Hein B. Bjerck, A. Francisco J. Zangrando, Heidi M. Breivik, Ernesto Piana and Joan Negre

Marine Ventures: The Cambaceres Surveys, Tierra del Fuego, Argentina

NTNU Vitenskapsmuseet arkeologisk rapport 2016:15

Hein B. Bjerck, A. Francisco J. Zangrando, Heidi M. Breivik, Ernesto Piana and Joan Negre

Marine Ventures: The Cambaceres Surveys, Tierra del Fuego, Argentina

NTNU Vitenskapsmuseet arkeologisk rapport

Dette er en elektronisk serie fra 2014. Serien er ikke periodisk, og antall nummer varierer per år. Rapportserien benyttes ved endelig rapportering fra prosjekter eller utredninger, der det også forutsettes en mer grundig faglig bearbeidelse.

Tidligere utgivelser: http://www.ntnu.no/vitenskapsmuseet/publikasjoner

Referanse

Bjerck, H.B., Zangrando, A.F.J., Breivik, H.M., Piana, E. and Negre, J. 2016: NTNU Vitenskapsmuseet arkeologisk rapport 2016:15. Marine Ventures: The Cambaceres Surveys, Tierra del Fuego, Argentina

Trondheim, desember 2016

Utgiver

NTNU Vitenskapsmuseet
Seksjon for arkeologi og kulturhistorie
7491 Trondheim
Telefon: 735921 16/73 592145
e-post: post@vm.ntnu.no
Ansvarlig signatur
Bernt Rundberget (seksjonsleder)

Kvalitetssikret av

Ellen Grav Ellingsen (serieredaktør)

Publiseringstype

Digitalt dokument (pdf)

Forsidefoto

Foto: Heidi M. Breivik, NTNU Vitenskapsmuseet

www.ntnu.no/vitenskapsmuseet

Sammendrag

Bjerck, H.B., Zangrando, A.F.J., Breivik, H.M., Piana, E. and Negre, J. 2016: NTNU Vitenskapsmuseet arkeologisk rapport 2016:15. Marine Ventures: The Cambaceres Surveys, Tierra del Fuego, Argentina

Denne rapporten er knyttet til prosjekt Marine Ventures og deler av feltundersøkelsene som er gjort på Tierra del Fuego, Argentina - nærmere bestemt The Cambaceres Surveys. Undersøkelsen involverte en detaljert registrering av bosetningsspor i Cambaceres - et ca $4 \mathrm{~km}^{2}$ stort område i en bukt (Cambaceres) som ligger ved Beaglekanalen på argentinsk Tierra del Fuego lengst sør i Sør-Amerika. Registreringene omfatter i hovedsak skjellmøddinger, både større og mindre, og de karakteristiske hyttetuftene hvor avfallsslagene er arrangert i en skjermende voll omkring boligen. Mens tidligere undersøkelser har vært begrenset til å registrere større boplassområder, er vår registrering mer detaljert da hver enkeltstruktur (hustuft, mødding) er registrert enkeltvis med GPS-posisjon og en kort beskrivelse. Dette gir oss mulighet til å se boplass-strukturer tydeligere, undersøke hvordan enkeltstrukturer akkumuleres i større boplassområder, samt å studere detaljert plassering av strukturene i landskapet.
Til sammen ble det lokalisert 1251 strukturer, hvorav 804 er hustufter, 432 er større og mindre skjellmøddinger, og 15 er andre funnsteder. Lokalitetene spenner fra rundt 7500 BP (ukalibrert) til de seneste hundreårene før vår tid.
The Cambaceres Surveys omfatter også en målrettet prøvestikkundersøkelse som hadde som mål å finne eldre boplasser uten bevart organisk materiale, definert som Early Coastal Forager (ECF) sites. Oppdagelsen av den store Binushmuka I boplassen er et viktig resultat, hvor det ble funnet to funnkonsentrasjoner fra ca. 7300-7500 BP. Her ble også gjort utgravninger, jfr. egen rapport under arbeid (Zangrando et al. in prep.). En rekke andre lokaliteter med forventninger til ECF sites ble også undersøkt ved prøvestikk, men med negativt resultat.
Mer om prosjektet og ytterligere referanser på Marine Ventures nettside:
(https://www.ntnu.no/web/vitenskapsmuseet/marine-ventures)

Nøkkelord: Boplasser - skjellmøddinger - hustufter - marin fangst, fiske og samling registreringsmetoder - Tierra del Fuego - Yámana indianere

Hein B. Bjerck, A. Francisco J. Zangrando, Heidi M. Breivik, Ernesto Piana and Joan Negre, NTNU Vitenskapsmuseet, Seksjon for arkeologi og kulturhistorie, NO-7491 Trondheim.

Summary

Bjerck, H.B., Zangrando, A.F.J., Breivik, H.M., Piana, E. and Negre, J. 2016: NTNU Vitenskapsmuseet arkeologisk rapport 2016:15. Marine Ventures: The Cambaceres Surveys, Tierra del Fuego, Argentina

This report is related to the Marine Ventures project, and describes field surveys in Tierra del Fuego, Argentina - The Cambaceres Surveys. This is a detailed survey of the settlements in a 4km2 large area in Cambaceres, located in the eastern part of the Beagle Channel, Argentinean Tierra del Fuego at the far south of South America. The survey mainly concentrated on shell midden formations, both larger and smaller, and the characteristic house pit formations where shell refuse is arranged in a protective "wall" around the dwelling. While previous surveys are mainly about larger settlements as a whole, our survey is more detailed, and encompasses individual GPS mapping of single structures. This gives the opportunity to see settlement structures more clearly and investigate how simple structures aggregate in larger settlements.
The survey includes a total of 1251 structures, of which 804 are dwelling pits, 432 are shell midden domes, and 15 are other sites - ranging from around 7500 BP (uncal.) to the recent past. The Cambaceres Surveys also includes a targeted test pit survey aimed at locating older settlements without preserved organic material, defined as Early Coastal Forager (ECF) sites. The discovery of the large Binushmuka I settlement is an important result. At this site, two ECF lithic concentrations were discovered, dated to 7300-7500 BP. Details from excavations at Binushmuka is described in a separate report (Zangrando et al. in progress). The test pit survey also includes a number of other localities where ECF settlements could be expected, but with negative results.
For more details about the project, see the Marine Ventures website:
(https://www.ntnu.no/web/vitenskapsmuseet/marine-ventures)

Key words: settlements - shell middens and dwelling pits - marine foraging - survey methods - Tierra del Fuego - Yámana Indians

Hein B. Bjerck, A. Francisco J. Zangrando, Heidi M. Breivik, Ernesto Piana and Joan Negre, NTNU University Museum, The Department of Archaeology and Cultural History, NO-7491 Trondheim

Table of contents

Table of contents 7
List of figures 9
List of tables 12
Marine Ventures: The Cambaceres Surveys (2009, 2011-2013) 13
1 Introduction 13
1.1 The Marine Ventures project 13
1.2 Cambaceres - a brief research history 13
1.3 The Cambaceres surveys 18
2 The shell midden survey 21
2.1 Methods 25
2.2 Results of the shell midden survey 29
2.2.1 Dwelling pits: aggregations, concentrations and single 30
2.2.2 Shell midden domes 33
2.2.3 Lithic scatters without midden 34
2.2.4 Casa Grande Imiwaia 34
2.2.5 Graves / human skull 37
2.2.6 Canoe runways? 38
2.3 Results and radiocarbon dates from the high-lying sites in Cambaceres 39
2.3 Settlement locations, beaches and high hills in Cambaceres: some conclusions 47
3 The test pit survey 48
3.1 Strategies and methods 50
3.2 Results from the test pit survey 52
3.2.1 Alashawaia (Figs. 46-48) 53
3.2.2 Base of Varela Hill (TP1-10, Figs. 49-52) 56
3.2.3 Binushmuka Hill (TP51-86, Figs. 53-58) 58
3.2.4 Imiwaia Hill (TP100-118, Figs. 59-61) 63
3.2.5 "Basurero" (TP1, Figs. 62-65) 65
3.2.6 Lanashuaia (TP1, Figs. 66-67) 67
3.2.7 Outer Peninsula 1 (TP1-13, Figs. 68-71) 69
3.2.8 Outer Peninsula 2 (TP1-18, Figs. 72-74) 71
3.3 Some conclusions from test pit survey 74
4 Structures and trends - some conclusions from the Cambaceres Surveys 75
5 References 80
6 Appendices 82
Appendix 1.1 Cambaceres Surveys: Excel database 83
Appendix 1.2: Varela Peninsula 104
Appendix 1.3: Cambaceres Interior Binushmuka 105
Appendix 1.4: Cambaceres Interior Imiwaia 106
Appendix 1.5: Cambaceres Interior North 107
Appendix 1.6: Cambaceres Interior Southeast 108
Appendix 1.7: Cambaceres Central Peninsula 109
Appendix 1.8: Cambaceres Outer Peninsula 110
Appendix 1.9: Cambaceres Exterior Northeast 111
Appendix 2.1 Testpit survey: Excel database 112

List of figures

Fig. 1. Overview of Southern South America and the location of Cambaceres in the Beagle Channel.
Fig. 2. Landscape and place names in eastern part of the Beagle Channel.
Fig. 3. Landscape and place names in Harberton/Cambaceres.
Fig. 4. GPS-positioned sites in the Harberton/Cambaceres area, complied by Ernesto Piana.
Fig. 5. Overview of areas surveyed in Cambaceres 2009 and 2011.
Fig. 6. Survey areas in Cambaceres.
Fig. 7. Cambaceres/Imiwaia, showing the study area and the GPS positions for the 1251 archaeological structures in the survey of 2009 and 2011.

Fig. 8. Midden formation and dwelling structure on the Imiwaia Hill.
Fig. 9. Midden formation with dwelling structures in the high slope of the hill south of Imiwaia.
Fig. 10. María José Saletta taking notes from one of the Very Large Domes in the woods near Lanashuaia in Cambaceres Interior Southeast.

Fig. 11. Heidi M. Breivik surveying shell middens in Outer Peninsula
Fig. 12. Yámana dwelling structure, a hut surrounded by shell midden deposit.
Fig. 13. Reconstruction of a Yámana "choza" in Harberton, fresh branches that cover a structure of saplings.

Fig. 14. Example of a Small Dwelling structure (left photo) and miniature reconstruction (right photo) from the Museo Yámana in Ushuaia.

Fig. 15. One of the Large Dwelling structures at the Hashmurn site on the outer side of Varela Peninsula.
Fig. 16. Complex of dwelling structures in shell midden formation at the NW end of Cambaceres Central Peninsula.

Fig. 17. The Wikirrh (Huevera) site, the largest of the dwelling pit aggregation in Cambaceres, also one of the largest in the Beagle Channel.

Fig. 18. Dwelling pit aggregations (more than 10 pits) in Cambaceres.
Fig. 19. A large wall of shell midden suggests that the internal area of Casa Grande Imiwaia was 80$100 \mathrm{~m}^{2}$.

Fig. 20. Plan drawing of Casa Grande Imiwaia, showing location of samples (HBTP 1).
Fig. 21. Profile in HB TP1, Casa Grande Imiwaia, showing location of samples for ${ }^{14} \mathrm{C}$ dating.
Fig. 22. Two of the canoe runways in the Cambaceres Interior Binushmuka.
Fig. 23. Location of samples for ${ }^{14} \mathrm{C}$ dating.
Fig. 24. Imiwaia hill with location of samples (HB111 and HB112) in relation to archaeological sites.
Fig. 25. Complex of dwelling structures in midden formation on top of hill by Imiwaia.

Fig. 26. Plan of a section of the complex with dwelling structures on top of hill by Imiwaia, showing the location of test pit HB111.

Fig. 27. Profile in test pit HB111.
Fig. 28. Dwelling structure at top of Imiwaia hill, A. Francisco Zangrando is by test pit HB112.
Fig. 29. Plan drawing of dwelling structure showing location of sample HB112.
Fig. 30. Sketch of profile of test pit HB112 with location of ${ }^{14} \mathrm{C}$ sample.
Fig. 31. Shell midden dome HB201 at the Peat Bog site.
Fig. 32. Profile of test pit HB201 showing location of samples for ${ }^{14} \mathrm{C}$ dating, the Peat Bog site.
Fig. 33. Cambaceres Central peninsula. Location of samples on top plateau in relation to archaeological sites at the base of the hill.

Fig. 34. Cambaceres Central Peninsula. The complex of shell midden domes are located in the woods at the top plateau.

Fig. 35. Profile in test pit HB872. Only Base sample included in this application.
Fig. 36. Sebastian Bocelli, A. Francisco Zangrando and Aleandro Sassola working with sample HB884 at the top plateau of Cambaceres Central Peninsula.

Fig. 37. Profile in test pit HB884. Only Base sample is included in this application.
Fig. 38. Profile in test pit HB888.
Fig. 39. Profile of HB912, 80 cm of shell midden on top of buried surface.
Fig. 40. Comparisons of the dates from the Hill by Imiwaia (HB111 Top, HB111 Base, HB112), the Peat Bog Site (HB201), and the top plateau of Central Peninsula (HB872, HB884, HB888, HB912).

Fig. 41. Aerial photo with location of sampled sites in Lanashuaia, compiled by A. Francisco Zangrando.
Fig. 42. María Jose Saletta, Angélica Tivoli and Maria Pia Filipelli test pitting at Binushmuka.
Fig. 43. Binushmuka I site towards northeast.
Fig. 44. Binushmuka I site, the expanded test pit where the sited was discovered.
Fig. 45. Cambaceres and the location of sites from the Test Pit Survey.
Fig. 46. The Alashawaia site showing the bog that was formed behind the beach ridge from the MidHolocene transgression.

Fig. 47. Alashawaia site (left) with the beach ridge and the bog, showing the locations of the two profiles.
Fig. 48. Alashawaia. Stratigraphic sequences along Line 1 and Line 2 through the bog behind the transgression beach ridge, profiles based on auger drillings.

Fig. 49. Overview from the Base of Varela Hill test site, showing the pronounced beach ridge formation.
Fig. 50. Locations of test pits (all negative) at the Base of the Varela Hill.
Fig. 51. Base of Varela Hill test pits, overview of measurements and stratigraphic sequences. All test pits are negative.

Fig. 52. Profile in TP4 in the Base of Varela Hill test site, showing the stratigraphic sequence.
Fig. 53. Binushmuka overview, with the location of the Binushmuka I settlement and the Binushmuka Hill test pit survey.

Fig. 54. Test pitting at the Binushmuka Hill.
Fig. 55. View from Binushmuka Hill towards Imiwaia Hill.
Fig. 56. Binushmuka Hill test area with locations of test pits.
Fig. 57. Binushmuka Hill test area with locations of test pits, correlated with results from the Shell Midden Survey.

Fig. 58. Binushmuka test pits, overview of measurements, artifacts and stratigraphic sequences.
Fig. 59. Imiwaia Hill overview, with Heidi M. Breivik excavating TP114, the top part of the test area.
Fig. 60. Imiwaia Hill test are with locations of test pits, correlated with results from the Shell Midden Survey.

Fig. 61. Imiwaia test pits, overview of measurements, number of artifacts and stratigraphic sequences.
Fig. 62. Overview of Basurero test site.
Fig. 63. The location of the Basurero test site (negative).
Fig. 64. Basurero test site, surface profile showing the top part of the Mid-Holocene beach formation and the position of the test pit.

Fig. 65. Basurero test site, profile with stratigraphic sequence in test pit.
Fig. 66. Overview of the Lanashuaia test site.
Fig. 67. The location of the test pit (negative) at Lanashuaia.
Fig. 68. Overview of the Outer Peninsula I test site, looking towards northwest and the southeast.
Fig. 69. Location of test pits (all negative) at Outer Peninsula 1.
Fig. 70. Profile in the extended TP6 shows the very upper end (left) of the mid-Holocene transgression maximum beach ridge (right).

Fig. 71. Outer Peninsula 1 test pits, overview of measurements and stratigraphic sequences.
Fig. 72. After-lunch nap during test pitting at Outer Peninsula 2.
Fig. 73. Overview of test pits at Outer Peninsula 2.
Fig. 74. Outer Peninsula 2 test pits, overview of measurements, number of artifacts (in test pit) and stratigraphic sequences.

Fig. 75. The resolution of the improved Google Earth images allows for visible identification of large sites.

Fig. 76. Overview of settlements with large aggregations of dwelling pits in the Gable IslandCambaceres area.

Fig. 77. Overview of settlements with large aggregations of dwelling pits in the eastern part of the Beagle Channel.

List of tables

Table 1. Radiocarbon dates from Cambaceres.
Table 2. Overview over the 1251 archaeological structures/sites in the Cambaceres survey 2009-2011.
Table 3. Overview of the shape of the Cambaceres shell middens, as expressed by the length/breadth ratios of the 369 midden where this is recorded.

Table 4. Radiocarbon dates from high hill settlements in Cambaceres.

Marine Ventures:
 The Cambaceres Surveys (2009, 2011-2013)

Cambaceres (Harberton), the Beagle Channel, Tierra del Fuego, Argentina

Hein B. Bjerck*, A. Francisco Zangrando**, Heidi M. Breivik*, Ernesto Piana**, Joan Negre**

*) NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
**) CADIC (Centro Austral de Investigaciones Cientificas)/ CONICET, Ushuaia, Tierra del Fuego, Argentina

1 Introduction

1.1 The Marine Ventures project

The Cambaceres Surveys are part of the "Marine Ventures" project, which is a joint research project between CADIC (Centro Austral de Investigaciones Cientificas), Ushuaia, Tierra del Fuego, Argentina (Ernesto L. Piana, Atilio Francisco Javier Zangrando and Angelica Tivoli) and the NTNU University Museum, Trondheim, Norway (Hein B. Bjerck (project leader), Heidi Mjelva Breivik, Silje E. Fretheim (PhD candidates), and Birgitte Skar).
"Marine Ventures" aims at comparative studies of archaeological sites in Canal Beagle and Mesolithic settlements in Norway (Bjerck \& Breivik 2012; Bjerck \& Zangrando 2013). Of particular interest are the circumstances around the initial developments of marine adaptations, and the dynamics between settlements, logistics and adaptation in marine environments. The project is supported by the Latin America program, Research Council of Norway (project reference 208828/H30, 2011-2014).

The project included field studies in the form of excursions, surveys and excavations in Tierra del Fuego and Norway, focusing on problems relating to early marine foraging and the dynamics of human-sea relations (Work Packages 1-3). In addition, a fourth work package on heritage studies was included, comparing practices and dissemination strategies between Parque Nacional Tierra del Fuego (PNTDF) in Argentina and the World Heritage Site (WHS) Vega, Norway.

Another component in the project is the exhibition "Marine Ventures: Stone Age foragers in the seascapes of Norway and Tierra del Fuego" that was displayed at the NTNU University museum in Trondheim June 2013-June 2015. Finally, "The Marine Ventures International Symposium: Diversity and Dynamics in the Human-Sea Relation" Trondheim, Norway, October 26, 2013, and the following proceedings (Bjerck et al. 2016, see Preface in this publication for details).
For further information on the Marine Ventures Project, see:
https://www.ntnu.no/web/vitenskapsmuseet/marine-ventures.
Fieldwork and activities described in this report, including travel expenses of Argentinean participants, were also supported by CONICET through two projects:
"Cazadores-recolectores tempranos en el canal Beagle: uso del espacio, subsistencia y tecnología II". Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) PIP0387, 2010-2017. Director: Dr. Atilio Francisco Zangrando; Co-director: Lic. Ernesto Piana "Cazadores-recolectores tempranos en el canal Beagle: uso del espacio, subsistencia y tecnología". Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) PIP0395/10, 2010-2017. Director: Lic. Ernesto Piana; Co-director: Dr. Atilio Francisco Zangrando.

1.2 Cambaceres - a brief research history

The Cambaceres sites are pivotal in the discussion of early Holocene archaeology of the South American cone, and, in pair with Norwegian Mesolithic sites, instrumental to the understanding of the cultural processes leading to maritime foraging societies in general.

Fig. 1. Overview of Southern South America and the location of Cambaceres in the Beagle Channel. The Beagle Channel links the Pacific and Atlantic Oceans. Cambaceres is situated at Estancia Harberton at the mainland of Argentinean Tierra del Fuego in the eastern end of the channel.

Fig. 2. Landscape and place names in eastern part of the Beagle Channel.

Fig. 3. Landscape and place names in Harberton/Cambaceres.

Cambaceres ${ }^{1}$ is part of Estancia Haberton, situated at the Beagle Channel, Argentinean Tierra del Fuego (Fig. 1-3). Haberton has a long and intriguing research history, going back to the legendary Rev. Thomas Bridges (the founder of Haberton in 1886), his son Lucas Bridges and his thorough and intriguing "Uttermost Part of the Earth" (1947), and also the extensive study of Samuel Lothrop (1928). In more recent times, the archaeological knowledge of the area is dominated by excavations at several sites: Lanashuaia I (Piana et al. 2000, Orquera and Piana 1999); Imiwaia I (Orquera and Piana 1999; Zangrando 2009; Piana et al. 2012); Lanashuaia II (Briz et al. 2009); Lanashuaia XXI (Álvarez et al. 2013) (Fig. 3 and Fig. 41).

[^0]Lanashuaia I was excavated as part of the European research project "Marine Resources at the Beagle Channel Industrial prior to the exploitation" (CI*-CT93-0015) conducted by Jordi Estevez, Assumpció Vila and Ernesto Piana. The occupations of the site were dated to the 19th century AD, which was not defined by radiocarbon method, if not by the presence of bone remains of sheep and marks with metal tools on bones. During the months of January and February 1995 and 1996, an area of $93 \mathrm{~m}^{2}$ comprising all of an annular structure (i.e. dwelling pit) and the surrounding surface was excavated. The researches in the Imiwaia I site were carried out in two stages, both conducted by the "Proyecto Arqueológico Canal Beagle". The first stage involved the excavation of a Middle Holocene deposit in order to assess the patterns of subsistence known for that period in a different micro-environmental condition than that recorded for the Túnel I site (see Fig. 2). During the months of January and February 1998, 1999 and 2002, an area of $50 \mathrm{~m}^{2}$, comprising all of an annular structure and the surrounding surface, was excavated. Four main stratigraphic components were recorded at this site: Layer S (7800 BP²); a Lower shell midden (layers K, L and M; 6400-5700 BP); a Middle shell midden (layer D; 3000 BP) and an Upper shell midden (Layer B; 1500 BP). The second stage was focused on the earlier assemblage of Imiwaia I (Layer S) in order to investigate the subsistence and settlement patters of hunter-gatherers during the Early Holocene in Tierra del Fuego. During January and February 2009 and 2011 the excavation of this site was extended up to $82 \mathrm{~m}^{2}$.

Lanashuaia II site was excavated during the summers 2009-2011 as part of the project "Social aggregation: a Yámana society's short term episode to analyze social interaction", conducted by Myrian Alvarez, Ivan Briz and Debora Zurro, and which aims to identify the material markers of the social relationships and networks embedded in social aggregation events developed by huntergatherer and fisher societies who lived at the uttermost tip of South America. An area of $55 \mathrm{~m}^{2}$ was excavated at this site, and it has a radiocarbon age between 1155 and 1385 BP (Evans et al. 2015).

Finally, Lanashuaia XXI was investigated under the project "Rhythms of changes and temporal trends in the study of marine hunter-gatherers" PICT 2071, which was directed by Dánae Fiore. It is located on top of Lanashuaia hill about 50 meters, in the margins of the current forest and at a distance of about 550 meters from the coast (see Fig. 3 and Fig. 41). The main research goal was to analyze settlement and subsistence patterns at localities far from the shorelines. The excavation was conducted in January 2010 covering an area of $9 \mathrm{~m}^{2}$. The date of the site is 825 BP .

Cambaceres presents the wider occupational sequence along the south coast of Tierra del Fuego. In fact, the cultural remains in Layer S (silty layer containing artifact scatters without organic preservation) underlying the midden formation at Imiwaia I is the oldest documented settlement in the Patagonian coastal areas - c. 7840 BP (Orquera and Piana 2009; Zangrando 2009). A similar, but slightly younger component (First Component) is documented at the Túnel I site, some 60km farther west in the Beagle Channel (see Fig. 2). These two areas also contain the oldest known shell midden formations in the southern coast of Tierra del Fuego, dated to c. 6500 BP. A similar sequence was documented in an important discovery in our project here, the Binushmuka I site (Zangrando et al. forthcoming).

[^1]

Fig. 4. GPS-positioned sites in the Harberton/Cambaceres area, complied by Ernesto Piana.

Those early components differ from shell midden formations in age, archaeological remains, and perhaps also in lifestyle. In the present study, we have labeled the two as Early Coastal Foragers (ECF, as defined in the following) and Marine Foragers (MF), also labelled Marine Littoral adaptation (Orquera and Piana 1999a, 1999b, 2009; Orquera, Legoupil and Piana 2011; Orquera, Piana, Fiore and Zangrando 2012).

The concept Early Coastal Foragers (ECF) is defined in line with the archaeological record from the oldest layers of Túnel I, Imiwaia I and Binushmuka I sites. As observed per now:

- The ECF sites appear as deposits with concentrations of lithic artifacts with poor organic preservation. There are no shell remains, only charcoal and a few bone fragments (Pinniped bone remains were recovered at the First Component of Túnel I (Orquera and Piana 1999a, 48), and very fragmented and calcined bones in the layer S of Imiwaia I).
- At present, they are only found in the north coast of the Beagle Channel.
- The stratigraphic position of ECF deposits all indicate high age. The ECF settlements at Imiwaia and Binushmuka are found embedded in the silty (eolian) deposits between organic turf / pebble layer and glaciofluvial / till. In Túnel, the ECF deposit (First Component) has a matrix composed entirely by volcanic ash, partially between a soil (Layer G, below) and a dark silt layer (Layer E, above). The other section with ECF deposit in Túnel is directly covered by shell midden.
- All known ECF settlements are found below early MF sites. In Imiwaia and Túnel, these are huge shell midden deposits. In Binushmuka, the two concentrations of ECF remains are found below a c. 5900 BP old site without shell midden remains.
- In all instances, the cultural deposits covering ECF settlements contain green obsidian artifacts that probably derive from Seno Otway area. The presence of green obsidian is an indication of long range seafaring and seaworthy vessels (e.g., Alvarez 2004).
- Age is more than approximately 7000 BP . Per now, there are six radiocarbon dates from ECF settlements, oldest 7800 BP , youngest 6900 BP . The earliest MF settlements are dated to c. 6400 BP
- Artifact composition differs from the later MF assemblage by the presence of trinchets, and predominantly bifacially worked tools (e.g., Orquera and Piana 1999a, 45-48). Note that this is a general impression; no detailed lithic analysis is undertaken.
- The ECF archaeological record does not contain green obsidian artifacts, and predominantly unifacially worked tools, that characterize early MF sites.

1.3 The Cambaceres surveys

The Cambaceres Surveys include two parts:
I) The shell midden survey, mostly surface observations, but also including documentation and dating of Casa Grande Imiwaia, which can be hypothetically considered as a ceremonial hut since size and shape of the structure differ from what is commonly observed at other sites in the study area.
II) Test pit survey, aiming to detect sites with predominantly lithic artifacts, not visible above surface.

The shell midden survey was conducted by Bjerck as part of CADIC's campaign, in close cooperation with Piana and Zangrando. Members of the crew excavating the Imiwaia I site in 2009 assisted in the survey: Sebastian Bocelli, Aleandro Sassola, María José Saletta, Maria Pia Filippelli, and María Paz Martinoli. Also in 2009, the Casa Grande Imiwaia was investigated by two test pits. In 2011, PhD candidate Heidi Mjelva Breivik assisted in the survey. The survey also included collecting samples for strategic ${ }^{14} \mathrm{C}$ dates from test pits. The results from the dated samples from the survey are shown in Table 1.

After concluding the shell midden survey in 2011, the fieldwork was expanded to a strategic test pit survey aimed at locating lithic scatters without shell midden deposits, with a special focus on the older sites similar to the first phases of the Túnel I and Imiwaia I sites. We were lucky, as we discovered the Binushmuka I site the very first day of the survey. Test pits here revealed a "nonshell midden site" that covered around $400 \mathrm{~m}^{2}$. Among the finds, there were flakes of green obsidian similar to what was found in the earliest part of the shell midden layers of Túnel and Imiwaia. In the underlying silt layer (Layer S) of Binushmuka, test pits also revealed an ECF occupation layer similar to the cultural traces that were covered by shell middens in Imiwaia I and Túnel I. Thus, the Binushmuka site had proven to contain very important information about the main issues for the Marine Ventures project, and we decided to excavate at the site in 2012 and 2013 (cf. separate report).

In parallel with the Binushmuka excavations, fieldwork in 2012 and 2013 (see separate report, Zangrando et al. forthcoming), the targeted test pit survey for new non-shell midden lithic scatters was continued. Our aims were two-folded:

- To study the distribution of lithic scatters and activity areas adjacent to shell midden sites.
- To locate early, pre-shell midden settlements, similar to the first layers in Túnel and Imiwaia.

Table 1. Radiocarbon dates (uncalibrated) from Cambaceres (including Binushmuka I).

Lab.ref.	Radiocarbon Age BP	Site	Context/description	Sample code	Sample year	Material
AA90439	3548 ± 53	Basurero	Layer S, brown silt w artifacts, $c .20 \mathrm{~cm}$ below surface		2010	Guanaco bone
AA90436	271 ± 35	Basurero	Layer S, orange silt w artifacts, c. 20 cm below surface		2010	Charcoal
$\begin{array}{\|l\|} \hline \text { Beta } \\ 347688 \\ \hline \end{array}$	4920 ± 30	Binushmuka hill	TP77, Layer S	Imi201312177	2013	Charcoal
AA99093	1884 ± 40	Binushmuka I	108.28x 84.31y, Layer B-C contact (on top of pebbles)	$\begin{aligned} & \hline \operatorname{Bin} 1108.28 x \\ & 84.31 y \end{aligned}$	2012	Charcoal
$\begin{aligned} & \hline \text { Beta } \\ & 347690 \end{aligned}$	1890 ± 30	Binushmuka I	101x 103y NW	Imi201312179	2013	Root
AA99091	1929 ± 39	Binushmuka I	108.4x 84.4y Layer C (top)	$\begin{array}{\|l\|l\|} \hline \operatorname{Bin} \text { I } & 108.4 x \\ 84.4 y & \\ \hline \end{array}$	2012	Charcoal
AA99090	1963 ± 38	Binushmuka I	99x 101y, Layer C (body)	Bin 1 99x 101y	2012	Charcoal
AA99089	5902 ± 45	Binushmuka I	99.77x 84.48y, Layer C	$\begin{array}{\|l\|l\|} \hline \operatorname{Bin} \text { I } 99.77 x \\ 84.48 y \\ \hline \end{array}$	2012	Charcoal
$\begin{array}{\|l\|} \hline \text { Beta } \\ 347692 \end{array}$	5950 ± 40	Binushmuka I	96x 81y NW, Layer C	Imi201312181	2013	Charcoal
$\begin{array}{\|l\|} \hline \text { Beta } \\ 347691 \end{array}$	7310 ± 40	Binushmuka I	96x 82y SW, Layer S, Feature 1	Imi201312180	2013	Charcoal
AA99092	7486 ± 64	Binushmuka I	100x 101y, Layer S	$\operatorname{Bin} \quad$ I $100 \times 101 \mathrm{y}$	2012	Charcoal
T-20129	1115 ± 95	Casa Grande Imiwaia	Shell midden house structure, Tp1 Top, just below present turf layer, $7-12 \mathrm{~cm}$ below surface	Testpit 1 Top Casa Grande Imiwaia	2009	Charcoal
T-20130	5135 ± 125	Casa Grande Imiwaia	Shell midden house structure, Tp1 Middle, $32-42 \mathrm{~cm}$ below surface	Testpit 1 Middle Casa Grande Imiwaia	2009	Charcoal
$\begin{aligned} & \text { TUa- } \\ & 8171 \end{aligned}$	5585 ± 35	Casa Grande Imiwaia	Shell midden house structure, Tp1, 6374 cm below surface	Testpit 1 Base Casa Grande Imiwaia	2009	Charcoal
T-20126	240 ± 75	Central Peninsula hill	HB884, Tp in shell midden dome, sample from Base, $30-39 \mathrm{~cm}$ below surface (Base)	HB884 Base	2009	Charcoal
T-20125	425 ± 60	Central Peninsula hill	HB872, Tp in shell midden dome, sample from Base, $50-63 \mathrm{~cm}$ below surface	HB872 Base	2009	Charcoal
T-20128	560 ± 75	Central Peninsula hill	HB912 Tp in shell midden dome, sample from Base, $65-75 \mathrm{~cm}$ below surface	HB912 Base	2009	Charcoal
T-20127	665 ± 50	Central Peninsula hill	HB888, Tp in shell midden dome, sample from Base, $22-32 \mathrm{~cm}$ below surface	HB888	2009	Charcoal
$\begin{array}{\|lr\|} \hline \text { Beta } & - \\ 347689 \\ \hline \end{array}$	1990 ± 30	Imiwaia Hill	TP106B, Layer S, in context with microflakes, 17 cm below surface	Imi201312178	2013	Charcoal
T-20121	295 ± 55	Imiwaia hill	HB111 Top, Shell midden dwelling structure, sample just below turf on surface	HB111 Top	2009	Charcoal
T-20123	540 ± 75	Imiwaia hill	HB112, shell midden dwelling structure, sample from $5-12 \mathrm{~cm}$ below surface	HB112	2009	Charcoal
T-20122	585 ± 70	Imiwaia hill	HB111 Base, shell midden dwelling structure, sample from base, $40-44 \mathrm{~cm}$ below surface	HB111 Base	2009	Charcoal
T-20124	700 ± 75	Peat Bog Site	HB201 Base, shell midden dome, sample from base, $10-19 \mathrm{~cm}$ below surface	HB201 Base	2009	Charcoal

The test pit survey in 2013 was conducted by Bjerck, Breivik and Zangrando - assisted by Daniela Alunni, Dánae Fiore, María Paz Martinoli, and Angélica Tivoli (CADIC), and Magnhild M. Husøy, Elisabeth Swensen (NTNU).

In 2014, the Marine Ventures field work in Tierra del Fuego was conducted in Moat, as part of excavation of the Heskaia 35 site (see Fig. 2). First archaeological investigations in this area started in 2009, and included surveys and excavations along the coast between Non-top and Lucio López mountains. Archaeological investigations in this area are directed by Zangrando and supported by PICT 1322-2010 and PICT 1011-2013 (MINCyT, Argentina). The Marine Ventures survey was specifically aimed at the relation between shell midden settlements and natural, sheltered landing places for canoes. The character and placement of the settlements in Moat constitute an important comparative base for the settlements structures observed in Cambaceres. There is a separate report for the 2014 Moat survey (Bjerck 2014).

However, the present report accounts for the methods, progress and results from the shell midden survey and test pit survey - presented within the initial markings in Google Earth.

In parallel with the final editing of this report (May 2016), Dr. Joan Negre Pérez from the CADIC/CONICET staff was invited to the Marine Ventures project group. Negre has since established a database of the data in this report that will be applicable for further GIS analyses. This database is found in Table 2 and Appendix 1.1.

2 The shell midden survey

The Cambaceres shell midden survey encompass all lowlands and hills from the Varela Peninsula to the mouth of Cambaceres Exterior (also labeled Bloomfield Port), including the hills surrounding the big bogs at the bottom of Cambaceres Interior (Fig. 5-6). Earlier surveys in the Beagle Channel (Fig. 4) have produced a good overview of the general layout and impact of settlements (cf. references in Introduction). There are also detailed surveys of single settlement sites (Fig. 6), and of course archaeological excavations of selected settlement structures like Túnel and Imiwaia. The Cambaceres survey is aimed at an intermediate scale, and has produced a complete overview of the archaeological shell midden settlements in the $\mathrm{c} .4 \mathrm{~km}^{2}$ large Cambaceres / Rio Varela area.

Fig. 5. Overview of areas surveyed in Cambaceres 2009 and 2011, including earlier surveys undertaken by Ernesto Piana. Outer Peninsula was surveyed twice, to check for domes away from the beach.

All observed structures were plotted individually (Fig. 7), thus demonstrating how aggregations of single structures constitute complex settlement sites. What make this overview particularly interesting is that the general environment has changed little throughout the time period when the sites were in use. The mid-Holocene transgression maximum (c. 7000-5000 BP) in Cambaceres is positioned at approx. 5 m asl..3, meaning that the shoreline has been positioned between $0-5 \mathrm{~m}$ asl for the last c. 8000-9000 years (although we do not know the position of the shoreline prior to this) (cf. Zangrando et al. 2016). Shell middens are accumulative structures. They grow for each visit, and we may assume that large structures are used more frequently than smaller structures. Thus, the survey provides information on several aspects of settlement structure:

[^2]- ... the layout of sites, and an overall impression of the detailed location in landscape, showing the general relation to main topographical features, beaches, hilltops and the boggy hinterlands to the bay, viewpoints and wind exposure.
- ... the relative impact of structures - in relation to agglomerations, and to detailed locations mentioned above.
- ... the internal relations between different types of settlement structures - house pits, domes, small and large.
- ... to some degree, the survey also contributes to the understanding of the biography of the settlements, how sites grow and expand according to the ever increasing volumes of midden material.

Fig. 6. Survey areas in Cambaceres, cf. details in following figures. Yámana place names in yellow.

Fig. 7. Cambaceres/Imiwaia, showing the study area and the GPS positions for the 1251 archaeological structures in the survey of 2009 and 2011. Red dots: Single house pits in shell midden formations. Blue dots: Shell midden domes of various sizes.

A collection of photos showing landscapes and settlements from the area is shown in Figs. 8-11.

Fig. 8. Midden formation and dwelling structure on the Imiwaia Hill. Cambaceres Central and Outer Peninsula in the background, looking towards east. Photo H. Bjerck.

Fig. 9. Midden formation with dwelling structures in the high slope of the hill south of Imiwaia, overlooking Cambaceres Interior. Photo towards east. Photo H. Bjerck.

Fig. 10. María José Saletta taking notes from one of the Very Large Domes in the woods near Lanashuaia in Cambaceres Interior Southeast. Photo H. Bjerck.

Fig. 11. Heidi M. Breivik surveying shell middens in Outer Peninsula. Most shell midden domes are merely a patch of midden material on the ground. They often reveal themselves by a different vegetation cover, green grass and white clover. Photo H. Bjerck.

2.1 Methods

In general, the survey is based on field walking, plotting surface observations. Mostly, these are formations of shell midden of various degree of visibility, but a great many sites were also discovered due to slight changes in vegetation (i.e., greener, and more dense grass, often white clovers). All unclear formations were tested with spade, usually just breaking open the sod and checking for the characteristic midden material, i.e. blackened soils with charcoal and ashes, more or less fragmented shells, bones, burnt rocks and artifacts. This systematic testing excluded all dubious formations in the survey. With a few exceptions, no test pits were excavated, and no artifacts were collected.

Structures were plotted individually at center, using a handheld GPS (2009: Garmin etrex, 2011 and later Garmin Montana 650). The accuracy was normally within a range of $3-5 \mathrm{~m}$. In wooded areas, accuracy were substantially reduced - up to $15-20 \mathrm{~m}$. Coordinates were recorded in notebooks along with other information, and subsequently transferred to place marks in Google Earth. Measurements of structures were for the most part visual estimates (height) combined with pacing, counting steps (area).

As a response to extensive poaching of their cattle, Estancia Harberton took out most of their animals in 2011. The reduced grazing and increased growth of vegetation made it very difficult to observe vague shell midden formation - we were very lucky to have most of the shell midden survey completed before this.

Reproduction of results in Google Earth

Plotting the GPS positions as place marks in Google Earth was also a quality check for the plots, thus reducing the problems with misplacements and GPS accuracy. Along with the Google Earth place marks is a brief description of the individual structures.

As the main component of midden material is related to refuse from phases of occupation, the volume of midden is a relative measure of settlement impact - duration, number of reoccupations, and number of people. As demonstrated by Ernesto Piana and Luis Orquera (2010), this pertains to house pits as well as domes. House pits are a function of the practice of arranging shell refuse in a sheltering wall on the outside of the hut (Figs. 12, 13 and 14). As the number of occupants in a dwelling is a (semi) constant, the size of domes and midden walls are a function of duration and reoccupations.

A large portion of the dwelling pits are asymmetrical, as the wall of midden deposit very often are higher towards one side, mainly the side that is the most exposed to wind. In extreme cases, the high part of the wall takes the form of a dome adjacent to a less pronounced ring structure (Fig. 15). This trend clearly demonstrates the function the ring formed: structuring of shell refuse as a shelter for the actual dwelling, probably very similar to the small huts that were documented in historical times. In the categorization of sites, "dwelling structure" is applied in all cases where the pit-and-wall structure is observed, while "dome" is applied on accumulations of shell refuse where pit-and-wall is not observed.

Fig. 12. Yámana dwelling structure, a hut surrounded by shell midden deposit.

Fig. 13. Reconstruction of a Yámana "choza" in Harberton, fresh branches that cover a structure of saplings. This particular choza was more than one year old when photographed. Photo H. Bjerck.

