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Abstract

This paper derives Lyapunov sufficient conditions for uniform semiglobal exponential stability (USGES) of parameterized
nonlinear time-varying systems. It furthermore investigates the robustness properties that USGES may provide with respect
to perturbations.
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1 Introduction

Semiglobal stability of a system may arise from inherent
system properties, like high-order nonlinearities, or it
may be a result of the control system; the chosen control
law or actuator saturation.

An example of physical systems that have the USGES
stability property is marine vehicles controlled by the
well-known line-of-sight (LOS) or integral line-of-sight
(iLOS) guidance laws. It has been shown in Fossen and
Pettersen (2014) that the structure of the LOS guidance
law prevents the system from having global exponen-
tial convergence. In particular, the guidance law can be
viewed as a saturated P controller, and this makes the
corresponding control gain, and thus the convergence
rate, decrease as the norm of the state increases. There-
fore, although the system can be shown to have local
exponential convergence, the exponential convergence
property is not global.

The USGES stability property is also addressed in
Orrante-Sakanassi et al. (2015), where a novel tuning
procedure is introduced to ensure semi-global exponen-
tial stability for the classical PID control of rigid robots.
A main motivation for achieving semi-global exponen-
tial stability as opposed to previous works reporting
semi-global asymptotic stability for rigid robots control
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systems, is to simultaneously achieve both stability and
good performance.

While there exists rigorous theory giving Lyapunov suf-
ficient conditions for uniform semiglobal asymptotic sta-
bility (USGAS), given by Teel et al. (1999), Nes̆ić and
Loria (2004), and Chaillet and Loria (2008), to the au-
thor’s best knowledge Lyapunov sufficient conditions for
USGES have so far only been considered in Grøtli et al.
(2008). In this paper, Lyapunov sufficient conditions are
derived, providing a complete proof, and also showing
that one of the conditions in Grøtli et al. (2008) can be
omitted. In particular, we present a definition of USGES
for parameterized nonlinear time-varying systems, and
we derive corresponding Lyapunov sufficient conditions
for USGES. This provides a Lyapunov analysis tool that
can be utilized as part of cascaded systems analysis and
control design of USGES systems based on Loria and
Panteley (2004).

In addition to guaranteeing stronger convergence prop-
erties than asymptotic stability, exponential stability
properties are considered beneficial because of the ro-
bustness properties they may guarantee. In particular,
uniform global exponential stability (UGES), together
with an additional condition on the Lyapunov function,
guarantees that for all uniformly bounded disturbances,
irrespective of magnitude, the solution of the perturbed
system will be uniformly bounded (Khalil, 2002, Lemma
9.2). It is therefore interesting to investigate which ro-
bustness properties that the stability property USGES
can provide.
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The paper is organized as follows. In Section 2 USGES is
defined and Lyapunov sufficient conditions for USGES
are derived. The robustness properties that USGES may
provide with respect to nonvanishing perturbations are
discussed in Section 3, while robustness properties with
respect to vanishing perturbations are given in Section 4.
In Section 5 conclusions are drawn.

2 Uniform Semiglobal Exponential Stability

In this section we present the definition and derive Lya-
punov sufficient conditions for USGES.

2.1 Definition of USGES

We consider the parameterized nonlinear time-varying
system

ẋ = f(t, x, θ) (1)

where t ∈ R≥0, x ∈ Rn, θ ∈ Θ ⊂ Rm is a constant
parameter, and f(t, x, θ) is locally Lipschitz in x and
piecewise continuous in t for all θ ∈ Θ. The origin x = 0
is an equilibrium point of (1).

A definition of USGES for nonlinear time-varying sys-
tems has been given in Loria and Panteley (2004)
Def. 2.7. In order to explicitly show the impact that
system parameters may have on the USGES property,
we will instead use the following definition. This ex-
plicitly shows the parameter dependency that USGES
may involve and is thus in line with the definition of
uniform semiglobal asymptotic stability (USGAS) in
Chaillet and Loria (2008) (Def. 8 with δ = 0). This
definition of USGES was presented in Grøtli et al.
(2008). In the following, B∆ is defined as the closed ball
{x ∈ Rn :‖x‖ ≤ ∆}.

