
Adv. Appl. Clifford Algebras
c© The Author(s) This article is published

with open access at Springerlink.com 2016

DOI 10.1007/s00006-016-0722-6

Advances in
Applied Clifford Algebras

Automatic Multivector Differentiation
and Optimization

Lars Tingelstad∗ and Olav Egeland

Abstract. In this work, we present a novel approach to nonlinear opti-
mization of multivectors in the Euclidean and conformal model of geo-
metric algebra by introducing automatic differentiation. This is used to
compute gradients and Jacobian matrices of multivector valued func-
tions for use in nonlinear optimization where the emphasis is on the
estimation of rigid body motions.

Keywords. Geometric Algebra, Automatic Differentiation,
Optimization.

1. Introduction

Geometric algebra has been employed in many applications in robotics and
computer vision. An important problem in these applications is the estima-
tion of geometric objects and transformations from noisy data. Most estima-
tion techniques based on geometric algebra employ singular value decomposi-
tion or other linear least squares methods, see [4,5,20,21,31,39]. Valkenburg
and Alwesh [48] employ nonlinear optimization in a calibration method of
multiple stationary 3D points as part of an optical positioning system using
the conformal model of geometric algebra. Perwass [37] uses nonlinear opti-
mization in 3D-reconstruction from multiple view geometry in the projective
model of geometric algebra. The methods of [48] and [37] make use of mul-
tivector differentiation in geometric calculus [26] to compute gradients and
Jacobian matrices. This involves tensor expressions.

Another tool for computing gradients and Jacobian matrices in non-
linear optimization is algorithmic or automatic differentiation [22]. Auto-
matic differentiation computes derivatives with machine precision and works
by exploiting the fact that all computer implementations of mathematical
functions are composed of simple differentiable unary or binary operations,
e.g., addition, multiplication or transcendental functions as sin, cos and exp.

*Corresponding author.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00006-016-0722-6&domain=pdf
http://orcid.org/0000-0002-3429-7215

L. Tingelstad and O. Egeland Adv. Appl. Clifford Algebras

Derivatives of more complex functions are computed by applying the chain
rule at each operation and bookkeeping the results [44].

Automatic differentiation has been used extensively in robotics and com-
puter vision in recent years, e.g., for solving large scale bundle adjustment
problems [2] and multi-camera calibration and people tracking in networks
of RGB-D cameras [34]. These applications have been implemented in the
Ceres [1] optimization framework developed by Google.

In this work, we present a novel approach to nonlinear optimization
of multivectors in the Euclidean and conformal model of geometric algebra
by introducing automatic differentiation. Automatic differentiation is used
to compute gradients and Jacobian matrices of multivector valued functions
for use in nonlinear optimization where the emphasis is on the estimation of
rigid body motions.

The paper is organized as follows. Section 2 presents geometric algebra
and the conformal model with focus on notation and on the representation
of rigid body motions. Section 3 presents an overview of automatic differ-
entiation. In Sect. 4 we introduce automatic multivector differentiation; A
novel approach to differentiation of multivector valued functions by employ-
ing automatic differentiation. Further, in Sect. 5, we present multivector esti-
mation using nonlinear optimization with focus on estimation of rigid body
motions. In Sect. 6 we present implementation details regarding both auto-
matic multivector differentiation and multivector estimation. Then, in Sect. 7,
we present experimental results. Finally, in Sect. 8, we conclude the paper.

2. Geometric Algebra and the Conformal Model

Geometric algebra is an approach to geometry based on the work of W. Clif-
ford which combined H. Grassmann’s exterior algebra with Hamilton’s
quaternions and created what he termed geometric algebra. D. Hestenes
developed geometric algebra further in his books [25,26] and later introduced
the conformal model in [32].

The elements of a geometric algebra are called multivectors. The geo-
metric algebra over 3-dimensional Euclidean space R

3 is denoted R3. The
notation R

r
3 refers to the r-grade elements of R3 e.g. R2

3 refers to the elements
of R3 of grade 2—the bivectors. The notation R

+
3 refers to the elements of

R3 of even grade. The conformal model of geometric algebra is denoted R4,1

and has the null basis {e1, e2, e3, no, n∞}. The basis vector n∞ represents
the point at infinity, and the basis vector no represents an arbitrary origin.
These basis vectors have the properties n2

∞ = n2
o = 0 and n∞ · no = −1.

The notation eij is shorthand for the outer product ei ∧ ej of the vectors
ei, ej ∈ R

1
3. The highest grade element of R3, the Euclidean pseudoscalar, is

denoted I3. The element of grade r of a multivector X is extracted using the
grade projection operator 〈X〉r. The reverse of a multivector X is denoted ˜X.

Vectors x ∈ R
1
3 map to points p ∈ R

1
4,1 using

p = x +
1
2
x2n∞ + no. (2.1)

Automatic Multivector Differentiation

A rotation in Euclidean space about a line through the origin is described by
a rotor R, which can be written as the exponential

R = cos
(

θ

2

)

− sin
(

θ

2

)

B = exp
(

−θ

2
B

)

, (2.2)

where B ∈ R
2
3 is the unit bivector representing the rotation plane and θ is the

rotation angle. It is noted that rotors are isomorphic to the unit quaternions.
A rotor R is on the rotor manifold R ⊂ R

+
3 . A rotor R ∈ R satisfies the

constraint

R ˜R = 1 (2.3)

where ˜R = R−1 is the reverse rotor. The rotation of a vector a ∈ R
1
3 to a

vector a′ is given by the sandwich product

a′ = Ra ˜R. (2.4)

A translation by a vector v is described with a translator Tv given by

Tv = 1 − vn∞
2

= exp
(−vn∞

2

)

. (2.5)

The translation of the rotor R gives

TvR ˜Tv = Tv exp
(

−θ

2
B

)

˜Tv = exp
(

−θ

2
TvB ˜Tv

)

(2.6)

This gives

TvR ˜Tv = exp
(

−θ

2
(B − (v · B)n∞)

)

. (2.7)

The position and orientation of rigid body can be described with a motor
M . A motor can be described as a rotation about a line through the origin
followed by a translation u according to

M = TuR = exp
(−un∞

2

)

exp
(

−θ

2
B

)

(2.8)

This cannot be combined in a single exponential function because the rotation
and the translation do not commute. This is solved with the application
of Chasle’s theorem, where the motion of a rigid body is described with
a rotation about a line that is not necessarily through the origin, and a
translation along the same line, in which case the rotation and translation
will commute. The motor is then

M = TwTvR ˜Tv = exp
(

−θ

2
(B − (v · B)n∞) − wn∞

2

)

(2.9)

where w is the translation along the line of rotation, and v is the translation
of the rotor. This vector is in the rotation plane given by B. A motor can
therefore be written as the exponential function

M = exp
(

−1
2
Λ∗

)

, (2.10)

L. Tingelstad and O. Egeland Adv. Appl. Clifford Algebras

where Λ∗ ∈ span{e12, e13, e23, e1n∞, e2n∞, e3n∞} and

Λ∗ = θB + tn∞.

