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Abstract: An output feedback controller for dynamic positioning (DP) of marine surface vessels
is developed. The proposed algorithm has good performance during transients as well as good
steady state performance. The method achieves this by a flexible injection gain in the bias
estimation dynamics in the observer. In addition, the traditional integral action is replaced
by a filtered bias estimate from the observer. Both these elements combined provide good
DP performance in transients, as well as calm behavior in steady state. A simulation study
is performed showing the benefit of the proposed output feedback controller, and a stability
analysis is performed to show uniform asymptotic stability.
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1. INTRODUCTION

A surface vessel performing dynamic positioning (DP) has
to keep position and orientation (stationkeeping) or do low
speed tracking while compensating for the slowly-varying
loads that affect the vessel. These loads are typically
due to current, mean wind loads, and second order wave
loads. The sum of these loads together with unmodeled
dynamics, is lumped into the bias load vector. For model-
based observer designs it is important to estimate this bias
in order to achieve good estimation of the velocity, and
thereby the position of the vessel. In addition, this bias
load needs to be compensated in the controller to keep
the desired position. This is typically achieved through
integral action in the control law.

In standard model-based observer designs (Fossen, 2011),
the tuning of the bias observer is set low to ensure good
performance of the observer in steady state. Since the
bias is typically slowly-varying, low tuning will lead to
less oscillations in the bias estimate, and therefore also
less oscillations in the velocity and position estimates.
However, when there is a significant transient in the bias
force, for instance by a heading change, a wave train, or a
mooring line that breaks (for position mooring), the bias
estimate will take some time to converge to the new value.
This is problematic for transient performance of the DP
system, since the velocities will not be estimated correctly
over the course of the transient.
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The objective of this paper is to construct a model-based
observer and controller with good performance in both
transients as well as in steady state. This will be achieved
by two changes from the standard model-based design.
The first is to allow for a flexible bias estimation in the
observer. The injection gain in the bias dynamics will be
allowed to take values ranging from a nominal gain matrix
to higher gains and a more aggressive tuning. The second
contribution is to add a lowpass-filtered bias estimate
which has a less oscillatory and smoother characteristics
than the direct bias estimate. This filtered estimate will be
used to compensate for the bias in the controller. There are
two reasons for this implementation. From the literature,
the two existing options for compensating the bias is to
either use the bias estimate from the observer (Loŕıa and
Panteley, 1999), or to add integral action in the controller
(Sørensen, 2011). The integral action in the controller finds
the bias estimate based on the tracking errors. Since the
control performance depends on the convergence of the
observer, it is reasonable to believe that the bias estimate
in the observer will always be faster than the integral
action based on tracking errors (with reasonable tuning).

However, if we use a filtered version of the bias estimate,
we allow for fast bias convergence in the observer, without
having to send this noisy estimate directly to the con-
troller. At the same time the bias compensation term in the
controller is oscillating less than the direct bias estimate
itself, and this is most likely faster than integral action
based on tracking errors. This is a similar idea as used in
L1 adaptive control (Hovakimyan and Cao, 2010).

In addition, there is a tuning benefit of using the bias
estimate from the observer, both because tuning an ob-



server does not require the system to be in closed loop,
and because tuning of integral action (on tracking errors)
heavily depends on how fast the observer estimates con-
verge. This is especially beneficial in the current design,
since the proposed observer have time-varying gains.

Similar use of time-varying gains is present in the litera-
ture. See for instance Tutturen and Skjetne (2015) where
hybrid integral action for DP of marine vessels is proposed,
and Lekkas and Fossen (2014) where the authors propose
to use a time-varying lookahead distance as a function of
the cross track error in a line-of-sight algorithm. In Belleter
et al. (2013, 2015) a wave encounter frequency estimator
is proposed, where the frequency adaption law has a time-
varying gain. In Bryne et al. (2014) time-varying gains are
proposed for an inertial observer (aided by GNSS) for DP,
in order to improve convergence and suppress sensor noise.