Definition 1 (USGES) Let Θ ⊂ Rm be a set of pa-
rameters. System (1) is USGES on Θ if, for any ∆ > 0
there exists a parameter θ∗(∆) ∈ Θ and positive con-
stants k∆, λ∆, all independent on t0, such that ∀x0 ∈ B∆∥∥x(t; t0, x0, θ

∗)
∥∥ ≤ k∆‖x0‖ e−λ∆(t−t0) ∀t ≥ t0 ≥ 0 (2)

Remark 2 In other words, the system (1) is USGES if
we can choose a parameter value θ∗ and find the overshoot
and convergence parameters k∆ and λ∆, such that the
region of attraction in which the system has exponential
convergence, B∆, can be made arbitrarily large. If ∆ −→
∞ then the definition becomes the definition of uniform
global exponential stability (Khalil, 2002, Def. 4.5), (Lo-
ria and Panteley, 2004, Def. 2.7).

Remark 3 Definition 1 is a special case of Def. 2.7 of
USGES in Loria and Panteley (2004) in which we explic-
itly show the parameter dependency that may be part of
the USGES property. Systems satisfying Definition 1 of
USGES therefore also satisfy Loria and Panteley (2004)

Def. 2.7 of USGES. The cascaded systems theory result
for USGES systems in Loria and Panteley (2004) Propo-
sition 2.3 may thus be applied, and the Lyapunov suffi-
cient conditions derived in the next section can be utilized
in such a cascaded systems analysis.

Remark 4 For the definition of USGAS there exist sev-
eral different versions in the literature, see Sepulchre et
al. (1997), Teel et al. (1999), Nes̆ić and Loria (2004),
Tan et al. (2006), and Chaillet and Loria (2008). Simi-
larly, we could have given a stronger definition of USGES
by requiring that the overshoot and convergence parame-
ters k and λ should be uniform in ∆, i.e. should not be
allowed to depend on the size of the region of attraction.
Since both overshoot and convergence in practice typi-
cally depend on the tuning of the system, we have chosen
the more relaxed definition allowing a dependence on ∆,
which is in line with the definition of USGAS in Chail-
let and Loria (2008). In particular, since the overshoot
and convergence parameters in practice often will depend
on the tuning parameters of the system, we then have
k(θ∗(∆)) and λ(θ∗(∆)) such that the overshoot and con-
vergence parameters naturally depend on ∆.

2.2 Lyapunov sufficient conditions for USGES

The following theorem gives Lyapunov sufficient condi-
tions for USGES.

Theorem 5 Consider the system given in (1). If for any
∆ > 0 there exist a parameter θ∗(∆) ∈ Θ, a continuously
differentiable Lyapunov function V∆ : R≥0 × B∆ −→
R≥0, and positive constants k1∆

, k2∆
, k3∆

, a, such that
∀x ∈ B∆

k1∆‖x‖
a ≤ V∆(t, x) ≤ k2∆‖x‖

a
(3)

∂V∆

∂t
+
∂V∆

∂x
f(t, x, θ∗) ≤ −k3∆

‖x‖a (4)

∀t ≥ t0 ≥ 0, then the origin of the system (1) is USGES
on Θ.

Here‖x‖ denotes the Euclidean norm.
Proof:
Let ∆ be any given positive constant and let V∆ and
θ∗(∆) be generated by the assumptions of Theorem 5.

The proof follows along the lines of the proofs of (Khalil,
2002, Theorems 4.8 and 4.10), while particular care is
taken to show that the estimate of the region of attrac-
tion in which the system is shown to have exponential
convergence can be made arbitrarily large by increasing
∆. Choose the positive constant c∆ = αk1∆

∆a where
0 < α < 1. Define the time-dependent set

Ωt,c∆ = {x ∈ B∆ : V∆(t, x) ≤ c∆} (5)

This set Ωt,c∆ contains the set Ω2 = {x ∈ B∆ :
k2∆
‖x‖a ≤ c∆} since (k2∆

‖x‖a ≤ c∆) =⇒ (V∆(t, x) ≤
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c∆) by Condition (3). Furthermore, the set Ωt,c∆ ⊂
Ω1 = {x ∈ B∆ : k1∆‖x‖

a ≤ c∆} since V∆(t, x) ≤ c∆
by (3) implies that k1∆‖x‖

a ≤ c∆. We thus have the
following nested sets:

