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Summary

This thesis is motivated by the increasing use of robots within numerous fields
and in a vast range of applications. The use of robots provides several advantages,
e.g. reduced labor costs, increased production and productivity, high precision and
flexibility. Fully autonomous robotic systems operate independently of humans, and
there is a strong desire to utilize robotic systems to completely automate processes,
also outside of the production industry.

The singularity-robust multiple task-priority inverse kinematics framework is a
widely used kinematic control method for a general robotic system. This framework
allows several equality tasks, i.e. tasks with a defined desired value (for instance end
effector position), to be defined, prioritized and achieved simultaneously. However,
for a general robotic system, several goals may be described as set-based tasks,
which are tasks that have a desired interval of values rather than one exact desired
value, e.g. collision or joint limit avoidance. In this thesis, a systematic approach to
include set-based tasks into this framework is presented. It is proven that set-based
tasks given high priority, i.e. above the highest priority equality task, are satisfied at
all times, but that the same cannot be guaranteed for low-priority set-based tasks.
The resulting closed-loop dynamic system can be described as a discontinuous
differential equation, and by using switched control systems theory it is proven
that the equality task errors converge asymptotically to zero when including set-
based tasks into the framework given that certain, specified conditions are satisfied.
Simulation and experimental results are presented which confirm the correctness
and effectiveness of the proposed method.

An unmanned marine vehicle may be considered a type of robotic system. How-
ever, these vehicles pose some additional challenges due to hydrodynamic effects,
underactuation, thrust allocation, communication and environmental influence. A
cornerstone ability of autonomous marine vehicles, both surface and underwater, is
to converge to and follow a general path under the influence of ocean currents. This
thesis presents two approaches to achieve this for surface vehicles, one of which is
based on absolute velocity measurements only, and one which assumes that rel-
ative velocity measurements are available. The latter has also been extended to
the underwater case. Common for these results are the fact that the control sys-
tem is designed to make the vehicle side-slip such that the total vehicle velocity
is aligned with the desired path, even if the heading is not. This is necessary to
counteract both for the curvature of the path and the ocean current. Convergence
to the desired path is achieved with asymptotic stability properties under explicit
conditions. For surface vehicles the results hold globally, whereas for underwater
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Summary

vehicles they hold for a defined domain (due to the well-known singularity of Euler
angle representation).

Another highly important ability of autonomous marine vehicles is to avoid col-
lisions, and in nautical navigation all surface vessels are subject to the International
Regulations for Preventing Collisions at Sea (COLREGs). This thesis introduces
a switched guidance system for underactuated surface vehicles to achieve collision
avoidance and path following. The proposed method is based on set-based control,
is adapted to the underactuation of marine vehicles, is highly generic, and may be
used for any combination of methods for path following and collision avoidance.
A specific guidance law for the collision avoidance mode is suggested that will, if
satisfied, make the surface vessel track a circle with a constant safe radius about
the moving obstacle center in a COLREGs compliant manner. The set-based guid-
ance system is proven to prevent collisions given that certain, specified assumptions
on the obstacle velocity are satisfied and the references provided by the guidance
system are tracked. Furthermore, path following is achieved as long as the surface
vessel can safely follow the path without colliding.
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Chapter 1

Introduction

1.1 Background and Motivation

The term “robot” was initially introduced by playwriter Karel Capek in a science
fiction play in 1920, and stems from the Czech word for work; robota [86]. Although
the robots in this play, namely artificial people constructed out of synthetic organic
matter, are quite different from what most people associate with robots today, the
phrase persevered and is now a common term for numerous mechanical devices
with a wide range of applications.

The field of robotics as we know it today emerged as a part of the industrial
revolution in the shape of manipulators (Figure 1.1(a)) along conveyor belts. Today,
the term is applied to a great variety of mechanical devices, including teleoperators,
unmanned marine and aerial vehicles and humanoids [2, 71, 86, 95]. Robots have
even become a part of our everyday life in the form of autonomous vacuum cleaners
and lawn mowers (Figure 1.1(b)). In this thesis, we consider a robot as a machine
designed to execute one or more tasks automatically with speed, precision and
repeatability. Possible applications are vast, ranging from space exploration to deep
sea inspections. Robots are used for production and manufacturing, inspection and
maintenance of underwater oil and gas structures, military purposes, environmental
surveillance and archeology [2, 72]. They are even used for social purposes and
elderly care [16] and as intelligent prosthetics [12].

The use of robots provides several advantages. In manufacturing, reduced labor
costs, increased production and productivity and high precision and flexibility are
compelling arguments. For instance, in the spraypaint industry, the best perform-
ing robots are able to transfer up to 90% of the paint to the spray surface, whereas
a human manually spraypainting the surface achieves only around 30-40% transfer
efficiency1. Teleoperators, i.e. remotely operated robots, can operate in environ-
ments that are dangerous or simply off limits to humans, such as under water, in
space or in spaces where there is a risk of radiation.

Fully autonomous robotic systems are able to operate completely independent
of humans, using a variety of sensors and communication systems to assess the
situation and make decisions and changes during operation [75]. Today there are

1Øyvind A. Landsnes, ABB Bryne
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over 800 000 industrial robots in operation world wide with varying levels of auton-
omy [86], ranging from constant repetition of a predefined motion to systems that
are able to detect objects, avoid obstacles, map its surroundings, learn based on
previous experience, etc. However, there is a strong desire to utilize robotic systems
to completely automate processes also outside of the production industry [36].

This thesis focuses on the control of marine vehicles in particular, in addition to
completely general robotic systems. Marine robotics has been an important branch
of robotics since its beginning in the early 1970s [97], and in 2015 the world’s com-
mercial fleet consisted of 89 464 vessels [89]. Imagine the decrease in shipping costs
if these vehicles were unmanned and able to safely navigate to their destination
through changing environmental forces without colliding with other ships, not to
mentioned the reduced risk of losing human lives at sea. Under the sea surface,
the use of remotely operated vehicles (ROVs, see Figure 1.1(c)) and autonomous
underwater vehicles (AUVs, see Figure 1.1(d)) is rapidly increasing for pipeline sur-
veys, cable maintenance and other inspection and intervention work on underwater
structures, in addition to fields such as marine biology, environmental monitoring,
seafloor mapping, oceanography and military use [2]. ROVs are tethered to, pow-
ered by and operated from a surface vessel, making the operation costs high in
addition to requiring an experienced human operator, and although companies like
Bluefin Robotics and Kongsberg Maritime deliver AUVs to the offshore survey
market, there are still challenges related to making them fully autonomous [24].

(a) The KR 270 R2700 ultra
Industrial Robot, produced
by KUKA.

(b) The Robomow lawn
mower.

(c) The Spectrum ROV, pro-
duced by Oceaneering.

(d) The HUGIN AUV, produced by Kongsberg
Maritime.

Figure 1.1: Examples of different robots.

1.2 Modeling and Control of Robotic Systems

The field of robotics involves elements from numerous different engineering direc-
tions, e.g. mechanical, electrical, control, computer science, and applications [86].
This thesis will mostly focus on the control aspect, although Chapter 6 also presents
implementation and gives examples of possible applications of the proposed control
theory.
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The mechanical structure of a robot manipulator consists of a series of rigid
bodies (links) interconnected by means of articulations (revolute and prismatic
joints). Typically, the manipulator has an arm that accounts for most of the move-
ment, a wrist that ensures dexterity, and an end effector that performs the task
required of the robot [81].

A complete model of a robotic system consists of the kinematics and the dynam-
ics. Kinematics describe the motion of a robotic system without considering the
forces and torques that cause the motion. Since robotic mechanisms are designed
for motion, kinematics is the most fundamental aspect of robot design, analysis,
control, and simulation, and the robotics research community has focused on ef-
ficiently applying different representations of position and orientation and their
derivatives to solve foundational kinematics problems [80]. The kinematics can be
derived by use of the Denavit-Hartenberg convention [86]. The dynamic equations
of motion describe the relationship between actuation and contact forces and the
resulting acceleration and motion trajectories. These equations may be derived us-
ing for instance Lagrange’s, Newton’s and Euler’s equations of motion for a rigid
body and can be expressed both in joint and operational space [26, 80].

Traditionally, robotic systems are controlled in their joint space. A typical
robotic control system for joint space control is illustrated in Figure 1.2. The kine-
matic controller calculates reference states based on the desired behavior, often
specified in operational space, and the current state of the system. The reference
states are the input of the dynamic controller, which calculates and imposes forces
and torques on the actual system through the actuators. There exists a variety of
controller types that may be applied, ranging from model-based feedback lineariz-
ing controllers to robust sliding mode, adaptive and standard PID-controllers [81].
Note that in kinematic control it is common to assume that the reference state is
tracked and simply use this as feedback to the kinematic controller rather than the
actual state [3]. This is illustrated by the dashed arrow in Figure 1.2.

Kinema'c)
Control)

Dynamic)
Control) Robot)

q,"q,"q).""".."qdes,)qdes"
."""

Desired)
behavior"

Γ)

Figure 1.2: A typical control structure for a robotic system with joint configuration
q and joint velocities and accelerations q̇ and q̈. Based on the desired behavior
and the current state, the kinematic controller calculates reference states and the
dynamic controller calculates actuator forces and torques Γ which are imposed on
the actual system.

Note that operational space control [45] is an alternative to joint space control.
In this control scheme, the measured joint space variables can be transformed
into the corresponding operational space variables through direct kinematics, thus
removing the need for computationally heavy inverse kinematics calculations. This
approach works directly with forces and torques, and is thus highly suitable for
robotic systems that interact with the environment such as walking or grasping
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robots, but not for non-intervention marine vehicles, which in addition have a
very simple kinematics. Furthermore, all operational space control schemes result
in considerable computational requirements which are somewhat equal to inverse
kinematics functions [81]. For these reasons, in this thesis we will focus on joint
space control, and on kinematic control in particular for general robotic systems.

1.2.1 Kinematic Control

Robotic systems may be required to perform one or several tasks which are often
given in the operational space, for instance obtaining a certain desired end effector
position and/or orientation. Hence, a variety of inverse kinematics algorithms have
been developed to map tasks from the operational space to the joint space and
thus generate reference trajectories for the controllers, all the while being able to
handle singularities and non-square matrices. The most common approach is to use
a Jacobian-based method [18, 27, 69], such as the Jacobian transpose, damped least
squares or pseudo-inverse. The Jacobian matrix defines the connection between
joint space velocities and operational space velocities and is an essential part of
kinematic control. Examples of various tasks and their corresponding kinematics
and Jacobian matrices for the underwater case are given in [2].

These different approaches have various pros and cons. Using the transpose
as an approximation of the inverse of the Jacobian matrix is not accurate, but
computationally very efficient. This approach was widely used when the avail-
able computational power was lower than it is today [10, 93]. The damped least
squares-approach is defined for systems that are not of full rank and non-square
systems. Furthermore, the damping effect ensures good behavior near singularities
by preventing the desired joint velocities from becoming too large [92]. However,
the damped least-squares solution lacks the nice, mathematical properties of the
pseudo-inverse, which is defined by four criteria [76].

In particular, the pseudo-inverse Jacobian is, like the damped least-squares
solution, defined for systems that are not square nor have full rank and is a widely
used solution to the inverse kinematics problem [17, 47, 80]. Furthermore, for full-
rank systems, the Jacobian times the corresponding pseudo-inverse is equal to the
identity matrix, and for all systems it is trivial to calculate a null-space matrix
which may be used to achieve secondary tasks. This attribute is essential in Part I
of this thesis.

A robotic system is said to be kinematically redundant if it possesses more
degrees of freedom (DOFs) than those required to perform a certain task [81]. In
this case, the “excess” DOFs can be utilized in order to perform several tasks using
null-space-based (NSB) behavioral control. Furthermore, it is useful to sort tasks
in a prioritized order to handle potentially conflicting tasks. Initial results solves
the problem for two tasks with open loop control [39, 56]. However, the proposed
approach is prone to algorithmic singularities, and the open loop control does not
guarantee convergence of the tasks. An algorithmic singularity can arise if two tasks
are linearly dependent and in conflict, in which case the secondary task asks for
very high joint velocities. This problem is solved for open loop control in [23] and
expanded to a general number of tasks with closed-loop control in [3, 6]. It is proven
that the task errors converge to zero given that certain, specified assumptions are
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satisfied. This framework is known as the singularity-robust multiple task-priority
inverse kinematics framework, and the approach may be utilized on a number of
different robotic systems for a wide range of applications [5, 56, 79, 87, 88].

The singularity-robust multiple task-priority inverse kinematics framework, which
is described in more detail in Chapter 2, has been developed for equality tasks.
Equality tasks specify exactly one desired value for given states of the system, for
instance the position and orientation of the end effector. However, for a general
robotic system, several goals may not be described as equality tasks, but rather as
set-based tasks, which are tasks that have a desired interval of values rather than
one exact desired value. Such tasks are also referred to as inequality constraints.
Examples of such tasks are staying within joint limits [59], collision/obstacle avoid-
ance [39] and field of view (FOV). As recognized in [42], the multiple task-priority
inverse kinematics algorithm is not suitable to handle set-based tasks directly, and
these tasks are therefore usually transformed into more and unnecessary restrictive
equality constraints through potential fields or cost functions [30, 45].

Set-based Tasks

An approach to systematically include set-based tasks in a prioritized task regu-
lation framework is proposed in [42] and further improved in [29]. To handle the
set-based tasks, the algorithms in [29, 42] transform the inverse kinematics problem
into a quadratic programming (QP) problem. The optimization problem is solved
through an iterative algorithm which may be computationally heavy and slow.
Furthermore, by defining the problem as a QP problem, the tasks can not be di-
rectly included in the multiple task-priority inverse kinematics framework. In [82],
set-based tasks are handled by resorting to proper activation and regularization
functions, but no analytical framework to prove the convergence/satisfaction of the
tasks is provided. In [57, 58] set-based tasks are considered in a prioritized order
and an algorithm is developed to ensure a smooth control law when (de)activating
a set-based task. However, during transitions, the strict priority of the tasks is lost.

In [25], set-based tasks can be considered only as high priority tasks, and in [9]
the inequality constrains are transformed to an equality constraint by the use
of proper slack variables. The optimization problem is then modified in order to
minimize the defined slack variables together with the task errors in a task-priority
architecture.

Set-based tasks may also be embedded in the control problem by assigning
virtual forces that push the robot away from the set boundaries. This idea was
first proposed in [44] and then used in several following approaches. However, when
resorting to virtual forces/potentials fields, satisfaction of the boundaries can not be
analytically guaranteed and often the overall control architecture may be experience
the considerable drawbacks described in for instance [6, 48], such as oscillating
behavior.

In this thesis, the singularity-robust multiple task-priority inverse kinematics
framework is extended to systematically handle set-based tasks in addition to equal-
ity tasks, thereby expanding an already generic, widely used method to handle all
types of tasks in a consistent, unified manner. Note that an approach similar to
this framework may also be applied for operational space control to simultaneously
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achieve multiple tasks in a prioritized order. Hence, the results presented in this
thesis may be extended also to operational space control.

1.3 Modeling and Control of Marine Vehicles

As mentioned, unmanned marine vehicles may be considered as a type of robotic
system, and the equations of motion consist of kinematics and dynamics. However,
these crafts pose some additional challenges due to hydrodynamic effects, underac-
tuation, thrust allocation, communication and environmental influence [31]. Even
so, a typical control system for a marine vehicle has the same structure as that of
a robotic system (Figure 1.2), where kinematic control is referred to as guidance.
Furthermore, navigation, i.e. the transformation from sensor output and naviga-
tion data to state estimation, is essential for control of marine vehicles. This thesis
focuses on the guidance and control part, and assumes that the navigation system
provides correct estimates of the vehicle states.

The dynamics of marine vehicles include hydrodynamic damping, gravity and
buoyancy effects, mass and inertia effects of the rigid body, added mass due to the
movement through fluid, Coriolis and centripetal forces and actuator forces. Unlike
a traditional industrial manipulator, a marine vehicle is typically underactuated,
meaning it has fewer control inputs than it has DOFs. For example, the state of a
surface vessel is given by a two-dimensional position and a heading, i.e. three DOF,
and it typically has 2 control inputs, e.g. a propeller and a rudder. This must be
accounted for by the guidance and control system to achieve the desired behavior.

A marine vehicle may have several objectives. The most common are dynamic
positioning (DP), target tracking, trajectory tracking and path following [31]. In
addition, additional tasks or motivations may be considered, such as collision avoid-
ance and fuel/energy consumption.

The goal of DP is to keep the vessel position and heading constant, which is
useful for mobile offshore drilling units, research vessels, cruise ships etc. Target
tracking aims to track a moving object for which no future motion information is
available, and is applicable for for instance missiles.

The objective of trajectory tracking systems is to track a predefined path with
a temporal constraint, i.e. the vessel should be on a specific point of the path at a
specific time. Path following corresponds to trajectory tracking without the time
demand: the vessel should simply converge to and follow a specified path. In some
cases the vessel should move along the path at a desired speed, and the control
problem is then a maneuvering control problem. In this thesis, the main focus is
on path following and maneuvering control of marine vehicles in the presence of
ocean currents and collision avoidance.

1.3.1 Path Following in the Presence of Ocean Currents

A commonly used approach for path following and maneuvering control is the
line-of-sight (LOS) method [28, 31, 40, 51, 52, 77, 83]. LOS is a guidance method
providing attitude references to the marine vehicle that, if satisfied, will ensure
convergence to the desired path. However, this control approach is susceptible to
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environmental disturbances such as ocean currents, waves and wind: path deviation
and convergence problems will occur if the vessel is affected by environmental
disturbances [15]. For straight line paths, LOS can be used with integral action [15,
20, 21] or adaptive estimation techniques [52] by allowing the vehicle to side-slip
to compensate for the effect of the ocean current. In [20] the steady state of the
vessel is used to estimate the ocean current magnitude and direction, and in [52]
the estimates of the ocean current is used directly in the LOS guidance law.

For curved path following, the vehicle has to side-slip even without ocean cur-
rents to achieve path following due to the non-zero curvature of the path. Rigorous
stability properties for LOS with side-slip used on a general, curved path in the
plane when ocean current is not considered is given in [33]. The side-slip is calcu-
lated based on velocity measurements. A similar approach is used in [13], where
curved path following of general paths for both surface and underwater vehicles is
achieved by analyzing Serret-Frenet equations. In [98], an approach to achieve a
spiraling motion for an underwater glider is presented. Experimental results show
that the results are applicable also when ocean currents influences the glider, but
the current must be known beforehand. A glider differs from standard AUVs in the
sense that it has a single internal movable and rotatable mass to steer the motion.

Side-slipping is required both for curved path following and for ocean current
compensation, and thus also in the case when these two scenarios are combined.
This thesis presents two approaches to achieve this, where one is based on abso-
lute velocity measurements [68], and the other relies on relative velocity measure-
ments [63, 64]. A similar approach as in [63] was suggested later on [32], where a
LOS path following approach is used with current estimation techniques and mea-
surements of relative velocities, allowing the vehicle to follow curved paths while
compensating for the influence of ocean currents.

