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Highlights

• Present an order-preserving algorithm to postprocess non-conservative fluxes on a wide range of grids.
• Add a piecewise constant correction term that is minimized in a weighted L2 norm.
• Application of a weighted norm appears to give better results for high contrasts in permeability.
• Study both steady-state and dynamic flow models.
• Solve coupled flow and transport problem to demonstrate effect of postprocessing.

Abstract

A conservative flux postprocessing algorithm is presented for both steady-state and dynamic flow models. The postprocessed
flux is shown to have the same convergence order as the original flux. An arbitrary flux approximation is projected into a
conservative subspace by adding a piecewise constant correction that is minimized in a weighted L2 norm. The application of
a weighted norm appears to yield better results for heterogeneous media than the standard L2 norm which has been considered
in earlier works. We also study the effect of different flux calculations on the domain boundary. In particular we consider the
continuous Galerkin finite element method for solving Darcy flow and couple it with a discontinuous Galerkin finite element
method for an advective transport problem.
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1. Introduction

In this paper we consider the following coupled flow and transport problem that arise in porous media:

∂t (βp)− ∇ · (K∇ p) = q, (1.1)

∂t (φc)+ ∇ · (cu − D∇c) = f. (1.2)

Eq. (1.1), often referred to as the Darcy flow equation, governs conservation of mass for a slightly compressible
single-phase fluid in a porous media. Here p represents pressure and u = −K∇ p the Darcy velocity. The second
equation (1.2) is known as the transport equation, and describes advective and diffusive transport of a concentration c.
Such transport models are employed in modeling tracers in a porous media [1]. Choosing compatible numerical solvers
for the flow and transport equations may be of importance for accuracy, stability and conservation properties [2]. Here
we discuss using a continuous Galerkin (CG) finite element method for the flow equation and apply a postprocessing
method to compute fluxes on element boundaries to obtain local conservation. A discontinuous Galerkin (DG) finite
element method with upwinding is employed for the transport equation [3,4]. DG allows for discontinuities in the
solution and has the advantages of local mass conservation, less numerical diffusion, favorable h- and p-refinement,
handling of discontinuous coefficients, and efficient implementation.

CG is a well-developed numerical discretization for partial differential equations. It is numerically efficient for
problems requiring dynamic grid adaptivity. It is known that CG requires postprocessing to obtain locally conservative
fluxes on element boundaries [5–15]. This has been the topic also for studies of environmental modeling in bays and
estuaries where CG has been employed for shallow water equations [16]. Applying non-conservative flux to the
transport equation may result in non-physical concentration solutions [17,18,13].

Computing fluxes for CG models has been considered in many technical papers; we briefly describe some well
known results and note that the list is incomplete. Optimal postprocessing of fluxes on element boundaries for one-
dimensional problems was studied by Wheeler [19] and generalized by Dupont [20]. Douglas et al. [21] analyzed
methods for approximating fluxes on the domain boundary for multi-dimensional problems based on the approach of
J. Wheeler [22]. Postprocessing of locally conservative (or self-equilibrated) fluxes on element boundaries for multi-
dimensional problems was studied by Ladeveze and Leguillon [23] for error estimation purposes. Ainsworth and
Oden [5] proved the existence of such self-equilibrated fluxes for general CG methods including 1-irregular meshes
with hanging nodes. Superconvergence of recovered gradients of linear CG approximations for elliptic and parabolic
problems was treated by Wheeler and Whiteman [24,25].

For completeness we mention alternative schemes to CG for the pressure equation; mixed finite element methods
[26], dual-grid and control volume methods [27], finite volume methods [28], mimetic finite difference methods [29],
and DG [30]. All of these are conservative in the sense that they either are formulated in a mixed form so that
locally conservative fluxes are obtained directly without the need for any postprocessing, or have an embedded local
conservation statement in their derivation so that locally conservative fluxes can be calculated in a straightforward
manner from the pressure solution. Recent papers [12,14] have observed that CG with postprocessing on the dual grid
is more robust than standard control volume approaches. Here the postprocessing involves only local calculations. It
is well known that for Laplace’s equation, control volume and CG on the dual grid are equivalent. Lack or complexity
of dynamic grid adaptivity is a disadvantage for many of the methods mentioned above. DG is promising both with
respect to local conservation and dynamic grid adaptivity, but is computationally costly due to a high number of
degrees of freedom. A conservative scheme based on enrichment of CG was proposed by [17] for elliptic problems
and later extended to parabolic equations in [18].

The postprocessing method we propose in this paper is built upon the work of Sun and Wheeler [10] and Larson
and Niklasson [9] for the steady-state flow model (Eq. (1.1) with β = 0). Both of these papers present an algorithm
for computing conservative fluxes on element boundaries. Here a given general non-conservative flux approximation
is modified by adding piecewise constant corrections which are minimized in a given norm. The minimization
requirement ensures that the postprocessed flux has the same order of convergence as the original flux. The works
by [10] and [9] have strong similarities and are in fact identical under some specific choice of parameters, but have
been formulated differently. While a variational formulation is used in [9], the method is presented elementwise
in [10]. In this paper we present both and demonstrate the relationship between the two results. We mention that these
postprocessing methods have been applied in a series of recent works [31–34].
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The main novelties of our work compared to [10] and [9] are summarized below.

• The correction term is minimized in a weighted L2 norm instead of the standard L2 norm. This gives control
of which faces should be weighted most. Our choice of weights corresponds to the inverse of the effective face
permeability. This is shown to better preserve low permeable interfaces.

• Our method applies to a wide range of grids, including non-conforming and unstructured grids, in contrast to [10].
• The method is applied to the time dependent flow model (Eq. (1.1) with β ≠ 0).
• We solve the coupled problem (1.1)–(1.2) to demonstrate the importance of locally conservative flux and to

illustrate the effect of some parameters of our postprocessing method.

The presented method is general in the sense that it takes as input any flux approximation, not restricted to non-
conservative flux from classical CG, but may also originate from other numerical schemes, e.g. isogeometric finite
elements [35], or even measurements. We remark that our method only produces conservative fluxes on element
boundaries. To extend the flux to a velocity field on the element interiors one can set up a localized mixed finite
element problem on each element, see [10]. We also point out that minimizing in a weighted norm was considered
in [36] in an upscaling framework. However, our presentation includes error analysis, and we also study the impact
of weighting on the transport problem. An alternative approach to preserve low permeable interfaces is to add a
penalization step to correct the postprocessed flux [37].

This paper is outlined as follows. Section 2 provides some preliminaries, including the model equations, notational
comments, conservation conditions, and discretization schemes for CG and DG. Next, in Section 3, we go into details
of the postprocessing method, first for the time independent case and later extended to the general case. We formulate
our approach based on a discrete divergence operator and its left inverse. Furthermore, we prove an error estimate
and discuss some parameters of our method. In Section 4 we demonstrate our method with some numerical examples.
Finally, in Section 5, we conclude this work.

2. Preliminaries

2.1. Model equations

We consider a coupled flow and transport problem in a bounded domain Ω ⊂ Rd (d = 2, 3) and in the time interval
[0, T ], T > 0.

Flow Equation. For flow, we consider the linear parabolic problem

∂t (βp)− ∇ · (K∇ p) = q, (x, t) ∈ Ω × (0, T ]. (2.1)

The unknown variable is the pressure p, from which the velocity u is defined by u = −K∇ p. The conductivity
K = K(x) is the ratio between permeability and viscosity, and K is assumed to be symmetric positive definite and
bounded from below and above. Furthermore, β = β(x, t) is a positive coefficient and q = q(x, t) is a source term.
In the case β = 0, the flow equation is elliptic and stationary. Throughout this paper we let µ = 1 for simplicity and
will use the terms conductivity and permeability interchangeably.

The domain boundary ∂Ω is divided into a Dirichlet part, ΓD , and a Neumann part, ΓN , such that Γ D ∪Γ N = ∂Ω
and ΓD ∩ ΓN = ∅. The boundary and initial conditions are

p = pB, (x, t) ∈ ΓD × (0, T ], (2.2a)

u · n = −K∇ p · n = u B, (x, t) ∈ ΓN × (0, T ], (2.2b)

p = p0, (x, t) ∈ Ω × {0}, (2.2c)

where n is the outward unit normal vector on ∂Ω and pB = pB(x, t), u B = u B(x, t) and p0 = p0(x) are known
functions.

Transport Equation. The model equation for transport is the time dependent advection–diffusion equation,

∂t (φc)+ ∇ · (uc − D∇c) = f, (x, t) ∈ Ω × (0, T ]. (2.3)

The unknown variable is the concentration c. Furthermore, φ = φ(x) is the porosity (fraction of void volume) and
D = D(x, c) is the diffusion/dispersion tensor. The right hand side f = f (x, t) is a source term, and when coupled
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with the flow equation (2.1), it is usually interpreted as f = qc∗, where c∗ denotes the upstream concentration, so
that

qc∗
=


qc, if q ≤ 0,
qcw, if q > 0,

(2.4)

where cw = cw(x, t) denotes the source (well) concentration.
The boundary is divided into a inflow boundary, Γin = {x ∈ ∂Ω : u · n < 0}, and a outflow/no-flow boundary,

Γout = {x ∈ ∂Ω : u · n ≥ 0}. Let cB = cB(x, t) denote the inflow concentration on Γin and c0 = c0(x) the initial
concentration. The boundary and initial conditions are given as

(uc − D∇c) · n = cBu · n, (x, t) ∈ Γin × (0, T ], (2.5a)

(−D∇c) · n = 0, (x, t) ∈ Γout × (0, T ], (2.5b)

c = c0, (x, t) ∈ Ω × {0}. (2.5c)

In this work, we will focus on advection dominated flow and disregard diffusion by setting D = 0.

2.2. Notation

Discretization of the Domain. Let Eh be a partition of Ω into triangles or quadrilaterals (d = 2), or tetrahedra, prisms
or hexahedra (d = 3). We denote by Ei ∈ Eh , for i = 1, 2, . . . , N , the N elements of the partition, and let hi be the
diameter of Ei . We assume Eh to be regular in the sense that all elements are convex and that there exists ρ > 0 such
that each element Ei contains a ball of radius ρhi in its interior. Furthermore, Eh should be quasi-uniform, i.e., there
is a τ > 0 such that h

hi
≤ τ for all Ei ∈ Eh , where h is the maximum diameter of all elements. Notice that we allow

for elements of mixed type and non-matching grids (hanging nodes).
We denote by Fh,I the set of all interior edges (d = 2) or faces (d = 3), i.e.,

Fh,I = {F ∈ Rd−1
: F = Ei ∩ E j , Ei ∈ Eh, E j ∈ Eh, Ei ≠ E j }. (2.6)

For simplicity we only use the term face in the following. Furthermore, we define Fh,B as the set of all element faces
that intersect with ∂Ω . We assume that each face in Fh,B is either completely on the Dirichlet or Neumann part of the
boundary, such that Fh,B can be decomposed into Fh,D and Fh,N , i.e., the sets of faces on the Dirichlet and Neumann
boundary, respectively. Analogously, let Fh,out and Fh,in be the sets of faces on Fout and Fin, respectively. Next, let
Fh = Fh,I ∪ Fh,B . For each face F ∈ Fh we choose a unit normal vector nF .1 The unit normal vector on F ∈ Fh,B
is chosen to coincide with the outward unit normal vector. Furthermore, nE denotes the unit normal vector pointing
out of E , such that nE |F = ±nF .