2. PROBLEM FORMULATION

In the following we will separate between a simulation
model and a control design model. The simulation model
has higher fidelity and is used for simulation and veri-
fication of observer and control designs. Because of the
low-speed nature of the dynamic positioning operations,
the control design models typically neglect centripetal
and Coriolis terms, as well as nonlinear damping; see
(Sørensen, 2005, 2011), and (Fossen, 2011). The control
design model considered here is a horizontal motion 3
degree of freedom (DOF) model, with the dynamics

ξ̇ = Awξ + Ewww (1a)

η̇ = R(ψ)ν (1b)

ḃ = wb (1c)

Mν̇ = −Dν +R(ψ)>b+ u (1d)

y = η + Cwξ + vy, (1e)

where ξ ∈ R6 is the state of a synthetic white noise-driven
model of the vessel motion due to the 1st order wave
loads. In normal operating conditions it is beneficial to
counteract the low frequency part of the wave motion only,
and the model therefore consists of a wave model (1a) and
a low frequency part (1b) - (1d), which consists of the low
frequency position in north and east, as well as the heading
angle, η := [N,E,ψ]> ∈ R3, the velocities in surge, sway,
and the yaw rate, ν := [u, v, r]> ∈ R3, the slowly varying
NED-fixed bias force b ∈ R3 that constitutes the sum of all
slowly-varying perturbation loads, such as current, mean
wind, 2nd order waves, and unmodeled dynamics. In (1b)
the kinematic relation is described by the 3 DOF rotation
matrix from the body to the NED frame R(ψ) ∈ R3×3,

R(ψ) =

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
, (2)

and the time derivative of R(ψ) is given by Ṙ = rS, where

S =

[
0 −1 0
1 0 0
0 0 0

]
, (3)

and r = ψ̇ ∈ R is the yaw rate. In (1d), M ∈ R3×3 is
the inertia matrix including added mass, D ∈ D3×3 is
the linear damping matrix, and u ∈ R3 is the control
input vector. The measurements y ∈ R3 in (1e) measure

the actual position of the vessel, that is, the sum of
the low frequency and wave frequency position, where
Cw = [0 I] ∈ R3×6, and vy ∈ R3 is the measurement
noise.

The control objective of the paper is to construct an
output feedback tracking controller for DP, that has good
performance in both steady state as well as in transients.
This output feedback controller will track a reference tra-
jectory given by an open-loop reference system (Sørensen,
2011).

Below are some assumptions relevant for the observer and
control design.

Assumption 1. Starboard/port symmetry, M = M> > 0,

and Ṁ = 0. The damping matrix satisfies D +D> > 0.

Assumption 2. Because of physical limitations of the
thrusters, the yaw rate is bounded, by |r| ≤ rmax <∞.

3. OUTPUT FEEDBACK DESIGN

3.1 Model-based observer

The model-based observer considered is similar to the tra-
ditional ”nonlinear passive observer” presented in Fossen

and Strand (1999) with an additional state b̂f , which is a

lowpass-filtered version of b̂. By copying the dynamics of
(1), neglecting the noise terms, and adding injection terms
we get the observer dynamics as

˙̂
ξ = Aw ξ̂ +K1,ω ȳ (4a)

˙̂η = R(ψ)ν̂ +K2ȳ (4b)

˙̂
b = K3ȳ (4c)

˙̂
bf = −T−1f [b̂f − b̂] (4d)

M ˙̂ν = −Dν̂ +R(ψ)>b̂+ u+K4R(ψ)>ȳ (4e)

ŷ = η̂ + Cw ξ̂, (4f)

where ξ̂ ∈ R6, η̂, b̂, b̂f , ν̂ ∈ R3 are the state estimates,
K1,ω ∈ R6×3,K2,K3,K4 ∈ R3×3 are non-negative gain
matrices, and ȳ = y − ŷ is the measurement error. The
underlying assumptions for the observer are:

Assumption 3. (a) R(ψ + ψw) ≈ R(ψ). That is, the
heading angle due to wave-induced motion is small.

(b) The frequency used in the wave filter does not change.
It corresponds to the peak frequency of the wave
spectra of the incoming sea state.