1.3.2 Collision Avoidance

In nautical navigation, all surface vessels are subject to COLREGs [49], and un-
manned surface vessels (USVs) must be able to abide by these regulations without
humans in the control loop. There exists several path planning algorithms to com-
pute a safe path to avoid obstacles, such as A?, RRT and HBug [41]. However,
these global path planning methods are not suitable for unknown and dynamic
environments, and must be complemented by a local guidance system that may is
able to avoid small, unforeseen and dynamic obstacles while following the global
path. A variety of such local approaches have been proposed, both for the gen-
eral and maritime case, such as potential fields [44], dynamic window [34, 54] and
velocity obstacles [49, 90]. However, these approaches have several drawbacks. Po-
tential fields may suffer from oscillating behavior and other limitations [48]. The
dynamic window approach assumes no sideways velocity, and is therefore not suit-
able for marine vehicles since these are able to and will glide sideways while moving
through water. Furthermore, the dynamic window approach can be computation-
ally heavy, but it has the advantage that it can easily be modified to comply with
COLREGs [54]. Finally, the velocity obstacle (VO) approach has good mathemat-
ical qualities, is computationally simple and does easily comply with COLREGs.
However, it assumes linear (i.e. non-rotational) and constant velocities and is not
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straight-forward to implement. Furthermore, it is not obvious how to combine these
collision avoidance methods with existing guidance methods such as LOS.

In [96], the proposed guidance system switches between a path following task
and a collision avoidance task. Only stationary obstacles are considered, making
the method insufficient for avoiding collisions with other vessels. Furthermore, the
switching between path following and collision avoidance is given as a smooth
transition function dependent on the distance between the USV and the obsta-
cle center, which results in a potential field approach with known drawbacks as
discussed above.

1.4 Thesis Outline and Contributions

This thesis is divided into three main parts: Part I, which consists of Chapter 3-6,
describes a method for incorporating set-based tasks into the Singularity-robust
Multiple Task-priority Inverse Kinematics Framework using switched systems the-
ory, whereas Part II considers curved path following of marine vehicles in the
presence of ocean currents. This is covered by Chapter 7-9. Finally, Part III com-
bines results from Part I and II in the form of a set-based path following system
for surface vessels to avoid static and dynamic obstacles, which is presented in
Chapter 10.

This chapter is followed by a brief introduction to the notation, mathematical
preliminaries and models used throughout this thesis, which is given in Chapter 2.

In the following, the topic and the contributions of each chapter are presented.

Part I - Set-based Control within the Singularity-robust Multiple Task-
priority Inverse Kinematics Framework
Chapter 3

Topic: The widely used singularity-robust multiple task-priority inverse kin-
ematics framework is applied to a dual-arm underwater vehicle manip-
ulator system (UVMS).

Contribution: This chapter proposes to use the singularity-robust multiple
task-priority inverse kinematics scheme [3] for a dual-arm UVMS, which
calculates references for both the manipulator arms and the vehicle base
itself, in order to implement several concurrent tasks. A UVMS may be
considered as a manipulator arm mounted on a floating base, and a
two-manipulator system can use the two arms to cooperate and thereby
perform more complex tasks and pick up larger/heavier objects. A lot of
research has been done on fixed dual-arm systems regarding coordinated
and cooperative control, leader/follower control, force control, collision
detection and avoidance etc. [19, 91], but little has been done for a two-
manipulator floating base system. A variety of tasks can be implemented
and included in a prioritized order. Furthermore, it is proposed to con-
sider one manipulator and the vehicle base as a leader and the second
manipulator as the follower. This division ensures that conflicting tasks
do not attempt to move the vehicle base in different directions and that
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the tasks are achieved using the desired DOFs. An example scenario in
which the framework can be applied is presented.

Chapter 4
Topic: We extend the singularity-robust multiple task-priority inverse kin-

ematics framework to incorporate high-priority set-based tasks. The
chapter includes a stability analysis and simulation results.

Contribution: The singularity-robust multiple task-priority inverse kine-
matics framework, which is described in detail in Section 2.5, allows
equality tasks to be considered in a prioritized order by projecting task
velocities through the null-spaces of higher priority tasks. Set-based
tasks, i.e. tasks with a range of valid values, are normally handled
through over-constraining QP-problems [29], artificial potential fields
which make a stability analysis infeasible [45], or smooth switched sys-
tems in which the strict task priority is lost during transitions [58]. This
chapter extends the singularity-robust multiple task-priority inverse kin-
ematics framework to handle high-priority set-based tasks in addition
to equality tasks. The proposed method is proven to ensure asymp-
totic convergence of the equality task errors and the satisfaction of all
high-priority set-based tasks. Furthermore, the priority of the tasks are
maintained at all times.

Chapter 5
Topic: The results of Chapter 4 are extended to include low-priority and a

combination of high- and low-priority set-based tasks in the singularity-
robust multiple task-priority inverse kinematics framework. The chapter
includes a stability analysis and simulation results.

Contribution: This chapter builds on Chapter 4 and presents a similar
analysis for the case of low-priority set-based tasks, which are tasks that
have priority after at least one equality task, and for a combination of
high- and low-priority set-based tasks. The proposed method is proven
to ensure asymptotic convergence of the equality task errors and the
satisfaction of all high-priority set-based tasks. Low-priority set-based
tasks can not be guaranteed to be satisfied at all times due to the influ-
ence of the higher priority equality tasks. However, if the higher priority
equality task errors are zero, the low-priority set-based tasks will also
be satisfied.

Chapter 6
Topic: A practical implementation of the results in Chapter 4 and 5 is

presented along with experimental results that confirm the correctness
of the theory and the effectiveness of the method.

Contribution: This chapter presents the proposed implementation of the
results from Chapter 4 and 5 and discusses the resulting computational
load. Experiments were run on a six DOF UR5 manipulator. Several
set-based tasks are implemented, including collision avoidance, field of
view, and limited workspace, and the experimental results confirm the
previously presented theory.
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Part II - Curved Path Following of Marine Vehicles in the Presence of
Unknown Ocean Currents
Chapter 7

Topic: In this chapter, an existing curved path following method [13] for
surface vehicles is presented in order to achieve convergence to the path
also in the presence of unknown ocean currents. The proposed method
is suitable for USVs that are equipped with sensors to measure relative
velocities.

Contribution: This chapter extends the curved path following method
in [13] to obtain path following of USVs also under the influence of un-
known ocean currents. This is achieved by expanding the guidance law
in [13] and combining it with an ocean current observer described in [1],
allowing the USV to side-slip to compensate both for the curvature of the
path and the current effects. The closed-loop system includes feedback
linearizing controllers, and is dependent on relative velocity measure-
ments. The path is represented by a Serret-Frenet reference frame. The
results are also applicable for AUVs restricted to the horizontal plane.

Chapter 8

Topic: In this chapter, an existing curved path following method [13] for
AUVs is presented in order to achieve convergence to the path also when
ocean currents affect the vehicle. The proposed method is suitable for
vehicles that are equipped with sensors to measure relative velocities.

Contribution: This chapter extends the result of Chapter 7 to AUVs and is
motivated by [13], in which curved path following is achieved for under-
water vehicles when no ocean currents affect the vehicle. The path is
represented by a Serret-Frenet reference frame, and the key components
of the closed-loop system are guidance laws, which serve as input to the
control system, an ocean current observer and an update law to drive
the reference frame along the path. As in Chapter 7, the AUV side-slips
to compensate for the combined effect of the curvature of the path and
the ocean current.

Chapter 9

Topic: A guidance and control system is developed to achieve curved path
following for USVs under the influence of ocean currents. The proposed
method relies on absolute velocity measurements.

Contribution: This chapter proves that the LOS guidance law suggested
in [33] for curved path following is suitable also for curved path follow-
ing in combination with ocean current compensation by using adaptive
feedback linearization combined with sliding mode. The proposed guid-
ance and control system requires measurements of absolute velocities
only, and is therefore suitable when the vehicle in question lacks sen-
sors to measure relative velocities. Furthermore, the guidance law is not
based on Serret-Frenet frames, which allows for any parametrization of
the path and removes the need for an update law for the Serret-Frenet
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frame and an ocean current observer. The results are applicable for USVs
and AUVs restricted to the horizontal plane.

Part III - A Set-based Approach for Path Following of Marine Vehicles
with Collision Avoidance
Chapter 10

Topic: In this chapter, we consider a USV whose objectives are path fol-
lowing and collision avoidance. Results from Part I are adapted to the
underactuated USV and a specific guidance law for obstacle avoidance
is presented.

Contribution: The contribution of this chapter is twofold. Firstly, it is
suggested to apply the set-based theory presented in Chapter 4-6 to
satisfy two objectives: Collision avoidance and path following for an un-
manned surface vehicle. The approach defines collision avoidance as a
high-priority set-based task and path following as a low-priority equality
task, and is adapted to the underactuated USV by switching between
two predefined guidance laws rather than combining them using the
Null-Space-Based Inverse Kinematics approach for fully actuated sys-
tems as in Part I of this thesis. The guidance laws, if satisfied, will en-
sure path following and collision avoidance respectively. Thus the system
is equipped with one path following mode and one collision avoidance
mode, in addition to a defined and deterministic method for switching
between these two. This method can be used for any combination of
path following and collision avoidance guidance laws, making it a highly
generic solution. Secondly, a specific LOS-based guidance law for colli-
sion avoidance is suggested. This guidance law, if satisfied, will ensure
that the USV tracks a circle with constant radius about the obstacle cen-
ter, which may be stationary or moving, and is specifically designed to
assure collision avoidance while abiding by the COLREGs. The guidance
system is especially suitable to avoid collisions with small and dynamic
obstacles, and can easily be combined with existing global path planning
methods that handle topography [41].
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Chapter 2

Mathematical Preliminaries and
Models

This chapter presents notation, stability theory and relevant background theory
that are of relevance to the analysis and results presented in this thesis.

2.1 Notation

In this thesis, the space Rn denotes the Euclidian space of dimension n, and vectors
and matrices are expressed in bold face.

Rotations are described using the Euler angle representation φ, θ and ψ, where
the transformation from reference frame {a} to {b} is given as

Rb
a(Θba) =

c(ψ)c(θ) −s(ψ)c(φ) + c(ψ)s(θ)s(φ) s(ψ)s(φ) + c(ψ)s(θ)c(φ)
s(ψ)c(θ) c(ψ)c(φ) + s(ψ)s(θ)s(φ) −c(ψ)s(φ) + s(ψ)s(θ)c(φ)
−s(y) c(y)s(φ) c(y)c(φ)


,

(2.1)

where s(·) , sin(·), c(·) , cos(·) and Θba = [φ, θ, ψ]T is the roll, pitch and yaw
angle, respectively. The rotation matrix has the following properties [31].

det(Rb
a(Θba)) = 1, (2.2)

Rb
a(Θba)Rb

a(Θba)T = Rb
a(Θba)TRb

a(Θba) = I3×3, (2.3)

Ra
b (Θba) =

[
Rb
a(Θba)

]−1
= Rb

a(Θba)T , (2.4)

Rc
a(Θca) = Rc

b(Θcb)R
b
a(Θba). (2.5)

The pseudo-inverse of a matrix J is denoted J†.

2.2 Trigonometric Formulas

The addition formula for arctan-terms states that

arctan(x) + arctan(y) = arctan

(
x+ y

1− xy

)
. (2.6)
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Furthermore, the sine and cosine of an arctan term is defined as

α = arctan
(a
b

)
,

cos(α) = cos
(

arctan
(a
b

))
=

b√
a2 + b2

,

sin(α) = sin
(

arctan
(a
b

))
=

a√
a2 + b2

.

(2.7)

Figure 2.1: Illustration of (2.7).

2.3 Stability Theory

2.3.1 General Stability

Consider the non-autonomous system

ẋ = f(t,x), x ∈ Rn (2.8)

The vector function f is assumed to be piecewise continuous in t and locally Lip-
schitz in x ∈ Rn. The equilibrium point x = 0 of the system (2.8) is
Stable if for each ε > 0, there exists a δ(ε, t0) > 0 such that ||x(t0)|| < δ ⇒

||x(t)|| < ε,∀ t ≥ t0 ≥ 0.

Uniformly stable (US) if for each ε > 0, there exists a δ(ε) > 0 such that
||x(t0)|| < δ ⇒ ||x(t)|| < ε,∀ t ≥ t0 ≥ 0.

Unstable if it is not stable.

Asymptotically stable (AS) if it is stable and there is a positive constant
c = c(t0) such that x(t)→ 0 as t→∞,∀ ||x(t0)|| < c.
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Uniformly asymptotically stable (UAS) if it is uniformly stable and there is
a positive constant c, independent of t0, such that ∀ ||x(t0)|| < c, x(t) → 0
as t→∞, uniformly in t0.

Uniformly globally asymptotically stable (UGAS) if it is uniformly stable,
δ(ε) can be chosen to satisfy limε→∞ δ(ε) =∞, and, for each pair of positive
numbers η and c, there is a T = T (η, c) > 0 such that ||x(t)|| < η, ∀ t ≥
t0 + T (η, c),∀ ||x(t0)|| < c.

Uniformly locally exponentially stable (ULES) if there exist constants γ1,
γ2 and r > 0 such that for all (t0,x(t0)) ∈ R≥0×Br, ||x(t)|| ≤ γ1||x(t0)||e−γ2(t−t0)

∀ t ≥ t0, where Br is the open ball Br := {x ∈ Rn : ||x|| < r}.
Uniformly semi-global exponentially stable (USGES) if for each r > 0

there exist constants γ1, γ2 > 0 such that (t0,x(t0)) ∈ R≥0 × Br, ||x(t)|| ≤
γ1||x(t0)||e−γ2(t−t0) ∀ t ≥ t0.

Uniformly globally exponentially stable (UGES) if there exist constants γ1,
γ2 > 0 such that for all (t0,x(t0)) ∈ R≥0×Rn, ||x(t)|| ≤ γ1||x(t0)||e−γ2(t−t0) ∀ t ≥
t0.

κ-exponentially stable if there exists a neighborhood Ωp ⊂ Rn, a positive
constant λ, and a function h(·) of class κ such that all solutions of x(t)
satisfy ||x(t)|| ≤ h(||x(t0)||)e−λ(t−t0) ∀ t ≥ t0,∀ ||x(t0)|| ∈ Ωp.

Globally κ-exponentially stable if it is κ-exponentially stable with Ωp = Rn.
Definitions from [43], [50] and [85].

2.3.2 Hurwitz matrix

Theorem 4.5 [43] : Consider the linear system

ẋ = Ax. (2.9)

The matrix A is Hurwitz if and only if all eigenvalues λi of A satisfy Re(λi) < 0.
If A is Hurwitz, the equilibrium point x∗ = 0 is globally asymptotically (exponen-
tially) stable.

Theorem 4.6 [43] : Consider a quadratic Lyapunov function candidate V (x) =
xTPx where P = P T > 0 is a real symmetric positive definite matrix. The
derivative of V along the trajectories of the linear system in Equation (2.9) is given
by

V̇ (x) = xTP ẋ+ ẋTPx = xT (PA+ATP )x = −xTQx, (2.10)

where Q is a symmetric matrix defined by PA+ATP = −Q.

The matrix A is Hurwitz if and only if for any given positive definite symmet-
ric matrix Q there exists a positive definite symmetric matrix P that satisfies
PA +ATP = −Q. Moreover, if A is Hurwitz, then P is the unique solution of
PA+ATP = −Q.
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2.3.3 Lyapunov stability

Stability of the system in Equation (2.8) can be proven using Lyapunov’s direct
method [43]. This is done by considering Lyapunov function candidates, often de-
noted V . A time-varying function V (t,x) is said to be
Positive definite if V (t,x) ≥ W1(x) for some positive definite W1(x) which

satisfies W1(0) = 0 and W1(x) > 0 for x 6= 0. Similarly, V (t,x) is positive
semidefinite and radially unbounded if W1(x) is positive semidefinite and ra-
dially unbounded.

Decrescent if V (t,x) ≤W2(x) for all t ≥ 0 for some positive definite W2(x).
Theorem 4.8 and 4.9 [43] : The equilibrium point x∗ = 0 is

Stable US UAS UGAS

V
Positive
definite

Positive definite,
decrescent

Positive definite,
decrescent

Positive definite,
decrescent, radi-
ally unbounded

V̇
Negative
semidefinite

Negative
semidefinite

Negative definite Negative
definite

Theorem 4.10 [43] : Let x∗ = 0 be an equilibrium point for the system in (2.8)
and D ⊂ Rn be a domain containing x∗. Let V : [0,∞)×D→ R be a continuously
differentiable function such that

k1||x||a ≤ V (t, x) ≤ k2||x||a, (2.11)
δV

δt
+
δV

δx
f(t,x) ≤ −k3||x||a, (2.12)

∀ t ≥ 0 and ∀ x ∈ D, where k1, k2, k3 and a are positive constants. Then, x∗ is
exponentially stable. If the assumptions hold globally, then x∗ is globally exponen-
tially stable.

2.3.4 Stability of Cascades

Consider the nonlinear time-varying cascaded system

ẋ = f1(t,x) + g(t,x,y)y,

ẏ = f2(t,y),
(2.13)

where f1 and f2 are continuously differentiable in their arguments.

Lemma 2.2 [74]: The cascaded system in equation (2.13) is UGAS if both ẋ =
f1(t,x) and ẏ = f2(t,y) are UGAS and the solutions of (2.13) are globally, uni-
formly bounded.

Theorem 2 [73]: The cascaded system in Equation (2.13) is UGAS if the following
assumptions are satisfied:
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• A1 - The system ẋ = f1(t,x) is UGAS with a Lyapunov function satisfying∥∥ δV
δx

∥∥ ||x|| ≤ c1V (t,x) ∀ ||x|| ≥ η, where c1 > 0 and η > 0.

• A2 - The function g(t,x,y) satisfies ||g(t,x,y)|| ≤ θ1(||y||) + θ2(||y||)||x||,
where θ1, θ2 : R+ → R+ are continuous.

• A3 - The system ẏ = f2(t,y) is UGAS and for all t0 ≥ 0,
∫∞
t0
||y(s, t0,y(t0))||ds ≤

φ(||y(t0)||), where the function φ(·) is a class K function.
Lemma 8 [73]: If, in addition to the assumptions in Theorem 2 [73], both ẋ =
f1(t,x) and ẏ = f2(t,y) are globally K-exponentially stable, then the cascaded
system in equation (2.13) is globally K-exponentially stable.

2.4 Modeling of Marine Surface Vessels and Underwater
Vehicles

This section introduces theory on modeling of marine vehicles and presents the
simulation models that have been used in the work presented in Part II and III.

