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For the question of relations between architecture, or more generally, design, and 

math, there seems to be two schools. As a great light on Roman buildings told me, 

Borromini’s architecture has nothing to do with math. On the other hand, for 

some of us, it is hard to see how you can bypass the issue; especially if you look 

at the field as something more than just numerical calculation. One might, as 

Giordano Bruno did, argue in terms of interrelated magnitudes (SL, Patterns and 

Programs, 1.4) without codifying anything in numerical or any other formal math 

format. The main point in the present discussion is that, while architecture and de-

sign taken as whole is at least physically attestable, math does not appear always 

as numbers and on paper or on the machine, but may be an active configuration 

in the murky depths usually referred to as our mind, without being necessarily ex-

plicitly recorded  

1. Elusive issues

Given the indeterminate definitory status of both math and architecture - or, more 

generally: design, the option left us is operational determination; it is our handling 

an object that gives it a managable identity (above the levels of trivia; SL, Burden, 

Patterns and Programs, and Bridgman). In the present context, this seems to open 

up a twofold line of argumentation. The first part goes by two steps. We start out 

with considering math operations, whether explicit or implicit or potential, and di-



2     7/6/12
mensionally scalar, vectorial, differential or integral, or topological. Then we ask 

what kind of numerical, geometrical or symbolic manipulations can be appplied 

to design. or lies there already, explicitly or by implication. Whenever the shape 

can be subjected to math operations or seems to invite math thinking, what sort of 

procedures, and what kind of cognitive, conceptual and situational or environmen-

tal frameworks, can a visual shape call up by virtue of its essential form  (a term 

to be considered presently) ? The next step concerns the implications of evaluating 

these issues together, as a pattern of reciprocal interaction. 

The problem picture just outlined is not a static one but shows a process or 

processes, eluding definite solutions. Some formats can advantagously be analy-

sed in metaphorical terms on an information model (SL, Patterns and programs, 

4.3.5, using material from Davis and Olson; see also Inmon). 

So my program aims at nothing more than approaching the probable terms of 

a framework analysis. What is the methodological significance of such an agenda, 

how to recognize and describe it (I am going to speak of describe and description, 

to cover also cognitive awarenes, epistemological access and recognition)?   

The matter is further involved by the circumstance that math, and not only geom-

etry, can call forth pictures or visual models; a contingency that is of course much 

dependent on specific properties. Visualizing in general depends on environmen-

tal factors and individual attitudes, inclinations and competences. But images, 

mental or visual, have often guided enterprises in science and thus also in math 

(see Holton’s and Miller’s publications cited in the Bibliography). According to 

Werner Heisenberg, Niels Bohr, regardng his atom model with its planetary or-

bits,

believed in his pictures of the atom, less in his own hypothesis about the 

atomic reality behind them (Es ist also gar nicht so sicher, daß Bohr selbst an die 
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Elektronenbahnen im Atom glaubt. Aber er ist von der Richtigkeit seiner Bilder 

überzeugt) (Heisenberg, 1996, 49).  

On several levels of abstraction, math and imagery, mental or visual, geom-

trical, topological or otherwise, interact, dovetail or mutually intefere with one an-

other. It may seem relevant to presume that our deep-set faculty of pictorialization 

forms a link between math and the experience of visual shapes such as design. 

Wittgenstein, in his Bemerkungen über die Grundlagen der Mathematik, another 

of his collections of propositions, offers some considerations in support of this 

idea . He is, of course, one would say, aware of the human dimensions accompa-

nying work in and with math. Numbers are, conceptually speaking, figures/imag-

es, and arithmetics inform us about their properties. But the difficulty lies in the 

fact, that the properties represent possibilities.

Die Zahlen sind Gestalten (ich meine nicht die Zahlzeichen) und die Arithmetik 

teilt uns die Eigenschaften dieser Gestalten mit. Aber die Schwierigkeit ist da, 

daß diese Eigenschaften der Gestalten  M ö g l i c h k e i t e n   sind.. Und diese 

Möglichkeiten wieder entpuppen sich als physikalische, oder psychologische, 

Möglichkeiten... etc. (Wittgenstein, 229f.). 

Without venturing to elaborate Wittgenstein’s point any more than this, it 

seems advisable to be aware that much math calls forth imagery, and once this has 

happened, one is left roaming in the fuzzy landscape in which pictures generally 

seem take us (SL, Burden).

The process is not reversible, for a picture and the words describing it (on pa-

per or in our brain; often not the same, it would appear), do not point unequivo-

cally back to the number group. In fact, both these media are indeterminate and 

indefinite with respect to their reference downpour zone. Grasping their import 

will have us fanning out over a wide configuration space. The famous idea of fal-

sification (due mainly to Popper ) can be applied only to numbers handled  in reg-
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ular math procedures, isolated, to the extent possible, from the environment. This 

should mean that propositions in verbal terms cannot be either proved or rejected, 

except by other verbal expressions: the blind leading the blind. 