Here B ∈ R
2
3 is the rotation plane, and t ∈ R

1
3 is a vector given by t = t⊥ +t‖

where t⊥ = w is normal to B, and t‖ = −θ(v · B) is in the plane defined by
B.

Moreover, it can be shown that Λ∗ is a dual line representing the screw
axis of the rigid body motion, see [12]. Following [50], the exponential for-
mulation in (2.10) can be written in terms of the constituent elements of
different grades as

〈M〉0 = cos
(

θ

2

)

(2.11)

〈M〉2 = sin
(

θ

2

)

B + cos
(

θ

2

)

t⊥n∞ + sinc
(

θ

2

)

t‖n∞ (2.12)

〈M〉4 = sin
(

θ

2

)

Bt⊥n∞, (2.13)

where sinc(x) = sin(x)/x.
The motor manifold M is of dimension 6, and is embedded in the 8-

dimensional subspace M with basis {1, e12, e13, e23, e1n∞, e2n∞, e3n∞, I3n∞}.
A multivector M ∈ M will be a motor if and only if

M ˜M = 1. (2.14)

It is noted that this condition implies

〈MM〉4 = 0. (2.15)

A point p ∈ R
1
4,1 is displaced by a motor M ∈ M using

p′ = Mp˜M, (2.16)

where p′ is the displaced point.

3. Automatic Differentiation

Automatic differentiation computes derivative values of computer
implemented functions with accuracy up to machine precision. Derivative
information as Jacobian matrices and gradients can be found symbolically
by hand-computations and implemented manually or generated by computer
algebra systems, approximated using numerical differentiation or computed
using automatic differentiation. Supplying hand-coded derivative values is
error-prone and time consuming for complex nonlinear functions and sym-
bolic differentiation using a computer algebra system can in certain cases
lead to significant long computation times [28,44]. Consider the vector val-
ued function f : Rn → R

m,

y = f(x) (3.1)

Automatic Multivector Differentiation

with directional derivative

ẏ = f ′(x)ẋ = lim
h→0

f(x + hẋ) − f(x)
h

, h ∈ R. (3.2)

Numerical differentiation using finite differences is based on evaluating (3.2)
with a small value h > 0. However, this method is prone to truncation and
rounding off errors and may fail completely when the implemented functions
include conditional statements [44]. Automatic differentiation is also numer-
ical differentiation in that it computes numerical derivative values, but it
computes the numerical values up to machine precision.

The main principle behind automatic differentiation is that every func-
tion can be represented as a finite sequence ϕ of elemental unary or binary
operations with known derivatives, e.g., unary operations as trigonometric,
exponential and logarithmic operations or binary operations as addition, mul-
tiplication, division and the power operation. The derivative of the whole
computation can then be computed through the chain rule. Using the nota-
tion of [22], a finite sequence can be written as

ϕ = {v−n, . . . , v0, v1, . . . , vl−m, vl−m+1, . . . , vl}, (3.3)

where {v−n, . . . , v0} are the input variables, and {v1, . . . , vl−m} are interme-
diate variables computed as

vi = ϕi(v0, . . . , vi−1), i ∈ {0, . . . , l − m}. (3.4)

The output of the sequence is given by the variables {vl−m+1, . . . , vl}. A finite
sequence for the computations of a computer implemented function can be
determined by what is known as an evaluation trace of elemental operations
or Wengert list [3]. As an example consider the function f : R2 → R,

y = f(x1, x2) = x2 sin(x2
1) (3.5)

with the evaluation trace as shown in Table 1.
There are two main approaches to automatic differentiation – forward

mode and reverse mode.

Table 1. Forward evaluation and derivative trace of the
function y = f(x1, x2) = x2 sin(x2

1)

Forward evaluation trace Forward derivative trace
v−1 = x1 v̇−1 = ẋ1

v0 = x2 v̇0 = ẋ2

v1 = v−1 × v−1 v̇1 = v̇−1 × v−1 + v−1v̇−1

v2 = sin v1 v̇2 = v̇1 cos v1
v3 = v0 × v2 v̇3 = v̇0 × v2 + v0 × v̇2
y = v3

L. Tingelstad and O. Egeland Adv. Appl. Clifford Algebras

3.1. Forward Mode

Forward mode automatic differentiation is based on assigning intermediate
variable vi a derivative v̇i with respect to input variable j

v̇i =
∂vi

∂xj
. (3.6)

The forward derivative trace is then found by applying the chain rule to each
elemental operation in the forward evaluation trace. For a function f : Rn →
R, one pass through the forward derivative trace computes ∂f/∂xj for a fixed
j. The Jacobian matrix of a function f : Rn → R

m can thus be evaluated in
n passes through the forward derivative trace, where each pass computes one
column.

Consider again the function in (3.5). The derivative ∂f/∂x1 = ∂v3/∂v−1

can be found by setting v̇−1 = 1 and v̇0 = 0 and evaluating the forward
derivative trace in Table 1:

∂v3
∂v−1

= 2v−1v0 cos v1 = 2x1x2 cos x2
1. (3.7)

Similarly, ∂f/∂x2 can be found by setting v̇−1 = 0 and v̇0 = 1 and evaluating
the forward derivative trace again.

3.1.1. Dual Numbers. Forward mode automatic differentiation can be seen
as evaluating a function f using dual numbers. Introduced by W. K. Clifford
in the seminal paper Preliminary Sketch of Biquaternions [6], dual numbers
are given as

z = x + εy (3.8)

where x and y are real numbers, and ε is the dual unit, which satisfies ε �= 0
and ε2 = 0. The Taylor expansion of f(x + ε) at x is given by

f(x + ε) = f(x) + εf ′(x) (3.9)

which returns the function value as the real part plus the derivative as the
dual part.

3.2. Reverse Mode

Reverse mode automatic differentiation is based on populating the interme-
diate variables in the forward evaluation trace and then propagating deriva-
tives with respect to an output variable yj in a reverse phase. This is done
by assigning to intermediate variable vi the adjoint

v̄i =
∂yj

∂vi
, (3.10)

and propagating these backwards from a given output. The reverse adjoint
trace of (3.5) is shown in Table 2. As seen, both v̄0 and v̄−1 is computed in
one reverse pass. This is the major advantage of the reverse mode compared
to the forward mode of automatic differentiation, that is, the gradient of a
function f : Rn → R can be evaluated in one pass compared to n passes in
the forward mode.

Automatic Multivector Differentiation

Table 2. Forward evaluation trace and reverse adjoint trace
of the function y = f(x1, x2) = x2 sin(x2

1)

Forward evaluation trace Reverse adjoint trace
v−1 = x1 v̄−1 = x̄1

v0 = x2 v̄0 = x̄2

v1 = v−1 × v−1 v̄−1 = v̄1
∂v1

∂v−1
= v0 cos v12v−1

v2 = sin v1 v̄1 = v̄2
∂v2
∂v1

= v0 cos v1
v3 = v0 × v2 v̄2 = v̄3

∂v3
∂v2

= 1 × v0
v̄0 = v̄3

∂v3
∂v0

= 1 × v2
y = v3 v̄3 = 1

3.3. Implementation Using Operator Overloading

There are two main approaches to implementing automatic differentiation—
source code transformation and operator overloading. Source code transfor-
mation is based on pre-processing the function source code and generating
code that implements the necessary steps to compute the derivatives. The
approach used in this work is that of operator overloading in C++. The
main idea here is to overload the scalar type used in the computations and
to write functions as function templates using template metaprogramming.
The new scalar type then implements the necessary logic to compute the
derivatives. Examples are the Jet-type in the Google Ceres framework that
implements forward mode automatic differentiation using the dual numbers
approach in Sect. 3.1.1 and the adouble-type in the Adept [29] framework by
Robin J. Hogan that implements both forward and reverse mode automatic
differentiation using expression templates [30].