Piecewise Polynomial Spaces. Let Pr (Eh) be the space of piecewise polynomial functions of degree r ,

Pr (Eh) = {ϕ ∈ L2(Ω) : ϕ|E ∈ Qr (E), E ∈ Eh}, (2.7)

where Qr denotes the tensor product of polynomial spaces of degree less than or equal to r in each spatial
direction.2 We also need the continuous subspace of Pr (Eh),

PC
r (Eh) = Pr (Eh) ∩ C(Ω). (2.8)

Furthermore, we define the space of piecewise polynomial functions on element faces as

Pr (Fh) = {ϕ ∈ L2(Fh) : ϕ|F ∈ Qr (F), F ∈ Fh}. (2.9)

Moreover, let P0
r (Fh) denote the subspace of Pr (Fh) whose functions are zero on the Neumann boundary,

P0
r (Fh) = {ϕ ∈ Pr (Fh) : φ|F = 0, F ∈ Fh,N }. (2.10)

1 This can be done by choosing nF to coincide with the outward unit normal of the element with lowest element number.
2 To be rigorous, Qr is the space of functions such that when mapped to the reference element are polynomials of degree r .
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Inner Products and Norms. We denote by (·, ·)S the standard L2 inner product over a domain S ∈ Rd , or ⟨·, ·⟩S if
S ∈ Rd−1. The standard L2 norm over S is denoted ∥ ·∥S . If S = Ω , we write (·, ·) or ∥ ·∥ for simplicity. Furthermore,
define the broken inner products and norms

(v,w)Eh =


E∈Eh

(v,w)E , ∥v∥2
Eh

= (v, v)Eh =


E∈Eh

∥v∥2
E , (2.11)

⟨v,w⟩Fh =


F∈Fh

⟨v,w⟩F , ∥v∥2
Fh

= ⟨v, v⟩Fh =


F∈Fh

∥v∥2
F . (2.12)

The measure of a domain S is denoted |S|. In particular this means that |F | is the length (d = 2) or area (d = 3) of
a face F ∈ Fh , while |E | is the area (d = 2) or volume (d = 3) of an element E ∈ Eh .

Average and Jump Operators. Next, for s > 0, define

H s(Eh) =


ϕ ∈ L2(Ω) : ϕ|E ∈ H s(E), E ∈ Eh


. (2.13)

Now, let Ei , E j ∈ Eh and F = ∂Ei ∩ ∂E j ∈ Fh,I with nF exterior to Ei . Then, for v ∈ (H s(Eh))
d , s > 1

2 , we define
the average over F as

{{v}}θ = θF (v|Ei )

F + (1 − θF )(v|E j )


F , (2.14)

where θ is a given weight with θF = θ |F and 0 < θF < 1. For the standard average θ =
1
2 , we simply write {{v}}. In

this work we consider weights ϑ that depend on K,

ϑF =
δ

j
K n

δi
K n + δ

j
K n

, δi
K n = n⊤

F Ki nF , (2.15)

where δi
K n is the normal component of K across F and Ki is the permeability in Ei . This choice of weights was

considered by [38] for the isotropic case, and later extended to the anisotropic case in [39]. Now

ke = 2ϑFδ
i
K n = 2(1 − ϑF )δ

j
K n = 2

δi
K nδ

j
K n

δi
K n + δ

j
K n

(2.16)

is the harmonic average of the normal component of K along F . Observe that for isotropic permeability, K = kI,
where I is the identity matrix and k is the directional independent permeability, we have that

ϑF =
k j

ki + k j
, ke =

2ki k j

ki + k j
, (2.17)

and it follows that

{{K∇ p}}ϑ =
k j

ki + k j
ki

(∇ p)|Ei

 
F +

ki

ki + k j
k j

(∇ p)|E j

 
F = ke{{∇ p}}. (2.18)

Next, for v ∈ H s(Eh), s > 1
2 , we define the jump over F as

[[v]] = (v|Ei )

F − (v|E j )


F = (v|Ei )


F nEi · nF + (v|E j )


F nE j · nF . (2.19)

For completeness, we extend the average and jump to F ∈ Fh,B , F ⊂ ∂Ei , by

{{v}}θ = (v|Ei )

F , (2.20)

[[v]] = (v|Ei )

F . (2.21)

2.3. Conservation properties

Compatibility Condition. Consider first the case β = 0. If we multiply Eq. (2.1) by a test function ϕ, and then integrate
and sum the result over each element E ∈ Eh , we get that

(u,∇ϕ)Eh + ⟨u · n, [[ϕ]]⟩Fh = (q, ϕ)Eh . (2.22)
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Let uh and Uh be approximations to u in Eh and u·n on Fh , respectively. Furthermore, let the space of test functions
be Pr (Eh). The r th order compatibility condition for the velocity approximation reads

(uh,∇ϕ)Eh + ⟨Uh, [[ϕ]]⟩Fh = (q, ϕ)Eh , ∀ϕ ∈ Pr (Eh). (2.23)

Local Conservation. Uh ∈ L1(Fh) is locally conservative if it is 0th order compatible, i.e.,

⟨Uh, [[ϕ]]⟩Fh = (q, ϕ)Eh , ∀ϕ ∈ P0(Eh), (2.24)

or, equivalently, on element form,
∂E

UhnF · nE =


E

q, ∀E ∈ Eh . (2.25)

Global Conservation. Uh ∈ L1(Fh) is globally conservative if it satisfies (2.24) with ϕ = 1,

⟨Uh, 1⟩Fh,B = (q, 1)Eh , or

∂Ω

Uh =


Ω

q. (2.26)

Global conservation follows from local conservation and flux continuity.

Time Dependent Flow. For β ≠ 0, denote by U n
h and pn

h the flux and pressure approximation at time tn , respectively,
and let qn

= q(·, tn) and βn
= β(·, tn). Now, local conservation is defined as

⟨U n
h , [[ϕ]]⟩Fh = (qn

− ∂̄t (β
n pn

h), ϕ)Eh , ∀ϕ ∈ P0(Eh), (2.27)

or, equivalently, on element form,
∂E

U n
h nF · nE =


E


qn

− ∂̄t (β
n pn

h)

, ∀E ∈ Eh, (2.28)

where ∂̄t is the discrete approximation to ∂t used to solve the flow equation (2.1), e.g., for backward Euler with step
size ∆t , ∂̄t pn

h =
1
∆t (p

n
h − pn−1

h ).
Global conservation is in a similar manner defined as

⟨U n
h , 1⟩Fh,B = (qn

− ∂̄t (β
n pn

h), 1)Eh , or

∂Ω

U n
h =


Ω


qn

− ∂̄t (β
n pn

h)

. (2.29)

2.4. Numerical schemes

We will briefly write down the numerical schemes used to solve the flow and transport problem. The flow equation
(2.1) is solved with the continuous Galerkin (CG) finite element method, with either strong or weak enforcement of
the Dirichlet conditions, while the transport equation (2.3) is solved with a discontinuous Galerkin (DG) finite element
method. For time integration we use backward Euler.

CG Scheme for the Flow Equation. Let PC
r (Eh; υ) denote the subspace of PC

r (Eh) such that the trace on ΓD is equal
to υ,

PC
r (Eh; υ) = {ϕ ∈ PC

r (Eh) : ϕ|ΓD = υ}. (2.30)

Denote by p̃B the projection of pB into the polynomial space. Given pn−1
h with p0

h = p0, the standard CG scheme for
Eq. (2.1) is to seek pn

h ∈ PC
r (Eh; p̃B) such that

β∂̄t pn
h , ϕ


Eh

+ a(pn
h , ϕ) = l(ϕ), ∀ϕ ∈ PC

r (Eh; 0), (2.31)

where the bilinear form a(p, ψ) and the linear functional l(ψ) are defined as follows:

a(p, ψ) = (K∇ p,∇ψ)Eh , (2.32)

l(ψ) = (q, ψ)Eh − ⟨u B, ψ⟩Fh,N . (2.33)

The energy norm associated with the discrete form (2.31) is given as

∥p∥
2
a = a(p, p) = (K∇ p,∇ p)Eh . (2.34)
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In the case where K is the identity matrix and p is sufficiently smooth, the following error estimates hold [40],

∥pn
h − p(tn)∥ ≤ C(hr+1

+ ∆t), ∥pn
h − p(tn)∥a ≤ C(hr

+ ∆t), (2.35)

where C is a constant independent on h and ∆t .
Alternatively, one may impose the Dirichlet conditions weakly by adding a penalty term. Instead of (2.31) we seek

pn
h ∈ PC

r (Eh) such that
∂̄t (β

n pn
h), ϕ


Eh

+ ã(pn
h , ϕ) = l̃(ϕ), ∀ϕ ∈ PC

r (Eh), (2.36)

where the bilinear form ã(p, ψ) and the linear functional l̃(ψ) are defined as follows:

ã(p, ψ) = (K∇ p,∇ψ)Eh + JD,σ (p, ψ)− ⟨K∇ p · nF , ψ⟩Fh,D − sform⟨K∇ψ · nF , p⟩Fh,D , (2.37)

l̃(ψ) = (q, ψ)Eh + JD,σ (pB, ψ)− sform⟨K∇ψ · nF , pB⟩Fh,D − ⟨u B, ψ⟩Fh,N . (2.38)

The Dirichlet penalty term JD,σ (p, ψ) is defined as

JD,σ (p, ψ) =


r2σF

|F |
p, ψ


Fh,D

, (2.39)

where the penalty parameter σF is constant on each face. In our work, we set sform = 1, resulting in a symmetric
formulation.

Velocity Calculations from CG Solution. Since ph is only C0 continuous across element faces, the approximate
velocity uh = −K∇ ph is undefined on the faces. For this reason, we take the average value and define the velocity
approximation from CG as

uh = −K∇ ph, on E ∈ Eh, (2.40)

Uh =


−{{K∇ ph · n}}θ , on F ∈ Fh,I ,

−K∇ ph · n +
r2σF

|F |
(ph − pB), on F ∈ Fh,D,

u B, on F ∈ Fh,N .

(2.41)

The extra penalty term on the Dirichlet boundary is added to give a globally conservative approximation when
boundary conditions are imposed weakly. Notice that this term vanishes for strong boundary conditions as ph = pB
on ΓD . Global conservation for weak boundary conditions follows from (2.36) with ϕ = 1.

Flux Recovery on Dirichlet Boundary. The flux approximation (2.41) is not globally conservative when the boundary
conditions are imposed strongly. However, there is a technique to recover globally conservative fluxes on the Dirichlet
boundary [22,41–43,6–8]. This method is briefly recaptured here.

Let PC
r (Fh,D) = PC

r (Eh) \ PC
r (Eh; 0), i.e., the space of continuous functions that are piecewise polynomials of

order r with support only on elements with at least one of its faces in Fh,D . The modified continuous Galerkin method
now reads: Find pn

h ∈ PC
r (Eh; pB) and U n

h ∈ PC
r (Fh,D) such that

−⟨U n
h , ϕ⟩Fh,D = a(pn

h , ϕ)− l(ϕ)+

∂̄t (β

n pn
h), ϕ


, ∀ϕ ∈ PC

r (Eh). (2.42)

We can now split this equation into two parts:

0 = a(pn
h , ψ)− l(ψ)+


∂̄t (β

n pn
h), ψ


, ∀ψ ∈ PC

r (Eh; 0), (2.43)

−⟨U n
h , ϕ⟩Fh,D = a(pn

h , ϕ)− l(ϕ)+

∂̄t (β

n pn
h), ϕ


, ∀ϕ ∈ PC

r (Fh,D). (2.44)

The first equation is the original problem (2.31), while the second determines U n
h , which we can use as an

approximation to the flux on the Dirichlet boundary. If we assume that pn
h is determined from (2.31) (or equivalently

(2.43)), the right hand side of (2.44) is given. Global conservation of the flux U n
h follows from (2.42) with ϕ = 1.