2.4.1 Marine Surface Vessels

In general, the equations of motion of a USV under the influence of ocean currents
can be described with 3 DOFs. The model is given in (2.14) [31]:

η̇ = Ri
b(Θib)νr + Vc,

MRBν̇ +MAν̇r +CRB(ν)ν +CA(νr)νr +D(νr)νr = Bf ,
(2.14)

where η = [x, y, ψ]T is the position and heading in the inertial frame {i}, ν =
[u, v, r]T is the surge velocity, sway velocity and yaw rate in body frame {b} and
Θib = [0, 0, ψ]T . Furthermore, Vc = [Vx, Vy, 0]T is the ocean current in the inertial
frame and νr = ν −RT (ψ)Vc = [ur, vr, r]

T is the body velocities relative to the
ocean current. The rotation matrix Ri

b(Θib) is defined in (2.1) and simplifies to

Ri
b(ψ) ,

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


,

(2.15)

and the controlled input f = [T, δ]T where T is the propeller force and δ is the
rudder angle. The matrix MRB = MT

RB > 0 is the rigid-body mass and inertia
matrix and CRB is the rigid-body Coriolis and centripetal matrix. Similarly,MA =
MT

A > 0 and CA are mass and Coriolis matrices for hydrodynamic added mass.
The strictly positive hydrodynamic matrix is given by D and B ∈ R3×2 is the
actuator configuration matrix.
Assumption 2.1: The USV is port-starboard symmetric.
Assumption 2.2: The body-fixed coordinate frame b is located at a distance

(x?g, 0) from the USV’s center of gravity (CG) along the center-line of the USV,
where x?g is to be defined later.
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Remark 2.1: The body-fixed coordinate system can always be translated to the
required location x?g [31].

Assumption 2.3: The ocean current in the inertial frame Vc , [Vx, Vy, 0]
T is

constant, irrotational and bounded. Hence there exists a constant Vmax > 0 such
that Vmax >

√
V 2
x + V 2

y .

Remark 2.2: Note that the model (2.14) does not depend on wave frequency.
Hence, the parameters in MA and D can be considered constant.

Remark 2.3: It is shown in [31] that since the ocean current is constant and
irrotational in i, the USV can be described by the 3-DOF maneuvering model
in (2.14).

Given the assumptions above, the matrices have the following structure:

Mx ,

mx
11 0 0
0 mx

22 mx
23

0 mx
23 mx

33


,

D(νr) ,

d11 + dq11ur 0 0
0 d22 d23

0 d32 d33


,

(2.16)

B ,

b11 0
0 b22

0 b32


,

Cx(z) ,

 0 0 −mx
22z2 −mx

23z3

0 0 mx
11z1

mx
22z2 +mx

23z3 −mx
11z1 0


,

for x ∈ {RB,A}. Assumption 2.1-2.2 justify the structure of the matricesMx and
D. The structure of C is obtained as described in [31]. Furthermore, the distance
x?g from Assumption 2.2 is chosen so thatM−1Bf = [τu, 0, τr]

T . This point (x?g, 0)
exists for all port-starboard symmetric ships [15], where

M =

m11 0 0
0 m22 m23

0 m23 m33

 = MRB +MA. (2.17)

For control purposes it is useful to express the USV model in component form.
Below are two alternative rewrites of the model (2.14), which, depending on appli-
cation and available on-board sensors, are used throughout this thesis.

Relative velocities

The model below expresses the motion of the ship through relative velocities only
and is suitable for control schemes where the USV in question possesses sensors
that provide these velocities as feedback. To derive these expressions, the property
MRBν̇ + CRB(ν)ν ≡ MRBν̇r + CRB(νr)νr which follows from Assumption 2.3
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has been used [31].

ẋ = cos(ψ)ur − sin(ψ)vr + Vx,

ẏ = sin(ψ)ur + cos(ψ)vy + Vy,

ψ̇ = r,

u̇r = Fur (vr, r)−
d11 + dq11ur

m11
ur + τu,

v̇r = X(ur)r + Y (ur)vr,

ṙ = Fr(ur, vr, r) + τr,

(2.18)

where

Fur (vr, r) =
m22vr +m23r

m11
r, (2.19)

X(ur) =
m23

2 −m11m33

m22m33 −m23
2
ur +

d33m23 − d23m33

m22m33 −m23
2
, (2.20)

Y (ur) =
m22m23 −m11m23

m22m33 −m23
2
ur −

d22m33 − d32m23

m22m33 −m23
2
, (2.21)

Fr(ur, vr, r) =
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m23
2

vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m23
2

r. (2.22)

Absolute velocities

The model below expresses the motion of the ship by separating the effects of
the ocean current and expressing the remainder of the model through absolute
velocities. In deriving the expressions below, it has been used thatmRB

11 −mRB
22 = 0,

which follows from the fact that mRB
11 = mRB

22 = m, where m is the mass of the
vessel [31].

ẋ = cos(ψ)u− sin(ψ)v,

ẏ = sin(ψ)u+ cos(ψ)v,

ψ̇ = r,

u̇ = −d11 + dq11u

m11
u+

(m22v +m23r)r

m11
+ φTu (ψ, r)θu + τu,

v̇ = X(ur, uc)r + Y (ur)vr,

ṙ = Fr(u, v, r) + φTr (u, v, r, ψ)θr + τr,

(2.23)
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where

θu = θr =
[
Vx Vy V 2

x V 2
y VxVy

]T
, (2.24)

φu(ψ, r) =


d11+2dq11u

m11
cos(ψ)− mA11−m

A
22

m11
r sin(ψ)

d11+2dq11u
m11

sin(ψ) +
mA11−m

A
22

m11
r cos(ψ)

−dq11 cos2(ψ)
−dq11 sin2(ψ)

−2dq11 cos(ψ) sin(ψ)


,

(2.25)

X(ur, uc) =
1

Γ

(
m33(−d23 −m11ur −mRB

11 uc)

+ m23d33 +m23(m23ur +mRB
23 uc +mA

22uc)
)
, (2.26)

Y (ur) =
1

Γ

(
−m33d22 +m23d32 +m23(mA

22 −mA
11ur)

)
, (2.27)

Fr(u, v, r) =
m22

Γ
(−(m22v −m23r)u+m11uv − d32v − d33r)

− m23

Γ
(−m11ur − d22v − d23r) . (2.28)

Here, Γ = m22m33−m2
23 > 0. Furthermore, the function φr(u, v, r, ψ) = [φr1, ..., φr5]T

is defined by [
φr1
φr2

]
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
a1

a2

]
,

φr3 = −m22

Γ
(mA

11 −mA
22) sin(ψ) cos(ψ),

φr4 =
m22

Γ
(mA

11 −mA
22) sin(ψ) cos(ψ),

φr5 =
m22

Γ
(mA

11 −mA
22)(1− 2 sin2(ψ)),

(2.29)

where

a1 = −m22

Γ

(
(mA

11 −mA
22)v + (mA

23 −mA
22)r

)
− m23

Γ
mA

11r, (2.30)

a2 =
m22

Γ

(
d32 − (mA

11 −mA
22)u

)
− m23

Γ
d22. (2.31)

2.4.2 Underwater Vehicles

The equations of motion of an AUV under the influence of ocean currents is similar
in structure to that of the surface vessel (2.14) [31]. Note that a neutrally buoyant
AUV moving in the horizontal plane may be described by the same models as
a surface vessel, and that the model presented in this section is relevant for 3D
motion.
Assumption 2.4: The roll angle φ of the AUV is assumed passively stabilized
due to the effects of gravity and/or fins.
Remark 2.4: Assumption 2.4 is a common assumption for slender-body under-
water vehicles such as HUGIN [31].
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η̇ = J(Θ)νr + Vc,

Mν̇r +C(νr)νr +D(νr)νr + g(η) = Bf .
(2.32)

The state of the surface vessel is given by the vector η = [x, y, z, θ, ψ]
T , which

describes the position p = [x, y, z]T and the orientation Θ = [θ, ψ]T , i.e. the pitch
and way angles, of the AUV with respect to the inertial frame {i}. The vector
ν = [u, v, w, q, r]

T contains the linear and angular velocities of the underwater
vehicle defined in the body-fixed frame {b}, where u is the surge velocity, v is the
sway velocity, w is the heave velocity and q and r are the pitch and yaw rates,
respectively. The ocean current velocity in the body frame, νc = [uc, vc, wc, 0, 0]

T ,
is obtained from [uc, vc, wc]

T = Ri
b(Θib)

TVc = Ri
b(Θib)

T [Vx, Vy, Vz]
T , where the

rotation matrix R(Θib) is defined in 2.1 and Θib = [0, θ, ψ]T . Hence, R(Θib)
simplifies to

Ri
b(Θib) =

cos(ψ) cos(θ) − sin(ψ) cos(ψ) sin(θ)
sin(ψ) cos(θ) cos(ψ) sin(ψ) sin(θ)
− sin(θ) 0 cos(θ)


.

(2.33)

Furthermore,

J(Θib) ,

[
Ri
b(Θ

i
b) 03×2

02×3 T (Θib)

]
,

T (Θib) ,

[
1 0
0 1

cos(θ)

]
.

(2.34)

Similar to (2.14),M ,D(νr) andC(νr) describe the mass, damping and Coriolis
and centripetal effects, respectively, whereM and C include the added mass effect.
In addition, g(η) contains gravity and buoyancy forces, and the controlled input
f = [T, δq, δr]

T consists of the thruster force and the rudder angles of the side and
top/bottom rudders, respectively.
Assumption 2.5: The AUV is port-starboard symmetric.
Assumption 2.6: The body-fixed coordinate frame b is anchored in a point

(x?g, 0, 0) from the vehicle’s CG along the center-line of the AUV, where x?g is to be
defined later.
Remark 2.5: The body-fixed coordinate system can always be translated to the
required location x?g [31].
Assumption 2.7: The vehicle is neutrally buoyant and the CG and the center
of buoyancy (CB) are located along the same vertical axis in the body frame.
Remark 2.6: CG and CB are chosen through design of the underwater vehicle
using weights and buoyancy elements.
Assumption 2.8: The ocean current in the inertial frame Vc , [Vx, Vy, Vz, 0, 0]

T

is constant, irrotational and bounded. Hence there exists a constant Vmax > 0 such
that Vmax >

√
V 2
x + V 2

y + V 2
z .
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Given the assumptions above, the matrices have the following structure:

M ,


m11 0 0 0 0

0 m22 0 0 m25

0 0 m33 m34 0
0 0 m34 m44 0
0 m25 0 0 m55


,

g(η) =


0
0
0

BGzW sin(θ)
0


,

D(νr) ,


d11 + dq11|ur| 0 0 0 0

0 d22 0 0 d25

0 0 d33 d34 0
0 0 d43 d44 0
0 d52 0 0 d55


,

B ,


b11 0 0
0 0 b23

0 b32 0
0 b42 0
0 0 b53


,

(2.35)

C(νr) ,


0 0 0 m33wr +m34q −m22vr −m25r
0 0 0 0 m11ur
0 0 0 −m11ur 0

−m33wr −m34q 0 m11ur 0 0
m22vr +m25r −m11ur 0 0 0


,

where BGz is the vertical distance between CG and CG, and W is the weight
of the AUV. Assumption 2.5-2.7 justify the structure of the matrices M and D.
The structure of C is obtained as described in [31]. Furthermore, the distance x?g
from Assumption 2.6 is chosen so that M−1Bf = [τu, 0, 0, τq, τr]

T . τu, τq and
τr are proportional to T , δq and δr respectively and are the controlled inputs in
the system. The point (x?g, 0, 0) exists for AUVs of cylindrical shape employing
symmetric steering and diving control surfaces [14].

In this thesis, the following relative velocity component model has been used:

ẋ = cos(θ) cos(ψ)ur − sin(ψ)vr + sin(θ) cos(ψ)wr + Vx,

ẏ = cos(θ) sin(ψ)ur + cos(ψ)vr + sin(θ) sin(ψ)wr + Vy,

ż = − sin(θ)ur + cos(θ)wr + Vz,

θ̇ = q,

ψ̇ =
r

cos(θ)
,

u̇r = Fur (ur, vr, wr, r, q) + τu,

v̇r = Xvr (ur)r + Yvr (ur)vr,

ẇr = Xwr (ur)q + Ywr (ur)wr + Zwr sin(θ),

q̇ = Fq(θ, ur, wr, q) + τq,

ṙ = Fr(ur, vr, r) + τr,

(2.36)
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where

Fur (ur, vr, wr, r, q) =
(m22vr +m25r)r − (m33wr +m34q)q

m11

− d11ur − dq11|ur|ur
m11

, (2.37)

Xvr (ur) =
m25

2 −m11m55

m22m55 −m25
2
ur +

d55m25 − d25m55

m22m55 −m25
2
, (2.38)

Yvr (ur) =
(m22 −m11)m25

m22m55 −m25
2
ur −

d22m55 − d52m25

m22m55 −m25
2
, (2.39)

Xwr (ur) =
−m34

2 +m11m44

m33m44 −m34
2
ur +

d44m34 − d34m44

m33m44 −m34
2
, (2.40)

Ywr (ur) =
(m11 −m33)m34

m33m44 −m34
2
ur −

d33m44 − d43m34

m33m44 −m34
2
, (2.41)

Zwr =
BGzWm34

m33m44 −m34
2
, (2.42)

Fq(θ, ur, wr, q) =
m34d33 −m33(d43 − (m33 −m11)ur)

m33m44 −m34
2

wr

+
m34(d34 −m11ur)−m33(d44 −m34ur)

m33m44 −m34
2

q

− BGzWm33 sin(θ)

m33m44 −m34
2
, (2.43)

Fr(ur, wr, r) =
m25d22 −m22(d52 + (m22 −m11)ur)

m22m55 −m25
2

vr

+
m25(d25 +m11ur)−m22(d55 +m25ur)

m22m55 −m25
2

r. (2.44)

2.5 The Singularity-robust Multiple Task-priority Inverse
Kinematics Framework

This section describes the singularity-robust multiple task-priority inverse kine-
matics framework, which is a basis for the work presented in Part I in this thesis.

Traditionally, robotic systems are controlled in their joint space. However, the
tasks they are required to perform are often given in the operational space, for in-
stance given by the desired end effector position or orientation. As such, a variety
of inverse kinematics and dynamics algorithms have been developed to map tasks
from the operational space to the joint space and thus generate reference trajecto-
ries for the controllers. On the kinematic level, the most common approach is to use
a Jacobian-based method [69]. The singularity-robust multiple task-priority inve-
rse kinematics framework calculates a reference for the joint velocities of a robotic
system that, if fulfilled, fulfills several tasks in a prioritized order. It is robust with
respect to algorithmic singularities, which can arise when two tasks are in conflict
with each other [23].

A general robotic system has n DOFs. Its configuration is given by the joint
values q = [q1, q2, . . . , qn]T . Tasks and task velocities in the operational space can
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be expressed through forward kinematics and the task Jacobian matrix. Define an
m-dimensional task σ(t) ∈ Rm as

σ(t) = f(q(t)), (2.45)

with the corresponding differential relationship:

σ̇(t) =
∂f(q(t))

∂q
q̇(t) = J(q(t))q̇(t), (2.46)

where J(q(t)) ∈ Rm×n is the configuration-dependent task Jacobian matrix and
q̇(t) ∈ Rn is the system velocity. For compactness, the argument q of tasks and
Jacobians are omitted from the equations in this thesis.

Consider a single m-dimensional task to be followed, with a defined desired
trajectory σdes(t) ∈ Rm. The corresponding joint references qdes(t) ∈ Rn for
the robotic system may be computed by integrating the locally inverse mapping
of (2.46). The least-squares solution is given as

q̇des = J†σ̇des = JT
(
JJT

)−1
σ̇des, (2.47)

where J†, implicitly defined in the above equation for full row rank matrices, is
the right pseudo-inverse of J . In the general case, the pseudo-inverse is the matrix
that satisfies the four Moore-Penrose conditions (2.48)-(2.51)[38], and it is defined
for systems that are not square (m 6= n) nor have full rank [17]:

JJ†J = J , (2.48)

J†JJ† = J†, (2.49)

(JJ†)? = JJ†, (2.50)

(J†J)? = J†J . (2.51)

Here, J? denotes the complex-conjugate of J .
The vector qdes achieved by taking the time integral of (2.47) is prone to drift-

ing. To handle this, a closed-loop inverse kinematics (CLIK) version of the algo-
rithm is usually implemented [23], where

q̇des = J† (σ̇des + Λσ̃) = J†σ̇ref. (2.52)

Here, σ̃ ∈ Rm is the task error defined as

σ̃ = σdes − σ (2.53)

and Λ ∈ Rm×m is a positive-definite matrix of gains. This feedback approach
reduces the error dynamics to

˙̃σ = σ̇des − σ̇ = σ̇des − Jq̇
= σ̇des − JJ†(σ̇des + Λσ̃)

= −Λσ̃,

(2.54)
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if q̇ = q̇des and J has full rank, implying that JJ† = I. Equation (2.54) describes
a linear system with a globally exponentially stable equilibrium point at the equi-
librium σ̃ = 0. It is worth noticing that the assumption q̇ = q̇des is common to all
inverse kinematics algorithms [3]. For practical applications, it requires that the
low level dynamic control loop is faster than the kinematic one.

In case of system redundancy, i.e., if n > m, the classic general solution contains
a null projector operator [53]:

q̇des = J†σ̇ref +
(
In − J†J

)
q̇null, (2.55)

where In is the (n × n) identity matrix and the vector q̇null ∈ Rn is an arbitrary
system velocity vector. It can be recognized that the operator

(
In − J†J

)
projects

q̇null in the null-space of the Jacobian matrix. This corresponds to generating a
motion of the robotic system that does not affect that of the given task.

For highly redundant systems, multiple tasks can be arranged in priority. Con-
sider three tasks that will be denoted with the subscripts 1, 2 and 3, respectively:

σ1 = f1(q) ∈ Rm1 , (2.56)
σ2 = f2(q) ∈ Rm2 , (2.57)
σ3 = f3(q) ∈ Rm3 . (2.58)

For each of the tasks a corresponding Jacobian matrix can be defined, denoted
J1 ∈ Rm1×n, J2 ∈ Rm2×n and J3 ∈ Rm3×n, respectively. Let us further define the
corresponding null-space projectors for the first two tasks as

N1 =
(
In − J†1J1

)
, (2.59)

N2 =
(
In − J†2J2

)
. (2.60)

The augmented Jacobian of tasks 1 and 2 is given by stacking the two independent
task Jacobians:

JA
12 =

[
J1

J2

]
(2.61)

The common null-space for tasks 1 and 2 is then defined as

NA
12 =

(
In − JA

12

†
JA

12

)
, (2.62)

where JA
12
† is the pseudo-inverse of JA

12 that satisfies the four Moore-Penrose con-
ditions (2.48)-(2.51). By expanding the expression for JA

12, we see that[
J1

J2

]
NA

12 =

[
J1

J2

](
In −

[
J1

J2

]† [
J1

J2

])

=

[
J1

J2

]
−
[
J1

J2

] [
J1

J2

]† [
J1

J2

]
=

[
J1

J2

]
−
[
J1

J2

]
=

[
0
0

]
,

(2.63)
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so in general,
JiN

A
12..k = 0 for i ∈ {1, ..., k} . (2.64)

The following equation then defines the desired joint velocities:

q̇des = J†1 σ̇1,ref︸ ︷︷ ︸
q̇1,des

+N1 J
†
2 σ̇2,ref︸ ︷︷ ︸
q̇2,des

+NA
12 J

†
3 σ̇3,ref︸ ︷︷ ︸
q̇3,des

, (2.65)

where the definition of σ̇x,ref can be easily extrapolated from (2.52) for each task
with the corresponding positive definite matrix Λx ∈ Rmx×mx . The priority of
the tasks follows the numerical order, with σ1 being the highest-priority task.
Equation (2.65) also implicitly defines the joint velocities q̇x,des ∈ Rn that represent
the desired joint velocity corresponding to task σx if this was the sole task.