4. Automatic Multivector Differentiation

As an example, consider differentiating the sandwich product

f = Ra ˜R (4.1)

where R = exp(B) ∈ R ⊂ R
+
3 , B = − θ

2e12 ∈ R
2
3, a = e1 ∈ R

1
3 with respect

to θ. Evaluating f analytically, and using ϕ = θ
2 gives

f(θ) = (cos(ϕ) − sin(ϕ)e12) e1(cos(ϕ) + sin(ϕ)e12) (4.2)
= (cos(ϕ)e1 − sin(ϕ)e12e1)(cos(ϕ) + sin(ϕ)e12) (4.3)
= (cos(ϕ)e1 + sin(ϕ)e2)(cos(ϕ) + sin(ϕ)e12) (4.4)
= cos2(ϕ)e1 + sin(ϕ) cos(ϕ)e1e12 (4.5)

+ sin(ϕ) cos(ϕ)e2 + sin2(ϕ)e2e12 (4.6)
= (cos2(ϕ) − sin2(ϕ))e1 + 2 sin(ϕ) cos(ϕ)e2 (4.7)
= cos(θ)e1 + sin(θ)e2, (4.8)

with derivative
df

dθ
= − sin(θ)e1 + cos(θ)e2. (4.9)

L. Tingelstad and O. Egeland Adv. Appl. Clifford Algebras

Table 3. Evaluation trace of the sandwich product f =
Ra ˜R where R = exp(B) ∈ R ⊂ R

+
3 , B = − θ

2e12 ∈ R
2
3, a =

e1 ∈ R
1
3 with respect to θ

Forward evaluation trace Forward derivative trace
v−1 = e1 v̇−1 = ė1 = 0
v0 = θ v̇0 = θ̇ = 1
v1 = 0.5 × v0 v̇1 = 0.5 × v̇0
v2 = cos(v1) v̇2 = − sin(v1)v̇1
v3 = sin(v1) v̇3 = cos(v1)v̇1
v4 = −1 × v3 v̇4 = −1 × v̇3
v5 = v2 × v−1 v̇5 = v̇2 × v−1 + v2 × v̇−1

v6 = v4 × v−1 v̇6 = v̇4 × v−1 + v4 × v̇−1

v7 = −1 × v6 v̇7 = −1 × v̇6
v8 = v5 × v2 v̇8 = v̇5 × v2 + v5 × v̇2
v9 = v5 × v3 v̇9 = v̇5 × v3 + v5 × v̇3
v10 = 1 × v9 v̇10 = −1 × v̇9
v11 = v7 × v2 v̇11 = v̇7 × v2 + v7 × v̇2
v12 = v7 × v3 v̇12 = v̇7 × v3 + v7 × v̇3
v13 = −1 × v12 v̇13 = −1 × v̇12
v14 = v8 + v13 v̇14 = v̇8 + v̇13
v15 = v10 + v11 v̇15 = v̇10 + v̇11

The finite sequence or evaluation trace of (4.2) to (4.8) are shown in
Table 3 and consist of a total of 17 statements to compute the derivative with
respect to θ. The multiplications in statements v7, v10 and v13 correspond to
the sign changes due to the geometric products in (4.2) and (4.6).

The expressions in statements v14 and v15 are the output of the func-
tion f , i.e.,

v14 = f1 = cos(θ)e1 (4.10)
v15 = f2 = sin(θ)e2, (4.11)

whereas the statements v̇14 and v̇15 are the corresponding derivatives

v̇14 =
∂f1
∂θ

= − sin(θ)e1 (4.12)

v̇15 =
∂f2
∂θ

= cos(θ)e2. (4.13)

Comparing (4.10) and (4.11) with (4.8) and comparing (4.12) and (4.13)
with (4.9) show that the output is correct and that computer implementa-
tions of geometric algebra algorithms can be differentiated using automatic
differentiation.

Automatic Multivector Differentiation

5. Multivector Estimation

In this section a new approach to rotor and motor estimation is proposed
based on nonlinear least squares optimization of the form

min
X∈M

F (X). (5.1)

where F : M 	→ R is the cost function to be minimized and X is a conformal
motor on the motor manifold M or a Euclidean rotor on the rotor manifold
R.

The cost function F is given by

F (X) =
1
2

N
∑

i=1

(fi(X))2 =
1
2

N
∑

i=1

p
∑

j=1

(rij(X))2, (5.2)

where each observation i corresponds to a vector fi(X) = (ri1, . . . , rip)	 of p
residuals rij ∈ R. It is seen that the cost function F has m = Np residuals
where N is the number of observations. A residual is a scalar measure for the
discrepancy between the model and the observed data [36].

5.1. Rotor Estimation

Following Lasenby et al. [31], the rotor estimation problem can be formulated
as the nonlinear least squares optimization problem

min
R∈R

1
2

N
∑

i=1

(

Rai
˜R − bi

)2

, (5.3)

where ai, bi ∈ R
1
3 and {(ai, bi)}i=1,...,N are N observations of Euclidean vec-

tors and the rotor R is parameterized by the parameter vector x. In this
formulation there are 3 residuals for each observation, namely, the residual
Euclidean distances in the e1, e2 and e3 directions, giving a total of 3N
residuals. The Jacobian matrices will be of size 3N × dim(x).

5.1.1. Parameterization. Several parameterizations are possible for the rotor
in (5.3) such that the constraint in (2.3) is enforced. One possible parame-
terization is to use all the 4 components of the rotor

R(x) =
4

∑

i=1

xiRi, x ∈ R
4, Ri ∈ {1, e12, e13, e23}, (5.4)

and to re-normalize after each optimization step. However, this is an over-
parameterization as the rotors lie on the 3-dimensional manifold R.

Another solution to the problem of over-parameterization is to parame-
terize the rotor using only the bivector parts (x2, x3, x4) of x and to compute
the full parameterization of the rotor using

x = (
√

1 − x2
2 − x2

3 − x2
4, x2, x3, x4). (5.5)

This is investigated for quaternions in [40]. This approach is not recommended
as the rotation angle is limited to 〈−π

2 , π
2 〉 and the radicand in (5.5) can not be

guaranteed to be positive when estimating the rotor R using the Levenberg–
Marquardt method.