2   Shape and form

A design object must be - and normally will be - subjected to a two-level approach, 

regarding what we can se directly and what we seem to sense behind it or inside 

it. Seeing a cupola, we may feel that there is some basic notion or form determin-

ing its base curve, a pure circle, and at school we learn that it means x2 + y2 = r2 . 

A similar event can occur when considerng tilings and patterns (Grünbaum and 

Shephard). 

Lord and Wilson, in their indispensable book, The mathemaical descrip-

tion of shape and form, makes a distinction which is relevant for the present dis-

cussion. We have chosen the word shape to indicate those aspects of geometrical 

form which have to do with the external aspect that an object presents to the 

world. The word form has been reserved to indicate that some aspects of internal 

structure is also under consideration (from the Preface). 

Elsewhere I have developed the distinction between system and elabora-

tion when discussing pictiorial programs based on a recordable and well defined 

Canonical system (SL, Patterns and programs, 1.6, 1.6.1).  In the humanities as 

in the sciences, one should respect the difference between independent and depen-

dent variables; even though the former in this environment will always be a matter 

of  (non-statistical) probability or heuristics.

We seem to be justifed in focusing on the conceptual side, which also, in-

deed, includes the technical and mathematical aspects. Characteristically, Grego-

ry’s book, Mind in Science. A History of Explanations in Psychology and Physics, 

in his very extensive treatment of machinery, focuses constantly on the conceptual 

functions.



5     7/6/12
To say this may sound like laboring the obvious, but further enquiry will 

show that the idea of concept is tricky enough to require closer inspection (see Put-

nam for conceptions as a question of abilities rather than properties). For there is 

also the concomitant aspect that this way of reasoning bridges over to non-com-

monsense design environments, in computer science, in the virtual world and 

mathematization of concept lattices (Ganter and Wille). This should mean that the 

of math operations on design must involve also some software environments.

3. A prototype caae

To lend some more substance to the above points, which touch directly on the dis-

tinction shape/form, let us have a look at a scultpure that, with its complex struc-

ture of simple forms and with its exposure to public view, shows essential 

characteristics of buildings: Eduardo Chillida’s block sculpture.

Fig. 1. Eduardo Chilli-
da, Sculpture (Coll. 
Maeght, St.-Paul-de-
Vence). Phot. Liv Sind-
ing-Larsen.

Simple and composite 

blocks are bounded by 

roughly rectangular sur-

faces that are dovetailed 

into one another in a 

pattern which seems to 

defy direct observation; 

at least so for many of 

us. For some of us, 

again, from observation of this complex shape an expectation may arise to find so 

to speak inside the configuration some plainly Euclidean squares and rectangles 
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bounding separate simple geometrical figures in unspcified spatial juxtapposition, 

in other words, a set of forms. This is the kind of dynamic tension which architects 

and artists, for example Matisse and the German expresionists, exploited. In han-

dling some system such as we find in Chillida’s sculpture, we are moving inside 

the domain of math ideas.

4. Proportions and ideologies
Now let us consisder some deceptively simple cases of math application.

Recording the dimensions of the fourteenth-century Florentine constructions of 

door and window arches (SL, 1975), a relatively plain proportional formula 

emerges (computerized measurements), by which the craftsmen could construct 

the arches and their frames. Simple “recipe” patterns as these  were common in 

Europe, and, according to Paul Booz (in his Die Baumeister der Gothik); served 

statical as well as formal purposes (see below). These simple data should not be 

evaluated in isolation but have to be integrated in a large and meaningful system. 

As they are the prominent decoration element on the public and governemental 

buildings we well as those of the upper class of merchants and bankiers. The de-

sign features became symbolic of the sophisticated financial and math culture in 

the city, but also of the political role of the cited class, which - usually through the 

guilds, represented the constitutional  element of the Florentine state. At the same 

time, the geometrical order supported and confirmed the tradition of a city and 

state which considered itself an instantiation of the heritage from ancient Rome 

(details in SL, 1975). If we started out from any one of these features (here sketch-

ily conveyed), the path along which we might be led back to the arches and their 

math expressions is just one among numerous alternatives. 

In this way, a number applied to a design object is absorbed into it by being 

processed in the composite image with which it presents itself to the world. Hence, 

speaking of number applied to design, we have left the range of math, making the 

number resurface in the composite and indeterminate design terms. Measuring the 



7     7/6/12
height of a wall, we are no longer concerned with numbers but with the wall. This 

little example of a model can be extrapolated to larger or more complex  issues.