The generalization to k tasks is straightforward: Equation (2.65) can be ex-
panded as follows:

q̇des = J†1 σ̇1,ref +N1J
†
2 σ̇2,ref + · · ·+NA

12...(k−1)J
†
kσ̇k,ref, (2.66)

where NA
12...(k−1) is the null-space of the augmented Jacobian matrix

JA
12...(k−1) =


J1

J2

...
Jk−1


.

(2.67)

Equation (2.65) represents the singularity-robust multiple task-priority inverse
kinematics framework. A formal stability for this method exists for a general num-
ber of regulation tasks, i.e. tasks where σ̇des ≡ 0 [3]. The error dynamics in this
case are reduced to

˙̃σ = −σ̇eb = −


σ̇1

σ̇2

:
σ̇k

 = −


J1

J2

:
Jk

 q̇

= −


Λ1 0m1×m2

· · · 0m1×mk
J2J

†
1Λ1 J2N1J

†
2Λ2 · · · 0m2×mk

: : :

JkJ
†
1Λ1 JkN1J

†
2Λ2 · · · JkN

A
12..(k−1)J

†
kΛk



σ̃1

σ̃2

:
σ̃k

 = −Mσ̃ (2.68)

if q̇ = q̇des. The matrix M is positive definite if Assumption 2.9-2.10 are satis-
fied [3].
Assumption 2.9: When an additional task is considered, the task Jacobian is in-
dependent with respect to the Jacobian obtained by stacking all the higher priority
tasks, i.e.

ρ(JA
12..(i−1)

†
) + ρ(J†i ) = ρ(

[
JA

12..(i−1)

†
J†i

]
) (2.69)

for i ∈ {2, ..., k} where, ρ(·) is the rank of the matrix and k is the total number of
tasks.
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Remark 2.7: Assumption 2.9 requires that the tasks are compatible. For instance,
if the system is given one end effector position tracking task and one collision
avoidance task, and the desired trajectory moves through the obstacle, the tasks
are clearly not compatible. In this case, Assumption 2.9 is not satisfied, and the
system will fulfill the highest priority task.
Assumption 2.10: The task gains are chosen according to [3]. For the specific
case of k = 3, the task gains are chosen as Λ1 = λ1Im1

, Λ2 = λ2Im2
and Λ3 =

λ3Im3
for the first, second and third priority task respectively, with

λ1 > 0 (2.70)

λ2 > max(0,
λ21 − λ11

λ22

λ1) (2.71)

λ3 > max(0,
λ31 − λ11

λ33

λ1,
λ32 − λ22

λ33

λ2), (2.72)

where λij and λij denote the largest and smallest singular value of the matrix Pij ,
respectively, and

P11 = Im1 , P22 = J2N1J
†
2 ,

P21 = J2J
†
1 , P32 = J3N1J

†
2 ,

P31 = J3J
†
1 , P33 = J3N12J

†
3 .

(2.73)
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Set-based Control within the
Singularity-robust Multiple

Task-priority Inverse Kinematics
Framework
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Chapter 3

Preliminary Result: Kinematic
Control of a Dual-Arm UVMS

Contributions of this chapter: This chapter is a preliminary result to the
remainder of Part I of this thesis in the sense that the work presented in this chapter
served as motivation to extend the singularity-robust multiple task-priority inverse
kinematics framework to include set-based tasks.

Section 2.5 described the singularity-robust multiple task-priority inverse kin-
ematics framework, which is a type of kinematic control that allows redundant
system to perform several tasks in a prioritized order. This chapter considers a
dual-arm UVMS, which can be considered as a manipulator arm mounted on a
floating base. A dual-manipulator system can use the two arms to cooperate and
thereby perform more complex tasks and pick up larger/heavier objects. A lot
of research has been done on fixed dual-arm systems regarding coordinated and
cooperative control, leader/follower control, force control, collision detection and
avoidance etc. [19, 91], but very little has been done for a two-manipulator floating
base system.

This chapter proposes to use the singularity-robust multiple task-priority inve-
rse kinematics scheme for a dual-arm UVMS, which calculates references for both
the manipulator arms and the vehicle base itself, in order to implement several
concurrent tasks. A variety of tasks can be implemented and included in a pri-
oritized order. Furthermore, it is proposed to consider one manipulator and the
vehicle base as a leader and the second manipulator as the follower. This division
ensures that conflicting tasks do not attempt to move the vehicle base in different
directions and that the tasks are achieved using the desired DOFs. An example
scenario in which the framework can be applied is presented.

Organization of this chapter: Section 3.1 presents the vehicle kinematics and
the proposed division of the leader-follower states. Section 3.2 describes the imple-
mented tasks and the corresponding task Jacobians and Section 3.3 contains the
proposed guidance system based on the vehicle tasks. The simulation results are
given in Section 3.4. A brief discussion about the motivation for set-based tasks
are given in Section 3.5 and conclusions in Section 3.6 .
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Publications: The results in this chapter are based on [62].

3.1 Vehicle Kinematics

A complete model of an UVMS consists of the kinematics and the dynamics. The
kinematics is relatively straight forward and described in [4, 46]. The forward kin-
ematics of the manipulator arm(s) can be derived, for instance, by the Denavit-
Hartenberg convention [86]. The dynamics of such a vehicle, on the other hand,
is very complex, highly non-linear and contains several cross-terms because of the
interaction between the vehicle body and the manipulator arm [4, 78]. In addi-
tion, the numeric values of the hydrodynamical parameters are difficult to identify
precisely [60, 70, 84]. Hence, the singularity-robust multiple task-priority inverse
kinematics framework, which is a type of kinematic control (Section 2.5), may suc-
cessfully be used to generate reference states for this type of redundant vehicles
in combination with controllers that are not model-based (e.g. a standard PID-
controller).

In this chapter, the singularity-robust multiple task-priority inverse kinematics
framework described in Section 2.5 is applied to a two-manipulator underwater
vehicle in the plane. The results presented here illustrate the implementation and
properties of the framework that forms the basis for the remainder of Part I in
this thesis. The proposed approach can be followed for manipulators with any
number of links. In this chapter, a specific example is presented where the two
manipulators have two and three links, respectively. The vector ηb = [xb, yb, ψb]T

is the vehicle position and orientation relative to the inertial frame. Similarly,
η1 = [xee1, yee1, ψee1]T and η2 = [xee2, yee2, ψee2]T describe the position and orien-
tation of the manipulator end effectors in inertial frame, see Figure 3.1.

The vehicle’s velocity is defined in body-frame as ν = [u, v, r]T , where u and
v are the linear velocities and r is the angular rate. Equation (3.1) describes the
relationship between the velocities in the inertial and body frame.

η̇b = R(ψb)ν =

cos(ψb) − sin(ψb) 0
sin(ψb) cos(ψb) 0

0 0 1

ν. (3.1)

Furthermore, the manipulator arms have joint angles q1 = [q11, q12, q13]T and q2 =
[q21, q22]T and joint angular velocities q̇1 and q̇2.

The forward kinematics of the manipulator arms are straight forward. Defining
the vehicle length and height as L and H respectively and the length of the jth
link of manipulator i as lij , the position and orientation of the manipulator arms
in the inertial frame are given as follows:
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Figure 3.1: Illustration of vehicle base with two manipulator arms with position
and orientation of the vehicle body and the manipulator end effectors.

η1(ηb, q1) = ηb +R(ψb)k1(q1), (3.2)
η2(ηb, q2) = ηb +R(ψb)k2(q2), (3.3)

k1(q1) =

−L/2 + l11 cos(q11) + l12 cos(q11 + q12) + l13 cos(q11 + q12 + q13)
H/2 + l11 sin(q11) + l12 sin(q11 + q12) + l13 sin(q11 + q12 + q13)

q11 + q12 + q13


,

(3.4)

k2(q2) =

L/2 + l21 cos(q21) + l22 cos(q21 + q12)
H/2 + l21 sin(q21) + l22 sin(q21 + q22)

q21 + q22


.

(3.5)

Similarly, the forward kinematics of the manipulator arms relative to the body
frame is given as

ηb
1 = k1(q1), (3.6)

ηb
2 = k2(q2). (3.7)

When considering the control of a one-manipulator UVMS, it is common to
consider the vector ζ = [νT , q̇T ]T where q is a n-dimensional vector containing
the angles of the manipulator arm. The guidance system then aims to find desired
values for ζ that, if fulfilled, will result in the vehicle tasks (see Section 3.2) being
fulfilled. As such, one option for the two-manipulator UVMS considered in this
chapter is to choose ζ = [νT , q̇T1 , q̇

T
2 ]T . With this choice one would find references
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for the entire system as a whole since the two manipulators share one floating base.
However, if the manipulators have conflicting tasks, they will try to pull the vehicle
base in different directions. As such, this chapter proposes to choose one of the
manipulators as the main manipulator and any others as additional manipulators.
These are only considered relative to the vehicle base and their tasks as such do
not affect the desired velocity/position of the vehicle itself. Take for instance the
case where the main task of manipulator two is to point the camera towards the
main manipulator arm to provide the human operator/supervisor with a good
visual input. To achieve this goal, only the joint angles of manipulator 2 should
be changed. In particular, the position and orientation of the vehicle base to be
affected in order to achieve this goal. Consequently, we propose to consider the two
following independent vectors:

ζ1 =

[
ν
q̇1

]
(3.8)

ζ2 = q̇2 (3.9)

3.2 Vehicle Tasks

This chapter utilizes the singularity-robust multiple task-priority inverse kinematics
behavior control to perform several tasks at once. If the UVMS has more DOFs
than those required to execute a given task, the system is redundant with respect to
that specific task and kinematic redundancy can be exploited to achieve additional
tasks. The tasks are sorted by priority: The secondary task is given lower priority
with respect to the primary task by projecting the relative actions through the
null-space of the primary task Jacobian. The tertiary task is given lower priority
with respect to the secondary task by projecting the relative actions through the
null-space of the primary and secondary task Jacobian and so on (see Section 3.3).
To illustrate the general method proposed in this chapter, a certain scenario has
been implemented and simulated. The different tasks are defined in this section.

Task j for ζi is denoted σij and the corresponding task Jacobian Jij . In general
for a two-manipulator UVMS modeled as proposed in this chapter, for a m DOF
task, σ1j is a vector of lengthm and the corresponding Jacobian is anm×(nb+n1)
matrix, and σ2j is a vector of length m and the corresponding Jacobian is a m×n2

matrix, where nb, n1 and n2 are the DOFs of the vehicle itself, manipulator 1 and
manipulator 2, respectively. In this chapter we will develop the equations for the
particular case where nb = n1 = 3 and n2 = 2. This implies that the main manip-
ulator and vehicle can be given tasks that require up to 6 DOFs and the secondary
manipulator can be given tasks that require 2 DOFs. For the particular case where
manipulator 2 carries a camera and manipulator 1 is for intervention, the following
tasks are proposed:

ζ1 - Task 1 - End effector trajectory and orientation - 3 DOFs: The end
effector of manipulator 1 should track a given trajectory with a given orientation:
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σ11(ηb, q1) = η1(ηb, q1) =

xee1
yee1
ψee1


,

(3.10)

σ11,des = η1,des =

xee1,des
yee1,des
ψee1,des


.

(3.11)

The expression for σ11 is given by (3.2), and the Jacobian

σ̇11 = J11(ηb, q1)ζ1 (3.12)

is derived by taking the time-derivative of (3.2) and inserting (3.1).

ζ1 - Task 2 - Orientation of vehicle - 1 DOF: The vehicle should have a
constant orientation of ψb = 0.

σ12(ηb) = ψb, (3.13)
σ12,des = 0, (3.14)

σ̇12 = ψ̇b = r =
[
0 0 1 0 0 0

]
ζ1 = J12ζ1. (3.15)

ζ1 - Task 3 - Vertical distance between the vehicle and the end effector
- 1 DOF: The vertical distance between the vehicle center and the end effector
should be constant and positive to ensure that the manipulator is operating over
the vehicle and that the vehicle is not blocking the view of end effector 2.

σ13(ηb, q1) = yee1 − yb, (3.16)
σ13,des = C, (3.17)

for some positive, constant C. Similarly to Task 1, the Jacobian is derived by taking
the time derivative of σ13 using (3.2) and (3.1):

σ̇13 = J13(ηb, q1)ζ1. (3.18)

ζ2 - Task 1 - Relative Field of View - 1 DOF: End effector 2 should always
point towards end effector 1. In this case, the task is chosen as the error between
the desired and actual direction of the manipulator, so the desired task value is 0:

σ21(ηb, q1, q2) =
√

(ades − a)T (ades − a), (3.19)

σ21,des = 0, (3.20)
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where ades and a are unit vectors illustrated in Figure 3.2 and are defined as

ades =
1√

(xee1 − xee2)2 + (yee1 − yee2)2

xee1 − xee2
yee1 − yee2

0


︸ ︷︷ ︸

,pe

(3.21)

a =

cos(ψee2) − sin(ψee2) 0
sin(ψee2) cos(ψee2) 0

0 0 1

1
0
0


.

(3.22)

The corresponding 1× 2 Jacobian is defined in [4] as

σ̇21 = J21(ηb, q1, q2)ζ2, (3.23)

J21 =
(ades − a)T

‖ades − a‖
(
−S(ades)S(pe)

†Jp + S(a)Jo
)
, (3.24)

where S(·) is the matrix cross product operator andX† denotes the Moore-Penrose
inverse of the matrix X. Jp and Jo denote the position and orientation Jacobian
matrices of end effector 2. With the proposed choice of ζ1 and ζ2, the position and
orientation is that of end effector 2 relative to the body frame. By taking the time
derivative of (3.7) Jp and Jo can be derived:

η̇b
2(q2) =

δ

δt
k2(q2)

=

−l21 sin(q21)q̇21 − l22 sin(q21 + q12)(q̇21 + q̇22)
l21 cos(q21)q̇21 + l22 cos(q21 + q22)(q̇21 + q̇22)

q̇21 + q̇22


=

−l21 sin(q21)− l22 sin(q21 + q12) −l22 sin(q21 + q12)
l21 cos(q21) + l22 cos(q21 + q22) l22 cos(q21 + q22)

1 1

[q̇21

q̇22

]

=

[
Jp
Jo

]
ζ2. (3.25)

Remark 3.1: Note that the vectors a and ades have been expanded to three di-
mensions even though movement in only considered in the plane. This is due to the
fact that the matrix cross product operator is a 3× 3 matrix, and the dimensions
must fit to carry out the matrix multiplications. Similarly, (3.25) shows that Jp and
Jo are 2× 2 and 1× 2 matrices, respectively. However, in (3.24) they are expanded
to be 3×2 matrices by adding one zero row at the bottom of Jp and two zero rows
at the top of Jo.

Remark 2. The Jacobian includes a singularity that occurs when ades = a. This is
resolved in the implementation by dividing by a small number ε rather than the
error norm if the norm is smaller than ε [4].
ζ2 - Task 2 - First joint - 1 DOF: The first joint of manipulator 2 should
be kept constant: q21 = π/2. This ensures that manipulator 2 operates over the
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Figure 3.2: Illustration of ades and a for relative field of view.

vehicle, similarly to Task 3 for manipulator 1:

σ22(q2) = q21, (3.26)

σ22,des =
π

2
, (3.27)

σ̇22 = q̇21 =
[
1 0

]
ζ2 = J22ζ2. (3.28)

3.3 Guidance System

This section presents the guidance system that calculates the desired system trajec-
tories. With the proposed division of ζ1 and ζ2 a general task and the corresponding
Jacobian can be expressed as

σ1 = f(ηb, q1) (3.29)
σ̇1 = J1(ηb, q1)ζ1 (3.30)
σ2 = g(ηb, q1, q2) (3.31)
σ̇2 = J2(ηb, q1, q2)ζ2. (3.32)

Note that tasks related to the vehicle/manipulator 1 are completely independent
on manipulator 2 (q2) due to the fact that this is considered the main manipula-
tor/leader. Tasks related to manipulator 2, however, may generally depend on the
configuration of the vehicle, manipulator 1 and 2.
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For a single task, the desired ζ can be calculated as

ζ1,des = J†1 (σ̇1,des + Λ1σ̃1), (3.33)

ζ2,des = J†2 (σ̇2,des + Λ2σ̃2), (3.34)

where Λ is a positive definite gain matrix and σ̃ , σdes − σ. This is illustrated in
Figure 3.3. Note that the calculated, desired state of the UVMS is used as feedback
in the guidance system rather than the actual state of the UVMS. In other words,
the guidance system is independent of the actual behavior of the UVMS and only
generates trajectories that, if fulfilled, will result in the best possible achievement
of the given tasks. It is a common assumption in kinematic control to assume that
the generated reference state is tracked [3].
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Figure 3.3: Block diagram of the proposed guidance system when one task for the
leader and one task for the follower is implemented ((3.33) and (3.34)). Triangular
blocks are gains and rectangular blocks are functions. Based on the desired tasks
a reference for ηb, q1 and q2 is calculated and sent to the controller system.

In Section 3.2, several tasks have been defined with a certain priority. As such, it
is desirable to find a ζ1,des and ζ2,des that, if fulfilled, will result in achievement of all
tasks. In case of conflicting tasks this might not be possible, in which case the goal is
to find the best possible solution with respect to the defined priorities. This is done
with the singularity-robust multiple task-priority inverse kinematics framework.
Before adding the contribution of a lower-priority task to the overall desired vehicle
velocity, it is projected onto the null-space of the immediately higher-priority task
so as to remove velocity components that would conflict with it. The total proposed
guidance law for the considered system is thus given by (3.35) and (3.36).

ζ1,des = J†11(σ̇11,des + Λ11σ̃11) + (I − J†11J11)J†12(σ̇12,des + Λ12σ̃12)

+ (I −
[
J11

J12

]† [
J11

J12

]
)J†13(σ̇13,des + Λ13σ̃13), (3.35)

ζ2,des = J†21(σ̇21,des + Λ21σ̃11) + (I − J†21J21)J†22(σ̇22,des + Λ22σ̃22). (3.36)
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3.4 Simulation Results

The UVMS described in Section 3.1, the tasks listed in Section 3.2 and the guidance
laws (3.35) and (3.36) have been implemented using Matlab. This section presents
simulation results of the UVMS behavior if the calculated desired states are tracked
perfectly by the controller.