Ω2 ⊂ Ωt,c∆ ⊂ Ω1 ⊂ B∆ (6)

∀t ≥ t0 ≥ 0. Since V̇∆(t, x) < 0 on B∆ according to (4),
for any t0 ≥ 0 and any x0 ∈ Ωt0,c∆ the solution start-
ing at (t0, x0) will stay in Ωt,c∆ for all t ≥ t0. Therefore,
any solution that starts in Ω2 will stay in Ωt,c∆ and con-
sequently in Ω1 for all future time, which by the choice
of c∆ implies that ‖x‖ < ∆ for all future time. Hence,
(1) has a unique and bounded solution defined for all
t ≥ t0 > 0, whenever x0 ∈ Ω2. To sum up, we thus have
that ∀t0 ∈ R≥0 the solutions of (1) satisfy

‖x0‖≤
(
αk1∆

k2∆

)1/a
∆ =⇒

∥∥x(t; t0, x0, θ
∗)
∥∥<∆ ∀t≥ t0≥0

(7)

We define ∆̃ = (
αk1∆

k2∆
)1/a∆ and note that ∆̃ < ∆. Con-

dition (4) together with (7) gives that

‖x0‖ ≤ ∆̃ =⇒ V̇∆ ≤ −k3∆
‖x‖a ∀t ≥ t0 ≥ 0 (8)

It follows from (8) and (3) that ∀x0 ∈ B∆̃, V∆ satisfies
the differential inequality

V̇∆ ≤ −
k3∆

k2∆

V∆ ∀t ≥ t0 ≥ 0 (9)

The comparison lemma (Khalil, 2002, Lemma 3.4) then
gives that

V∆(t, x) ≤ V∆(t0, x0)e
−
k3∆
k2∆

(t−t0) ∀t ≥ t0 ≥ 0 (10)

Using (3) this gives that ∀x0 ∈ B∆̃

∥∥x(t; t0, x0, θ
∗)
∥∥ ≤ (V∆(t, x)

k1∆

) 1
a

≤

V∆(t0, x0)e
−
k3∆
k2∆

(t−t0)

k1∆


1
a

≤

k2∆
‖x0‖a e

−
k3∆
k2∆

(t−t0)

k1∆


1
a

=

(
k2∆

k1∆

) 1
a

‖x0‖ e
−

k3∆
ak2∆

(t−t0)
(11)

∀t ≥ t0 ≥ 0. In other words B∆̃ is a subset of the re-
gion of attraction in which the system has exponential

convergence. Since the subset of the region of attraction
with exponential convergence, B∆̃, can be made arbi-
trarily large by increasing ∆, the origin of System (1) is
USGES. 2

Remark 6 The set B∆̃ is a subset contained in the re-
gion of attraction RA = {x ∈ Rn: x(t; t0, x0, θ

∗) is de-
fined for all t ≥ t0 ≥ 0 and limt→∞ x(t; t0, x0, θ

∗) = 0}.
The subset B∆̃ thus provides an estimate of the region of
attraction, and in particular of the region of attraction
in which the system has exponential convergence. Esti-
mates based on Lyapunov functions, like B∆̃, are often
conservative, i.e. they may be much smaller than the ac-
tual region of attraction.

Remark 7 The proof also holds when the exponent a
is parameterized by ∆, i.e. when there exists a positive
constant a∆ such that the conditions of Theorem 5 hold.
However, since it does not seem feasible that the exponent
will depend on the size of the estimate of the region of at-
traction, we state the theorem for the non-parameterized
exponent a.

Remark 8 The proof shows that for the special case
when conditions (3-4) are satisfied with positive constants
k1, k2, k3 that are uniform in ∆, then the overshoot and
convergence rate (given in (11)) are independent of ∆,
i.e. independent of the size of the subset of the region of
attraction in which exponential convergence is shown.

2.3 Example

We will now show a simple example of how Theorem 5
can be applied. Consider the following system

ẋ = −u(t) arctan(
x

θ
) (12)

where the time-varying function u(t) is continuously dif-
ferentiable (C1) in t, and 0 < umin ≤ u(t) ≤ umax. This
simple model can represent a system with a saturated P-
controller, where the parameter θ > 0 decides the slope
of the saturation function. The dependency on a time-
varying function u(t) is motivated by marine control sys-
tems using LOS guidance, where the time-varying for-
ward velocity u(t) of the system affects the dynamics of
the cross-track error (Fossen and Pettersen (2014)).