Math ideas or descriptions can be expressed verbally, the speaker (or writer) 

not necessarily being aware of the numerical equivalent(s) or potentials. Pallad-

io’s Quattro libri may be cited as referring to at least one case in which the ap-

proximation issue arises, even though he does not say so. In a book tightly packed 

with measurements - there are numbers all over his drawings, one case is treated 

verbally in default of a numerical method. One of his ancient vaults in Libro Pri-

mo is a volto tondo. Here, we are told (more to the point: his customers, present 

and prospective, are told, for the architect’s treatises were sales catalogs): ... the 

curve of the vault, the closer it approaches the corners, the rounder it becomes 

(quanto più s’approssima à gli angoli; tanto più diuenta ritondo). One may risk 

the guess here that Palladio would have desired to express this variable "round-

ness" in a number format. His clients, many of whom were business men, would 

have felt even safer if he had been able to do that. But the required math tools were 

not as yet available. Giordano Bruno, working with general theory, unhampered 

by das Unbehagen der Kultur, could opt for a more direct way, to show the argu-

ment in a graphic model (Patterns and programs, 1,4).

5. Borromini’s differential curves and manifolds.

Thw next group of cases is much more complex. Francesco Borromini introduced 

curves and surfaces in his buildings which defied contemporary math, while at the 

same time they represented forms, behind their shapes, that did belong to the for-

mal register which the efforts toward the mature calculus in the initial phase were 

committed to handle (details in my Patterns and programs). 

The most notable architectural case is the transition from wall to cupola  in 

the interior of Sant’Ivo (Fig. 2. For the details, see SL, Patterns, 1.5 ff. ). 
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Here, there is a passage from convex wall sections upwards into the cupola, 

where the surface necessarily assumes concavity. In this fashion, a convex surface 

is turning continuously, that is, differentially, into a concave one. 

Fig. 2.  Sant’Ivo, 
interior; transi-
tion from main 
body up to the 
cupola, from 
convex to con-
cave (in Norwe-
gian but hardly 
difficult).

There are many 

equally challeng-

ing shapes in 

Borromini’s ren-

ovation and par-

tial rebuilding of 

the Cathedral of 

Rome, San Gio-

vanni in Laterano; let me cite one of them. On the frame that Borromini designed 

for an earlier funerary monument to be reinstalled in the partly renovated church 

(also the work of Borromini),  the monument for Cardinal Giulio Acquaviva (Fig. 

4), the horizontal element that classically would have been a n architrave parallel 

to the wall system, is bent inwardly so as to convey the impression of an inverted 

perspective. In fact, the pseudo architrave may be described as a relatively close 

approximation to a projection onto a vertical plane of a cosine curve between 0 

and 2π. The element, however,  is not closed in one plane, for the trough is grad-

ually bent inwards starting from the end points, the lateral crests, so that it deflects 
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from the vertical front plane to a plane at some 15 degrees to that. Thus the archi-

trave represents a spatial shape of high complexity.

Fig  3 , San Giovanni in Later-
ano, Funerary monument for 
Cardinal Acquaviva.

 Curves of this kind may be la-

beled differential curves (rather 

than indefinite, as with Anthony 

Blunt), for the implication is 

then that some kind of differen-

tial, as was being developed at 

the time, was required for han-

dling them (Patterns, 3.4 and Subsections). In fact, some of the curves and surfac-

es to be fully manageable, would require differential geometry, a method not 

available at the time 

When I speak of differential curves, they should be understood as being 

embedded in manifold configurations, as the "ovary" shapes in San Carlino, which 

must be understood in connection with the complex wall structure. Glenn and Lit-

tler’s Dictionary of mathematics gives the following description (rather than def-

inition) of manifolds: Any entity constructed from a number of enities usually 

infinite, as a three-dimensional manifold  constructed of all points with coordi-

nates x, y, z.   This is thus an operational procedure rather than a definitory one 

regarding meaninng or significance, telling us how a manifold comes into exist-

ence. Taken at the outline level, without entering into the math details, it should 

be applicable to all architectural forms in curved surfaces regardless of their phys-

ical boundaries. Borromini lets us go away without a usable vocabulary or nomen-

clature except mathematics; even that problematic, seeing that many of his forms 

were at best approachable in terms of a vast array of experimentation with some 

point-wise direct hits, in a branch of contemporary mathematics which I label pro-
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tocalculus (the main subject of my Patterns and programs in premodern Rome)..

 The Spire on Francesco Borromini’s university church Sant’Ivo alla Sapien-

za in Rome consists essentially of a conical helix with increasing torsion, i.e., the 

curve getting steeper as it ascends. 

The Spire is constructed in travertine with details in stucco and metal. The 

helical shape is made liturgically relevant by means of a register of religious sym-

bols and images, all of which are standard items in Roman Catholic church con-

texts - and need not occupy us further here (listed in SL, Burden, 75f.). 