Fig. 14. This example of a Small Dwelling structure (left photo) reflects a limited number of occupations, and is illustrating for the basic structure of dwellings. The dwelling pit is slightly lower than the surrounding surface, i.e. that this is a shallow pit dug into the ground. The pit is surrounded by a very low wall, a mixture of gravel dug out from the pit and midden material. Most of the shell midden remains are found in a small midden by the entrance to the choza, that is seen as a depression in front of the midden. This structure is situalted in the woods of Central Peninsula, hb983. This is illustrated by the miniature reconstruction (right photo) from the Museo Yámana in Ushuaia. By repeated occupations, the wall around the pit will grow in height, but the size of the pit will stay more or less the same. Photos H. Bjerck.

Objects are placed in three main categories, subdivided in size categories:

- Dwelling pits

Also labeled 'house pits', or 'rounded structures' (Piana \& Orquera 2010). To get a better impression of the relative impact of the settlements, dwelling structures are subdivided in the Google Earth presentation:

- Large dwelling pits with associated midden formation (wall) higher than c. 0.4 m
- Small dwelling pits with associated midden formation (wall) lower than c. 0.4 m
- Shell midden domes

Along the same lines, shell midden domes are divided in four size categories, based on shell midden volume. The divisions are made to show the locations of the very largest domes (reflecting substantial occupations), as well as the smallest (for the most part merely a patch of midden material that may represent one or a few occupations). Note that shell midden volume is calculated from Length \times Width \times Height, i.e. cubic volume and not cylindrical dome-shape volume, but nevertheless a true relative number that is useful in analysis. In reality, the part of the midden volume that is below the ground (and not included in the "above the ground" Height measurement) may compensate for most of this error.

- Very Large Dome: more than $10 \mathrm{~m}^{3}$ shell midden volume
- Large Dome: $10-5 \mathrm{~m}^{3}$
- Medium Dome: 5-1m ${ }^{3}$
- Small Dome: less than $1 \mathrm{~m}^{3}$

Fig. 15. One of the Large Dwelling structures at the Hashmurn site on the outer side of Varela Peninsula. The asymetrical wall of midden material give extra wind protection to the southeast, towards the eastern mouth of the Beagle Channel. Actually, the high part of the wall has turned into a proper shell midden dome adjacent to the dwelling pit where Heidi M. Breivik is standing. However, all structures with visible dwelling pit are labeled as Dwelling structure, and not Dome. Photo H. Bjerck.

Please note that there are minor discrepancies between the Shell Midden Survey database presented in this report and the Google Earth images with sites in the following figures. As the latter already was prepared, and provided the identical overview if the distribution of sites, we have chosen to keep them. The most important differences is that "Domes" originally were in different size categories; Large $\left(>6 m^{3}\right)$, Medium $\left(6-2.5 m^{3}\right)$, Small ($<2.5 m^{3}$), cf. the present division above.

- Lithic scatters without midden material (Yellow squares)

This category includes lithic artifacts that were not associated with shell middens, more or less found by chance in parallel with the shell midden survey. These were discovered at places where the subsoil was exposed (tree falls, surface disturbances by cattle, etc.). In a few cases, we checked the extension of the lithic scatters by test pits - without screening of soils.

In the general survey, the sites that contained lithic artifacts only are not systematically recorded, and hence not included in the further GIS analysis of settlement structures.

2.2 Results of the shell midden survey

Google Earth is easily available, and an excellent tool to show how the spatial distribution of the archaeological features relate to the topographical setting. However, options for selecting, sorting and grouping are limited. To be able to do more elaborate analyses of the data, we need a GIS database and analytical tools. This work is started, the databases from the shell midden survey and the test pit survey is presented in attachments to this report. Analyses that are more elaborate are planned in further papers based on the present report.

Table 2. Overview over the 1251 archaeological structures/sites in the Cambaceres survey 2009-2011 (cf. Appendix 1.1)

DWELLING PITS		$\mathbf{8 0 4}$
\bullet Large dwelling pits (high shell midden walls $>0.4 \mathrm{~m})$	518	
• Small dwelling pits (low shell midden walls $<0.4 \mathrm{~m})$	286	
SHELL MIDDEN DOMES		$\mathbf{4 3 2}$
• Very Large shell midden domes $\left(>10 \mathrm{~m}^{3}\right)$	34	
• Large shell midden domes $\left(10-5 \mathrm{~m}^{3}\right)$	47	
- Medium shell midden domes $\left(5-1 \mathrm{~m}^{3}\right)$	176	
- Small shell midden domes $\left(<1 \mathrm{~m}^{3}\right)$	175	
OTHER		$\mathbf{1 5}$
• Lithic scatters without shell midden accumulations	6	
- Casa Grande Imiwaia	1	
- Graves, human skull	4	
• Obsidian scraper	1	
• Canoe runways (?)	3	
SUM		$\mathbf{1 2 5 1}$

All in all, the survey (with earlier observations included) encompasses 1251 objects (i.e., single shell midden structures and other sites (see Appendix 1.1-1.9)). More than half (804) are the characteristic "rounded structures", or "dwelling pits" as they are labelled here. Furthermore, there are 432 smaller and bigger shell midden domes, and 6 sites containing lithic scatters but no midden material (incl. the Binushmuka I site). Also included are the intriguing Casa Grande Imiwaia (a large house foundation within a c. $650 \mathrm{~m}^{2} / 300 \mathrm{~m}^{3}$ shell midden deposit); the two graves near Imiwaia (Tessone 2003; Piana et al. 2006); another human skull from the top of Central Peninsula found in

2002; the site of the green obsidian scraper; and finally, the three possible canoe runways that was discovered in 2011. The categories are presented and discussed in the following sections.

The structures and sites with recorded measurements and descriptions are listed in Table 2 and Appendix 1.1.

2.2.1 Dwelling pits: aggregations, concentrations and single

In general, the dwelling pits have strikingly equal diameters, mostly $3-4 \mathrm{~m}$. The structures appear as depressions, more or less surrounded by walls of shell midden. As emphasized by Piana and Orquera, "house pits" do not correspond to "pit house" foundations: Midden deposits seem to be arranged around dwellings, eventually forming "rounded structures" of sheltering walls, and the size (height and width) of the walls is a function of settlement duration more than dwelling construction. This is evident at photos of "live" dwellings, where the superstructure of the actual hut is placed inside the pit, and not on top of the walls of the pit (see Fig. 12). Excavations also document this, where sequences of individual depositions have been tracked (Piana and Orquera 2010). However, there are many examples of floors that are $20-30 \mathrm{~cm}$ lower than the natural surface around the dwelling pit, demonstrating that floors in some cases are dug into the ground. This is also noted by Lothrop (1928, 128). However, this do not change the fact that the major part of "dwelling pit structures" are the accumulative midden walls that surround the pits.

A characteristic feature is that dwelling pits tend to cluster; thus forming large structured midden deposits. We label these as aggregations; that is dwelling pits aligned wall-to-wall egg-box style, e.g., the Wikirrh (Huevera ${ }^{4}$) site (Fig. 16-17). This is different from concentrations that describe an area with many, but more dispersed dwelling pits, e.g. the hills by Imiwaia and Binushmuka (Appendix 1.3). Both terms are used for describing the properties of the archaeological record, which not necessarily means that those sites were formed by social aggregation as several occupations at a same event.

All in all, 477 (60\%) of the dwelling pits in Cambaceres are found as part of the 19 large aggregations (i.e. more than 10 pits) of dwelling structures (Fig. 18). Obviously, the shore was an important attractor in the location of dwellings. All the 19 large aggregations are located very close to the beach. And also - with very few exceptions - the 518 Large dwelling pits (high walls, $>0.4 \mathrm{~m}$) are found on elevations lower than c. 5 m asl., i.e. on the beach gravels from the Holocene transgression maximum (Appendix 1.2-1.9).

A substantial part of the Cambaceres settlements is found away from the shore. In fact, most of the 286 Small dwelling pits (low walls, $<0.4 \mathrm{~m}$) are situated at some distance from the shore, often at higher elevations / on top of the low drumlin hills. Some are more than 300 m distant from the beach, and at more than 50 m asl. This feature is most pronounced in the Imiwaia and Binushmuka site areas (Appendix 1.3-1.4), where dwelling pit middens seems to be located in two different zones: large structures close to the beach, and smaller structures at the flat top of the adjacent hills. Interestingly enough, this feature is not found at the other locations in Cambaceres, where the high sites for the most part are midden domes.

[^3]

Fig. 16. Complex of dwelling structures in shell midden formation at the NW end of Cambaceres Central Peninsula. These structured midden formation are characteristic for the Beagle Channel. A similar complex is situated by the beach on the other side of Cambaceres Interior. There are also a large number of dwelling structures / midden formations on top of the adjacent hill. Photo towards west. Photo H. Bjerck.

Fig. 17. The Wikirrh (Huevera) site, the largest of the dwelling pit aggregation in Cambaceres, also one of the largest in the Beagle Channel. The photo shows only the NW part of the site with 64 dwelling pits, in total there are 124 dwelling pits at the site. Photo H. Bjerck.

Fig. 18. Dwelling pit aggregations (more than 10 pits) in Cambaceres. Aggregations with more than 20 pits are enhanced in deep red and thick line.

2.2.2 Shell midden domes

The survey pinpointed 432 shell midden domes, i.e. isolated deposits of midden material without related dwelling pits - varying from small patches / thin layers of midden to large dome-shaped accumulations (Table 2). Most of these ($351,81 \%$) are deposits of less than $5 \mathrm{~m}^{3}$ of volume (medium and small domes), and all in all 272 domes (63%) measure less than c. $10 \mathrm{~m}^{2}$ in area (Appendix 1.1). The small domes of less than $1 \mathrm{~m}^{2}$ midden volume ($175,40 \%$) are merely a patch of midden material on the ground, perhaps produced from one, or very few single visits (and not actual "dome" formations). There are only 81 "proper domes" (c. 20%), i.e., bigger volume than $5 m^{3}$. The largest shell midden recorded is $78 \mathrm{~m}^{3}$, only five are larger than $50 \mathrm{~m}^{3}$. In general, domes are low, the highest are c. 1.2 m ; only $11(3 \%)$ reach more than 1 m ; 225 of the domes $(52 \%$) are less than 20 cm high.

Of the 369 shell midden domes where length/breadth are recorded, 210 have length/breadth ratio 1,0 (i.e. round shape, 57%), 25% are slightly elongated, and only 2% are longer than twice the breadth. Thus, it is safe to conclude that the dominant shape is round to slightly elongated, that sums up 81% of the recorded shell midden domes in Cambaceres.

Table 3. Overview of the shape of the Cambaceres shell middens, as expressed by the length/breadth ratios of the 369 midden where this is recorded.

Length/breadth ratio (shape)	Number
1.0 (round)	$210(56 \%)$
$1.1-1.5$ (slightly elongated)	$91(25 \%)$
$1.6-2.0$ (elongated)	$61(17 \%)$
More than 2.0 (long)	$7(2 \%)$

Another trend is that the location of shell midden domes differs from that of the dwelling pit middens. Many of the domes are situated at the high hills that surround the Cambaceres Interior (Appendix $1.2,1.6,1.7$ and 1.9). They tend to be found in small groups, very often at flat spaces on top of the drumlin hills. Strikingly enough, not a single shell midden deposit (dome or dwelling pit) is located at the hills in Outer Peninsula - the small group here is found in the low part between the two hills, some $2-300 \mathrm{~m}$ from the beach (Appendix 1.8). In some cases, small domes of similar size are found in rows and obviously relate to each other in some system, e.g. in the southern part of the Binushmuka area (Appendix 1.3), and the south-western part of the Wikirrh site in Outer Peninsula (Appendix 1.8) and along the slope in Cambaceres Exterior Northeast (Appendix 1.9).

Also attention calling is the fact that some of the most substantial shell midden domes are found at the hilltops at $2-300 \mathrm{~m}$ distance from the beach, and $40-50 \mathrm{~m}$ higher, cf. Central Peninsula (Appendix 1.7), the Peat Bog Site (Appendix 1.4), and the Hill by Lucas Bridges cabin in Cambaceres Interior Southeast (Appendix 1.6). Several of the domes at the top of Central Peninsula and close to Bridges cabin are higher than one meter, and have more than $50 \mathrm{~m}^{3}$ in volume.

Like the dwelling pits, domes represent settlements, and will grow in size according to the settlement impact - number of people, longevity of occupation, and amount of reoccupations. However, there seem to be a structural difference in the settlement that produces two types of settlement sites. It may be of importance that oval shapes seem to dominate - maybe suggesting the use of a windshield.

2.2.3 Lithic scatters without midden

There are numerous observations of artifacts lying on the surface, in most cases exposed due to post-depositional disturbance caused by erosion, cattle, trails, road building, etc. Midden deposits accompany most of these, but there are also lithic scatters that are not related to midden deposits. Unfortunately, the brief spade tests (cf. 2.1.) in the shell midden survey were not properly excavated or screened, and sites with lithics only are clearly underrepresented in the survey. The representation merely demonstrate that they exist - and probably that there are many of them.

This category is of special interest in our search for ECF settlements and the understanding of them, that may either represent a pre-maritime (terrestrial adapted) period in the area, or a maritime adaptation that do not encompass extensive use of shells. In this respect, the abundant exposed artifacts in the eroded slope at the Basurero site ${ }^{5}$ in Cambaceres Interior North (Appendix 1.5) (hb931) looked interesting. Among flakes, cores and remains of tools was found a baseball-sized rock with a pecked furrow - a fishing line weight, or possibly a rough maze head. However, a test excavation in 2010 produced two radiocarbon dates; both from the same $3 \times 0.2 \mathrm{~m}$ test pit, c .2 m apart: a charcoal sample with a date of $271 \pm 35 \mathrm{BP}$ (AA90436) and a guanaco bone sample with a date of $3548 \pm 53 \mathrm{BP}$ (see Table 1).

The Binushmuka I site (see Fig. 42-44 below) that was discovered in 2011 was more promising as a ECF settlement. A number of green obsidian artifacts may indicate old age, and also that the settlement is related to the earliest canoe traffic (and thus marine adapted?) in the Beagle / Magallanes area. This is explored in the 2012 and 2013 excavation of Binushmuka I site, cf. separate report by Zangrando et al. forthcoming.

2.2.4 Casa Grande Imiwaia

As mentioned, the floor sizes of dwelling structures are strikingly uniform, around 3-4m in diameter, i.e. $10-15 \mathrm{~m}^{2}$. A few dwelling pits are bigger (e.g. hb803 at Outer Peninsula, Wikirrh II, c. $4.5 \times 3.5 \mathrm{~m}$, 1 m high walls, this is the second biggest we know in Cambaceres) but, in particular, one structure sticks out - Casa Grande Imiwaia (cf. Fig. 3 and Appendix 1.4 for location).

This is a huge ring-shaped shell midden formation with a diameter of $c .15 \mathrm{~m}$, around a floor area of $c .80-100 \mathrm{~m}^{2}$ (Figs. 19-20). The structure is situated in the woods in the innermost Imiwaia bay, c. 100 m away from the beach. Constructions like Casa Grande Imiwaia are not reported from anywhere else in Canal Beagle, and it is crucial to learn more of the structure's character and chronological position. Not only is the floor ten times the size of a normal dwelling pit - the structure is also part of a huge shell midden formation covering c. $650 \mathrm{~m}^{2}$. In addition to the size of the presumed dwelling pit, Casa Grande Imiwaia stands out by the absence of normal dwelling pit aggregation that are found on all other large midden formations in Cambaceres (and, we believe, also elsewhere). Test pits reveal that the midden is up to 1.5 m in thickness, suggesting a volume of more than $300 \mathrm{~m}^{3}$. The placement, size, and shape of this structure may indicate a special function, ritual, or a place for larger social gatherings (cf. Lothrop 1928, 165pp).

[^4]

Fig. 19. A large wall of shell midden suggests that the internal area of Casa Grande Imiwaia was $80-100 \mathrm{~m}^{2}$. Photo towards northeast. Photo H. Bjerck.

Fig. 20. Plan drawing of Casa Grande Imiwaia, showing location of samples (HBTP 1).

In addition to a plan drawing of the formation, two test pits were undertaken to examine the stratigraphic character and to obtain dating samples. Unfortunately, the $c .75 \mathrm{~cm}$ deep test pits did not reach the bottom of the deposit. All samples were obtained from Test pit 1. Test pit 1 was placed at a low midden dome on top of the midden wall that seemed to be one of the latest deposits within the structure (Fig. 20). This was also the thickest part of the deposit, and had the best potential to reveal chronological information.

Fig. 21. Profile in HB TP1, Casa Grange Imiwaia, showing location of samples for ${ }^{14} \mathrm{C}$ dating. Test pit reached 75 cm from surface, but a probe test suggests a total depth of midden here is around 150 cm . Result test pit HB 1, Top: 1115 ± 95 BP, Middle: $\mathbf{5 1 3 5} \pm 125$ BP, Base: 5585 ± 35 BP.

The stratigraphic sequence show different depositions, and also a buried, old surface at $c .60 \mathrm{~cm}$ depth. Below $c .30 \mathrm{~cm}$, the midden is dark and compact with very fragmented shells that could indicate high age. In addition to shells (mostly mussels, limpets) was found various bones (sea lion, birds, guanaco, penguin, fish, whale) and a few artifacts (flakes, a core, a necklace shell bead at the bottom of Test pit 1). The midden morphology and shell bead suggests an old age (4000-5000 BP, pers. comm. Piana). Of practical reasons (out of arm's reach), we were not able to dig deeper than $c .75 \mathrm{~cm}$. From this level, the midden was tested by a probe that revealed $c .75 \mathrm{~cm}$ more midden, adding up to a thickness of $c .150 \mathrm{~cm}$.

Three samples for dating (charcoal, Nothofagus) were obtained from the sequence (cf. Fig 30):

- Top - compact midden with abundant matrix just below sod, $6-14 \mathrm{~cm}$, resulting in $1115 \pm$ 95 BP
- Middle - a similar deposit below a more white, open midden with little matrix, at $30-46 \mathrm{~cm}$, resulting in $\mathbf{5 1 3 5} \mathbf{\pm} \mathbf{1 2 5} \mathrm{BP}$
- "Base" - just below an old surface, from dark midden with fragmented shells and abundant matrix, at $62-75 \mathrm{~cm}$ resulting in $5585 \pm 35 \mathrm{BP}$. This sample is dated with the AMS-method, the others are conventional dates.

It was surprising to find that the top sample, presumably representing the latest depositional episode of Casa Grande Imiwaia, yielded a more than 1000 years old date. Furthermore, the two other dates also indicate that the structure is very old. From the level of the "Base sample", there are c .75 cm more midden deposit, and it is expected that a base date for the structure will surpass c. 6000 BP - maybe a date similar to the initial phase of the midden at Imiwaia I at c. 6400 BP.

Test pits and dates are interesting peepholes, but do not produce decisive information that may reveal the character of Casa Grande Imiwaia - which still is a mystery. It is not unreasonable to believe that sites of ritual or social importance prevailed through a very long time, and that the big structure reaches far back in time. The presence of mundane artifacts like flakes and cores are not in disagreement with the activities at the aggregation of people / large house during initiation rites, as described by Lothrop (1928, 165-167). A large part of the activities were centered on training of skills that also included the use and making of tools. Maybe the "red paint" reference in the place name "Imiwaia" refers to the application of red paint, rather than to a place where it was acquired?

We would like to suggest further explorations of the site. Initially, more information on the horizontal and vertical growth of the structure would be interesting - revealing time depth and stability of the ring shaped structure. Is this a last phase formation, or can it be traced far back? How old is the base of the midden, and how did it develop? Are there signs of normal aggregations of dwelling pits deeper in the deposit? Three larger test pits, large enough to reach the base of the midden have the potential to produce very valuable information on this.

2.2.5 Graves / human skull

Earlier surveys have exposed two human burials that were excavated by Piana, Tessone and Zangrando (Piana et al. 2006) and dated to 640 ± 43 and 1363 ± 46 BP (Suby et al. 2011). The graves were located at the rocky hill east of Casa Grande Imiwaia, skeletons visible under a thin layer of rocks and slabs. No artifacts were recovered.
It should be noted that the site of the graves is one of very few outcrops of bedrock in Cambaceres. The only other place we know is in the area east of the river mouth in Cambaceres Interior. The other hills are glacial formations (drumlins) that consist of minerogenic sediments. It is timely to ask if the located graves are representative. Compared to impact of settlement, and also the impact of archaeological activity in Cambaceres, two graves are not much. In addition, there is the single human skull that was located on the top of Central Peninsula in 2002 that also likely represents a disturbed grave.

2.2.6 Canoe runways?

A new feature discovered in 2011 is the presumed canoe runways at Cambaceres Interior Binushmuka (Fig. 22 and Appendix 1.3). These are three adjacent and parallel depressions starting c. 1 m above the open beach below the southern dwelling pit agglomeration. They are $3-4 \mathrm{~m}$ wide and $10-15 \mathrm{~m}$ long. The structures are faint in the lower parts, less than 10 cm deep, but more distinct in the top parts, where they also appear as more fine grained beach cleared of bigger cobbles.

Fig. 22. Two of the canoe runways in the Cambaceres Interior Binushmuka, cf. Fig. 15. Photo H. Bjerck.

Lothrop (1928, pl XI) have reported similar structures from Puerto Mejillones in Isla Navarino. Lothrop remarks that these canoe runways are linked to the heavy dugout canoes of the more recent phase of Yamana lifestyle. This may very well be the case also in Cambaceres, as these structures are fragile and would soon be eroded.

2.3 Results and radiocarbon dates from the high-lying sites in Cambaceres

One of the questions that needed clarifying was the chronological relation between dwelling complexes and aggregation of shell midden domes on high hills and by beach. This was the main purpose of the dates from the samples of Imiwaia Hill (Figs. 23-30, Sample HB111 and HB112) and one of the domes of the Peat Bog site (Figs. 31-32, Sample HB201).

Fig. 23. Location of samples for ${ }^{14} \mathrm{C}$ dating. Cambaceres Interior and Cambaceres Central Peninsula are in central part of the photo - Imiwaia is situated in the NW part of the bay.

Fig. 24. Imiwaia hill with location of samples (HB111 and HB112) in relation to archaeological sites: Dwelling structures (red - large, small), Shell midden domes (blue - large, small). Casa Grande at top of photo.

Fig. 25. Complex of dwelling structures in midden formation on top of hill by Imiwaia. Test pit HB111 is located to the left of A. Francisco Zangrando and Sebastian Bocelli. Photo towards south. Photo H. Bjerck.

Fig. 26. Plan of a section of the complex with dwelling structures on top of hill by Imiwaia, showing the location of test pit HB111.

Fig. 27. Profile in test pit HB111. See formula 2 sheet for details. Only Top and Base sample included in this application. Results test pit HB111: Top: 295 ± 55 BP, Base: 585 $\mathbf{7 0}$ BP.

Fig. 28. Dwelling structure at top of Imiwaia hill, A. Francisco Zangrando is by test pit HB112. Photo towards southwest, Cambaceres Interior in background. Photo H. Bjerck.

Fig. 30. Sketch of profile of test pit HB112 with location of ${ }^{14} \mathrm{C}$ sample. Result test pit HB112: Base: 540 ± 75 BP.

Fig. 29. Plan drawing of dwelling structure
showing location of sample HB112.

Fig. 31. Shell midden dome HB201 at the Peat Bog site. Site is located at a terrace at the base of a large hill adjacent to a large peat bog, ca 250 m north of Imiwaia bay. Photo H. Bjerck.

Fig. 32. Profile of test pit HB201 showing location of samples for ${ }^{14} \mathrm{C}$ dating, the Peat Bog site.
Result test pit HB201, Base: $700 \pm \mathbf{7 5}$ BP.

Another question is the function of the high hill sites. This pertains especially to the aggregation of shell midden domes at the Top of Cambaceres Central Peninsula (Figs. 33-39, Sample HB872, HB884, HB888, HB912). In contrast to the hills on the west side of Cambaceres the sites on top of Central Peninsula is not adjacent to large complexes of near-beach dwellings. These sites were discovered by Bjerck in 2002 - along with a surface find of a single human skull in their midst. There is a definite possibility that the site may represent a place for social / ritual gatherings. The Central Peninsula itself is a pronounced, steep-sided formation, and its situation in the middle of everything in Cambaceres is an attraction of its own. In addition, there seem to be some kind of structuring of the middens, several similar-sized middens aligned around a large flat space. A similar aggregation of middens is also recorded on a high hill by Brown Bay (see Fig. 3), 13km west of Cambaceres (pers. comm. Piana).

Fig. 33. Cambaceres Central peninsula. Location of samples on top plateau in relation to archaeological sites at the base of the hill. Dwelling structures (red - large, small), Shell midden domes (blue - large, small).

Fig. 34. Cambaceres Central Peninsula. The complex of shell midden domes are located in the woods at the top plateau. Photo towards east. Photo H. Bjerck.

Fig. 35. Profile in test pit HB872. Only Base sample included in this application. Result test pit HB872, Base: 425 ± 60 BP.

Fig. 36. Sebastian Bocelli, A. Francisco Zangrando and Aleandro Sassola working with sample HB884 at the top plateau of Cambaceres Central Peninsula. Photo H. Bjerck.

Fig. 37. Profile in test pit HB884. Only Base sample is included in this application.
Result test pit HB884, Base: $\mathbf{2 4 0} \mathbf{\pm} \mathbf{7 5}$ BP.

Fig. 38. Profile in test pit HB888.
Result test pit HB888, Base: 665 ± 50 BP.

Fig. 39. Profile of HB912, 80cm of shell midden on top of buried surface. The white layer in the middle of the profile is coquina, a substance that derives from heavily burnt shells. This dome $\left(13 \times 6 \times 0.8 \mathrm{~m} ; 62 \mathrm{~m}^{3}\right)$ is the very largest in the Cambaceres Survey. Result test pit HB912, Base: $\mathbf{5 6 0} \mathbf{\pm} \mathbf{7 5}$ BP.

A crucial point in this discussion is whether the alignment of midden deposits was initiated / abandoned at the same time, or if they represent a sequence of deposits through a longer time. The samples from Cambaceres Central Peninsula were taken in order to shed light on this discussion. At present, we have given priority to the base samples. The reason for this is that the morphology of the sampled middens indicated a rather late date - maybe so late that top samples would be of little value.

Álvarez et al. (2013) report radiocarbon data from shell midden located in Lanashuaia hill (Figs. 3, 40 and 41, dates included in Table 4). Two of these sites - Lanashuaia XX and XXI - are located on a hill about 50 m asl., in the margins of the current forest and at a distance of about 550 meters from the coast.

Table 4. Radiocarbon dates from high hill settlements in Cambaceres. The date from Binusmuka hill Test Pit Survey (see Ch. 3.2.3) is included. Dates from Lanashuaia hill from Alvarez et al. 2013.

Imiwaia Hill	Age uncal. BP
Sample HB111, Top	295 ± 55
Sample HB111, Base	585 ± 70
Sample HB112, Base	540 ± 75
Binushmuka Hill	4920 ± 30
Sample in TP77	
Peat Bog site	700 ± 75
Sample HB201, Base	
Central Peninsula	425 ± 60
Sample HB872, Base	240 ± 75
Sample HB884, Base	665 ± 50
Sample HB888, Base	560 ± 75
Sample HB912, Base	825 ± 35
Lanashuaia hill	867 ± 35
XXI - C1	584 ± 35
XX - C1	673 ± 41
X - B	
IX - D	

As inferred by the character of midden material, the dates are fairly recent. In fact, they support the already established pattern that contexts from the hills are mostly resent, i.e., younger than 2000 BP. However, the date from the Binushmuka Hill Test Pit Survey deviates from this, almost 5000 BP , and a reminder that there could be more of the older settlements on the high hills of Cambaceres.

Dates do not support the assumption that the middens on top of Central Peninsula have been developed simultaneously. However, they could still be related to the same ritual practice. The relation between the high sites in Central Peninsula and Casa Grande Imiwaia may be interesting to explore. The fact that Casa Grande seems to be abandoned ($1115 \pm 95 \mathrm{BP}$) before the activity at the top of Central Peninsula could be a result of a change in ritual practice that included relocating the place for this activity. Nevertheless, the high hill settlements could just as well be part of the everyday settlement pattern of the area.

Fig. 40. Comparisons of the dates from the Hill by Imiwaia (HB111 Top, HB111 Base, HB112), the Peat Bog Site (HB201), and the top plateau of Central Peninsula (HB872, HB884, HB888, HB912). Please note that the diagram show calibrated dates AD.
The dates are undertaken by the National Laboratory for Age Determination at the NTNU University Museum in Trondheim, Norway. Apart from in the diagram above, all dates are referred to as uncalibrated ${ }^{14} \mathrm{C}$ age BP . However, calibrated dates BC/AD (Stuiver \& Reimer 1987 program) is included in the attached lab report, along with delta ${ }^{13} \mathrm{C} 0 / 00$ values (cf. report from the lab). The dates are partly financed by the Research Council of Norway (included in the quota of sponsored dates), partly from Bjerck's own research funds at NTNU University Museum.

Fig. 41. Aerial photo with location of sampled sites in Lanashuaia, compiled by A. Francisco Zangrando.

2.3 Settlement locations, beaches and high hills in Cambaceres: some conclusions

Similar to Norwegian Mesolithic sites, most of the sites in Cambaceres are situated close to beaches and paleo-beaches. However, very different from the Norwegian case, is the fact that c. 35% (c. 25% of the dwelling structures, 40% of shell midden domes) of the sites are found away from the beach (more than ca 100 m). Some of the sites are located as far as 500 m from present/ ancient shoreline, and more than 50 m asl. This is in agreement with the wider site location analysis by Barceló et al. (2002). This interesting difference will be an important part of our study. As the archaeological sites practically are made up of shells that once were collected at the beach, the location of sites on high hills hundreds of meters from the beach do not seem very practical. However, the sheer impact of sites away from the beach indicates that there are some rationales that we do not understand. What are the qualities of the high hills that made the people carry amounts of shellfish to eat up here? View, shelter from the woods, amount of wood for fireplaces, building materials for constructing huts, neutral (and flat) grounds for social/ritual gatherings in between the "normal" dwelling sites? Or are occupations related to some kind of escape from the near-shore areas? Hide-outs to avoid raids from competing groups, or seeking shelter from vicious winds in the cold season? The answer is likely to touch upon several (and more) of the mentioned reasons - and we think that the comparison with the Mesolithic sites in Norway will be a way to increase our understanding of decisive factors in site location and formation.

Obviously, the main impact of the Cambaceres settlements is located very close to the shore. Most dwelling pits (c. 75%) are situated on top of, or just below the pronounced beach ridge formation from the Holocene transgression maximum. There is also a clear tendency towards larger dwelling structures adjacent to the shore, i.e. dwelling structures that have more midden accumulations in the form of high and broad walls. As accumulations for a large part consist of shells picked at the beach, it seems natural that the highest level of activity is related to near-shore areas. This is well documented in the presented maps, where large dwelling pits (midden wall formations higher than 0.5 m) is marked with large symbols, and smaller dwelling structures is shown with small symbols (walls less than 0.5 m high). We have also documented that shore-near structures are dominated by dwelling foundations, and not domes of midden.

Another observation is that only in certain areas of Cambaceres, sites can be found at higher elevations. For instance, no sites are located at the hills of Outer Peninsula. Around Cambaceres Interior, only some of the hills were used (cf. Fig. 7). There also seem to be interesting differences in the character of the sites/structures on the high hills. The hills of the western side of Cambaceres (Cambaceres Interior Imiwaia, Cambaceres Interior Binushmuka; Appendix 1.3-1.4) are dominated by dwelling pits and scattered, small domes). This is very different in Varela hill (Appendix 1.2), Cambaceres Interior Southeast (Appendix 1.6) and Central Peninsula (Appendix 1.7), where small and larger domes dominate over dwelling structures.

3 The test pit survey

The Cambaceres shell midden survey raised many questions that required other research strategies. In the final phase of the Cambaceres survey (last days in 2011, and during fieldwork 2012 and 2013), the methodological approach was therefore changed to test pitting in designated areas.

The purpose of the test pit survey was to explore some problems that the general shell midden survey could not answer, to compensate for the bias towards shell midden deposits, and aimed at locating lithic scatters without associated shell midden deposits. Was the discovery of the Binushmuka site (Figs. 42-44) on the first day of test pitting plain luck, or an indication of the fact that settlements without shell midden deposits were abundant? And how about the fact that a new Early Coastal Forager (ECF) settlement was identified - could there be many more in Cambaceres? We also wanted to get a clearer picture of the shell midden sites - and check for possible activity areas outside the midden formations. Test pits were also needed to understand the relation between the dwelling aggregations by the beach and at the hills of Imiwaia and Binushmuka. Between the two places, the amount of midden formations, dwelling pits as well as domes were less frequent. Would test pits show more activity here in the form of lithic artifacts - or enhance the impression of a difference between structures by the beach and at the high hills?

Perhaps even more important in our quest for the ECF: could there be more of the old settlements that hitherto had been found more or less by chance at the Túnel, Imiwaia and Binushmuka sites?

Fig. 42. María Jose Saletta, Angélica Tivoli and Maria Pia Filipelli test pitting at Binushmuka. Photo H. Bjerck.

Fig. 43. Binushmuka I site towards northeast. Photo H. Bjerck.

Fig. 44. Binushmuka I site, the expanded test pit where the sited was discovered. From the left, A. Francisco Zangrando, Angelica M. Tivoli, and Heidi M. Breivik. Photo H. Bjerck.

3.1 Strategies and methods

The challenge was how to find Early Coastal Forager (ECF) settlements, and how to distinguish these particular settlements from the large amount of later cultural remains.
Although there are many chronologically distinct instruments in the archaeological assemblages, most of them are shaped in more or less the same technique; surface knapping that produce similar-looking flakes, especially microflakes. Consequently, the survey could not be based on finding datable instruments - another strategy was needed. Thus, we chose to focus on contexts that could indicate old age. To search for ECF sites in position below old shell midden deposits was one way - but the collateral damage to the shell middens themselves would be too severe. The criteria for picking test areas were as follows:

1. As the other ECF sites all have been discovered embedded in the eolian silt layer (Layer S) that seem to cover the till formations in the area, a stratigraphic approach could be a possibility. It is assumed that a large part of this formation is related to the late glacial / early Holocene times, before the vegetation cover was established and vast areas with glacial sediments was exposed to movement by wind; similar to the loess formation in Europe. Thus, cultural deposits embedded in the silt layer could indicate high age. All test pits were dug through this layer where it could be found, and where it was possible, all the way down to till.
2. The second strategy was to take advantage of sediments and landscape features formed by the mid-Holocene transgression. In Cambaceres, the beach sediments (beach ridges/berms) and the adjacent erosion of sea cliffs indicate a sea level around 5 m asl at the maximum of the transgression, that seems to have happened approximately 50007000 years ago (uncal.) (Zangrando et al. 2016). The mid-Holocene transgression is also evident in parts of Norway, and several sites have been discovered below sea level or buried in beach sediments (e.g., Bjerck 1982, Bjerck et al. 2008, Bostwick Bjerck and Olsen 1983; Indrelid 1978; Skar and Nymoen 2012). The sea level rise produces a combination of erosion and sedimentation. Immediately below the sea level, there is a regime of erosion that will severely wash out and damage old surfaces and cultural deposits. Above the sea level, there is a depositional regime, as wave action pushes up (and sort) the beach gravels that will cover old surfaces and related archaeological remains with very little erosion. The impact of this, both erosion and deposits, depend on the scale of wave action. In sheltered places, both erosion and sedimentation is low. Places exposed to wind and waves are more heavily eroded, and also have large beach ridge formations.

This situation offers advantages in the search for ECF sites that are older than the transgression. In the slope downside from the beach ridges, most of the older settlements probably are heavily eroded. However, in the upper part of the transgression beach ridges, old surfaces and archaeological remains are likely to be preserved below the beach deposits. The stratigraphic context denotes high age, and also ensures that later human activity have not "disturbed" the cultural content of the site.

Moreover, the build-up of large beach ridges tend to dam surface water and produce ponds that eventually turn to bogs in their uphill side. In Cambaceres, this effect is evident in many places. In Lanashuaia, there is a large beach-ridge-dammed pond (see Fig. 67); a similar, but smaller, is seen in the outer part of the Wikirrh site (see Fig. 72). In Alashuaia, there is a very large beach ridge that later produced a large, several meter deep bog (see Fig. 46). In pre-transgression times, these areas were gentle slopes towards the sea, offering favorable places for human settlements. The beach ridge formations changed the microenvironment to very wet places unsuitable for settling. However, pre-transgression archaeological remains could be found below the clays and silts that are bottom sediments of these ponds, and also below the bog formations that have accumulated behind transgression beach ridges.

A problem with using transgression-related sediments as contexts of high age is that the thickness of these layers are often great, and are thus out of reach for manual test pits in that they are restricted to an arm's length, c. $70-80 \mathrm{~cm}$. For holes deeper than this, the only option is mechanical excavators (expensive) or test pits large enough to accommodate the archaeologist (a lot of work, time factor) - both being out of reach for the project. Instead, we chose the easier places, in the margins of the transgression-related contexts, where sediments were thinner and manageable.

In hopes of increasing our success rate in the quest for ECF settlements in these stratigraphic contexts, we carefully selected test areas that we believed would have been suitable for settling in pre-transgression times; gentle slopes of till adjacent to what would have been places sheltered from wind and waves. In most cases, these areas contained ample shell midden settlements from post-transgression times - a clear indication of favorable positions also for older settlements. The location of test areas are shown in Fig. 45.

Test pits were used to explore two different problems:

- To check areas between / close to agglomerations of shell midden house pits, especially the "empty" areas between the near beach agglomerations and the concentrations of shell midden dwelling pits on the high hills of Imiwaia and Binushmuka.
- In search for old sites (ECF), i.e. similar to the first phase lithic components documented at the base of Túnel I, Imiwaia I and Binushmuka I sites. As it is difficult to evaluate age from a handful of lithics, we chose to examine contexts that could imply old age:
a) Artifacts embedded in the silt layer (Layer S - eolian sediment that is for a large part related to times before the vegetation cover was developed) that covered most glacial sediments in Cambaceres.
b) Artifact layers that are overlaid by beach sediments from the mid-Holocene transgression maximum, or covered by sediments formed by the beach ridge damming. Hence, these test pits were put adjacent to the upper part of the transgression beach ridges, in what seemed as favorable locations for settlements.

Usually, test pits measured around $40 \times 50 \mathrm{~cm}\left(0.2 \mathrm{~m}^{2}\right)$ in size (cf. details in Appendix 2). The vegetation layer (Layer A) and the more humified organic top soil (Layer B) was in most cases excavated by spade, but the bottom part of the B layer that was bordering to minerogenic soils below were examined closely by trowel. Minerogenic soils (silt, sand, washed-out gravels) down to till were excavated and dry-screened (4 mm mesh size). Most test pits were less than 0.5 m deep (cf. details in Ch. 3.3).

All measurements, stratigraphy, positions of artifacts were documented in notebooks. Negative pits were documented likewise. The stratigraphic sequence in test pits is shown in Figs. 51, 58, 61, 65, 71 , and 74 .

Reproduction of results in Google Earth

The test pits are marked with squares in the Google Earth presentations.

- White squares: Negative
- Yellow squares: Positive, but less than 25 artifacts
- Orange squares: Positive, with 25 artifacts or more

3.2 Results from the test pit survey

Fig. 45. Cambaceres and the location of sites from the Test Pit Survey.

The stratigraphic sequence in the area can be described as follows:
TILL: Most of Cambaceres is part of a large glacial formation. The parallel, elongated hills that characterize the area are "drumlins", till material that have been shaped below the moving glacier. However, the whole area has been influenced by glacial water flows. Thus, the "skin" of the drumlins is best characterized as washed-out till, i.e. glaciofluvial sediments: rocks, pebbles, gravel and sand with well-rounded particles - the clay fraction is generally missing. In this study, all glacial sediments are labelled as "Till".

SILT (Layer S):

Most places, till / glasiofluvial sediments are covered by a fine-grained silty sediment that probably are wind-blown (eolian) sediments. Most of the silt layer is probably from early post-glacial times, from the vast areas of minerogenic sediments that were exposes as the glaciers retreated. The rate of silt formation diminished as the vegetation cover was established - gradually covering most of the glacial sediments.

PEBBLE LAYER (Layer C)

In Cambaceres, a layer of well-rounded and often sorted pebbles are found on top of the silt layer. The origin of these sediments is not clear, but there are several indications that this formation is beach sediment related to the mid-Holocene transgression. However, the pebble layer is also found above the transgression formations, i.e. the high-point of beach ridges and base of sea-cliffs. This may indicate that waves at times reach higher than the main transgression features in shorter periods or during heavy winds. However, this must be studied in further details.

TOP SOIL, ORGANIC SEDIMENTS (Layer A and B)

The top soil (in Spanish "champa") has generally two horizons. The vegetation layer with live roots from the grass cover (Layer A) and the underlying more humified and clayey organic layer (Layer $B)$.

The recorded stratigraphic sequence in the test pits is shown in Figs. 51, 58, 61, 65, 71 and 74.
In general, this sequence of sediments is also a relative time sequence, i.e. that stratigraphic positions may give chronological clues to the archaeological record:

- Till is of Pleistocene age, and is formed under glacial circumstances that are uninhabitable for human beings. It marks point zero for the archaeological record, and tells where it is safe to stop digging for cultural remains.
- The silt layer (S) is a post-glacial formation, high rate of buildup in early post-glacial time when vast areas of glacial sediments where exposed, reduced sedimentation rate in line with the emergence of vegetation cover. Albeit that the formation of wind-blown sediments is still an ongoing process - Early Holocene archaeological material will tend to be embedded in the silt formation.
- The pebble layer (C) that occurs in level with the mid-Holocene transgression maximum (around 4-6m asl., perhaps a bit more due to short-lived higher sea level / storm-waves) is from the time when the transgression peaked, around 5000-7000 BP.
- Bogs and pond sediments (clay/silt) that are formed in transgression beach ridge dammed contexts are generally younger than the mid-Holocene transgression, i.e., younger than c. 5000 BP.
- Topsoil, the organic layer (A/B), is generally from the latest part of the Holocene, from recent to a couple of thousand years back.