In the presented simulation, manipulator 1 (task 1) has been tasked with track-
ing a straight line trajectory with a constant velocity between a defined start and
end point. Furthermore, the desired orientation is constant and normal to the line.
The desired vertical distance between the vehicle and end effector 1 (task 3) has
been chosen as C = H

2 + 2
3 (l11 + l12 + l13). The guidance law error gains have been

chosen as follows:

Λ11 =

1 0 0
0 1 0
0 0 1

 ,Λ12 = 3,Λ13 = 2,Λ21 = 1,Λ22 = 3. (3.37)

Finally, the UVMS has been implemented with a saturation on the linear and
angular velocities. A method for ensuring that the saturation is not reached is
described in [8]. This approach has not been implemented in this chapter.

|u| ≤ 3
m
s
, |v| ≤ 2

m
s
, |r| ≤ 3

deg
s
, |q̇ij | ≤ 10

deg
s
. (3.38)

The simulation results are shown in Figure 3.4(a)-3.4(d) and confirm that the
calculated reference values will in fact, if fulfilled, result in achievement of the
implemented tasks. Furthermore, Figure 3.5(a) and 3.5(b) show that the task errors
all converge to zero. Note that higher priority tasks converge before the tasks with
lower priority.

3.5 The Need for Set-based Tasks

This chapter has illustrated the implementation and behavior of the singularity-
robust multiple task-priority inverse kinematics framework. Furthermore, a control
scheme for a dual-manipulator floating base system has been proposed. In doing so,
the need for set-based tasks has become apparent. The existing framework is based
on equality tasks, i.e. tasks with a specific desired value. For certain scenarios,
defining a σdes might not desirable or even possible to do. Rather, the task should
be specified with a certain valid set of values. From here on, we refer to this type
of task as a set-based task.

Consider, for instance, task 3 for ζ1 (σ13) given in Section 3.2. In this particular
example, the desired vertical distance between the body center and the end effector
is defined as some positive constant C to ensure that the manipulator operates
above the vehicle body. However, this could also be achieved by enforcing

σ13 ∈ [Cmin, Cmax] (3.39)

for some Cmax > Cmin > 0. This provides the system with more freedom to achieve
the other tasks: by defining a valid interval, there exists numerous (in principle an
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(d) Time = 100 s.

Figure 3.4: Simulation results: The green dashed line shows the desired trajectory
for end effector 1. The red cross is moving along the line and is the reference
position. The purple dashed line shows the pointing direction of manipulator 2
ades. The results show that all the tasks are fulfilled during the simulation.
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Figure 3.5: Simulation results: Task errors for manipulator 1 and vehicle
body (a) and manipulator 2 (b).

infinite) amount of valid configurations for this task, which again implies numerous
possible means to achieve the remaining tasks.

Similarly, task 1 for ζ2 (σ21) is defined as the Field of View, where manipulator
2 is tasked to point straight towards the end effector of manipulator 1. This is for
instance a relevant task if manipulator 2 has a camera to provide visual feedback
of the intervention of the main manipulator. In this case, however, it is not nec-
essary to point the camera directly at the end effector by enforcing a = ades (see
Figure 3.2), but allowing σ21 =

√
(ades − a)T (ades − a) to be in a set

σ13 ∈ [0, Cmax], (3.40)

where Cmax > 0 can be constructed to allow a certain number of degrees between
the two vectors to ensure that end effector 1 is always in the camera frame, but
not necessarily in the center.

Other tasks that are suitable as set-based tasks are collision and joint limit
avoidance. It is not necessary nor desirable to actively control the distance to an
obstacle or the value of a joint. These tasks should only affect the behavior of the
system when it is necessary to handle them as to prevent them from being violated,
which leaves the system with greater freedom to accomplish other tasks. With this
in mind, we have extended the singularity-robust multiple task-priority inverse kin-
ematics framework to systematically include set-based tasks. The resulting theory
and experimental results are presented in Chapters 4, 5 and 6.

3.6 Conclusions

This chapter presents a method for generating reference trajectories for a two-
manipulator Underwater Vehicle manipulator System by considering the main ma-
nipulator and the vehicle base as a leader unit and the secondary manipulator as
a follower unit. This ensures that the two manipulators do not attempt to drive
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3. Preliminary Result: Kinematic Control of a Dual-Arm UVMS

the vehicle base in opposing directions/velocities due to conflicting tasks. The ref-
erences are calculated using singularity-robust multiple task-priority inverse kine-
matics framework. The proposed approach has been implemented for a particular
UVMS working in the plane and simulated for a defined set of tasks. In particular,
the case where one manipulator is dedicated to intervention operations and the
other is holding a camera to provide the operator/supervisor a good view of the in-
tervention, has been considered. Relevant tasks for this scenario have been defined,
and simulations illustrate the performance of the proposed guidance approach. Dur-
ing this work the need for and usefulness of set-based tasks has become apparent,
and an extension of the framework to include these are presented in Chapters 4, 5
and 6.

42



Chapter 4

High-priority Set-based Tasks

Contributions of this chapter: The singularity-robust multiple task-priority
inverse kinematics framework described in Section 2.5 allows equality tasks to be
considered in a prioritized order by projecting task velocities through the null-
spaces of higher priority tasks. This chapter extends this framework to handle
high-priority set-based tasks, i.e. high-priority tasks with a range of valid values,
in addition to equality tasks, which have a specific desired value. The proposed
method is proven to ensure asymptotic convergence of the equality task errors and
the satisfaction of all high-priority set-based tasks. Simulation and experimental
results confirm the effectiveness of the proposed approach.

Organization of this chapter: Section 4.1 gives a closer definition of set-based
tasks. The proposed method is described in Section 4.2 for high-priority set-based
tasks and is analyzed with respect to stability in Section 4.3. Simulation results
are given in Section 4.4 and conclusions in Section 4.5.

Publications: The results in this chapter are based on [7, 66, 67].

4.1 Definition of Set-based Tasks

Section 2.5 introduced the concept of multiple task-priority inverse kinematic con-
trol for a robotic system as a method to generate reference trajectories for the
system configuration that, if satisfied, will result in the successful achievement
of several tasks. However, this framework has been developed for equality tasks
that have a specific desired value σdes(t), e.g. the desired end effector position.
This chapter proposes a method to extend the existing framework to handle high-
priority set-based tasks such as the avoidance of joint limits and obstacles, field of
view etc.

A set-based task is still expressed through forward kinematics (2.45), but the
objective is to keep the task in a defined set D rather than controlling it to a
desired value. Mathematically, this can be expressed as

σ(t) ∈ D ∀ t, (4.1)
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rather than
σ(t) = σdes(t). (4.2)

Thus, set-based tasks cannot be directly inserted into the singularity-robust multi-
ple task-priority inverse kinematics framework (2.66) as they have no exact desired
value. In Section 4.2 we will present a method that allows a general number of
scalar high-priority set-based tasks to be handled with a given priority within a
number of equality tasks.

From here on, equality tasks are denoted with number subscripts and set-based
tasks with letters. Furthermore, while equality tasks in general can be multidimen-
sional and are thus described as vectors, set-based tasks are scalar and are therefore
not expressed in bold-face, e.g. σ1 and σa. Finally, only regulation equality tasks
are considered, that is equality tasks to guide the system to a stationary value
(σ̇des ≡ 0). Finally, it is assumed that the desired joint velocities q̇des are tracked
perfectly by the system, so that q̇ = q̇des.
Definition. Consider Figure 4.1. A set-based task σ is defined as satisfied when

it is contained in its valid set, i.e. σ ∈ D = [σmin, σmax], and violated if it is
not satisfied. Note that on the boundary of D the task is still satisfied.

σ!
!

σmax!
!

σmin!
!

D"

Figure 4.1: Illustration of valid set D. The set-based task σ is satisfied in D and
violated outside of D.

4.2 Set-based Singularity-robust Multiple Task-priority
Inverse Kinematics

This section presents the proposed method for incorporating high-priority set-based
tasks in the singularity-robust multiple task-priority inverse kinematics framework.
High-priority set-based tasks are defined as all set-based tasks with a higher priority
than the highest priority equality task, whereas low-priority set-based tasks have
priority after at least one equality task. The latter offer some additional challenges
and are further described in Chapter 5. For simplicity, a system with a single set-
based task is considered first, followed by two, and finally the general case of j
set-based tasks.

When a set-based task is in the interior of D (Figure 4.1) it should not affect
the behavior of the system. All the system DOFs can then be used to fulfill the
equality tasks without being limited in any way by the set-based task, which is
inactive. The proposed algorithm therefore considers only the system’s equality
tasks according to the singularity-robust multiple task-priority inverse kinematics
framework (2.66) as long as the resulting solution stays within this desired set. If
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this is not the case, the set-based task is actively inserted into the task priority to
be handled. A key aspect of the proposed solution is the tangent cone to a set. The
tangent cone to the set D in Figure 4.1 at the point σ ∈ D is defined as

TD(σ) =

 [ 0,∞ ) σ = σmin

R σ ∈ (σmin, σmax)
( −∞, 0 ] σ = σmax

. (4.3)

Note that if σ̇(t) ∈ TD(σ(t)) ∀ t ≥ t0, then this implies that σ(t) ∈ D ∀ t ≥ t0.
If σ is in the interior of D, the derivative is always in the tangent cone, as this is
defined as R. If σ = σmin, the task is at the lower border of the set. In this case, if
σ̇ ∈ [0,∞), then σ will either stay on the border, or move into the interior of the
set. Similarly, if σ = σmax and σ̇ ∈ (−∞, 0], σ will not leave D.

Due to the fact that a set-based task can be either active or inactive, a sys-
tem with j set-based tasks has 2j possible combinations of set-based tasks being
active/inactive. These combinations are referred to as "modes" of the system, and
the proposed algorithm must switch between modes to fulfill the equality tasks
while ensuring that the set-based tasks are not violated. The modes are sorted by
increasing restrictiveness. The more set-based tasks that are active in a mode, the
more restrictive it is. Hence, in the first mode no set-based tasks are active. This
corresponds to considering only the system equality tasks (2.66). In the 2jth mode
all set-based tasks are active.

Throughout this section we consider a robotic system with n DOFs and k
equality tasks of mi DOFs each for i ∈ {1, ...k}. Equality task i is denoted σi and
the task error is defined as σ̃i = σi,des − σi. Furthermore, the system has j set-
based tasks. The first and jth set-based tasks are denoted σa and σx, respectively
(where x represents the jth letter of the alphabet). We consider the state-vector
z ∈ Rl, where

l = n+ j +

k∑
i=1

mi, (4.4)

and

z =

 qσsb
σ̃eb

 =



q1

:
qn
σa
:
σx
σ̃1

:
σ̃k


.

(4.5)

Here, σsb and σ̃eb are defined as vectors containing the set-based tasks and the
corresponding valid set for z in which all set-based tasks are satisfied is defined as

C := Rn × C1 × C2 × ...× Cj × Rl−n−j , (4.6)
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where

C1 := [σa,min, σa,max], (4.7)
:

Cj := [σx,min, σx,max]. (4.8)

Furthermore, we make the same assumptions as in [3] on the independence of tasks
and task gains:
Assumption 4.1: When an additional task is considered, the task Jacobian is in-
dependent with respect to the Jacobian obtained by stacking all the higher priority
tasks, i.e.

ρ
(
JA

12..(i−1)

†)
+ ρ

(
J†i

)
= ρ

([
JA

12..(i−1)

†
J†i

])
(4.9)

for i ∈ {2, ..., (j + k)}.
Remark 4.1: Assumption 4.1 requires that the tasks are compatible. For instance,
if the system is given one end effector position tracking task and one collision
avoidance task, and the desired trajectory moves through the obstacle, the tasks
are clearly not compatible. In this case, Assumption 4.1 is not satisfied, and the
system will fulfill the highest priority task.
Assumption 4.2: The task gains are chosen according to [3]. For the specific
case of (j + k) = 3, the task gains are chosen as Λ1 = λ1Im1

, Λ2 = λ2Im2
and

Λ3 = λ3Im3
for the first, second and third priority task respectively, with

λ1 > 0, (4.10)

λ2 > max
(

0,
λ21 − λ11

λ22

λ1

)
, (4.11)

λ3 > max
(

0,
λ31 − λ11

λ33

λ1,
λ32 − λ22

λ33

λ2

)
, (4.12)

where λij and λij denote the largest and smallest singular value of the matrix Pij ,
respectively, and

P11 = Im1
, P22 = J2N1J

†
2 ,

P21 = J2J
†
1 , P32 = J3N1J

†
2 ,

P31 = J3J
†
1 , P33 = J3N

A
12J
†
3 .

(4.13)

4.2.1 One set-based task, k equality tasks

For simplicity we first consider a robotic system with a single high-priority set-
based task σa ∈ R. In this section, we choose σa as a collision avoidance task as
an example, with the goal of avoiding a circular obstacle at a constant position po
with radius r > 0. The task is defined as the distance between the end effector and
the obstacle center. The kinematics and Jacobian of this task are given in [2]:

σa =
√

(po − pe)T (po − pe), (4.14)

σ̇a = Jaq̇ = − (po − pe)
T

||po − pe||
Jq̇. (4.15)
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Here, pe denotes the position of the end effector and J is the corresponding position
Jacobian. For this specific example we define

C1 = [ε,∞) (4.16)

for an ε > r and the set C as in (4.6) with j = 1 and C1 as defined above. In C,
the set-based task is limited to [ε,∞). Thus, the set-based task is always satisfied
for z ∈ C.

For a system with one high-priority set-based task, two modes must be consid-
ered:

1. Ignoring the set-based task and considering only the equality tasks.
2. Freezing the set-based task as first priority and considering the equality tasks

as second priority.
Mode 1 is the "default" solution, whereas mode 2 should be activated only when

it is necessary to prevent the set-based task from being violated. Using the mul-
tiple task-priority inverse kinematics framework presented in Section 2.5, mode 1
corresponds to (2.66) and results in the following system:

q̇ = J†1Λ1σ̃1 +N1J
†
2Λ2σ̃2 +NA

12J
†
3Λ3σ̃3 + ...+NA

12..(k−1)J
†
kΛkσ̃k, (4.17)

⇓

σ̇a = Jaq̇ = Ja(J†1Λ1σ̃1 + ...+NA
12..(k−1)J

†
kΛkσ̃k), (4.18)

˙̃σeb = −σ̇eb = −


σ̇1

σ̇2

:
σ̇k

 = −


J1

J2

:
Jk

 q̇

= −


J1(J†1Λ1σ̃1 +N1J

†
2Λ2σ̃2 + ...+NA

12..(k−1)J
†
kΛkσ̃k)

J2(J†1Λ1σ̃1 +N1J
†
2Λ2σ̃2 + ...+NA

12..(k−1)J
†
kΛkσ̃k)

:

Jk(J†1Λ1σ̃1 +N1J
†
2Λ2σ̃2 + ...+NA

12..(k−1)J
†
kΛkσ̃k)



= −


Λ1σ̃1

J2J
†
1Λ1σ̃1 + J2N1J

†
2Λ2σ̃2

:

JkJ
†
1Λ1σ̃1 + JkN1J

†
2Λ2σ̃2 + ...+ JkN

A
12..(k−1)J

†
kΛkσ̃k



= −


Λ1 0m1×m2

· · · 0m1×mk
J2J

†
1Λ1 J2N1J

†
2Λ2 · · · 0m2×mk

: : :

JkJ
†
1Λ1 JkN1J

†
2Λ2 · · · JkN

A
12..(k−1)J

†
kΛk



σ̃1

σ̃2

:
σ̃k


= −M1σ̃eb, (4.19)

ż =

 q̇
σ̇a
˙̃σeb

 ,

f11(z)
f12(z)
f13(z)

 = f1(z). (4.20)

The matrix M1 is identical to the matrix M (2.68), and is positive definite by
Assumption 4.1-4.2 [3].
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In mode 1, the set-based task evolves freely according to σ̇a = f12(z), and the
time evolution of z should follow the vector field f1(z) as long as the solution z
stays in C. If following f1(z) would result in z leaving the set C, avoiding the
obstacle is considered the first priority task and mode 2 is activated. This can
only occur on the border of C, that is for σa = ε, and when σ̇a = f12(z) < 0. To
avoid the obstacle, an equality task with the goal of keeping the current distance
to the obstacle is added as the highest priority task. In this case, the desired
task value σa,des is equal to the current task value σa = ε. Thus, the task error
σ̃a = σa,des − σa ≡ 0. The system is then defined by the following equations:

q̇ = J†a σ̃a +NaJ
†
1Λ1σ̃1 +NA

a1J
†
2Λ2σ̃2 +NA

a12J
†
3Λ3σ̃3

+ ...+NA
a12..(k−1)J

†
kΛkσ̃k

= NaJ
†
1Λ1σ̃1 +NA

a1J
†
2Λ2σ̃2 + ...+NA

a12..(k−1)J
†
kΛkσ̃k, (4.21)

⇓

σ̇a = Jaq̇ = Ja(NaJ
†
1Λ1σ̃1...+N

A
a12..(k−1)J

†
kΛkσ̃k) = 0, (4.22)

˙̃σeb = −σ̇eb = −


σ̇1

σ̇2

:
σ̇k

 = −


J1

J2

:
Jk

 q̇

= −


J1(NaJ

†
1Λ1σ̃1 +NA

a1J
†
2Λ2σ̃2 + ...+NA

a12..(k−1)J
†
kΛkσ̃k)

J2(NaJ
†
1Λ1σ̃1 +NA

a1J
†
2Λ2σ̃2 + ...+NA

a12..(k−1)J
†
kΛkσ̃k)

:

Jk(NaJ
†
1Λ1σ̃1 +NA

a1J
†
2Λ2σ̃2 + ...+NA

a12..(k−1)J
†
kΛkσ̃k)



= −


J1NaJ

†
1Λ1σ̃1

J2NaJ
†
1Λ1σ̃1 + J2N

A
a1J
†
2Λ2σ̃2

:

JkNaJ
†
1Λ1σ̃1 + JkN

A
a1J
†
2Λ2σ̃2 + ...+ JkN

A
a12..(k−1)J

†
kΛkσ̃k



= −


J1NaJ

†
1Λ1 0m1×m2

· · · 0m1×mk
J2NaJ

†
1Λ1 J2N

A
a1J
†
2Λ2 · · · 0m2×mk

: : :

JkNaJ
†
1Λ1 JkN

A
a1J
†
2Λ2 · · · JkN

A
a12..(k−1)J

†
kΛk



σ̃1

σ̃2

:
σ̃k


= −M2σ̃eb, (4.23)

ż =

 q̇
σ̇a
˙̃σeb

 ,

f21(z)
0

f23(z)

 = f2(z). (4.24)

The matrix M2 can be seen as a principal submatrix of the general matrix M
in (2.68). Thus, given Assumption 4.1-4.2,M2 is also positive definite. Furthermore,
as can be seen by (4.22), the joint velocities (4.21) ensure that the distance to the
obstacle is kept constant (σ̇a = 0).

Let TC(z) denote the tangent cone to C at the point z ∈ C and define the set
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P as the interior of C.