Speaking of construction, I do not have in mind the work in masonry and 

travertine but the abstract configurations that may have guiding the workmanskip 

(for a tentative reconstruction of this, see SL, Patterns and progams, 1.9.1).

The story supported by documents and reconstructions, is quickly told. 

Because of the small horizontal area to be occupied by Sant’Ivo (on account of the 

dimensions of the Sapienza building and the street pattern there), a cupola on top 

of it would have to be too low to mark off the place on the Roman skyline, with 

all its paraboloid domes, and too inconspicuous to set of against the many other 

churches the prestigious building of the Papal University. Some kind of spire or 

guglia was the only option available. A few blocks away there was (and is) the tri-

umphal column of Marcus Antonius, the philosopher emperor, with its helix run-

ning all the way up the trunk. A new inscription set on its base by Sixtus V (who 

initiated the Sapienza building) calls it a cochlea (a word of Greek origin meaning 

snail, implicitly also: shell). This name is applied also to the helical Spire.

The world was full of helical shapes but rarely with an increasing torsion. 

Such a helix, especially a conical one as here, laid far beyond the grasp of contem-

porary math. Albrecht Dürer had published a drawing to show how a conical helix 

with increasing torsion could be constructed by raising up numbered verticals 
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from a spiral (a flat curve); but this is constructed n ot in generative math but by 

setting up a series of definite points (Sl, Patterns and programs, 1.9). 

 Fig. 4. Rome, Sant’Ivo 
alla Sapienza, spire seen 
from the present Via del 
Teatro Valle.
 

Today, a general helical 

curve, in which the torsion 

and curvature may be var-

iable, is measured in terms 

of a so-called position 

vector (Lord and Wilson, 

19ff.) This concept and 

the corresponding tech-

nique in differential ge-

ometry were not available 

at the time. It should be 

noted here, that both Dür-

er and Torricelli, like ev-

eryone else in pre-modern math, also in the protocalculus efforts before the time 

of Leibniz and Newton, used exclusively geometrical proportions without num-

ber calculations, for their configurations.  Once erected, the peculiar shape domi-

nated the view not only from the local streets, but even from many far-away points 

in the city (the Campidoglio, for instance)

To conclude, the torsion increase, which at the time must have been noted 

as its most challenging feature, was the result of the building process; it is not de-

termined by the basic spiral (to judge from the drawing published by Joseph Con-

nors;  see SL, Patterns and programs, 1.9 ). On account of this striking feature, 
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the Spire no longer belongs to the category Galilei considered as normal curves 

(linee semplici) and the crucial element of a helix. The Spire now is merged into 

the class of differential forms encountered in Borromini’s buildings and elsewhere 

(SL, Patterns and programs 2.2.9). The shapes containing such forms would func-

tion as undirected attractors with regard to people receptive to them, in this way 

inensifying the attempts to cope with complexities. An amanuensis at the very Sa-

pienza university, Galilei’s pupil Evangelista Torricelli, worked out the volumet-

rics of a cylindrical helix, causing even the French to praise him for it (SL, 

Patterns and programs, 3.2.1); so the idea was in the air.

The design must have challenged math experts and interested people at the 

university and in its entourage. Math did not belong to the natural sciences, and a 

show of modernity on the church of the papal university would not call up embar-

rassing cosmological conundrums (especially after the scandalous canonical re-

jection of Galilei’s observations  in 1616). The math factor if evoked would 

therefore have been cherished by the Church, Patrons of the university without 

fear of involvement in the cosmological disputes of the day: a harmles sign on a 

troubled sky. That is to say, math becomes an ideological and political factor; re-

lated to this, math can serve as a pledge for correctnes and validity of design: fi-

nally, some people will embody math considerations in their attention and 

reactions without even noticing it, simply bypassing the intermediate steps in a 

piece of reasonng, a case of expertise in Hubert Dreyfus’ analysis (SL, Burden, 

IV, 2.1 and 9.1). 

6. Grapevine

A crucial issue arising from our present concern with the relation between math 

and design is to what extent such conceptual connections would be directly or in-

directly present in the minds of contemporaries with a minimum of awareness and 

knowledge. The question of people’s reactions and the working of their “minds” 
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cannot be formulated in any general and analytically reliable terms (Baumgartner 

and Payr, Benjafield, Callero). The planner outfit and the authorities accepting the 

Spire idea, will have predicted such reactions on the different levels of contempo-

rary people using the normal combination of normative and explorative prediction 

(SL,  Patterns and programs, 3.1 on  Idea generation and planning process). We 

could set up a probability pseudo-matrix of the range, arguing in the following 

terms (as I have in fact attempted in SL,  Patterns and programs). There must have 

been talk all around at the Sapienza, the normal community grapevine taking care 

of that. People directly or indirectly involved came mainly in the following cate-

gories: the mathematicians and other math-oriented scholars, the higher clergy, 

the university scholars in general and, connected with these various categories, 

circles of men with a higher education who would, to varying degrees, share ac-

quaintance with the scientific aspects of the helical form. In this manner a distri-

bution of competences across the groups would arise.  