DG Scheme for the Transport Equation. Given cn−1
h with c0

h = c0, a DG scheme with upwinding [4] for Eq. (2.3)
with D = 0 is to seek cn

h ∈ Pr (Eh) satisfying
∂̄t (φcn

h), ϕ


Eh
+ b(cn

h , ϕ) = k(ϕ), ∀ϕ ∈ Pr (Eh), (2.45)
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where the bilinear form b(c, ψ) and the linear functional k(ψ) are defined as follows:

b(c, ψ) = −(cu,∇ψ)Eh − (q−c, ψ)Eh + ⟨c∗u · nF , [[ψ]]⟩Fh,I + ⟨cu · nF , ψ⟩Fh,out + Jσ (c, ψ), (2.46)

k(ψ) = (cwq+, ψ)Eh − ⟨cBu · nF , ψ⟩Fh,in . (2.47)

The interior penalty term is defined as

Jσ (c, ψ) =


r2σF

|F |
[[c]], [[ψ]]


Fh,I

, (2.48)

while c∗ denotes the upwind concentration, defined as

c∗
|F =


(c|Ei )|F , if u · nF ≥ 0,
(c|E j )|F , if u · nF < 0,

(2.49)

where nF is exterior to Ei . Furthermore, q− and q+ are the negative and positive parts of the source term, respectively,
i.e.

q−
= min(q, 0), q+

= max(q, 0). (2.50)

The above scheme assumes that u is known. Whenever we only have an approximation, e.g. from (2.41), we
substitute u by uh and u · nF by Uh . In this work, we only consider the lowest order method (r = 0), for which u (or
an approximation to it) is not needed in the DG scheme since the first term in b(c, ψ) vanishes.

3. Postprocessing

In this section we will define an algorithm to postprocess a given flux approximation to obtain a locally conservative
flux. In the derivation, we will assume a time independent problem (β = 0), and then finally, in Section 3.6, we will
show how this approach can be extended to the general case. We will start by defining a discrete divergence operator
and its left inverse, and then later show how to use these to construct a locally conservative flux.

3.1. A discrete divergence operator and its left inverse

Elementwise Definitions. Let Dh : L1(Fh) → P0(Eh) denote the discrete divergence operator defined by
E

Dhv =


∂E
vnF · nE , ∀v ∈ L1(Fh), ∀E ∈ Eh . (3.1)

Next, let DĎ
h : P0(Eh) → P0

0 (Fh) be a left inverse of Dh , i.e.,
E
v =


∂E
(DĎ

hv)nF · nE , ∀v ∈ P0(Eh), ∀E ∈ Eh . (3.2)

Both Dh and DĎ
h are linear, and by definition,

Dh DĎ
hv = v, ∀v ∈ P0(Eh). (3.3)

Observe that DĎ
h takes functions into P0

0 (Fh), so that DĎ
hv = 0 on ΓN by definition.

Variational Definitions. We note that we have the following equivalent forms of (3.1) and (3.2),

(Dhv,w)Eh = ⟨v, [[w]]⟩Fh , ∀w ∈ P0(Eh), (3.4)

(v,w)Eh = ⟨DĎ
hv, [[w]]⟩Fh , ∀w ∈ P0(Eh). (3.5)

To see that our definitions are equivalent, we may first test with the characteristic function of element E to retrieve
the elementwise definition from the variational formulations. Conversely we may multiply each elementwise equation
with a constant and sum all the equations, and use the definition of the jump operator to conclude that the variational
equations hold.
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The left inverse DĎ
h is not uniquely defined since the dimension of P0

0 (Fh) is larger than the dimension of P0(Eh).3

We may determine DĎ
hv uniquely for each v ∈ P0(Eh) by minimizing a given norm of DĎ

hv. We next consider
minimization with respect to a weighted L2 norm.

Minimization. We define the weighted L2 inner product and norm as

⟨v,w⟩ω,Fh = ⟨ωv,w⟩Fh =


F∈Fh

⟨ωv,w⟩F , ∥v∥2
ω,Fh

= ⟨v, v⟩ω,Fh , (3.6)

where ω|F = ωF > 0 for each F ∈ Fh is a given bounded weight. For ω = 1, we have the standard L2 norm.
Introducing the divergence-free subspace, P0

0,div(Fh), defined by

P0
0,div(Fh) = {v ∈ P0

0 (Fh) : Dhv = 0}, (3.7)

we have the orthogonal decomposition

P0
0 (Fh) = P0

0,div(Fh)⊕ P0,⊥
0,div(Fh), (3.8)

with respect to the weighted inner product (3.6). For v0 ∈ P0
0,div(Fh) we get from (3.4) that

0 = (Dhv0, w)Eh = ⟨v0, [[w]]⟩Fh = ⟨v0, ω
−1

[[w]]⟩ω,Fh , ∀w ∈ P0(Eh). (3.9)

Observe that the sum over Fh,N vanishes as v0 = 0 on Fh,N by definition. Hence, alternatively, we may define (3.8)
by

P0,⊥
0,div(Fh) = {v ∈ P0

0 (Fh) : v = ω−1
[[w]] on F ∈ Fh \ Fh,N , w ∈ P0(Eh)}. (3.10)

It follows that for v ∈ P0(Eh),

DĎ
hv = z + ω−1

[[y]] ∈ P0
0,div(Fh)⊕ P0,⊥

0,div(Fh), on Fh \ Fh,N , (3.11)

for some z ∈ P0
0,div(Fh) and y ∈ P0(Eh). Recall that DĎ

hv = 0 on Fh,N . Using orthogonality and (3.5) we obtain

(v,w)Eh = ⟨DĎ
hv, [[w]]⟩Fh = ⟨z + ω−1

[[y]], [[w]]⟩Fh\Fh,N

= ⟨z + ω−1
[[y]], ω−1

[[w]]⟩ω,Fh\Fh,N

= ⟨ω−1
[[y]], ω−1

[[w]]⟩ω,Fh\Fh,N , ∀w ∈ P0(Eh). (3.12)

Furthermore, since

∥DĎ
hv∥

2
ω,Fh

= ∥z + ω−1
[[y]]∥

2
ω,Fh\Fh,N

= ∥z∥2
ω,Fh\Fh,N

+ ∥ω−1
[[y]]∥

2
ω,Fh\Fh,N

(3.13)

we see that minimizing the norm ∥DĎ
hv∥

2
ω,Fh

enforces z = 0.
We conclude that, subject to minimization,

DĎ
hv =


0, on Fh,N ,

ω−1
[[y]], otherwise

(3.14)

where y ∈ P0(Eh) is the solution to the variational problem

d(y, w) = (v,w)Eh , ∀w ∈ P0(Eh). (3.15)

The bilinear form d(y, w) : P0(Eh)× P0(Eh) → R is defined as

d(y, w) = ⟨ω−1
[[y]], ω−1

[[w]]⟩ω,Fh\Fh,N = ⟨ω−1
[[y]], [[w]]⟩Fh\Fh,N . (3.16)

We prove later, in Lemma 2, that (3.15) admits a unique solution. The choice of weights is discussed in Section 3.5.

3 This is true for most grids, and if not, then (3.5) is sufficient.
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The Operator DĎ
h Dh . Let v ∈ L1(Fh). From the definitions (3.4) and (3.5) we have the following identity

⟨DĎ
h Dhv − v, [[w]]⟩Fh = 0, ∀w ∈ P0(Eh), (3.17)

since

⟨DĎ
h Dhv, [[w]]⟩Fh = (Dhv,w)Eh = ⟨v, [[w]]⟩Fh . (3.18)

Now using (3.14) we know that there is an y ∈ P0(Eh) such that DĎ
h Dhv = ω−1

[[y]] on Fh \ Fh,N (and DĎ
h Dhv = 0

on Fh,N ). From (3.17) it follows that

0 = ⟨ω−1
[[y]] − v, [[w]]⟩Fh\Fh,N + ⟨−v, [[w]]⟩Fh,N

= ⟨ω−1
[[y]] − v, ω−1

[[w]]⟩ω,Fh\Fh,N + ⟨−v, ω−1
[[w]]⟩ω,Fh,N , ∀w ∈ P0(Eh). (3.19)

Now, if v = 0 on Fh,N , the second term vanish. If we denote by L1
0(Fh) the subspace of L1(Fh) with functions that

are zero on Fh,N , i.e.,

L1
0(Fh) =


v ∈ L1(Fh) : v|F = 0, F ∈ Fh,N


, (3.20)

we conclude from (3.19) that the operator DĎ
h Dh : L1(Fh) → P0(Fh) is the orthogonal projection of L1

0(Fh) onto

the subspace P0,⊥
0,div(Fh) with respect to the weighted inner product ⟨·, ·⟩ω,Fh . In particular, it follows that

∥DĎ
h Dh∥ = 1. (3.21)

Remark. An alternative approach to obtain (3.14) and (3.15) is to use Lagrangian multipliers for minimizing
∥DĎ

hv∥
2
ω,Fh

subject to the constraints (3.5). If we let x = DĎ
hv, the Lagrangian reads

L(x, λ) =
1
2
∥x∥

2
ω,Fh

− ⟨x, [[λ]]⟩Fh + (v, λ)Eh , (3.22)

with corresponding derivative DL : P0
0 (Fh)× P0(Eh) → R given by

DL(x, λ)(δx, δλ) = ⟨ωx, δx⟩Fh − ⟨δx, [[λ]]⟩Fh + ⟨x, [[δλ]]⟩Fh + (v, δλ)Eh . (3.23)

By requiring DL(x, λ)(δx, δλ) = 0,∀δx ∈ P0(Fh),∀δλ ∈ P0(Eh), we end up with the same result as (3.14) and
(3.15).

3.2. Postprocessing algorithm

In the following, let Uh ∈ L1(Fh) be some approximation to the flux u · n on Fh . We define a residual operator,
R : L1(Fh) → P0(Eh), to measure to discrepancy from local conservation,

R(Uh) = P0q − DhUh, (3.24)

where P0 is the L2 projection onto P0(Eh), i.e., (P0q)|E = |E |
−1


E q . Clearly, Uh is locally conservative if and only
if R(Uh) = 0, and Uh is globally conservative if and only if


Ω R(Uh) = 0.

The next lemma shows how the left inverse DĎ
h can be used to project an arbitrary flux approximation to a locally

conservative flux.

Lemma 1. Given Uh ∈ L1(Fh), the modified flux

Vh = Uh + DĎ
h(R(Uh)) = Uh + DĎ

h(P0q − DhUh) (3.25)

is locally conservative.
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Fig. 1. Illustration of the postprocessing process. A non-conservative flux Uh is taken as input. First the operator R calculates the element residuals

(1). Then the operator DĎ
h projects the residuals onto the element faces such that the updated flux Vh = Uh − DĎ

h (R(Uh)) is locally conservative
(2). This is a global process, although illustrated on a single element E here for simplicity.

Proof. Using the fact that DĎ
h is a left inverse of Dh we obtain

R(Vh) = P0q − Dh Vh = P0q − Dh


Uh + DĎ

h(P0q − DhUh)


= P0q − DhUh − Dh DĎ
h P0q + Dh DĎ

h DhUh

= P0q − DhUh − P0q + DhUh

= 0. � (3.26)

Applying (3.14) and (3.15), we may summarize the postprocessing algorithm as in the box below. The postpro-
cessing steps and the different operators are illustrated in Fig. 1.

Postprocessing algorithm
Given Uh ∈ L1(Fh), the postprocessed flux is defined as

Vh = Uh + DĎ
h(R(Uh)) =


Uh, on Fh,N ,

Uh + ω−1JyK, on Fh \ Fh,N ,
(3.27)

where y ∈ P0(Eh) is the unique solution to

d(y, w) = (R(Uh), w)Eh , ∀w ∈ P0(Eh), (3.28)

with

d(y, w) = ⟨ω−1JyK, JwK⟩Fh\Fh,N . (3.29)

Lemma 2. The variational problem (3.28) has a unique solution.