By defining the estimation error states η̄ := η− η̂, ν̄ := ν−
ν̂, b̄ := b − b̂, b̄f := b − b̂f , and subtracting the observer
equations (4) from the control design model (1), we get
the observer error system,

˙̄ξ = Aw ξ̄ −K1,ω ȳ (5a)

˙̄η = R(ψ)ν̄ −K2ȳ (5b)

˙̄b = −K3ȳ (5c)

˙̄bf = −T−1f [b̄f − b̄] (5d)

M ˙̄ν = −Dν̄ +R(ψ)>b̄−K4R(ψ)>ȳ. (5e)



3.2 Varying bias gain

To improve the transient response, we want the injection
gain K3 in (4c) to vary. In steady-state it is desired
that K3 stays close to a nominal gain such that the
bias estimate is calm. Whenever the vessel experiences
transients, K3 should increase to make the bias estimate
more reactive, and when the vessel again reaches steady
state, the gain should return to the nominal gain. To solve
this, K3 is allowed to take a range of values within K3(t) ∈
[K3,min,K3,max], ∀t ≥ 0. We let K3(t) := κ(t)K3,min,
where κ(t) ∈ [κmin, κmax], ∀t ≥ 0. The update law for κ
is given by

κ = max{1, β}, (6a)

β = min{εrd |rd(t)|+ εη|η̄f |+ κmaxe
−εtt, κmax}, (6b)

˙̄ηf = −T−1ηf
{η̄f − ȳ}. (6c)

The first term in (6b) contains a constant εrd ≥ 0 and the
desired yaw rate rd(t) ∈ R, related to a heading change.
The second term is a performance term that triggers a
higher gain when the observer error is large, and the third
term only makes κ large during the initial transient. In
(6c) Tηf is a positive definite diagonal matrix with filter
time constants, and these time constants and the size of
εη ≥ 0 are tuned such that κ approach κmin at steady
state.

In order to have a convenient expression for K3 in the
further analysis we introduce λ ∈ [0, 1] and write K3 :=
K3,λ as

K3λ := λK3,min + (1− λ)K3,max. (7)

3.3 Output feedback tracking control

The control law consists of a reference feedforward term
and a feedback term. The feedback part consists of a
nonlinear PD-term, and a bias rejection term, which is
the filtered bias estimate from (4d),

u = uFB + uFF (8)

uFF = Mν̇d(t) +Dνd(t) (9)

uFB = −KpR(ψ)>(η̂ − ηd(t))−Kd(ν̂ − νd(t))−R(ψ)>b̂f

= −KpR(ψ)>(η̃ − η̄)−Kd(ν̃ − ν̄)−R(ψ)>(b− b̄f ).
(10)

where ηd(t), νd(t), ν̇d(t) are the desired references gener-
ated by a reference generator. By defining the tracking
error states η̃ := η − ηd(t), ν̃ := ν − νd(t), the kinematics
in (1b) along with the kinetics in (1d) inserted for (8) gives
the tracking error system,

˙̃η = R(ψ)ν̃ (11a)

M ˙̃ν = −(D +Kd)ν̃ −KpR(ψ)>η̃ (11b)

+Kdν̄ +KpR(ψ)>η̄ +R(ψ)>b̄f (11c)

4. STABILITY ANALYSIS

We collect all error states in x := col(xc, xo), where
xc := col(η̃, ν̃), xo := col(ξ̄, η̄, b̄, b̄f , ν̄) and combining (5),
(7), and (11) the total error dynamic becomes

ẋ = Aλ(ψ)x (12)

where

Aλ(ψ) =

[
Ac(ψ) Bco(ψ)
018×6 Ao,λ(ψ)

]
, (13)

and

Ac :=
[

0 R(ψ)
−M−1KpR(ψ)> −M−1(D +Kd)

]
, (14a)

Bco :=
[

03×18
03×6 M

−1KpR(ψ)> 03×3 M−1R(ψ)> M−1Kd

]
,

(14b)

Ao,λ :=


Aw −K1,ωCw −K1,ω 0 0 0
−K2Cw −K2 0 0 R(ψ)
−K3,λCw −K3,λ 0 0 0)

0 0 T−1f −T−1f 0

−M−1K4R(ψ)>Cw −M−1K4R(ψ)> M−1 0 −M−1D

.
(14c)