Note that this is a general trend with many exceptions, and also that human activity, tree-falls, solifluction, frost-action, etc. disrupt the sequence. However, this trend is useful in deciding where to look (and where to scrutinize) for archaeological remains of different age.

3.2.1 Alashawaia (Figs. 46-48)
 Surveyed by Bjerck, Zangrando, Breivik and Pinto, February 24-25, 2012.

This is a large beach ridge formation in the western part of Outer Peninsula, in the mouth of a small valley between the two hills here. The upper part of the beach ridge is $c .125 \mathrm{~m}$ long, reaching up to $c .70 \mathrm{~m}$ from the present beach. The bog adjacent to the upper part of the ridge is c .80 m long and 50 m wide.

Drill core samples were taken along two profiles cross-sectioning the area, from the back margin of the beach ridge to the upper end of the bog.

Fig. 46. The Alashawaia site showing the bog that was formed behind the beach ridge from the Mid-Holocene transgression. Photo H. Bjerck

Profile 1, 40 m long, (Fig. 48):

- Point 0 m (western end): High point of beach ridge.
- Point 10 m : Back of the ridge meets the bog surface, 1.55 m lower than the ridge's high point. Bog quite thin here, beach sediments reached 0.22 m from the surface. The 1.77 m level difference to the high point denotes the rather steep upper side of beach ridge with a gradient of 18 cm per m . This is also the lowest point of the bog; the upper (east) end is c . 1.25 m higher, sloping uphill with a gradient of 4 cm per m .
- Point 12 m : The bog is 0.78 m thick, overlying a c. 0.18 m thick layer of sand with dark brown organic matrix and a few pebbles (probably bottom sediments from the pond that pre-dates the bog). At 0.96 m , there is a gray minerogenic sediment of silt, clay and pebbles, probably till. It seems that Point 12 m is outside the beach sediment formation.
- Point 16 m : Seems to be the thickest part of the bog, 1.37 m . The second layer is less than 0.1 m thick, minerogenic, gray sand and clay. Deeper down seems to be a similar layer (not easy to see in auger), going down to 1.92 m below surface. This 0.55 m thick formation could be a lacustrine formation in the pond behind the beach ridge. The sediments reached at 1.92 m , gray-greenish rather fine-grained, silt, sand. We could not get the auger past this point, and thus believe that this is a combination of eolian silt and washed out till - the glacial sequence.
- Point 20m: A similar sequence as previous, but less deep.
- Point 25 m : Bog down to 1.15 m , on gray silty sand.
- Points $30-35 \mathrm{~m}$: Bog thins out, 0.63 and 0.45 m respectively, overlying brown-gray silty sand, probably eolian layer that covers till?
- Point 40 m : Test pit $(45 \times 60 \mathrm{~cm})$, negative. Bog down to 0.42 m , same bottom sediment as in Points $30-35 \mathrm{~m}$, brown-gray eolian silt/sand. Large rock in part of the test pit (TP) denotes that the till is near.

Profile 2 (Fig. 48) gave a similar picture of the situation, dimensions and stratigraphy (and hence not shown in this report.

To conclude, the test pit survey confirmed that Alashawaia site is an excellent location for ECF settlements, but failed to produce conclusive data. The post-transgression sediments are very thick, and the stratigraphic levels where ECF settlements would be found are out of reach for normal test pits. However, the site would be very interesting to explore in more detail if mechanical excavator could be used.

Fig. 47. Alashawaia site (left) with the beach ridge and the bog, showing the locations of the two profiles (cf. Fig. 48). Note the shell midden structures by the beach. To the far right is the Outer Peninsula 2 test site.

Fig. 48. Alashawaia. Stratigraphic sequences along Line 1 (left) and Line 2 (right) (cf. Fig. 47 for positions) through the bog behind the transgression beach ridge, profiles based on auger drillings. The top line in the profiles show length/depth 1:1, the lowest line and the profiles show length/depth 1:10. Drawing H. Bjerck.

3.2.2 Base of Varela Hill (TP1-10, Figs. 49-52)

Surveyed by Bjerck, Breivik, Moland and Swensen, February 15, 2013.
Series of 10 test pits (TPs) along the backside of large beach ridge by the northern slope of the hill at Varela peninsula. All TPs are around $50 \times 40 \mathrm{~cm}$, depths from $\mathrm{c} .25-50 \mathrm{~cm}$. All minerogenic soils were dry screened.

Fig. 49. Overview from the Base of Varela Hill test site, showing the pronounced beach ridge formation. The test pits are in the depression on the upper side of the beach ridge where the two persons are. Photo H. Bjerck

Fig. 50. Locations of test pits (all negative) at the Base of the Varela Hill. Note the double beach ridge here, shoving that the Mid-Holocene transgression maximum sea level reached here from both sides. The high point of the two beach ridges are marked with green lines.

TPs aimed at finding old settlement overlaid by beach sediments from mid-Holocene transgression maximum. The beach ridge is pronounced, up to 2 m high and quite steep from the backside. Large aggregation of shell midden dwelling pits are found downhill of the beach ridge. The place is a sheltered bay within the Harberton bay, also sheltered by the Varela hill - an excellent site for settlements.

The observed stratigraphy (from top)

- c. 20 cm organic soil, Layer A/B
- In some TPs is a c. 10 cm thick layer of clay, most pronounced in TP2-4, situated at the low point in the depression behind the beach ridge (Figs. 51-52). Probably a result of the beach ridge damming, wet conditions, at times probably a pond here. Drying cracks were observed in the clay during excavation, suggesting an alternate wet-dry sequence - a pond that occasionally dried up. - Minerogenic, sand, gravel, pebbles - glaciofluvial / till.

All TPs were negative.

Fig. 51. Base of Varela Hill test pits, overview of measurements and stratigraphic sequences. All test pits are negative. Drawing: H. M. Breivik.

All TPs were excavated to $5-10 \mathrm{~cm}$ down in the minerogenic sediments. Sites older than the midHolocene transgression at this location should be expected below the clay that has formed as a result of the ridge, in the top part of the underlying minerogenic sediment. As this sediment was screened in all TPs, the negative result from this test area must be trusted.

Fig. 52. Profile in TP4 in the Base of Varela Hill test site, showing the stratigraphic sequence. The gray clay between the organic layers (top) and the sandy beach sediment (bottom) is a bottom sediment from the now dried up pond that was dammed by the Mid-Holocene transgression beach ridges (cf. Fig. 51. Photo H. Bjerck.

3.2.3 Binushmuka Hill (TP51-86, Figs. 53-58)

Surveyed by Alunni, Bjerck, Breivik, Martinoli, Oftedal, Piana, Skar, Tivoli, Zangrando, by several occasions in 2011, 2012, 2013.

At this location, there is an aggregation of 12 large dwelling pits close to the beach, and also a concentration of small dwelling pits at the flat top of the Binushmuka Hill. Between the two groups of sites, there is a gentle slope with just a few shell midden formations, only one small dwelling pit, and c. five small domes. In order to better understand the relation between the sites by the beach and the high hill, it was necessary to examine the intermediate part in more detail. Would the amount and distribution of lithic cultural remains support the "void" between the near-shore and the hilltop? Is there a decreasing drizzle of activity areas on the upside of the large settlement by the beach? The gradient of the slope is very gentle, and the slope itself is hardly the reason for the low frequency of settlements.

To clarify this, 17 test pits were put between the mid-Holocene erosion cliff ($2-3 \mathrm{~m}$ high) and the flat top of the Binushmuka Hill with the concentration of small house pits and domes.

The survey was conducted in 2012 (TP74-76), the remaining in 2013. Most of the TPs were negative (8) or contained just a few flakes (8). Only one TP produced more than 20 artifacts (TP79). TP79 is part of a cluster of positive TPs in the upper part of the slope, adjacent to the high hill dwelling remains. There are also positive TPs in the low part of the slope, but also here low artifact frequency; less than 10 artifacts. To conclude, the test pits confirmed that there is a clear space with very little cultural activity between the settlements by the beach and the top of the hill.

Fig. 53. Binushmuka overview, with the location of the Binushmuka I settlement (where the people are) and the Binushmuka Hill test pit survey (in background). Photo H. Bjerck.

Fig. 54. Test pitting at the Binushmuka Hill. Note the dead tree, also showing in previous photo. Photo H. Bjerck.

Fig. 55. View from Binushmuka Hill towards Imiwaia Hill. In the foreground, some of the many dwelling pits in the north slope of Binushmuka Hill. Note the high visibility of the structures in times when cattle still were grazing in the area. The photo is from 2009. Photo H. Bjerck.

The test pits also gave interesting stratigraphic information:
Below the organic layer (Layer A/B, mostly 15, up to 20 cm thick), most TPs revealed a $10-15 \mathrm{~cm}$ thick silt layer (Layer S), probably of eolian origin. Below this, glaciofluvial/till sediments were encountered in all TPs. In most cases, artifacts were found in the transition between Layer B and S, but in three TPs, artifacts were also located embedded in the S-layer (TP77, 79, 85). This stratigraphic position is an indication of older age. In TP77 we were lucky to locate charcoal in association with artifacts in the S-layer, later dated to $\mathbf{4 9 2 0} \pm 30$ BP (Beta-347688). This date is far too young to be ascribed to ECF activity, and demonstrate that cultural remains embedded in the eolian S-layer are merely indications of high age that cannot be assumed without closer examination.

Also interesting, is that all TPs revealed that the pebble layer (Layer C) is very poor in the slope above the mid-Holocene transgression sea cliff. Two TPs (TP76 and 78) contained a horizon of scattered pebbles between Layer B and S, one (TP79) had a 3cm pebble layer between Layer B and S . This supports the idea of a marine origin of Layer C .

Also a series of test pits in the "Binushmuka valley" between the hills of Imiwaia and Binushmuka, on the upside of the beach ridge, led to the discovery of the Binushmuka I site in 2011. There are also a number of negative TPs helping to delimitate the site area, but most of them are included in the Binushmuka I coordinate system, that is part of the excavation report (Zangrando et al. 2016).

Fig. 56. Binushmuka Hill test area with locations of test pits.

Fig. 57. Binushmuka Hill test area with locations of test pits, correlated with results from the Shell Midden Survey. Note that the low frequency of dwelling pits and shell middens between the near-beach and the top of the Binushmuka Hill is also reflected in the test pits. White squares: Negative. Yellow squares: Positive, but less than 25 artifacts. Orange squares: Positive, with 25 artifacts or more.

Of particular interest is a series of six TPs between the two aggregations of large dwellings by the beach. The outer aggregation counts 12 dwellings, the inner aggregation 16 - between the two there is an empty space of 50 m . The TPs were placed here to clarify possible activity area. Surprisingly, only one of the five TPs between the two large settlements was positive (TP70, 1 large flake, Fig. 56).

In 2009, a small trench was opened in the meeting point between the beach ridge and the gentle slope above the ridge. The trench was negative, but revealed a well preserved turf layer (pretransgression surface of the slope) below the beach sediments.

In 2012, we placed a TP in the bog dammed by beach ridge, between the Small dome hb398 and the negative TP51 (Fig. 57) The TP was excavated as deep as we could dig, around $80-90 \mathrm{~cm}$, without reaching minerogenic sediments. As the TP did not reach down to where old cultural remains were expected, it could not be labelled as "negative", and was not documented. The site is interesting, but out of reach from normal test pitting.

Fig. 58. Binushmuka test pits, overview of measurements, artifacts and stratigraphic sequences. Drawing: H. M. Breivik.

3.2.4 Imiwaia Hill (TP100-118, Figs. 59-61)

Surveyed by Bjerck, Breivik, Husøy, Martinoli, Swensen, Tivoli, Zangrando, February 25-26, 2013.
Imiwaia Hill is very similar to Binushmuka Hill. Both are drumlins of approximately the same shape, orientation and elevation. As in Binushmuka, Imiwaia holds a great aggregation of large dwelling pits by the beach, a concentration of small dwelling pits on the top of the hill, and an intermediate area with few shell midden formations. Similar to Binushmuka, the gradient of the eastern slope, between the two settlement areas, is gentle and well suited for encampments. The series of TPs (19) aimed at activity areas marked by concentrations of lithic artifacts.

Fig. 59. Imiwaia Hill overview, with Heidi M. Breivik excavating TP114, the top part of the test area. The lowest test pits are by the persons in the background. Cambaceres Interior and Central Peninsula in background. Photo H. Bjerck.

Most of the TPs (13) were negative, and most of the six positive TPs produced less than 10 artifacts (all flakes/microflakes). TP106B (11 artifacts) and TP111 (18 artifacts) contained the highest artifact density. Overall, the TPs confirm the low frequency of cultural remains between the beach and high hill settlements suggested by the shell midden survey.

The stratigraphic sequence in the TPs also gave information of the nature of the pebble layer C in position between the organic topsoil (Layer A/B) and the silt layer (S) (Fig. 61). All the TPs are higher than the transgression sea cliff, and most of them are without the pebble formation. The pebble formation is found in the TPs of the lower part of the hill, TPs 100, 103, 107, 110, 111, 117, 118. Except from TP110, with a c. 5 cm thick pebble layer, there were only a horizon of scattered pebbles in the remaining TPs.

The silt layer (Layer S) is in general quite thin, mostly less than 15 cm on top of glaciofluvial/till. Some of the TPs produced artifacts in the silt layer; TP106A (1 microflake); 106B (9 microflakes); 107 (1 flake) and 111 (2 microflakes). From TP 109 (negative) a piece of charcoal was collected c. 5 cm down in the S layer. In TP106B, charcoal was found in layer S, in context with microflakes, 17 cm below surface ($3-4 \mathrm{~cm}$ down in the silt layer). This sample is dated to $1990 \pm 30 \mathrm{BP}$ - way off our hopes for old age settlements embedded in the silt formation.

Fig. 60. Imiwaia Hill test are with locations of test pits, correlated with results from the Shell Midden Survey. Note that the scarcity of shell midden remains between the near-beach and the top of the hill is also reflected in the test pits. White squares: Negative. Yellow squares: Positive, but less than 25 artifacts $/ \mathrm{m}^{2}$. Orange squares: Positive, with 25 artifacts $/ \mathrm{m}^{2}$ or more.

Fig. 61. Imiwaia test pits, overview of measurements, number of artifacts (in test pit) and stratigraphic sequences. Drawing: H. M. Breivik.

3.2.5 "Basurero" (TP1, Figs. 62-65)

Surveyed by Bjerck and Zangrando, February 18, 2013
In lack of a better name, this site is labelled "Basurero" - as it is situated close to the local garbage dump ${ }^{6}$. The site is a sheltered cove inside Cambaceres Interior. The transgression beach ridge is very marked, c. 2.5 m high, measured at the backside of the formation. There are 17 dwelling pits on the top of the beach ridge and down to the sea that indicate an area well suited for settlements.

Fig. 62. Overview of Basurero test site, showing the location of the trench in the upper margin of the pronounced beach ridge formation from the Mid-Holocene transgression. Photo H. Bjerck.

A trench was placed in the low point behind the beach ridge, in hope of finding the upper margin of the ridge, as well as the old surface buried by the maximum transgression event. The trench was $3 \times 0,5 \mathrm{~m}$ long, and up to 75 cm deep, excavated by spade and trowel (no screening).

The upper limit of the transgression formation was located in the SW end of the trench, 40cm thick (Fig. 65). The details of the stratigraphic sequence is unclear. Immediately behind the ridge, there is a silty layer with scattered pebbles and high content of organic material. Beneath this, there is a c. 40 cm thick, sandier layer with scattered pieces of charcoal and very few pebbles, which also seems to continue underneath the transgression gravels. At the bottom of the trench, a silt formation with scattered and more angular stones and pebbles indicate a glasiofluvial/till. The top 5 cm of this layer was excavated by trowel.

No clarifying old surface layer was located. However, we would expect any remains from ECF to be positioned in the bottom layer or in the sandy layer going below the transgression sediments.

[^5]The single artifact from the trench was found in the organic topsoil. No artifacts were observed in the sediments below, and the site is labelled "negative" in terms of old settlements, ECF. Frequent scraping with trowels would certainly have revealed an occupation floor if it existed - even without the sediments being screened.

Fig. 63. The location of the Basurero test site (negative).

Fig. 64. Basurero test site, surface profile showing the top part of the Mid-Holocene beach formation and the position of the test pit. Drawing H. Bjerck. Seen towards the NNW, modern beach to the left.

Fig. 65. Basurero test site, profile with stratigraphic sequence in test pit. Profile seen towards SSE, beach ridge formation (and modern beach) to the right. The profile show the upper part of the transgression beach sediment to the right. The beach sediments seem to cover sandy sediments with some pebbles and scattered charcoal. The dark brown silt with organic material is probably formed in the water-logged area dammed by the beach ridge. In spite of scattered charcoal, no artifacts were located in the pre-transgression sediments.

3.2.6 Lanashuaia (TP1, Figs. 66-67)
 Surveyed by Bjerck, Breivik, Zangrando, February 16, 2013

Abundant shell midden settlements are located on the narrow strip of land towards Cambaceres Central Peninsula. To the north is the sheltered Cambaceres Interior with the Lanashuaia site, to the south is Cambaceres Exterior (Bloomfield) with the Wikirrh site, the largest aggregation of dwelling pits in the area. During the transgression maximum, the land strip was submerged, and Outer and Central Peninsula were islands. On the landside, the higher water level has produced two sites that are relevant in the search for ECF settlements. One is the beach ridge to the east of the Lanashuaia site (where the road is) that has dammed a small lake (Fig. 67). Another is the inside the horseshoe shaped beach ridge just south of Lanashuaia site, below the sea cliff formation.

Unfortunately, the area with the small lake is out of reach from manual test pitting. The area at the point, south of the Lanashuaia site, was tested with a single TP, placed between the beach ridge and the sea cliff. Here is a rather thick layer of pebbles and rocks, obviously also wave-aggregated sediments from the transgression maximum. We managed to dig down to around 50 cm , but could get no further as the well-rounded stones and pebbles kept sliding from the walls of the pit.
In conclusion, we failed to achieve results that could clarify a positive or negative result, and the site is still "undecided". The sediments (and the pronounced sea cliff) suggests heavy wave action during the transgression maximum, and it is doubtful if pre-transgression settlement remains have survived at this site.

Fig. 66. Overview of the Lanashuaia test site. Photo H. Bjerck.

Fig. 67. The location of the test pit (negative) at Lanashuaia. Note the sequence of curved beach ridges to the left of the test pit, demonstration the Mid-Holocene sea-level exceeded the isthmus between the mainland and Central Peninsula. Also note the beach ridge dammed pond on the up side (right) of the beach ridge where the road is. The Lanashuaia settlement is situated by the bay to the north (Cambaceres Interior).

3.2.7 Outer Peninsula 1 (TP1-13, Figs. 68-71)

Surveyed by Bjerck, Breivik, Husøy, Swensen, Zangrando, February 10, 2013
This test area is situated on the south side of Cambaceres Exterior (Bloomfield), adjacent to the upper margin of the transgression beach ridge - in between the two large aggregations of shell midden dwellings. The upper margin of the transgression ridge is 65 m from today's shoreline, but only 0.6 m higher than the upside terrain. The place is quite protected within the bay, and seems to have been excellent for settlement.

Fig. 68. Overview of the Outer Peninsula I test site, looking towards northwest (top) and the southeast (bottom). The pronounced beach ridge is showing at both photos. The test site is located by the persons at the bottom photo. Photos H. Bjerck.

Fig. 69. Location of test pits (all negative) at Outer Peninsula 1.

Fig. 70. Profile in the extended TP6 shows the very upper end (left) of the mid-Holocene transgression maximum beach ridge (right). The beach sediment covers a silt layer that probably is of eolian origin, similar to the Layer S in Binushmuka. The top of till sediments show beneath the silt layer. Drawing H. Bjerck.

All of the TPs (13) were negative, but produced interesting stratigraphic details. TP6 was enlarged to a small trench catching the fringe of the transgression sediments, overlying the silt layer (Layer S) that also was evident in some of the other TPs here (Fig. 70). A similar sequence was documented in TP13; c. 40 cm beach gravel covered a $10-20 \mathrm{~cm}$ thick layer of sand with scattered pebbles (beach?), and below this, c. 60 cm below the surface, was a silty, organic layer that is believed to be a pre-transgression surface. The TP6-8 were all without any pebble layer (Layer C), all were dug down to glaciofluvial / till, the overlying silt layer was dry-screened, no artifacts found. In the other test pits, the turf layers A and B were positioned directly on till (Fig. 71). As any remains from ECF at the site would be found in the silt layer or in the turf-till boundary, the negative result is trustworthy. Considering the close vicinity to the aggregation of large dwelling pits, the total negative result is noteworthy.

Fig. 71. Outer Peninsula 1 test pits, overview of measurements and stratigraphic sequences. The profile in TP13 also shows the transgression beach sediments covering sand with small pebbles (probably also beach) on top of an organic layer that probably is a buried surface from pre-transgression times. Drawing: H. M. Breivik.

3.2.8 Outer Peninsula 2 (TP1-18, Figs. 72-74)

Surveyed by Bjerck, Breivik, Husøy, Swensen, Zangrando, February 16 and 23, 2013
This test area is located on the upside of the marked sea cliff, 10-15m from the southeastern aggregation of shell midden dwelling pits of the Wikirrh site. It is a gentle slope well suited for settlement.

Nineteen TPs were excavated. The TPs on the highest part of the slope displayed a stratigraphic sequence of a turf layer around 20 cm thick (Layer A/B), overlying a $10-20 \mathrm{~cm}$ layer of silt (Layer S) on top of glaciofluvial/till, no pebble layer (C). The pits in the lower part of the slope (TPs 1, 11, 12, $13,14,16 A, 16 B, 17,18$) included a pebble layer (C) from ca $1-5 \mathrm{~cm}$ between the A / B turf and the S-layer.

Fig. 72. After-lunch nap during test pitting at Outer Peninsula 2. Note the beach ridge with the pond at the up side in the background. Photo H. Bjerck.

Fig. 73. Overview of test pits at Outer Peninsula 2. Dwelling structures at the Wikirrh site along the beach to the right. White squares: Negative. Yellow squares: Positive, but less than 25 artifacts $/ \mathrm{m}^{2}$. Orange squares: Positive, with 25 artifacts $/ \mathrm{m}^{2}$ or more.

Fig. 74. Outer Peninsula 2 test pits, overview of measurements, number of artifacts (in test pit) and stratigraphic sequences. Drawing: H. M. Breivik.

Artifacts were found in eight of the TPs, all related to the C-layer. In TP16A, one microflake was located in the S-layer. To check the credibility of this discovery, the pit was enlarged (TP16B). All artifacts in the extension were attributed to the pebble layer C , meaning that the artifact from Layer S must be interpreted with caution.

The site that was recovered in the low part of the slope is quite small, c. $20 \times 10 \mathrm{~m}$, none of the TPs contained more than five artifacts - two scrapers, two retouched flakes, one core, the rest (33) are flakes and microflakes. The stratigraphic positions of artifacts (pebble layer C) indicate a relation to the formation of the transgression sediments, i.e. that the findings are related to the true marine foragers (MF) of Cambaceres, not the ECF. The low frequency of artifacts underlines results from other test areas in Cambaceres that indicate that lithic scatters adjacent to the large dwelling aggregations are restricted.

3.3 Some conclusions from test pit survey

1. Several test pits produced artifacts clearly related to the S-layer formation - but only two contained charcoal associated with the Layer S artifacts. These are Binushmuka TP77 and Imiwaia Hill TP106. The dating of the charcoal from these two contexts show that the cultural content of the silt layer do not necessarily mean ECF age.
2. We managed to locate several potential contexts of ECF age, depicted by the stratigraphic relations. The test pits include the sediments that would contain ECF (Layer S) in the following test areas: Base of Varela Hill, Binushmuka and Imiwaia Hills, Basurero, Outer Peninsula 1 and 2. All of them seem favorable for settlement, but are tested negative. There are a great many other places for potential ECF settlements, and the negative result do not necessarily indicate the lack of such. Maybe we just did not reach the level of luck needed to find them.
3. Test pits confirmed the low frequency of cultural remains between the beach settlements and the high hill settlements in Binushmuka and Imiwaia that was already indicated by the shell midden survey (cf. Figs. 57 and 60). They thus underline that the beach settlements and the settlements at the hills are distinct (and not a diminishing drizzle of activities uphill from the beach settlements).
4. There are remarkably many negative test pits (or pits with very low artifact frequency) in areas adjacent to large aggregations of dwelling pits, cf. Binushmuka, Imiwaia, Outer Peninsula 1 and 2 (Figs. 57, 60, 69, 73). This may indicate that a large portion of camp site activity took place very close to the shell midden formations, as also hinted in 3) above.
5. The test pits also produced interesting information on the stratigraphic sequence and how it is formed. The occurrence of the pebble layer (Layer C) is clearly related to areas close to the transgression beach ridges, indicating the complexity of transgression formations. Sea cliffs and beach ridges are not absolute markers of the transgression maximum, but are main features that were shaped in a long time perspective. More short-lived wave action could very well have exceeded the main transgression features, as the Binushmuka case. Thus, the test pit survey strengthens the analysis presented by Zangrando et al. (in progress) on a wider scale in Cambaceres, inviting to reproduce geomorphological and sedimentolgical analysis in other locations of the bay.

4 Structures and trends - some conclusions from the Cambaceres Surveys

This chapter sums up important trends that we can see in the data more or less directly - important trends that we intend to explore further in GIS-analyses and papers.

Similar topographical setting

- The archaeological record from Cambaceres spans from c. 8000 BP to recent. An interesting fact is that all the c. 1200 archaeological sites relate to the same topographical setting. The mid-Holocene transgression reaches up to around 4-5m asl. at 7000-5000 $B P$, this marks the post-glacial marine limit in Cambaceres. The main topographical changes from the $4-5 \mathrm{~m}$ higher shoreline are that Outer Peninsula and Central Peninsula were islands, separated from the mainland by short stretches of shallow water, and perhaps also shallow bays where today are the estuary of the Varela River, and bogs to the north of Cambaceres Exterior. From here, sea level slowly moves toward today's shoreline. Sea level displacement in pre-transgression times is more unclear. In late glacial times, the shoreline was well below present sea level, in parallel with the global eustatic movements. However, in Early Holocene, at the time of ECF settlements from around 8000 BP , sea level was probably very close to present shoreline, perhaps a bit higher. A reasonable shoreline displacement rate in the millennium before c. 7000 probably is less than the 4 m in question.

In conclusion, all the recorded settlements in Cambaceres relate to the more or less same topographical setting. This fact is of great value in the further analysis of the environmental setting of sites through eight millennia.

Dwelling pits

- The dwelling pits are strikingly uniform in diameter, around 3-4m. This implies a uniform size of the dwellings that probably reaches far back in time. This is an interesting structural feature that is suggested to relate to technical restrictions in the construction of the dwellings (Piana and Orquera 2010). It is also suggested that the uniform size of dwelling pits could relate to an intrinsic relation between size of social groups, vessels, and dwellings (Bjerck 2016).
- As noted, the dwelling pits are shaped by accumulation of midden material in a sheltering wall around the actual dwelling (Piana and Orquera 2010). The size of the wall (height and width) is a function of the amount of midden material - which is a function of the duration and the number of reoccupations in the pit (occupation rate). This poses very interesting research possibilities for evaluating the relative importance between settlements.
- There is a clear trend that most dwelling pits are found close to the beach, and that dwelling pits by the beach have the highest walls (i.e., highest occupation rate).
- A large portion (c. 60%) of Large dwelling pits (walls higher than 0.5 m) by the beach are structured in aggregations, egg-box style. There are examples that dwelling pit walls are smaller in the outskirts of aggregations - indicating that the aggregations expand through time by adding new dwellings.
- Test pits indicate that there are few archaeological remains in the areas between the shell midden settlements.
- There is also a considerable amount of dwelling pits in some distance from the beach; most of these are found in the hills adjacent to Imiwaia and Binushmuka. Test pits reveal that the two positions are distinct, as there are few archaeological remains between the high hill and the beach settlements. High hill dwellings are concentrated in the two hills by Imiwaia and Binushmuka. Also interesting is the fact that the high hill dwellings are rarely found in aggregations, and that there are next to none dwelling pits in the other high hills in Cambaceres. Note that there are no dwelling pits (and very few shell midden domes) on the Varela Hill, and the two hills in Outer Peninsula - that are most exposed to the Beagle Channel. This is a clear indication that "view" is not an important attractor for the location of settlements in Cambaceres.

Shell midden domes

- It seems that domes and dwelling pits are located differently. There are relatively few large domes close to the beach (where most of the large dwelling pits are placed).
- Most large domes tend to be placed at some distance from the beach; in the woods, and at the high hills by Lanashuaia and at Central Peninsula (where there are few dwelling pits).
- Small domes seem to have a wider distribution, and also seem to be concentrated in certain places; e.g., on the plain between Varela River and Binushmuka, in the small valley between Alashawaia and Wikirrh, in groups on the Varela Hill.
- Domes, mostly small domes are also found in interesting alignments, similar-sized small domes in lines with similar spacing between them, e.g. adjacent to the easternmost part of the Wikirrh site, and the northern side of the bay between Imiwaia and Binushmuka.
- Of particular interest is the concentration of large domes on the steep-sided flat top plateau of Central Peninsula, c. 50 m asl. We have speculated that this site, in the midst of the settlements around the Cambaceres Bay, could be a ceremonial site, a place for the many-week-long initiation rites that is described in historical sources (Lothrop 1928,165171; Gusinde 1931) It may not be irrelevant that there was found a human skull here when the site was discovered in 2002. Radiocarbon dates from the bases of four of the large middens here suggest that the site is from the latest part of the sequence, from c . 500 BP.

Settlements with lithics only

- The survey is biased towards shell midden deposits, and sites with lithics only are underrepresented. More or less by chance, we have located several of these, and some of them are quite large, e.g. Binushmuka I and the Basurero settlement sites on the northern shore of Cambaceres Interior.
- In line with this, test pits reveal scattered lithic artifacts many places around the Cambaceres Bay. However, test pits also reveal that there were surprisingly few lithic artifacts in the immediate surroundings of the large dwelling pit aggregations, e.g., in Binushmuka, and the two test pit areas close to the Wikirrh site in Outer Peninsula.

ECF Settlements

- The test pit survey succeeded in locating very good contexts for pinpointing ECF settlements, but failed to produce new sites. We choose not to put too much emphasis on the negative results, as these sites are hard to locate. There is a good possibility that there could be many more than the two located in Imiwaia and Binushmuka so far.

Chronology and settlement structure

- So far, the radiocarbon dates from Cambaceres show that the old sites are adjacent to the beach. All dates from the high hills are from the later part of the chronological sequence, in general younger than two thousand years old. However, the conclusion is not necessarily that ALL settlements were placed adjacent to the beach in the early part of the sequence. As demonstrated, most of the settlements that are placed far from the beach are smaller than the large deposits by the shore. Small volumes of shell midden deposit are more exposed to weathering through time. The combination of small and old could very well have resulted in that the oldest settlements in the woods/high hills are underrepresented. Thus, sites away from the beach are not necessarily a phenomenon exclusive for the last 2000 years (as also indicated by the almost 5000 -year-old sample from Binushmuka Hill).

Regional settlement structure, logistics and subsistence

- During our work with finalizing this report, we found that the Google Earth images for eastern Beagle Channel are considerably improved. The resolution now allows for identification of large aggregations of dwelling pits (Fig. 75), and thus permits to compare Cambaceres to a larger segment of settlements (Figs. 76 and 77). As the satellite photo does not discriminate between national borders, we now have the opportunity to see the
settlements on the Chilean side of the Beagle Channel. By scrolling the satellite photo at low altitude, it was possible to see 109 aggregations of more than five dwelling pits on the two sides of the Beagle Channel along the stretch from Ushuaia / Murray Narrows to the eastern end of the channel. Of these are 24 large aggregations, with more than 20 dwelling pits - which are rather easy to locate on the photos. Ten of these are situated on the island of Navarino, fourteen on the northern shores along Tierra del Fuego. What is more interesting is the high density of large dwelling pit aggregations in the eastern part of the channel; 20 of the 24 large sites that could be located are found from Gable Island and eastward, eight on Navarino and ten on in the Ea. Harberton side to the north. There are several very large sites in this area, but this brief study reveals that Cambaceres holds one of the larger numbers of dwelling pits in eastern Beagle Channel, and can also compete in the size of aggregations.

It is also evident that all the bigger dwelling pit aggregations here are placed by very good natural harbors. This underlines the importance of the marine connection in subsistence and logistics. In this light, it is interesting to note that the occurrence of these large sites do not go any further to the east, where the channel opens to exposed water and the big ocean (Fig. 77).

All in all, this brief study indicate that the large aggregations of dwelling pits belong to a tradition with very strong marine relations, including hunting and fishing in open water and the use of elaborate boats. There are probably other factors here, but sheltered seas and reliable harbor conditions may very well have contributed to confine this tradition within the Beagle Channel. The Cambaceres Survey thus constitute an interesting base for comparisons to the settlement structures and subsistence pattern documented in A. Francisco Zangrando's studies in Moat and the remote shores even farther out towards the troubled waters around the tip of the South American cone. So far, the archeological record here confirms the scarcity of shell midden dwelling pits. Most sites are shell midden domes, and excavations indicate a mixture of terrestrial and marine resources, where most of the marine resources seem to be from the beach zone. Thus, the Marine Foragers out here may have been less dependent on boats, as also hinted by less evident relation between settlements and natural harbors.

To conclude, the present archaeological record invite for new studies in many directions, micro and macro, traditions in settlement structure, logistics, subsistence, and social structures.

Fig. 75. The resolution of the improved Google Earth images allows for visible identification of large sites, here the Wikirrh settlement in Cambaceres (top) and a similar large settlement at the easternmost part of Gable Island (bottom).

Fig. 76. Overview of settlements with large (20 or more) aggregations of dwelling pits in the Gable IslandCambaceres area. The collection of sites are based on visible identification in the recently improved images in Google Earth. Note the close connection between good natural harbors and large settlements.

Fig. 77. Overview of settlements with large aggregations of dwelling pits (20 or more) in the eastern part of the Beagle Channel. The collection of sites is based on visible identification in the recently improved images in Google Earth. Note that no large dwelling pit aggregation is located outside the mouth of the Beagle Channel, on mainland Tierra del Fuego as well as Navarino. The area between Cambaceres and Moat is surveyed by A. Francisco Zangrando, and also by H. Bjerck (2014), and the lack of large dwelling pit aggregations in the images is confirmed by survey. On the Navarino side, visibility is poorer due to vegetation, and also lower resolution in Google Earth images. Still, it is reason to believe that the scarcity of large aggregations of dwelling pits in eastern part of Navarino is real. Thus, the distribution of large dwelling pits in eastern Beagle channel probably reveals a cultural boundary between different traditions.

5 References

Álvarez, M. R. 2004. Estrategias tecnológicas en los grupos canoeros tempranos del área fuegopatagónica. Magallania 32: 191-208.
Álvarez, M., D. Fiore, A. Tivoli, L. Salvatelli, M. J. Saletta, and I. Briz Godino, I. 2013. «Variabilidad de actividades humanas en momentos recientes de la ocupación del canal Beagle (Tierra del Fuego): el caso de Lanashuaia XXI". In A. F. Zangrando, R. Barberena; A. Gil, G. Neme, M. Giardina, L. Luna, C. Otaola, S. Paulides, L. Salgan, and A. Tivoli (eds.) Tendencias teóricometodológicas y casos de estudio en la arqueología de la Patagonia. Buenos Aires: Museo de Historia Natural de San Rafael, Sociedad Argentina de Antropología y Instituto Nacional de Antropología y Pensamiento Latinoamericano.
Barceló, J. A., E. L. Piana and D. R. Martinioni 2002. Archaeological spatial modelling: a case study from Beagle Channel (Argentina). Archaeological Informatics: Pushing the Envelope. In Burenhult,G. and J. Arvidsson (eds.); Computer Applications and Quantitative Methods in Archaeology: 351-360. BAR Series 1016.
Bjerck, H. B. 1982. Archaeological and radiocarbon dating of the transgression maximum (Tapes) at Skuløy, Sunnmøre, western Norway. Norsk geologisk Tidsskrift 62, 87-93.
Bjerck, H. B. 2014. Report from the Moat survey. Unpublished Report.
Bjerck, H. B. 2016. Settlements and Seafaring: Reflections on the Integration of Boats and Settlements Among Marine Foragers in Early Mesolithic Norway and the Yámana of Tierra del Fuego, The Journal of Island and Coastal Archaeology, DOI:10.1080/15564894.2016.1190425
Bjerck, H. B. and H. M. Breivik. 2012. Off shore pioneers: Scandinavian and Patagonian lifestyles compared in the Marine Ventures project. Antiquity 086(333). [http://antiquity.ac.uk/projgall/bjerck333/]
Bjerck, H. B., H. M. Breivik, E. L. Piana and A. F. Zangrando. 2016. Exploring the role of pinnipeds in the human colonization of the seascapes of Patagonia and Scandinavia. In Marine Ventures: Archaeological Perspectives on Human-Sea Relations. Proceedings from the Marine Ventures Int. Symposium in Trondheim 2013 (H. B. Bjerck, H. M. Breivik, S. E. Fretheim, E. L. Piana, B. Skar, A. M. Tivoli, A. F. Zangrando, eds.). Sheffield: Equinox.
Bjerck, H. B. and A. F. Zangrando. 2013. Marine Ventures: Comparative Perspectives on the Dynamics of Early Human Approaches to the Seascapes of Tierra del Fuego and Norway. The Journal of Island and Coastal Archaeology 8(1):79-90.
Bjerck, H. B. (ed.), L. I. Åstveit, T. Meling, J. Gundersen, G. Jørgensen and S. Normann. 2008. NTNU Vitenskapsmuseets arkeologiske undersøkelser Ormen Lange Nyhamna. Trondheim: Tapir Akademisk Forlag.
Bostwick Bjerck, L. G. and Olsen, A. B. 1983. Kulturhistoriske undersøkelser på Botnaneset, Flora 1981-82. Arkeologiske rapporter 5, Historisk museum, University of Bergen. Bergen.
Breivik, H. M. 2014. Palaeo-oceanographic development and human adaptive strategies in the Pleistocene-Holocene transition: A study from the Norwegian coast. The Holocene. http://hol.sagepub.com/content/early/2014/08/22/0959683614544061. 10.1177/0959683614544061

Bridges, T. 1987 (1933). Yamana-English Dictionary. Ushuaia: Zagier y Urruty Publicationes.
Briz, I., M. Alvarez, D. Zurro and J. Caro. 2009. Meet for lunch in Tierra del Fuego: a new ethnoarchaeological project. Antiquity 83 available at
Chapman, A. 2010. European encounters with the Yamana people of Cape Horn, before and after Darwin. Cambridge: Cambridge University Press.
Evans, S.; I. Briz Godino, M. Alvarez, K. Rowsell, P. Collier, N. Prosser de Goodall, J. Mulville, A. Lacrouts, M. Collin and C. Speller 2015. Using combined biomolecular methods to explore whale exploitation and social aggregation in hunter-gatherer-fisher society in Tierra del Fuego. Journal of Archaeological Science: Reports.
Gusinde, M. 1931. Die Feuerland Indianer. Ergebnisse meiner vier Forschungsreisen in den Jahren 1918 bis 1924, unternommen im Auftrage des Ministerio de instruccion publica de Chile / herausgegeben von Martin Gusinde. Mödling bei Wien: Verlag der Internationalen Zeitschrift "Anthropos".
Indrelid, S. 1973. En mesolittisk boplass i Dysvikja på Fjørtoft. Arkeo 1, 7-11.
Lothrop, S. K. 1928. The Indians of Tierra del Fuego. New York: Museum of the American Indian. (Reprint 2002. Ushuaia: Zagier and Urruty Publications).
Orquera, L. A. and E. L. Piana. 1999a. Arqueología de la región del canal Beagle (Tierra del Fuego, República Argentina). Buenos Aires: Sociedad Argentina de Antropología
Orquera, L. A. and E. L. Piana. 1999b. La vida social y material de los Yámana. Buenos Aires: Eudeba - Instituto Fuegino de Investigaciones Científicas.