We use the C1 Lyapunov function candidate V (x) =
1
2x

2. Condition (3) is satisfied with k1 = k2 = 1
2 and

a = 2. Furthermore

V̇ (t, x) = −u(t)
arctan(xθ )

x
x2

≤ −umin

arctan(xθ )

x
x2 (13)
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For any given ∆, we thus have that ∀x ∈ B∆

V̇ ≤ −umin

arctan(∆
θ )

∆
x2 (14)

i.e. Condition (4) is satisfied with k3∆ = umin
arctan( ∆

θ )

∆ .
By Theorem 5 the origin x = 0 is thus USGES. More-
over, from Eq. (11) in the proof we see that the overshoot
is independent on ∆. The guaranteed convergence rate,
however, will depend on the desired size of the subset
B∆̃ of the region of attraction in which exponential con-

vergence is shown, since
k3∆

ak2
= umin

arctan( ∆
θ )

∆ decreases

when ∆̃ =
√
α∆ increases. Also, note that we cannot

conclude from (Khalil, 2002, Th. 4.10) that the origin is
GES, since it is not possible to find a positive constant
k3 that is independent of the size of the estimated re-
gion of attraction,B∆̃. In particular there exists no lower

bound k3 on the gain function umin
arctan( xθ )

x ∀x ∈ Rn
since the function converges to zero as|x| −→ ∞. This is
an inherent property of (12) because of the saturation.

2.4 USGES of cascaded systems

As noted in Remark 3, the Lyapunov sufficient condi-
tions in Theorem 5 can be utilized in analysing USGES
of cascaded systems. In particular, the cascaded systems
theory result for USGES systems in Loria and Panteley
(2004) Proposition 2.3 may thus be restated as follows:

Consider the cascaded parameterized nonlinear time-
varying system

ẋ1 = f1(t, x1, θ) + g(t, x, θ)x2 (15)

ẋ2 = f2(t, x2, θ) (16)

where t ∈ R≥0, x1 ∈ Rn1 , x2 ∈ Rn2 , x = col [x1, x2],
and θ ∈ Θ ⊂ Rm is a constant parameter. The functions
f1(t, x1, θ), f2(t, x2, θ) and g(t, x, θ) are continuous in t
and continuous and locally Lipschitz in x1, x2 and x,
respectively, for all θ ∈ Θ. Furthermore, f1(t, x1, θ) is
C1 in t and x1 for all θ ∈ Θ. The origin x = 0 is an
equilibrium point of (15-16).

Proposition 9 Let each of the systems

ẋ1 = f1(t, x1, θ) (17)

and
ẋ2 = f2(t, x2, θ) (18)

be uniformly globally asymptotically stable (UGAS) and
satisfy the conditions of Theorem 5. Furthermore, let the
following assumptions be satisfied:
Assumption 1: There exist constants c1, c2, η > 0 and a
positive definite, radially unbounded Lyapunov function

V : R≥0×Rn1 −→ R≥0 of (17) such that V̇(17)(t, x1) ≤ 0
and ∥∥∥∥ ∂V∂x1

∥∥∥∥‖x1‖ ≤ c1V (t, x1) ∀‖x1‖ ≥ η (19)∥∥∥∥ ∂V∂x1

∥∥∥∥ ≤ c2 ∀‖x1‖ ≤ η (20)

Assumption 2: There exist two continuous functions
α1, α2 : R≥0 → R≥0, such that g(t, x, θ) satisfies∥∥g(t, x, θ)

∥∥ ≤ α1(‖x2‖) + α2(‖x2‖)‖x1‖ (21)

Then the origin of (15-16) is USGES and UGAS.

Remark 10 Note that Conditions (3)-(4) of Theorem 5
only need to be satisfied ∀xi ∈ B∆i

, i ∈ {1, 2}, while
Assumptions 1-2 need to be satisfied ∀x1 ∈ Rn1 , x2 ∈
Rn2 , respectively.