TC(z) =

{
Rl z ∈ P

Rn × [ 0,∞ )× Rl−n−1 z = C\P. (4.25)

Consider the continuous functions f1,f2 : C → Rl as defined in (4.20) and (4.24).
The time evolution of z follows the vector field f1(z) as long as the solution z
stays in C (mode 1). Using Lemma 5.26 [37] on the system ż = f1(z), we know
that such a solution exists when f1(x) ∩ TC(x) 6= ∅ for all x near z (restricting x
to C). Hence, we define the set

S := {z ∈ C : ∃ a neighborhood U of z : f1(x) ∈ TC(x) ∀x ∈ C ∩ U} . (4.26)

The discontinuous function f : C → Rl

f(z) :=

{
f1(z) z ∈ S
f2(z) z ∈ C\S (4.27)

then describes our system. The differential equation ż = f(z) then corresponds to
following f1 (mode 1) as long as z stays in C and following f2 (mode 2) otherwise.
In mode 2, σa is frozen, so the (n + 1)th element in f2(z) ≡ 0. Consequently,
f2(z) ∈ TC(z) ∀z ∈ C. This implies that C is strongly forward invariant for
ż = f2(z), i.e., that z(t0) ∈ C ⇒ z(t) ∈ C ∀t ≥ t0.

In other words, the set S contains the points z in C such that f1(x) ∈ TC(x)
for x in C that are near z. At the border of C, σa = ε and the distance between the
end effector and the obstacle center is at the minimum allowed value. Therefore,
the (n + 1)th element of f1(z), corresponding to σ̇a, must be zero or positive for
z to stay in S. If it is not, mode 2 is activated, which freezes the distance to the
obstacle at the border of C. This remains the solution until following f1(z) will
result in σ̇a ≥ 0, i.e. that the distance between the end effector and obstacle will
remain constant or increase.

4.2.2 j set-based tasks, k equality tasks

We now consider the general case of j high-priority set-based tasks and consider
the state vector z ∈ Rl and the corresponding valid set as defined in (4.5) and (4.6),
respectively. Note that in the case that a set-based task σ is a joint limit for joint
i, i ∈ {1, ..., n}, then σ = qi and should therefore not be included in the vector σsb
as it is already included in the state vector through q. With j set-based tasks, it is
necessary to consider the 2j solutions resulting from all combinations of activating
and deactivating every set-based task. These modes are listed in Table 4.1.
All modes have certain commonalities:

1. All active set-based tasks are frozen.

2. Inactive set-based tasks do not affect the behavior of the system.

3. All matrices Mi for i ∈
{

1, . . . , 2j
}
are either equal to or a principal subma-

trix of the general matrixM (2.68). Consequently, given Assumption 4.1-4.2,
the matrices Mi are positive definite.
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Mode Description Equations
1 No set-based

tasks active
q̇ = J†1Λ1σ̃1 + ...+NA

12..(k−1)J
†
kΛkσ̃k,

⇒ ˙̃σeb = −M1σ̃eb,
ż = f1(z).

2 σa active q̇ = NaJ
†
1Λ1σ̃1 + ...+NA

a12..(k−1)J
†
kΛkσ̃k,

⇒ σ̇a = 0,
˙̃σeb = −M2σ̃eb,
ż = f2(z).

3 σb active q̇ = NbJ
†
1Λ1σ̃1 + ...+NA

b12..(k−1)J
†
kΛkσ̃k,

⇒ σ̇b = 0,
˙̃σeb = −M3σ̃eb,
ż = f3(z).

. . . . . . . . .
j+1 σx active q̇ = NxJ

†
1Λ1σ̃1 + ...+NA

x12..(k−1)J
†
kΛkσ̃k,

⇒ σ̇x = 0,
˙̃σeb = −M(j+1)σ̃eb,
ż = f(j+1)(z).

j+2 σa and σb active q̇ = NabJ
†
1Λ1σ̃1 + ...+NA

ab12..(k−1)J
†
kΛkσ̃k,

⇒ σ̇a = 0, σb = 0
˙̃σeb = −M(j+2)σ̃eb,
ż = f(j+2)(z).

. . . . . . . . .
2j All set-based

tasks active
q̇ = NA

ab..xJ
†
1Λ1σ̃1 + ...+NA

ab..x12..(k−1)J
†
kΛkσ̃k,

⇒ σ̇sb = 0,
˙̃σeb = −M2j σ̃eb,
ż = f2j (z).

Table 4.1: System equations for the resulting 2j modes for j high-priority set-based
tasks.

Consider the corresponding tangent cone to the set C in (4.6).

TC(z) = Rn × TC1(z)× TC2(z)× ...× TCj (z)× Rl−n−j , (4.28)

where TCi(z) for i ∈ {1, ..., j} is defined as in (4.3). Defining the sets

S1 := {z ∈ C : ∃ a neighborhood U of z : f1(x) ∈ TC(x)∀x ∈ C ∩ U} , (4.29)
S2 := {z ∈ C\S1 : ∃ a nbhd U of z : f2(x) ∈ TC(x)∀x ∈ C ∩ U} , (4.30)
S3 := {z ∈ C\(S1 ∪ S2) : ∃ a nbhd U of z : f3(x) ∈ TC(x)∀x ∈ C ∩ U} , (4.31)

:

S2j := C\ (S1 ∪ S2 ∪ S3 ∪ ... ∪ S2j−1) , (4.32)
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4.3. Stability Analysis

the discontinuous equation ż = f(z) with f : C → Rl defined as

f(z) :=


f1(z) z ∈ S1

f2(z) z ∈ S2

f3(z) z ∈ S3

: :
f2j (z) z ∈ S2j

(4.33)

then defines our system.

4.3 Stability Analysis

To study the behavior of the discontinuous differential equation (4.33), we look at
the corresponding constrained differential inclusion

z ∈ C ż ∈ F (z), (4.34)

where
F (z) :=

⋂
δ>0

cof((z + δB) ∩ C) ∀z ∈ C. (4.35)

Here, B is a unit ball in Rdim(z) centered at the origin and coP denotes the closed
convex hull of the set P . In other words, the smallest closed convex set containing
P , and z is the Krasovskii solution of the discontinuous differential equation (4.33)
(Definition 4.2 [37]).

4.3.1 Convergence of equality tasks

The first part of the stability proof considers the convergence of the system equality
tasks when switching between 2j possible modes of the system.

Theorem 4.1. Given a switched system defined by (4.33) and Table 4.1. If As-
sumption 4.1-4.2 hold, the equality task errors σ̃eb converge asymptotically to zero.

Proof. If V is a continuously differentiable Lyapunov function for ż = fi(z) for
all i ∈

{
1, . . . , 2j

}
, then V is a Lyapunov function for ż ∈ F (z). The following

equation holds as all fi(z) are continuous functions:

f ∈ F (z)⇒ f = λ1f1(z) + λ2f2(z) + ...+ λ2jf2j (z) (4.36)

for some
2j∑
i=1

λi = 1, λi ≥ 0. Consider the Lyapunov function candidate for the

equality task errors:

V (σ̃eb) =
1

2
σ̃T

eb
σ̃eb . (4.37)

Using (4.36) and the system equations given in Table 4.1, we find that the time
derivative of V is given by

V̇ = σ̃T
eb

(λ1(−M1σ̃eb) + λ2(−M2σ̃eb) + ...+ λ2j (−M2j σ̃eb))

= −σ̃T
eb

(λ1M1 + λ2M2 + ...+ λ2jM2j )σ̃eb

= −σ̃T
eb
Qσ̃eb . (4.38)
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4. High-priority Set-based Tasks

The convex combination Q of positive definite matrices is also positive definite.
Therefore, V̇ is negative definite and σ̃eb = 0 is a globally asymptotically stable
equilibrium point in all modes. Thus, the equality task errors σ̃eb asymptotically
converge to zero when switching between modes. Furthermore, if q belongs to a
compact set, the equilibrium point σ̃eb = 0 is exponentially stable.

4.3.2 Satisfaction of set-based tasks and existence of solution

The second part of the stability proof considers the satisfaction of the set-based
tasks and the existence of a valid solution.

Theorem 4.2. Given a switched system defined by (4.33) and Table 4.1, all set-
based tasks σsb will be satisfied at all times.

Proof. We have defined a closed set C in (4.6) within which all set-based tasks are
satisfied at all times. As long as the system solution z ∈ C, the set-based tasks are
not violated.

For a system with only high-priority set-based tasks, (4.33) defines the system:
ż = f1(z) as long as the solution z stays in C. If the system reaches the boundary of
C and remaining in mode 1 would cause z to leave C, another mode is activated.
If neither of the vector fields f1-f2j−1 will result in z staying in C, the chosen
solution is ż = f2j (z), for which it has been shown that σ̇sb ≡ 0. Therefore,
f2j (z) ∈ TC(z)∀z ∈ C, and C is strongly forward invariant for ż = f2j (z). Thus,
there will always exist a solution z ∈ C and the set-based tasks are consequently
always satisfied.

4.4 Simulation Results

To illustrate the effectiveness of the proposed method, a simple example has been
implemented in Matlab for a planar three-link manipulator. This section presents
the simulations results. Details about the implementation is given in Chapter 6
along with several experimental results.

The simulated example is the case presented in Section 4.2.1: The manipulator
has one set-based task σa, which is to avoid a circular obstacle with center in
(0, 2.6) m and radius r = 0.65 m. As described above, an ε > r is chosen as
a lower limit for the distance between the end effector and the obstacle center.
In this simulation, ε = 0.75 m. Furthermore, the system has one equality task
σ1 ∈ R3 = [xee, yee, ψee]

T to guide the end effector to a certain position and
orientation. Hence the state vector z ∈ R7 is defined as

z =

 qσa
σ̃1

 =



q1

q2

q3

σa
x̃ee
ỹee
ψ̃ee


(4.39)
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4.5. Conclusions

and the valid set C as
C = R3 × [ε,∞)× R3, (4.40)

with the corresponding tangent cone as in (4.25).
In this example, the desired position is (−2, 3) m and the desired orientation is

π
2 radians, so

σ1,des =
[
−2 3 π

2

]T
.

(4.41)

The equality task gain matrix is chosen as the identity matrix, Λ1 = I. The
manipulator links have length 1.75 m, 1.25 m and 1.0 m, respectively. Furthermore,
the manipulator has been implemented with a saturation on the joint velocities of
10deg

s .
The simulation results are shown in Figure 4.2. The system starts in mode 1, ig-

noring the obstacle and moving in a straight line towards the target (Figure 4.2(a)).
However, by doing so the end effector approaches the obstacle and soon reaches
the minimum allowed distance ε to the obstacle center (Figure 4.2(b)). Obviously,
by continuing to follow the straight line in mode 1, this distance would decrease
further. Thus, the system switches to mode 2 and freezes the distance at σa = ε.
The end effector then moves towards the desired end effector position along the
circle with center in the obstacle and radius ε. Eventually it reaches a point where
the shortest path between the end effector and desired position does not bring the
manipulator closer to the obstacle (Figure 4.2(c)). The system then changes back
to mode 1 and converges to the desired position and orientation (Figure 4.2(d)
and 4.3(a)). Figure 4.3(b) confirms that the set-based task is satisfied at all times.

The theoretical results in this chapter are further confirmed by experiments
presented in Chapter 6.

4.5 Conclusions

This chapter presents an approach to include high-priority set-based tasks in the
multiple task-priority inverse kinematics framework. As a default solution, only
the system equality tasks are considered and implemented with the desired pri-
ority by projecting the low-priority task velocities through the null-spaces of the
high-priority tasks. However, if this solution would result in a set-based task (e.g.
a joint limit) being violated, this task is included in the task hierarchy with a
certain priority with the goal of freezing the task at its current value. It is shown
that set-based tasks given high priority, i.e. above the highest priority equality
task, are fulfilled at all times. Due to the switching between set-based tasks be-
ing active/inactive, the resulting closed-loop dynamic system can be described as
a discontinuous differential equation. Using switched control systems theory it is
proven that the equality task errors converge asymptotically to zero when includ-
ing set-based tasks into the framework given that certain, specified conditions are
fulfilled. Furthermore, presented simulation results illustrate the effectiveness of
the proposed method.
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4. High-priority Set-based Tasks

x-position [m]
-5 0 5

y
-p
o
si
ti
on

[m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) Time = 10 s

x-position [m]
-5 0 5

y
-p
o
si
ti
on

[m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) Time = 23 s
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(c) Time = 28 s
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(d) Time = 40 s

Figure 4.2: Simulation results: The desired position is marked as a red cross at
(−2, 3) m. The obstacle is the blue circle, and the red dashed line around it marks
the area within which the end effector is not allowed to ensure avoidance of the
obstacle. End effector trajectory is drawn as a dotted black line.
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(a) Equality task errors. Both the position
and orientation errors converge to 0.
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Figure 4.3: Equality task errors and the set-based task with its lower limit.
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Chapter 5

Set-based Tasks: Low-priority and
combination of high- and
low-priority

Contributions of this chapter: The singularity-robust multiple task-priority
inverse kinematics framework described in Section 2.5 allows equality tasks to be
considered in a prioritized order by projecting task velocities through the null-
spaces of higher priority tasks. Chapter 4 extended this framework to handle high-
priority set-based tasks, i.e. high priority tasks with a range of valid values, in
addition to equality tasks, which have a specific desired value. This chapter presents
a similar analysis for the case of low-priority set-based tasks, which are tasks that
have priority after at least one equality task, and for a combination of high- and
low-priority set-based tasks. The proposed method is proven to ensure asymptotic
convergence of the equality task errors and the satisfaction of all high-priority set-
based tasks. Low-priority set-based tasks can not be guaranteed to be satisfied
at all times due to the influence of the higher priority equality tasks. However, if
the higher priority equality task errors are zero, the low-priority set-based tasks
will also be satisfied. Experimental results that confirm the theory in this and the
previous chapter are presented in Chapter 6.

Organization of this chapter: The proposed method is described in Section 5.1
for low-priority (Section 5.1.1) and a combination of high- and low-priority set-
based tasks (Section 5.1.2), and is analyzed with respect to stability in Section 5.2.
Conclusions are given in Section 5.3.

Publications: The results of this chapter are based on [7, 67].

5.1 Set-based singularity-robust task-priority inverse
kinematics

This section presents the proposed method for incorporating set-based tasks in
the singularity-robust multiple task-priority inverse kinematics framework. Low-
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5. Set-based Tasks: Low-priority and combination of high- and low-priority

priority set-based tasks offer some additional challenges and are further described
in Section 5.1.1, for the case of 1 and j set-based tasks, respectively. In Section 5.1.2
the framework is presented for the completely general case of a combination of high-
and low-priority set-based tasks.

In this chapter, the definition of set-based tasks presented in Section 4.1 and
the tangent cone TD (4.3) to a closed set D = [σmin, σmax] are applied also in this
chapter. In addition, we define the extended tangent cone to D at the point σ ∈ R
as

TR,D(σ) =

 [ 0,∞ ) σ ≤ σmin

R σ ∈ (σmin, σmax)
( −∞, 0 ] σ ≥ σmax

. (5.1)

The definition of the extended tangent cone is very similar to the tangent cone,
but it is defined for σ ∈ R, not just σ ∈ D. For σ 6∈ D, σ̇ ∈ TR,D implies that σ
either stays constant or moves closer to D.

Similar to Chapter 4, a system with j set-based tasks has 2j possible combina-
tions of set-based tasks being active/inactive, and thus 2j modes. The modes are
sorted by increasing restrictiveness.

Throughout this Section we consider a robotic system with n DOFs and k
equality tasks of mi DOFs each for i ∈ {1, ...k}. Equality task i is denoted σi and
the task error is defined as σ̃i = σi,des − σi. Furthermore, the system has j set-
based tasks. The first and jth set-based tasks are denoted σa and σx, respectively
(where x represents the jth letter of the alphabet). We consider the state-vector
z ∈ Rl, where

l = n+ j +

k∑
i=1

mi, (5.2)

and

z =

 qσsb
σ̃eb

 =



q1

:
qn
σa
:
σx
σ̃1

:
σ̃k


.

(5.3)

Here, σsb and σ̃eb are defined as vectors containing the set-based tasks and the
corresponding valid set for z in which all set-based tasks are satisfied is defined as

C := Rn × C1 × C2 × ...× Cj × Rl−n−j , (5.4)

where

C1 := [σa,min, σa,max], (5.5)
:

Cj := [σx,min, σx,max]. (5.6)

Furthermore, we make the same assumptions as in [3] on the independence of tasks
and task gains, given by Assumpstions 4.1-4.2.
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5.1. Set-based singularity-robust task-priority inverse kinematics

5.1.1 Low-priority set-based tasks

One set-based task, k equality tasks

For simplicity we first consider a robotic system with a single low-priority set-
based task σa ∈ R with priority between equality tasks σ1 and σ2 and a valid set
σa ∈ [σa,min, σa,max].

Consider the state-vector z ∈ Rl and the closed set C, where l, z and C are
defined in (5.2), (5.3) and (5.4), respectively.

Similarly to Section 4.2.1, one set-based task leads to two modes, and in the
first mode only the equality tasks are considered. Hence, mode 1 and results in the
following system:

q̇ = J†1Λ1σ̃1 +N1J
†
2Λ2σ̃2 +NA

12J
†
3Λ3σ̃3 + ...+NA

12..(k−1)J
†
kΛkσ̃k, (5.7)

⇓

σ̇a = Jaq̇ = Ja(J†1Λ1σ̃1 + ...+NA
12..(k−1)J

†
kΛkσ̃k), (5.8)

˙̃σeb = −σ̇eb = −


σ̇1

σ̇2

:
σ̇k

 = −


J1

J2

:
Jk

 q̇

= −


J1(J†1Λ1σ̃1 +N1J

†
2Λ2σ̃2 + ...+NA

12..(k−1)J
†
kΛkσ̃k)

J2(J†1Λ1σ̃1 +N1J
†
2Λ2σ̃2 + ...+NA

12..(k−1)J
†
kΛkσ̃k)

:

Jk(J†1Λ1σ̃1 +N1J
†
2Λ2σ̃2 + ...+NA

12..(k−1)J
†
kΛkσ̃k)



= −


Λ1σ̃1

J2J
†
1Λ1σ̃1 + J2N1J

†
2Λ2σ̃2

:

JkJ
†
1Λ1σ̃1 + JkN1J

†
2Λ2σ̃2 + ...+ JkN

A
12..(k−1)J

†
kΛkσ̃k



= −


Λ1 0m1×m2

· · · 0m1×mk
J2J

†
1Λ1 J2N1J

†
2Λ2 · · · 0m2×mk

: : :

JkJ
†
1Λ1 JkN1J

†
2Λ2 · · · JkN

A
12..(k−1)J

†
kΛk



σ̃1

σ̃2

:
σ̃k


= −M1σ̃eb, (5.9)

ż =

 q̇
σ̇a
˙̃σeb

 ,

f11(z)
f12(z)
f13(z)

 = f1(z). (5.10)

The matrix M1 is identical to the matrix M (2.68), and is positive definite by
Assumption 4.1-4.2 [3].