The kernel of the argumentation concerning the helical thread running up 

the whole shape, is that people with some degree of preparation and awareness of 

contemporary debates, would see the curve as representing some of the fashion-

able, hotly discussed, and highly problematic issues in European scolarship in the 

seventeenth century (carefully introduced in Patterns and programs). 

7. Math and design

The presence of math, in one form or the other, offers no decisive help in the de-

velopment of definitions either of architecture nor of design. Math, as a an area of 

operations, is not easily defined, as Quine pointed out: In Whitehead and Russell’s 

Principia Mathematica we have good evidence that all mathematics is translata-

ble into logic. But this calls for elucidation of three terms: translation, mathemat-

ics and logic (Quine, 1980, 80).
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Not even categorizations within math are always helpful; thus Eves:. It must be 

confessed that the classification of bodies of mathematics into the three categories 

of geometry, algebra, and analysis is largely based on more or less sentimental 

and traditional gruonds, and that the boundaries between the categories are be-

coming less and less well defined [the position of topology thus remains problem-

atic].  Nevertheless,..  most branches of mathematics have ultimate parenthood in 

either Euclidean geometry, symbolized arithmetic, or the limit processes of the 

calculus (Eves, 173f.).  Furthermore, there exist, undoubtedly, more than one for-

mal system whose use as a logic is feasible, and of these systems one may be more 

pleasing or more convenient than another, but it cannot be said that one is right 

and the other wrong (Alonzo Church cited by Eves, 258f.). Lakoff and Núñez of-

fer a matrix for a portrait of mathematics; somewhat excessively colored by ad-

jectives like human, greatest, extraordinary, and rather literay argumentation 

(Lakoff and Núñez, 377ff.). 

We are no better off concerning architecture and design. Design, along 

with architecture, has gained some respectability in engineering and in the rela-

tively new digitial world; as the concept of design is worked out in Winograd’s 

(and others’) Bringing design to software, of 1996, at its 11th printing in 2006. A 

more comprehensive, functionally structured and dynamic sense of design is giv-

en by Herbert Simon in his The sciences of the artificial (Chapter 5, 111ff.). I take 

it that he has arrived at this concept under the impact of two other of his important 

theories, on the one side, problem solving, and on the other,  planning. In this per-

spective, most human products, mental and physical, can be subsumed and ana-

lysed under the model of design procedures. Remaining satisficed (in Simon’s 

term) with everyday notions of both kinds of construction or building structure, 

we can use - not mathematics but distinctive math operations on them to see what 

happens.  
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One problem here is that design is the outcome  and reflection of a plan-

ning and production process (details in SK, Patterns and programs,  3.1). Karsten 

Jakobsen, formerly Rector at The Norwegian Institute of technology, speaking of 

recursive product development, concludes in the following terms (his "five steps" 

not to be taken literally in our context):

The process of product development is a recursive process in the sense that a five-

step procedure calls upon itself as the different levels of the product to be designed 

are uncovered as "chinese boxes". Thus the functional tree cannot be completely 

specified at the beginning of the product development process, but must be devel-

oped gradually as each level is uncovered, and the process of determination of 

functional requirements (or rather requirement specifications) and of creative 

thinking (solution generation) are progressing stepwise parallel as a dualism, 

rather than as a two-step sequence. (Jakobsen, 53). If so, it becomes hard to state 

what the product really is. This is not a logically stepwise process toward a pre-

figured goal, solution or result, but a non-linear one by virtue of which the vision 

or the definition of the expected end result is being construed bit by bit. Anything 

more complex that just nuts and bolts would be affected by this fuzziness. 

The purport of math operations is not always transparent. Lakoff and 

Nuñez give us a useful reminder. Many of the confusions, enigmas and seeming 

paradoxes of mathematics arise because conceptual metaphors that are part of 

mathmetics are not reconiuzed as metaphors but are taken as literal (Lakoff and 

Nuñez, 6). 

8.   Math operations                                                                                                                                                                                                   

Let me repeat: analyzing retrospectively, we will hope to cover the essential in-

gredients and processes involved also in planning, which consists of a preview of 

the potentials, role and effects of the finished product and consequent prediction. 

Herbert Simon has often insisted on the role of “hindsight” in learning, planning 
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and prediction, and on recursive processes (e. g. in Simon, 1979), to the extent that 

prediction works backwards. 