Proof. We need to prove coercivity of the bilinear form d(·, ·). If w ∈ P0(Eh) and d(w,w) = ∥ω−1
[[w]]∥ω,Fh = 0

then w is a constant function. If ΓD is nonempty then [[w]]|F = wF for F ⊂ ΓD , so that w = 0. Otherwise, if ΓD is
empty, then w may be a nonzero constant C , but then the right hand side

(R(Uh),C)Eh = C

Ω

R(Uh) = C


Ω

q −


ΓN

u B


= 0, (3.30)

since we require

ΓN

u B =

Ω q for the pure Neumann problem to be well posed. This shows uniqueness up to a

constant. Since we only need the jump in y, our algorithm is well defined. �

Matrix Formulation. Let χi , for i = 1, 2, . . . , N , denote the characteristic functions, i.e., χi = 1 for x ∈ Ei and 0
otherwise. This is a basis for P0(Eh), so we can write y =

N
i=1 yiχi and express the variational formulation (3.28)

in matrix form

Ay = r, (3.31)
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where A ∈ RN×N is the matrix with entries

Ai j = d(χ j , χi ) = ⟨ω−1
[[χ j ]], [[χi ]]⟩Fh =


−ω−1

F |F |, i ≠ j, F = ∂Ei ∩ ∂E j ,
F∈∂Ei \ΓN

ω−1
F |F |, i = j. (3.32)

Furthermore, y ∈ RN is the vector with entries yi , and r ∈ RN is the vector of residuals, i.e., with entries

ri = (R(Uh), χi ) =


Ei

q −


∂Ei

UhnF · nEi . (3.33)

Observe that A is symmetric with non-zero pattern equal to the grid connectivity.

3.3. Error estimate

To measure the error on Fh we introduce the face norm

∥v∥2
h,Fh

=


F∈Fh

h∥v∥2
F . (3.34)

This norm has the advantage that ∥1∥Fh ,h is bounded as h → 0. Furthermore, we use the notation x . y whenever
there exists a positive constant C independent on h such that x ≤ Cy.

Lemma 3. If Uh is an approximation to the exact flux U = u · n such that

∥U − Uh∥h,Fh . hs, (3.35)

then the local conservation residual satisfies the estimate

∥R(Uh)∥Eh . hs−1, (3.36)

and the postprocessed locally conservative flux Vh , defined by (3.27), satisfies

∥U − Vh∥h,Fh . hs . (3.37)

Proof. We have

∥R(Uh)∥Eh = ∥P0q − DhUh∥Eh = ∥DhU − DhUh∥Eh = ∥Dh(U − Uh)∥Eh . h−1/2
∥U − Uh∥Fh . (3.38)

Here we have used that P0q = DhU and the bound ∥Dhv∥Eh . h−1/2
∥v∥Fh which follows by setting w = Dhv in

(3.4),

∥Dhv∥
2
Eh

= (v, [Dhv])Fh ≤ ∥v∥Fh ∥[Dhv]∥Fh . ∥v∥Fh h−1/2
∥Dhv∥Eh . (3.39)

In the last step we used the triangle inequality and the fact that ∥[w]∥∂E . h−1/2
∥w∥E for w ∈ P0(E). The bound on

∥R(Uh)∥Eh (3.36) follows since

∥v∥Fh . h−1/2
∥v∥h,Fh . (3.40)

Furthermore, we have

∥U − Vh∥h,Fh = ∥U − (Uh + DĎ
h(P0q − DhUh))∥h,Fh

= ∥(U − Uh)− DĎ
h DhU + (DĎ

h DhUh)∥h,Fh

≤ ∥U − Uh∥h,Fh + ∥DĎ
h Dh(U − Uh)∥h,Fh

. ∥U − Uh∥h,Fh (3.41)

where we used that U − Uh is zero on the Neumann boundary so that DĎ
h Dh is a projection. �

The following main result follows directly from Lemmas 1 to 3.

Theorem 1. The postprocessed flux as defined by Eq. (3.27) is (i) locally conservative; (ii) uniquely defined;
and (iii) has the same convergence order as the original flux.
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3.4. Alternative approach

An alternative approach to the one depicted above is to work on the element level. After realizing that DĎ
hv ∈

P0,⊥
0,div(Fh), one may construct a basis for P0,⊥

0,div(Fh). The set {ϕi }
N
i=1, with

ϕi =


−ω−1

F nF · nEi , x ∈ F ⊂ ∂Ei \ ΓN ,

0, otherwise,
(3.42)

is a basis for P0,⊥
0,div(Fh). We can then write

DĎ
hv =

N
i=1

αiϕi . (3.43)

From the requirement of DĎ
h given by (3.3), we get that

Dh DĎ
hv = Dh


N

i=1

αiϕi


=

N
i=1

αi Dhϕi = v, ∀v ∈ P0(Eh). (3.44)

This is a linear system of N equations that uniquely determines the coefficients αi for a given v.
We remark that this is the approach presented in [10], but for the pure Dirichlet problem and only for the case

where DĎ
hv is minimized in the standard L2 norm. The basis used in [10] is

ϕ̃i =

−
|Ei |

|F |
nF · nEi , x ∈ F ⊂ ∂Ei

0, otherwise.
(3.45)

One can show that this is a basis only when |F | = C for all F ∈ Fh , i.e., when all faces are equally large.

3.5. Choice of weights

An important parameter in our postprocessing method is the choice of weights. Using ω = 1 will result in
minimization in the standard L2 norm. This means that the correction DĎ

h(R(Uh)) will be minimized, but such that
all faces are given the same weight. By choosing ω ≠ 1, we can control which faces should be weighted most in the
minimization process. Our choice of weights is the inverse of the effective normal component of the permeability,
i.e.,

ωF = k−1
e =

δi
K n + δ

j
K n

2δi
K nδ

j
K n

, (3.46)

where δi
K n was defined in Eq. (2.15).

With this choice, DĎ
hv = ke[[y]], so that faces with low effective permeability will have a relatively small correction.

We will reason this choice by an example. Consider two neighboring elements sharing the face F and with isotropic
permeability k1 and k2. If we fix k1 = 1, the effective permeability will be ke = 2k2/(1 + k2). In the limit k2 → 0,
this face should approach a no-flow interface (a Neumann type of boundary with u B = u · n = 0). With the harmonic
average {{·}}ϑ , Uh as defined from the CG solution, Eq. (2.41), would approach zero as desired. However, in the
postprocessing step, the correction on F can be made relatively large (compared to Uh) if ω = 1, and thus the effect
of harmonic averaging might be reduced after postprocessing. Using (3.46), we are able to preserve Vh ∼ 0. The
drawback is that the correction we are doing to the original flux will be larger measured in the standard L2 norm. In
Section 4, we will demonstrate the effect of weighting with some numerical examples.

3.6. Time dependent flow

Let us now look at the case with time dependent pressure and flux, i.e., β ≠ 0. We need to take the compressibility
(or time dependency of the pressure) into account when calculating the residual. If we discretize the flow equation
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(2.1) in time, we get

∂̄t (β
n pn)− ∇ · (K∇ pn) = qn, (3.47)

where pn and qn are the pressure and source, respectively, at time t = tn . Now, treating ∂̄t (β
n pn) as a source term, we

can extend the postprocessing method by replacing q by q̃ = qn
− β∂̄t (β

n pn) in the above formulation. The residual
operator now reads

R(U n
h ) = P0(q

n
− ∂̄t (β

n pn))− DhU n
h . (3.48)

We may now use the algorithm given by Eq. (3.27) with this extended residual operator.
For a time dependent problem, we need to perform postprocessing after each time step. However, we observe

that the matrix A in Eq. (3.31) is only dependent on the weights ω and the grid. Thus, we only need to assemble A
whenever we alter the grid.

3.7. Postprocessing parameters

Given a CG pressure solution ph , we have introduced different ways to calculate the CG flux approximation Uh .
The first parameter is how we calculate the flux along the Dirichlet boundary, and the second parameter is the choice of
weights θ in the average operator. To clearly express which method we are using, we introduce the following notation:

CG(α, θ), α = {SD,WD,RD}, θ = {1/2, ϑ}. (3.49)

The CG flux Uh is then calculated as follows. On the internal and Neumann faces we have

Uh =


−{{K∇ ph · nF }}θ , on F ∈ Γh,I ,

u B, on F ∈ Γh,N .
(3.50)

The flux calculation on the Dirichlet boundary is given by α in the following way:

• α = SD: CG with strong Dirichlet boundary conditions (Eq. (2.31)),

Uh = −K∇ ph · nF , on F ∈ Γh,D. (3.51)

• α = WD: CG with weak Dirichlet boundary conditions (Eq. (2.36)),

Uh = −K∇ ph · nF +
r2σF

|F |
(ph − pB), on F ∈ Γh,D. (3.52)

• α = RD: CG with strong Dirichlet boundary conditions and with recovered flux along the Dirichlet boundary
(Eq. (2.44)),

Uh = Uh, on F ∈ Γh,D. (3.53)

Furthermore, for the postprocessed flux, we have one more parameter describing which norm we are using for
minimization. We use the following notation,

PP(α, θ, λ), α = {SD,WD,RD}, θ = {1/2, ϑ}, λ = {L2,wL2}, (3.54)

where λ = L2 and λ = wL2 denotes minimization in the standard L2 norm and the weighted L2 norm, respectively.
In the weighted L2 norm we use weight ω = k−1

e as described in Section 3.5. We note that the methods considered
in [10] and [9] correspond to CG(SD,1/2,L2).

In the case of homogeneous permeability, the parameters θ and λ are obsolete, and we simply write CG(α)
and PP(α). In the case PP(RD, ·, ·), we consider the flux on the Dirichlet boundary as fixed and thus consider the
postprocessing step as a pure Neumann problem.

4. Numerical examples

The postprocessing algorithm, along with solvers for the flow and transport equations, have been implemented. All
implementations are based on the open source finite element library deal.II [44]. The numerical examples and timings
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(a) β = 0. (b) β ≠ 0.

Fig. 2. Flowcharts describing the solution strategy for the elliptic case (a) and the parabolic case (b).

were performed on a single core of an Intel Xeon X7542 (2.67 GHz, 18 MB cache) with 64-bit Ubuntu 14.04 and
256 GB memory. For the flow equation we use CG with bilinear elements (r = 1), while for the transport equation we
use DG with piecewise constants (r = 0). In this section we run a series of test cases to verify our implementations
and evaluate the postprocessing algorithm. Our main objectives are to

(i) Verify that the postprocessed flux is locally conservative on a range of grid types;
(ii) Test if we are able to recover exact flux for a problem with analytic solution of one polynomial degree higher

than the test space (expressed as an amenable consistency condition in [45, Section 4.1]);
(iii) Study the effect of how flux on the Dirichlet boundary is calculated, as discussed in Section 3.7;
(iv) Verify the error estimates given by Lemma 3;
(v) Study the choice of weights in the average operator and the choice of norm used for minimization in the

postprocessing method;
(vi) Measure the computational complexity of the postprocessing problem compared to the flow problem.
(vii) Demonstrate the importance of locally conservative flux when solving the transport equation.

For the latter objective, we introduce an overshoot quantity for the concentration solution ch ,

O(ch) = ∥ max(ch − c̄, 0)+ max(−ch, 0)∥Eh , (4.1)

where c̄ is the upper bound on the concentration, c̄ = max(cB, cw, c0). For the incompressible flow problem (β = 0),
the concentration is expected to obey the maximum principle c ≤ c̄ and be positive. Hence, O(ch) is used as a measure
of the violation of these principles.

To solve the coupled flow and transport problem, Eqs. (2.1)–(2.3), we use an iterative solution technique. In each
time step we first solve for pressure, then postprocess the flux if necessary, and at last solve the transport problem with
the obtained flux approximation. This coupled process is illustrated by the flow chart in Fig. 2. If β = 0, we only need
to solve for pressure and postprocess the flux once, and then do time iterations on the transport solver only. We also
run cases without the postprocessing step, i.e., use Uh directly in the transport solver.

4.1. Consistency tests

Our first example is a pure flow problem to examine the objectives (i)–(iii). Consider the problem

−∇ · (∇ p) = 2, on Ω = (0, 1)2, (4.2a)

p = 1, for x = 0, (4.2b)

p = 0, for x = 1, (4.2c)

u · n = 0, for y = {0, 1}. (4.2d)



814 L.H. Odsæter et al. / Comput. Methods Appl. Mech. Engrg. 315 (2017) 799–830

Table 1
Consistency tests. Norm of residual and flux error before (Uh ) and after (Vh ) postprocessing for different grids and flux calculations along the
Dirichlet boundary. The penalty term for CG(WD) is σγ = 10.