L. Tingelstad and O. Egeland Adv. Appl. Clifford Algebras

The parameterization of the rotor R in this work makes use of the theory
of optimization on differentiable manifolds [44]. Then the step is calculated in
the tangent space of the rotor manifold R and thus removing null directions
in the step update. The increment is calculated in the rotor manifold using
the exponential map, which is given in terms of its bivector generator B:

R = exp(B(x)), (5.6)

where

B(x) =
3

∑

i=1

xiBi, x ∈ R
3, Bi ∈ {e12, e13, e23}, (5.7)

The rotor in iteration k + 1 can then be written as

Rk+1 = exp(B(x))Rk, (5.8)

where the exponential map is computed using (2.2). It follows that Rk+1 ∈ R
whenever Rk ∈ R.

5.2. Motor Estimation from Point Clouds

Consider a rigid body that is displaced by a motor M ∈ M. Let {pi}, pi ∈ R
1
4,1

be a set of points on the rigid body in the initial configuration, and let
{qi = Mpi

˜M} be the same point in the displaced configuration. The sets
{pi} and {qi} are called point clouds. Motor estimation is the problem of
finding the motor M given {pi} and {qi}.

One possible formulation of this optimization problem is to use the inner
product between two conformal points

min
M∈M

1
2

N
∑

i=1

(

Mpi
˜M · qi

)2

. (5.9)

In this formulation the measure that is optimized is the squared distance
between each two points, resulting in a 1-dimensional residual vector for each
observation. This, however, is not a good formulation for the cost function
as discussed in the experimental results in Sect. 7.2.2.

A better formulation of this problem is to project the points to the 3-
dimensional Euclidean model after the transformation by the motor M , and
then to use the residual errors along each of the coordinate axes, resulting
in a 3-dimensional residual vector for each observation with the optimization
problem

min
M∈M

1
2

N
∑

i=1

(

PR
1
3
(Mpi

˜M) − PR
1
3
(qi)

)2

. (5.10)

Implementationwise, this projection is performed by selecting only the pure
Euclidean components of the conformal points.

Automatic Multivector Differentiation

5.2.1. Parameterization. One possible parameterization of conformal motors
is based on the polar decomposition by Valkenburg and Dorst [49]. This
parameterization is based on representing the motor M using the full 8-
dimensional basis as presented in Sect. 2, that is,

M(x) =
8

∑

i=1

xiMi, (5.11)

where x = (x1, . . . , x8)	 and Mi ∈ {1, e12, e13, e23, e1n∞, e2n∞, e3n∞, I3n∞}.
Using this approach, similarly to the 4-dimensional rotor parameterization
in Sect. 5.1.1, it is necessary to re-normalize after each optimization step to
ensure that the resulting object X(x) ∈ M is in fact a motor, in which case

〈X(x) ˜X(x)〉4 = 0. (5.12)

This re-normalization can not be performed by normalizing x due to the
constraint in (5.12). Lemma 2.3 in [49], however, shows that any element
X ∈ M, |X| �= 0 has a unique polar decomposition X = MS = SM where
M ∈ M, S ∈ span{1, I3n∞}, 〈S〉 > 0. Any element X ∈ M can then be
projected onto the motor manifold M using the following projection

PM(X) = XS−1 =
X

|X|

(

1 − 〈X ˜X〉4
2〈X ˜X〉

)

. (5.13)

The motor in iteration k + 1 using this parameterization is then com-
puted as

Mk+1 = PM (Mk + X(x)) . (5.14)

Another parameterization is based on the exponential form of a motor
in terms of its bivector generator as presented in (2.10). As opposed to the
polar decomposition approach, this ensures that the step is taken in the motor
manifold M. The motor in iteration k+1 using this parameterization is given
by

Mk+1 = exp(Λ∗(x))Mk, (5.15)

where

Λ∗(x)=
6

∑

i=1

xiΛ
∗
i , x∈R

6, Λ∗
i ∈ {e12, e13, e23, e1n∞, e2n∞, e3n∞}, (5.16)

and the closed form of exp(Λ∗(x)) is given in (2.11)–(2.13). Then Mk+1 ∈ M
whenever Mk ∈ M.

6. Implementation

This section presents the implementation of automatic multivector differen-
tiation and estimation.

L. Tingelstad and O. Egeland Adv. Appl. Clifford Algebras

Listing 1. Templated C++ code of the sandwich product
b = Ra ˜R where a, b,∈ R

1
3 and R ∈ R

+
3 for use in automatic

differentiation

6.1. Automatic Multivector Differentiation

The use of automatic differentiation using operator overloading sets some
constraints on the implementation of geometric algebra and the conformal
model. A number of geometric algebra libraries and software systems in dif-
ferent programming languages have been developed over the last decades,
e.g., CLUCalc [38] and GAViewer [15] which are both designed as develop-
ment environments with graphics for visualization based on OpenGL [51] and
specially designed domain specific languages [19] for ease of programming.
Examples of freely available geometric algebra C++ libraries are Gaalop [27],
which is a geometric algebra pre-compiler for high-performance computing
where algorithms developed in CLUCalc can be used directly in the C++
source and pre-compiled to, e.g., C++, OpenCL [45] and CUDA [35]. Other
geometric algebra source code generators are Gaigen [18] and Gaigen2 [16]
which are used in the C++ code accompanying the Geometric Algebra for
Computer Science book by Dorst et al. [14]. In the Gaigen libraries C, C++
and Java code can be generated from specifications of the Euclidean, projec-
tive and conformal model of geometric algebra. However, the aforementioned
libraries are not suited for use with operator overloading based automatic dif-
ferentiation libraries as they do not permit templating the scalar type used
in the computations.

In this paper we propose an approach to multivector estimation using
automatic differentiation based on the following idea: Consider again the
sandwich product in (4.1). The main idea is to be able to write code as pre-
sented in Listing 1 where the input are the four components of a rotor R ∈ R

+
3

and the three components of a Euclidean vector v ∈ R
1
3 and the output is the

three components of the rotated vector. In addition to the geometric product
and reverse operation in the Euclidean model presented in Listing 1, more
complex operations like the outer and inner products and the left contrac-
tion should be supported as well as the conformal model and other geometric
algebras. To clarify this, we present three possible formulations to investigate
their suitability to our problem. The three formulations are a matrix based
implementation of the Euclidean model and two multivector based imple-
mentations of both the Euclidean and conformal model implemented in the
C++11 standard.

Automatic Multivector Differentiation

Listing 2. Templated C++ code of the sandwich product
b = Ra ˜R where a, b,∈ R

1
3 and R ∈ R

+
3 for use in auto-

matic differentiation implemented using 4 × 4 matrices in
the Eigen [23] matrix library

Listing 3. Templated matrix implementation of the basis
vector e1 ∈ R

1
3. The other basis vectors e2, e3 are imple-

mented similarly

6.1.1. Matrix Based Implementation of Geometric Algebra. A matrix imple-
mentation of the Euclidean model can be based on the isomorphism between
the geometric algebra R3 and the matrix algebra of 4×4 matrices with entries
in R, see [42]. The three basis vectors in R

1
3 can then be represented by the

matrices

e1 �

⎛

⎜

⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟

⎠
, e2 �

⎛

⎜

⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞

⎟

⎠
, e3 �

⎛

⎜

⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎠
.

(6.1)

Then the geometric product is matrix multiplication and the identity is repre-
sented by the 4×4 identity matrix. Using the Eigen [23] C++ matrix library
the function in Listing 1 can be implemented as presented in Listing 2 and
Listing 3. Further, the conformal model can be implemented using Vahlen
matrices, see [13] and [43].