When someone among our historical protagonists approached the subject 

of handling design complexities mathematically or, indeed, took up important fea-

tures in its episthemological setup, this may have happened in  (at least) one of six 

kinds of operation (or some or all of them):

(1)  Working with and/or within the math technique at issue and applying it to the 

design object; scalar measuring of physical dimensions, resistence and weight, 

also proportions between elements (such as proportional systems for embellish-

ments or for technical control; as noted by Paul Booz in his Die Baumeister der 

Gothik; or in Palladio’s Quattro libri in which the which the  buildings represented 

in the drawings are completely documented with measurements and proportional 

relations).

(2) working with other topics which from a cognitive perspective were to prove 

representative of or “emblematic” for the development of math application to de-

sign, such as non-Euclidean curves, surfaces and volumes (e.g. such as those that 

I call differential, in works e.g. by Borromini; SL,  Patterns and programs).

(3) working with some object in the shape format that seems to involve, for some 

people, not necessarily the creator her/himself, underlying form properties; such 

as approximate geometries or stereometries (like Chillida’s sculpture).

(4)  being somehow concened with the object and accessing, even accepting cer-

tain characteristics or features in it, without reflecting on the math ingredients in-

dispensable for the object’s functioning, a jumping-over several implied steps by 

virtue of one’s expertise (in Hubert Dreyfus’ well-known conception of expertise; 

SL,  Patterns and programs, 4.3.6); a common occurence.

(5) working with shapes that have a potentially clear math form while the designer 

does not consider it, is unaware of it or is unable to handle it except by “verbal 
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framing-in”; Palladio describing a curve becoming “more rounded”, which the 

then incipient protocaculus (a term in SL,  Patterns and programs) would have 

formalized, at least to some degree.

(6) “Reinterpreting” a flat wall or other neutral surface by means of pictorial dec-

orations that introduce math proportions and shapes (as in Storstein’s frescos in 

Oslo Townhall; see Åse Ødegaard’s publication in Norwegian: Et kunstverk blir 

til - The generation of a work of art, Trondheim 2000).

The questiom is not only which math operations we study or our analysis pro-

tagonists employed, but what sort of concepts might accompany the operations 

and which of them we try to reconstruct with our models. 

There is a vast literature, going back to the early middle ages in Europe, 

which discussed either the application of numbers to artifacts or geometrical vi-

sions and configurations applied to them. We have a deceptively simple example 

in the medieval idas of “meaningful” numbers (twelve columns for the twelve 

Apostles, etc.). Math operations or more less conscious math thinking, are rarely 

unaccompanied by ideological, symbolic or traditional concept, directly or con-

textually manifest.  It would be inadequate to study how the Florentine in the four-

teenth century designed their arches on doors and windows without taking into 

account the power and prestige of calculation (right back to Fibonacci’s Liber 

abaci of 1205) in the business-oriented culture of that city (SL, 1975). Palladio’s 

Quattro libri  of 1570 abounds in drawings of buildings of his own invention and 

from classical Rome, and every detail bears a number: records or instructions for 

new projects, yes; but also operators informing historians and clients about the 

historical backing for the proportions, and the ideological and hence often com-

mercial values invested in them.    

In the builders’ decisions on proportions in a building, their selection of 

reference points in the edifice -  in the plan of  is not unproblematic and may reveal 



18     7/6/12
something about conceptions and priotities, especially if rituals are involved. The 

application of the Golden Section (very frequent) could be looked upon either as 

a natural, almost in-born, method of achieving order, or as a math expression val-

ued just as such. 

Math operations, especially on things in the world, seldom if ever come 

“alone” or “pure”. Doing math can probably occur in isolation when one is train-

ing on some specific operations, or teaching them, or evaluating them with respect 

to manifestations of truth value (T/F) or, in Kline’s words, loss of certainty. In the 

study of  larger systems, however, the operations we are performing or studying 

will arise in the framework of other more or less related math operations or, in-

deed, in networks of external concepts and processes. The issue will then, normal-

ly, be loaded with ideological baggage outside of the normally recognized pale of 

math operations or even thinking (a Supplement on conceptualization follows at 

the end of this paper). Such a “baggage” will enter the game from one or both of 

two quarters: by use procedures, such as applying the operations to design, tech-

nically or technologically speaking, or by metaphorical or other associational pro-

cesses. such as historical references to Roman classical proportions. 