(a) Uniform 1D grid.
Method ∥R(Uh)∥Eh ∥R(Vh)∥Eh ∥u · n − Uh∥Fh ∥u · n − Vh∥Fh
CG(SD) 0.707 2.4e-16 0.354 9.7e-16
CG(WD) 0.333 3.9e-17 0.118 1.2e-15
CG(RD) 1.2e-15 1.2e-15 1.7e-15 1.7e-15

(b) Nonuniform 1D grid.
Method ∥R(Uh)∥Eh ∥R(Vh)∥Eh ∥u · n − Uh∥Fh ∥u · n − Vh∥Fh
CG(SD) 0.976 2.9e-16 0.534 0.084
CG(WD) 0.888 9.6e-17 0.265 0.168
CG(RD) 0.280 6.3e-16 0.140 1.7e-15

(c) Uniform 2D grid.
Method ∥R(Uh)∥Eh ∥R(Vh)∥Eh ∥u · n − Uh∥Fh ∥u · n − Vh∥Fh
CG(SD) 0.707 4.6e-16 0.354 7.0e-16
CG(WD) 0.056 3.0e-17 0.020 1.1e-14
CG(RD) 2.8e-15 2.8e-15 1.4e-15 1.4e-15

(d) Distorted 2D grid.
Method ∥R(Uh)∥Eh ∥R(Vh)∥Eh ∥u · n − Uh∥Fh ∥u · n − Vh∥Fh
CG(SD) 0.908 1.4e-15 0.401 0.073
CG(WD) 0.443 7.2e-17 0.122 0.078
CG(RD) 0.462 6.0e-15 0.131 0.085

(e) Nonmatching 2D grid.
Method ∥R(Uh)∥Eh ∥R(Vh)∥Eh ∥u · n − Uh∥Fh ∥u · n − Vh∥Fh
CG(SD) 1.127 5.5e-16 0.615 0.089
CG(WD) 0.288 6.4e-17 0.183 0.163
CG(RD) 0.278 1.3e-15 0.179 0.144

This problem has the analytical solution p(x, y) = 1 − x2, and is essentially a one-dimensional problem. Since the
permeability tensor is constant (K = I), there is no effect of harmonic averaging or weighting of the L2 norm.

Results for different grids and calculations of fluxes along the Dirichlet boundary are presented in Table 1. First
observe that the residual for the postprocessed flux, R(Vh), is zero in all cases. This demonstrates that Vh is locally
conservative and that our postprocessing method works. For the uniform 1D grid all methods give exact solution for
Vh . The flux error, ∥u ·n−Uh∥Fh , for CG(WD) can be made arbitrarily small by increasing the penalty term σF . This
illustrate some of the ambiguity with weak boundary conditions. In the limit σF → ∞, CG(WD) and CG(RD) are
equivalent. The postprocessed flux error, ∥u · n − Vh∥Fh , for CG(SD) and CG(WD) is non-zero for the nonuniform
1D grid because the flux Uh on the Dirichlet boundary is wrong. On this grid, CG(RD) reproduce the exact flux. For
the two latter grids, the distorted and matching 2D grids, CG(SD) seems to give the best result.

We observe that for the distorted and non-matching 2D grids, we do not obtain exact fluxes for CG(RD). In Table 2
we report on the integrated flux


γ

Uh along vertical mesh lines γ , which divides the domain Ω in two. For the
nonmatching 2D grid (Table 2(b)), we see that we recover the exact value with all methods. For the distorted 2D grid
(Table 2(a)), this is only the case for CG(RD). This follows from the fact that the fluxes are globally conservative
and that the integrated flux is exactly recovered along the Dirichlet boundaries [6]. Notice that for CG(SD) and
CG(WD), the value of the integrated flux Vh is shifted by the same value for all γ (0.0033 for CG(SD) and 0.0020
for CG(WD)).

4.2. Convergence tests

To verify the convergence estimates in Eq. (2.35) and Lemma 3 numerically (objective (iv)), we consider a time
dependent problem with analytic solution. Let Ω = (0, 1)2, K = I, β = 1.0 and φ = 1.0. For the coupled flow and
transport problem (2.1)–(2.3) we choose right hand sides and boundary conditions such that

p = cos(t + x − y), c = cos(t + x − y) (4.3)
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Table 2
Consistency tests. Integrated flux along vertical mesh lines for different flux approximations and mesh
lines, γi .

(a) Distorted 2D grid.

γ1 γ2 γ3 γ4 γ5
Flux (x = 0) (x ≈ 0.25) (x ≈ 0.5) (x ≈ 0.75) (x = 1)

Exact

γi

u · n 0 0.4980 1.0850 1.4400 2

CG(SD)


γi

Uh 0.2551 0.5198 1.0331 1.4919 1.7196
γi

Vh 0.0033 0.4947 1.0817 1.4367 1.9967

CG(WD)


γi

Uh 4.2e-15 0.5334 1.0330 1.4785 2
γi

Vh −0.0020 0.5001 1.0870 1.4420 2.0020

CG(RD)


γi

Uh 1.6e-15 0.5198 1.0331 1.4919 2
γi

Vh 1.6e-15 0.4980 1.0850 1.4400 2

(b) Nonmatching 2D grid.

γ1 γ2 γ3
Flux (x = 0) (x = 0.5) (x = 1)

Exact

γi

u · n 0 1 2

CG(SD)


γi

Uh 0.4130 1 1.5870
γi

Vh 9.7e-17 1 2

CG(WD)


γi

Uh 1.9e-15 1 2
γi

Vh 4.5e-15 1 2

CG(RD)


γi

Uh 8.7e-16 1 2
γi

Vh 8.7e-16 1 2

are the analytic solutions. One may easily verify that q = 2 cosα − sinα and f = (1 + 4 sinα) cosα with α = t +

x − y. For the flow problem, we impose Dirichlet conditions on x = {0, 1} and Neumann conditions on y = {0, 1}.
The numerical solution at t = 0.1 on a fine grid can viewed in Fig. 3.

First, the domain Ω is discretized into uniform quadratic grids of size n×n with n = 2i , i = 2, 3, 4, 5. Equivalently,
h =

1
n = 2−i . The end time is T = 0.1, and the time step size is chosen small enough to not effect the convergence

rates and is recursively refined such that ∆t =
1

5·4i−1 =
4
5 h2. The transport solver is run with three different flux

approximations: (i) CG flux (Uh); (ii) postprocessed CG flux (Vh); and (iii) analytic flux (u · n). Dirichlet conditions
are imposed strongly, CG(SD). Convergence tables for flow and transport quantities are shown in Table 3.

We observe that the error in p is of order 1 in the energy norm in accordance with the error estimate in Eq. (2.35).
Furthermore, we see that the postprocessed flux, Vh , converges with order 1/2 larger than the CG flux, Uh . The
residual, R(Uh), converges to zero with one order lower than Uh . These results are in accordance with Lemma 3.
Finally, we observe that the residual is zero (down to machine precision) for the postprocessed flux.

For the concentration solution, all simulations converge with order 1. The differences in concentration due to
different flux calculations are small in this example. However, we show later that cases involving heterogeneous
permeability may result in much larger differences.

Next, the same examples were run but with Dirichlet flux recovery, CG(RD). The convergence table for flow and
transport variables is displayed in Table 4. We see that the order of the error in Uh increases by 1/2 compared to
CG(SD), while the residual now converges to zero with rate 1.5. This appears to be due to better flux approximation
on the Dirichlet boundary as this is the only difference. The postprocessed flux has the same order as the CG flux, so
the net effect is nearly the same as without Dirichlet flux recovery (cf. Table 3(a)). In the remaining examples of this
work, we will therefore only consider strong Dirichlet conditions, CG(SD).
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(a) Pressure. (b) Concentration.

Fig. 3. Convergence tests. Pressure (a) and concentration (b) solution at t = 0.1 on the finest grid level, 1/h = 32. The postprocessed flux, Vh , is
used in the transport solver to calculate the transport solution.

Table 3
Convergence tests. Error and convergence rates for flow variables (a) and concentration solution (b). A recursively refined
quadratic grid with element size h is used. Dirichlet boundary conditions are imposed strongly, CG(SD).

(a) Flow variables.

1/h ∥p − ph∥a ∥u · n − Uh∥h,Fh ∥u · n − Vh∥h,Fh ∥R(Uh)∥Eh ∥R(Vh)∥Eh

4 0.0941 – 0.08211 – 0.00809 – 0.3000 – 2.8e-16
8 0.0470 1.00 0.02804 1.55 0.00197 2.04 0.2125 0.50 3.1e-16

16 0.0235 1.00 0.00967 1.54 0.00049 2.00 0.1503 0.50 4.0e-16
32 0.0117 1.00 0.00337 1.52 0.00012 2.00 0.1063 0.50 5.2e-16

(b) Concentration solution with different flux (in parenthesis).

1/h ∥c−ch∥Eh (u ·n) ∥c − ch∥Eh (Uh) ∥c − ch∥Eh (Vh)

4 0.09502 – 0.09631 – 0.09507 –
8 0.04765 1.00 0.04850 0.99 0.04766 1.00

16 0.02385 1.00 0.02436 0.99 0.02385 1.00
32 0.01193 1.00 0.01218 1.00 0.01193 1.00

At last, we consider the same problem but evaluate convergence on a family of distorted and non-conforming
grid. Let M0 be the base grid as displayed in Fig. 4(a). Then, we iteratively refine the base grid globally by
dividing each element into four by connecting midpoints of the four faces. This results in a family of refined grids,
Mi , i = 0, 1, . . . , 4, where the three first grids are displayed in Fig. 4. The time steps are now ∆t =

1
5·4i+1 .

Convergence results are shown in Table 5. We still observe that the order of Vh is the same as for Uh , although we
have to let h be very small for the rate to converge towards 1. Notice that ∥u · n − Vh∥h,Fh < ∥u · n − Uh∥h,Fh for all
cases studied in this section. This example demonstrates that our method works and that the error estimates hold for
general grids.

4.3. Barrier problem

In the next example we consider flow and transport through a barrier (low permeability region) and study the objec-
tives (i), (v), (vi) and (vii). The problem is illustrated in Fig. 5. Let Ω = (0, 1)2, β = 0 and use boundary conditions
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Table 4
Convergence tests. Error and convergences rates for flow variables (a) and concentration solution (b). A recursively refined
quadratic grid with element size h is used. The Dirichlet flux recovery technique, CG(RD), is used.

(a) Flow variables.

1/h ∥p − ph∥a ∥u · n − Uh∥h,Fh ∥u · n − Vh∥h,Fh ∥R(Uh)∥Eh ∥R(Vh)∥Eh

4 0.0941 – 0.00965 – 0.00719 – 0.0207 – 1.6e-13
8 0.0470 1.00 0.00250 1.95 0.00160 2.17 0.0077 1.42 5.1e-13

16 0.0235 1.00 0.00064 1.97 0.00037 2.11 0.0028 1.49 7.7e-13
32 0.0117 1.00 0.00016 1.99 0.00009 2.06 0.0010 1.50 1.4e-12

(b) Concentration solution with different flux (in parenthesis).

1/h ∥c − ch∥Eh (u · n) ∥c − ch∥Eh (Uh) ∥c − ch∥Eh (Vh)

4 0.09503 – 0.09514 – 0.09510 –
8 0.04765 1.00 0.04769 1.00 0.04767 1.00

16 0.02385 1.00 0.02386 1.00 0.02386 1.00
32 0.01193 1.00 0.01194 1.00 0.01193 1.00

Table 5
Convergence tests. Error and convergences rates for flow variables (a) and concentration solution (b) for the recursively refined
grids shown in Fig. 4. Dirichlet boundary conditions are imposed strongly, CG(SD).

(a) Flow variables.