Remark 11 In Proposition 2.3/Theorem 2.1 of Loria
and Panteley (2004) there is also a third assumption:
Assumption 3: There exists a class K function α(·)
such that, for all t0 ≥ 0, the trajectories of the system
(18) satisfy∫ ∞

t0

∥∥x2(t; t0, x2(t0), θ∗)
∥∥ dt ≤ α(

∥∥x2(t0)
∥∥) (22)

Note that this assumption is satisfied from the condi-
tions in Proposition 9. In particular, since System (18)
is USGES it is also uniformly locally exponentially sta-
ble (ULES). Furthermore, (18) is UGAS by assumption.
The properties UGAS + ULES imply that Assumption 3
is satisfied:

Since the system is ULES, there exist positive constants
c, k, λ, independent on t0, such that ∀x2(t0) ∈ Bc∥∥x2(t; t0, x2(t0), θ∗)

∥∥ ≤ k∥∥x2(t0)
∥∥ e−λ(t−t0) ∀t ≥ t0 ≥ 0

Since the system is UGAS, there exists a class KL func-
tion β such that ∀x2(t0) ∈ Rn∥∥x2(t; t0, x2(t0), θ∗)

∥∥ ≤ β(
∥∥x2(t0)

∥∥, t− t0) ∀t ≥ t0 ≥ 0

By the UGAS property, we know that ∃T > 0 such that
at t = t0 + T the solution enters the neighbourhood of
the origin where the convergence is exponential. Conse-
quently,∫ ∞
t0

∥∥x2(t; t0, x2(t0), θ∗)
∥∥ dt ≤ ∫ t0+T

t0

β(
∥∥x2(t0)

∥∥, t− t0)dt

+

∫ ∞
t0+T

k
∥∥x2(t0 + T )

∥∥ e−λ(t−(t0+T ))dt

≤ Tβ(
∥∥x2(t0)

∥∥, 0) +
k

λ
β(
∥∥x2(t0)

∥∥, T )
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The right hand side is a class K function α(
∥∥x2(t0)

∥∥, i.e.
Assumption 3 is satisfied.

2.5 Example continued

To illustrate how Proposition 9 can be used, we build
further on the simple example in Section 2.3. Consider
the following system

ẋ1 = −u(t) arctan(
x1

θ1
) + x1x2 (23)

ẋ2 = −(1 + 2e−t)θ2x2 (24)

where θ1 and θ2 are constant and positive parameters.
We first consider System (17), i.e.

ẋ1 = −u(t) arctan(
x1

θ1
) (25)

The C1 Lyapunov function candidate V1(x1) = 1
2x

2
1

is positive definite, decrescent and radially unbounded
on R. Furthermore, V̇ (x1) ≤ −W (x1) where W (x1) =

umin
arctan(

x1
θ1

)

x1
x2

1 is a continuous positive definite func-

tion on R. The origin of (25) is thus UGAS, and we have
shown in Section 2.3 that the system satisfies the condi-
tions of Theorem 5.
Assumption 1 is clearly satisfied with V1(x1):∥∥∥∥∂V1

∂x1

∥∥∥∥‖x1‖ =‖x1‖2 = 2V1(x1) ∀‖x1‖ (26)∥∥∥∥∂V1

∂x1

∥∥∥∥ =‖x1‖ ≤ η ∀‖x1‖ ≤ η (27)

i.e. with c1 = 2, and c2 = η for any choice of η > 0.

We then consider System (18) which is

ẋ2 = −(1 + 2e−t)θ2x2 (28)

The C1 Lyapunov function candidate V2(x2) = 1
2x

2
2, for

which
V̇2 = −(1 + 2e−t)θ2x

2
2 ≤ −θ2x

2
2 (29)

clearly satisfies the conditions of Theorem 5. Indeed, by
(Khalil, 2002, Theorem 4.10) the origin of (29) is UGES,
which implies both UGAS and USGES.

Finally, it remains to investigate Assumption 2, i.e. the
assumption that the interconnection term g(t, x, θ) has
linear growth in x1:∥∥g(t, x, θ)

∥∥ =‖x1x2‖ =‖x1‖‖x2‖ (30)

i.e. Assumption 2 is satisfied with α1 = 0 and α2(r) = r.
By Proposition 9 the origin of the cascaded system (23-
24) is thus USGES and UGAS.

3 Robustness to nonvanishing perturbations

In this section we discuss the robustness properties that
USGES may provide with respect to nonvanishing per-
turbations, and we use the simple example from Sec-
tion 2.3 to illustrate this result as well.