This approach is relatively simple to implement for the Euclidean model
as all elements in the geometric algebra are represented by matrices. However,
and as noted in [14], the matrix representation works only for the geometric
product and the contraction operations can not be implemented in the same
framework due to nonassociativity. The simplicity of representing all elements
in a geometric algebra as matrices is also the main argument for not using
it as it lacks the notion of types, that is, a vector has the same type as a
bivector or a rotor. This kind of abstraction is essential for working with all
the geometric entities and transformations in, e.g., the conformal model.

L. Tingelstad and O. Egeland Adv. Appl. Clifford Algebras

Listing 4. Templated C++ code of the sandwich product
b = Ra ˜R where a, b,∈ R

1
3 and R ∈ R

+
3 for use in automatic

differentiation implemented using the hep-ga [41] library

Listing 5. Type alias for a conformal point p ∈ R
1
4,1 in the

hep-ga [41] library

6.1.2. Multivector Based Implementations of Geometric Algebra. This sec-
tion presents the two multivector based implementations of geometric alge-
bra.

The first implementation is the hep-ga [41] library developed by Chris
Schwan for use in high energy physics. hep-ga is a C++11 library for effi-
cient numeric computations using geometric algebra and is implemented using
C++ expression templates [30]. The implementation of the geometric alge-
bra computations in hep-ga follows the bitset approach by Daniel Fontijne
in [17] and [14]. The use of expression templates ensures high performance
computations at runtime, however the compile times using this library can
become very long especially when evaluating multiple sandwich products of
multivectors with many components, e.g., in forward kinematic computations
of serial kinematic chains using motors.

The implementation of the function in Listing 1 using the hep-ga library
is shown in Listing 4. Using this approach, different multivectors have differ-
ent types through the use of type aliases. Similarly, the conformal model can
be implemented by defining special types for the algebra and for the different
multivectors. Only non-degenerate diagonal metrics are implemented and the
change to a non-diagonal null metric must be implemented by the user and
computed at runtime. The type alias for a conformal point p ∈ R

1
4,1 is shown

in Listing 5.
The second implementation of geometric algebra used in this work is the

Versor [7] library developed by Pablo Colapinto. Versor is a C++11 template
metaprogramming library that generates optimized code at compile time,
however, in contrast to the hep-ga library it is not based on expression tem-
plates. The Versor library supports arbitrary dimensions and non-degenerate
metrics and implements the change to a null basis in the conformal model at

Automatic Multivector Differentiation

Listing 6. Templated C++ code of the sandwich product
b = Ma˜M where a, b,∈ R

1
4,1 and M ∈ M for use in auto-

matic differentiation implemented using the Versor library

compile time. This is vital for high runtime performance and for algorithm
development. Similarly to the hep-ga library, the implementation of the geo-
metric algebra computations in Versor is following the bitset approach by
Daniel Fontijne in [17] and [14]. The Versor library also includes implemen-
tation of algorithms like the logarithm and exponential maps of conformal
motors and data types for the most used conformal objects, e.g., vectors,
points, spheres, lines and planes as well as rotors and motors. Examples of
the use of the Versor library for surface and mesh generation using the con-
formal model can be found in [8] and [9].

The implementation of the function in Listing 1 using the Versor library
is similar to the code for the hep-ga library in the sense that type aliases are
used for the different multivectors. However, the types for the conformal
model can be defined in a null metric, that is, a point p ∈ R

1
4,1 can be defined

on the basis {e1, e2, e3, no, n∞} directly. The change to the diagonal metric
and back is performed at compile time. This enables us to write code as
presented in Listing 6 and compute a 5 × 8 Jacobian matrix of the sandwich
product b = Ma˜M where M ∈ M and a, b ∈ R

1
4,1.

6.2. Multivector Estimation

The optimization framework used in this work is the Ceres [1] nonlinear least
squares optimization framework developed by Google for solving large scale
bundle adjustment problems [2,24]. The Ceres framework is written in C++
and supports multiple line search and trust region methods, including nonlin-
ear conjugate gradients, BFGS, L-BFGS, Powell’s Dogleg trust region method
and the Levenberg-Marquardt method [33]. The Ceres framework also sup-
ports multiple sparse and dense linear solvers through the Eigen [23] and
SuiteSparse [11] libraries. Gradients and Jacobians can be supplied manually
or evaluated using numerical finite difference methods and automatic differ-
entiation using an implementation of dual number forward mode automatic
differentiation, as presented in Sect. 3.1.1, through the Jet class. Another
important feature of the Ceres framework is the use of OpenMP [10] based
multithreading to speed up Jacobian evaluations and linear solvers.

There are two main aspects of implementing optimization problem using
automatic differentiation in the Ceres framework. The first is to implement a
templated functor (function object) that implements the logic of the cost
function and to pass this functor to the optimization problem using the

L. Tingelstad and O. Egeland Adv. Appl. Clifford Algebras

Listing 7. Templated functor for use in the Ceres frame-
work that implements the cost function in (5.10) using the
Versor library

AutoDiffCostFunction class. The second aspect is used if the parameter to
be estimated is an over-parameterization, as in rotor and motor estimation
where the parameters are subject to the constraint of being on the rotor and
motor manifolds. This is performed by implementing a templated functor that
implements, e.g., the exponential map of rotors and motors and passing this
to the optimization problem using the AutoDiffLocalParameterization
class.

The functor that implements the cost function in (5.10) using the Versor
library is shown in Listing 7 and the implementation of the motor parame-
terization in (2.10) is shown in Listing 8.

7. Experimental Results

This section presents the experimental results of automatic multivector dif-
ferentiation and estimation using synthetic datasets.

The experiments were implemented using our framework called
GAME [46] for multivector estimation. The source code is available online.
The GAME framework is implemented in an Ubuntu1 16.04 Docker2 con-
tainer. All experiments were run on an early 2015 Apple Macbook Pro 13
with an Intel i5 CPU at 2.7 GHz with 8 GB memory. The Docker version
used were v1.12.0. The Ceres version were v.1.11.0 with Eigen v.3.2.92. The
Adept version used were v.1.1.

7.1. Automatic Differentiation of Multivector Valued Functions

This section presents experimental results from calculation of the 3× 1 Jaco-
bian matrix of the sandwich product presented in (4.2)–(4.8) and evaluated at

1 http://www.ubuntu.com/.
2 https://www.docker.com.

http://www.ubuntu.com/
https://www.docker.com

Automatic Multivector Differentiation

Listing 8. Templated functor for use in the Ceres frame-
work that implements the motor parameterization in (2.10)
using the Versor library

θ = π/3. The benchmarks were implemented using the Benchmark3 library of
Google. The geometric algebra implementations used were the Versor library
with the implementation as presented in Listing 1, the hep-ga library using
the implementation as presented in Listing 4 and the matrix based approach
implemented using the Eigen matrix library with the implementation pre-
sented in Listing 2. The performance of the different geometric algebra imple-
mentations in combination with the Ceres and Adept automatic differentia-
tion libraries is shown in Table 4.