Grid ∥p − ph∥a ∥u · n − Uh∥h,Fh ∥u · n − Vh∥h,Fh ∥R(Uh)∥Eh ∥R(Vh)∥Eh

M0 0.08331 – 0.116103 – 0.044114 – 0.5096 – 7.3e-16
M1 0.04057 1.04 0.041738 1.48 0.017211 1.36 0.3153 0.69 7.1e-16
M2 0.02006 1.02 0.015556 1.42 0.007820 1.14 0.2233 0.50 6.9e-16
M3 0.00998 1.01 0.006116 1.35 0.003840 1.03 0.1585 0.49 1.0e-15
M4 0.00498 1.00 0.002556 1.26 0.001921 1.00 0.1122 0.50 1.4e-15
M5 0.00248 1.00 0.001133 1.17 0.000963 1.00 0.0793 0.50 2.4e-15
M6 0.00124 1.00 0.000527 1.10 0.000483 1.00 0.0560 0.50 4.6e-15

(b) Concentration solution with different flux (in parenthesis).

Grid ∥c − ch∥Eh (u · n) ∥c − ch∥Eh (Uh) ∥c − ch∥Eh (Vh)

M0 0.07595 – 0.07864 – 0.07598 –
M1 0.03821 0.99 0.03977 0.98 0.03822 0.99
M2 0.01919 0.99 0.02007 0.99 0.01920 0.99
M3 0.00964 0.99 0.01006 1.00 0.00964 0.99

(a) M0. (b) M1. (c) M2.

Fig. 4. Convergence tests. Base grid (left) and the first two recursively refined grids used for convergence test for distorted and non-conforming
grids. All cells are divided in four in each refinement cycle.
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(a) Problem definition. Geometry, boundary
conditions and permeability distribution. The
permeability is given as K = kI.

(b) Steady state pressure and velocity solution from the CG
scheme on a quadratic grid with h = 1/32.

Fig. 5. Barrier problem. Problem definition (a) and numerical pressure solution (b).

Table 6
Barrier problem. Norm of residual, ∥R(·)∥Eh , overshoot, O(ch), and minimum and maximum value of concentration
solution at t = 2 for different flux approximations.

Method ∥R(Uh)∥Eh ∥R(Vh)∥Eh O(ch) min(ch ) max(ch )

CG(SD,1/2) 1.184 – 0.04107 2.1e-12 1.822
CG(SD,ϑ) 1.895 – 0.03285 3.1e-13 1.505
PP(SD,1/2,L2) – 4.8e-16 3.2e-17 2.2e-11 1.000
PP(SD,ϑ ,L2) – 9.7e-16 1.6e-17 1.4e-10 1.000
PP(SD,ϑ ,wL2) – 2.7e-15 4.8e-17 3.0e-13 1.000

p(0, y) = 1, p(1, y) = 0 and u · n = 0 on y = {0, 1}. For the transport problem, φ = 1, Γin = {x = 0}∩∂Ω , cB = 1
and c0 = 0. The steady state pressure and velocity solution from the CG scheme on a fine grid is shown in Fig. 5(b).

First, consider the case when the standard average θ = 1/2 is used for flux calculations. The concentration solution
with ∆t = 0.01 at t = 1 and t = 2 is shown in Fig. 6, both for CG(SD,1/2) and PP(SD,1/2,L2). Furthermore, the
concentration along the curve y = 0.735 is plotted in the same figure. The solutions are close at t = 1, although
we observe some small unphysical oscillation close to the barrier interface for CG(SD,1/2). Both solutions are in the
(physical) valid range [0, 1]. However, at t = 2, CG(SD,1/2) gives an unphysical solution as ch > 1.0 in some cells
and since the solution oscillates close to the barrier interface. The solution with PP(SD,1/2,L2) is in the range [0, 1]

and without oscillations.
Since the contrast in permeability is three orders of magnitude, we would expect very little flow into the barrier

region. However, we see from Fig. 6 that the concentration in the corners of the barrier region is rather large. To cope
with this we use harmonic averaging of the permeability, thus set θ = ϑ in the flux averaging. Similar results as with
θ = 1/2 are displayed in Fig. 7. Clearly, harmonic averaging reduces the inflow into the barrier region when we use
CG flux, but still we get an unphysical solution (Figs. 7(a) and 7(d)). However, when we postprocess this flux with
minimization in the standard L2 norm, the effect of harmonic averaging reduces since the concentration in the corners
is now high (Figs. 7(b) and 7(e)). If we instead postprocess with minimization in the weighted L2 norm, we see that
the barrier region is much less permeable (Figs. 7(c) and 7(f)). This clearly demonstrates that using the weighted L2

norm is necessary to preserve low permeable interfaces and should be used in combination with harmonic averaging
of the CG flux.

The overshoot quantity, O(ch), the minimum and maximum of ch and the norm of the residual is reported in
Table 6 for the different cases studied above. We see that for all postprocessing cases, R(Vh) and O(ch) is zero down
to machine precision, and that ch ∈ [0, 1]. This is not satisfied with CG flux, which is not locally conservative.
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(a) CG(SD,1/2), t = 1. (b) PP(SD,1/2,L2), t = 1. (c) Concentration over line, t = 1.

(d) CG(SD,1/2), t = 2. (e) PP(SD,1/2,L2), t = 2. (f) Concentration over line, t = 2.

Fig. 6. Barrier problem. Concentration solution at two different times, with and without postprocessing. The standard weight θ = 1/2 is used for
the average in calculations of CG flux, Uh . The solution along the white line (y = 0.735) is plotted to the right. The low permeability region is
inscribed in the black box.

Next, we compare the postprocessing step with the CG solver in terms of efficiency and computational complexity.
Both the CG problem (Eq. (2.31)) and the postprocessing problem (Eq. (3.28)) are symmetric and positive definite, so
we use the conjugate gradient method as linear solver. In Table 7 we report on degrees of freedom (DoF), condition
number (κ),4 number of iterations in the linear solver (it), and the CPU time used by the linear solver (time). This
is done for the CG problem and the postprocessing problem both with and without weighting for recursively refined
regular Cartesian grids. We consider both the standard conjugate gradient solver and the preconditioned conjugate
gradient with a symmetric successive overrelaxation preconditioner, SSOR(1.5). For all cases we use strong Dirichlet
conditions and harmonic weighting of the CG flux.

Without preconditioning, we see that PP(SD,ϑ ,L2) is much less costly to solve than CG(SD,ϑ), both in terms of
the condition number and solver time. PP(SD,ϑ ,wL2) is more expensive, and the solution time is ∼70% of that of
CG(SD,ϑ). This is because weighting introduces high aspect ratios in the system matrix, see Eq. (3.32). However,
if we apply a relatively simple preconditioner as SSOR, the condition numbers and solution times drop remarkably
for CG(SD,ϑ) and PP(SD,ϑ ,wL2), such that the computational complexity of PP(SD,ϑ ,L2) and PP(SD,ϑ ,wL2) are
almost similar. Still, the additional cost of the postprocessing step is significant (∼55% for PP(SD,ϑ ,L2) and ∼60%
for PP(SD,ϑ ,wL2)).

4 The condition numbers are estimated by routines in the deal.II library.
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(a) CG(SD,ϑ), t = 1. (b) PP(SD,ϑ ,L2), t = 1. (c) PP(SD,ϑ ,wL2), t = 1.

(d) CG(SD,ϑ), t = 2. (e) PP(SD,ϑ ,L2), t = 2. (f) PP(SD,ϑ ,wL2), t = 2.

(g) Concentration over line, t = 1. (h) Concentration over line, t = 2.

Fig. 7. Barrier problem. Concentration solution at two different times, with CG flux and postprocessed flux with the standard L2 norm and the
weighted L2 norm. The harmonic weight θ = ϑ is used for the average in calculations of CG flux, Uh . The solution along the white line (y = 0.735)
is plotted in the bottom row. The low permeability region in inscribed in the black box.

Finally, we test the sensitivity of the computational complexity with respect to the permeability contrast. This is
done by keeping the grid resolution fixed at 1/h = 64 and then vary the permeability in the low permeable block,
denoted kb. These results are reported in Table 8. For the case without preconditioning, we see that the condition
number and linear solver time for CG(SD,ϑ) and PP(SD,ϑ ,wL2) scale badly with the permeability contrast, whereas
PP(SD,ϑ ,L2) is nearly unaffected. This is as expected since the system matrix for PP(SD,ϑ ,L2) is independent on the
permeability, while for CG(SD,ϑ) and PP(SD,ϑ ,wL2) it is not. However, if we look at the preconditioned system, we
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Table 7
Barrier problem. Computational complexity for different problems; DoF: Degrees of Freedom, κ: condition number, it: number of iterations in
linear solver, time: CPU time used by linear solver including initialization of the preconditioner (median value over 11 runs). The linear solver is
the (preconditioned) conjugate gradient method with residual tolerance 10−12.

(a) Without preconditioning.

CG(SD,ϑ) PP(SD,ϑ ,L2) PP(SD,ϑ ,wL2)
1/h DoF κ it Time DoF κ it Time DoF κ it Time

16 289 5505 151 0.0107 256 58 40 0.0018 256 3611 136 0.0073
32 1089 21114 443 0.1039 1024 220 85 0.0136 1024 12748 416 0.0766
64 4225 83607 1203 0.4129 4096 856 163 0.0413 4096 49475 1037 0.2893

128 16641 333602 2915 3.4805 16384 3372 307 0.2758 16384 196428 2350 2.2415

(b) With SSOR(1.5) precondtioner.

CG(SD,ϑ) PP(SD,ϑ ,L2) PP(SD,ϑ ,wL2)
1/h DoF κ it Time DoF κ it Time DoF κ it Time

16 289 9.1 27 0.0040 256 11.6 25 0.0026 256 10.6 27 0.0028
32 1089 30.2 43 0.0221 1024 39.2 38 0.0125 1024 33.8 41 0.0135
64 4225 110.6 77 0.0731 4096 146.2 62 0.0375 4096 121.8 69 0.0444

128 16641 424.7 147 0.4327 16384 567.7 109 0.2116 16384 465.3 126 0.2459

Table 8
Barrier problem. Computational complexity for different problems; DoF: Degrees of Freedom, κ: condition number, it: number of iterations in
linear solver, time: CPU time used by linear solver including initialization of the preconditioner (median value over 11 runs). The linear solver is
the (preconditioned) conjugate gradient method with residual tolerance 10−12. The grid resolution is kept constant at 1/h = 64, but the permeability
in the low permeable block, kb , is varied.

(a) Without preconditioning.

CG(SD,ϑ) PP(SD,ϑ ,L2) PP(SD,ϑ ,wL2)
kb DoF κ it Time DoF κ it Time DoF κ it Time

10−1 4225 1885 275 0.1085 4096 856 161 0.0484 4096 1331 221 0.0665
10−3 4225 83607 1203 0.4127 4096 856 163 0.0413 4096 49475 1037 0.2875
10−5 4225 8328390 2565 0.9362 4096 856 163 0.0375 4096 4931220 2364 0.6897

(b) With SSOR(1.5) precondtioner.

CG(SD,ϑ) PP(SD,ϑ ,L2) PP(SD,ϑ ,wL2)
kb DoF κ it Time DoF κ it Time DoF κ it Time

10−1 4225 111 77 0.0649 4096 146 61 0.0369 4096 123 68 0.0372
10−3 4225 111 77 0.0809 4096 146 62 0.0353 4096 122 69 0.0395
10−5 4225 111 77 0.0934 4096 146 62 0.0467 4096 122 69 0.0506

see that the effect of the permeability contrast almost vanishes. Hence, for this problem, the SSOR preconditioner is
able to remove the effect of the permeability contrast on the condition number.

4.4. Channel problem

To further investigate the importance of harmonic averaging (objective (v)), consider now flow and transport
through a channel with corners, see Fig. 8. The problem parameters are the same as for the barrier problem, except for
the permeability distribution, which now forms a channel through the domain, and the boundary concentration, cB ,
which is one into the channel and zero elsewhere. The channel has permeability k = 1, while the surroundings have
permeability k = ks ≪ 1, so we expect most of the flow to be in the channel. We only consider harmonic averaging
(θ = ϑ), but use both the standard L2 norm and the weighted L2 norm for minimization in the postprocessing method,
PP(SD,ϑ ,L2) and PP(SD,ϑ ,wL2), respectively. We study the cases ks = 10−2 and ks = 10−5, and set ∆t = 0.005
and T = 2.
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Fig. 8. Channel problem. Problem definition. Boundary conditions are p = 1 on the left, p = 0 on the right, and u · n = 0 on the bottom and top.
The boundary concentration is c = 1 into the channel only, and 0 elsewhere.