In mode 2, the set-based task is actively handled, and as for the higher-priority
set-based tasks in Section 4.2.1 the goal is to freeze it at its current value. Hence,
σ̃a ≡ 0, and the joint velocities for mode 2 are found by inserting σa into the
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5. Set-based Tasks: Low-priority and combination of high- and low-priority

framework (2.66) at the given priority level:

q̇ = J†1Λ1σ̃1 +N1J
†
aΛaσ̃a +NA

1aJ
†
2Λ2σ̃2 + ...+NA

1a2..(k−1)J
†
kΛkσ̃k

= J†1Λ1σ̃1 +NA
1aJ
†
2Λ2σ̃2 + ...+NA

1a2..(k−1)J
†
kΛkσ̃k. (5.11)

In Section 4.2.1, it was shown that mode 2 for high-priority tasks implies σ̇a = 0,
so if this mode is activated on the border of C (σa = σa,min or σa = σa,max), σa will
indeed be frozen and thereby remain in C. However, when σa is a low-priority task,
the same guarantee cannot be made. Consider the evolution of σa in case of (5.11):

σ̇a = Jaq̇ = Ja(J†1Λ1σ̃1 +NA
1aJ
†
2Λ2σ̃2 + ...+NA

1a2..(k−1)J
†
kΛkσ̃k)

= JaJ
†
1Λ1σ̃1. (5.12)

Equation (5.12) is not exactly equal to zero. Rather, the evolution of σa is influenced
by the higher priority equality task. Thus, lower-priority set-based tasks cannot be
guaranteed to be satisfied as they can not be guaranteed to be frozen at any given
time. Even so, they should still be actively handled by attempting to freeze them,
as this might result in these tasks deviating less from their valid set than if they
are ignored completely. Thus, we define the system mode 2 as (5.11):

q̇ = J†1Λ1σ̃1 +NA
1aJ
†
2Λ2σ̃2 + ...+NA

1a2..(k−1)J
†
kΛkσ̃k, (5.13)

⇓

σ̇a = Jaq̇ = JaJ
†
1Λ1σ̃1, (5.14)

˙̃σeb = −σ̇eb = −


σ̇1

σ̇2

:
σ̇k

 = −


J1

J2

:
Jk

 q̇

= −


J1(J†1Λ1σ̃1 +NA

1aJ
†
2Λ2σ̃2 + ...+NA

1a2..(k−1)J
†
kΛkσ̃k)

J2(J†1Λ1σ̃1 +NA
1aJ
†
2Λ2σ̃2 + ...+NA

1a2..(k−1)J
†
kΛkσ̃k)

:

Jk(J†1Λ1σ̃1 +NA
1aJ
†
2Λ2σ̃2 + ...+NA

1a2..(k−1)J
†
kΛkσ̃k)



= −


Λ1σ̃1

J2J
†
1Λ1σ̃1 + J2N

A
1aJ
†
2Λ2σ̃2

:

JkJ
†
1Λ1σ̃1 + +...+ JkN

A
1a2..(k−1)J

†
kΛkσ̃k



= −


Λ1 0m1×m2

· · · 0m1×mk
J2J

†
1Λ1 J2N

A
1aJ
†
2Λ2 · · · 0m2×mk

: :
. . . :

JkJ
†
1Λ1 JkN

A
1aJ
†
2Λ2 · · · JkN

A
1a2..(k−1)J

†
kΛk



σ̃1

σ̃2

:
σ̃k

 (5.15)

= −M2σ̃eb, (5.16)

ż =

 q̇
σ̇a
˙̃σeb

 ,

f21(z)
f22(z)
f23(z)

 = f2(z). (5.17)
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The matrix M2 can be seen as a principal submatrix of the general matrix M
in (2.68). Thus, given Assumption 4.1-4.2, M2 is also positive definite.

Consider the continuous functions f1,f2 : C → Rl as defined in (5.10) and (5.17).
The time evolution of z should follow the vector field f1(z) as long as the solution
z stays in C (mode 1). However, since it cannot be guaranteed that z stays in C,
mode 1 should also be active if z 6∈ C and following f1(z) will result in z keeping
its current distance to or moving closer to C. This is mathematically expressed for
the system ż = f1(z) as f1(x) ∩ TR,C(x) 6= ∅ for all x near z, where

TR,C(z) = Rn × TR,C1(z)× Rl−n−1. (5.18)

and TR,C1(z) is the extended tangent cone to C1 in (5.5) at the point σa as defined
in (5.1). Hence, we define

S :=
{
z ∈ Rl : ∃ a neighborhood U of z : f1(x) ∈ TR,C(x) ∀x ∈ U

}
. (5.19)

The discontinuous function f : C → Rl

f(z) :=

{
f1(z) z ∈ S
f2(z) z ∈ Rl\S (5.20)

then describes our system. The differential equation ż = f(z) then corresponds to
following f1(z) (mode 1) if one of three conditions are satisfied:

1. σa ∈ (σa,min, σa,max)

2. σa ≥ σa,max and ż = f1(z)⇒ σ̇a ≤ 0

3. σa ≤ σa,min and ż = f1(z)⇒ σ̇a ≥ 0

If none of these conditions hold, mode 2 is activated and ż = f2(z). In mode 2, the
set-based task is actively handled by attempting to freeze it, but since the (n+1)th
element in f2(z) is not identically equal to 0, this cannot be guaranteed. However,
as shown by (5.14), as soon as the higher-priority equality task σ1 converges to its
desired value, σa is indeed frozen in mode 2 and is not affected by the lower-priority
equality tasks.

j set-based task, k equality tasks

In this section we consider a system with j low-priority set-based tasks. Consider
the state-vector z ∈ Rl, where l and z are defined in (5.2) and (5.3), respectively.
We assume that the set-based tasks are labeled so that σb always has lower priority
than σa etc. Furthermore, assume that σa has priority after equality task σpa
for some pa = {1, . . . , k}, σb has priority after equality task σpb for some pb =
{pa, . . . , k} and so forth. The resulting 2j modes of the system are presented in
Table 5.1.

All matricesMi in Table 5.1 for i ∈
{

1, . . . , 2j
}
are either equal to or a principal

submatrix of the general matrixM (2.68). Consequently, given Assumption 4.1-4.2,
the matrices Mi are positive definite.
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Mode Description Equations
1 No set-based

tasks active
q̇ = J†1Λ1σ̃1 + ..+NA

12..(k−1)J
†
kΛkσ̃k,

⇒ ˙̃σeb = −M1σ̃eb,
ż = f1(z).

2 σa active q̇ = J†1Λ1σ̃1 + .. + NA
12..(pa−1)J

†
paΛpaσ̃pa +

NA
12..paaJ

†
(pa+1)Λ(pa+1)σ̃(pa+1) + .. +

NA
12..paa(pa+1)..(k−1)J

†
kΛkσ̃k,

⇒ ˙̃σeb = −M2σ̃eb,
ż = f2(z).

3 σb active q̇ = J†1Λ1σ̃1 + .. + NA
12..(pb−1)J

†
pb

Λpbσ̃pb +

NA
12..pbbJ

†
(pb+1)Λ(pb+1)σ̃(pb+1) + .. +

NA
12..pbb(pb+1)..(k−1)J

†
kΛkσ̃k,

⇒ ˙̃σeb = −M3σ̃eb,
ż = f3(z).

. . . . . . . . .
j + 1 σx active q̇ = J†1Λ1σ̃1 + .. + NA

12..(px−1)J
†
pxΛpxσ̃px +

NA
12..pxxJ

†
(px+1)Λ(px+1)σ̃(px+1) + .. +

NA
12..pxx(px+1)..(k−1)J

†
kΛkσ̃k,

⇒ ˙̃σeb = −M(j+1)σ̃eb,
ż = f(j+1)(z).

j + 2 σa and σb active q̇ = J†1Λ1σ̃1 + .. + NA
12..(pa−1)J

†
paΛpaσ̃pa +

NA
12..paaJ

†
pa+1Λ(pa+1)σ̃(pa+1) + .. +

NA
12..paa(pa+1)..(pb−1)J

†
pb

Λpbσ̃pb +

NA
12..paa(pa+1)..pbbJ

†
(pb+1)Λ(pb+1)σ̃(pb+1) + .. +

NA
12..paa(pa+1)..pbb(pb+1)....(k−1)J

†
kΛkσ̃k,

⇒ ˙̃σeb = −M(j+2)σ̃eb,
ż = f(j+2)(z).

. . . . . . . . .
2j All set-based

tasks active
q̇ = J†1Λ1σ̃1 + .. + NA

12..(pa−1)J
†
paΛpaσ̃pa +

NA
12..paaJ

†
(pa+1)Λ(pa+1)σ̃(pa+1) + .. +

NA
12..paa(pa+1)..pbbJ

†
(pb+1)Λ(pb+1)σ̃(pb+1) + .. +

NA
12..paa(pa+1)..pbb(pb+1)....pxx(px+1)..(k−1)J

†
kΛkσ̃k,

⇒ ˙̃σeb = −M2j σ̃eb,
ż = f2j (z).

Table 5.1: System equations for the resulting 2j modes for j low-priority set-based
tasks.
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For example, for a system with j = 3 set-based tasks and k = 6 equality tasks,
pa = 3 and pb = pc = 5, the 2j = 8th mode would be

q̇ = J†1Λ1σ̃1 +N1J
†
2Λ2σ̃2 +NA

12J
†
3Λ3σ̃3 (5.21)

+NA
123aJ

†
4Λ4σ̃4 +NA

123a4J
†
5Λ5σ̃5 +NA

123a45bcJ
†
6Λ6σ̃6.

Consider the sets C1-Cj defined by (5.5)-(5.6) with corresponding extended
tangent cones as defined in (5.1). If the ith set-based task is inactive in a given
mode f , the corresponding (n+i)th element of vector field f(x) must be in TR,Ci(x)
for all x near z. If the same task is active, there is no requirement to the same
element of the vector field. In mode 1, all the set-based tasks are inactive, thus
all the (n + 1) to (n + j) elements of f1(z) must be in their respective extended
tangent cones for this mode to be chosen. In mode 2, only σa is active, so in this
case all the (n+2) to (n+j) elements of f2(z) must be in their respective extended
tangent cones if mode 2 should be the active mode. Thus, we define

S1 :=
{
z ∈ Rl : ∃ a neighborhood U of z : (5.22)

f1(x) ∈
{
Rn × TR,C1(x)× ...× TR,Cj (x)× Rl−n−j

}
∀x ∈ U

}
,

S2 :=
{
z ∈ Rl\S1 : ∃ a nbhd U of z : (5.23)

f2(x) ∈
{
Rn × R× TR,C2

(x)× ...× TR,Cj (x)× Rl−n−j
}
∀x ∈ U

}
,

S3 :=
{
z ∈ Rl\(S1 ∪ S2) : ∃ a nbhd U of z : (5.24)

f3(x) ∈
{
Rn × TR,C1

(x)× R× TR,C3
× ...× TR,Cj (x)× Rl−n−j

}
∀x ∈ U

}
,

:

S2j := C\ (S1 ∪ S2 ∪ S3 ∪ ... ∪ S2j−1) . (5.25)

The discontinuous equation ż = f(z) with f : C → Rl defined as

f(z) :=


f1(z) z ∈ S1

f2(z) z ∈ S2

f3(z) z ∈ S3

: :
f2j (z) z ∈ S2j

(5.26)

then defines our system.

5.1.2 Combination of high- and low-priority set-based tasks

Consider an n DOF robotic system with k equality tasks of mi DOFs for i ∈
{1, . . . , k} and j set-based tasks ∈ R, where jx ≤ j of them are high priority and
j−jx are low-priority at any given priority level. Denote the jxth, (jx+1)th and jth
set-based task as σx, σy and σz, respectively, where σx is the last high-priority set-
based task, σy is the first low-priority set-based task and σz is the lowest priority
set-based task (x, y and z represent the jxth, (jx + 1)th and jth letter of the
alphabet respectively). Consider the state-vector z ∈ Rl, where

l = n+ j +

k∑
i=1

mi, (5.27)
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and

z =

 qσsb
σ̃eb

 =
[
q1, .., qn, σa, .., σx, σy, .., σz, σ̃

T
1 , .., σ̃

T
k

]T
.

(5.28)

It can be shown that the 2j resulting modes from all possible combinations of active
and inactive set-based tasks will reduce the error dynamics of the equality tasks to
the form

˙̃σeb = −Miσ̃eb (5.29)

for i =
{

1, ..., 2j
}
. The analysis is similar to Section 4.2.2 and 5.1.1. All matrices

Mi are either equal to or a principal submatrix of the general matrix M (2.68).
Therefore, by Assumption 4.1-4.2, the matrices Mi are positive definite. Further-
more, as described in detail in Section 4.2.2, all the active high-priority set-based
tasks are frozen in all modes.

Consider the sets

C1 := [σa,min, σa,max], (5.30)
:

Cjx := [σx,min, σx,max], (5.31)
Cjx+1 := [σy,min, σy,max], (5.32)

:

Cj := [σz,min, σz,max], (5.33)

C := Rn × C1 × · · · × Cjx × Rj−jx × Rl−n−j , (5.34)

and

TC1
(z) =

 [ 0,∞ ) σa = σa,min
R σa ∈ (σa,min, σa,max)

( −∞, 0 ] σa = σa,max

, (5.35)

:

TCjx (z) =

 [ 0,∞ ) σx = σx,min

R σx ∈ (σx,min, σx,max)
( −∞, 0 ] σx = σj,max

, (5.36)

TR,Cjx+1
(z) =

 [ 0,∞ ) σy ≤ σy,min

R σy ∈ (σy,min, σy,max)
( −∞, 0 ] σy ≥ σy,max

, (5.37)

:

TR,Cj (z) =

 [ 0,∞ ) σz ≤ σz,min

R σz ∈ (σz,min, σz,max)
( −∞, 0 ] σz ≥ σz,max

, (5.38)

TCh(z) = TC1
(z)× TC2

(z)× · · · × TCjx (z), (5.39)

TC(z) = Rn × TCh(z)× Rj−jx × Rl−n−j . (5.40)

Note that z ∈ C only implies that all the high-priority set-based tasks are within
their respective desired sets. Furthermore, the tangent cones are considered for the
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high-priority set-based tasks, and the extended tangent cones for the low-priority
ones. We then define

S1 := {z ∈ C : ∃ a neighborhood U of z : f1(x) ∈ (5.41){
Rn × TCh (x)× TR,Cjx+1

(x)× ..× TR,Cj (x)× Rl−n−j
}
∀x ∈ C ∩ U

}
,

S2 := {z ∈ C\S1 : ∃ a nbhd U of z : f2(x) ∈ (5.42){
Rn × TCh (x)× TR,Cjx+1

(x)× ..× TR,Cj (x)× Rl−n−j
}
∀x ∈ C ∩ U

}
,

:

Sjx+1 := {z ∈ C\(S1 ∪ .. ∪ Sjx ) : ∃ a nbhd U of z : fjx+1(x) ∈ (5.43){
Rn × TCh (x)× TR,Cjx+1

(x)× ..× TR,Cj (x)× Rl−n−j
}
∀x ∈ C ∩ U

}
,

Sjx+2 := {z ∈ C\(S1 ∪ .. ∪ Sjx+1) : ∃ a nbhd U of z : fjx+2(x) ∈ (5.44){
Rn × TCh (x)× R× TR,Cjx+2

(x)× ..× TR,Cj (x)× Rl−n−j
}
∀x ∈ C ∩ U

}
,

Sjx+3 := {z ∈ C\(S1 ∪ .. ∪ Sjx+2) : ∃ a nbhd U of z : fjx+3(x) ∈ (5.45){
Rn × TCh (x)× TR,Cjx+1

(x)× R× TR,Cjx+3
(x)× ..× TR,Cj (x)× Rl−n−j

}
∀x ∈ C ∩ U

}
,

:

S2j := C\
(
S1 ∪ S2 ∪ S3 ∪ .. ∪ S2j−1

)
. (5.46)

The discontinuous equation ż = f(z) with f : C → Rl defined as

f(z) :=


f1(z) z ∈ S1

f2(z) z ∈ S2

f3(z) z ∈ S3

: :
f2j (z) z ∈ S2j

(5.47)

then defines our system. Similarly to the analysis of the previous sections, in the
sets Si, i ∈

{
1, ..., 2j

}
, the elements of the vector flows fi(z) corresponding to the

high-priority set-based tasks are required to be in their respective tangent cone in
all modes, and the elements corresponding to the low-priority set-based tasks are
required to be in the corresponding extended tangent cone only in the modes where
that task is inactive.

5.2 Stability analysis

To study the behavior of the discontinuous differential equations (5.47), we look at
the corresponding constrained differential inclusion:

z ∈ C ż ∈ F (z), (5.48)

where
F (z) :=

⋂
δ>0

cof((z + δB) ∩ C) ∀z ∈ C. (5.49)

Here, B is a unit ball in Rdim(z) centered at the origin and coP denotes the closed
convex hull of the set P , or in other words, the smallest closed convex set con-
taining P . The state evolution of z is the Krasovskii solution of the discontinuous
differential equation (5.47) (Definition 4.2 [37]).
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5.2.1 Convergence of equality tasks

The first part of the stability proof considers the convergence of the system equality
tasks when switching between 2j possible modes of the system.

Theorem 5.1. Given a switched system defined by (5.47). If Assumption 4.1-4.2
hold, the equality task errors σ̃eb converge asymptotically to zero.

Proof. If V is a continuously differentiable Lyapunov function for ż = fi(z) for
all i ∈

{
1, . . . , 2j

}
, then V is a Lyapunov function for ż ∈ F (z). The following

equation holds as all fi(z) are continuous functions:

f ∈ F (z)⇒ f = λ1f1(z) + λ2f2(z) + ...+ λ2jf2j (z) (5.50)

for some
2j∑
i=1

λi = 1, λi ≥ 0. Consider the Lyapunov function candidate for the

equality task errors:

V (σ̃eb) =
1

2
σ̃T

eb
σ̃eb . (5.51)

Using (5.50) and the system equations (given in Table 4.1 and 5.1 for high-priority
and low-priority set-based tasks respectively), we find that the time derivative of
V is given by

V̇ = σ̃T
eb

(λ1(−M1σ̃eb) + λ2(−M2σ̃eb) + ...+ λ2j (−M2j σ̃eb))

= −σ̃T
eb

(λ1M1 + λ2M2 + ...+ λ2jM2j )σ̃eb

= −σ̃T
eb
Qσ̃eb . (5.52)

The convex combination Q of positive definite matrices is also positive definite.
Therefore, V̇ is negative definite and σ̃eb = 0 is a globally asymptotically stable
equilibrium point in all modes. Thus, the equality task errors σ̃eb asymptotically
converge to zero when switching between modes. Furthermore, if q belongs to a
compact set, the equilibrium point σ̃eb = 0 is exponentially stable.

5.2.2 Satisfaction of set-based tasks and existence of solution

The second part of the stability proof considers the satisfaction of the set-based
tasks and the existence of a valid solution.

The analysis made in Section 5.1.1 concluded that the evolution of active low-
priority set-based tasks are influenced by the higher priority equality tasks. Unlike
the high-priority set-based tasks they cannot be frozen at any given time, and
therefore they cannot be guaranteed to be satisfied. We have defined a closed set
C in (5.34) within which all high-priority set-based tasks are satisfied at all times.
As long as the system solution z ∈ C, these tasks are not violated.