All three libraries were able to compute the correct function and deriva-
tive values, however, there were significant performance differences. The best
performing implementation was the combination of the Versor library with
the forward mode implementation from Ceres with a mean computation time
of μ = 528 ns and a standard deviation of σ = 7 ns. The worst performing
implementation was the combination of the Matrix implementation with the
forward mode implementation in the Adept library with a mean computa-
tion time of μ = 48125 ns and a standard deviation of σ = 1504 ns. Using
the Adept library, the hep-ga implementation were faster than the Versor
implementation. Using the Versor library, the number of statements to com-
pute the derivative were 134 with a total of 170 operations. Using the hep-ga
library, the number of statements were 95 with a total of 171 operations.
The number of statements and operations using the 4 × 4 matrix approach

3 https://github.com/google/benchmark.

https://github.com/google/benchmark

L. Tingelstad and O. Egeland Adv. Appl. Clifford Algebras

Table 4. Experimental results of automatic differentiation
of the multivector valued functions in (4.2)–(4.8)

AD Lib. AD Type GA Lib. Ops. Stmts. Time μ [ns] Time σ [ns]
Adept Forward Matrix 2077 1600 48125 1504
Adept Reverse Matrix 2077 1600 44373 557
Ceres Forward Matrix N/A N/A 6880 87
Adept Forward Versor 170 134 5453 326
Adept Reverse Versor 170 134 5410 67
Ceres Forward Versor N/A N/A 528 7
Adept Forward hep-ga 171 95 3650 59
Adept Reverse hep-ga 171 95 3695 115
Ceres Forward hep-ga N/A N/A 681 7

The best performance was with the Versor geometric algebra library in
combination with the forward mode automatic differentiation

implementation in Ceres

differs in an order of magnitude to the number of statements and operations
using the Versor and hep-ga library with a total of 1600 statements with
2077 operations. The reason for this difference is the use of expression tem-
plates in both Eigen and Adept and that the compiler is not able to reduce
the generated expressions. This is a known limitation of the Adept library
as presented in the Adept documentation4. Note that the hep-ga library is
also based on expression templates. The matrix implementation were slowest
in both automatic differentiation implementations. There were no significant
differences using forward mode or reverse mode with the Adept library for
these experiments as the size of the Jacobian were relatively small.

7.2. Multivector Estimation

This section presents experimental results from multivector estimation. Sec-
tion 7.2.1 presents attitude estimation, that is, rotor estimation from unit
(direction) vectors and Sect. 7.2.2 presents motor estimation from point
clouds.

7.2.1. Rotor Estimation. Following the experimental setup in [39], the true
vectors {ai} where ai ∈ R

1
3 for i ∈ {1, . . . , N} are Gaussian distributed unit

vectors with a standard deviation σ = 0.8. The vectors {ai} are rotated by
the ground truth rotor R to form the set {a′

i} where a′
i = Rai

˜R. Gaussian
noise with standard deviation σr is added to the rotated vectors a′

i. The
resulting vectors are then normalized to form the set {bi}.

The cost function in (5.3) and the parameterization in (5.7) used in these
experiments are implemented using the hep-ga library. Plots of the develop-
ment in the cost function value in two experiments are shown in Fig. 1. The
Levenberg-Marquardt method is able to estimate the rotor in 4 iterations,
while the limited memory BFGS (L-BFGS) [36] method is able to estimate
the rotor in 10 iterations.

4 http://www.met.reading.ac.uk/clouds/adept/adept documentation.pdf, p. 24.

http://www.met.reading.ac.uk/clouds/adept/adept_documentation.pdf

Automatic Multivector Differentiation

0 2 4 6 8 10

Iteration k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
o
st

Levenberg-Marquardt

L-BFGS

Figure 1. Plot of the value of the cost function in each iter-
ation of two rotor estimation experiments using 10 observa-
tions. The rotor to be found is R = cos(π/6) − sin(π/6)e12.
The Gaussian noise that was added to form the set {bi} had
a standard deviation σ = 0.09. The initial rotor was set to
the identity rotor R0 = 1. The bivector exponential para-
meterization was used in both experiments. The Levenberg–
Marquardt method was able to estimate the rotor in 4 iter-
ations while the limited memory BFGS (L-BFGS) method
was able to estimate the rotor in 10 iterations

To compare the accuracy of our developed method with state of the
art rotation estimation methods we compute the average mean and standard
deviation of the root mean square (RMS) of the quality measure

θi = arccos(ai · ai) (7.1)

from 1000 experiments, where {ai} are the ground truth vector rotated by
the estimated rotor R.

Our method is denoted rotor, the quaternion method shipped with
Ceres [1] is denoted ceres-quaternion and the singular value decomposition
based method presented in [47] is denoted umeyama. The results are pre-
sented in Table 5. Our rotor-method and the ceres-quaternion method perform
equally. This is expected, as the only difference is that the ceres-quaternion
method is implemented with the matrix representation of a quaternion, rather
than the geometric algebra implementation in the rotor-method. Both non-
linear methods perform slightly better than the singular value decomposition
based method.

7.2.2. Motor Estimation. The optimization method used in this section is
the Levenberg-Marquardt [33] method in combination with a dense QR lin-
ear solver. The focus is on the choice of cost function, the influence of the
motor parameterization used and on the computational performance. All cost
functions and parameterizations are implemented using the Versor library
in combination with the automatic differentiation implementation in Ceres.

L. Tingelstad and O. Egeland Adv. Appl. Clifford Algebras

Table 5. Experimental results from rotor estimation

σr = 0.09 σr = 0.18
μ σ μ σ

Rotor 0.1393 0.0624 0.2861 0.1187
Ceres-quaternion 0.1393 0.0624 0.2861 0.1187
Umeyama 0.1455 0.0648 0.3010 0.1649

Table 6. Experimental results from motor estimation

Cost Func. Param. Residuals Threads Iterations Time (s)
1 (5.9) (5.15) 1000 1 26 0.0574
2 (5.9) (5.14) 1000 1 26 0.0616
3 (5.10) (5.15) 1000 1 4 0.0135
4 (5.10) (5.14) 1000 1 5 0.0174
5 (5.9) (5.15) 100000 512 26 3.1323
6 (5.9) (5.14) 100000 512 26 3.2734
7 (5.10) (5.15) 300000 512 4 0.7400
8 (5.10) (5.14) 300000 512 5 0.9868
9 (5.9) (5.15) 1000000 2048 26 29.5933
10 (5.9) (5.14) 1000000 2048 26 32.0214
11 (5.10) (5.15) 3000000 2048 4 7.1343
12 (5.10) (5.14) 3000000 2048 5 9.4692

Experimental results from motor estimation using 1000, 100000 and 1000000
observations are shown in Table 6.

Similarly to the experimental setup in the previous section, the true
points {ai}, ai ∈ R

1
4,1 for i ∈ {1, . . . , n} are Gaussian distributed with a

standard deviation σ = 0.8. The points {ai} are transformed by the ground
truth motor M to form the set {a′

i} where a′
i = Mai

˜M . Gaussian noise with
standard deviation σr = 0.09 is added to the rotated points a′

i. The resulting
points form the set {bi}.