Orquera, L. A. and E. L. Piana. 2000. Imiwaia I: un sitio de canoeros del sexto milenio A.P. en la costa norte del canal Beagle. In Desde el País de los Gigantes. Perspectivas arqueológicas en Patagonia, Tomo II: 441-453. Río Gallegos, Universidad Nacional de la Patagonia Austral.
Orquera, L. A. and E. L. Piana 2009. Sea Nomads of the Beagle Channel in the Southernmost South America: Over Six Thousand Years of Coastal Adaptation and Stability. Journal of Island and Coastal Archaeology 4(1), 61-81.
Orquera, L. A., E. L. Piana, D. Fiore and A. F. Zangrando. 2012. Diez mil años de Fuegos. Arqueología y etnografía del fin del mundo. Buenos Aires: Editorial Dunken.
Orquera, L. A., D. Legoupil and E. L. Piana. 2011. "Littoral adaptation at the southern end of South America". Quaternary International 239: 61-69.
Piana, E. L., J. Estévez Escalera and A. Vila Mitjá 2000. Lanashuaia: un sitio de canoeros del siglo pasado en la costa norte del canal Beagle. En Desde el País de los Gigantes. Perspectivas arqueológicas en Patagonia, Tomo II: 455-469. Río Gallegos, Universidad Nacional de la Patagonia Austral.
Piana, E. L. and L. A. Orquera. 2009. The Southern top of the world: the first peopling of Patagonia and Tierra del Fuego and the cultural endurance of the Fuegian sea-nomads. Arctic Anthropology 46(1-2):103-117.
Piana, E. L. and L. A. Orquera. 2010. Shell midden formation at the Beagle Channel (Tierra del Fuego, Argentine). In Monumental Questions: Prehistoric Megaliths, Mounds and Enclosures (D. Calado, M. Baldia and M. Boulanger, eds.):263-273. British Archaeological Reports International Series 2122. Oxford: Archaeopress.
Piana, E. L., A. Tessone and A. F. Zangrando 2006. Contextos mortuorios en la región del canal Beagle... del hallazgo fortuito a la búsqueda sistemática. Magallania 34 (1): 87-101.
Piana, E. L., Zangrando, A. F. and Orquera, L. A. 2012. Early occupations in Tierra del Fuego and the evidences from S layer in Imiwaia I site (Beagle Channel, Argentina). Current Research in the Pleistocene, Center for the Study of First American. Southbound. Late Pleistocene Peopling of Latin America (Special edition): 171-175.
Skar, B. and P. Nymoen. 2012. Paradis - og andre indikasjoner på undersjøiske lokaliteter fra mesolittisk tid langs den norske sørlandskysten. Årbok Norsk Maritimt Museum 2010, 91-113.
Suby, J., Zangrando, A. F. and Piana, E. L. 2011. Exploraciones osteológicas de la salud de las poblaciones humanas del canal Beagle. Relaciones de la Sociedad Argentina de Antropología 36: 249-270.
Tessone, A. 2003. Conductas mortuorias en el Canal Beagle. Tesis de Licenciatura. Facultad de Filosofía y Letras, Universidad de Buenos Aires. Ms.
Zangrando, A. F. 2009a. Historia evolutiva y subsistencia de cazadores-recolectores marítimos de Tierra del Fuego. Buenos Aires: Sociedad Argentina de Antropología, Colección Tesis de Doctorado.
Zangrando, A. F. 2009b. "Is fishing intensification a direct route to hunter-gatherer complexity? A case study from the Beagle Channel region (Tierra del Fuego, southern South America)." World Archaeology 41(4):589-608.
Zangrando, A. F., Ponce, J.F.; Martinoli, M. P.; Montes, A.; Piana, E. and Vanella, F. 2016. Paleogeographic changes drove prehistoric fishing practices in the Cambaceres Bay (Tierra del Fuego, Argentina) during the middle and late Holocene. Environmental Archaeology: The Journal of Human Paleoecology.
Zangrando A.F., H. B. Bjerck, E. L. Piana, H. M. Breivik, A. M. Tivoli (In progress) Report from the excavations at Binushmuka I site in Cambaceres, Haberton, Tierra del Fuego, Argentina.

6 Appendices

1. Shell Midden Survey

1.1 Excel database
1.2 Map of Varela Peninsula
1.3 Map of Cambaceres Interior Binushmuka
1.4 Map of Cambaceres Interior Imiwaia
1.5 Map of Cambaceres Interior North
1.6 Map of Cambaceres Interior Southeast
1.7 Map of Cambaceres Central Peninsula
1.8 Map of Cambaceres Outer Peninsula
1.9 Map of Cambaceres Exterior Northeast

2. Test Pit Survey

2.1 Excel database

Appendix 1.1 Cambaceres Surveys: Excel database

	은 ̈ㅜㅇ O	Name	Site type	X (UTM)	Y (UTM)	$\begin{aligned} & \stackrel{5}{5} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\frac{5}{\frac{5}{0}}$		$\begin{aligned} & \stackrel{~}{\vdots} \\ & \frac{00}{\bar{c}} \\ & \hline \end{aligned}$	$\stackrel{\tilde{m}}{\stackrel{E}{\mathrm{~B}}}$	$\begin{aligned} & \frac{0}{7} \\ & \frac{10}{0} \\ & 3 \end{aligned}$	Observations
DOME A	826	hb912a	VerylargeDome	610220,45	3917442,05	13	6	78	0,8	62,4	2,2	One of two big domes and one smaller - surrounding a large depression ($5 \times 10 \mathrm{~m}$). hb912a: Dome to the south: $13 \times 6 \times 1 \mathrm{~m}$. Slightly curved, resemble wall in large roundes structure. However, could also be two domes grown together. (Dome to the north: $7 \times 9 \times 0,4 \mathrm{~m}$) Dome to the east: (no data)
DOMEA	440	hb637	VerylargeDome	610772,97	3918300,53	20	10	200	0,3	60,0	2,0	Large Midden formation, eroded by cattle digging, ca $20 \times 10 \mathrm{~m}, 0,3 \mathrm{~m}$ high. Abundant artifacts, scraper on surface.
DOMEA	941	hb037	VerylargeDome	611045,27	3917483,59	10	5	50	1,2	60,0	2,0	Large dome, $10 \times 5 \mathrm{~m}$ wide, $1,2 \mathrm{~m}$ high
DOMEA	927	hb014	VerylargeDome	610950,11	3917529,23	10	6	60	1	60,0	1,7	Large dome, $10 \times 6 \mathrm{~m}$ wide, 1 m high
DOMEA	1193	hb609	VerylargeDome	609776,60	3918250,76	10	5	50	1	50,0	2,0	Dome 10x5x1m, continue below roadfill
DOMEA	923	hb010	VerylargeDome	610860,37	3917577,84	6	6	36	1,2	43,2	1,0	Large dome, 6 m wide, $1,2 \mathrm{~m}$ high
DOME A	358	hb090	VerylargeDome	609006,37	3916862,47	8	4	32	1	32,0	2,0	Large shell midden dome. Measurements in meters Height 1 Lenght 8 width 4 Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DOMEA	874	hb044	VerylargeDome	611070,75	3917504,61	6	6	36	0,8	28,8	1,0	Large dome, 6 m wide, $0,8 \mathrm{~m}$ high
DOME A	1234	hb912b	VerylargeDome	610222,45	3917444,05	9	7	63	0,4	25,2	1,3	One of two big domes and one smaller - surrounding a large depression ($5 \times 10 \mathrm{~m}$). hb912b: Dome to the north: $7 \times 9 \times 0,4 \mathrm{~m}$. (hb912a: Dome to the south: $13 \times 6 \times 1 \mathrm{~m}$. Slightly curved, resemble wall in large roundes structure. However, could also be two domes grown together.) Dome to the east: (no data)
DOMEA	819	hb905	VerylargeDome	610315,12	3917449,00	5	5	25	1	25,0	1,0	Dome, big, d.5m, 1 m high. Tp ELP. Also Domo Borde bosque. And hb111 first survey.
DOMEA	82	hb905	VerylargeDome	610309,78	3917449,14	5	5	25	1	25,0	1,0	Dome, big, d.5m, 1 m high. Tp ELP. Also Domo Borde bosque. And hb111 first survey.
DOMEA	830	hb954	VerylargeDome	610405,06	3917335,47	6	4	24	1	24,0	1,5	Dome, cresent shaped, $6 \times 4 \mathrm{~m}$ wide, 1 m high.
DOMEA	831	hb954	VerylargeDome	610405,06	3917335,47	6	4	24	1	24,0	1,5	Dome, cresent shaped, $6 \times 4 \mathrm{~m}$ wide, 1 m high.
DOMEA	872	hb042	VerylargeDome	611056,68	3917440,01	7	4	28	0,8	22,4	1,8	Large dome, $7 \times 4 \mathrm{~m}$ wide, $0,8 \mathrm{~m}$ high
DOMEA	934	hb028	VerylargeDome	610963,30	3917485,62	7	4	28	0,8	22,4	1,8	Large dome, $7 \times 4 \mathrm{~m}$ wide, $0,8 \mathrm{~m}$ high
DOMEA	875	hb048	VerylargeDome	611077,81	3917501,34	6	6	36	0,6	21,6	1,0	Large dome, 6 m wide, $0,6 \mathrm{~m}$ high
DOME A	439	hb636	VerylargeDome	610727,09	3918320,21	20	20	400	0,05	20,0	1,0	Midden formation, eroded by cattle digging, ca $20 \times 20 \mathrm{~m}$ low formation. Abundant artifacts, several scrapers on surface. Al so fireplace width abundant guanaco bones (checked w PZ).
DOMEA	415	hb239	VerylargeDome	610786,41	3918049,71	5	3	15	1,2	18,0	1,7	Midden formation, 5 m long in roadcut, 3 m wide, $1,2 \mathrm{~m}$ high. Damaged by road.
DOMEA	306	hb328	VerylargeDome	611443,31	3916781,03	6	6	36	0,5	18,0	1,0	Large Dome, Lenght 6 m , Width 6 m , Height 0,5m. Mapped February 19, 2011, H.B.jerck
DOMEA	301	hb323	VerylargeDome	611233,98	3916823,32	8	7	56	0,3	16,8	1,1	Large Dome, Lenght 7m, Width 8m, Height 0,3m. Mapped February 19, 2011, H.Bjerck
DOMEA	307	hb329	VerylargeDome	611473,38	3916771,36	6	6	36	0,4	14,4	1,0	Large Dome Lenght 6 m Width 6 m Height 0,4m Mapped February 19, 2011, H.Bjerck
DOMEA	922	hb008	VerylargeDome	610870,30	3917546,67	6	6	36	0,4	14,4	1,0	Large dome, 6 m wide, $0,4 \mathrm{~m}$ high
DOMEA	924	hb011	VerylargeDome	610945,53	3917560,27	6	6	36	0,4	14,4	1,0	Large dome, 6 m wide, $0,4 \mathrm{~m}$ high
DOMEA	925	hb012	VerylargeDome	610948,48	3917535,36	6	6	36	0,4	14,4	1,0	Large dome, 6 m wide, $0,4 \mathrm{~m}$ high
DOMEA	281	hb302	VerylargeDome	611107,22	3916888,31	8	4	32	0,4	12,8	2,0	Large dome, Lenght 8m, Width 4m, Height 0,4m, Mapped February 19, 2011, H.Bjerck
DOMEA	478	hb942	VerylargeDome	610717,80	3918304,98	5	5	25	0,5	12,5	1,0	Large Domed $5 \mathrm{~m}, \mathrm{~h} 0,5$. May be related to dw structure, but pit is difficult to define.
DOMEA	797	Placemark	VerylargeDome	610530,00	3917283,50	5	5	25	0,5	12,5	1,0	Dome, 5 m wide $0,5 \mathrm{~m}$ high
DOMEA	126	hb526	VerylargeDome	609405,98	3917897,98	6	4	24	0,5	12,0	1,5	Large Dome, $6 \times 4 \times 0,5$
DOMEA	318	hb340	VerylargeDome	611596,87	3916718,46	6	5	30	0,4	12,0	1,2	Large Dome Lenght 6 m Width 5 m Height 0,4m Mapped February 19, 2011, H.Bjerck
DOMEA	279	hb300	VerylargeDome	611152,05	3916970,70	6	6	36	0,3	10,8	1,0	Large dome, Lenght 6 m , Width 6 m , Height 0,3m, Mapped February 19, 2011, H.Bjerck
OOME	285	hb306	VerylargeDome	611147,90	3916874,93	6	6	36	0,3	10,8	1,0	Small (HB AUG2016: ?? Not small, but very large!) dome Lenght 6 m Width 6 m Height $0,3 \mathrm{~m}$ Mapped February 19, 2011, H.Bjerck
DOMEA	294	hb316	VerylargeDome	611137,21	3916875,20	10	5	50	0,2	10,0	2,0	Dome, Lenght 10m, Width 5m, Height 0,2m. Mapped February 19, 2011, H.Bjerck
DOMEA	798	Placemark	VerylargeDome	610534,62	3917280,59	5	5	25	0,4	10,0	1,0	Dome, 5 m wide, $0,4 \mathrm{~m}$ high
DOMEA	823	hb909	VerylargeDome	610264,54	3917422,41	5	5	25	0,4	10,0	1,0	Dome, big, d.5m, 0,4m high. Tp ELP.
DOME B	293	hb315	LargeDome	611147,82	3916871,84	6	4	24	0,4	9,6	1,5	Large Dome, Lenght 6 m , Width 4m, Height 0,4m. Mapped February 19, 2011, H.B.jerck
DOME B	363	hb09	LargeDome	609179,11	3916780,97	4	3	12	0,8	9,6	1,3	Large shell midden dome. Measurements in meters. Height 0.8 , Lenght 4, Witdh 3 . Surveyed by H . Bjerck and H. Breivik, February 23, 2011
DOME B	940	hb035	LargeDome	611024,27	3917499,54	4	4	16	0,6	9,6	1,0	Large dome, 4 m wide, $0,6 \mathrm{~m}$ high
DOME B	119	hb518	LargeDome	609447,80	3917930,98	6	3	18	0,5	9,0	2,0	Large Dome $6 \times 3 \times 0,5$
DOME B	170	hb296	LargeDome	609427,70	3917544,92	5	3	15	0,6	9,0	1,7	Large dome, $3 \times 5 \times 5,6 \mathrm{~m}$, situated at top of erosion cut
DOME B	873	hb043	LargeDome	611040,56	3917437,32	5	3	15	0,6	9,0	1,7	Large dome, $5 \times 3 \mathrm{~m}$ wide, $0,6 \mathrm{~m}$ high
DOME B	903	hb109	LargeDome	610913,58	3917421,90	4	3	12	0,7	8,4	1,3	Large dome, $4 \times 3 \mathrm{~m}$ wide, $0,7 \mathrm{~m}$ high
DOME B	351	hb076	LargeDome	608744,84	3916958,49	4	4	16	0,5	8,0	1,0	Large shell midden dome. Measurements in meters. Height 0.5 , Lenght 4 width 4 , Surveyed by H . Bjerck and H. Breivik, February 22, 2011
DOME B	417	hb241	LargeDome	610807,64	3918043,00	5	5	25	0,3	7,5	1,0	Midden formation, irregular, difficult to define. Area is ca $5 \times 5 \mathrm{~m}$, formation is $0,3 \mathrm{~m}$ high. Damaged by road. Situated at base of slope, goes down to road cut, 10 m long in cut.
DOME B	474	hb938	LargeDome	610922,83	3917941,20	5	5	25	0,3	7,5	1,0	Midden formation, irregular, smal domes and depressions, may be several dwelling structures, but difficult to define. Area is ca $5 \times 5 \mathrm{~m}$, formation is $0,3-4 \mathrm{~m}$ high. Situated at base of slope, by small cove.
DOME B	475	hb938	LargeDome	610864,48	3917961,20	5	5	25	0,3	7,5	1,0	Midden formation, irregular, but difficult to define. Area is ca $5 \times 5 \mathrm{~m}$, formation is $0,3 \mathrm{~m}$ high. Damaged by road. Situated at base of slope, by small cove.
DOME B	876	hb049	LargeDome	611090,97	3917528,85	3,5	3,5	12,25	0,6	7,4	1,0	Large dome, 3 -4m wide, $0,6 \mathrm{~m}$ high
DOME B	125	hb524	LargeDome	609429,60	3917915,96	6	3	18	0,4	7,2	2,0	Large Dome, $6 \times 3 \times 0,4$
DOME B	362	hb100	LargeDome	609187,72	3916768,39	3	3	9	0,8	7,2	1,0	Large shell midden dome. Measurements in meters Height 0.8 Lenght 3 width 3 Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DOME B	280	hb301	LargeDome	611119,92	3916897,27	8	3	24	0,3	7,2	2,7	Large dome, Lenght 8 m , Width 3m, Height 0,3m, Mapped February 19, 2011, H.Bjerck
DOME B	297	hb319	LargeDome	611152,63	3916850,08	6	4	24	0,3	7,2	1,5	Dome Lenght 6 m Width 4 m Height 0,3m Mapped February 19, 2011, H.Bjerck
DOME B	894	hb095	LargeDome	611043,59	3917415,60	4	3	12	0,6	7,2	1,3	Large dome, $4 \times 3 \mathrm{~m}$ wide, $0,6 \mathrm{~m}$ high
DOME B	816	hb890	LargeDome	610310,42	3917402,73	13	2,5	32,5	0,2	6,5	5,2	Cresent shaped midden formation, 13 m long, $2-3 \mathrm{~m}$ wide, $0,2 \mathrm{~m}$ high. Tested positive. Also midden "inside" cresent. Al so hb109 first survey
DOME B	815	hb890	LargeDome	610299,65	3917399,91	13	2,5	32,5	0,2	6,5	5,2	Cresent shaped midden formation, 13 m long, $2-3 \mathrm{~m}$ wide, $0,2 \mathrm{~m}$ high. Tested positive. Also midden "inside" cresent. Also hb109 first survey
DOME B	806	hb872	LargeDome	610292,30	3917390,81	4	4	16	0,4	6,4	1,0	Dome, big, d.4m x0,4. Is hbb112 in earlier survey. ELP Tp. (Sondo 6). Also Tp 2009 (PZ/HB/AS) Charcoal sample.
DOME B	807	hb872	LargeDome	610278,12	3917394,25	4	4	16	0,4	6,4	1,0	Dome, big, d.4m $\times 0,4$. Is hbb112 in earlier survey. Bearing 2.
DOME B	808	hb872	LargeDome	610279,90	3917394,21	4	4	16	0,4	6,4	1,0	Dome, big, d.4m x0, 4. Is hbb112 in earlier survey. Bearing 3.
DOME B	825	hb911	LargeDome	610248,89	3917438,26	4	4	16	0,4	6,4	1,0	Dome $\mathrm{d} 4 \mathrm{~m}, 0,4 \mathrm{~m}$ high, adjacent to hb910-they meet.
DOME B	851	hb976	LargeDome	610422,31	3917384,52	4	4	16	0,4	6,4	1,0	Dome, 4 m wide, $0,4 \mathrm{~m}$ high
DOME B	852	hb976	LargeDome	610395,44	3917321,83	4	4	16	0,4	6,4	1,0	Dome, 4 m wide, $0,4 \mathrm{~m}$ high
DOME B	900	hb101	LargeDome	611053,82	3917396,79	4	4	16	0,4	6,4	1,0	Dome, 4 m wide, $0,4 \mathrm{~m}$ high
DOME B	939	hb034	LargeDome	610992,27	3917503,50	4	4	16	0,4	6,4	1,0	Dome, 4 m wide, $0,4 \mathrm{~m}$ high
DOME B	1096	hb517	LargeDome	609454,65	3917992,66	4	4	16	0,4	6,4	1,0	Dome, small, 4×4x0,4

	$\begin{aligned} & \text { 은 } \\ & \text { M } \\ & \text { ón } \end{aligned}$	Name	Site type	X (UTM)	Y (UTM)	$\begin{aligned} & \stackrel{f}{\tilde{b 0}_{0}^{0}} \end{aligned}$	$\begin{aligned} & \frac{5}{\mathbf{t}} \\ & \frac{1}{3} \end{aligned}$			$\begin{gathered} \text { "E } \\ \stackrel{1}{\circ} \end{gathered}$	$\begin{aligned} & \text { 은 } \\ & \frac{\mathrm{e}}{3} \end{aligned}$	Observations
DOMEB	812 h	hb884	LargeDome	610271,82	3917428,42	5	3	15	0,4	6,0	1,7	Dome, big, d.5m $\times 3 \times 0.4$. . Tp ELP.
DOME B	813 h	hb884	LargeDome	610270,04	3917428,46	5	3	15	0,4	6,0	1,7	Dome, big, d.5m $\times 3 \times 0,4$. Tp ELP.
DOME B	824 h	hb910	LargeDome	610256,09	3917441,18	5	3	15	0,4	6,0	1,7	Dome $5 \times 3 \times 0,4 \mathrm{~m}$, adjacent to hb911-they meet.
DOME B	902	hb103	LargeDome	610975,04	3917383,32	5	3	15	0,4	6,0	1,7	Dome, $5 \times 3 \mathrm{~m}$ wide, $0,4 \mathrm{~m}$ high
DОME B	909 h	hb989	LargeDome	610854,97	3917503,69	5	3	15	0,4	6,0	1,7	Dome, $3 \times 5 \mathrm{~m}, 0,4 \mathrm{~m}$ high
DОМЕ B	834 h	hb958	LargeDome	610426,14	3917322,58	4	3	12	0,5	6,0	1,3	Dome, $4 \times 3 \times 0,5 \mathrm{~m}$ high
DOME B	1036	hb144	LargeDome	611179,87	3917702,00	5	4	20	0,3	6,0	1,3	Dome, ca $5 \times 4 \mathrm{~m}, 0,3 \mathrm{~m}$ high. Tree growing in midden makes it difficult to see exact size. Tested positive.
DОМЕ B	1197 h	hb202	LargeDome	609381,12	3918415,02	5	4	20	0,3	6,0	1,3	Oval dome, $5 \times 4 \times 0,3 \mathrm{~m}$. Testpit: Light gray midden w very fragmented shells - little charcoal
DOME B	286	hb307	LargeDome	611155,10	3916877,85	9	3	27	0,2	5,4	3,0	Dome Lenght 9 m Width 3 m Height $0,2 \mathrm{~m}$ Mapped February 19, 2011, H.Bjerck
DOME B	932 h	hbo26	LargeDome	610952,68	3917488,97	6	3	18	0,3	5,4	2,0	Dome, $3 \times 6 \mathrm{~m}$ wide, $0,3 \mathrm{~m}$ high
DOME B	943 h	hb039	LargeDome	611029,16	3917480,90	3	3	9	0,6	5,4	1,0	Dome, 3 m wide, $0,6 \mathrm{~m}$ high. Old testpit.
DOME B	388	hb105	LargeDome	609198,99	3916718,63	3	3	9	0,6	5,4	1,0	Shell midden dome $3 \times 3 \times 0.6 \mathrm{~m}$ Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DOME B	49 n	hb345	LargeDome	609224,96	3917713,75	5	5	25	0,2	5,0	1,0	dome $5 \times 5 \times 0,2$
DОME B	800	hb117	LargeDome	610121,71	3917633,11	5	5	25	0,2	5,0	1,0	Dome, big, d.5m, $0,2 \mathrm{~m} \mathrm{high} .\mathrm{Shell} \mathrm{midden} \mathrm{visible} \mathrm{in} \mathrm{cattle} \mathrm{damage}$.
DOME B	1045	hb138	LargeDome	609755,35	3918402,80	5	5	25	0,2	5,0	1,0	Shell midden dome in woods at the W part of the top platou of the high hill on the north side of Cambaceres Interior. $5 \times 5 \mathrm{~m}, 0.2 \mathrm{~m}$ high. Surveyed by H. Bjerck and E. Piana, February 25, 2011.
DOME B	1046	hb139	LargeDome	609748,14	3918399,89	5	5	25	0,2	5,0	1,0	Shell midden dome in woods at the W part of the top platou of the high hill on the north side of Cambaceres Interior. $5 \times 5 \mathrm{~m}, 0.2 \mathrm{~m}$ high. Surveyed by H. Bjerck and E. Piana, February 25, 2011.
DOME B	274	hb295	LargeDome	611050,84	3917059,79	5	5	25	0,2	5,0	1,0	dome Lenght 5 m Width 5 m Height 0,2m Mapped February 19, 2011, H . Bj erck
DОМЕ B	1090 h	h	LargeDome	9320,91	17992,83	5	5	25	0,2	5,0	1,0	Dome $5 \times 550,2 \mathrm{~m}$. Flat space uphill may suggest dwelling.
DOME B	473	hb937	LargeDome	610539,98	3918399,04	$\left.\right\|_{\text {record }} ^{\text {no }}$				5,0		Midden formation, irregular, smal domes and depressions, may be several dwelling structures, but difficult to define. Situated at base of slope, by small cove. Midden vol estimate AUG2016, $10 \times 10 \times 0,05=5 \mathrm{~m}^{3}$
DOME C	918 h	hb998	MediumDome	610862,89	3917463,26	3,5	3,5	12,25	0,4	4,9	1,0	Dome, $5-2 \mathrm{~m}$ wide, $0,4 \mathrm{~m} \mathrm{high}$
DOME C	266	hb285	MediumDome	611121,02	3917085,89	6	4	24	0,2	4,8	1,5	Dome Lenght 6 m Width 4 m Height 0,2m Mapped February 19, 2011, H.Bjerck
DOME C	287 h	hb308	MediumDome	611164,01	3916877,63	6	4	24	0,2	4,8	1,5	Dome Lenght 6 m Width 4 m Height $0,2 \mathrm{~m}$ Mapped February 19, 2011, H .Bjerck
DOME C	302 h	hb324	MediumDome	611235,92	391682,46	6	4	24	0,2	4,8	1,5	Dome Lenght 4 m Width 6 m Height 0,2m Mapped February 19, 2011, H.Bjerck
DOME C	809 h	hb876	MediumDome	610264,09	3917403,87	4	3	12	0,4	4,8	1,3	Dome, big, d.4m $\times 3 \times 0,4.4$ Tp ELP. Tp charcoal samples 2009 (PZ/HB/AS)
DOME C	810	hb876	MediumDome	610265,80	3917400,74	4	3	12	0,4	4,8	1,3	Dome, big, d.4m $\times 3 \times 0.4$. Tp ElP. Tp charcoal samples 2009 (PZ/HB/AS)
DOME C	811 h	hb876	MediumDome	610265,72	3917397,65	4	3	12	0,4	4,8	1,3	Dome, big, d.4m $\times 3 \times 0.4 .4$. Tp ELP. Tp charcoal samples 2009 (PZ/HB/AS)
DOME C	899 h	hb100	MediumDome	611048,55	3917400,01	4	3	12	0,4	4,8	1,3	Dome, $4 \times 3 \mathrm{~m}$ wide, $0,4 \mathrm{~m} \mathrm{high}$
DOME C	134	hb534	MediumDome	609382,29	3917876,91	4	3	12	0,4	4,8	1,3	Dome, small, $4 \times 3 \times 0,4$
DOME C	359	hb092	MediumDome	609004,59	3916862,51	4	4	16	0,3	4,8	1,0	Large shell midden dome. Measurements in meters Height 0,3 Lenght 4 width 4 . Surveyed by H . Bjerck and H. Breivik, February 23, 2011
DOMEC	838 h	hb962	MediumDome	610457,64	3917371,29	4	4	16	0,3	4,8	1,0	Dome, 4 m wide, $0,3 \mathrm{~m}$ high. Same pt as wp104 in first plot.
DOMEC	877 h	hb052	MediumDome	611189,64	3917510,45	4	4	16	0,3	4,8	1,0	Dome, 4 m wide, $0,3 \mathrm{~m}$ high
DOME C	878 h	hbo53	MediumDome	611196,13	3917511,64	4	4	16	0,3	4,8	1,0	Dome, 4 m wide, $0,3 \mathrm{~m}$ high
DOMEC	137 h	hb537	MediumDome	609376,94	3917877,04	4	4	16	0,3	4,8	1,0	Dome, small, 4x4x0,3
DOME C	373 h	hb130	MediumDome	608930,84	3916762,25	4	4	16	0,3	4,8	1,0	Shell midden dome. Mea surements in meters Height 0.3 Lenght 4 width 4 Surveyed by H . Bjerck and H. Breivik, February 23, 2011
DOME C	919	hbo99	MediumDome	610857,70	3917469,67	4	4	16	0,3	4,8	1,0	Dome, 4 m wide, $0,3 \mathrm{~m}$ high
DOME C	171	hb297	MediumDome	609425,76	3917538,79	5	3	15	0,3	4,5	1,7	Dome, eroded, $5 \times 3 \times 0,3$ At top of erosion cut
DOMEC	1031 h	hb142	MediumDome	611244,26	3917670,40	5	3	15	0,3	4,5	1,7	Dome, two ca $3 \times 5 \mathrm{~m}, 0,3 \mathrm{~m} \mathrm{high}$.
DOME C	799	hb973	MediumDome	610378,33	3917336,13	5	3	15	0,3	4,5	1,7	Dome, $3 \times 5 \mathrm{~m}$ wide, $0,3 \mathrm{~m} \mathrm{high}$
DOMEC	129 h	hb529	MediumDome	609389,71	3917889,10	3	3	9	0,5	4,5	1,0	Dome, small, $3 \times 3 \times 0,5$
DOMEC	130	hb530	MediumDome	609395,06	3917888,97	3	3	9	0,5	4,5	1,0	Dome, small, $3 \times 3 \times 0,5$
DOME C	131 h	hb531	MediumDome	609395,06	3917888,97	3	3	9	0,5	4,5	1,0	Dome, small, $3 \times 3 \times 0,5$
DOMEC	132 h	hb532	MediumDome	609389,56	3917882,92	3	3	9	0,5	4,5	1,0	Dome, small, $3 \times 3 \times 0,5$
DOME C	734 h	hb143	MediumDome	610551,70	3917208,17	3	3	9	0,5	4,5	1,0	Dome, 3 m wide, $0,5 \mathrm{~m}$ high.
DOMEC	1038 h	hb145	MediumDome	611045,58	917712,42	3	3	9	0,5	4,5	1,0	Dome ca $3 \mathrm{~m}, 0,5 \mathrm{~m}$ high, low part between them. No definite house pit observed. Testpit.
DOMEC	295 h	hb317	MediumDome	1147,67	916865,66	5	4	20	0,2	4,0	1,3	Dome Lenght 4m Width 5m Height 0,2m Mapped February 19, 2011, H . j jerck
DOMEC	931 h	hb025	MediumDome	610949,27	917495,24	3,5	3,5	12,25	0,3	3,7	1,0	Dome, $3-4 \mathrm{~m}$ wide, $0,3 \mathrm{~m}$ high
DOMEC	260 h	hb279	MediumDome	611086,76	917142,40	6	3	18	0,2	3,6	2,0	Large Dome, Lenght 6m, Width 3m, Height 0,2m, Mapped February $19,2011, \mathrm{H} . \mathrm{Bj}$ jerck
DOMEC	261 h	hb280	MediumDome	611097,15	3917129,77	6	3	18	0,2	3,6	2,0	Dome, Lenght 6 m , Width 3 m , Height 0,2m, Mapped February 19, 2011, l . B ,jerck
DOMEC		hb396	MediumDome	609340,39	3917840,83	6	3	18	0,2	3,6	2,0	Dome of shell midden, $6 \times 3 \times 0,2 \mathrm{~m}$
DOMEC	414	hb238	MediumDome	610783,07	3918059,07	3	3	9	0,4	3,6	1,0	Dome, $3 \mathrm{~m}, 0,4$ high.
DOME C	926	hb013	MediumDome	610953,98	3917541,51	3	3	9	0,4	3,6	1,0	Dome, 3 m wide, $0,4 \mathrm{~m}$ high
DOME C	942 h	hb038	MediumDome	611039,85	3917480,63	3	3	9	0,4	3,6	1,0	Dome, 3 m wide, $0,4 \mathrm{~m}$ high
DOME C	124	hb523	MediumDome	609415,04	3917903,95	3	3	9	0,4	3,6	1,0	Dome, small, $3 \times 3 \times 0,4$
DOME C	174	hb301	MediumDome	609400,67	3917533,21	3	3	9	0,4	3,6	1,0	Dome, $3 \times 3 \times 0,4 \mathrm{~m}$
DOME C	898 h	hbo99	MediumDome	611046,54	3917390,79	3	3	9	0,4	3,6	1,0	Dome, 3 m wide, $0,4 \mathrm{~m}$ high
DOME C	175	hb300	MediumDome	609406,01	3917533,08	4	3	12	0,3	3,6	1,3	Dome, $4 \times 3 \times 0,3 \mathrm{~m}$
DOME C	896	hb097	MediumDome	611062,43	3917384,21	4	3	12	0,3	3,6	1,3	Dome, $4 \times 3 \mathrm{~m}$ wide, $0,3 \mathrm{~m}$ high
DOME C	1037 h	hb139	MediumDome	611021,34	3917669,73	4	3	12	0,3	3,6	1,3	Domes, two adjacent, both ca $3 \times 4 \mathrm{~m}, 0,3 \mathrm{~m}$ high, low part between them. No definite house pit observed. Testpit.
DOMEC	360 h	hb091	MediumDome	609008,15	3916862,43	4	3	12	0,3	3,6	1,3	Shell midden dome. Measurements in meters Height 0,3 Lenght 4 width 3 Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DOMEC	264 h	hb283	MediumDome	611126,83	3917104,30	4	4	16	0,2	3,2	1,0	Dome Lenght 4m Width 4m Height 0,2m Mapped February 19, 2011, H..jjerck
DOME C	288 h	hb309	MediumDome	611176,41	3916874,23	4	4	16	0,2	3,2	1,0	Dome Lenght 4m Width 4m Height 0,2m Mapped February 19, 2011, H.B.jerck
DOMEC	290	hb312	MediumDome	611178,04	3916868,00	4	4	16	0,2	3,2	1,0	Small dome Lenght 3m Width 3m Height 0,2m Mapped February 19, 2011, H.Bjerck
DOMEC	416	hb240	MediumDome	610795,24	3918046,40	4	4	16	0,2	3,2	1,0	Dome, $4 \mathrm{~m}, 0,2$ high.
DOMEC	937 h	hb031	MediumDome	610986,39	3917481,95	4	4	16	0,2	3,2	1,0	Dome, 4 m wide, $0,2 \mathrm{~m}$ high
DOME C	1196 h	hb201	MediumDome	609377,48	3918412,01	4	4	16	0,2	3,2	1,0	oldy Round dome, d. $4 \mathrm{~m}, 0,2 \mathrm{~m}$ high. Situated at end of terrasse, midden sloping down towards boggy valley. Testpit: Black soil w shells. Charcoal sample from here.
DOME C	837 h	hb961	MediumDome	610450,21	3917359,10	6	2,5	15	0,2	3,0	2,4	Dome, $6 \times 2,5 \mathrm{~m}$ wide, $0,2 \mathrm{~m}$ high
DOME C	814	hb886	MediumDome	610294,69	3917415,49	5	3	15	0,2	3,0	1,7	Dome, big, d. $5 \mathrm{~m} \times 3 \times 0,2$. Also hb110. Tree fall, shell mkidden and guanaco bones visible.
DOME C	839 h	hb963	MediumDome	610462,69	3917358,79	5	3	15	0,2	3,0	1,7	Dome, $5 \times 3 \mathrm{~m}$ wide, $0,2 \mathrm{~m} \mathrm{high}$
DOMEC	200 h	hb308	MediumDome	609327,10	3917587,57	5	3	15	0,2	3,0	1,7	Low dome, $5 \times 3 \times 0,2 \mathrm{~m}$
DOMEC	252	hb270	MediumDome	611068,56	3917127,38	5	3	15	0,2	3,0	1,7	Dome Lenght 5 m Width 3 m Height 0,2m Mapped February 19, 2011, $\mathrm{H} . \mathrm{Bj}$ erck
DOMEC	1035 h	hb114	MediumDome	610844,73	3917698,32	5	3	15	0,2	3,0	1,7	Dome, $3 \times 5 \mathrm{~m}, 0,2 \mathrm{~m} \mathrm{high}$
DOMEC	1086 h	hb192	MediumDome	609342,37	3917995,40	5	3	15	0,2	3,0	1,7	Dome, 5x3m, ca 0,2. Testpit show midden.