Table 9
Channel problem. Norm of residual, ∥R(·)∥Eh , overshoot, O(ch), and minimum and maximum value of concentration solution at t = 2 for
different flux approximations.

ks Method ∥R(Uh)∥Eh ∥R(Vh)∥Eh O(ch) min(ch ) max(ch )

10−2 CG(SD,ϑ) 0.9646 – 0.05715 0 1.478
PP(SD,ϑ ,L2) – 3.6e-16 0 0 1.000
PP(SD,ϑ ,wL2) – 6.7e-16 0 0 1.000

10−5 CG(SD,ϑ) 0.9915 – 0.06951 0 1.502
PP(SD,ϑ ,L2) – 4.2e-15 0 0 1.000
PP(SD,ϑ ,wL2) – 6.7e-16 0 0 1.000

The concentration solutions for the different scenarios are displayed in Fig. 9, and residuals, overshoot and
minimum and maximum values are reported in Table 9. For ks = 10−2, we get ch ≫ 0 in some areas outside but
close to the channel. This seems reasonable, as the contrast in permeability is two orders of magnitude. However, for
ks = 10−5 the interface should be close to impermeable, and we expect very low concentrations outside the channel.
For CG(SD,ϑ), we observe that ch ∼ 0 outside the channel for k = 10−5, but that ch > 1 in many elements due
to lack of local conservation (Figs. 9(a) and 9(d)). For the case PP(SD,ϑ ,L2), we see that the difference in solution
for ks = 10−2 and ks = 10−5 is rather small, and that 1 > ch ≫ 0 for some elements outside the channel also for
ks = 10−5 (Figs. 9(b) and 9(e)). This is problematic, since the interface should be close to impermeable. If we instead
minimize in the weighted L2 norm, PP(SD,ϑ ,wL2), we are able to resolve this issue so that the interface is close to
impermeable (Figs. 9(c) and 9(f)).

The shortcoming of postprocessing with the standard L2 norm is that it does not take the permeability contrast
into account. Let F be a face on the boundary of the channel. With harmonic averaging, Uh |F ∼ 0. However, in the
minimization step without weighting, we allow for a flux correction that is small in absolute value compared to fluxes
on faces inside the channel, but still relatively large compared to Uh |F . Thus, Vh |F might be orders of magnitude
larger than Uh |F , resulting in a more permeable interface. When we use the weighted L2 norm, F is given a large
weight (the inverse of the effective permeability, ke), so that we do not allow for such large relative correction.

4.5. Well pair problem

Next, we consider a simplified well scenario, and focus on objective (vii) for a problem with non-zero right hand
side. Still, we let β = 0 and Ω = (0, 1)2, but now K = kI, where k = 1 if x ≤ 0.5 and k = 10−3 otherwise. Next,
we model a injector/producer well pair by setting q = 100 in the lower left corner and q = −100 in the upper right
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Fig. 9. Channel problem. Concentration solutions at t = 2 for different flux approximations (left to right) and different permeability outside
channel (top and bottom). Harmonic averaging is used for calculations of the CG flux, Uh , in all cases.

Fig. 10. Well pair problem. Problem definition. The green squares where q ≠ 0 in the lower left and upper right corner have size 1/32 × 1/32.

corner. See Fig. 10 for a sketch. The initial condition is c0 = 0 and the concentration of the injected fluid, cw = 1.0.
We assume a pure Neumann boundary with u B = 0. The coupled flow and transport problem is solved on quadratic
grids with h = {1/16, 1/32, 1/64} and ∆t = 0.01. We only consider harmonic average in the calculations of the CG
flux and use the weighted L2 norm for minimization in the postprocessing method (CG(SD,ϑ) and PP(SD,ϑ ,wL2)).
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Fig. 11. Well pair problem. Concentration solution with CG flux (top row), and postprocessed flux (bottom row) at different times (left to right) on
a quadratic grid with h = 1/32.

Table 10
Well pair problem. Norm of residual, ∥R(·)∥Eh , overshoot, O(ch), and minimum and maximum value of concentration solution at t = 10 for
different flux approximations.

h Method ∥R(Uh)∥Eh ∥R(Vh)∥Eh O(ch) min(ch ) max(ch )

1/16 CG(SD,ϑ) 0.3162 – 0.0558 0.00508 1.217
PP(SD,ϑ ,wL2) – 1.6e-16 0 0.00477 1.000

1/32 CG(SD,ϑ) 2.0928 – 0.0616 2.3e-5 1.652
PP(SD,ϑ ,wL2) – 1.4e-15 1.4e-17 2.0e-5 1.000

1/64 CG(SD,ϑ) 1.5247 – 0.0102 3.9e-10 1.399
PP(SD,ϑ ,wL2) – 1.6e-15 2.8e-15 4.2e-10 1.000

The concentration solution at different times for the grid with h = 1/32 is shown in Fig. 11. The concentration is
produced in the lower left corner and moves towards the source in the upper right corner. The difference between
CG(SD, ϑ) and PP(SD, ϑ,wL2) is significant and the maximum principle ch ≤ 1 is violated for CG(SD, ϑ).
Postprocessing is necessary to produce an acceptable concentration solution.

Similar results at t = 10 for quadratic grids with h = {1/16, 1/32, 1/64} are shown in Fig. 12. Furthermore,
residuals, overshoot and minimum and maximum values are given in Table 10. Evidently, the difference in
concentration solution is smaller for smaller h. This is as expected since CG converges to the true solution, which
is locally conservative. The area where ch > 1 seems to cluster around the sink and source for h = 1/64.

A quantity of interest for such well problem is the production rate at the producer,

PR(t) =
1
∆t

 t

t−∆t


Ωw

qc, (4.4)
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Fig. 12. Well pair problem. Concentration solution without (top row) and with (bottom row) postprocessing at t = 10 on quadratic grids with
different h.

Fig. 13. Well pair problem. Production rate, PR(t), for different h and flux.

where Ωw is the sink part of Ω , i.e., Ωw = {x ∈ Ω : q(x) < 0}. For this example Ωw =


31
32 , 1

2
. The production

rate is plotted against time for different h in Fig. 13, where a reference curve from a simulation with h = 1/256 is
included. Although not prominent, we see that we get different curves whether we use CG flux or postprocessed flux,
and that this effect is largest for the coarsest grid. We get a earlier breakthrough (smallest t where PR(t) > 0) for
larger h. This is due to numerical dispersion.
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(a) Porosity.

(b) Horizontal permeability (kx = ky ) in milli Darcy (1 mD = 9.87 · 10−16 m2) on a logarithmic
scale.

Fig. 14. SPE-10 model. Highly heterogeneous model given on a Cartesian mesh with 220 × 60 × 85 = 462 000 regular hexahedral elements, each
of size 10 × 20 × 2 feet. The model dimensions are 2200 × 1200 × 170 feet (these figures are scaled by a factor 5 in the vertical direction).

4.6. SPE-10 model

Our last example is based on the SPE-10 model [46], and serves as a test problem to verify objective (i), (v),
(vi) and (vii) for a realistic 3D model. The SPE-10 model was originally introduced as a benchmark problem for
upscaling, but it has also been used in many studies addressing other aspects of flow in porous media. We consider the
top 35 layers of the original model, representing the Tarbert formation, see Fig. 14. This model is given on a Cartesian
mesh with 462 000 regular hexahedral elements. The permeability is cellwise constant and anisotropic such that the
permeability tensor can be written as a diagonal tensor with entries kx , ky, kz (kx = ky). Observe from Fig. 14 that
the model is highly heterogeneous. To work with realistic data, we will set the fluid viscosity to µ = 10−3 Pa · s,
in contrast to the rest of this work. We consider incompressible flow with no source (β = 0, q = 0). As boundary
conditions, we set p = 109 Pa on the left boundary, p = 0 and the right boundary, and no-flow conditions (u · n = 0)
elsewhere. Regarding linear solver, we use the preconditioned conjugate gradient method with a general algebraic
multigrid preconditioner (AMG) available through the Trilinos Project [47].

Table 11 report on the degrees of freedom (DoF), number of iterations (it), the CPU time used by the linear solver
(time) and the norm of the residual, both for the CG problem and the postprocessing problem with and without the
weighted norm. First observe that the residual is non-zero for the CG flux, and zero (below solver tolerance) for the
postprocessed fluxes. Hence, our methods and implementations work also for this realistic 3D problem. Furthermore,
we see that the computational complexity of PP(SD,ϑ ,L2) is lower than PP(SD,ϑ ,wL2). This means that minimization
in the weighted norm leads to worse conditioning of the system matrix. The time spent to solve PP(SD,ϑ ,L2) and
PP(SD,ϑ ,wL2) compared to CG(SD,ϑ) is about 9% and 30%, respectively.

To check the influence of the anisotropic permeability on the linear solver time, we run the same case but with
isotropic permeability such that kz = kx (= ky). For this scenario the CPU time used by the linear solver was 20.34,
3.20 and 3.50 for CG(SD,ϑ), PP(SD,ϑ ,L2) and PP(SD,ϑ ,wL2), respectively. Comparing with the anisotropic case
(Table 11), we observe that anisotropic permeability leads to worse conditioning for CG(SD,ϑ) and PP(SD,ϑ ,wL2).
The run time for PP(SD,ϑ ,L2) is unchanged since the system matrix is independent on the permeability. With isotropic
permeability, the linear solver time for PP(SD,ϑ ,wL2) is about 17% of that of CG(SD,ϑ).

For the anisotropic case, we also consider the transport problem. We let cB = 1.0 on the inflow boundary (x = 0)
and use time steps ∆t = 104 s. The concentration solutions with PP(SD,ϑ ,L2) and PP(SD,ϑ ,wL2) are shown in
Figs. 15 and 16, respectively. Both solutions obey the maximum principle, but we see that without weighting (Fig. 15)
the vertical flow between layers with high permeability contrast is higher. Hence, the application of the weighted norm
seems to better preserve low permeable interfaces. We do not display similar results for CG(SD,ϑ) because we get a
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Table 11
SPE-10 model. Computational complexity for different problems; DoF: Degrees of Freedom, it: number of iterations
in linear solver, time: CPU time used by the linear solver including initialization of the preconditioner (median value
over 11 runs). The linear solver is the conjugate gradient method with an AMG preconditioner with residual tolerance
10−6.

Problem DoF it time ∥R∥Eh

CG(SD,ϑ) 485316 105 33.58 2.5e-2
PP(SD,ϑ ,L2) 462000 10 3.14 2.0e-8
PP(SD,ϑ ,wL2) 462000 55 9.97 4.3e-8

Fig. 15. SPE-10 model. Concentration solution with postprocessed flux without weighting, PP(SD,ϑ ,L2).

Fig. 16. SPE-10 model. Concentration solution with postprocessed flux with weighting, PP(SD,ϑ ,wL2).

totally unphysical solution. Instead, Fig. 17, shows the time evolution of max(ch) and O(ch) with CG(SD,ϑ). Clearly,
the maximum principle is far from satisfied.

5. Conclusions

Eq. (3.27), defines a general purpose postprocessing method, where a minimal piecewise constant correction term is
added to the flux. Local conservation, uniqueness and preservation of convergence order are proven and summarized
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Fig. 17. SPE-10 model. Maximal concentration, max(ch), and overshoot, O(ch), for concentration solution with CG(SD,ϑ). For the reference, we
have max(ch) = 1.00006 and O(ch) = 0.019 at t = 694 days with PP(SD, ϑ ,wL2).

in Theorem 1. Our method applies to any flux approximation in L1(Fh) and for a wide range of grids, including
non-conforming and unstructured grids. It can also be used for the time dependent flow model.

Through a series of numerical examples, we have demonstrated that our method produces locally conservative flux.
It is verified numerically that the postprocessed flux has the same order of convergence as the original flux. Moreover,
our numerical examples clearly demonstrates the importance of locally conservative flux when coupling with a DG
solver for the transport equation. Lack of local conservation may produce unphysical solutions.