The main difference between the two motor estimation formulations in
(5.9) and (5.10) is that the formulation in (5.9) converges more slowly than
(5.10) when close to the solution. The formulation in (5.9) converged in 26
iterations and the formulation in (5.10) converged in 4 iterations. The main
reason for this difference is that the inner product based formulation in (5.9)
employs only a measure for the total residual distance opposed to signed
residual distances along each of the three coordinate axes in (5.10). These
results were the same for all number of observations.

The choice of parameterization also influences the robustness and con-
vergence rate of the optimization. The difference between the two parame-
terizations in Sect. 5.2.1 is that the parameterization in (5.15), employing
6 parameters and the bivector exponential map, removes null directions in
the update, that is, update directions normal to the motor manifold M. In
contrast to this, when the parameterization in (5.14) is used, the updates can

Automatic Multivector Differentiation

be in all directions of M. The use of the parameterization in (5.15) reduces
the number of iterations from 5 to 4 when using the cost function in (5.10)
employing 3 residuals per observation. It does not influence the convergence
rate of the optimization when using the inner product based cost function in
(5.9) with 1 residual per observation.

Even though the choice of parameterization did not influence the num-
ber of iterations when using the cost function in (5.9), it does influence the
total time of the optimization. This reduction is also seen when using the
cost function in (5.10). The reason for the time reduction is the reduction in
the size of the Jacobian matrix, e.g., from a 3000000 × 8 Jacobian matrix in
experiment 12 to a 3000000× 6 Jacobian matrix in experiment 11, as seen in
the two bottom rows of Table 6. This leads to a reduction in the time used
to evaluate the Jacobian matrix and in the linear solver in each iteration.

The developed framework can be used to compute motors from large
sets of observations. In practice, these observations would come from, e.g.,
RGB-D sensors. When estimating motors from synthetic datasets of 100000
points we were able to compute the correct motor in 4 iterations in 0.74 s
when the number of OpenMP [10] threads available were set to 512 and from
synthetic datasets of 1000000 points we were able to compute the correct
motor in 4 iterations in 7.1343 s when the number of OpenMP [10] threads
available were set to 2048.

8. Conclusion

In this work, we have presented automatic differentiation of multivector val-
ued functions using 3 different implementations of geometric algebra and
2 different implementations of automatic differentiation and thus enabling
automatic computations of gradient and Jacobian matrices for use in non-
linear least squares optimization. We have shown that our formulations per-
form equally well as state-of-the-art formulations for rotation estimation and
we were able to estimate Euclidean rotors from noisy data in 4 iterations
using the Levenberg–Marquardt optimization method. We have also pre-
sented motor estimation, that is, estimation of rigid body motions from noisy
point data. We were able to estimate motors from 100000 point observations
in 0.74 s and from 1000000 point observations in 7.1343 s, showing that our
formulations scale well.

The presented formulations for multivector estimation can easily be
expanded from estimation of rotors and motors using vectors and points
to estimation of any transformation or object in the conformal model. The
cost function can be arbitrary complex and difficult to differentiate analyt-
ically as all gradients and Jacobian matrices are computed using automatic
differentiation.

Acknowledgments

Lars Tingelstad would like to thank Pablo Colapinto for the discussions at
the AGACSE 2015 conference and acknowledge his work in developing the
Versor geometric algebra library.

L. Tingelstad and O. Egeland Adv. Appl. Clifford Algebras

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.

References

[1] Agarwal, S., Mierle, K. et al.: Ceres Solver. http://ceres-solver.org

[2] Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle Adjustment in the
Large. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV (2), vol. 6312,
Lecture Notes in Computer Science, pp. 29–42. Springer, Berlin (2010)

[3] Baydin, A.G., Barak, A.: Pearlmutter, Alexey Andreyevich Radul, and Jef-
frey Mark Siskind. Automatic differentiation in machine learning: a survey.
CoRR (2015). arXiv:abs/1502.05767

[4] Bayro-Corrochano, E., Daniilidis, K., Sommer, G.: Motor algebra for 3D kine-
matics: the case of the hand-eye calibration. J. Math. Imaging Vis. 13(2), 79–
100 (2000)

[5] Cibura, C.: Fitting Model Parameters in Conformal Geometric Algebra to
Euclidean Observation Data. PhD thesis, University of Amsterdam (2012)

[6] Clifford, W.K.: Preliminary Sketch of Biquaternions. Proc. Lond. Math.
Soc. 4, 361–395 (1873)

[7] Colapinto, P.: Versor: Spatial Computing with Conformal Geometric Alge-
bra. Master’s thesis, University of California at Santa Barbara (2011). http://
versor.mat.ucsb.edu

[8] Colapinto, P.: Boosted surfaces: synthesis of meshes using point pair gener-
ators as curvature operators in the 3d conformal model. Adv. Appl. Clifford
Algebras 24(1), 71–88 (2014)

[9] Colapinto, P.: Composing Surfaces with Conformal Rotors. In: Advances in
Applied Clifford Algebras. pp. 1–22 (2016)

[10] Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. Comput. Sci. Eng. IEEE. 5(1), 46–55 (1998)

[11] Davis, T.: SuiteSparse. http://faculty.cse.tamu.edu/davis/suitesparse.html.
Online Accessed 25 July 2016

[12] Dorst, L.: The Representation of Rigid Body Motions in the Conformal Model
of Geometric Algebra. In: Rosenhahn, B., Klette, R., Metaxas, D. (eds.) Human
Motion, vol. 36, Computational Imaging and Vision, pp. 507–529. Springer
(2008)

[13] Dorst, L.: Conformal Geometric Algebra by Extended Vahlen Matrices. Meth-
ods of Information in Medicine, 1 (2009)

[14] Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An
Object-Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc.,
San Francisco (2007)

[15] Dorst, L., Fontijne, D., Mann, S.: Gaviewer. http://www.geometricalgebra.net/
gaviewer download.html (2010). Online Accessed 25 July 2016

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://ceres-solver.org
http://arxiv.org/abs/1502.05767
http://versor.mat.ucsb.edu
http://versor.mat.ucsb.edu
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://www.geometricalgebra.net/gaviewer_download.html
http://www.geometricalgebra.net/gaviewer_download.html

Automatic Multivector Differentiation

[16] Fontijne, D.: Gaigen 2.5. http://sourceforge.net/projects/g25/. Online
Accessed 25 July 2016

[17] Fontijne, D.: Efficient Implementation of Geometric Algebra. PhD thesis, Uni-
versity of Amsterdam (2007)

[18] Fontijne, D., Dorst, L., Bouma, T.: Gaigen. https://sourceforge.net/projects/
gaigen/. Online Accessed 07 July 2016

[19] Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley Profes-
sional(2010)

[20] Gebken, C.: Conformal Geometric Algebra in Stochastic Optimization Prob-
lems of 3D-Vision Applications. PhD thesis, University of Kiel (2009)

[21] Gebken, C., Perwass, C., Sommer, G.: Parameter estimation from uncertain
data in geometric algebra. Adv. Appl. Clifford Algebras 18(3-4), 647–664 (2008)