		Name	Site type	X (UTM)	Y (UTM)	$\begin{aligned} & \text { f } \\ & \text { 힣 } \end{aligned}$	$\begin{aligned} & \frac{5}{0} \\ & \frac{1}{3} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{E} \\ \stackrel{y}{\pi} \\ \frac{⿺ 𠃊}{4} \end{gathered}$		$\begin{aligned} & \text { } \bar{E} \\ & \dot{\bar{j}} \end{aligned}$	$\begin{aligned} & \frac{0}{\square} \\ & \frac{0}{3} \\ & 3 \end{aligned}$	Observations
DOMEC	895 h	hbo96	MediumDome	611038,25	3917415,76	3	2	6	0,5	3,0	1,5	Dome, $2 \times 3 \mathrm{~m}$ wide, $0,5 \mathrm{~m}$ high
DOMEC	122 h	hb521	MediumDome	609440,52	3917924,97	3	2	6	0,5	3,0	1,5	Dome, small, $3 \times 2 \times 0,5$
DOMEC	300 h	hb322	MediumDome	611221,74	3916832,91	7	4	28	0,1	2,8	1,8	Dome Lenght 7m Width 4 m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOMEC	138 h	hb538	MediumDome	609382,44	3917883,10	3	3	9	0,3	2,7	1,0	Dome, small, $3 \times 3 \times 0,3$
DOMEC	139 h	hb539	MediumDome	609382,59	3917889,28	3	3	9	0,3	2,7	1,0	Dome, small, $3 \times 3 \times 0,3$
DOME C	335 h	hb069	MediumDome	608513,13	3917035,22	3	3	,	0,3	2,7	1,0	Shell midden dome. Measurements in meters Lenght 3 width 3 Height 0.3 Surveyed by H. Bjerck and H. Breivik, February 22, 2011
DOMEC	817 h	hb892	MediumDome	610307,96	3917374,96	3	3	9	0,3	2,7	1,0	Dome d. 3m, h. 0,3m. Old testpit showing, barely visible.
DOMEC	901 h	hb102	MediumDome	611032,52	3917400,41	3	3	9	0,3	2,7	1,0	Dome, 3 m wide, $0,3 \mathrm{~m}$ high
DOMEC	907 h	hb985a	MediumDome	610772,18	3917617,12	3	3	9	0,3	2,7	1,0	Four small Domes 3m wide, $0,2-5 \mathrm{~m}$ high (Named hb985a, b, c, d) Edited AUG2016, HBB
DOMEC	920 h	hb005	MediumDome	610840,99	3917587,59	3	3	9	0,3	2,7	1,0	Dome, 3 m wide, $0,3 \mathrm{~m}$ high
DOMEC	930 h	hb024	MediumDome	610949,04	3917485,97	3	3	9	0,3	2,7	1,0	Dome, 3 m wide, $0,3 \mathrm{~m}$ high
DOMEC	936 h	hb030	MediumDome	610989,72	3917472,59	3	3	9	0,3	2,7	1,0	Dome, 3 m wide, $0,3 \mathrm{~m}$ high
DOMEC	1030 h	hb143	MediumDome	611244,41	3917676,58	3	3	9	0,3	2,7	1,0	Dome ca $3 \times 3 \mathrm{~m}, 0,3 \mathrm{~m}$ high. Old Testpit.
DOMEC	1097 h	hb516	MediumDome	609450,77	3917980,39	3	3	9	0,3	2,7	1,0	Dome, small, $3 \times 3 \times 0,3$
DOMEC	1098 h	hb515	MediumDome	609450,56	3917971,12	3	3	9	0,3	2,7	1,0	Dome, small, $3 \times 3 \times 0,3$
DOMEC	1235 h	hb985b	MediumDome	610770,18	3917619,12	3	3	9	0,3	2,7	1,0	Four small Domes 3m wide, 0,2-5m high (Named hb985a, b, c, d) Edited AUG2016, HBB
DOMEC	1236 h	hb985c	MediumDome	610774,18	3917619,12	3	3	9	0,3	2,7	1,0	Four small Domes 3 m wide, $0,2-5 \mathrm{~m}$ high (Named hb985a, b, c, d) Edited AUG2016, HBB
DOMEC	1237 h	hb985d	MediumDome	610770,18	3917615,12	3	3	9	0,3	2,7	1,0	Four small Domes 3 m wide, $0,2-5 \mathrm{~m}$ high (Named hb985a, b, c, d) Edited AUG2016, HBB
DOMEC	299 h	hb321	MediumDome	611205,86	3916839,48	6	4	24	0,1	2,4	1,5	Dome Lenght 6 m Width 4 m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOMEC	169 h	hb276	MediumDome	609425,90	3917505,28	4	3	12	0,2	2,4	1,3	Small dome, 3x4m, $0,2 \mathrm{~m} \mathrm{high}$
DOMEC	249 h	hb267	MediumDome	611076,15	3917145,75	4	3	12	0,2	2,4	1,3	Dome Lenght 4m Width 3m Height 0,2m Mapped February 19, 2011, H.Bjerck
DOMEC	250 h	hb268	MediumDome	611066,86	3917130,52	4	3	12	0,2	2,4	1,3	Dome Lenght 4 m Width 3 m Height 0,2m Mapped February 19, 2011, H., jerck
DOMEC	254	hb273	MediumDome	611081,35	3917123,98	4	3	12	0,2	2,4	1,3	Dome Lenght 4 m Width 3 m Height 0,2m Mapped February 19, 2011, H.Bjerck
DOMEC	268 h	hb287	MediumDome	611112,03	3917082,87	4	3	12	0,2	2,4	1,3	Dome Lenght 4 m Width 3 m Height $0,2 \mathrm{~m}$ Mapped February 19, 2011, H.Bjerck
DOMEC	282 h	hb303	MediumDome	611115,98	3916881,91	4	3	12	0,2	2,4	1,3	Dome Lenght 4m Width 3m Height 0,2m Mapped February 19, 2011, H.Bjerck
DOMEC	284 h	hb305	MediumDome	611138,99	3916875,15	4	3	12	0,2	2,4	1,3	Small dome Lenght 4 m Width 3 m Height $0,2 \mathrm{~m}$ Mapped February 19, 2011, H.Bjerck
DOME C	352 h	hb078	MediumDome	608748,62	3916967,67	4	3	12	0,2	2,4	1,3	Shell midden dome. Measurements in meters Height 0.2 Lenght 4 width 3 Surveyed by H. Bjerck and H. Breivik, February 22, 2011
DOME C	353 h	hb135	MediumDome	608725,83	3916983,69	4	3	12	0,2	2,4	1,3	Shell midden dome. Measurements in meters Height 0.2 Lenght 4 width 3 Surveyed by H. Bjerck and H. Breivik, February 22, 2011
DOME C	374 h	hb132	MediumDome	608882,89	3916769,60	4	3	12	0,2	2,4	1,3	Shell midden dome. Measurements in meters Height 0.2 Lenght 4 width 3 Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DOME C	886 h	hb078	MediumDome	611016,45	3917255,46	4	3	12	0,2	2,4	1,3	Small Dome, 3x4m wide, $0,2 \mathrm{~m}$ high
DOME C	1033	hb141a	MediumDome	611165,84	3917672,34	4	3	12	0,2	2,4	1,3	Domes, one of two adjacent but separate (hb141a, 141b), both ca $3 \times 4 \mathrm{~m}, 0,2 \mathrm{~m}$ high. No definite house pit observed. Old testpit.
DOME C	1070	hb185	MediumDome	609223,86	3918035,39	4	3	12	0,2	2,4	1,3	Small Midden, cattle damaged, $3 \times 4 \times 0,2$. Vertebrate of whale and flake core at surface. Situated in slope, top part.
DOME C	1077	hb264	MediumDome	609300,78	3917971,67	4	3	12	0,2	2,4	1,3	small dome, $3 \times 4 \times$ ca $0,2 \mathrm{~m}$, tested positive
DOMEC	1078 h	hb263	MediumDome	609286,59	3917975,11	4	3	12	0,2	2,4	1,3	small dome, $3 \times 4 \times$ ca0, 2 m , tested positive
DOMEC	1079 h	hb262	MediumDome	609257,85	3917966,53	4	3	12	0,2	2,4	1,3	small dome, $3 \times 4 \times$ ca $0,2 \mathrm{~m}$, tested positive
DOMEC	1080 h	hb261	MediumDome	609279,47	3917975,28	4	3	12	0,2	2,4	1,3	small dome, $3 \times 4 \times$ ca0, 2 m , tested positive
DOMEC	1087	placed	MediumDome	609230,16	3918030,95	4		12	0,2	2,4	1,3	Iow mound similar to 185
DOMEC	1088	placed	MediumDome	609240,85	3918027,69	4	3	12	0,2	2,4	1,3	low mound similar to 185
DOMEC	1089	placed	MediumDome	609235,41	3918026,48	4		12	0,2	2,4	1,3	low mound similar to 185
DOME C	1200	hb203	MediumDome	609344,21	3918437,56	4	3	12	0,2	2,4	1,3	Dome, $4 \times 3 \times 0,2 \mathrm{~m}$. Testpit: Shells in grave, , ititle charcoal
DOMEC	1228	hb141b	MediumDome	611167,84	3917674,34	4	3	12	0,2	2,4	1,3	Domes, two adjacent but separate, both ca $3 \times 4 \mathrm{~m}, 0,2 \mathrm{~m}$ high. No definite house pit observed. Old testpit.
DOMEC	222 h	hb294	MediumDome	609346,45	3917503,61	4	2	8	0,3	2,4	2,0	dome, dome, 4x2x0,3m
DOMEC	13 h	hb352a	MediumDome	609390,32	3917694,27	3	2,5	7,5	0,3	2,3	1,2	single s mall dome, $3 \times 2,5 \times 0,3$
DOMEC	173 h	hb299	MediumDome	609415,07	3917539,05	5	,	10	0,2	2,0	2,5	dome, $5 \times 2 \times 0,2 \mathrm{~m}$
DOMEC	140 h	hb540	MediumDome	609387,93	3917889,10	2	2	4	0,5	2,0	1,0	Dome, small, $2 \times 2 \times 0,5$
DOMEC	141 h	hb541	MediumDome	609391,57	3917892,15	2	2	4	0,5	2,0	1,0	Dome, small, $2 \times 2 \times 0,5$
DOMEC	912	hb992	MediumDome	610885,69	3917450,42	2,5	2,5	6,25	0,3	1,9	1,0	Dome, 3 -2m wide, $0,3 \mathrm{~m}$ high
DOMEC	913 h	hb993	MediumDome	610885,60	3917444,24	2,5	2,5	6,25	0,3	1,9	1,0	Dome, $3-2 \mathrm{~m}$ wide, $0,3 \mathrm{~m}$ high
DOMEC	914 h	hb994	MediumDome	610882,27	3917453,70	2,5	2,5	6,25	0,3	1,9	1,0	Dome, $3-2 \mathrm{~m}$ wide, $0,3 \mathrm{~m} \mathrm{high}$
DOMEC	915	hb995	MediumDome	610876,92	3917453,73	2,5	2,5	6,25	0,3	1,9	1,0	Dome, $3-2 \mathrm{~m}$ wide, $0,3 \mathrm{~m}$ high
DOME C	916	hb996	MediumDome	610868,24	3917463,36	2,5	2,5	6,25	0,3	1,9	1,0	Dome, $3-2 \mathrm{~m}$ wide, $0,3 \mathrm{~m}$ high
DOMEC	917 h	hb997	MediumDome	610864,60	3917460,29	2,5	2,5	6,25	0,3	1,9	1,0	Dome, 3 -2m wide, $0,3 \mathrm{~m}$ high
DOMEC	921	hboo6	MediumDome	610823,86	3917615,85	2,5	2,5	6,25	0,3	1,9	1,0	Dome, 3 -2m wide, $0,3 \mathrm{~m}$ high
DOMEC	938 h	hb033	MediumDome	610983,20	3917497,49	2,5	2,5	6,25	0,3	1,9	1,0	Dome, 3 -2m wide, $0,3 \mathrm{~m}$ high
DOMEC	821 h	hb907	MediumDome	610318,83	3917448,35	6	3	18	0,1	1,8	2,0	Dome, $6 \times 3 \times 0,1 \mathrm{~m}$, tested
DOMEC	58 h	hb400	MediumDome	609309,57	3917819,93	3	3	9	0,2	1,8	1,0	Dome $3 \times 3 \times 0,2 \mathrm{~m}$
DOMEC	123 h	hb522	MediumDome	609438,66	3917921,93	3	3	9	0,2	1,8	1,0	Dome, small, $3 \times 3 \times 0,2$
DOMEC	259 h	hb278	MediumDome	611090,25	3917139,22	3	3	9	0,2	1,8	1,0	Small dome Lenght 3 m Width 3 m Height $0,2 \mathrm{~m}$ Mapped February 19, 2011, H.Bjerck
DOMEC	283 h	hb304	MediumDome	611126,59	3916878,55	3	3	9	0,2	1,8	1,0	Small dome Lenght 3 m Width 3 m Height $0,2 \mathrm{~m}$ Mapped February 19, 2011, H.Bjerck
DOMEC	292 h	hb314	MediumDome	611153,32	3916877,89	3	3	9	0,2	1,8	1,0	Dome Lenght 5 m Width 5 m Height 0,2m Mapped February 19, 2011, H.Bjerck
DOMEC	296	hb318	MediumDome	611156,50	3916862,35	3	3	9	0,2	1,8	1,0	Small Dome Lenght 3 m Width 3 m Height 0,2m Mapped February 19, 2011, H .jjerck
DOMEC	305	hb327	MediumDome	611274,35	3916797,59	3	3	9	0,2	1,8	1,0	Small Dome Lenght 3 m Width 3 m Height 0,2m Mapped February 19, 2011, H.Bjerck
DOMEC	334 h	hb070	MediumDome	608522,04	3917035,00	3	3	9	0,2	1,8	1,0	Low shell midden dome. Measurements in meters Height 0.2 Lenght 3 width 3 Surveyed by H . Bjerck and H. Breivik, February 22, 2011
DOME C	336	hb068	MediumDome	608515,06	3917041,35	3	3	,	0,2	1,8	1,0	Low shell midden dome. Measurements in meters Lenght 3 width 3 Height 0.2 Surveed by H. Bjerck and H. Breivik, February 22, 2011
DOME C	348 h	hb077	MediumDome	608744,91	3916961,58	${ }_{3}$	3	,	0,2	1,8	1,0	Low shell midden dome. Measurements in meters Heighe 0.2 Lenght 3 width 3 Surveed by H. Bjerck and H. Breivik, February 22, 2011

	은 ü 0	Name	Site type	X (UTM)	Y (UTM)	$\begin{gathered} \stackrel{5}{4} \\ \stackrel{\rightharpoonup}{ \pm} \end{gathered}$	$\frac{5}{4}$	$\stackrel{N}{\text { NE }}$		$\stackrel{\bar{m}}{\stackrel{\Gamma}{\mathrm{E}}}$	은 3 3	Observations
DOME C	367	hb127	MediumDome	609120,42	3916640,14	3	3	9	0,2	1,8	1,0	Low shell midden dome. Measurements in meters Height 0.2 Lenght 3 width 3 Flake width retouched point (engraver?) in tp. Artifact left in tp. Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DOME C	368	hb1	MediumDome	609115,23	3916646,45	3	3	,	0,2	1,8	1,0	Low shell midden dome. Measurements in meters Height 0.2 Lenght 3 width 3 Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DOME C	372	hb134	MediumDome	608852,82	3916779,61	3	3	9	0,2	1,8	1,0	Low shell midden dome. Measurements in meters Height 0.2 Lenght 3 width 3 Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DOME C	471	hb929	MediumDome	610612,41	3918391,69	3	3	9	0,2	1,8	1,0	2 Low domes of shell midden $3 \times 0,2 \mathrm{~m}$. Flakes in erosion patches. Situated in a small valley, separated from beach by low hills.
DOME C	836	hb960	MediumDome	610446,50	3917353,00	3	3	9	0,2	1,8	1,0	Dome, 3 m wide, $0,2 \mathrm{~m}$ high
DOMEC	848	hb972	MediumDome	610374,53	3917326,94	3	3	9	0,2	1,8	1,0	Dome, 3 m wide, $0,2 \mathrm{~m} \mathrm{high}$
DOMEC	879	hb066	MediumDome	611099,88	3917312,16	3	3	9	0,2	1,8	1,0	Small dome, 4-2m wide, $0,2 \mathrm{~m} \mathrm{high}$
DOME C	880	hb067	MediumDome	611094,46	3917309,32	3	3	9	0,2	1,8	1,0	Small Dome, $4-2 \mathrm{~m}$ wide, $0,2 \mathrm{~m}$ high
DOME C	881	hb068	MediumDome	611096,16	3917306,06	3	3	9	0,2	1,8	1,0	Small Dome, $4-2 \mathrm{~m}$ wide, $0,2 \mathrm{~m}$ high
DOME C	889	hb081	MediumDome	610982,60	3917256,30	3	3	9	0,2	1,8	1,0	Small Dome, 3 m wide, $0,2 \mathrm{~m}$ high
DOME C	908	hb986	MediumDome	610786,41	3917604,44	3	3	9	0,2	1,8	1,0	Small Dome 3m wide, $0,2 \mathrm{~m}$ high.
DOME	928	hb020	MediumDome	10966,76	17500,70	3	3	9	0,2	1,8	1,0	Small Dome, 3 m wide, $0,2 \mathrm{~m}$ high
DOME	57	hb399	MediumDome	609309,87	3917832,29	3	2	6	0,3	1,8	1,5	Dome 3 $\times 2 \times 0,3 \mathrm{~m}$
DOME C	871	hb040	MediumDome	611029,31	3917487,08	3	2	6	0,3	1,8	1,5	Small dome, 3 -2m wide, $0,3 \mathrm{~m}$ high
DOMEC	897	hb098	MediumDome	611057,16	3917387,45	3	2	6	0,3	1,8	1,5	Dome, $2 \times 3 \mathrm{~m}$ wide, $0,3 \mathrm{~m}$ high
DOME C	267	hb286	MediumDome	611119,17	3917082,84	4	2	8	0,2	1,6	2,0	Small dome Lenght 4 m Width 2 m Height 0,2m Mapped February 19, 2011, H.Bjerck
DOME C	410	hb234	MediumDome	610850,75	3917983,18	4	2	8	0,2	1,6	2,0	Dome, $4 \times 2 \mathrm{~m}, 0,2$ high. Partly damaged by road.
DOME C	822	hb908	MediumDome	610286,54	3917446,61	4	2	8	0,2	1,6	2,0	Dome 4x2x0,2. ELP testpit. Also hb126
DOME C	890	hb082	MediumDome	611123,25	3917391,98	4	2	8	0,2	1,6	2,0	Small Dome, $2 \times 4 \mathrm{~m}$ wide, $0,2 \mathrm{~m}$ high
DOME C	1041	hb364	MediumDome	609247,67	3918207,98	4	2	8	0,2	1,6	2,0	small dome, $4 \times 2 \times 0,2 \mathrm{~m}$
DOME C	256	hb275	MediumDome	611147,04	3917128,54	4	4	16	0,1	1,6	1,0	Small dome Lenght 4m Width 4m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOME C	833	hb957	MediumDome	610424,28	3917329,19	4	4	16	0,1	1,6	1,0	Irregular midden formation, several small domes covering ca $4 \times 4 \mathrm{~m}, 0,1 \mathrm{~m}$ high
DOME C	135	hb535	MediumDome	609383,92	3917870,69	2	2	4	0,4	1,6	1,0	Dome, small, $2 \times 2 \times 0,4$
DOME C	827	hb913	MediumDome	610253,85	3917422,52	3	1,5	4,5	0,3	1,4	2,0	Dome, 3x1,5x0,3m. Tp ELP and stake.
DOME C	52	hb419	MediumDome	609333,47	3917776,05	3	2	6	0,2	1,2	1,5	single s mall dome, 3x2x0, 2
DOMEC	56	hb398	MediumDome	609357,46	3917809,49	3	2	6	0,2	1,2	1,5	Dome 3x2x0,2m
DOMEC	120	hb519	MediumDome	609440,67	3917931,16	3	2	6	0,2	1,2	1,5	Dome, small, $3 \times 2 \times 0,2$
DOME C	239	hb2	MediumDome	610976,05	3917135,86	3	2	6	0,2	1,2	1,5	Small dome, shell midden, Lenght 3 m Width 2 m Height 0,2m Mapped February 19, 2011, H.Bjerck
DOMEC	242	hb259	MediumDome	611015,49	3917144,16	3	2	6	0,2	1,2	1,5	Small dome Lenght 3m Width 2 m Height 0,2m Mapped February 19, 2011, H.Bjerck
DOME C	361	hb093	MediumDome	609029,68	3916868,09	3	2	6	0,2	1,2	1,5	Low shell midden dome. Measurements in meters Height 0,2 Lenght 3 width 2 Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DOME C	411	hb235	MediumDome	610843,55	3917980,27	3	2	6	0,2	1,2	1,5	Dome, $3 \times 2 \mathrm{~m}, 0,2 \mathrm{high}$.
DOME C	412	hb236	MediumDome	610828,19	3918008,48	3	2	6	0,2	1,2	1,5	Dome, $3 \times 2 \mathrm{~m}, 0,2 \mathrm{high}$.
DOMEC	413	hb237	MediumDome	610821,14	3918011,74	3	2	6	0,2	1,2	1,5	Dome, 3x2m, $0,2 \mathrm{high}$.
DOMEC	643	hb809	MediumDome	610312,00	3916886,26	3	2	6	0,2	1,2	1,5	Dome 3x2m, $0,2 \mathrm{~m}$ high.Situated in row below erosion cut
DOMEC	644	Placemark	MediumDome	610311,22	3916843,08	3	2	6	0,2	1,2	1,5	Dome $3 \times 2 \mathrm{~m}, 0,2 \mathrm{~m}$ high.Situated in row below erosion cut
DOMEC	645	Placemark	MediumDome	610313,29	3916850,25	3	2	6	0,2	1,2	1,5	Dome $3 \times 2 \mathrm{~m}, 0,2 \mathrm{~m}$ high.Situated in row below erosion cut
DOME C	646	hb810	MediumDome	610308,93	3916833,77	3	2	6	0,2	1,2	1,5	Dome $3 \times 2 \mathrm{~m}, 0,2 \mathrm{~m}$ high.Situated in row below erosion cut
DOMEC	647	Placemark	MediumDome	610313,82	3916856,70	3	2	6	0,2	1,2	1,5	Dome $3 \times 2 \mathrm{~m}, 0,2 \mathrm{~m}$ high.Situated in row below erosion cut
DOME C	648	Placemark	MediumDome	610315,54	3916865,41	3	2	6	0,2	1,2	1,5	Dome $3 \times 2 \mathrm{~m}, 0,2 \mathrm{~m}$ high.Situated in row below erosion cut
DOME C	669	Placemark	MediumDome	610314,27	3916876,08	3	2	6	0,2	1,2	1,5	Dome 3x2m, $0,2 \mathrm{~m}$ high.Situated in row below erosion cut
DOME C	840	hb964	MediumDome	610467,80	3917349,39	3	2	6	0,2	1,2	1,5	Dome, $3 \times 2 \mathrm{~m}$ wide, $0,2 \mathrm{~m} \mathrm{high}$
DOME C	844	hb968	MediumDome	610477,43	3917305,86	3	2	6	0,2	1,2	1,5	Dome, $3 \times 2 \mathrm{~m}$ wide, $0,2 \mathrm{~m} \mathrm{high}$
DOME C	867	hb148	MediumDome	610023,11	3917320,10	3	2	6	0,2	1,2	1,5	Dome 3x2m, $0,2 \mathrm{~m}$ high.
DOME C	275	hb296	MediumDome	611047,51	3917069,15	4	3	12	0,1	1,2	1,3	Small dome Lenght 4 m Width 3m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOME C	303	hb325	MediumDome	611249,56	3916804,38	4	3	12	0,1	1,2	1,3	Small Dome Lenght 4m Width 3m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOME C	344	hb072	MediumDome	608531,33	3917050,24	4	3	12	0,1	1,2	1,3	Low shell midden dome. Measurements in meters Height 0.1 Lenght 3 width 4 Surveyed by H . Bjerck and H. Breivik, February 22, 2011
DOME C	75	hb422	MediumDome	609362,94	3917741,32	2	2	4	0,3	1,2	1,0	single small dome, $2 \times 2 \times 0,3$
DOMEC	76	hb423	MediumDome	609354,25	3917750,81	2	2	4	0,3	1,2	1,0	single small dome, $2 \times 2 \times 0,3$
DOME C	136	hb536	MediumDome	609380,35	3917870,78	2	2	4	0,3	1,2	1,0	Dome, small, $2 \times 2 \times 0,3$
DOME C	364	hb99	MediumDome	609182,52	3916774,70	2	2	4	0,3	1,2	1,0	Shell midden dome. Measurements in meters Height 0.3 Lenght 2 width 2 Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DOME C	803	hb128	MediumDome	610406,88	3917554,99	2	2	4	0,3	1,2	1,0	Dome 2 m wide, $0,3 \mathrm{~m}$ high. Tested.
DOME C	829	hb953	MediumDome	610402,02	3917357,19	2	2	4	0,3	1,2	1,0	Dome, $2 \mathrm{~m} \times 0,3 \mathrm{~h}$ hgh
DOME C	933	hb027	MediumDome	610956,09	3917482,71	2	2	4	0,3	1,2	1,0	Small Dome, 2 m wide, $0,3 \mathrm{~m}$ high
DOMEC	935	hb029	MediumDome	610959,35	3917470,25	2	2	4	0,3	1,2	1,0	Small Dome, 2 m wide, $0,3 \mathrm{~m}$ high
DOME C	420	hb527	MediumDome	610481,73	3918496,33	$\begin{array}{\|l\|} \hline \text { no } \\ \text { record } \end{array}$				1,0		Small Midden deposit in depresion between rock formation. Midden vol estimated AUG2016
DOME C	804	hb129	MediumDome	610382,54	3917580,32	$\begin{array}{\|l\|} \hline \text { no } \\ \text { record } \end{array}$				1,0		Shell midden exposed in slope from smal terrace (same as hb128 is locaded) Midden vol estimated Aug 2016
DOME C	1081	hb260	MediumDome	609293,50	3917965,66	$\begin{array}{\|l\|} \hline \text { no } \\ \text { record } \end{array}$				1,0		Small dome damaged. Midden vol estimate AUG2016
DOME C	1095	hb189	MediumDome	609397,62	3917994,05	$\begin{array}{\|l\|} \hline \text { no } \\ \text { record } \end{array}$				1,0		Remnant of midden, in road shoulder. Midden vol estimate AUG2016
DOMED		hb349	Smallidome	609243,16	3917728,77	3	1,5	4,5	0,2	0,9	2,0	single small dome, $3 \times 1,5 \times 0,2$
DOMED	245	hb263	Smalliome	611036,79	3917140,54	3	3	9	0,1	0,9	1,0	Small dome Lenght 3m Width 3m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOME D	246	hb264	SmallDome	611040,43	3917143,54	3	3	9	0,1	0,9	1,0	Small dome Lenght 3m Width 3m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOME D	258	hb277	Smalliome	611099,24	3917142,09	3	3	9	0,1	0,9	1,0	Small dome Lenght 3m Width 3m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOMED	298	hb320	SmallDome	611193,69	3916852,15	3	3	9	0,1	0,9	1,0	Small dome Lenght 3 m Width 3 m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOMED	347	hb075	Smalliome	608565,64	3917142,18	3	3	9	0,1	0,9	1,0	Low shell midden dome. Measurements in meters. Height 0.1, Lenght 3, width 3 Surveyed by H . Bjerck and H. Breivik, February 22, 2011

	$\begin{aligned} & \text { 은 } \\ & \text { M } \\ & \text { ón } \end{aligned}$	Name	Site type	X (UTM)	Y (UTM)	$\begin{aligned} & \text { 志 } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \frac{5}{\mathbf{0}} \\ & \frac{1}{3} \end{aligned}$	$\stackrel{\widetilde{N}}{\stackrel{N}{E}}$		$\begin{gathered} \stackrel{\Gamma}{E} \\ \dot{\circ} \end{gathered}$		Observations
DOME D	356	hb086	SmallDome	609017,38	3916655,01	3	3	9	0,1	0,9	1,0	Low shell midden dome. Measurements in meters Height 0.1 Lenght 3 width 3 Surveyed by H . Bjerck and H. Breivik, February 22, 2011
DOME D	370	hb131	Smalliome	608915,41	3916787,37	3	3	,	0,1	0,9	1,0	Low shell midden dome. Measurements in meters, Height 0.1 Lenght 3 width 3 Surveyed by H . Bjerck and H. Breivik, February 23, 2011
DOME D	721	hb001	Smalliome	610039,65	3916976,44	3	3	9	0,1	0,9	1,0	Small shell midden dome, Lenght 3 m , width 3 m , Height $0,1 \mathrm{~m}$. Surveyed by $\mathrm{H} . \mathrm{Bj}$ erck and H . Breivik, February 20, 2011
DOME D	726	hb006	SmallDome	610064,52	3916972,73	3	3	9	0,1	0,9	1,0	Small shell midden dome. Lenght 2 m width 2 m Height 0,1m Surveye4d by H.Bjerck and H . Breivik, February 20, 2011
DOMED	856 h	hb981	smalliome	610483,46	3917333,54	3	3	9	0,1	0,9	1,0	Dome, 3 m wide, $0,1 \mathrm{~m}$ high
DOME D	247 h	hb265	smalldome	611058,40	3917149,28	4	2	8	0,1	0,8	2,0	Small dome Lenght 4 m Width 2 m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOME D	248	hb266	SmallDome	611069,02	3917145,93	4	2	8	0,1	0,8	2,0	Small dome Lenght 4 m Width 2 m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOMED	255	hb274	smalliome	611085,29	3917154,80	4	2	8	0,1	0,8	2,0	Small dome Lenght 2 m Width 4 m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOME D	350	hb136	Smalliome	608702,74	3916987,34	4	2	8	0,1	0,8	2,0	Low shell midden dome. Measurements in meters Height 0.1 Lenght 4 width 2 Surveyed by H. Bjerck and H. Breiviv, February 22, 2011
DOMED	855	hb980	smalliome	610460,37	3917337,20	4	2	8	0,1	0,8	2,0	Dome, $4 \times 2 \mathrm{~m}$ wide, $0,1 \mathrm{~m} \mathrm{high}$
DOMED	73	hb420	Smalliome	609351,29	3917775,62	2	2	4	0,2	0,8	1,0	single small dome, $2 \times 2 \times 0,2$
DOMED	74	hb421	smalldome	609356,56	3917772,40	2	2	4	0,2	0,8	1,0	single small dome, $2 \times 2 \times 0,2$
DOMED	127	hb527	smalliome	609403,24	3917932,07	2	2	4	0,2	0,8	1,0	Dome, small, $2 \times 2 \times 0,2$
DOME D	177 \|	nb309a	smalliome	609302,80	3917541,78	2	2	4	0,2	0,8	1,0	2 low domes $2 \times 2 \times 0,2 \mathrm{~m}$ AUG2016: separated in hb309a and b.
DOMED	272	hb293	smalliome	611098,65	3917046,24	2	2	4	0,2	0,8	1,0	Small dome Lenght 2 m Width 2 m Height 0,2m Mapped February 19, 2011, H.Bjerck
DOMED	419	hb243	smalliome	610771,51	3918096,46	2	2	4	0,2	0,8	1,0	Dome, $2 \mathrm{~m}, 0,2$ high. - in tree fall.
DOMED	795	Placemark	smalliome	610476,89	3917335,88	2	2	4	0,2	0,8	1,0	Dome, 2 m wide, $0,2 \mathrm{~m} \mathrm{high}$,4 domes adjacent
DOMED	796	Placemark	smalliome	610478,57	3917337,84	2	2	4	0,2	0,8	1,0	Dome, 2 m wide, $0,2 \mathrm{~m} \mathrm{high}$,4 domes adjacent
DOMED	802	hb121	smalldome	610022,18	3917573,72	2	2	4	0,2	0,8	1,0	Dome, ca $2 \mathrm{~m}, 0,2 \mathrm{~m}$ high
DOMED	841	hb965	Smalliome	610480,05	3917339,81	2	2	4	0,2	0,8	1,0	Dome, 2 m wide, $0,2 \mathrm{~m} \mathrm{high}$,4 domes adjacent
DOMED	842	hb966	Smalliome	610474,48	3917333,76	2	2	4	0,2	0,8	1,0	Dome, 2 m wide, $0,2 \mathrm{~m} \mathrm{high}$,4 domes adjacent
DOMED	847 \|	hb971	Smalliome	610383,29	3917320,54	2	2	4	0,2	0,8	1,0	Dome, 2 m wide, $0,2 \mathrm{~m}$ high
DOMED	850	hb975	smalliome	610390,65	3917329,64	2	2	4	0,2	0,8	1,0	Dome, 2 m wide, $0,2 \mathrm{~m}$ high
DOME D	854	hb979	Smalliome	610452,86	3917321,92	2	2	4	0,2	0,8	1,0	Dome, 2 m wide, $0,2 \mathrm{~m}$ high
DOMED	882	hb074	smalliome	611067,88	3917316,04	2	2	4	0,2	0,8	1,0	Small Dome, 2 m wide, $0,2 \mathrm{~m}$ high
DOME D	883	hb075	SmallDome	611066,09	3917316,08	2	2	4	0,2	0,8	1,0	Small Dome, 2 m wide, $0,2 \mathrm{~m}$ high
DOMED	884	hb076	smalliome	611059,04	3917319,35	2	2	4	0,2	0,8	1,0	Small Dome, 2 m wide, $0,2 \mathrm{~m} \mathrm{high}$
DOMED	885	hb077	smalliome	611035,90	3917248,80	2	2	4	0,2	0,8	1,0	small Dome, 2 m wide, $0,2 \mathrm{~m}$ high
DOMED	887 h	hb079	Smalliome	611002,27	3917258,90	2	2	4	0,2	0,8	1,0	Small Dome, 2 m wide, $0,2 \mathrm{~m}$ high
DOMED	888	hbo80	smalliome	610989,80	3917259,21	2	2	4	0,2	0,8	1,0	Small Dome, 2 m wide, $0,2 \mathrm{~m}$ high
DOMED	892	hb085	Smalliome	611103,87	3917401,74	2	2	4	0,2	0,8	1,0	Small Dome, 2 m wide, $0,2 \mathrm{~m}$ high
DOMED	893 h	hb086	smalliome	611108,92	3917389,34	2	2	4	0,2	0,8	1,0	Small Dome, 2 m wide, $0,2 \mathrm{~m}$ high
DOMED	904	hb110	smalliome	610899,55	3917431,53	2	2	4	0,2	0,8	1,0	Small Dome, 2 m wide, $0,2 \mathrm{~m} \mathrm{high}$
DOMED	905	hb984	smalliome	610792,01	3917625,91	2	2	4	0,2	0,8	1,0	Small Dome 2m wide, $0,2 \mathrm{~m}$ high.
DOMED	906 h	hb984	smalliome	610788,52	3917628,94	2	2	4	0,2	0,8	1,0	small Dome 2m wide, $0,2 \mathrm{~m}$ high.
DOMED	1032	hb130	smalldome	610896,49	3917740,84	2	2	4	0,2	0,8	1,0	Dome, $2 \mathrm{~m}, 0,2 \mathrm{~m}$ high
DOMED	1042	hb365	smalliome	609233,11	3918195,97	2	2	4	0,2	0,8	1,0	small dome, $2 \times 2 \times 0,2 \mathrm{~m}$
DOME D	1043	hb369	small Dome	609250,21	3918238,84	2	2	4	0,2	0,8	1,0	small dome, $2 \times 2 \times 0,2 \mathrm{~m}$
DOMED	1162	hb573	smalliome	609328,01	3918207,96	2	2	4	0,2	0,8	1,0	Dome $2 \times 2 \times 0,2$
DOMED	1163 h	hb574	smalldome	609331,37	3918202,85	2	2	4	0,2	0,8	1,0	Dome $2 \times 2 \times 0,2$
DOMED	1164	hb575	smalldome	609365,53	3918214,39	2	2	4	0,2	0,8	1,0	Small Dome $2 \times 2 \times 0,2$
DOMED	1230	hb309b	smalliome	609304,80	3917543,78	2	2	4	0,2	0,8	1,0	2 low domes $2 \times 2 \times 0,2 \mathrm{~m}$ AUG2016: separated in hb309a and b.
DOME D	39	Placemark	SmallDome	609242,15	3917666,79	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small dome ($<3 \mathrm{~m}$ wide, $<0,3 \mathrm{~m}$ high), placed in GPS positioned outline. Vol $=$ average $=0,8 \mathrm{~m}^{3}, \mathrm{~L}, \mathrm{~W}$ not recorded
DOME D	40	Placemark	Smalliome	609247,21	3917676,33	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small dome (<3m wide, <0,3m high), placed in GPS positioned outline. Vol $=$ average $=0,8 \mathrm{~m}^{3}, \mathrm{~L}, \mathrm{~W}$ not recorded
DOME D	41	Placemark	Smalliome	609263,66	3917686,17	$\begin{array}{\|c\|} \hline \text { nocord } \\ \hline \text { recol } \\ \hline \text { rocer } \\ \hline \end{array}$				0,8		Small dome (<3m wide, $<0,3 \mathrm{~m}$ high), placed in GPS positioned outline. Vol $=$ average $=0,8 \mathrm{~m}^{3}, \mathrm{~L}, \mathrm{~W}$ not recorded
DOME D	42	Placemark	Smalliome	609250,40	3917691,31	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small dome ($<3 \mathrm{~m}$ wide, $<0,3 \mathrm{~m}$ high), placed in GPS positioned outline. Vol $=$ average $=0,8 \mathrm{~m}^{3}, \mathrm{~L}, \mathrm{~W}$ not recorded
DOME D	43	Placemark	SmallDome	609298,90	3917671,16	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \end{array}$				0,8		Small dome ($<3 \mathrm{~m}$ wide, $<0,3 \mathrm{~m}$ high), placed in GPS positioned outline. Vol $=$ average $=0,8 \mathrm{~m}^{3}, \mathrm{~L}, \mathrm{~W}$ not recorded
DOME D	44	Placemark	Smalldome	609304,06	3917684,96	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small dome (<3m wide, <0,3m high), placed in GPS positioned outline. Vol $=$ average $=0,8 \mathrm{~m}^{3}, \mathrm{~L}, \mathrm{~W}$ not recorded
DOME D	45	Placemark	Smalliome	609279,62	3917686,94	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small dome ($<3 \mathrm{~m}$ wide, $<0,3 \mathrm{~m}$ high), placed in GPS positioned outline. Vol $=$ average $=0,8 \mathrm{~m}^{3}, \mathrm{~L}, \mathrm{~W}$ not recorded
DOME D	46	Placemark	Smalliome	609263,40	3917674,53	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small dome ($<3 \mathrm{~m}$ wide, $<0,3 \mathrm{~m}$ high), placed in GPS positioned outline. Vol = average $=0,8 \mathrm{~m}^{3}, \mathrm{~L}, \mathrm{~W}$ not recorded
DOME D	47	Placemark	Smalliome	609288,09	3917683,62	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small dome ($<3 \mathrm{~m}$ wide, $<0,3 \mathrm{~m}$ high), placed in GPS positioned outline. Vol $=$ average $=0,8 \mathrm{~m}^{3}, \mathrm{~L}, \mathrm{~W}$ not recorded
DOME D	48	Placemark	Smalldome	609299,46	3917695,29	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \end{array}$				0,8		Small dome (<3m wide, <0,3m high), placed in GPS positioned outline. Vol $=$ average $=0,8 \mathrm{~m}^{3}, \mathrm{~L}, \mathrm{~W}$ not recorded
DOME D	176	hb317	Smalliome	609335,11	3917550,27	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small domes, placed within GPS position outline, no record on L / W, average $0,8 \mathrm{~m}^{3}$ midden volume
DOME D	178	hb316	Smalliome	609349,29	3917546,83	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small domes, placed within GPS position outline, no record on L / W, average $0,8 \mathrm{~m}^{3}$ midden volume
DOME D	179	hb315	Smalliome	609338,52	3917544,00	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small domes, placed within GPS position outline, no record on L/W, average $0,8 \mathrm{~m}^{3}$ midden volume
DOME D	180	hb314	Smalldome	609336,29	3917525,50	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small domes, placed within GPS position outline, no record on L / W, average $0,8 m^{3}$ midden volume
DOME D	181	hb311	SmallDome	609327,23	3917519,54	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small domes, placed within GPS position outline, no record on L / W, average $0,8 \mathrm{~m}^{3}$ midden volume
DOME D	182	hb310	Smalliome	609307,85	3917529,29	$\begin{array}{\|c\|} \hline \text { nocord } \\ \hline \text { recol } \\ \hline \text { rocer } \\ \hline \end{array}$				0,8		Small domes, placed within GPS position outline, no record on L / W, average $0,8 \mathrm{~m}^{3}$ midden volume
DOME D	183	Placemark	SmallDome	609333,82	3917536,30	$\begin{array}{\|c\|c\|} \hline \text { nocord } \\ \hline \end{array}$				0,8		Small domes, placed within GPS position outline, no record on L/W, average $0,8 \mathrm{~m}^{3}$ midden volume
DOME D	184	Placemark	SmallDome	609333,82	3917536,30	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small domes, placed within GPS position outline, no record on L/W, average $0,8 \mathrm{~m}^{3}$ midden volume
DOME D	185	Placemark	Smalliome	609334,43	3917546,22	$\begin{array}{\|c\|} \hline \text { nocord } \\ \hline \text { recol } \\ \hline \text { rocer } \\ \hline \end{array}$				0,8		Small domes, placed within GPS position outline, no record on L / W, average $0,8 \mathrm{~m}^{3}$ midden volume
DOME D	186	Placemark	Smalliome	609325,70	3917545,35	$\begin{array}{\|c\|c\|} \hline \text { nocord } \\ \hline \end{array}$				0,8		Small domes, placed within GPS position outline, no record on L / W, average $0,8 \mathrm{~m}^{3}$ midden volume
DOME D	187	Placemark	Smalliome	609311,53	3917532,72	$\begin{array}{\|c\|} \hline \text { nocord } \\ \hline \text { recor } \\ \hline \text { rocer } \\ \hline \end{array}$				0,8		Small domes, placed within GPS position outline, no record on L/W, average $0,8 \mathrm{~m}^{3}$ midden volume
DOME D	188	Placemark	SmallDome	609311,49	3917539,71	$\begin{array}{\|c\|} \hline \text { no } \\ \text { record } \\ \hline \end{array}$				0,8		Small domes, placed within GPS position outline, no record on L / W, average $0,8 \mathrm{~m}^{3}$ midden volume

	womem		mentas	mensz					
omo		mem	emasas	3nsara			\％		
nowe	mpamen	Nome	（enver	zursas					
			ansza	mospam			\％		
			amse	sumse			${ }^{\circ}$		
			amese						
\％omo	whomen	bome	（emmo	minser	\pm		${ }^{\circ}$		
amo	Nsmame	bem	memas	msses			${ }^{\circ}$		
							，		sammom
mome	${ }^{2 m \times 2 a s}$	mom	\％emsa	1 mmeax	\％		\because		
somo	mamy	meme	meman	mmsex					come
			manas	mismas					
	${ }^{2 \times 4 \times 29}$		cenas	mmsars	\％		${ }^{\circ}$		
omo	mama	meme	Onasy	mmsas	${ }^{2}$		${ }^{\circ}$		
omo	$2{ }^{20} 4$	ema	comes	menas	\ldots				
	mpent		menss	mpspes			\％		
	2mamo		Smasa	msseas			，		
omo	${ }^{23}$		comes	smpate	0				为
omomo	${ }^{20604}$	－	2mmo	mpracer	\ldots		${ }^{\circ}$		
	${ }^{22 m a s}$		209368	mysas					\％
	${ }^{23} 2$		cense	\％ene			$\stackrel{ }{\circ}$		边
Some	${ }^{224 \times 29}$	misam	comsom	manae	\％		${ }^{\circ}$		
		biom	20asac	$\underbrace{}_{\substack{\text { spmas } \\ \text { nvan }}}$	\％		\％		
amo	mmen	em	Lemssa	mprase	$\%$		${ }_{0}$		
momo	$1{ }^{\text {zasamama }}$	Simam	Lemsa	msmasa	\ldots		\％		
	${ }^{20 \times 298}$		emasar	mmpas			${ }^{\circ}$		
	$2{ }^{20}$ ans		cmas	sprsas					
momo	mame	mome	amsmo	mosam	\％		${ }^{\circ}$		
memo	mama		censa	3mseme					
	${ }^{2 \times 3 \times 9}$	Smome	\％onas	mspsse	\ldots		＊		
	${ }^{20}$		Comalis	mmssam	\％		\ldots		
omoto	${ }^{3}$ wamas	\％om	comeas	mpzase			${ }^{\circ}$		
Souso	mame		meses	msmss					
	${ }^{22}$		emesas	зпņas	\％		0		
amem	${ }_{\text {atem }}$	mome		${ }_{\text {max }}^{\text {mams．}}$	\ldots		\％		
									\％mas
	meme		${ }^{\text {cospma }}$				\ldots		
	隹		，						matem
	cosme		\％	momom		\％			Amemmemememat

