw + 1, and that this solution provides feasibility for
one more of the softened constraints, then exactness of the
penalty function and invariance of the steady state xsafe

s,j ,
enforced as a terminal equality constraint, yield a solution
to (8) at time tfw + 1 with at most k̄ − 1 nonzero slack
vectors. Consequently, in the nominal case, the EMPC
scheme (8)–(9) will ensure one less nonzero slack vector
for each timestep, and hence steer the state from x ∈ XN

to xsafe
s,j in a locally minimum number of timesteps. This

proves part (i).

Feasibility of (8) at time tfw ensures that V safe
N (x) is finite,

and hence that the cost of steering x to xsafe
s,j is finite.

Part (ii) of the theorem, asymptotic stability of xsafe
s,j for

the closed-loop system xk+1 = f(xk, u
safe
s (x)), then follows

directly from Theorem 2 in Angeli et al. (2012). 2

We emphasize that the solution provided by the exact
penalty function (8) only gives local minimum-time solu-
tion due to the nonconvexity of the NLP. Consequently,
there may exist other local solutions to (8) for initial
conditions x ∈ XN that are ’”less infeasible”’ with respect
to the softened constraints, and hence steers the plant to
xsafe
s,j in fewer timesteps.

If the NLP (8) is infeasible at time tfw, then either some
emergency or safety mode must be activated, for instance
to stop all feeding of reactants or to set the cooling to its
maximum level. On the other hand, the EMPC controller
should in this case probably be redesigned in terms of
tightening the constraints or increasing the prediction
horizon. A property under investigation is whether an
exact penalty as in (8) together with certain additional
assumptions for the system (1) can be used to formulate
a sufficient condition for strict dissipativity with respect
to the supply rate (15). Yet, however, the storage function
λ(x) must be computed to verify strict dissipativity, which
in general is difficult. One approach is using sum-of-squares
programming, see e.g. Faulwasser et al. (2014).

Remark 8. The proactive FTEMPC formulation (8) inher-
its the numerical difficulties associated with a terminal



equality constraint. From a stability perspective, however,
this terminal equality constraint is important, although
EMPC schemes without this terminal constraint exist.

4. NON-ISOTHERMAL CSTR

To illustrate the proposed proactive FTEMPC scheme,
we consider a non-isothermal continuously stirred tank
reactor (CSTR) problem, adopted from Ellis et al. (2014).
In the CSTR, an elementary exothermic second-order re-
action takes place, converting a reactant A to a desired
product B, with a cooling jacket providing or remov-
ing heat to and from the reactor. The temperature and
composition of the CSTR are assumed to be uniform.
The reactant is fed to the reactor through a feedstock
stream with concentration CA0, with given flow rate F
and temperature T0. The resultant CSTR model reads

dCA

dt
=

F

VR
(CA0 − CA)− k0e

− E
RT C2

A, (16a)

dT

dt
=

F

VR
(T0 − T )− ∆Hk0

ρRCp
e−

E
RT C2

A +
Q

ρRCpVR
. (16b)

We consider the CSTR with two manipulated inputs,
the inlet concentration, u1 = CA0, with a maximum
concentration of 7.5 kmol/m3, and the jacket heat rate,
u2 = Q, with available control energy |Q| ≤ 50×103 kJ/h.
The stage cost is set equal to the production rate of the
desired product CA, i.e.

l(x, u) = −k0e
− E

RT C2
A. (17)

Numerical values and descriptions of the process parame-
ters in (16) are given in Table 1.

Table 1. Process parameters of CSTR.

Par. Description Value Unit

F Feed flow rate 5.0 m3/h
T0 Feed temperature 300 K
k0 Pre-exponential rate factor 8.46× 106 1/kmolh
VR Reactor fluid volume 1.0 m3

ρR Density 1000 kg/m3

R Gas constant 8.314 kJ/kmolK
E Activation energy 5× 104 kJ/kmol
∆H Reaction enthalpy change −1.16× 104 kJ/kmol
Cp Heat capacity 0.231 kJ/kgK

The CSTR model (16) is discretized in time using the
backward Euler method. We solve the NLP MPC prob-
lems using IPOPT, while the steady-state problems are
solved to global optimality using BARON. All problems
are implemented in GAMS. We initialize the system at
nominal optimal steady-state xnom

s = (0.142, 712.8), where
x1 = CA and x2 = T , and assume that the control system
receives a warning about an incipient fault in actuator
u2 = Q at sampling time tfw = 0. We apply a prediction
horizon of N = 100 and timestep of 0.002 hours. Com-
puting (6) for the CSTR model (16)–(17) gives the safe
steady-state point xsafe

s,j = (0.188, 667.2), while computing
(10) gives the lower bound µ∗ = 5.27 on the `1 penalty.