The dynamics (12) can be written (Lindegaard, 2003),

ẋ = T (ψ)>Aλ(0)T (ψ)x, (15)

if the matrices K1,ω, K2, K3,λ, and T−1f commute with the

rotation matrix R(ψ). The transformation matrix T (ψ) is
given as

T (ψ) = diag{Tc(ψ), To(ψ)} (16a)

Tc(ψ) = diag{R(ψ)>, I} (16b)

To(ψ) = diag{R(ψ)>, . . . , R(ψ)>, I}. (16c)

By inserting (7) we can write

Aλ(0) = λAmin + (1− λ)Amax, (17)

where Amin contains K3,min and Amax contains K3,max.

Proposition 1. The equilibrium x = 0 of (12,) where
K3,λ can arbitrarily take any value in [K3,min,K3,max],
is uniformly asymptotically stable under the following
conditions:

• The matrices K1,ω, K2, K3,λ, and T−1f commute with

the rotation matrix R(ψ).
• The following LMI’s are satisfied,

A>minP + PAmin + rmax(STP − PST ) < −Q (18a)

A>minP + PAmin − rmax(STP − PST ) < −Q (18b)

A>maxP + PAmax + rmax(STP − PST ) < −Q (18c)

A>maxP + PAmax − rmax(STP − PST ) < −Q, (18d)

where ST = diag{S, 0, S, . . . , S, 0}, and P and Q are
symmetric positive definite matrices.

Proof. Consider the transformation z = T (ψ)x given by
(16), and notice that T (ψ)−1 = T (ψ)>. From (15) we get

ż = T (ψ)T (ψ)>Aλ(0)z + Ṫ (ψ)T (ψ)>z

= Aλ(0)z − rST z (19)

where r is the yaw rate. We introduce a quadratic Lya-
punov function V (z) = z>Pz, and from (19) we define
f(z) := Aλ(0)z and gr(z) := −rST z such that (19)
becomes

ż = f(z) + gr(z), (20)

where f(z) := λfmin(z)+(1−λ)fmax(z). From (18a)-(18d)
and r ∈ [−rmax, rmax] we have

〈∇V (z), fmin(z) + gr(z)〉 ≤ −α(|z|) (21a)

〈∇V (z), fmax(z) + gr(z)〉 ≤ −α(|z|), (21b)

where α(|z|) is a positive definite function. Finally, we get

〈∇V (z), λfmin(z) + (1− λ)fmax(z) + gr(z)〉 ≤
λ〈∇V (z), fmin(z) + gr(z)〉+ (1− λ)〈∇V (z), fmax(z) + gr(z)〉
≤ −λα(z)− (1− λ)α(z) ≤ −α(z), (22)

and this concludes the proof.



Table 1. Supply vessel, main parameters

Parameters Value

Length between perp. 80 m
Breadth 17.4 m
Draft 5.6 m
Displacment 6150 tons

If the observer and controller gains are set such that Amin
and Amax are Hurwitz, and if the ratio of κmax/κmin is not
very large (in practice, up to 5), it is easy to satisfy (18)
for a maximum yaw rate far above ”normal” yaw rates.

5. SIMULATION RESULTS AND DISCUSSION

The simulations are performed in MATLAB/Simulink on a
high fidelity model based on building blocks from the MSS
Toolbox (MSS, 2010). The case simulated is a platform
supply vessel in an environment consisting of waves, wind,
and current. See Table 1 for the main parameters of the
vessel. The sea state is very rough with significant wave
height of 6 meters, and a peak frequency of 0.53 rad/s
taken from the JONSWAP 1 spectrum. The mean incident
wave heading is 190◦ in the north-east frame (Price and
Bishop, 1974). The current has a speed of 0.5 m/s and
direction of 180◦, and the wind has a mean velocity of 5
m/s with a direction of 160◦. A first order model for the
thrust dynamics is included, and the time constants for
thrust force is set to 5 seconds. The GPS measurements
have realistic noise properties, and are sampled at 1 Hz,
and the measurements are processed by a zero-order hold
element before they are sent to the observer.