	은 un 0 0	Name	Site type	X (UTM)	Y (UTM)	$\begin{aligned} & \stackrel{5}{\stackrel{\rightharpoonup}{5}} \\ & \stackrel{1}{4} \end{aligned}$	$\begin{aligned} & \text { 둔 } \\ & \frac{0}{3} \end{aligned}$	N			$\begin{aligned} & \frac{0}{7} \\ & \frac{1}{4} \\ & 3 \end{aligned}$	Observations
DOMED	240	hb257	Smalliome	610990,54	3917144,77	3	1,5	4,5	0,1	0,5	2,0	Small dome, Lenght 3m, Width 1,5m, Height 0,1m. Mapped February 19, 2011, H.Bjerck
DOMED	273	hb294	Smallidome	611069,76	3917031,49	3	1,5	4,5	0,1	0,5	2,0	Small dome Lenght 3m Width 1,5m Height 0,1m Mapped February 19, 2011, H. Fjerck
DOMED	133	hb533	Smallidome	609398,40	3917879,61	2	1	2	0,2	0,4	2,0	Dome, small, $2 \times 1 \times 0,2$
DOMED	269	hb289	SmallDome	611113,51	3917070,61	2	1	2	0,2	0,4	2,0	Small dome Lenght 2 m Width 1 m Height 0,2m Mapped February 19, 2011, H.Bjerck
DOMED	1034	hb115	Smallidome	610842,11	3917705,08	2	1	2	0,2	0,4	2,0	Dome, $2 \times 1 \mathrm{~m}, 0,2 \mathrm{~m} \mathrm{high}$
DOMED		hb353b	Smallidome	609431,24	3917690,18	2	2	4	0,1	0,4	1,0	single small dome, $2 \times 2 \times 0,1$
DOMED	10	hb353a	Smalliome	609422,40	3917693,49	2	2	4	0,1	0,4	1,0	single small dome, $2 \times 2 \times 0,1$
DOMED	198	hb319	Smallidome	609363,84	3917558,85	2	2	4	0,1	0,4	1,0	Low dome 2x2m, (AUG2016: Height estimate 0,1m)
DOMED	199	hb320	Smallidome	609353,83	3917586,92	2	2	4	0,1	0,4	1,0	Low dome 2x2m (AUG2016: Height estimate 0,1m)
DOMED	201	hb318	Smallidome	609353,08	3917556,02	2	2	4	0,1	0,4	1,0	Low dome 2x2m (AUG2016: Height estimate 0,1m)
DOMED	202	hb307	Smallidome	609312,92	3917591,01	2	2	4	0,1	0,4	1,0	2 low domes, ca $2 \times 2 \times 0,1 \mathrm{~m}, 3 \mathrm{~m}$ apart. Could be start of ring, dwelling
DOMED	202	hb3078	Smallidome	609312,92	3917591,01	2	2	4	0,1	0,4	1,0	3 low domes, ca $2 \times 2 \times 0,1 \mathrm{~m}, 3 \mathrm{~m}$ apart. Could be start of ring, dwelling
DOMED	244	hb261	Smallidome	611018,97	3917140,98	2	2	4	0,1	0,4	1,0	Small dome Lenght 2 m Width 2 m Height 0,1m Mapped February 19, 2011, H..jjerck
DOMED	251	hb269	SmallDome	611061,28	3917121,38	2	2	4	0,1	0,4	1,0	Small dome Lenght 2 m Width 2 m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOMED	265	hb284	Smallidome	611128,23	3917088,80	2	2	4	0,1	0,4	1,0	Small dome Lenght 2 m Width 2 m Height 0,1m Mapped February 19, 2011, t..jerck
DOME D	349	hb1	Smalliome	608731,33	3916989,74	2	2	4	0,1	0,4	1,0	Low shell midden dome. Measurements in meters Height 0.1 Lenght 2 With 2 Surveyed by H. Bjerck and H. Breivik, February 22, 2011
DOMED	354	hb084	Smalliome	609024,36	3916648,66	2	2	4	0,1	0,4	1,0	Low shell midden dome. Measurements in meters Height 0.1 Lenght 2 With 2 Surveyed by H. Bjerck and H. Breivik, February 22, 2011
DOME D	355	hb085	Smalliome	609011,01	3916613,01	2	2	4	0,1	0,4	1,0	Low shell midden dome. Measurements in meters Height 0.1 Lenght 2 With 2 Surveyed by H. Bjerck and H. Breivik, February 22, 2011
DOME D	357	hb087	Smalliome	609013,89	3916658,19	2	2	4	0,1	0,4	1,0	Low shell midden dome. Measurements in meters Height 0.1 Lenght 2 With 2 Surveyed by H. Bjerck and H. Breivik, February 22, 2011
DOME D	365	hb125	Smalliome	609052,42	3916629,42	2	2	4	0,1	0,4	1,0	Low shell midden dome. Measurements in meters Height 0.1 Lenght 2 With 2 Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DOMED	366	126	Smalliome	609060,14	3916653,98	2	2	4	0,1	0,4	1,0	Low shell midden dome. Measurements in meters Height 0.1 Lenght 2 With 2 Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DOMED	729	hb009	Smalliome	610044,84	3916970,12	2	2	4	0,1	0,4	1,0	Small shell midden dome, Lenght 2 m , With 2 m , Height 0,1m. Surveyed by H.Bjerck and H. Breivik, February 20, 2011
DOME	730	hb01	Smalliome	610036,39	3916988,89	2	2	4	0,1	0,4	1,0	Small shell midden dome, Lenght 2 m , With 2 m , Height 0,1m. Surveyed by H.Bjerck and H. Breivik, February 20, 2011
DOMED	818	hb894	Smalliome	610327,22	3917433,25	2	2	4	0,1	0,4	1,0	Dome, 2m, 0,1 high
DOMED	843	hb967	Smalliome	610479,97	3917336,72	2	2	4	0,1	0,4	1,0	Dome, 2 m wide, $0,1 \mathrm{~m}$ high
DOMED	929	hb023	Smalliome	610939,98	3917480,01	2	2	4	0,1	0,4	1,0	Small Dome, 2 m wide, 0,1m high
DOME D	1198	hb205	Small Dome	609377,85	3918427,47	2	2	4	0,1	0,4	1,0	Small dome, shell midden exposed in tree fall, formation ca2x2, shells in dark soil w charcoal
DOMED	278	hb299	Smalliome	611072,40	3916994,31	3	2	6	0,05	0,3	1,5	Small dome Lenght 3m Width 2 m Height 0,05m Mapped February 19, 2011, H . j jerck
DOMED	55	hb397	Smalliome	609338,31	3917828,51	1,5	1,5	2,25	0,1	0,2	1,0	small domes $1-2 \mathrm{~m} \mathrm{in} \mathrm{d} 0,,1 \mathrm{~m}$ high
DOMED	835	hb959	Smallidome	610431,86	3917337,90	1,5	1,5	2,25	0,1	0,2	1,0	Dome, $1,5 \mathrm{~m}$ wide, $0,1 \mathrm{~m}$ high
DOMED	11	hb355	Smalliome	609396,65	3917734,32	2	1	2	0,1	0,2	2,0	single small dome, $2 \times 1 \times 0,1$
DOMED	12	hb356	Smalliome	609391,53	3917743,72	2	1	2	0,1	0,2	2,0	single small dome, $2 \times 1 \times 0,1$
DOMED	18	hb347	Smalliome	609171,72	3917724,32	2	1	2	0,1	0,2	2,0	single small dome, $2 \times 1 \times 0,1$
DOMED	50	hb346	Smallidome	609173,88	3917739,73	2	1	2	0,1	0,2	2,0	single small dome, $2 \times 1 \times 0,1$
DOMED	172	hb298	Smalliome	609420,49	3917542,01	2	1	2	0,1	0,2	2,0	dome $2 \times 1 \times 0,1 \mathrm{~m}$
DOMED	243	hb260	Smallidome	611022,61	3917143,98	2	1	2	0,1	0,2	2,0	Small dome Lenght 2m Width 1 m Height 0,1m Mapped February 19, 2011, H..jerck
DOMED	253	hb272	Smallidome	611079,33	3917130,21	2	1	2	0,1	0,2	2,0	Small dome Lenght 2 m Width 1 m Height 0,1m Mapped February 19, 2011, H . Bjerck
DOMED	257	hb276	SmallDome	611145,18	3917125,49	2	1	2	0,1	0,2	2,0	Small dome Lenght 2 m Width 1 m Height 0,1m Mapped February 19, 2011, H.Bjerck
DOME D	727	hb007	Small Dome	610068,08	3916972,65	2	1	2	0,1	0,2	2,0	Small shell midden dome, Lenght 2 m , With 1 m , Height $0,1 \mathrm{~m}$. Surveyed by H.Bjerck and H. Breivik, February 20, 2011
DOMED	828	hb950	smalliome	610414,19	3917344,52	1	1	1	0,2	0,2	1,0	Dome, 1 m wide, $0,2 \mathrm{~m}$ high
DOMED	832	hb955	smalliome	610412,34	3917341,47	1	1	1	0,2	0,2	1,0	Dome, 1 m wide, $0,2 \mathrm{~m} \mathrm{high}$
DOMED	891	hb083	SmallDome	611112,48	3917389,16	1	1	1	0,2	0,2	1,0	Small Dome, 1 m wide, $0,2 \mathrm{~m} \mathrm{high}$
DOMED	910	hb990	Small Dome	610899,93	3917446,98	1	1	1	0,2	0,2	1,0	Small Dome, 1 m wide, $0,2 \mathrm{~m}$ high
DOME D	911	hb991	Smalliome	610894,66	3917450,13	1	1	1	0,2	0,2	1,0	Small Dome, 1 m wide, $0,2 \mathrm{~m}$ high
DOMED	121	hb520	Smalliome	609437,03	3917928,15	1	1	1	0,1	0,1	1,0	Dome, small, $1 \times 1 \times 0,1$
DOMED	241	hb258	SmallDome	611011,92	3917144,25	1	1	1	0,1	0,1	1,0	Small dome Lenght 1m Width 1 m Height 0,1m Mapped February 19, 2011, H..jerck
DOMED	277	hb298	Smallidome	611030,86	3917044,82	1	1	1	0,1	0,1	1,0	Small dome Lenght 1m Width 1 m Height 0,1m Mapped February 19, 2011, $\mathrm{H} . \mathrm{Bj}$ jerck
DOME D	333	hb071	SmallDome	608525,91	3917047,28	1	1	1	0,1	0,1	1,0	Low shell midden dome. Measurements in meters Height 0.1 Lenght 1 width 1 Surveyed by H . Bjerck and H. Breivik, February 22, 2011
DOMED	346	hb074	Smalliome	608580,85	3917107,80	1	1	1	0,1	0,1	1,0	Low shell midden dome. Measurements in meters Height 0.1 Lenght 1 width 1 Surveyed by H. Bjerck and H. Breivik, February 22, 2011
DOME D	722	hb002	Smalliome	610043,37	3916982,53	1	1	1	0,1	0,1	1,0	Small shell midden dome, Lenght 1 m , width 1 m ,Height 0,1m. Surveyed by H.Bjerck and H. Breivik, February 20, 2011
DOME D	723	hb003	Smallidome	610053,83	3916973,00	1	1	1	0,1	0,1	1,0	Small shell midden dome, Lenght 1 m , width 1 m , Height $0,1 \mathrm{~m}$. Surveyed by H.Bjerck and H. Breivik, February 20, 2011
DOME D	724	hb004	Smalliome	610057,32	3916969,82	1	1	1	0,1	0,1	1,0	```Small shell midden dome Lenght 3m width 2 m Height 0,1m Surveye4d by H.Bjerck and H. Breivik, February 20, 2011```
DOMED	725	hb005	Smalliome	610060,80	3916966,64	1	1	1	0,1	0,1	1,0	Small shell midden dome, Lenght 1 m , width 1 m , Height $0,1 \mathrm{~m}$. Surveyed by H.Bjerck and H. Breivik, February 20, 2011
DOMED	728	hb008	Smalliome	610059,17	3916972,87	1	1	1	0,1	0,1	1,0	Small shell midden dome, Lenght 1 m , width 1 m , Height 0,1m. Surveyed by H.Bjerck and H. Breivik, February 20, 2011
DOMED	731	hb011	SmallDome	610052,50	3916991,58	1	1	1	0,1	0,1	1,0	Small shell midden dome, Lenght 1 m , width 1 m ,Height 0,1m. Surveyed by H.Bjerck and H. Breivik, February 20, 2011
DOMED	263	hb282	Smalliome	611103,97	3917117,23	1	1	1	0,05	0,1	1,0	Small dome Lenght 1m Width 1m Height 0,05m Mapped February 19, 2011, H.Bjerck

	은 플 0	Name	Site type	X (UTM)	Y (UTM)	践	$\stackrel{5}{\square}$	$\begin{gathered} \stackrel{\rightharpoonup}{E} \\ \stackrel{\text { UN }}{4} \end{gathered}$		$\begin{aligned} & \text { m } \\ & \frac{\bar{\circ}}{\bar{\circ}} \end{aligned}$		Observations
DW A	380	$\begin{array}{\|l\|l\|} \text { hb079 } \\ \text { Hashmurn } \end{array}$	Large Dwell ing	608748,06	3916723,39				1 1			Dwelling structure, house pit. Pit adjacent to large dome (1m high, to the S), low shell midden wall on the N side. Referred to as "Hasmurn" in Lothrop. in Lothrop's map there are 7 hous pits at the site -- we have noted 4. Surveyed by H. Bjerck and H. B
DW A	381	hb080	Large Dwell ing	608754,89	3916710,85				1			Dwelling structure, house pit. Pit adjacent to large dome (1m high, to the north), low shell midden wall on the south side. Referred to as "Hasmurn" in Lothrop. Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DW A	382	hb82	Large Dwelling	608791,78	3916688,31							Dwelling structure, house pit. Situated behind the top of the beach ridge, dug into the beach formation, shell midden dome on the low side Referred to as "Has murn" in Lothrop. Surveved by H Bierck and H Breivik, February 23, 2011
DW A	383	b083	Large Dwelling	608791,63	3916682,13							Dwell ing structure, house pit. Situated behind the top of the beach ridge, dug into the beach formation, shell midden dome on the low side Referred to as "Hasmurn" in Lothrop. Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DW A	389	$\begin{aligned} & \text { hb106 } \\ & \text { HALPAI } \\ & \hline \end{aligned}$	Large Dwelling	609243,83	3916729,91				0,2-1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest ($1-1.2 \mathrm{~m}$), other walls $0.2-0.5 \mathrm{~m}$
DW A	390	hb107	Large Dwell ing	609244,58	3916727,48				0,2-1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest (1-1.2 m), other walls $0.2-0.5 \mathrm{~m}$
DWA	391	108	Large Dwelling	609252,59	3916723,52				, 2-1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest ($1-1.2 \mathrm{~m}$), other walls $0.2-0.5 \mathrm{~m}$
DW A	392	hb109	Large Dwelling	609257,78	3916717,21				0,2-1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest ($1-1.2 \mathrm{~m}$), other walls $0.2-0.5 \mathrm{~m}$
DW A	393	hb110	Large Dwelling	609261,27	3916714,03				0,2-1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest ($1-1.2 \mathrm{~m}$), other walls $0.2-0.5 \mathrm{~m}$
Na	394	hb11	Large Dwell ing	609266,54	3916710,81				0,2-1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest (1-1.2 m), other walls $0.2-0.5 \mathrm{~m}$
ow A	395	hb112	Large Dwell ing	609271,74	3916704,50				0,2-1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest (1-1.2 m), other walls $0.2-0.5 \mathrm{~m}$
DW A	396	hb113	Large Dwelling	609280,57	3916701,19				2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest ($1-1.2 \mathrm{~m}$), other walls $0.2-0.5 \mathrm{~m}$
DW A	397	hb114	Large Dwell ing	609264,46	3916698,49				0,2-1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest ($1-1.2 \mathrm{~m}$), other walls $0.2-0.5 \mathrm{~m}$
DWA	398	hb115	Large Dwelling	609262,75	3916701,62				- 1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest ($1-1.2 \mathrm{~m}$), other walls $0.2-0.5 \mathrm{~m}$
DW A	399	hb116	Large Dwell ing	609259,34	3916707,89				0,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest ($1-1.2 \mathrm{~m}$), other walls $0.2-0.5 \mathrm{~m}$
ow A	400	hb117	Large Dwell ing	609248,72	3916711,24				0,2-1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest ($1-1.2 \mathrm{~m}$), other walls $0.2-0.5 \mathrm{~m}$
DW A	401	hb	Large Dwell ing	609245,31	3916717,51				0,2-1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest ($1-1.2 \mathrm{~m}$), other walls $0.2-0.5 \mathrm{~m}$
DW A	402	hb119	Large Dwell ing	609239,33	3916720,75				0,2-1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest ($1-1.2 \mathrm{~m}$), other walls $0.2-0.5 \mathrm{~m}$
DW A	403	hb	Large Dwelling	609248,42	3916698,88				0,2-1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Hali pai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest ($1-1.2 \mathrm{~m}$), other walls $0.2-0.5 \mathrm{~m}$
ow A	404	hb121	Large Dwelling	609253,54	3916689,48				0,2-1,2			Dwelling structure, house pit, part of large complex - 16 houses, referred to as "Halipai" in Lothrop. Situated at, below and above the lowest beach ridge. The E wall, facing Canal Beagle is consequently the largest/higest ($1-1.2 \mathrm{~m}$), other walls $0.2-0.5 \mathrm{~m}$
DW A	405	Placemark	Large Dwelling	610722,86	391823,49							Eroded large dwelling structure, $20-30 \mathrm{~cm}$ thich layer of midden in road cut.
DW A	406	Placemark	Large Dwelling	610726,92	3918227,41							Eroded large dwelling structure, 20-30 cm thich layer of midden in road cut.
DW A	407	hb110	Large Dwelling	610730,62	3918221,45							Eroded large dwelling structure, $20-30 \mathrm{~cm}$ thich layer of midden in road cut.
DWA	421	hb	Large Dwelling	610352,29	3918213,01				0,3-0,8			Dwelling structure in complex - large, ca 0,3-0,8m high walls/domes, house pits around 3 m . Complex is badly damaged by road, shell midden visible in road cut upside road.
DW A	422	hb	Large Dwell ing	610366,25	3918223,94				0,3-0,8			Dwelling structure in complex - large, ca $0,3-0,8 \mathrm{~m}$ high walls/domes, house pits around 3 m . Complex is badly damaged by road, shell midden visible in road cut upside road.
DW A	423	hb612	Large Dwell ing	610371,90	3918236,18				0,3-0,8			Dwelling structure in complex - large, ca $0,3-0,8 \mathrm{~m}$ high walls/domes, house pits around 3 m . Complex is badly damaged by road, shell midden visible in road cut upside road.
DW A	424	hb613	Large Dwell ing	610370,27	3918242,40				0,3-0,8			Dwelling structure in complex - large, ca $0,3-0,8 \mathrm{~m}$ high walls/domes, house pits around 3 m . Complex is badly damaged by road, shell midden visible in road cut upside road.
Na	425	hb614	Large Dwell ing	610368,64	3918248,63				0,3-0,8			Dwelling structure in complex - large, ca $0,3-0,8 \mathrm{~m}$ high walls/domes, house pits around 3 m . Complex is badly damaged by road, shell midden visible in road cut upside road.
DW A	426	hb615	Large Dwell ing	610374,06	3918251,58				0,3-0,8			Dwelling structure in complex - large, ca 0,3-0,8m high walls/domes, house pits around 3m. Complex is badly damaged by road, shell midden visible in road cut upside road.
va	428	hb617	Large Dwell ing	610374,75	3918279,40				0,3-0,8			Dwelling structure in complex - large, ca $0,3-0,8 \mathrm{~m}$ high walls/domes, house pits around 3 m . Complex is badly damaged by road, shell midden visible in road cut upside road.
DW A	429	hb618	Large Dwelling	610369,63	3918288,80				0,3-0,8			Dwelling structure in complex - large, ca $0,3-0,8 \mathrm{~m}$ high walls/domes, house pits around 3 m . Complex is badly damaged by road, shell midden visible in road cut upside road.
DW A	430	hb625	Large Dwell ing	610378,58	3918217,46				0,3-0,8			Dwelling structure in complex - large, ca $0,3-0,8 \mathrm{~m}$ high walls/domes, house pits around 3 m . Complex is badly damaged by road, structure partly buried by road fill. Situated near beach below road.
DW A	431	hb626	Large Dwell ing	610382,63	3918226,08				0,3-0,8			Dwelling structure in complex - large, ca $0,3-0,8 \mathrm{~m}$ high walls/domes, house pits around 3 m . Complex is badly damaged by road, structure partly buried by road fill. Situated near beach below road.
DW A	432	hb627	Large Dwelling	610386,14	3918222,45				0,3-0,8			Dwelling structure in complex - large, ca $0,3-0,8 \mathrm{~m}$ high walls/domes, house pits around 3 m . Situated near beach below road - not damaged.
DW A	433	hb628	Large Dwelling	610383,01	3918219,70				0,3-0,8			Dwelling structure in complex - large, ca $0,3-0,8 \mathrm{~m}$ high walls/domes, house pits around 3 m . Situated near beach below road - not damaged.
ow	443	hb639	Large Dwelling	610754,69	3918282,42				0,3-1,0			Dwell ing structure in complex - large, ca 0,3-1 m high walls/domes, 2-3m wide house pits $3-4 \mathrm{~m}$.
DW A		hb640	Large Dwelling	610756,40	3918279,29				0,3-1,0			Owelling structure in complex - large, ca $0,3-1 \mathrm{~m}$ high walls/domes, $2-3 \mathrm{~m}$ wide house pits $3-4 \mathrm{~m}$.

	은 商 0	Name	Site type	X (UTM)	Y (UTM)	¢	$\begin{aligned} & \frac{5}{\mathbf{t}} \\ & \frac{1}{3} \end{aligned}$	$\stackrel{\tilde{N}}{\stackrel{N}{E}}$		$\begin{gathered} \widetilde{\widetilde{m}} \\ \frac{\square}{\bar{O}} \end{gathered}$	은 $\frac{0}{3}$ 3	Observations
DW A	445	hb641	Large Dwelling	610757,95	3918269,97				0,3-1,0			Dwelling structure in complex - large, ca 0,3-1 h high walls/domes, $2-3 \mathrm{~m}$ wide house pits $3-4 \mathrm{~m}$.
DW A	446	hb642	Large Dwelling	610756,09	3918266,93				0,3-1,0			Dwell ing structure in complex - large, ca $0,3-1 \mathrm{~m}$ high walls/domes, $2-3 \mathrm{~m}$ wide house pits $3-4 \mathrm{~m}$.
DW A	h	hb643	Large Dwelling	610750,60	3918260,88				0,3-1,0			Dwell ing structure in complex - large, ca $0,3-1 \mathrm{~m}$ high walls/domes, $2-3 \mathrm{~m}$ wide house pits $3-4 \mathrm{~m}$.
DW A	48 h	44	Large Dwelling	610748,66	3918254,74				0,3-1,0			Dwell ing structure in complex - large, ca 0,3-1 h high walls/domes, $2-3 \mathrm{~m}$ wide house pits $3-4 \mathrm{~m}$.
ow A	449 h	hb645	Large Dwelling	610746,73	3918248,60				0,3-1,0			Dwelling structure in complex - large, ca $0,3-1 \mathrm{~m}$ high walls/domes, $2-3 \mathrm{~m}$ wide house pits $3-4 \mathrm{~m}$.
DW A	450 h	hb646	Large Dwelling	610743,01	3918242,51				0,3-1,0			Dwell ing structure in complex - large, ca $0,3-1 \mathrm{~m}$ high walls/domes, $2-3 \mathrm{~m}$ wide house pits $3-4 \mathrm{~m}$.
DW A	451	hb647	Large Dwelling	610741,30	3918245,64				0,3-1,0			Dwell ing structure in complex - large, ca $0,3-1 \mathrm{~m}$ high walls/domes, $2-3 \mathrm{~m}$ wide house pits $3-4 \mathrm{~m}$.
DW A	452 h	hb648	Large Dwelling	610737,81	3918248,82				0,3-1,0			Dwell ing structure in complex - large, ca $0,3-1 \mathrm{~m}$ high walls/domes, $2-3 \mathrm{~m}$ wide house pits $3-4 \mathrm{~m}$.
A	453	hb649	Large Dwelling	610734,25	3918248,91				0,3-1,0			Dwell ing structure in complex - large, ca 0, $3-1 \mathrm{~m}$ high walls/domes, $2-3 \mathrm{~m}$ wide house pits $3-4 \mathrm{~m}$.
DW A	454 ¢	hb650	Large Dwelling	610728,98	3918252,13				0,3-1,0			Dwell ing structure in complex - large, ca 0,3-1m high walls/domes, $2-3 \mathrm{~m}$ wide house pits $3-4 \mathrm{~m}$.
DW A	455	hb651	Large Dwelling	610725,11	3918239,86				0,3-1,0			Dwell ing structure in complex - large, ca $0,3-1 \mathrm{~m}$ high walls/domes, $2-3 \mathrm{~m}$ wide house pits $3-4 \mathrm{~m}$.
DW A	456 h	hb652	Large Dwelling	610730,38	3918236,63				0,3-1,0			Dwell ing structure in complex - large, ca $0,3-1 \mathrm{~m}$ high walls/domes, $2-3 \mathrm{~m}$ wide house pits $3-4 \mathrm{~m}$.
DW A	463	hb921	Large Dwelling	610551,17	3918346,19				0,5			Dwelling structure, w dome and high walls $(50 \mathrm{~cm})$ - of shell midden on one side, of gravel on other, pit 4 m . Complex on ledge in slope to the sea/inlet. hb921-923 are adjacent.
DWA	464	hb922	Large Dwelling	610553,10	3918352,33				0,5			Dwelling structure, w dome and high walls (50 cm) - of shell midden on one side, of gravel on other, pit d 4 m . Complex on ledge in slope to the sea/inlet. hb921-923 are adjacent.
DW A	479	19	Large Dwelling	610210,69	3917034,45				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
, A	480	hb720	Large Dwelling	610206,95	3917037,28				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	481	hb721	Large Dwelling	610203,37	3917034,27				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	482	722	Large Dwelling	610198,04	3917037,49				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	483	hb 2	Large Dwelling	610189,21	3917040,80				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW	h	hb 2	Large Dwelling	610176,89	3917047,29				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW	485	hb725	Large Dwelling	610162,71	3917050,73				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	486	hb726	Large Dwelling	610164,57	3917053,78				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
ow A	487	hb727	Large Dwelling	610157,44	3917053,95				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	488 h	hb728	Large Dwelling	610155,74	3917057,14				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
ow A	489	hb729	Large Dwelling	610148,42	3917050,94				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit 3 -4m wide. On top of cut in terrace / beach ridge.
ow A	490	hb730	Large Dwelling	610146,82	3917057,18				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
ow A	491	hb731	Large Dwelling	610139,70	3917057,48				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	492	hb732	Large Dwelling	610136,21	3917060,57				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	493	33	Large Dwelling	610139,77	3917060,57				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	494	hb734	Large Dwelling	610145,19	3917063,53				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	495	hb735	Large Dwelling	610141,86	3917072,92				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	h	h	Large Dwelling	610138,37	3917076,07				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DWA	497	h	Large Dwelling	610132,94	3917072,93				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	498 h	hb738	Large Dwelling	610131,09	3917070,06				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	499	hb739	Large Dwelling	610116,91	3917073,59				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	500 h	hb740	Large Dwelling	610122,40	3917079,55				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit 3 -4m wide. On top of cut in terrace / beach ridge.
DW A	501 h	hb741	Large Dwelling	610131,24	3917079,33				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	502	hb742	Large Dwelling	610134,76	3917076,16				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	503 h	hb743	Large Dwelling	610140,16	3917076,17				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	504	hb744	Large Dwelling	610133,25	3917085,57				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit 3 -4m wide. On top of cut in terrace / beach ridge.
DW A	505 h	hb745	Large Dwelling	610131,62	3917091,69				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
ow A	506 h	hb746	Large Dwelling	610124,57	3917094,96				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
ow A	507 h	hb747	Large Dwelling	610131,85	3917100,97				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	508 h	hb748	Large Dwelling	610124,95	3917110,41				>1			Dwelling structure, large, walls / dome >1m high, house pit $3-4 \mathrm{~m}$ wide. On top of cut in terrace / beach ridge.
DW A	509	hb749	Large Dwelling	610119,68	3917113,55				>1			Dwelling structure, large, walls / dome >1m high, house pit 3 -4m wide. On top of cut in terrace / beach ridge.
ow A	510 h	hb750	Large Dwelling	610126,88	3917116,46				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. On top of cut in terrace / beach ridge.
DW A	515 h	hb660	Large Dwelling	610096,40	3917182,24				>1			Dwell ing structure, large, walls / dome >1m high, house pit 3-4m wide. First of the big in NW end of site.
DW A	516 h	hb661	Large Dwelling	610096,25	3917176,06				>1			Dwell ing structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit 3 -4m wide.
DW A	517 h	hb662	Large Dwelling	610101,73	3917179,01				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide.
DWA	518 h	hb663	Large Dwelling	610099,73	3917172,88				>1			Dwell ing structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit 3 -4m wide. Below cut in terrace.
DW A	519 h	hb664	Large Dwelling	610097,88	3917169,83				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	520 h	hb665	Large Dwelling	610105,00	3917169,66				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DWA	521 h	hb666	Large Dwelling	610103,15	3917166,61				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit 3 -4m wide. Below cut in terrace.
DW A	522 h	hb667	Large Dwelling	610112,06	3917166,39				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A		hb668	Large Dwelling	610115,54	3917163,21				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.

	$\begin{aligned} & \text { 은 } \\ & \text { in } \\ & \text { ô } \end{aligned}$	Name	Site type	X (UTM)	Y (UTM)		$\frac{\stackrel{5}{0}}{\frac{1}{3}}$	$\underset{\text { N }}{\substack{\mathrm{N}}}$			$\begin{aligned} & \frac{0}{7} \\ & \frac{1}{3} \\ & 3 \end{aligned}$	Observations
DW A	524 h	hb669	Large Dwelling	610110,20	3917163,35				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	525 h	hb670	Large Dwelling	610115,42	3917158,19				>1			Dwelling structure, large, walls / dome >1m high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	526 h	hb671	Large Dwelling	610113,54	3917153,99				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	52	hb672	Large Dwelling	610120,74	3917156,90				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	528 h	hb673	Large Dwelling	610117,02	3917150,81				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	529 h	hb674	Large Dwelling	610122,29	3917147,59				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	530 h	hb675	Large Dwelling	610122,22	3917144,50				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	531 h	hb676	Large Dwelling	610125,71	3917141,32				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	532	hb677	Large Dwelling	610123,85	3917138,31				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	533 h	hb678	Large Dwelling	610129,27	3917141,23				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	534 h	hb679	Large Dwelling	610130,98	3917138,10				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	535	hb680	Large Dwelling	610130,98	3917138,10				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	536 h	hb681	Large Dwelling	610134,24	3917125,65				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	537 h	hb682	Large Dwelling	610134,01	3917116,38				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	538 h	hb683	Large Dwelling	610133,86	3917110,19							
DW A	539 h	hb684	Large Dwelling	610137,35	3917107,02				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	540 h	hb685	Large Dwelling	610138,98	3917100,79				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	541	hb686	Large Dwelling	610138,82	3917094,61				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	542	hb687	Large Dwelling	610147,73	3917094,39				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	543	hb688	Large Dwelling	610140,53	3917091,48				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	544	hb689	Large Dwelling	610142,16	3917085,25				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	545	hb690	Large Dwelling	610151,14	3917088,02				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	546	hb691	Large Dwelling	610151,07	3917085,03				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	547	hb692	Large Dwelling	610145,57	3917078,98				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	548	hb693	Large Dwelling	610148,99	3917072,71				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	549	hb694	Large Dwelling	610156,26	3917078,72				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	550	hb695	Large Dwelling	610159,75	3917075,54				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	551	hb696	Large Dwelling	610152,47	3917069,54				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	552	hb697	Large Dwelling	610161,38	3917069,32				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	553	hb698	Large Dwelling	610165,02	3917072,32				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	554	hb699	Large Dwelling	610172,07	3917069,06				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	555	hb700	Large Dwelling	610166,65	3917066,10				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	556	hb701	Large Dwelling	610162,93	3917059,86				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	557	hb702	Large Dwelling	610169,99	3917056,74				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	558	hb703	Large Dwelling	610171,92	3917062,87				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	559	hb704	Large Dwelling	610175,41	3917059,70				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	560	hb705	Large Dwelling	610179,05	3917062,70				>1			Dwelling structure, large, walls / dome >1m high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	561	hb706	Large Dwelling	610182,46	3917056,43				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	562	hb707	Large Dwelling	610175,26	3917053,57				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	563	hb708	Large Dwelling	610184,09	3917050,21				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	564	hb709	Large Dwelling	610189,51	3917053,17				>1			Dwelling structure, large, walls / dome >1m high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	565	hb710	Large Dwelling	610194,71	3917046,85				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	566	hb711	Large Dwelling	610198,42	3917052,95				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	567	hb712	Large Dwelling	610200,05	3917046,72				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	568	hb713	Large Dwelling	610207,18	3917046,55				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	569	hb714	Large Dwelling	610214,23	3917043,28				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	570	hb715	Large Dwelling	610217,87	3917046,29				>1			Dwelling structure, large, walls / dome $>1 \mathrm{~m}$ high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	571	hb716	Large Dwelling	610221,44	3917046,20				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	572	hb717	Large Dwelling	610219,50	3917040,16				>1			Dwelling structure, large, walls / dome >1m high, house pit 3-4m wide. Below cut in terrace.
DW A	573	hb718	Large Dwelling	610228,34	3917036,90				>1			Dwelling structure, large, walls / dome >1m high, house pit $3-4 \mathrm{~m}$ wide. Below cut in terrace.
DW A	574	hb871	Large Dwelling	610673,04	3916492,53				1			Dwelling structure, big, walls 1 m , house pit ca $3-4 \mathrm{~m}$. Situated very close to beach.
DW A	575	hb870	Large Dwelling	610676,66	3916490,74				1			Dwelling structure, big, walls 1 m , house pit ca $3-4 \mathrm{~m}$. Situated very close to beach.
DW A	576	hb868	Large Dwelling	610669,23	3916478,55				0,4-1,0			Dwelling structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	577	hb867	Large Dwelling	610660,25	3916475,68				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	578	hb866	Large Dwelling	610670,94	3916475,42				0,4-1,0			Dwelling structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	579	hb864	Large Dwelling	610681,70	3916478,24				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	580	hb865	Large Dwelling	610674,50	3916475,33				0,4-1,0			Dwell ing structure, big, walls 0,4-1m high, house pit ca 3 m .
DW A	581	hb863	Large Dwelling	610681,55	3916472,06				0,4-1,0			Dwelling structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	582	hb862	Large Dwelling	610686,82	3916468,84				0,4-1,0			Dwelling structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	583	hb852	Large Dwelling	610675,29	3916435,11				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	584	hb853	Large Dwelling	610671,96	3916444,47				0,4-1,0			Dwelling structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	585	hb854	Large Dwelling	610661,27	3916444,73				0,4-1,0			Dwelling structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	586	hb855	Large Dwelling	610663,28	3916453,96				0,4-1,0			Dwelling structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	587	hb857	Large Dwelling	610650,81	3916454,34				0,4-1,0			Dwelling structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	588	hb858	Large Dwelling	610647,40	3916460,54				0,4-1,0			Dwelling structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	589	hb859	Large Dwelling	610664,98	3916450,83				0,4-1,0			Dwelling structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	590	hb860	Large Dwelling	610695,65	3916465,53				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	591	hb869	Large Dwelling	610664,12	3916487,96				0,4-1,0			Dwelling structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 .
DW A	592	hb850	Large Dwelling	610694,74	3916428,44				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	593	hb849	Large Dwelling	610687,69	3916431,71				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	594	hb848	Large Dwelling	610683,90	3916422,53				0,4-1,0			Dwell ing structure, big, walls 0,4-1m high, house pit ca 3m.

	은 ~ 0 0	Name	Site type	X (UTM)	Y (UTM)		$\begin{aligned} & \frac{5}{0} \\ & \frac{1}{3} \end{aligned}$	$\underset{\substack{\tilde{\pi} \\ \frac{\sim}{4}}}{ }$	$\begin{aligned} & \frac{\star}{ \pm} \\ & \frac{0.0}{\mathbf{0}} \\ & \frac{1}{4} \end{aligned}$	$\stackrel{{ }^{m}}{\underline{B}}$	$\begin{aligned} & \frac{0}{4} \\ & \frac{0}{4} \\ & 3 \end{aligned}$	Observations
DW A	595	hb851	Large Dwelling	610680,71	3916438,07							
DW A	596	hb847	Large Dwelling	610689,24	3916422,40				0,4-1,0			Dwell ing structure, big, walls 0,4-1m high, house pit ca 3 m .
DW A	597	hb844	Large Dwelling	610701,45	3916412,82				0,4-1,0			Dwell ing structure, big, walls 0,4-1m high, house pit ca 3 m .
DW A	599	hb846	Large Dwelling	610690,95	3916419,26				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DWA	600	hb856	Large Dwelling	610654,22	3916448,00				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	601	hb845	Large Dwelling	610696,14	3916412,95				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	602	hb842	Large Dwelling	610655,47	3916426,32				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	603	hb841	Large Dwelling	610641,44	3916435,94				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	604	hb840	Large Dwelling	610636,25	3916442,26				0,4-1,0			Dwell ing structure, big, walls 0,4-1m high, house pit ca 3 m .
DW A	605	hb839	Large Dwelling	610632,76	3916445,43				0,4-1,0			Dwell ing structure, big, walls 0,4-1m high, house pit ca 3 m .
DW A	606	hb838	Large Dwelling	610629,35	3916451,70				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	607	hb837	Large Dwelling	610629,50	3916457,88				0,4-1,0			Dwelling structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	608	hb843	Large Dwelling	610662,44	3916419,96				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	609	hb835	Large Dwelling	610627,95	3916467,20				0,4-1,0			Dwelling structure, big, walls 0,4-1m high, house pit ca 3 m .
DW A	610	hb834	Large Dwelling	610624,46	3916470,38				0,4-1,0			Dwell ing structure, big, walls $0,4-1 \mathrm{~m}$ high, house pit ca 3 m .
DW A	612	hb836	Large Dwelling	610627,80	3916461,02				0,4-1,0			Dwell ing structure, big, walls 0,4-1m high, house pit ca 3 m .
DW A	614	Placemark	Large Dwelling	609896,99	3916919,73							Dwelling structure, large - placed within GPS-positioned outline
DW A	615	Placemark	Large Dwelling	609882,36	3916920,42							Dwelling structure, large - placed within GPS-positioned outline
DW A	616	Placemark	Large Dwelling	609870,66	3916925,73							Dwelling structure, large - placed within GPS-positioned outline
DW A	617	Placemark	Large Dwelling	609879,44	3916933,25							Dwell ing structure, large - placed within GPS-positioned outline
DW A	618	Placemark	Large Dwelling	609878,14	3916913,61							Dwelling structure, large - placed within GPS-positioned outline
DW A	629	hb163	Large Dwelling	609867,54	3916937,36							Dwelling structure, depression and large dome. Near beach to NW
DW A	630	hb163	Large Dwelling	609868,54	3916909,58							Dwelling structure, depression and large dome. Near beach to NW
DW A	631	hb164	Large Dwelling	609890,77	3916939,88							Dwell ing structure, large
ow A	634	Untitled Placemark	Large Dwelling	609900,68	3916913,14							Dwell ing structure, large - placed within GPS-positioned outline
	635	Untitled Placemark	Large Dwelling	609890,98	3916914,52							Dwell ing structure, large - placed within GPS-positioned outline
DW A	637	hb775	Large Dwelling	610295,93	3916957,78				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	638	hb774	Large Dwelling	610292,44	3916960,96				>0,5			Dwell ing structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	640	hb773	Large Dwelling	610282,06	3916970,49				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	641	hb772	Large Dwelling	610281,90	3916967,40				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	642	hb771	Large Dwelling	610287,10	3916961,09				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	650	hb753	Large Dwelling	610254,08	3916995,92				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	652	hb755	Large Dwelling	610262,99	3916995,70				$>0,5$			Dwell ing structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	653	hb756	Large Dwelling	610268,33	3916995,68				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	654	hb757	Large Dwelling	610271,74	3916989,30				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	655	hb758	Large Dwelling	610267,88	3916977,03				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	656	hb759	Large Dwelling	610257,34	3916983,47				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	657	hb760	Large Dwelling	610262,53	3916977,17				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	658	hb761	Large Dwelling	610264,09	3916967,84				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	659	hb762	Large Dwelling	610269,58	3916973,89				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	660	hb763	Large Dwelling	610275,08	3916979,94				0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	661	hb764	Large Dwelling	610280,27	3916973,63				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	662	hb765	Large Dwelling	610276,63	3916970,63				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	663	hb766	Large Dwelling	610267,57	3916964,66				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	664	hb767	Large Dwelling	610276,33	3916958,26				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	665	hb768	Large Dwelling	610276,18	3916952,08				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . On beach ridge.
DW A	666	hb769	Large Dwelling	610285,09	3916951,86				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	667	hb777	Large Dwelling	610281,52	3916951,95				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . On beach ridge.
DW A	668	hb778	Large Dwelling	610284,86	3916942,59				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . On beach ridge.
DW A	670	hb776	Large Dwelling	610292,22	3916951,69				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	671	hb779	Large Dwelling	610293,85	3916945,46				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	672	hb780	Large Dwelling	610295,48	3916939,24				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	673	hb781	Large Dwelling	610300,90	3916942,20				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	674	hb785	Large Dwelling	610318,49	3916932,43				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	675	hb782	Large Dwelling	610304,54	3916945,20				>0,5			Dwell ing structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	676	hb783	Large Dwelling	610301,05	3916948,38				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	677	hb770	Large Dwelling	610287,02	3916958,00				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	678	hb786	Large Dwelling	610307,65	3916926,71				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	679	hb787	Large Dwelling	610304,16	3916929,75				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	680	hb788	Large Dwelling	610312,76	3916917,17				$>0,5$			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DWA	681	hb808	Large Dwelling	610292,86	3916905,29				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . In depression behind beach ridge.
DW A	682	hb803	Large Dwelling	610293,31	3916923,83	3,5	4,5		1			Dwelling structure, larger than others here, walls 1 m high, house pit ca $4,5 \times 3,5 \mathrm{~m}$. On top of beach ridge.
DW A	683	hb789	Large Dwelling	610314,62	3916920,21				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	684	hb790	Large Dwelling	610318,26	3916923,22				>0,5			Dwell ing structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	685	hb784	Large Dwelling	610307,88	3916935,84				>0,5			Dwell ing structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	686	hb791	Large Dwelling	610320,06	3916926,27				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DWA	687	hb794	Large Dwelling	610312,61	3916910,99				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	688	hb792	Large Dwelling	610321,67	3916916,95				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	689	hb795	Large Dwelling	610316,02	3916904,72				$>0,5$			Dwell ing structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	690	hb796	Large Dwelling	610321,45	3916907,83				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	691	hb797	Large Dwelling	610328,57	3916907,46				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.