The digital paradigmas and also their metaphorical replication have almost 

always strong capacities for absorbing math statements and operations and also 

for handling them conceptually, in model format if not directly. The amount of 

contributions to what with perhaps unjustified simplification I call the digital en-

vironment, is enormous. So I shall just cite a few characteristic examples, avoid-

ing the more speculative ones, as they occur in the literature (see the 

Bibliography): Winograd on Bringing design to software; Bratko on Prolog (ubiq-

uitous recall of conceptualization models); Ganter and Wille on formal concept 

analysis; Truss with a survey of computer math; the Kirsch volume on the foun-

dations of AI;  Bechtel and Abrahamsen on connectionism; Gregory’s book on 
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Mind in Science; the Miller volumes on the role and functions of imagery in sci-

ence; and the great overview in Levine and Rheingold, The cognitive connec-

tion.Thought and language in man and machine; Horgan’s Undiscovered mind. 

Math applied to architecture, or design generally speaking, should be consid-

ered as a recording or an instruction concerning metrics and the technical aspects, 

but also a statement about the subject. The ubiquitous numbers on Palladio’s 

drawing in his Quattro libri (1570) certainly pretend to show how to construct cor-

rectly but at the same time to furnish his old and his prospective clients (SL. Pat-

terns, 1.5.2) with ideological significance for their buildings. Serlio in his book 

(1548) presents a great choice of designs to choose from if one wants to build 

“classically”: a Sears and Roebuck sales catalog avant la lettre (SL, 1978, section 

The selling of an idea). Written statements by the architects themselves  were also 

written with some purpose not always stated: in support of personal prestige and 

of marketing the design ideas and prototypes. Especially after the architects had 

become “humanists”, some authorship was expected from them, and they had to 

play the role as “learned” men, demonstrating their status with comments at least 

as a garnishing on cakes already out of the oven. In some sense math applications 

can be compared to written statements about the matter on hand. For this Roy T. 

Eriksen’s expert analyses of architectural writings should be consulted (two ex-

amples: Eriksen 2004 and 2006).  

Mathematics applied to buildings, then, should be evaluated both for the  use 

to which it is being put, but also for its role in stating something about the shapes 

and forms. Are these clear alternatives?  No. Regarding the divide between use 

and mention, the meta issue in Nagel and Newman’s stimulating booklet on 

Gödel’s Proof. I seem to remember that Douglas Hofstadter somewhere (in his 

Gödel, Escher, Bach, or his more recent book about himself as a Strange loop), 

affirmed that a statement about number theory is number theory, so that the di-
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chotomy vanishes behind converging functions. It may seem tempting, then, to 

say that any verbal or math statement applied to design plays this double role.

9 Generative analysis

The heuristic or experimental theory directing my work, is that the analysis pro-

cess, which is the method, the formulation and implementation of smaller or big-

ger relevant projects, produces the object on hand (historical or contemporary) 

and sends it back to use more or less ready for analytical use (SL, Burden,  184ff.). 

I have already introduced the paradigm under the name of Operational determi-

nation. This is achieved by attributing probable values to the situations and con-

texts considered relevant, attributions in their turn supported by sub-theories. The 

idea is not an original one. In support, I may cite Philip Kitcher in his The nature 

of mathematical knowledge. Kitcher discusses the case of a small child playing 

with blocks on the floor, thus learning the meanings of ‘set’, ‘number’, ‘addition’ 

and to accept basic truths of arithmetic by engangng in a c t i v i t i e s  in collecting 

and sdegregating. Rather than interpreting these activities as an avenue to knowl-

edge of abstract objects, we can think of the rudimentary arithmetical truths as 

true in virtue of the operations themselves. On this basis, Kitcher argues that arith-

metic describes those structural features of the world in virtue of which we are 

able to segregate and recombine objects: the operations of segregation and re-

combination bring about the manifestation of underlying dispositional traits 

(Kitcher, 107f.). 

Obviously, such a “determination” is - to repeat - a process and rarely a final 

decision. This program affects the relationship between design and mathematics 

in the sense that applying math to some shape, involves more than just the calcu-

latory, technical and dimensional issues, for the handling unavoidably calls forth 

and activizes not only features in our mental baggage but also situational and en-

vironmental ones. Working out an issue in a systems mode, if adequately struc-
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tured, can obviate the need for  “explanations” of a causal nature, since, as 

Radnitzsy notes, explanation is a by-product of systemization (Radnitzky, II, 102). 

Furthermore, operational determination is a process in which decisions on defin-

ing stages are arbitrary, so that no stage can be considered terminal except for mo-

tivations of convenience. No final dénouement. 