Lemma 9.2 of Khalil (2002) shows why UGES is such a
powerful property with respect to robustness to nonva-
nishing perturbations. We will now investigate the ro-
bustness properties that USGES can provide. Consider
the system

ẋ = f(t, x, θ) + g(t, x, θ) (31)

which is a perturbation of the nominal system (1), and
where the perturbation g(t, x, θ) is locally Lipschitz in x
and piecewise continuous in t for all θ ∈ Θ.

Lemma 12 Assume that the conditions of Theorem 5
are satisfied and that there exists a positive constant k4∆

and a constant 0 < c < 1 such that ∀x ∈ B∆∥∥∥∥∂V∆

∂x

∥∥∥∥ ≤ k4∆
‖x‖a−1

(32)

∥∥g(t, x, θ)
∥∥ ≤ δ < k3∆

k4∆

(
k1∆

k2∆

)1/a
∆c (33)

∀t ≥ t0 ≥ 0. Then ∀x0 ∈ B∆̃ there is a T ≥ 0 (dependent
on x0 and µ) such that the solution x(t; t0, x0, θ

∗) of the
perturbed system (31) satisfies

∥∥x(t; t0, x0, θ
∗)
∥∥ ≤ (k2∆

k1∆

) 1
a

‖x0‖ e
−

(1−c)k3∆
ak2∆

(t−t0)
(34)

∀ t0 ≤ t ≤ t0 + T and

∥∥x(t; t0, x0, θ
∗)
∥∥ ≤ k4∆

k3∆

(
k2∆

k1∆

)1/a
δ

c
∀t ≥ t0 +T. (35)

Proof: The proof follows along the lines of the proof of
Lemma 9.2 of Khalil (2002). In particular, the derivative
of V∆ along the trajectories of (31) satisfies

V̇∆ =
∂V∆

∂t
+
∂V∆

∂x
f(t, x, θ) +

∂V∆

∂x
g(t, x, θ) (36)

≤ −k3∆‖x‖
a

+

∥∥∥∥∂V∆

∂x

∥∥∥∥∥∥g(t, x, θ)
∥∥ (37)

≤ −k3∆
‖x‖a + k4∆

δ‖x‖a−1
(38)

= −(1− c)k3∆
‖x‖a − ck3∆

‖x‖a + k4∆
δ‖x‖a−1

(39)

≤ −(1− c)k3∆‖x‖
a ‖x‖ ≥ k4∆

δ

k3∆c
(40)
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Applying Theorem 4.18 of Khalil (2002) with α1(r) =

k1∆r
a, α2(r) = k2∆r

a, µ =
k4∆

δ

k3∆
c and W (x) = (1 −

c)k3∆
ra completes the proof. In particular, the condition

µ < α−1
2 (α1(∆)) (41)

gives condition (33). Furthermore, from the proof of The-
orem 4.18 we have that for all t ∈ [t0, t0 + T ]

V̇∆ ≤ −
(1− c)k3∆

k2∆

V∆ (42)

which by the comparison lemma gives that

V∆(t, x) ≤ V∆(t0, x0)e
−

(1−c)k3∆
k2∆

(t−t0) ∀ t0 ≤ t ≤ t0+T

which again gives that the class KL function of Theo-

rem 4.18 is given by β(r, s) =
(
k2∆

k1∆

) 1
a

re
−

(1−c)k3∆
ak2∆

s
. 2

Remark 13 Note that when the system is UGES then
Lemma 9.2 of Khalil (2002) shows that for all uniformly
bounded disturbances, irrespective of their magnitude,
the solution of the perturbed system will be uniformly
bounded. This robustness property is not given for UGAS
systems, and it is interesting to see that it can neither be
concluded in general for USGES systems from Lemma 12.
In particular, note that the right-hand side of (33), which
gives the upper bound of the perturbation term, does not
necessarily converge to ∞ as ∆ → ∞, since the param-
eters ki∆ , i = 1, . . . , 4 depend on ∆. We therefore need
further information about how ki∆ , i = 1, . . . , 4 depend
on ∆ in order to conclude whether the upper limit of the
perturbation can be made arbitrarily large by increasing
∆.