	$\begin{aligned} & \text { 은 } \\ & \text { M } \\ & \text { on } \end{aligned}$	Name	Site type	X (UTM)	Y (UTM)	$\begin{aligned} & \text { 당 } \\ & \text { 흘 } \end{aligned}$	$\begin{aligned} & \text { 둥 } \\ & \frac{0}{3} \end{aligned}$	$\stackrel{N}{\tilde{N}}$		$\begin{aligned} & \bar{E} \\ & \stackrel{1}{9} \\ & \hline \end{aligned}$	$\stackrel{\circ}{\stackrel{\circ}{0}}$	Observations
DW A	692	hb798	Large Dwelling	610324,78	3916898,32				>0,5			Dwell ing structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	693	hb799	Large Dwelling	610321,06	3916892,22				>,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	695	hb801	Large Dwelling	610288,35	3916939,41				>0,5			Dwelling structure, wall $\mathrm{>} 0,5 \mathrm{~m}$ high, house pit ca 3 m . On beach ridge.
DW A	696	hb804	Large Dwelling	610298,36	3916911,34				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . On beach ridge.
DW A	697	hb805	Large Dwelling	610303,55	3916905,02				>0,5			Dwelling structure, wall $\gg 0,5 \mathrm{~m}$ high, house pit ca 3 m . On beach ridge.
DW A	699	hb793	Large Dwelling	610318,03	3916913,95				>0,5			Dwell ing structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW A	70	hb829	Large Dwelling	610473,91	3916727,66				0,4			Dwell ing structure, wall $\mathrm{s} 0,4 \mathrm{~m}$ high, house pit ca 3 m .
DW A	701	hb830	Large Dwelling	610479,18	3916724,44				0,4			Dwell ing structure, wall $\mathrm{s} 0,4 \mathrm{~m}$ high, house pit ca 3 m .
DW A	702	hb831	Large Dwelling	610484,53	3916724,31				0,4			Dwell ing structure, walls $\mathrm{o}, 4 \mathrm{~m}$ high, house pit ca 3 m .
DW A	703	hb821	Large Dwelling	610424,17	3916734,95				0,4			Dwell ing structure, walls $\mathrm{o}, 4 \mathrm{~m}$ high, house pit ca 3 m .
DW A	704	hb818	Large Dwelling	610401,01	3916735,64				0,5			Dwelling structure, walls $>0,5 \mathrm{~m} \mathrm{high}$,house pit ca 3 m .
DW A	705	hb817	Large Dwelling	610394,04	3916742,00				0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m .
DW A	706	hb814	Large Dwelling	610341,19	3916768,03				>0,5			Dwell ing structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m .
ow A	707	hb816	Large Dwelling	610379,71	3916739,26				>0,5			Dwell ing structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m .
DW A	708	hb815	Large Dwelling	610365,76	3916751,97				1,2			Dwell ing structure big, walls $1,2 \mathrm{~m}$ high, house pit ca $3-4 \mathrm{~m}$.
ow A	709	hb813	Large Dwelling	610344,83	3916771,04				>0,5			Dwell ing structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m .
DW A	710	Placemark	Large Dwelling	610367,44	3916750,22				1,2			as 815
DW A	711	hb812	Large Dwelling	610343,13	3916774,17				>0,5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m .
DW A	712	hb811	Large Dwelling	610339,71	3916780,44				>, 5			Dwelling structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge
DW A	713	hb824	Large Dwelling	610440,21	3916734,68				0,4			Dwell ing structure, wall $\mathrm{s} 0,4 \mathrm{~m}$ high, house pit ca 3 m .
ow A	4	hb828	Large Dwelling	610465,00	3916727,88				0,4			Dwell ing structure, wall $\mathrm{s} 0,4 \mathrm{~m}$ high, house pit ca 3 m .
DW A	715	hb826	Large Dwelling	610447,19	3916728,32				0,4			Dwell ing structure, walls $0,4 \mathrm{~m}$ high, house pit ca 3 m .
DW A	716	hb825	Large Dwelling	610447,26	3916731,41							
OW A	717	hb823	Large Dwelling	610434,79	3916731,72				0,4			Dwell ing structure, walls $0,4 \mathrm{~m}$ high, house pit ca 3 m .
DW A	718	hb822	Large Dwelling	610429,52	3916734,94				0,4			Dwell ing structure, walls $\mathrm{o}, 4 \mathrm{~m}$ high, house pit ca 3 m .
DW A	719	hb821	Large Dwelling	610425,88	3916731,94				>0,5			Dwell ing structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m .
DW A	720	hb819	Large Dwelling	610415,27	3916735,29				$>0,5$			Dwell ing structure, walls $>0,5 \mathrm{~m}$ high, house pit ca 3 m .
DW A	732	hb144	Large Dwelling	610344,05	3917247,29				1			Dwell ing structure, high walls close to 1 m on low side. Situated at base of hill.
DW A	733	hb142	Large Dwelling	610578,96	3917229,14							Dwellin structure, wall around depression d. 3 m , higest wall on low lide.
DW A	735	Placemark	Large Dwelling	610673,27	3917219,78				>0,5			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d. 3 m . Placed within GPS-positioned outline of aggregation.
DW A	336	Placemark	Large Dwelling	610663,40	3917230,75				>0,5			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d. 3 m . Placed within GPS-positioned outline of aggregation.
DW A	737	emark	Large Dwelling	610653,29	3917252,47				>0,5			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d . 3 m . Placed within GPS-positioned outline of aggregation.
DW A	738	emark	Large Dwelling	610666,60	3917260,45				>0,5			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d . 3 m . Placed within GPS-positioned outline of aggregation.
DW A	739	Placemark	Large Dwelling	610643,68	3917248,41				$>0,5$			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d. 3m. Placed within GPS-positioned outline of aggregation.
DW A	740	emark	Large Dwelling	610621,23	3917209,37				>0,5			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d . 3 m . Placed within GPS-positioned outline of aggregation.
DW A	41	Placemark	Large Dwelling	610629,69	3917212,27				>0,5			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d . 3 m . Placed within GPS-positioned outline of aggregation.
DW A	742	Placemark	Large Dwelling	610637,08	3917212				$>0,5$			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d. 3m. Placed within GPS-positioned outline of aggregation.
Na	743	Placemark	Large Dwelling	${ }_{610626,56}$	3917215,88				$>0,5$			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d . 3 m . Placed within GPS-positioned outline of aggregation.
NA	744	Placemark	Large Dwelling	610633,34	3917218,56				$>0,5$			Dwelling structure, shell midden wall (>0,5m high, $2-3 \mathrm{~m}$ wide) around depression d. 3 m . Placed within GPS-positioned outline of aggregation.
DW A	745	Placemark	Large Dwelling	61063,96	3917224,94				$>0,5$			Dwelling structure, shell midden wall (>0,5m high, 2-3m wide) around depression d. 3m. Placed within GPS-positioned outline of aggregation.
DW A	746	Placemark	Large Dwelling	610650,35	3917216,08				$>0,5$			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d. 3 m . Placed within GPS-positioned outline of aggregation.
DW A	47	Placemark	Large Dwelling	610647,00	3917220,36				>0,5			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d . 3 m . Placed within GPS-positioned outline of aggregation.
DW A	8	Placemark	Large Dwelling	610656,30	3917216,26				>0,5			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d. 3m. Placed within GPS-positioned outline of aggregation.
DW A	析	Placemark	Large Dwelling	610661,79	3917218,96				>0,5			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d. 3 m . Placed within GPS-positioned outline of aggregation.
DW A	750	emark	Large Dwelling	610656,58	3917222,09				$>0,5$			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d . 3 m . Placed within GPS-positioned outline of aggregation.
DW A	751	Placemark	Large Dwelling	610667,14	3917224,45				$>0,5$			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m} \mathrm{high} 2-,3 \mathrm{~m}$ wide) around depression d. 3m. Placed within GPS-positioned outline of aggregation.
DW A	752	Placemark	Large Dwelling	610643,31	3917230,93				$>0,5$			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d . 3 m . Placed within GPS-positioned outline of aggregation.
DW A	753	Placemark	Large Dwelling	610662,76	3917247,52				>0,5			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide) around depression d. 3 m . Placed within GPS-positioned outline of aggregation.
DW A	754	Placemark	Large Dwelling	610652,46	3917228,50				$>0,5$			Dwelling structure, shell midden wall ($>0,5 \mathrm{~m} \mathrm{high}, 2-3 \mathrm{~m}$ wide) around depression d. 3 m . Placed within GPS-positioned outline of aggregation.
DW A	755	hb222	Large Dwelling	610548,65	3917446,36				>0,5			Dwelling structure in complex, high walls on sides, ($>0,5 \mathrm{~m}$), house pit 3 m wide. Stiuated on sloping terrace close to beach.
ow A	758	hb228	Large Dwelling	61056,16	3917433,56				>0,5			Dwelling structure in complex, high walls on sides, ($>0,5 \mathrm{~m}$), house pit 3 m wide. Stiuated on sloping terrace close to beach
DW A	759	hb227	Large Dwelling	610560,79	3917430,65				>0,5			Dwelling structure in complex, high walls on sides, $(>0,5 \mathrm{~m})$, house pit 3 m wide. Stiuated on sloping terrace close to beach.
DW A	760	hb226	Large Dwelling	610560,89	3917436,71				>0,5			Dwelling structure in complex, high walls on sides, ($>0,5 \mathrm{~m}$), house pit 3 m wide. Stiuated on sloping terrace close to beach.
OW A	761	hb225	Large Dwelling	610553,92	3917443,14				>0,5			Dwelling structure in complex, high walls on sides, $(>0,5 \mathrm{~m})$, house pit 3 m wide. Stiuated on sloping terrace close to beach.
ow A	762	hb2	Large Dwelling	610552,21	3917446,20				>0,5			Dwelling structure in complex, high walls on sides, $(>0,5 \mathrm{~m})$, house pit 3 m wide. Stiuated on sloping terrace close to beach.
ow A	763	hb 2	Large Dwelling	610552,29	3917449,36				>0,5			Dwelling structure in complex, high walls on sides, ($>0,5 \mathrm{~m}$), house pit 3 m wide. Stiuated on sloping terrace close to beach.
DW A	4	hb221	Large Dwelling	610551,37	3917458,91				0,5			Dwelling structure in complex, low walls on NW side and downslope, high ($0,5 \mathrm{~m}$) wall on SE side, house pit 3 m wide. Stiuated on sloping terrace close to beach.
DW A	76	hb229	Large Dwelling	610567,79	3917427,33				$>0,5$			Dwelling structure in complex, high walls on sides, ($(0,5 \mathrm{~m})$, almost 1 m on side tow SE . House pit $3-4 \mathrm{~m}$ wide. Stiuated on sloping terrace close to beach.
DW A	767	Placemark	Large Dwelling	609767,81	3917704,39				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	768	Placemark	Large Dwelling	609791,50	3917739,20				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Hous epits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
												Owelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m .
DW A	769	Placemark	Large Dwelling	609773,80	3917712,04				1-1,5			Hous epits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	770	Placemark	Large Dwelling	609777,93	3917717,07				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
OWA		Placemark	Large owelling	60977,93	391717,07				1-1,5			

	$\begin{aligned} & \text { 은 } \\ & \text { in } \\ & \text { ô } \end{aligned}$	Name	Site type	X (UTM)	Y (UTM)	$\begin{aligned} & \text { 당 } \\ & \text { (10 } \end{aligned}$	5 $\frac{5}{3}$ 3		$\frac{\stackrel{\rightharpoonup}{u}}{\frac{0.0}{\omega}}$	$\stackrel{\underset{\text { m}}{\bar{\circ}}}{\underline{E}}$	은 3 3	Observations
DW A	771	Placemark	Large Dwelling	609793,88	3917733,40				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
NA	772	Placemark	Large Dwelling	609790,15	3917725,65				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, 1-1,5m high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	773	Placem	Large Dwelling	609796,45	3917724,10				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	774	Placemar	Large Dwelling	609788,72	3917717,46				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	775	Placemark	Large Dwelling	609784,42	3917705,49				1-1,5			Dwelling structure in complex, walls 2-3m wide, 1-1,5m high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	776	Placemark	Large Dwelling	609802,24	3917731,89				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	777	Placemark	Large Dwelling	609787,71	3917730,89				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
W A	778	Pla	Large Dwelling	609775,74	3917693,38				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	779	Placemark	Large Dwelling	610704,56	3917307,01				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	785	Pla	Large Dwelling	610701,57	3917300,8				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	786	Placem	Large Dwelling	610703,84	3917294,25				1-1,5			Dwelling structure in complex, walls 2-3m wide, 1-1,5m high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	787	Place	Large Dwelling	610707,22	3917298,34				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	788	lacema	Large Dwelling	610709,15	3917290,54				1-1,5			Dwelling structure in complex, walls 2-3m wide, 1-1,5m high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
Dw A	789	Placemark	Large Dwelling	610712,91	3917294,84				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	790	Placemark	Large Dwelling	610715,46	3917285,93				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
ow A	791	em	Large Dwelling	610719,15	3917292,14				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	792	Placemark	Large Dwelling	610722,00	3917297,66				1-1,5			Dwelling structure in complex, walls $2-3 \mathrm{~m}$ wide, $1-1,5 \mathrm{~m}$ high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
A	793	Placemark	Large Dwelling	610715,30	3917299,86				1-1,5			Dwelling structure in complex, walls 2-3m wide, 1-1,5m high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	794	Placemark	Large Dwelling	610709,38	3917303,75				1-1,5			Dwelling structure in complex, walls 2-3m wide, 1-1,5m high, dwelling pits around 4 m . Housepits here slightly bigger than other beach complexes. Structure placed within GPS positioned outline of complex
DW A	859	Placemark	Large Dwelling	610009,73	3917366,73							Dwell ing structure in complex, high walls. Placed within outline of GPS positions.
DW A	860	Placemark	Large Dwelling	610003,06	3917382,32							Dwelling structure in complex, high walls. Placed within outline of GPS positions.
DW A	861	Placemark	Large Dwelling	610009,00	3917374,30							Dwell ing structure in complex, high walls. Placed within outline of GPS positions.
DW A	86	Placemark	Large Dwelling	609989,00	3917393,17							Dwell ing structure in complex, high walls. Placed within outline of GPS positions.
DW A	863	Placemark	Large Dwelling	609994,61	3917383,40							Dwell ing structure in complex, high walls. Placed within outline of GPS positions.
DW A	86	Placemark	Large Dwelling	609998,81	3917376,01							Dwell ing structure in complex, high walls. Placed within outline of GPS positions.
DW A	86	Placemark	Large Dwelling	610003,63	3917369,76							Dwelling structure in complex, high walls. Placed within outline of GPS positions.
DW A	866	Placemark	Large Dwelling	610015,39	3917372,39							Dwell ing structure in complex, high walls. Placed within outline of GPS positions.
DW A	868	hb149	Large Dwelling	610019,27	3917382,04							Dwelling structure in complex - highest one, on top of flat terrace, ca 10 m from base of hill slope.
DW A	870	hb151	Large Dwelling	609978,82	3917404,68							Dwelling structure in complex, high walls
A	956	hb088	Large Dwelling	611091,63	3917411,32				0,5-1,0			Dwell ing structure, low wall / domes ($0,5 \mathrm{~m}-1$ high, 2 m wide).). House pit around 3 m wide.
A	957	hb087	Large Dwelling	611097,05	3917414,28				0,5-1,0			Dwell ing structure, wall / domes (0,5m -1 high, 2 m wide). House pit around 3 m wide.
dW A	968	hb004	Large Dwelling	610845,81	3917565,83				<0,5			Dwelling structure, high walls (<0,5m high, 3 m wide).
DW A	975	hb089	Large Dwelling	611088,15	3917417,59				0,5-1,0			Dwell ing structure, low wall / domes (0,5m -1 high, 2 m wide). House pit around 3 m wide.
A	976	hb090	Large Dwelling	611083,02	3917423,90				0,5-1,0			Dwell ing structure, low wall / domes (0,5m-1 high, 2 m wide). House pit around 3 m wide.
DW A	977	hb091	Large Dwelling	611077,68	3917424,13				0,5-1,0			Dwell ing structure, low wall / domes ($0,5 \mathrm{~m}-1 \mathrm{~h}$ high, 2 m wide). House pit around 3 m wide.
DW A	978	hb092	Large Dwelling	611074,03	3917420,88				0,5-1,0			Dwelling structure, low wall / domes (0,5m-1 high, 2 m wide). House pit around 3 m wide.
DW A	979	hb093	Large Dwelling	611073,96	3917417,79				0,5-1,0			Dwell ing structure, low wall / domes (0,5m -1 high, 2 m wide). House pit around 3 m wide.
DW A	980	hb094	Large Dwelling	611070,39	3917414,94				0,5-1,0			Dwell ing structure, low wall / domes ($0,5 \mathrm{~m}-1 \mathrm{~h}$ igh, 2 m wide). House pit a round 3 m wide
DW A	981	hb051	Large Dwelling	611192,24	3917513,97	3	2,5		0,4			Dwelling structure, low walls and domes ($0,4 \mathrm{~m}$ high, $2,5 \mathrm{~m}$ wide). House pit around $3 \times 2,5 \mathrm{~m}$ wide. Old testpit here. Assosiated with 2 domes $3 \times 2 \times 0,5$
DW A	987	hb208	Large Dwelling	610875,33	3917172,36							
DW A	988	hb203	Large Dwelling	610852,08	3917169,84				0,4-0,8			Dwelling structure, big, walls 0,4-0,8m, house pit ca 4 m .
DW A	989	hb202	Large Dwelling	610855,80	3917175,93				0,4-0,8			Dwell ing structure, big, walls $0,4-0,8 m$, house pit ca 4 m .
DW A	992	hb209	Large Dwelling	610882,53	3917175,27							
DW A	993	hb201	Large Dwelling	610857,51	3917172,80				0,4-0,8			Dwelling structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca 4 m .
DW A	999	hb178	Large Dwelling	610904,14	3917184,02				0,4-0,8			Dwell ing structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca $3-4 \mathrm{~m}$.
DW A	100	hb149	Large Dwelling	610933,87	3917232,76				0,4-0,8			Dwelling structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca $3-4 \mathrm{~m}$.
DW A	1002	hb193	Large Dwelling	610861,15	3917175,80				0,4-0,8			Dwell ing structure, big, walls 0,4-0,8m, house pit ca 4 m .
DW A	1003	hb194	Large Dwelling	610864,63	3917172,62				0,4-0,8			Dwelling structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca 4 m .

	$\begin{aligned} & \text { 은 } \\ & \text { W} \\ & \hline 0 \end{aligned}$	Name	Site type	X (UTM)	Y (UTM)		$\begin{aligned} & \frac{5}{0} \\ & \frac{1}{3} \end{aligned}$	$\stackrel{\widetilde{5}}{\text { N }}$		$\begin{gathered} \text { "E } \\ \stackrel{1}{\bar{\circ}} \end{gathered}$	$\begin{aligned} & \circ \\ & \frac{0}{\overleftarrow{L}} \\ & 3 \end{aligned}$	Observations
DW A	1004 h	hb214	Large Dwelling	610898,49	3917171,79				0,4-0,8			Dwell ing structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca 4 m .
DW A	1005 h	hb210	Large Dwelling	610882,38	3917169,09				0,4-0,8			Dwelling structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca 4 m .
DW A	1006 h	hb204	Large Dwelling	610862,70	3917166,49				0,4-0,8			Dwell ing structure, big, walls 0,4-0,8m, house pit ca 4 m .
DW A	1012	177	Large Dwelling	610909,49	3917183,89				0,4-0,8			Dwell ing structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca $3-4 \mathrm{~m}$.
DW A	1014	hb173	Large Dwelling	610920,33	3917189,80				0,4-0,8			Dwell ing structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca $3-4 \mathrm{~m}$.
DW A	1015 h	hb211	Large Dwelling	610887,72	3917168,96				0,4-0,8			Dwelling structure, big, walls $0,4-0,8 m$, house pit ca 4 m .
DW A	1016 h	hb205	Large Dwelling	610869,83	3917166,31				0,4-0,8			Dwell ing structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca 4 m .
DW A	017 h	hb212	Large Dwelling	610893,14	3917171,92				0,4-0,8			Dwell ing structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca 4 m .
DW A	1018 h	213	Large Dwelling	610893,07	3917168,83				0,4-0,8			Dwell ing structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca 4 m .
DW A	1019 h	hb215	Large Dwelling	610900,42	3917177,92				0,4-0,8			Dwell ing structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca 4 m
DW A	1020 h	hb216	Large Dwelling	610904,06	3917180,93				0,4-0,8			Dwell ing structure, big, walls $0,4-0,8 m$, house pit ca 4 m .
DW A	1027 h	hb176	Large Dwelling	610911,34	3917186,93				0,4-0,8			Dwell ing structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca $3-4 \mathrm{~m}$.
DW A	1028 h	hb150	Large Dwelling	610930,23	3917229,76				0,4-0,8			Dwell ing structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca $3-4 \mathrm{~m}$.
DW A	1029 h	hb148	Large Dwelling	610935,96	3917245,08				0,4-0,8			Dwell ing structure, big, walls $0,4-0,8 \mathrm{~m}$, house pit ca $3-4 \mathrm{~m}$.
DWA	1091 h	hb235	Large Dwelling	609354,34	3918047,68				>0,4			Dwell ing structure, depression d ca 4 m , high walls $(>0,4 \mathrm{~m}$). This is excavated ELP/LO
DW A	1092 h	hb236	Large Dwelling	609363,25	3918047,46				$>0,4$			Dwelling structure, depression d ca 3 m , high walls $(>0,4 \mathrm{~m})$. At base of hill - lower part damaged by roadcut
DW A	1093 h	hb232	Large Dwelling	609350,46	3918044,45				$>0,4$			Dwelling structure, depression d ca 3 m , high walls ($>0,4 \mathrm{~m}$). At base of hill - lower part damaged by roadcut. GPS pos $21,4^{\prime \prime} 44,1^{\prime \prime}$ obviously wrong. Is situated by the 2009 screeningb tent (and mover manually here)
ow A	1094 h	hb237	Large Dwelling	609364,81	3918038,14				>0,4			Dwelling structure, depression d ca 3 m , high walls $(>0,4 \mathrm{~m})$. At base of hill - lower part damaged by roadcut
DWA	1099 h	hb493	Large Dwelling	609391,39	3918031,31							Part of Dwelling structure - partly (1/4) covered by road fill, part of wall and pit visible
DW A	1100 h	hb496	Large Dwelling	609398,37	3918024,96							Part of Dwelling structure - partly (1/4) covered by road fill, part of wall and pit visible
DWA	1101 h	hb514	Large Dwelling	609438,08	3917971,43							
DWA	1102 h	hb513	Large Dwelling	609432,81	3917974,64							
DWA	1103 h	hb512	Large Dwelling	609434,75	3917980,78							
DW A	1104 h	hb511	Large Dwelling	609431,26	3917983,96							
DWA	1105 h	hb510	Large Dwelling	609431,26	3917983,96							
DW A	1106 h	hb509	Large Dwelling	609443,81	3917986,74							
DW A	1107 h	hb508	Large Dwelling	609443,88	3917989,83							
DW A	1108	hb507	Large Dwelling	609443,96	3917992,92							
DW A	1109	hb506	Large Dwelling	609436,90	3917996,19							
DW A	1110	hb505	Large Dwelling	609437,05	3918002,37							
DW A	1111	hb504	Large Dwelling	609428,22	3918005,68							
DW A	1112	hb503	Large Dwelling	609422,95	3918008,90							
DW A	1113	hb502	Large Dwelling	609417,75	3918015,21							
DW A	1114	hb500	Large Dwelling	609407,06	3918015,41							
DWA	1115	hb501	Large Dwelling	609414,04	3918009,11							
DW A	1116	hb499	Large Dwelling	609412,55	3918021,52							
DW A	1117	hb498	Large Dwelling	609410,92	3918027,74							
DW A	1118	hb497	Large Dwelling	609403,64	3918021,74							
DW A	1119	hb495	Large Dwelling	609403,94	3918034,10							
DW A	1120	hb499	Large Dwelling	609394,96	3918031,23							
DW A	1121	hb492	Large Dwelling	609395,11	3918037,41							
DWA	1122	hb491	Large Dwelling	609391,54	3918037,49							
DW A	1123	hb488	Large Dwelling	609388,21	3918046,85							
DWA	1124	hb489	Large Dwelling	609382,71	3918040,80							
DW A	1125	hb487	Large Dwelling	609383,16	3918059,34							
DWA	1126	hb486	Large Dwelling	609379,37	3918050,16							
DW A	1127	hb485	Large Dwelling	609382,86	3918046,98							
DW A	1128 h	hb482	Large Dwelling	609377,89	3918062,56							
DW A	1129	hb481	Large Dwelling	609378,04	3918068,75							
DW A	1130	hb484	Large Dwelling	609379,44	3918053,25							
DWA	1131	hb483	Large Dwelling	609379,52	3918056,34							
DW A	1132	hb477	Large Dwelling	609370,91	3918068,92							Dwelling structure, high walls, situated by the beach, down side of beach ridge
DW A	1133	hb480	Large Dwelling	609370,53	3918053,47							Part of Dwelling structure - partly (1/3) covered by road fill, part of wall and pit visible
DWA	1134	hb490	Large Dwelling	609384,41	3918037,67							Part of Dwelling structure - partly (1/2) covered by road fill, part of wall and pit visible
DWA	1135	hb479	Large Dwelling	609365,41	3918062,87							Part of Dwell ing structure - most of this is covered by road fill, part of wall visible
DW A	1165	hb576	Large Dwelling	609391,29	3918173,56				0,5-1,0			Dwelling structure in complex, more or less cut / damaded by road. Large, walls / domes 0,5-1m high, 2-3m wide.
DWA	1166	hb577	Large Dwelling	609389,81	3918185,97				0,5-1,0			Dwelling structure in complex, more or less cut / damaded by road. Large, walls / domes 0,5-1m high, 2-3m wide.
DW A	1167	hb578	Large Dwelling	609386,17	3918182,97				0,5-1,0			Dwelling structure in complex, more or less cut / damaded by road. Large, walls / domes 0,5-1m high, $2-3 \mathrm{~m}$ wide.
DW A	1168	hb579	Large Dwelling	609380,90	3918186,19				0,5-1,0			Dwelling structure in complex, more or less cut / damaded by road. Large, walls / domes 0,5-1m high, $2-3 \mathrm{~m}$ wide.
DW A	1169	hb580	Large Dwelling	609382,68	3918186,14				0,5-1,0			Dwelling structure in complex, more or less cut/damaded by road. Large, walls / domes 0,5-1m high, 2-3m wide.
DW A	1170	hb581	Large Dwelling	609380,67	3918176,92				0,5-1,0			Dwelling structure in complex, more or less cut / damaded by road. Large, walls / domes $0,5-1 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide.
DW A	1171	hb582	Large Dwelling	609387,27	3918155,11				0,5-1,0			Dwelling structure in complex, more or less cut / damaded by road. Large, walls / domes 0,5-1m high, 2-3m wide.
DW A	1172	hb583	Large Dwelling	609386,39	3918192,24				0,5-1,0			Dwelling structure in complex, more or less cut / damaded by road. Large, walls / domes 0,5-1m high, $2-3 \mathrm{~m}$ wide.
DW A	1173	hb584	Large Dwelling	609456,43	3918212,18				0,5			Dwell ing structure in complex. Large, walls / domes $0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide.
DW A	1174	hb585	Large Dwelling	609475,96	3918208,61				0,5			Dwell ing structure in complex. Large, walls / domes $0,5 \mathrm{~m}$ high, $2 \cdot-3 \mathrm{~m}$ wide.
DW A	1175	hb586	Large Dwelling	609484,72	3918202,21				0,5			Dwell ing structure in complex. Large, walls / domes $0,5 \mathrm{~m} \mathrm{high} 2-,3 \mathrm{~m}$ wide.

	을 "	Name	Site type	X (UTM)	Y (UTM)		$\begin{aligned} & \text { 든 } \\ & \frac{0}{3} \end{aligned}$					Observations
W A	1176	hb587	Large Dwelling	609498,00	3918161,69				0,5			Dwelling structure in complex, near beach below road. Large, walls / domes 0,5 high, $2-3 \mathrm{~m}$ wide, pits 3 -4m wide.
dW A	1177	hb588	Large Dwelling	609487,23	3918158,86				0,5			Dwelling structure in complex, near beach below road. Large, walls / domes 0,5 high, 2-3m wide, pits $3-4 \mathrm{~m}$ wide.
DW A	1178	hb589	Large Dwelling	609481,81	3918155,90				0,5			Dwelling structure in complex, near beach below road. Large, walls / domes $0,5 \mathrm{high}, 2-3 \mathrm{~m}$ wide, pits $3-4 \mathrm{~m}$ wide.
DW A	1179	hb590	Large Dwelling	609474,53	3918149,89				0,5			Dwelling structure in complex, near beach below road. Large, walls / domes 0,5 high, 2-3m wide, pits $3-4 \mathrm{~m}$ wide.
DW A	1180	hb592	Large Dwelling	609551,12	3918219,15				0,5			Dwell ing structure w arge dome 0,5m high, 2-3m wide.
DW A	1181 h	hb592	Large Dwelling	609560,18	3918225,11				0,5			Dwell ing structure w large dome $0,5 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide.
DW A	1182	hb594	Large Dwelling	609562,19	3918234,34				0,5			Dwell ing structure w large dome 0,5m high, $2-3 \mathrm{~m}$ wide. Cattle damage + recent fireplace.
WW A	1183	hb596	Large Dwelling	609546,90	3918265,64	4	3		0,5-1,0			Dwelling structure in complex. All appear as combination of depression / low side dome in rocky slope (wooded), but most of them have little developed walls on sides. Domes are rather big, ca $3 \times 4 \mathrm{~m}, 0,5-1 \mathrm{~m}$ high.
DW A	1184	hb597	Large Dwelling	609542,96	3918250,27	4	3		0,5-1,0			Dwelling structure in complex. All appear as combination of depression / low side dome in rocky slope (wooded), but most of them have little developed walls on sides. Domes are rather big, ca $3 \times 4 \mathrm{~m}, 0,5-1 \mathrm{~m}$ high.
DW A	1185	b598	Large Dwelling	609540,95	3918240,96	4	3		0,5-1,0			Dwelling structure in complex. All appear as combination of depression / low side dome in rocky slope (wooded), but most of them have little developed walls on sides. Domes are rather big, ca $3 \times 4 \mathrm{~m}, 0,5-1 \mathrm{~m}$ high.
DW A	h	hb599	Large Dwelling	609539,17	3918241,09	4	3		0,5-1,0			Dwelling structure in complex. All appear as combination of depression / low side dome in rocky slope (wooded), but most of them have little developed walls on sides. Domes are rather big, ca $3 \times 4 \mathrm{~m}, 0,5-1 \mathrm{~m}$ high
DW A	187	hb600	Large Dwelling	609538,95	3918231,82	4	3		0,5-1,0			Dwelling structure in complex. All appear as combination of depression / Iow side dome in rocky slope (wooded), but most of them have little developed walls on sides. Domes are rather big, ca $3 \times 4 \mathrm{~m}, 0,5-1 \mathrm{~m} \mathrm{high}$.
DW A	1188	hb601	Large Dwelling	609537,16	3918231,86	4	3		5-1,0			Dwelling structure in complex. All appear as combination of depression / low side dome in rocky slope (wooded), but most of them have little developed walls on sides. Domes are rather big, ca $3 \times 4 \mathrm{~m}, 0,5-1 \mathrm{~m}$ high.
DW A	189	hb602	Large Dwelling	609535,38	3918231,90	4	3		0,5-1,0			Dwelling structure in complex. All appear as combination of depression / low side dome in rocky slope (wooded), but most of them have little developed walls on sides. Domes are rather big, ca $3 \times 4 \mathrm{~m}, 0,5-1 \mathrm{~m}$ high.
DW A	190	hb603	Large Dwelling	609526,47	3918232,12	4	3		0,5-1,0			Dwelling structure in complex. All appear as combination of depression / low side dome in rocky slope (wooded), but most of them have little developed walls on sides. Domes are rather big, ca $3 \times 4 \mathrm{~m}, 0,5-1 \mathrm{~m}$ high.
DW A	1191	hb604	Large Dwelling	609524,69	3918232,16	4	3		0,5-1,0			Dwelling structure in complex. All appear as combination of depression / low side dome in rocky slope (wooded), but most of them have little developed walls on sides. Domes are rather big, ca $3 \times 4 \mathrm{~m}, 0,5-1 \mathrm{~m}$ high
DW A	1194	Placemark	Large Dwelling	609890,36	3918079,93							on island - check no and size
DW A	1195	Placemark	Large Dwelling	609878,23	3918073,08							on island - check no and size
DW A	1201	gm001	Large Dwelling	608305,90	3917270,79							Large Dwelling, marked directely in Google Earth
DW A	1202	gm002	Large Dwelling	608309,00	3917264,22							Large Dwelling, marked directely in Google Earth
DW A	1203	gm003	Large Dwelling	608313,31	3917259,09							Large Dwelling, marked directely in Google Earth
DW A	1204	gm004	Large Dwelling	608315,44	3917247,80							Large Dwelling, marked directely in Google Earth
DW A	1205	gm005	Large Dwelling	608316,71	3917242,60							Large Dwelling, marked directely in Google Earth
DW A	1206	gm006	Large Dwelling	608319,59	3917261,44							Large Dwelling, marked directely in Google Earth
DW A	1207	gm007	Large Dwelling	608319,71	391725,04							Large Dwelling, marked directely in Google Earth
DW A	1208	gm008	Large Dwelling	608325,89	3917245,54							Large Dwelling, marked directely in Google Earth
DW A	1209	gm009	Large Dwelling	608327,50	391725,14							Large Dwelling, marked directely in Google Earth
DW A	1210	gm010	Large Dwelling	608326,92	3917240,18							Large Dwell ing, marked directely in Google Earth
DW A	1211	gm011	Large Dwelling	608320,59	3917236,81							Large Dwelling, marked directely in Google Earth
DW A	1212	gm012	Large Dwelling	608316,12	3917226,83							Large Dwelling, marked directely in Google Earth
DW A	1213	gm013	Large Dwelling	608317,20	3917218,78							Large Dwelling, marked directely in Google Earth
DW A	1214	gm014	Large Dwelling	608323,61	3917225,02							Large Dwelling, marked directely in Google Earth
DW A	1215	gm015	Large Dwelling	608329,55	3917205,21							Large Dwelling, marked directely in Google Earth
DW A	1216	gm016	Large Dwelling	608328,33	3917264,42							Large Dwelling, marked directely in Google Earth
DW A	1217	gm017	Large Dwelling	608346,10	3917285,74							Large Dwelling, marked directely in Google Earth
DW A	1218	gm018	Large Dwelling	608351,66	3917280,12							Large Dwelling, marked directely in Google Earth
DW A	1219	gm019	Large Dwelling	608353,00	3917287,27							Large Dwelling, marked directely in Google Earth
DW A	1220	gm020	Large Dwelling	608336,62	3917257,69							Large Dwelling, marked directely in Google Earth
DW A	1221	gm021	Large Dwelling	608333,70	3917247,70							Large Dwelling, marked directely in Google Earth
DW A	1222	gm022	Large Dwelling	608339,40	3917247,35							Large Dwelling, marked directely in Google Earth
DW A	1223	gm022	Large Dwelling	608344,99	391725,58							Large Dwelling, marked directely in Google Earth
DW A	1224	gm023	Large Dwelling	608335,07	3917238,92							Large Dwell ing, marked directely in Google Earth
DW A	1225	gm024	Large Dwelling	608322,30	3917220,15							Large Dwell ing, marked directely in Google Earth
DW A	1226	gm025	Large Dwelling	608332,12	3917209,58							Large Dwell ing, marked directely in Google Earth
DW A	1227	gm026	Large Dwelling	608330,02	3917221,42							Large Dwell ing, marked directely in Google Earth
DW B		hb402a	Small Dwelling	609224,18	3917828,19							One of 2 adjacent dwell ing structures (AUG2016 separated in hb402a and b), midden mostlt on low side, low walls barely visible. Notches on uphill side suggest dwelling.
DW B		hb424	Small Dwelling	609337,76	3917732,66							Dwelling
DW B		hb354	Small Dwelling	609398,13	3917721,91							Low ring of midden, probably dwelling
DW B	17 h	hb348	Small Dwelling	609228,97	3917732,21							Low ring of midden, probably dwelling
DW B		hb325	Small Dwelling	609336,93	3917698,66							Dwell ing structure, on flat top of hill
DW B		hb326	Small Dwelling	609330,11	3917711,20							Dwell ing structure, on flat top of hill
DW B	21	hbb327	Small Dwelling	609330,96	3917709,63							Dwelling structure, on flat top of hill
DW B	22	hb328	Small Dwelling	609315,70	3917705,36							Dwell ing structure, on flat top of hill. Cattle inflicted damage to dome. Sidescraper at surface.
DW B	23	hb329	Small Dwelling	609315,85	3917711,54							Dwelling structure, on flat top of hill
DW B		hb330	Small Dwelling	609310,65	3917717,85							Dwelling structure, on flat top of hill
DW B	25	hb331	Small Dwelling	609301,59	3917711,89							Dwelling structure, on flat top of hill
DW B	26	hb332	Small Dwelling	609292,83	3917718,29							Dwelling structure, on flat top of hill
DW B	27	hb333	Small Dwelling	609289,27	3917718,37							Dwelling structure, on flat top of hill
DW B	28	hb334	Small Dwelling	609287,64	3917724,60							Dwelling structure, on flat top of hill
DW B	29	hb335	Small Dwelling	609275,01	3917718,72							Dwelling structure, on flat top of hill
DW B	30	hb336	Small Dwelling	609268,03	3917725,07							Dwelling structure, on flat top of hill
DW B	31	hb337	Small Dwelling	609271,22	3917709,54							Dwelling structure, on flat top of hill
DW B	32	Placemark	Small Dwelling	609277,39	3917692,43							Dwell ing structure, marker placed within GPP-positioned outline
DW B	33	hb339	Small Dwelling	609258,22	3917688,20							Dwell ing structure, on top part of south slope
DW B	34	hb338	Small Dwelling	609256,74	3917700,61							Dwell ing structure, on top part of south slope of hill
DW B	35	Placemark	Small Dwelling	609288,93	3917696,83							Dwell ing structure - Marker placed within GPs-positioned outline
DW B		hb340	Small Dwelling	609272,33	3917681,68							Dwell ing structure