Bibliography 

Baumgartner, P., and Payr, S.,  Speaking minds. Interviews with twenty eminent 
cognitive scientists, Princeton (NJ), 1996.
Benjafield, J. G., Cognition,  Englewood Cliffs (NJ) 1992..
Bridgman, P., The operational character of scientific concepts, 57 - 69, in Boyd, 
R., Gasper, Ph., and Trout, J. D., The philosophy of science, Cambridge (MA), 
1991. 
Callero, P. L., Toward a sociology of cognition, in Howard, J. A., and Callero, P. 
L. (eds), The self-society dynamic, Cambridge 1991, 43 - 54.
Davis, G. G., and Olson, M. H., Management information systems. Conceptual 
foundations,  2 ed., New York 1985; paperback 1996.
Downs, R. M., Personal constructions of personal construct theory, in Moore and 
Gollege, Environmental knowing, pp. 72 - 87.
Eriksen, R. T, Topografia e prospettiva: architettura retorica, Memorie /Acc. 
Naz. di Modena, 2004, 541560.
Eriksen, R. T, Alberti, Manetti, and Quattrocento aesthetics, ed. Eriksen and Ts-
chudi, Ashes to ashes, Art in Rome between humanism and maniera, Rome 2006.
Eves, H.,  Foundations and fundamental concepts of mathematics, 3rd ed., Min-
eola (NY), 1990.
Ganter, B., and Wille, R., Formal concept analysis. Mathematical foundations,  
Berlin 1999. 
Geen, R. G., Human motivation. A social psychological approach, Belmont (CA) 
1995.

Gregory, R. L., Mind in Science. A History of Explanations in Psychology and 
Physics, Harmondsworth, 1984 (originally London 1981, reprint 1988).
Grünbaum, B, and Shephard, G. C., Tilings and patterns, New York 1987.
Heisenberg, W., Der Teil und das Ganze. Gespräche im Umkreis der Atomphys-
ik, Munich 1969.
Horgan, J., The Undiscovered Mind. How the human brain defies replication, 
medication, and explanation, New York 1999.
Inmon, W. H., Data architecture. The information paradgm, Wellesley (MA, 
1992.
Jakonbsen, K. (ed)., Modern design princiles, Trondheim 1988.



22     7/6/12
Kitcher, Ph., The nature of mathematical knwledge, New York 1984.
Lakoff, G., and Núñez, R. E., Where mathematcs come from. How the embodied 
mind brings mathematics into being, New York 2000.
Lord, E. A. and Wilson, C. B., The mathemaical description of shape and form, 
repr. New York 1986.
Miller, A. I., Imagery in scientific thought, Cambridge (MA) 1986, repr. 1987.. 
Miller, A. I., Imagery and creativity in Science and art, New York 1996.
Putnam, H. The meaning of meaning,  in  Mind, language and reality. Cambridge 
1975, pp. 223 - 227
Quine, W. V.,  From a logical point of view, Nine logico-philosohical essays, 
2nd. revised ed., Cambridge (MA) 1980.
Radnitzky, G., Contemporary schools of metascience, I, II, Göteborg 1968, re-
print 1970.
Simon, H. A., Models of thought, New Haven (CT) 1979.
Simon, H. A., The Sciences of the Artificial, 3rd. ed., Cambridge (MA) 1996.
Sinding-Larsen, S., Some finctional and iconographical aspects of the central-
ized church in the Italian Renaisance, Ist. rom. Nor., Acta, II, 1965, 203 - 252.
Sinding-Larsen, S.,   A tale of  two cities. Florentine and Roman visual context 
for fifteenth-century palaces, in Institutum romanum Norvegiae, Acta,  Vol.VI, 
1975,  pp. 163 - 212.
Sinding-Larsern, S., The Laurenziana vestibule as a functional solution, Ist. rom. 
Nor., Acta,VIII, 1978, pp. 213 - 222. Reprint in Wallace, William E, Michelange-
lo. Selected scholarship, New York 1998
Sinding-Larsen, S., The burden of the ceremony master. Image and action in San 
Marco, Venice, and an Islamic mosque, Rome 2000. Review by Ruth Simon/
Schilling, Institut für Geschichtswissenschaften, Humboldt-Universität, Berlin: 
http://www.h-net.org/reviews/showrev.cgi?path=91381022723569.
Sinding-Larsen, S., Patterns and programs in premodern Rome, Shape, form and 

message systems: an open-source approach  = http://ntnu.no/bht/arkitekturhisto-

rie, NTNU publication, 2010.

Sinding-Larsen, S., Working with pictures in elaborated systems, in Jarits, G. (ed.), Image, rit-

ual and daily life,, Institut für Realienkunde des Mittelalters und der frühen Neuzeit, Austrian 

Academy of Sciences, forthcoming.

Torricelli, Evangelista, Opera geometrica Evangelistae Torricelli, Florence 
1644. I, i. 223ff.: De dimensione cochleae .
Winograd, T. (ed.), Bringing design to software, Boston (MA) 1996, eleven 
printings up to 2006. 
Wittgenstein, L., Bemerkungen über die Grundlagen der Mathematik, Werk-
sausgabe Band 6, ed. Anscombe, Rhees and Von Wright, Frankfurt a/M 1984.



23     7/6/12
                              

                                                    ---------------------