Let us continue using the simple system (12) to illustrate
the theory. In particular, consider

ẋ = −u(t) arctan(
x

θ
) + g(t, x, θ) (43)

where the perturbation g(t, x, θ) is locally Lipschitz in
x and piecewise continuous in t. We have shown that
the Lyapunov function candidate V (x) = 1

2x
2 satisfies

the conditions of Theorem 5 with k1 = k2 = 1
2 , k3∆ =

umin
arctan( ∆

θ )

∆ and a = 2. Furthermore,

∥∥∥∥∂V∂x
∥∥∥∥ =‖x‖ (44)

i.e. (32) is satisfied with k4 = 1. For the perturbation

term, the condition given by Lemma 12 is

∥∥g(t, x, θ)
∥∥ ≤ δ < k3∆

k4∆

(
k1∆

k2∆

)1/a
∆c

= umin arctan(
∆

θ
)c

<
π

2
umin (45)

i.e. the upper bound δ on the perturbation is smaller than
uminπ/2. We can thus only conclude that the bounded-
ness properties (34-35) hold for uniformly bounded per-
turbations of sufficiently small magnitude.

4 Robustness to vanishing perturbations

For completeness, in this section we outline the robust-
ness properties that USGES provides with respect to
vanishing perturbations. Consider the system

ẋ = f(t, x, θ) + g(t, x, θ) (46)

which is a perturbation of the nominal system (1), and
where the perturbation g(t, x, θ) is locally Lipschitz in
x and piecewise continuous in t for all θ ∈ Θ, and
g(t, 0, θ) = 0.

Lemma 14 Assume that the conditions of Theorem 5
are satisfied and that there exist a positive constant k4∆

and a nonnegative constant γ∆, satisfying 0 ≤ γ∆ <
k3∆

k4∆
,

such that ∀x ∈ B∆∥∥∥∥∂V∆

∂x

∥∥∥∥ ≤ k4∆‖x‖
a−1

(47)∥∥g(t, x, θ)
∥∥ ≤ γ∆‖x‖ (48)

∀t ≥ t0 ≥ 0. Then the origin of system (46) is USGES
on Θ.

Proof: The proof follows along the lines of the proof of
Theorem 5. In particular, from (8) and (46) it follows
that ∀x0 ∈ B∆̃

V̇∆ ≤ −k3∆‖x‖
a

+

∥∥∥∥∂V∆

∂x

∥∥∥∥∥∥g(t, x, θ)
∥∥ (49)

≤ −k3∆
‖x‖a + k4∆

γ∆‖x‖a (50)

= −(k3∆ − γ∆k4∆)‖x‖a (51)

∀t ≥ t0 ≥ 0, where (k3∆
− γ∆k4∆

) > 0. It follows that
∀x0 ∈ B∆̃, V∆ satisfies the differential inequality

V̇∆ ≤ −
k3∆
− γ∆k4∆

k2∆

V∆ ∀t ≥ t0 ≥ 0 (52)

6



and the comparison lemma together with (3) gives that

∥∥x(t; t0, x0, θ
∗)
∥∥ ≤ (k2∆

k1∆

) 1
a

‖x0‖ e
−
k3∆

−γ∆k4∆
ak2∆

(t−t0)

(53)

∀t ≥ t0 ≥ 0. Since the subset of the region of attraction
with exponential convergence, B∆̃, can be made arbi-
trarily large by increasing ∆, the origin of System (46)
is USGES. 2

5 Conclusions

In this paper we have developed Lyapunov sufficient
conditions for uniform semiglobal exponential stability
(USGES) of parameterized nonlinear time-varying sys-
tems. Furthermore, we have investigated the robustness
that USGES may provide with respect to perturbations.
For vanishing perturbations of sufficiently small gain, it
is seen that the USGES property is retained. When it
comes to nonvanishing perturbations, it is shown that
USGES provides robustness to uniformly bounded dis-
turbances. It is interesting to note, however, that the
strong robustness properties that UGES provides to
perturbations of arbitrary magnitude cannot readily be
concluded for USGES systems. USGES thus guarantees
both stability and good performance in the sense of
exponential convergence in a region of attraction that
can be arbitrarily enlarged, while robustness to external
disturbances of arbitrary magnitude must be considered
for each particular case, for instance using the analysis
tools provided in this paper.
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