To highlight the importance of adding the `1 penalty term
in (8a), we compare in Fig. 2 the open-loop response
at time tfw and the corresponding closed-loop response
solving (8), with the corresponding response without the
`1 term, but with the terminal equality constraint (8i).

Time [min]
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c
A
[k
m
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/m

3
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T
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700

720

Fig. 2. Comparison of open-loop and closed-loop response
with (blue) and without (red) the `1 penalty in the
objective function (8a) in the safe-transition MPC
problem (8). Observe that open-loop and closed-loop
response with the `1 penalty coincide.

Solving (8) with the `1 penalty steers the state to xsafe
s,j in

finite time, where the open-loop and closed-loop response
are indistinguishable. Without the `1 penalty, xsafe

s,j is a
suboptimal steady-state for the nominal, fault-free system.
The open-loop response can be seen to exhibit a turnpike
behavior, see e.g. Rawlings and Amrit (2009), in which the
plant spends as much time as possible close to the optimal
steady state, and is steered to xsafe

s,j exactly at the end of
the horizon. In closed-loop, the plant therefore remains at
the optimal economic steady state xnom

s , as seen by the
solid red line in Fig. 2, at which it will remain until the
faulty actuator ultimately fails.

In Fig. 3 we compare the proposed proactive FTEMPC
scheme with a simulated reactive approach. For the reac-
tive scheme, we assume that no proactive manipulation
of inputs are performed upon receiving warning about the
incipient fault in u2 = Q, and as such that switching to the
safe-transition EMPC problem (8) is triggered first when
the actuator eventually becomes useless. In this reactive
scheme, the constraints and model in the EMPC problem
are updated to account for the failure of the actuator, i.e.
Q is set to 0.

To directly compare the evolution of states and inputs
for the proactive and reactive approach, we simulate the
reactive approach from the same initial time and state as
the proactive approach, but consequently with u2 = Q =
0. That is, we shift backwards to time tfw = 0 the time
when the fault actually occurs, which is the time when
the reactive approach invokes (8). We assume that the
actual failure time of Q is beyond the simulation time
of the proactive approach, as once the plant reaches xsafe

s,j
the fault should by design not impact the control of the
plant. Comparing in Fig. 3 the closed-loop response of
these two approaches, it can be seen that the proactive
scheme requires less time than the reactive approach to
steer the plant to xsafe

s,j . In particular, the reactive approach

requires 42 timesteps to reach xsafe
s,j , while in comparison

the proactive approach requires 33 timesteps. In Fig. 3(b),
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Fig. 3. Comparison of the proposed proactive FTEMPC scheme (solid lines) with a corresponding reactive scheme
(dashed lines).

it is seen that both approaches stop the feed CA0 for some
time to reduce the concentration and temperature, while
the proactive approach actively uses the jacket heat rate
Q to quicker lower the temperature T , and thereby reduce
the time to reach xsafe

s,j . Observe that in this example,
the reactive FTMPC approach also retain the necessary
controllability to steer the plant to xsafe

s,j with only the feed
CA0 as remaining manipulated variable.

5. CONCLUSIONS

In this paper, a proactive FTEMPC scheme is constructed
with the objective of ensuring that the plant is steered
to a safe, recoverable steady state at the detection of an
incipient actuator fault. As illustrated through simulations
of a CSTR, the proactive scheme reduces the time required
to steer the plant to a region of operation where the
fault can be improved, thereby reducing the overall time
spent to improve the fault before the controller can resume
nominal economic operations. The proposed proactive
FTEMPC scheme may thus reduce costs of handling
incipient actuator faults, prevent unnecessary plant shut
downs due to false false alarms, and facilitate preventive
maintenance. Thus, the scheme may serve as a complement
to reactive fault-tolerant control schemes able to handle
any type of abrupt faults in the system. Future work
includes incorporating reduction of actuation capacity
during the time from warning of an incipient fault to failure
of an actuator.
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