The postprocessing algorithm is global in the sense that a system of N linear equations has to be solved, where N
is the number of elements (or cells). However, the system matrix is symmetric and sparse and only dependent on the
permeability (through the weights) and the grid. If the grid is constant or only altered occasionally, we can allow for
a preconditioner that is relatively costly to initialize.

For flux approximations from CG, where the pressure gradient is discontinuous across element faces, it is favorable
to use harmonic averaging to calculate the flux. A novelty of this work compared to [9] and [10] is that we minimize
the correction term in a weighted L2 norm with weights equal to the inverse of the effective face permeability. This
better preserves low permeable interfaces, and numerical examples demonstrate that no weighting (standard L2 norm)
tends to weaken the effect of harmonic averaging.

The computational complexity of solving the linear system associated with the postprocessing step compared to that
of solving the linear system for the CG problem was measured. For the synthetic 2D barrier problem, the additional
cost was significant (∼60%). However, for the larger 3D SPE-10 model, the additional cost was smaller, 10%–30%,
depending on anisotropy and choice of weights. This indicates that the postprocessing method is reasonable also
in terms of computational efficiency. The difference in computational complexity of applying the weighted norm
was small for isotropic permeability as long as an appropriate preconditioner, such as SSOR or AMG, was used.
For anisotropic permeability the difference was larger. We stress that in this work we only considered general
purpose preconditioners. Using a taylored preconditioner that can handle the weights better might further improve
the efficiency.

Different treatment of fluxes on Dirichlet boundaries for non-Cartesian grids showed only little effect on the
postprocessed flux.

Acknowledgments

LHO thanks the Center for Subsurface Modeling at ICES, UT Austin, for hosting his research stay the first half
of 2015. In particular, thanks to Gergina Pencheva, Sanghyun Lee and Prashant Mital for constructive discussions
of the current work. LHO is funded by VISTA (Grant No. 6355) — a basic research program funded by Statoil,
conducted in close collaboration with The Norwegian Academy of Science and Letters. MGL was supported in part
by the Swedish Foundation for Strategic Research Grant No. AM13-0029 (MGL) and the Swedish Research Council
Grant No 2013-4708.



L.H. Odsæter et al. / Comput. Methods Appl. Mech. Engrg. 315 (2017) 799–830 829

References

[1] S. Mishra, W.E. Brigham, F.M. Orr Jr., Tracer- and pressure-test analysis for characterization of areally heterogeneous reservoirs, SPE
Formation Eval. (1991) 45–54.

[2] C. Dawson, S. Sun, M.F. Wheeler, Compatible algorithms for coupled flow and transport, Comput. Methods Appl. Mech. Engrg. 193 (23)
(2004) 2565–2580.

[3] M.F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1) (1978) 152–161.
[4] S. Sun, M.F. Wheeler, Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media, SIAM J. Numer.

Anal. 43 (1) (2005) 195–219.
[5] M. Ainsworth, J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley, 2000.
[6] T. Kvamsdal, Variationally consistent postprocessing, in: S. Idelsohn, E. Onate, E. Dvorkin (Eds.), Proceedings for Computational Mechanics,

New Trends and Applications, CIMNE, Barcelona, 1998.
[7] T.J. Hughes, G. Engel, L. Mazzei, M.G. Larson, The continuous Galerkin method is locally conservative, J. Comput. Phys. 163 (2) (2000)

467–488.
[8] H. Melbø, T. Kvamsdal, Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing, Comput.

Methods Appl. Mech. Engrg. 192 (5) (2003) 613–633.
[9] M.G. Larson, A.J. Niklasson, A conservative flux for the continuous Galerkin method based on discontinuous enrichment, Calcolo 41 (2)

(2004) 65–76.
[10] S. Sun, M.F. Wheeler, Projections of velocity data for the compatibility with transport, Comput. Methods Appl. Mech. Engrg. 195 (7) (2006)

653–673.
[11] B. Cockburn, J. Gopalakrishnan, H. Wang, Locally conservative fluxes for the continuous Galerkin method, SIAM J. Numer. Anal. 45 (4)

(2007) 1742–1776.
[12] L. Bush, V. Ginting, On the application of the continuous Galerkin finite element method for conservation problems, SIAM J. Sci. Comput.

35 (6) (2013) A2953–A2975.
[13] L.H. Odsæter, T. Kvamsdal, M.F. Wheeler, A postprocessing technique to produce locally conservative flux, in: A. Berezovski, K. Tamm,

T. Peets (Eds.), 28th Nordic Seminar on Computational Mechanics, CENS, Institute of Cybernetics at Tallinn University of Technology,
Tallinn, 2015, pp. 129–132.

[14] Q. Deng, V. Ginting, Construction of locally conservative fluxes for high order continuous Galerkin finite element methods, Preprint
arXiv:1603.06999, 2016.

[15] R. Becker, D. Capatina, R. Luce, Local flux reconstructions for standard finite element methods on triangular meshes, SIAM J. Numer. Anal.
54 (4) (2016) 2684–2706.

[16] S. Chippada, C. Dawson, M. Martinez, M. Wheeler, A projection method for constructing a mass conservative velocity field, Comput. Methods
Appl. Mech. Engrg. 157 (1) (1998) 1–10.

[17] S. Sun, J. Liu, A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method,
SIAM J. Sci. Comput. 31 (4) (2009) 2528–2548.

[18] S. Lee, Y.-J. Lee, M.F. Wheeler, A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic
problems, SIAM J. Sci. Comput. (2016).

[19] M.F. Wheeler, A Galerkin procedure for estimating the flux for two-point boundary value problems, SIAM J. Numer. Anal. 11 (4) (1974)
764–768.

[20] T. Dupont, A unified theory of superconvergence for Galerkin methods for two-point boundary problems, SIAM J. Numer. Anal. 13 (3) (1976)
362–368.

[21] J. Douglas Jr., T. Dupont, M.F. Wheeler, A Galerkin procedure for approximating the flux on the boundary for elliptic and parabolic boundary
value problems, RAIRO Anal. Numér. 8 (2) (1974) 47–59.

[22] J.A. Wheeler, Simulation of heat transfer from a warm pipeline buried in permafrost, in: 74th National Meeting of the American Institute of
Chemical Engineers, New Orleans, March, 1973, p. 43.

[23] P. Ladeveze, D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (3) (1983)
485–509.

[24] M.F. Wheeler, J. Whiteman, Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations,
Numer. Methods Partial Differential Equations 3 (4) (1987) 357–374.

[25] M.F. Wheeler, J. Whiteman, Superconvergence of recovered gradients of discrete time/piecewise linear Galerkin approximations for linear
and nonlinear parabolic problems, Numer. Methods Partial Differential Equations 10 (3) (1994) 271–294.

[26] M.F. Wheeler, I. Yotov, A multipoint flux mixed finite element method, SIAM J. Numer. Anal. 44 (5) (2006) 2082–2106.
[27] I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci. 6 (3–4) (2002) 405–432.
[28] P. Chatzipantelidis, V. Ginting, R. Lazarov, A finite volume element method for a non-linear elliptic problem, Numer. Linear Algebra Appl.

12 (5–6) (2005) 515–546.
[29] F. Brezzi, K. Lipnikov, M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with

curved faces, Math. Models Methods Appl. Sci. 16 (02) (2006) 275–297.
[30] B. Rivière, M.F. Wheeler, V. Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for

elliptic problems. Part I, Comput. Geosci. 3 (3–4) (1999) 337–360.
[31] C. Kees, M. Farthing, C. Dawson, Locally conservative, stabilized finite element methods for variably saturated flow, Comput. Methods Appl.

Mech. Engrg. 197 (51) (2008) 4610–4625.
[32] T. Povich, C. Dawson, M.W. Farthing, C.E. Kees, Finite element methods for variable density flow and solute transport, Comput. Geosci. 17

(3) (2013) 529–549.

http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref1
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref2
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref3
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref4
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref5
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref6
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref7
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref8
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref9
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref10
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref11
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref12
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref13
http://arxiv.org/1603.06999
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref15
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref16
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref17
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref18
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref19
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref20
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref21
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref23
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref24
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref25
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref26
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref27
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref28
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref29
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref30
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref31
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref32


830 L.H. Odsæter et al. / Comput. Methods Appl. Mech. Engrg. 315 (2017) 799–830

[33] L. Beirão da Veiga, G. Manzini, M. Putti, Post processing of solution and flux for the nodal mimetic finite difference method, Numer. Methods
Partial Differential Equations 31 (1) (2015) 336–363.

[34] C. Scudeler, M. Putti, C. Paniconi, Mass-conservative reconstruction of Galerkin velocity fields for transport simulations, Adv. Water Resour.
94 (2016) 470–485.

[35] Y.W. Bekele, T. Kvamsdal, A.M. Kvarving, S. Nordal, Adaptive isogeometric finite element analysis of steady-state groundwater flow, Int. J.
Numer. Anal. Methods Geomech. (2015).

[36] X.-H. Wu, R.R. Parashkevov, M.T. Stone, S.L. Lyons, Global scale-up on reservoir models with piecewise constant permeability field, J.
Algorithms Comput. Technol. 2 (2) (2008) 223–248.

[37] D. Schiavazzi, Redundant Multiresolution Uncertainty Propagation (Ph.D. thesis), University of Padova, 2013.
[38] E. Burman, P. Zunino, A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems,

SIAM J. Numer. Anal. 44 (4) (2006) 1612–1638.
[39] A. Ern, A.F. Stephansen, P. Zunino, A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally

small and anisotropic diffusivity, IMA J. Numer. Anal. (2008).
[40] M.F. Wheeler, A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10

(4) (1973) 723–759.
[41] G. Carey, Derivative calculation from finite element solutions, Comput. Methods Appl. Mech. Engrg. 35 (1) (1982) 1–14.
[42] G. Carey, S. Chow, M. Seager, Approximate boundary-flux calculations, Comput. Methods Appl. Mech. Engrg. 50 (2) (1985) 107–120.
[43] A. Pehlivanov, R. Lazarov, G. Carey, S. Chow, Superconvergence analysis of approximate boundary-flux calculations, Numer. Math. 63 (1)

(1992) 483–501.
[44] W. Bangerth, R. Hartmann, G. Kanschat, Deal.II—a general-purpose object-oriented finite element library, ACM Trans. Math. Software 33

(4) (2007).
[45] M. Ainsworth, A. Craig, A posteriori error estimators in the finite element method, Numer. Math. 60 (1) (1991) 429–463.
[46] M. Christie, M. Blunt, et al., Tenth SPE comparative solution project: A comparison of upscaling techniques, in: SPE Reservoir Simulation

Symposium, Society of Petroleum Engineers, 2001.
[47] M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, R.B. Lehoucq, K.R. Long, R.P. Pawlowski, E.T. Phipps, A.G.

Salinger, H.K. Thornquist, R.S. Tuminaro, J.M. Willenbring, A. Williams, K.S. Stanley, An overview of the Trilinos project, ACM Trans.
Math. Software 31 (3) (2005) 397–423.

http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref33
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref34
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref35
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref36
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref37
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref38
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref39
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref40
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref41
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref42
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref43
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref44
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref45
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref46
http://refhub.elsevier.com/S0045-7825(16)30356-5/sbref47

	Postprocessing of non-conservative flux for compatibility with transport in heterogeneous media
	Introduction
	Preliminaries
	Model equations
	Notation
	Conservation properties
	Numerical schemes

	Postprocessing
	A discrete divergence operator and its left inverse
	Postprocessing algorithm
	Error estimate
	Alternative approach
	Choice of weights
	Time dependent flow
	Postprocessing parameters

	Numerical examples
	Consistency tests
	Convergence tests
	Barrier problem
	Channel problem
	Well pair problem
	SPE-10 model

	Conclusions
	Acknowledgments
	References