Three different output feedback controllers are compared
to illustrate the benefit of changing the gain K3 in (4c).
The only difference between the three setups is a variation
of allowed values for κ from (6a). For two of the output
feedback controllers the κ-value is fixed, where the ”nom-
inal” controller has κ = κmin for steady conditions, while
the ”aggressive” controller has κ = κmax for transient
conditions. The last controller is our proposed algorithm in
(6) where κ ∈ [κmin, κmax], called the ”flexible” controller.
Even though the difference between these three systems is
in the observer we often just write ”controller” to describe
the system. However, when just the observer performance
is discussed, ”observer” is used.

At the beginning of the simulation, the position and
orientation of the vessel is at η = [0, 0, 0]>. At 1000 seconds
there is a setpoint change 20 meters north, 20 meters
east, and to heading -90◦. Due to the ship hull shape this
maneuver will change the bias force experienced by the
vessel in the body frame, as well as in the NED frame.
After 3000 seconds the direction of the current changes to
90◦, to see how the vessel responds to a sudden change
in bias force that is not known in advance. The current
direction changes as a first order filtered step with time
constant 30 seconds.

In Figure 1 the cumulative low-frequency position tracking
error of the vessel is shown for the three controllers. The
left part starts from the instance of the heading change,
and the right part is a zoom-in on the steady period
2000-3000 seconds. The top plots show the combined error
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in north and east, and the bottom plots show the error
in yaw. From the left part it can be observed that the
aggressive and flexible controller perform much better
than the nominal controller in the transient regime, that
is, just after 1000 seconds, and just after 3000 seconds.
From the right part of Figure 1 it can be observed that
after the system reaches steady state, the flexible and
nominal controller perform better than the aggressive
controller, and this is due to lower oscillations of the bias
and velocity estimates from the observer. This implies
that since the flexible and aggressive controllers have
similar performance in transients, the flexible controller
will eventually perform better.

From the left part of Figure 1 it is observed that already
around 2000 seconds the flexible controller has a lower
cumulative position deviation. This is because the heading
change is a transient known in advance, and the flexible
controller can react fast, and go to a higher value for κ
quickly. This is observed from Figure 4, where κ for the
flexible controller is shown (κmax = 2.5). In addition,
we can observe from Figure 4 that at 3000 seconds it
takes a bit more time for κ to go to κmax than at 1000
seconds. This is natural since this increase is based on the
estimation error in the observer, and not a command in
the reference system as with the heading change. Even
though κ will be slower for the ”unknown” transients,
we see from Figure 1 that the flexible controller has
a similar performance to the aggressive controller, and
will eventually outperform the aggressive controller if the
steady state conditions persist.

In Figure 2 the cumulative bias estimation error (in the
body frame) from the observer is plotted for the entire
simulated case study. The combined error of surge and
sway is shown in the top plot, and the yaw error is shown
in the bottom plot. Here we see the same trend as in Figure
1, but the trend is even clearer. The flexible observer is
superior to both the aggressive and nominal observer. Even
the nominal observer performs better than the aggressive
observer after 5000 seconds for the error in surge and sway.

In Figure 3 the bias in surge is plotted, along with the
observer estimate, and the filtered bias estimate for the
flexible controller. It is observed that the bias estimate
(and the filtered estimate) converge to their new bias
values quite fast, and within 200 seconds after a transient
steady state conditions are reached.

6. CONCLUSION

The proposed output feedback controller was shown to
have good closed-loop properties in both transients and
steady state. Both the flexible bias estimation, and the
filtering of the bias estimate used in the control law,
contributed to a good overall performance for the system.

For the flexible bias estimation, the lowest tuning should
be quite responsive to ensure good overall responsiveness.
There are a couple of reasons for this. If we failed to
detect a transient, or the detection was slow, a moderate
nominal tuning vastly improved the performance in the
transient compared to a very low nominal tuning. That is,
if excellent positioning capabilities is the goal, the tuning
should have a fairly high minimum. In the presented
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Fig. 1. Cumulative low frequency position tracking error in north and east combined (top plots), and yaw (bottom
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simulation case study all the bias estimate tunings were
quite fast, and they all converged within 300 seconds.
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