	$\begin{aligned} & \text { 은 } \\ & \text { M } \\ & \text { on } \end{aligned}$	Name	Site type	X (UTM)	Y (UTM)	c	$\begin{aligned} & \frac{5}{\mathbf{t}} \\ & \frac{1}{3} \end{aligned}$	$\begin{gathered} \stackrel{N}{E} \\ \frac{\mathrm{y}}{4} \\ \hline \end{gathered}$		$\begin{gathered} \overline{{ }^{E}} \\ \\ \bar{\circ} \end{gathered}$	읓 $\frac{1}{3}$ 3	Observations
DW B	319	hb341	Small Dwelling	611580,68	3916712,68				0,2-0,3			Dwelling structure - Low walls, part of complex. House pits are 3 , up to 4 m in diameter, shell midden walls are 0.2 to 0.3 high. Surveyed by H . Bjerck February 19,2011
DW B	320	hb342	Small Dwelling	611577,12	3916712,76				0,2-0,3			Dwelling structure - Low walls, part of complex. House pits are 3, up to 4 m in diameter, shell midden walls are 0.2 to 0.3 high. Surveyed by H . Bjerck February 19,2011
DW B	321	nb343	Small Dwelling	611571,69	3916709,81				0,2-0,3			Dwelling structure - Low walls, part of complex. House pits are 3 , up to 4 m in diameter, shell midden walls are 0.2 to 0.3 high. Surveyed by H . Bjerck February 19,2011
DW B	322	hb344	Small Dwelling	611576,88	3916703,49				0,2-0,3			Dwelling structure - Low walls, part of complex. House pits are 3, up to 4 m in diameter, shell midden walls are 0.2 to 0.3 high. Surveyed by H . Bjerck February 19,2011
DW B	332	hb354	Small Dwelling	611519,10	3916674,00				0,2-0,3			Dwelling structure - Low walls, part of complex. House pits are 3, up to 4 m in diameter, shell midden walls are 0.2 to 0.3 high. Surveyed by H . Bjerck February 19,2011
DW B	337	hb026	Small Dwelling	608409,00	3917300,58				0.1-0.4			Dwelling structure, house pit, part of complex, situated at the foot of a slope facing the bog, in level with the beach ridge facing Varela bay. The house pits are $2,5-3 \mathrm{~m}$ in diameter, walls are ca 3 m wide and $0.1-0.4 \mathrm{~m}$ high. Surveyed by H. Bjerck and H. B
DW B	338	hbo	Small Dwelling	608410,85	3917303,63				0.1-0.4			Dwelling structure, house pit, part of complex, situated at the foot of a slope facing the bog, in level with the beach ridge facing Varela bay. The house pits are $2,5-3 \mathrm{~m}$ in diameter, walls are ca 3 m wide and $0.1-0.4 \mathrm{~m}$ high. Surveyed by H. Bjerck and H. B
DW B	339	hb024	Small Dwelling	8412,86	3917312,86				-0.4			Dwelling structure, house pit, part of complex, situated at the foot of a slope facing the bog, in level with the beach ridge facing Varela bay. The house pits are $2,5-3 \mathrm{~m}$ in diameter, walls are ca 3 m wide and $0.1-0.4 \mathrm{~m}$ high. Surveyed by H. Bjerck and H. B
DW B	340	hbo	Small Dwelling	608414,47	3917318,15				0.1-0.4			Dwelling structure, house pit, part of complex, situated at the foot of a slope facing the bog, in level with the beach ridge facing Varela bay. The house pits are $2,5-3 \mathrm{~m}$ in diameter, walls are ca 3 m wide and $0.1-0.4 \mathrm{~m}$ high. Surveyed by H. Bjerck and H. B
DW B	341	hb06	Small Dwelling	608353,88	3917085,45	3	3		0,4			Dwelling structure, house pit -- situated on uphill side of southern end of beach ridge. Diameter c. 3 m , walls $2-3 \mathrm{~m}$ wide, $0,4 \mathrm{~m}$ high. Surveyed by H.Bjerck and H. Breivik, February 22, 2011.
DW B	342	hb066	Small Dwelling	608365,02	3917103,73	3	3		0,1			Dwelling structure, house pit -- situated on uphill side of southern end of beach ridge. Diameter c. 3 m , dome like wall to the $\mathrm{E}, 6 \times 4 \times 1 \mathrm{~m}$ Low wall to the $\mathrm{W}, 0.1 \mathrm{~m}$ high. Surveyed by H.Bjerck and H. Breivik, February 22, 2011.
DW B	375	hb124	Small Dwelling	609051,31	3916657,28		3		0,2			Dwelling structure - house pit. Circular depression c .3 m wide, 0.2 m high, and 2 m wide walls of shell midden material. Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DW B	384	hb101	Small Dwelling	609196,10	3916746,54				0,2-0,4			Dwell ing structure, house pit, part of small complex. House pits $3-4 \mathrm{~m}$ in d., walls $0.2-0.4 \mathrm{~m}$ high. Situated on the top of the very lowest beach ridge, dug into the beach formation. Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DW B	385	hb102	Small Dwelling	609203,08	3916740,53				0,2-0,4			Dwell ing structure, house pit, part of small complex. House pits $3-4 \mathrm{~m}$ in d., walls $0.2-0.4 \mathrm{~m}$ high. Situated on the top of the very lowest beach ridge, dug into the beach formation. Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DW B	386	hb103	Small Dwelling	609208,35	3916736,96				0,2-0,4			Dwelling structure, house pit, part of small complex. House pits $3-4 \mathrm{~m}$ in d., walls $0.2-0.4 \mathrm{~m}$ high. Situated on the top of the very lowest beach ridge, dug into the beach formation. Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DW B	387	hb104	Small Dwelling	9199,14	3916724,82				0,2-0,4			Dwell ing structure, house pit, part of small complex. House pits $3-4 \mathrm{~m}$ in d., walls $0.2-0.4 \mathrm{~m}$ high. Situated on the top of the very lowest beach ridge, dug into the beach formation. Surveyed by H. Bjerck and H. Breivik, February 23, 2011
DW B	408	hb231	Small Dwelling	10898,34	3917960,36				0,4			Dwell ing structure - U-shaped midden formation, open downslope, walls 2 m wide, $0,4 \mathrm{~m}$ high
DW B	409	hb232	Small Dwelling	610885,86	3917960,67				0,4			Dwell ing structure - U-shaped midden formation, open downslope, walls 2 m wide, $0,4 \mathrm{~m}$ high
DW B	418	hb242	Small Dwelling	610810,83	3918027,46	3	3		0,2			Probable Dwelling structure - U-shaped midden formation, open downslope, walls 2 m wide, $0,2 \mathrm{~m}$ high, 3 m wide inside. Hard to sort out, tree roots and rocks abundant.
DW B	427	hb6	Small Dwelling	610369,02	3918264,08	3	3		-0,8			Dwelling structure in complex - large, ca $0,3-0,8 \mathrm{~m}$ high walls/domes, house pits around 3 m . Complex is badly damaged by road, shell midden visible in road cut upside road.
DW B	434	hb630	Small Dwelling	610672,60	3918352,48	3	3		0,2-0,3			Dwelling structure, w dome and low walls ($20-30 \mathrm{~cm}$ high, 1 m wide) downslope, pit d ca 3 m . Nice side scraper observed on surface. Situated in top of higher ridge.
DW B	435	hb631	Small Dwelling	610676,09	3918349,30	3	3		0,2-0,3			Dwelling structure, w dome and low walls ($20-30 \mathrm{~cm}$ high, 1 m wide) downslope, pit d ca 3 m . situated in top of higher ridge.
DW B	436	hb632	Small Dwelling	610679,80	3918355,39	3	3		0,2-0,3			Dwelling structure, w dome and low walls ($20-30 \mathrm{~cm}$ high, 1 m wide) downslope, pit d ca 3 m . Situated in top of higher ridge.
DW B	437	hb6	Small Dwelling	610681,66	3918358,44	3	3		0,2-0,3			Dwelling structure, w dome and low walls ($20-30 \mathrm{~cm}$ high, 1 m wide) downslope, pit d ca 3 m . Situated in top of higher ridge.
DW B	438	hb634	Small Dwelling	610694,22	3918361,31	3	3		0,2-0,3			Dwelling structure, w dome and low walls ($20-30 \mathrm{~cm}$ high, 1 m wide) downslope, pit d ca 3 m . Situated in top of higher ridge.
DW B	441	hb6	Small Dwelling	610767,55	3918297,57				0,3			Dwelling structure, w dome and low walls (30 cm high, 2 m wide) downslope, pit d ca 4 m . Situated in top of higher ledge in slope.
DW B	2	hb638b	Small Dwelling	610764,73	3918296,69				0,3			Dwelling structure, w dome and low walls (30 cm high, 2 m wide) downslope, pit d ca 4 m . Situated in top of higher ledge in slope.
DW B	457	hb915	Small Dwelling	610600,51	3918368,04	3	3		0,1			Dwelling structure, w dome and low walls $(10 \mathrm{~cm})$ downslope - of shell midden on one side, of gravel on other, pitd 3 m . Complex on hill.
DW B	458	hb916	Small Dwelling	610599,67	3918360,46	3	3		0,1			Dwell ing structure, w dome and low walls (10 cm) downslope, pit d 3 m . Complex on hill.
DW B	459	hb917	Small Dwelling	610594,32	3918360,59	3	3		0,1			Dwell ing structure, w dome and low walls (10cm) downslope, pitd 3m. Complex on hill.
DW B	460	hb918	Small Dwelling	610594,55	3918369,86	3	3		0,1			Dwelling structure, w dome and low walls (10 cm) downslope, pitd 3 m . Complex on hill.
DW в	461	hb919	Small Dwelling	610585,49	3918363,90	3	3		0,1			Dwell ing structure, w dome and low walls (10 cm) downslope, pit d 3m. Complex on hill.
DW B	462	hb920	Small Dwelling	610583,71	3918363,94	3	3		0,1			Dwelling structure, w dome and low walls (10 cm) downslope, pit d 3m. Complex on hill.
DW B	465	hb923	Small Dwelling	610538,22	3918464,07	3	3		0,4			Dwell ing structure, w u-shaped wall (up to $40 \mathrm{cm}$,2 m wide), pitd 3 m .
DW B	466	hb924	Small Dwelling	610569,14	3918351,93	3	3		0,3			Dwelling structure, w low walls (30 cm , 2 m wide) downslope, pitd 3 m . In slope of low hill.
DW B	467	hb925	Small Dwelling	610581,54	3918348,53	3	3		0,3			Dwell ing structure, w low walls ($30 \mathrm{~cm}, 2 \mathrm{~m}$ wide) downslope, pitd 3 m . In slope of low hill.
DW B	468	hb927	Small Dwelling	610585,18	3918351,54	3	3		0,3			Dwell ing structure, w low walls (30 cm , 2 m wide) downslope, pitd 3 m . In slope of low hill.
DW B	46	hb928	Small Dwelling	610575,82	3918333,21	3	3		0,3			Dwelling structure, w dome and low walls ($30 \mathrm{~cm}, 2 \mathrm{~m}$ wide) downslope, pit d 3 m . At base of steep slope of low hill, very close to beach. Nice side scraper observed.
DW B	470	hb929	Small Dwelling	610477,64	3918474,81	3	3		0,3			Dwelling structure, $w 2$ low domes ($30 \mathrm{~cm}, 3 \mathrm{~m}$ wide) downslope, cut in slope on upslope side, pit d 3m. At small ledge in slope of low hill. In testpit (north done), pressure flaking instrument of guanaco bone observed. There may be two generation of dwellings
DW B	476	hb940	Small Dwelling	610698,19	3918305,46		3		0,2			Dwelling structure, not very visible - tree fall disturbance. Dome / wall on low side, 3m wide, $0,2 \mathrm{~m}$ hig. Situated on terrace by beach, below slope og hill.
DW B	477	hb941	Small Dwelling	61070,05	3918308,51		2		0,2			Dwelling structure. Dome / wall 2 m wide, $0,2 \mathrm{~m}$ high. Situated on terrace by beach, below slope og hill.
DW B	511	hb	Small Dwelling	610079,72	3917199,65							Dw Small. HBBAUG2016: Changed to DW str, see description: Two round pits, around 2-3m wide, surrounded by low wall (ca $0,5 \mathrm{~m}$ wide, $0,05 \mathrm{~m}$ high. Possible dwelling structure -- but no shell midden detected by peephole throug turf in wall. Look like 655, but lacking midden. Situated ca 5 10 m NW of hb655, in same ali
DW B	511	hb	Small Dwelling	610079,72	3917199,65							Dw Small. HBBAUG2016: Changed to DW str, see description: Two round pits, around 2-3m wide, surrounded by low wall (ca $0,5 \mathrm{~m}$ wide, $0,05 \mathrm{~m}$ high. Possible dwelling structure -- but no shell midden detected by peephole throug turf in wall. Look like 655, but lacking midden. Situated ca 5 10 mWW of hb 655 , in same ali
DW B	512	hb655	Small Dwelling	610083,64	3917195,19				$\underset{0,05-}{0,05}$			Dwelling structure, small, $2,2 \mathrm{~m}$ floor, low wall ($0,5 \mathrm{~m}$ wide, $0,05 \mathrm{~m}$ high), dome on low side (ca 2 m wide, $0,3 \mathrm{~m}$ high). The first of definite house pits in NW end of complex. Hb plan drawing of this structure. Testpit in wall to NW: Pebbels mixed with white s
DW B	513	hb658	Small Dwelling	610085,93	3917191,77				$\begin{aligned} & 0,05- \\ & 0,3 \\ & 0,3 \end{aligned}$			Dwelling structure, small, $2,2 \mathrm{~m}$ floor, low wall ($0,5 \mathrm{~m}$ wide, $0,05 \mathrm{~m}$ high), dome on low side (ca 2 m wide, $0,3 \mathrm{~m}$ high).

	$\begin{aligned} & \text { 은 } \\ & \text { M } \\ & \text { O} \end{aligned}$	Name	Site type	X (UTM)	Y (UTM)		$\begin{aligned} & \text { 둔 } \\ & \frac{0}{3} \end{aligned}$	$\stackrel{\widetilde{5}}{\text { N }}$		$\begin{gathered} \bar{m} \\ \overline{\bar{\circ}} \end{gathered}$	\circ 0 3 3	Observations
DW B	514	hb659	Small Dwelling	610089,47	3917188,59				$\begin{gathered} 0,05- \\ 0,3 \end{gathered}$			Dwelling structure, small, $2,2 \mathrm{~m}$ floor, low wall ($0,5 \mathrm{~m}$ wide, $0,05 \mathrm{~m}$ high), dome on low side (ca 2 m wide, $0,3 \mathrm{~m}$ high).
DW B	598	hb833	small Dwelling	610597,86	3916548,34	3	3		0,4			Dwelling structure, walls $0,4 \mathrm{~m}$ high, house pit ca 3 m .
DW B	611	hb832	Small Dwelling	610598,01	3916554,47	3	3		0,4			Dwelling structure, walls $0,4 \mathrm{~m}$ high, house pit ca 3 m .
DW B	613	Placemark	Small Dwelling	609916,40	3916913,49							Dwelling structure, large- -placed within GPS-positioned outline
DW B	619	Placemark	Small Dwelling	609904,87	3916930,41							Dwelling structure, small - placed within GPS-positioned outline
DW B	620	Placemark	Small Dwelling	609911,06	3916915,20							Dwelling structure, large - placed within GPS-positioned outline
DW B	621	Placemark	Small Dwelling	609911,79	3916926,25							Dwelling structure, large- -placed within GPS-positioned outline
DW B	622	Placemark	Small Dwelling	609915,11	3916931,91							Dwelling structure, large - placed within GPS-positioned outline
DW B	623	Placemark	Small Dwelling	609916,40	3916913,49							Dwelling structure, large - placed within GPS-positioned outline
DW B	624	Placemark	Small Dwelling	609916,89	3916920,81							Dwelling structure, large- -placed within GPS-positioned outline
DW B	625	Placemark	Small Dwelling	609900,53	3916926,81							Dwelling structure, large- -placed within GPS-positioned outline
DW B	626 P	Placemark	Small Dwelling	609921,97	3916935,18							Dwelling structure, large- -placed within GPS-positioned outline
DW B	627	Placemark	Small Dwelling	609923,04	3916914,45							Dwelling structure, large - placed within GPS-positioned outline
DW B	628	Placemark	Small Dwelling	609925,76	3916926,54							Dwelling structure, large- -placed within GPS-positioned outline
DW B	632	hb165	Small Dwelling	609942,37	3916935,56							Dwell ing structure, small, depression and midden. Situated behind beach ridge.
DW B	633	hb166	Small Dwelling	609932,89	3916911,07							Dwell ing structure, small, depression and midden. Situated behind beach ridge.
Dw b	636	Untitled Placemark	Small Dwelling	609907,93	3916920,25							Dwell ing structure, large - placed within GPS-positioned outline
DW B	639	hb751	Small Dwelling	610249,06	3917011,50	3	3		<0,5			Dwelling structure, walls $<0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW B	649	hb752	Small Dwelling	610250,89	3917011,36	3	3		<0,5			Dwelling structure, walls $<0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW B	651	hb754	Small Dwelling	610256,01	3917002,06	3	3		$<0,5$			Dwell ing structure, walls $<0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
DW B	694	hb800	Small Dwelling	610329,75	3916882,73	3	3		>0,5			Dwell ing structure, walls $<0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach ridge.
ow B	698	hb807	Small Dwelling	610306,20	3916867,85	3	3		$<0,5$			Dwelling structure, walls $<0,5 \mathrm{~m}$ high, house pit ca 3 m . Below beach erosion cut, above beach ridge.
DW B	756	hb220	Small Dwelling	610549,03	3917461,81	3	3					Dwelling structure in complex, low walls on sides and downslope, house pit 3 m wide. Stiuated on sloping terrace close to beach.
DW B	757	hb219	Small Dwelling	610540,34	3917471,30	3	3					Dwelling structure in complex, low walls on sides and downslope, house pit 3 m wide. Stiuated on sloping terrace close to beach. Adjacent to hb218.
DW B	765	hb218	Small Dwelling	610533,29	3917474,57	3	3					Dwelling structure in complex, low walls on sides and downslope, house pit 3 m wide. Stiuated on sloping terrace close to beach.
DW B	780	Placemark	Small Dwelling	610728,03	3917293,11				0,5			Dwelling structure in complex, walls 2 m wide, $0,5 \mathrm{~m}$ high, dwelling pits around $3-4 \mathrm{~m}$. Smaller than others in this complex Structure placed within GPS positioned outline of complex.
DW B	781	Placemark	Small Dwelling	610724,87	3917287,69				0,5			Dwelling structure in complex, walls 2 m wide, $0,5 \mathrm{~m}$ high, dwelling pits around $3-4 \mathrm{~m}$. Smaller than others in this complex Structure placed within GPS positioned outline of complex.
DW B	782	Placemark	Small Dwelling	610720,76	3917282,24				0,5			Dwelling structure in complex, walls 2 m wide, $0,5 \mathrm{~m}$ high, dwelling pits around $3-4 \mathrm{~m}$. Smaller than others in this complex Structure placed within GPS positioned outline of complex.
DW B	783	Placemark	Small Dwelling	610693,31	3917312,41				0,5			Dwelling structure in complex, walls 2 m wide, $0,5 \mathrm{~m}$ high, dwelling pits around $3-4 \mathrm{~m}$. Smaller than others in this complex Structure placed within GPS positioned outline of complex.
DW B	784	Placemark	Small Dwelling	610698,69	3917309,94				0,5			Dwelling structure in complex, walls 2 m wide, $0,5 \mathrm{~m}$ high, dwelling pits around $3-4 \mathrm{~m}$. Smaller than others in this complex Structure placed within GPS positioned outline of complex.
DW B	801	hb118	Small Dwelling	610039,47	3917551,63				0,2			Dweling structure, 2 m wide / $0,2 \mathrm{~m}$ high dome in wall downslope, hous epit and rest of wall not very distinct. Testpit visible.
DW B	805	hb135	Small Dwelling	610523,38	3917289,27	3	3					Dwell ing structure, dome in wall on low side, house pit around 3m.
DW B	845	hb	Small Dwelling	610475,65	3917305,90	3	3					Dwelling structure, dome in wall, depression ca 3 m , shallow. Situated in larger area w midden formation - from hb969 to 976 along S end of terrace.
DW B	846	hb970	Small Dwelling	610461,25	3917300,21	3	3		0,1			Dwelling structure, low walls ($0,1 \mathrm{~m}$) around 3 m wide, hallow depression. Siyuated in area w midden formation, from hb970 to 969.
DW B	849	hb974	Small Dwelling	610360,50	3917339,74				0,2			Dweling structure, 2 m wide / $0,2 \mathrm{~m}$ high dome in wall downslope, hous epit and rest of wall not very distinct. This is also hb108 in first survey.
DW B	853	hb978	Small Dwelling	610440,62	3917331,50				0,2			Dweling structure, 2 m wide / $0,2 \mathrm{~m}$ high U-shaped wall towards E, housepit 4 m wide.
DW B	857	hb983	Small Dwelling	610526,43	3917291,78	3	3					Dwell ing structure, dome in wall on low side, house pit around 3 m . Not as clear as hb135
DW B	858	hb147	Small Dwelling	610066,55	3917346,87				0,2			Dwell ing structure, low walls, 2 m wide, $0,2 \mathrm{~m}$ high, not very visible.
DW B	869	hb150	Small Dwelling	610011,46	3917354,40							Dwell ing structure, low walls in periphery of complex. Situated at beach.
DW B	944	hb055	Small Dwelling	611152,32	3917341,78	3	2		<0,3			Dwell ing structure, low wall / domes ($0,3 \mathrm{~m}$ high, $1-2 \mathrm{~m}$ wide). House pit around $2 \times 3 \mathrm{~m}$ wide.
DW B	945	hb056	Small Dwelling	611114,88	3917342,15				$<0,3$			Dwell ing structure, low wall / domes ($0,3 \mathrm{~m}$ high, $1-2 \mathrm{~m}$ wide). House pit around 3 -4m wide.
DW B	946	hbo	Small Dwelling	611093,28	3917333,97	3	2		<0,3			Dwelling structure, U-shaped low wall / domes ($<0,3 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide). House pit around $2 \times 3 \mathrm{~m}$ wide.
DW B	947	hb062	Small Dwelling	611075,54	3917337,53	3	2		$<0,3$			Dwelling structure, U-shaped low wall / domes (<0,3m high, 2-3m wide). House pit around $2 \times 3 \mathrm{~m}$ wide.
DW B	948	hb063	Small Dwelling	611066,71	3917340,81	3	2		$<0,3$			Dwelling structure, U -shaped low wall / domes ($<0,3 \mathrm{~m}$ high, $2-3 \mathrm{~m}$ wide). House pit around $2 \times 3 \mathrm{~m}$ wide.
DW B	949	hb064	Small Dwelling	611073,76	3917337,54	3	2		$<0,3$			Dwelling structure, U-shaped low wall / domes (<0,3m high, 2-3m wide). House pit around $2 \times 3 \mathrm{~m}$ wide.
DW B	950	hb065	Small Dwelling	611080,58	3917325,00	3	2		$<0,3$			Dwelling structure, U-shaped low wall / domes (<0,3m high, 2-3m wide). House pit around $2 \times 3 \mathrm{~m}$ wide.
DW B	951	hb069	Small Dwelling	611102,83	3917287,34	3	2		$<0,3$			Dwell ing structure, low wall / domes ($<0,3 \mathrm{~m}$ high, 2 m wide). . House pit a round $2 \times 3 \mathrm{~m}$ wide.
DW B	952	hb070	Small Dwelling	611109,88	3917284,10	3	2		$<0,3$			Dwell ing structure, low wall / domes ($<0,3 \mathrm{~m} \mathrm{high}$,2 m wide). House pit around $2 \times 3 \mathrm{~m}$ wide.
DW B	953	hb071	Small Dwelling	611115,00	3917274,82	3	2		$<0,3$			Dwell ing structure, low wall / domes ($<0,3 \mathrm{~m} \mathrm{high}$,2 m wide). House pit around $2 \times 3 \mathrm{~m}$ wide.
DW B	954	hb072	Small Dwelling	611113,06	3917268,41	3	2		$<0,3$			Dwell ing structure, low wall / domes ($<0,3 \mathrm{~m} \mathrm{high}$,2 m wide). House pit around $2 \times 3 \mathrm{~m}$ wide.
DW B	95	hb073	Small Dwelling	611104,15	3917268,79	3	2		$<0,3$			Dwell ing structure, low wall / domes ($<0,3 \mathrm{~m} \mathrm{high}$,2 m wide). House pit a round $2 \times 3 \mathrm{~m}$ wide.
DW B	958	hb108	Small Dwelling	610930,48	3917384,38				0,2-0,4			Dwelling structure in complex. Low domes ($0,3-0,4 \mathrm{~m}$ high) and walls $(0,2 \mathrm{~m})$, house pit $2,5-3 \mathrm{~m}$ wide. Situated in sloping terrace towards beach.
DW B	959	hb107	Small Dwelling	610932,19	3917381,24				0,2-0,4			Dwelling structure in complex. Low domes ($0,3-0,4 \mathrm{~m}$ high) and walls ($0,2 \mathrm{~m}$), house pit 2,5-3m wide. Situated in sloping terrace towards beach.
DW B	960	hb106	Small Dwelling	610933,90	3917378,11				0,2-0,4			Dwelling structure in complex. Low domes ($0,3-0,4 \mathrm{~m}$ high) and walls ($0,2 \mathrm{~m}$), house pit 2,5-3m wide. Situated in sloping terrace towards beach.
DW B	961	hb105	Small Dwelling	610933,74	3917371,92				0,2-0,4			Dwelling structure in complex. Low domes ($0,3-0,4 \mathrm{~m}$ high) and walls $(0,2 \mathrm{~m})$, house pit $2,5-3 \mathrm{~m}$ wide. Situated in sloping terrace towards beach.
DW B	962	hb104	Small Dwelling	610929,95	3917362,74				0,2-0,4			Dwelling structure in complex. Low domes ($0,3-0,4 \mathrm{~m}$ high) and walls $(0,2 \mathrm{~m}$), house pit $2,5-3 \mathrm{~m}$ wide. Situated in sloping terrace towards beach.
DW B	963	hb987	Small Dwelling	610805,43	3917591,56	3	3		$<0,5$			Dwelling structure, low walls and domes ($<0,5 \mathrm{~m}$ high). House pit around 3 m wide.
DW B	964	hb988	Small Dwelling	610820,71	3917560,36	3	3		<0,5			Dwell ing structure, low walls and domes ($<0,5 \mathrm{~m}$ high). House pit a round 3 m wide.
DW B	965	hb001	Small Dwelling	610852,50	3917475,96	3	3		$<0,5$			Dwelling structure, low walls and domes ($<0,5 \mathrm{~m}$ high). Walls upslope, no walls towards beach. House pit around 3 m wide.
DW B	966	hb002	Small Dwelling	610847,24	3917479,32	3	3		$<0,5$			Dwelling structure, low walls and domes ($<0,5 \mathrm{~m}$ high). Walls upslope, no walls towards beach. House pit around 3 m wide.
DW B	967	hb003	Small Dwelling	610843,75	3917482,32	3	3		$<0,5$			Dwelling structure, low walls and domes ($<0,5 \mathrm{~m}$ high). Walls upslope, no walls towards beach. House pit around 3 m wide.
DW B	969	hb007	Small Dwelling	610836,33	3917615,54	3	3		$<0,5$			Dwell ing structure, low U-shaped wall ($<0,5 \mathrm{~m}$ high), open towards SE. House pit around 3 m wide.
DW B	970	hb018	Small Dwelling	610917,88	3917523,85	4	3		$<0,5$			Dwelling structure, low walls and domes ($<0,5 \mathrm{~m}$ high). House pit around $3 \times 4 \mathrm{~m}$ wide. Vague.
DW B		hb019	Small Dwelling	610923,00	3917514,44	4	3		$<0,5$			Dwelling structure, low walls and domes ($<0,5 \mathrm{~m}$ high). House pit around $3 \times 4 \mathrm{~m}$ wide. Adja cent to 018, more clear.

	$\begin{aligned} & \text { 은 } \\ & \text { ~ } \\ & \text { on } \end{aligned}$	Name	Site type	X (UTM)	Y (UTM)		$\begin{aligned} & \frac{5}{0} \\ & \frac{0}{3} \end{aligned}$	$\underset{\substack{\text { N } \\ \text { E }}}{ }$	$\frac{\stackrel{\rightharpoonup}{4}}{\frac{0.0}{\mathbf{0}}}$	$\begin{gathered} { }^{\text {m}} \underset{\bar{\circ}}{E} \end{gathered}$	\circ 10 3 3	Observations
DW B	972	hb032	Small Dwelling	610986,61	3917491,09	3	3		<0,5			Dwell ing structure, low walls and domes ($<0,5 \mathrm{~m}$ high). House pit around 3 m wide. Vague.
DW B	973	hb041	Small Dwelling	611029,46	3917493,20				<0,5			Dwelling structure, low walls and domes ($<0,5 \mathrm{~m}$ high). House pit around 4 m wide. Cattle damage to SE, ca 10 artiofacts visible, rough bifacial piece.
DW B	974	hb016	Small Dwelling	610955,15	3917516,73				0,3			Dwelling structure - possible, U-shaped low wall ($0,3 \mathrm{~m}$ high, 3 m wide) assosiated with clear depession. House pit around 4 m wide.
DW B	982	hb166	Small Dwelling	610913,89	3917217,79	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	983 h	68	Small Dwelling	610933,49	3917217,31	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	984	hb170	Small Dwelling	610926,06	3917205,12	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	985	hb169	Small Dwelling	610933,41	3917214,22	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, (0,1-0,3m high)
DW B	986	hb175	Small Dwelling	610916,92	3917196,07	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	990	hb189	Small Dwelling	610873,77	3917181,67	2,5	2,5		0,1-0,3			Dwelling structure, definite house pit (ca 2-3m), but walls low, (0,1-0,3m high). Excavation 2009 between hb188 and 189.
DW B	991	hb188	Small Dwelling	610873,92	3917187,86	2,5	2,5		0,1-0,3			Dwelling structure, definite house pit (ca 2-3m), but walls low, (0,1-0,3m high). Excavation 2009 between hb188 and 189.
DW B	4	hb191	Small Dwelling	610866,64	3917181,85	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	995	hb190	Small Dwelling	610868,35	3917178,72	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	6	hb186	Small Dwelling	610888,33	3917193,68	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	997 h	hb183	Small Dwelling	610901,11	3917205,74	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	98	hb180	Small Dwelling	610904,75	3917208,74	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	1001 h	hb	Small Dwelling	610863,08	3917181,94	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	1007 h	hb167	Small Dwelling	610920,94	3917214,53	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	1008	165	Small Dwelling	610919,31	3917220,75	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	1009 h	hb164	Small Dwelling	610924,73	3917223,71	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	1010	hb163	Small Dwelling	610924,89	3917229,89	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	1011 h	hb171	Small Dwelling	610927,76	3917201,99	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, (0,1-0,3m high)
DW B	1013	hb179	Small Dwelling	610910,25	3917214,79	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	1021	hb192	Small Dwelling	610863,08	3917181,94	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	1022	hb187	Small Dwelling	610884,6	3917190,68	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	1023	hb185	Small Dwelling	610895,61	3917199,69	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	1024	hb184	Small Dwelling	610897,47	3917202,74	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	1025	hb182	Small Dwelling	610913,66	3917208,52	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	1026	hb181	Small Dwelling	610913,58	3917205,43	2,5	2,5		0,1-0,3			Dwell ing structure, definite house pit (ca $2-3 \mathrm{~m}$), but walls low, ($0,1-0,3 \mathrm{~m}$ high)
DW B	1047 \|	placed	Small Dwelling	609335,47	3917994,90							see hb193
DW B	1048 h	hb183	Small Dwelling	609221,10	3917995,25	3	2					Dwelling structure, depression ($3 \times 2 \mathrm{~m}$) sourrounded by low wall (ca 1 m wide) on all sides. Testpits show that wall is gravel, no shells observed. 3 flakes of dark gray finegrained rock in testpit in wall. Situated at SW end of top platou, where slope start
DW B	1049	hb552	Small Dwelling	609288,68	3917987,43				$<0,4$			Dwelling structure, low walls ($<40 \mathrm{~cm}$) of shell midden, pits d 3-4m. Situated on top platou of hill (drumlin) by Imiwaia I
DW B	1050	hb554	Small Dwelling	609294,48	3918005,84				$<0,4$			Dwelling structure, low walls ($<40 \mathrm{~cm}$) of shell midden, pits d $3-4 \mathrm{~m}$. Situated on top platou of hill (drumlin) by Imiwaia I
DW B	1051 h	hb555	Small Dwelling	609287,35	3918006,01				$<0,4$			Dwelling structure, low walls $(<40 \mathrm{~cm})$ of shell midden, pits d $3-4 \mathrm{~m}$. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1052	hb569	Small Dwelling	609244,65	3918010,14				$<0,4$			Dwell ling structure, low walls ($<40 \mathrm{~cm}$) of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1053	568	Small Dwelling	609244,50	3918003,96				$<0,4$			Dwelling structure, low walls $(<40 \mathrm{~cm})$ of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1054 h	hb556	Small Dwelling	609280,14	3918003,10				$<0,4$			Dwelling structure, low walls ($<40 \mathrm{~cm}$) of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1055	hb557	Small Dwelling	609276,50	3918000,09				$<0,4$			Dwelling structure, low walls $(<40 \mathrm{~cm})$ of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaial
DW B	1056 h	hb564	Small Dwelling	609262,32	3918003,53				$<0,4$			Dwelling structure, low walls ($<40 \mathrm{~cm}$) of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1057	hb566	Small Dwelling	609251,55	3918000,70				$<0,4$			Dwelling structure, low walls $(<40 \mathrm{~cm})$ of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1058 h	hb183	Small Dwelling	609219,47	3918001,48				0,2			Dwelling structure, depression (4 m) sourrounded by low wall (ca $1,5 \mathrm{~m}$ wide, $0,2 \mathrm{~m}$ high) on all sides. Testpits show shell midden in wall towards SE. Situated at top platou.
DW B	1059	hb560	Small Dwelling	609273,09	3918006,36				$<0,4$			Dwelling structure, low walls $(<40 \mathrm{~cm})$ of shell midden, pits d $3-4 \mathrm{~m}$. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1060	hb559	Small Dwelling	609280,29	3918009,28				$<0,4$			Dwelling structure, low walls $(<40 \mathrm{~cm})$ of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1061 h	hb558	Small Dwelling	609272,94	3918000,18				$<0,4$			Dwelling structure, low walls $(<40 \mathrm{~cm})$ of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1062	hb562	Small Dwelling	609267,59	3918000,31				$<0,4$			Dwelling structure, low walls $(<40 \mathrm{~cm})$ of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1063 h	hb561	Small Dwelling	609267,89	3918012,67				$<0,4$			Dwelling structure, low walls ($<40 \mathrm{~cm}$) of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1064 h	hb563	Small Dwelling	609271,01	3917994,04				$<0,4$			Dwelling structure, low walls ($<40 \mathrm{~cm}$) of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1065	hb565	Small Dwelling	609257,05	3918006,75				$<0,4$			Dwelling structure, low walls $(<40 \mathrm{~cm})$ of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1066 h	hb567	Small Dwelling	609242,56	3917997,82				$<0,4$			Dwelling structure, low walls $(<40 \mathrm{~cm})$ of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1067 h	hb570	Small Dwelling	609235,74	3918010,36				$<0,4$			Dwelling structure, low walls ($<40 \mathrm{~cm}$) of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I
DW B	1068 h	hb572	Small Dwelling	609230,09	3917998,13				$<0,4$			Dwelling structure, low walls $(<40 \mathrm{~cm})$ of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaial
DW B	1069 h	hb571	Small Dwelling	609235,51	3918001,09				$<0,4$			Dwelling structure, low walls ($\langle 40 \mathrm{~cm}$) of shell midden, pits d 3-4m. Complex on top platou of hill (drumlin) by Imiwaia I

	은 픙 0 0	Name	Site type	X (UTM)	Y (UTM)	$\begin{aligned} & \stackrel{5}{\square} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \frac{5}{0} \\ & \frac{0}{3} \end{aligned}$	$\underset{\text { N }}{\stackrel{\text { N }}{\text { E }}}$	$\frac{\stackrel{ \pm}{40}}{\frac{0.0}{\mathbf{0}}}$		\circ 3	Observations
DW B	1071	hb193a	Small Dwelling	609337,10	3917998,62							One of 2 Dwelling structures, depressions (diameter 4 and 5 m). Largest is open towards slope. Situated at top slope abowe Imiwaia I. AUG2016: Separated inhb193a and b
DW B	1073	hb191	Small Dwelling	609354,92	3917998,18							Dwelling structure (?), circular flat area, low midden / wall downslope. Situated at top of slope above Imiwaia I.
DW B	1074	hb190	Small Dwelling	609363,76	3917994,88							Dwelling structure, depression (4m) sourrounded by low somewhat irregular wall. Testpits show shell midden in wall.
DW B	1075	hb186	Small Dwelling	609248,66	3918028,60							Dwelling structure, depression (4m), low wall downslope and towards SE. Situated at top of slope abowe Imiwaia I.
DW B	1076	hb184	Small Dwelling	609214,99	3918017,67	4	3		0,1			Dwelling structure, depression ($3 \times 4 \mathrm{~m}$) sourrounded by low wall (ca $0,1 \mathrm{~m}$) on all sides. Testpits show shell midden in wall. Situated at top platou, seems to be the last site towards NW.
DW B	1082	Untitled Placemark	Small Dwelling	609269,56	3918018,13							see 187
DW B	1083	Untitled Placemark	Small Dwelling	609273,87	3918019,87							see 187
DW B	1084	placed	Small Dwelling	609274,84	3918016,49							see 187
DW B	1085	hb187	Small Dwelling	609278,74	3918018,59							4 dwelling structures close to here, hb187 marks the eastern one. Testpit show very fragmented/burnt shells and guanaco bone.
DW B	1136	hb208	Small Dwelling	609239,17	3918078,31	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1137	hb216	Small Dwelling	609248,01	3918075,00	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls $(<0,4 \mathrm{~m})$. Situated at base of hill
DW B	1138	hb221	Small Dwelling	609293,97	3918058,42	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$) - situated at base of hill
DW B	1139	hb209	Small Dwelling	609246,60	3918090,50							
DW B	1140	hb210	Small Dwelling	609254,11	3918105,78	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1141	hb213	Small Dwelling	609263,17	3918111,74	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1142	hb211	Small Dwelling	609259,30	3918099,47	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$). ELP tent here
DW B	1143	hb212	Small Dwelling	609266,73	3918111,65	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1144	hb217	Small Dwelling	609249,86	3918078,05	3	3		$<0,4$			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1145	hb214	Small Dwelling	609264,87	3918108,61	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1146	hb218	Small Dwelling	609267,69	3918077,62	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1147	hb219	Small Dwelling	609274,52	3918065,08	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$) - in low part of slope
DW B	1148	hb220	Small Dwelling	609281,57	3918061,82	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1149	hb222	Small Dwelling	609295,98	3918067,65	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1150	hb223	Small Dwelling	609296,20	3918076,92	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1151	hb226	Small Dwelling	609299,55	3918067,68	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1152	hb224	Small Dwelling	609307,12	3918085,93	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1153	hb227	Small Dwelling	609290,26	3918052,33	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$). At base of hill
DW B	1154	hb225	Small Dwelling	609305,49	3918092,16	3	3		$<0,4$			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1155	hb234	Small Dwelling	609348,84	3918041,54							
DW B	1156	hb230	Small Dwelling	609322,56	3918060,82	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1157	hb233	Small Dwelling	609332,73	3918038,92	3	3		$<0,4$			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$).
DW B	1158	hb231	Small Dwelling	609315,36	3918057,90							
DW B	1159	hb229	Small Dwelling	609311,27	3918036,35							
DW B	1160	hb228	Small Dwelling	609295,75	3918058,38							
DW B	1161	hb215	Small Dwelling	609295,17	3918107,87	3	3		<0,4			Dwelling structure, depression d ca 3 m , low walls ($<0,4 \mathrm{~m}$)
DW B	1192	hb608	Small Dwelling	609663,13	3918278,27				0,4			Dwelling structure, cresent shaped midden, 2 m wide $0,4 \mathrm{~m}$ high, possible dwelling structure damaged by roadfill (low side of road).
DW B	1229	hb193b	Small Dwelling	609339,10	3917996,62							One of 2 Dwelling structures, depressions (diameter 4 and 5 m). Largest is open towards slope. Situated at top slope abowe Imiwaia I. AUG2016: Separated inhb193a and b
DW B	1231	hb401b	Small Dwelling	609282,90	3917816,44				0,3-0,4			One of 2 Dwelling structure, low walls / domes downslope ($0,3-0,4 \mathrm{~m}$ high) (AUG2016 separated in hb401a and b) - not very visible. The E one is damaged by cattle. Notched scraper on surface of disturbance. Two small domes below these structures.
DW B	1232	hb402a	Small Dwelling	609226,18	3917830,19							One of 2 adjacent dwelling structures (AUG separated in hb402a and b), midden mostlt on low side, low walls barely visible. Notches on uphill side suggest dwelling.
DW B	1233	hb402b	Small Dwelling	609222,18	3917826,19							One of 2 adjacent dwelling structures (AUG separated in hb402a and b), midden mostlt on low side, low walls barely visible. Notches on uphill side suggest dwelling.
	1044	Casa Grande Imiwaia	Sites	609285,84	3918170,32					300,0		Documentation in Cambaceres report
		I site	Sites	609386,78	3917768,57							

Appendix 1.2: Varela Peninsula

Sites and structures in "Varela Peninsula". The two green lines to the top left mark large beach ridges from Holocene transgression maximum, showing that the peninsula was not cut of by the rising water.

Appendix 1.3: Cambaceres Interior Binushmuka

Sites and structures in "Cambaceres Interior Binushmuka". The Binushmuka I site (w the green obsidian, discovered in 2011) is shown as yellow square. Also note the position of the obsidian scraper found in 2009. The three canoe runways shown in yellow dots.

Appendix 1.4: Cambaceres Interior Imiwaia

Sites and structures in "Cambaceres Interior Imiwaia".

Appendix 1.5: Cambaceres Interior North

Sites and structures in "Cambaceres Interior North". The Basurero settlement that was test excavated in 2010 is marked in yellow.

Appendix 1.6: Cambaceres Interior Southeast

Sites and structures in "Cambaceres Interior Southeast".

Appendix 1.7: Cambaceres Central Peninsula

Sites and structures in "Cambaceres Central Peninsula".

Appendix 1.8: Cambaceres Outer Peninsula

Sites and structures in "Cambaceres Outer Peninsula".

Appendix 1.9: Cambaceres Exterior Northeast

Sites and structures in "Cambaceres Exterior Northeast", surveyed in 2011.

Appendix 2．1 Testpit survey：Excel database

पłdəp dı

Top of lay
Surface
Surface

[^6]

x （GCS）

ন゙ N

$\stackrel{\oplus}{-1} \times$

๗へ

[^0]: ${ }^{1}$ "Cambaceres" in this report is used as a common name for our study area, including Varela peninsula and the estuary of Rio Varela, Imiwaia, Lanashuaia and all surrounding peninsulas and hills. Cambaceres and Varela are named after important Argentinean officials in the process of establishing Estancia Haberton in the late 1800s. All other local names in Cambaceres are Yamana placenames; Hashmurn, Halupai, Binushmuka, Imiwaia, Lanashuaia, Alasawaia, Wikirrh, cf. Lothrop 1928, 182.

[^1]: ${ }^{2}$ All dates in this document is given in uncalibrated radiocarbon years BP

[^2]: ${ }^{3} \mathrm{~m}$ asl. refers to meters above present sea-level.

[^3]: ${ }^{4}$ The Yamana name for this site is Wikirrh. It is often referred to as Huevera (i.e. egg-box in Spanish) on behalf of the egg-box alignment of dwelling pits.

[^4]: ${ }^{5}$ This site was initially named the "Pili Site" after María "Pili" Martinoli who discovered the site in 2009. However, the settlement is now referred to as Basurero due to the close vicinity to the present garbage dump. Note that it is not the same site as the nearby Test Pit site Basurero, cf. 3.2.5.

[^5]: ${ }^{6}$ Note that the "Basurero test pit site" is not the same site as "Basurero" settlement that was excavated in 2010, cf. ch. 2.2.3.

[^6]: surero Uno
 Basurerouno

 0
 $\stackrel{n}{3}$
 \vdots
 \vdots
 \vdots
 \vdots
 \vdots范

 告

 高