[22] Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation, 2 edn. SIAM, Philadelphia (2008)

[23] Guennebaud, G., Jacob, B. et al.: Eigen v3. http://eigen.tuxfamily.org (2010).
Online; Accessed 25 July 2016

[24] Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2
edn. Cambridge University Press, New York (2003)

[25] Hestenes, D.: New Foundations for Classical Mechanics, vol. 15, Fundamental
Theories of Physics. Springer (1986)

[26] Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus—A Uni-
fied Language for Mathematics and Physics, vol. 5, Fundamental Theories of
Physics. Springer (1984)

[27] Hildenbrand, D., Pitt, J., Koch, A.: Gaalop—High Performance Parallel Com-
puting Based on Conformal Geometric Algebra. In: Bayro-Corrochano, E.,
Scheuermann, G. (eds.) Geometric Algebra Computing, pp. 477–494. Springer,
Berlin (2010)

[28] Hoffmann, P.H.W.: A Hitchhiker’s Guide to Automatic Differentiation. In:
Numerical Algorithms. pp. 1–37 (2015)

[29] Hogan, R.J.: Fast reverse-mode automatic differentiation using expression tem-
plates in C++. ACM Trans. Math. Softw. 40(4), 26:1–26:16 (2014)

[30] Iglberger, K., Hager, G., Treibig, J., de Ulrich, R.: Expression templates revis-
ited:a performance analysis of current methodologies. SIAM J. Sci. Com-
put. 34(2), C42–C69 (2012)

[31] Lasenby, J., Fitzgerald, W.J., Lasenby, A.N., Doran, C.J.L.: New geometric
methods for computer vision: an application to structure and motion estima-
tion. Int. J. Comput. Vis. 26(3), 191–213 (1998)

[32] Li, H., Hestenes, D., Rockwood, A.: Generalized Homogeneous Coordinates for
Computational Geometry. In: Sommer, G. (ed.) Geometric Computing with
Clifford Algebras, pp. 27–59. Springer, Berlin (2001)

[33] Madsen, K., Nielsen, H.B., Tingleff, O.: Methods for Non-Linear Least Squares
Problems (2004)

[34] Munaro, M., Basso, F., Menegatti, E.: OpenPTrack: Open source multi-camera
calibration and people tracking for RGB-D camera networks. Robot. Auton.
Syst. 75(Part B), 525–538 (2016)

[35] Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable Parallel Programming
with CUDA. Queue. 6(2), 40–53 (2008)

http://sourceforge.net/projects/g25/
https://sourceforge.net/projects/gaigen/
https://sourceforge.net/projects/gaigen/
http://eigen.tuxfamily.org

L. Tingelstad and O. Egeland Adv. Appl. Clifford Algebras

[36] Nocedal, J., Wright, S.J.: Numerical Optimization, 2 edn. Springer, New York
(2006)

[37] Perwass, C.: Applications of Geometric Algebra in Computer Vision—The
geometry of multiple view tensors and 3D-reconstruction. PhD thesis, Uni-
versity of Cambridge (2000)

[38] Perwass, C.: CLUCalc Interactive Visualization. http://www.clucalc.info/
(2010). Online; Accessed 25 July 2016

[39] Perwass, C., Gebken, C., Sommer, G.: Estimation of Geometric Entities and
Operators from Uncertain Data. In: Pattern Recognition, vol. 3663, Lecture
Notes in Computer Science, pp. 459–467. Springer, Berlin (2005)

[40] Schmidt, J., Niemann, H.: Using Quaternions for Parametrizing 3-D Rotations
in Unconstrained Nonlinear Optimization. In: VMV, pp. 399–406. Aka GmbH
(2001)

[41] Schwan, C.: hep-ga: An Efficient Numeric Template Library for Geometric
Algebra

[42] Snygg, J.: Clifford Algebra in Euclidean 3-Space. In: A New Approach to Dif-
ferential Geometry using Clifford’s Geometric Algebra, pp. 3–25. Birkhäuser,
Boston (2012)

[43] Sobczyk, G.: Geometric matrix algebra. Linear Algebra Appl. 429(5–6), 1163–
1173 (2008)

[44] Sommer, H., Pradalier, C., Furgale, P.: Automatic Differentiation on Differen-
tiable Manifolds as a Tool for Robotics. In: Int. Symp. on Robotics Research
(ISRR) (2013)

[45] Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard
for heterogeneous computing systems. IEEE Des. Test. 12(3), 66–73 (2010)

[46] Tingelstad, L.: GAME—Geometric Algebra Multivector Estimation. http://
github.com/tingelst/game/ (2016)

[47] Umeyama, S.: Least-squares estimation of transformation parameters between
two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–
380 (1991)

[48] Valkenburg, R., Alwesh, N.: Calibration of Target Positions Using Conformal
Geometric Algebra. In: Dorst, L., Lasenby, J., (eds.) Guide to Geometric Alge-
bra in Practice, pp. 127–148. Springer, London (2011)

[49] Valkenburg, R., Dorst, L.: Estimating Motors from a Variety of Geometric Data
in 3D Conformal Geometric Algebra. In: Dorst, L., Lasenby, J. (eds.) Guide to
Geometric Algebra in Practice, pp. 25–45. Springer, London (2011)

[50] Wareham, R., Cameron, J., Lasenby, J.: Applications of Conformal Geometric
Algebra in Computer Vision and Graphics. In: Li, H., Olver, P.J., Sommer,
G. (eds.) Computer Algebra and Geometric Algebra with Applications, pp.
329–349. Springer, Berlin (2005)

[51] Woo, M., Neider, J., Davis, T., Shreiner, D.: OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 1.2, 3rd edn. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

http://www.clucalc.info/
http://github.com/tingelst/game/
http://github.com/tingelst/game/

Automatic Multivector Differentiation

Lars Tingelstad and Olav Egeland
Department of Production and Quality Engineering
Faculty of Engineering Science and Technology
NTNU, Norwegian University of Science and Technology
Trondheim, Norway
e-mail: lars.tingelstad@ntnu.no

Olav Egeland
e-mail: olav.egeland@ntnu.no

Received: January 31, 2016.

Accepted: August 18, 2016.

	Automatic Multivector Differentiation and Optimization
	Abstract
	1. Introduction
	2. Geometric Algebra and the Conformal Model
	3. Automatic Differentiation
	3.1. Forward Mode
	3.1.1. Dual Numbers

	3.2. Reverse Mode
	3.3. Implementation Using Operator Overloading

	4. Automatic Multivector Differentiation
	5. Multivector Estimation
	5.1. Rotor Estimation
	5.1.1. Parameterization

	5.2. Motor Estimation from Point Clouds
	5.2.1. Parameterization

	6. Implementation
	6.1. Automatic Multivector Differentiation
	6.1.1. Matrix Based Implementation of Geometric Algebra
	6.1.2. Multivector Based Implementations of Geometric Algebra

	6.2. Multivector Estimation

	7. Experimental Results
	7.1. Automatic Differentiation of Multivector Valued Functions
	7.2. Multivector Estimation
	7.2.1. Rotor Estimation
	7.2.2. Motor Estimation

	8. Conclusion
	Acknowledgments
	Open Access
	References