Theorem 5.2. Given a switched system defined by (5.47), all high-priority set-
based tasks σa − σx will be satisfied at all times.
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Proof. For a system described by (5.47), ż = f1(z) as long as the solution z ∈
C and the lower-priority set-based tasks outside of their respective desired sets
do not move further away from them. If the system reaches the boundary of C
and remaining in mode 1 would cause z to leave C, another mode is activated.
If neither of the vector fields f1-f2j−1 will result in z staying in C, the chosen
solution is ż = f2j (z), for which it has been shown that σ̇a to σ̇x ≡ 0. Therefore,
f2j (z) ∈ TC(z) ∀z ∈ C, and C is strongly forward invariant for ż = f2j (z). Thus,
there will always exist a solution z ∈ C and the high-priority set-based tasks are
consequently always satisfied.

5.3 Conclusions

This chapter presents an extension to the singularity-robust multiple task-priority
inverse kinematics framework that enables set-based tasks to be handled directly.
The proposed method allows a general number of scalar set-based tasks to be han-
dled with a given priority within a number of equality tasks. The main purpose of
this method is to fulfill the system’s equality tasks while ensuring that the set-based
tasks are always satisfied, i.e. contained in their valid set. A mathematical frame-
work is presented and concluded with a stability analysis, in which it is proven that
high-priority set-based tasks remain in their valid set at all times, whereas lower-
priority set-based tasks cannot be guaranteed to be satisfied due to the influence of
the higher-priority equality tasks. Furthermore, it is proven that the equality task
errors converge asymptotically to zero given certain assumptions.
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Chapter 6

Set-based Tasks: Implementation
and Experimental Results

Contributions of this chapter: The singularity-robust multiple task-priority
inverse kinematics framework described in Section 2.5 allows equality tasks to be
considered in a prioritized order by projecting task velocities through the null-
spaces of higher priority tasks. In Chapter 4 and 5 this framework was extended
to handle set-based tasks, i.e. tasks with a range of valid values, in addition to
equality tasks. This chapter presents the proposed implementation of the method.
In addition, several experimental results are given that confirm the previously
presented theory.

Organization of this chapter: Section 6.1 presents the proposed implemen-
tation of the set-based framework described in Chapter 4 and 5. In Section 6.2
the experimental setup is described, and experimental results are presented in Sec-
tion 6.3. Conclusions are given in Section 6.4.

Publications: The results in this chapter are based on [65, 67].

6.1 Implementation

This section presents the practical implementation of the proposed algorithm and
discusses the computational load of running it.

In the stability analysis in Section 5.2 only regulation equality tasks are con-
sidered, i.e. tasks with σ̇des ≡ 0. For practical purposes, one can also apply this
algorithm for time-varying equality tasks. An example of this is presented in Sec-
tion 6.3.4. Furthermore, in Chapter 5, the lower-priority set-based tasks are han-
dled the same way as the high-priority ones and are attempted frozen. However,
as this can not be guaranteed, they might exceed their desired set. With this in
mind, for practical purposes these tasks can be handled by defining σdes = σmax

or σdes = σmin if σ ≥ σmax or ≤ σmin, respectively. Should σ leave the set, the
solution will actively attempt to bring σ back to the border of its valid set (rather
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than simply freezing it outside the set) by having a non-zero error feedback σ̃ as it
does in for instance (5.11).

In the implementation, the boolean function in_T_RC defined in Algorithm 6.1
is used to check if the time-derivative of a set-based task σ with a valid set

C = [σmin, σmax] (6.1)

is in the extended tangent cone of C, i.e. if σ̇ ∈ TR,C(σ), where TR,C(σ) is defined
in (5.1). The algorithm in_T_RC is illustrated in Figure 6.1.

Algorithm 6.1: The boolean function in_T_RC.
Input: σ̇, σ, σmin, σmax

1 if σmin < σ < σmax then
2 return True;
3 else if σ ≤ σmin and σ̇ ≥ 0 then
4 return True;
5 else if σ ≤ σmin and σ̇ < 0 then
6 return False;
7 else if σ ≥ σmax and σ̇ ≤ 0 then
8 return True;
9 else

10 return False;
11 end

σmin$
$

σmax$
$

σ$

σ$>$0$

σ$<$0$

σ$=$0$.$

.$

.$

Figure 6.1: Graphic illustration of the function in_T_RC with return value True
shown in green and False in red. The function only returns False when σ is
outside or on the border of its valid set and the derivative points away from the
valid set.

Note that in the implementation of the algorithm, in_T_RC is used as a check
both for the high-priority and low-priority set-based task. This is to handle small
numerical inaccuracies that result from discretization of a continuous system. Fur-
thermore, given initial conditions outside the valid set C, the chosen implementa-
tion is still well-defined for all set-based tasks.

For a system with j set-based tasks, the 2j modes must be calculated every
timestep. For practical purposes, it is only necessary to calculate the part of the
state vector z (5.28)that corresponds to the system configuration q, so we calculate
this using q̇ = fi(q) for i ∈

{
1, ..., 2j

}
, where fi(q) is calculated as described in

Chapter 4 and 5. Then, to decide what mode to activate, in_T_RC is used to check
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if every inactive set-based task of that mode returns True. If it does, that mode is
picked. If not, the next mode is considered.

Recall that σ̇k = Jkq̇. Consider a system with j set-based tasks and denote the
jth set-based task as σz. Define the boolean variables φi

φi , in_T_RC (Jφfi, σφ, σφ,min, σφ,max)

for i ∈
{

1, ..., 2j
}

and φ ∈ {a, ..., z}
(6.2)

The active mode is chosen according to Table 6.1. The algorithm iterates through
priority 1 to 2j and activates the first mode that satisfies the criteria presented
in Table 6.1. The modes are assigned priority according to their restrictiveness.
The more set-based tasks are active, the more restrictive it is. Therefore, the least
restrictive mode is f1, where no set-based tasks are active. From there, f2−f(j+1)

are the modes where one set-based task is active, etc. In Table 6.1 a hyphen indi-
cates that the boolean value does not need to be checked because in that mode, the
corresponding set-based task is active and therefore satisfied by definition (in case
of a high-priority set-based task) or actively handled to the best of the system’s
ability (in case of a low-priority set-based task).

Priorities (i) ai bi ci di ... zi Active mode
1 True True True True ... True f1

2 - True True True ... True f2

3 True - True True ... True f3

4 True True - True ... True f4

5 True True True - ... True f5

: : : : :
. . . : :

j + 1 True True True True ... - f(j+1)

j + 2 - - True True ... True f(j+2)

j + 3 - True - True ... True f(j+3)

j + 4 - True True - ... True f(j+4)

: : : : :
. . . : :

2j - True True True ... - f(2j)

2j + 1 True - - True ... True f(2j+1)

2j + 2 True - True - ... True f(2j+2)

: : : : :
. . . : :

2j - - - -
. . . - f2j

Table 6.1: Table illustrating the activation of mode based on the boolean variables
as defined in (6.2). The algorithm iterates through the priorities and checks if the
boolean variables satisfy the criteria for activating that mode. The highest priority
possible is activated.
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6.2 Experimental Setup

This section presents the platform, control structure and the implemented tasks
that form the basis for the experimental results presented in Section 6.3.

6.2.1 UR5 and Control Setup

The UR5 is a manipulator with 6 revolute joints, and the joint angles are denoted
q ,

[
q1 q2 q3 q4 q5 q6

]T. In this chapter, the Denavit-Hartenberg (D-H)
parameters are used to calculate the forward kinematics. The parameters are given
in [94] and are presented Table 6.2 with the corresponding coordinate frames il-
lustrated in Figure 6.2. The resulting forward kinematics has been experimentally
verified to confirm the correctness of the parameters.

Joint ai [m] αi [rad] di [m] θi [rad]
1 0 π/2 0.089 q1

2 -0.425 0 0 q2

3 -0.392 0 0 q3

4 0 π/2 0.109 q4

5 0 -π/2 0.095 q5

6 0 0 0.082 q6

Table 6.2: Table of the D-H parameters of the UR5. The corresponding coordinate
systems can be seen in Figure 6.2.

Hand-Eye Calibration and Inverse Kinematics of Robot Arm 583

samples from real robot arm is utilized for performance analysis. Furthermore,
this work is implemented as an initial step towards a realtime vision-guided
robotic manipulation system based on neural network.

The remainder of this paper is organized as follows: The overall platform
consisting of a robot arm and a stereo vision system is described in Section 2.
In Section 3, the feedforward neural network is briefly introduced. Then, the
training of neural networks for calibration and inverse kinematics is presented.
In Section 4, the experimental validation and performance comparison are dis-
cussed. Finally, conclusions are given in Section 5.

2 System Overview

As mentioned in the previous section, in the present work the neural network is
applied for a 6-DOF robot arm (’hand’) with a stereo vision system (’eye’). In
this section, these two hardware components will be introduced.

2.1 6-DOF Robot Arm

Universal robot UR5 is a 6-DOF robot arm with relatively lightweight (18.4 kg),
see Fig. 2. It consists of six revolute joints which allows a sphere workspace
with a diameter of approximately 170 cm. The Movements close to its boundary
should be avoided considering the singularity of the arm. The arm is equipped
with a graphic interface PolyScope, which allows users to move the robot in a
user-friendly environment through a touch screen. In this work, the connection
to the robot controller is realized at script level using TCP/IP socket. Once the

z0
x0

z1

z6
z5

z4
z3

z2

q1

q2

q3

q4 q5

q6

Fig. 2. UR5 robot and its joint coordinate system. Left : UR5 robot and PolyScope
GUI [15]; Right : joint coordinate system.

Figure 6.2: Coordinate
frames corresponding to the
D-H parameters in Table 6.2.
Illustration from [94].

The UR5 is equipped with a high-level controller
that can control the robot both in joint and Carte-
sian space. In the experiments presented here, a cal-
culated reference qdes is sent to the high-level con-
troller, which is assumed to function nominally such
that

q ≈ qdes. (6.3)

From this reference, q̇des and q̈des are extrapolated
and sent with qdes to the low-level controller.

The structure of the system is illustrated in Fig-
ure 6.3. The algorithm described in Section 6.1 is
implemented in the kinematic controller block. Ev-
ery timestep, a reference for the joint velocities is
calculated and integrated to desired joint angles
qdes. This is used as input to the dynamic controller,
which in turn applies torques to the joint motors.
Note that the actual state q is not used for feedback
to the kinematic control block. When the current
state is used as input for the kinematic controller,
the kinematic and dynamic loops are coupled and
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6.2. Experimental Setup

the gains designed for the kinematic control alone 1 can not be used. This results
in uneven motion, and therefore the kinematic control block receives the previous
reference as feedback, which leads to much nicer behavior, and is a good approxima-
tion because the dynamic controller tracks the reference with very high precision.
This is a standard method of implementation for industry robots when kinematic
control is used.

The communication between the implemented algorithm and the industrial ma-
nipulator system occurs through a TCP/IP connection which operates at 125 Hz.
The kinematic control block is implemented using python, which is a highly suit-
able programming language for the task. The TCP/IP connection is very simple
to set up in python. Furthermore, python has several libraries that can handle
different math and matrix operations.

Kinema'c)
Control)

Equality)and))
set.based)tasks)

Dynamic)
Control)

Robot)
manipulator)

Industrial)manipulator)system)

)

∫)
)

q,)q,)q).)))..)qref)qref)
.)))Desired)values)

for)eq.)tasks)
Boundary)values)
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Figure 6.3: The control structure of the experiments. The tested algorithm is im-
plemented in the kinematic controller block.

6.2.2 Implemented Tasks

Three tasks make up the basis for the experiments: Position control, collision avoid-
ance and FOV. Position control and FOV is implemented as both an equality and
set-based tasks and collision avoidance as a set-based task.

Position Control

The position of the end effector relative to the base coordinate frame is given by
the forward kinematics. The analytical expression can be found through the homo-
geneous transformation matrix [86] using the D-H parameters given in Table 6.2.
The task is then defined by

σpos = f(q) ∈ R3, (6.4)

σ̇pos = Jpos(q)q̇ =
df
dq
q̇, (6.5)

where the function f(q) is given by the forward kinematics.

Collision Avoidance

To avoid a collision between the end effector and an object at position po ∈ R3,
the distance between them is used as a task:
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6. Set-based Tasks: Implementation and Experimental Results

σCA =
√

(po − σpos)T(po − σpos) ∈ R (6.6)

σ̇CA = JCA(q)q̇ = − (po − σpos)
T

σCA
Jpos(q)q̇ (6.7)

Field of View

The field of view is defined as the outgoing vector of the end effector, i.e. the z6-
axis in Figure 6.2. This vector expressed in base coordinates is denoted a ∈ R3,
and can be found through the homogeneous transformation matrix using the D-H
parameters:

a = g(q) ∈ R3 (6.8)

ȧ = JFOV,3DOF(q)q̇ =
dg
dq
q̇ (6.9)

FOV is a useful task when directional devices or sensors are mounted on the end-
effector and they are desired to point in a certain direction ades ∈ R3. The task is
defined as the norm of the error between a and ades:

σFOV =
√

(ades − a)T(ades − a) ∈ R (6.10)

σ̇FOV = JFOV(q)q̇ = − (ades − a)T

σFOV
JFOV,3DOF(q)q̇ (6.11)

Note that in (6.7) and (6.11) that JCA and JFOV are not defined for σCA = 0
and σFOV = 0, respectively. In the implementation, this is solved by adding a small
ε > 0 to the denominator of these two Jacobians thereby ensuring that division by
zero does not occur. Furthermore, the method presented in this chapter ensures
collision avoidance, hence σCA will never be zero. Also note that alternative FOV
functions exist which do not suffer from this representation singularity.

6.3 Experimental Results

This section presents four experimental examples to illustrate the effectiveness and
the correctness of the theory presented in Chapter 4 and 5.

In Example 1-3, the system has been given two waypoints for the end effector
to reach. Here, position control is always the first priority equality task, namely
σ1.

pw1 =
[
0.486 m −0.066 m −0.250 m

]T
,

and (6.12)

pw2 =
[
0.320 m 0.370 m −0.250 m

]T
.

(6.13)

A circle of acceptance (COA) of 0.02 m is implemented for switching from σ1,des =
σpos,des = pw1 to σ1,des = σpos,des = pw2. The task gain matrix has been chosen
as

Λ1 = diag(
[
0.3 0.3 0.3

]
). (6.14)
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Furthermore, two obstacles have been introduced, hence two collision avoidance
tasks are necessary. In this example, these tasks are high-priority and are denoted
σa and σb, respectively. The obstacles are positioned at

po1 =
[
0.40 m −0.25 m −0.33 m

]T and (6.15)

po2 =
[
0.40 m 0.15 m −0.33 m

]T
,

(6.16)

and have a radius of 0.18 m and 0.15 m, respectively. This radius is used as the
minimum value of the set-based collision avoidance task to ensure that the end
effector is never closer to the obstacle center than the allowed radius, see Table 6.3,
6.5 and 6.7. Because the task is only considered as a high-priority set-based task,
it is not necessary to choose a task gain.

FOV is implemented both as an equality task, a high-priority and a low-priority
set-based task in Example 1, 2 and 3, respectively. In these experiments,

ades =
[
1 0 0

]T
, (6.17)

and σFOV is defined as in (6.10). In Example 1, FOV is implemented as an equality
task. Since σFOV is defined as the norm of the error, σFOV,des = 0. In Examples 2
and 3, FOV is implemented as a set-based task with a maximum value to limit the
error between a and ades. Here, the maximum value for the set-based FOV task
is set as 0.2622. This corresponds to allowing the angle between ades and a being
15◦ or less. The gain for this task is chosen as

ΛFOV = 1. (6.18)

6.3.1 Example 1

In Example 1, FOV is implemented as an equality task, and the system has two
set-based tasks. The task priorities are given in Table 6.3.

Name Task description Type Valid set C
σa Collision avoidance Set-based Ca = [0.18,∞)
σb Collision avoidance Set-based Cb = [0.15,∞)
σ1 Position Equality -
σ2 Field of view Equality -

Table 6.3: Implemented tasks in Example 1 sorted by decreasing priority.

According to Chapter 4, a system with 2 high-priority set-based tasks have
22 = 4 modes to consider: One containing only the equality tasks, one where σa
is active, one where σb is active and one where σa and σb are active. However, in
this case, the two obstacles have no points of intersection. Hence, it will never be
necessary to activate both σa and σb, and thus the system has three modes:

Mode 1: q̇ref = f1 , J†1Λ1σ̃1 +N1J
†
2Λ2σ̃2 (6.19)

Mode 2: q̇ref = f2 ,NaJ
†
1Λ1σ̃1 +Na1J

†
2Λ2σ̃2 (6.20)

Mode 3: q̇ref = f3 ,NbJ
†
1Λ1σ̃1 +Nb1J

†
2Λ2σ̃2 (6.21)
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6. Set-based Tasks: Implementation and Experimental Results

Denote the boolean variables

φi = in_T_RC (Jφfi, σφ, σφ,min, σφ,max) for i ∈ {1, 2, 3} and φ ∈ {a, b} . (6.22)

The active mode is then chosen by Table 6.4. Figure 6.5 displays the end effector
trajectory and the active mode, the distance between the end effector and the
obstacle centers and the FOV task over time.

Priorities (i) ai bi Active mode
1 True True f1

2 - True f2

3 True - f3

Table 6.4: Table illustrating the activation of mode in Example 1. Note that the
tasks σa and σb are never active in the same mode (an active task is indicated by
a hyphen) because the tasks are collision avoidance tasks in the case where the
obstacles are not overlapping.

6.3.2 Example 2

In Example 2, FOV is implemented as a high-priority set-based task, and the
system has three set-based tasks in total. Table 6.5 displays the system tasks in
prioritized order. According to Chapter 4, 3 set-based tasks should result in 23 = 8

Name Task description Type Valid set C
σa Collision avoidance Set-based Ca = [0.18,∞)
σb Collision avoidance Set-based Cb = [0.15,∞)
σc Field of view Set-based Cc = (−∞, 0.2622]
σ1 Position Equality -

Table 6.5: Implemented tasks in Example 2 sorted by decreasing priority.

modes to consider. However, as in Example 1, we can discard the two modes where
both σa and σb are active. Thus, 6 modes have to be considered:

Mode 1: q̇ref = f1 , J†1Λ1σ̃1 (6.23)

Mode 2: q̇ref = f2 ,NaJ
†
1Λ1σ̃1 (6.24)

Mode 3: q̇ref = f3 ,NbJ
†
1Λ1σ̃1 (6.25)

Mode 4: q̇ref = f4 ,NcJ
†
1Λ1σ̃1 (6.26)

Mode 5: q̇ref = f5 ,NacJ
†
1Λ1σ̃1 (6.27)

Mode 6: q̇ref = f6 ,NbcJ
†
1Λ1σ̃1 (6.28)

We define the boolean variables

φi = in_T_RC (Jφfi, σφ, σφ,min, σφ,max) for i ∈ {1, ..., 6} and φ ∈ {a, ..., c} .
(6.29)
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The active mode is then chosen by Table 6.6. Figure 6.5 displays the end effector
trajectory and the active mode, the distance between the end effector and the
obstacle centers and the FOV task over time.

Priorities (i) ai bi ci Active mode
1 True True True f1

2 - True True f2

3 True - True f3

4 True True - f4

5 - True - f5

6 True - - f6

Table 6.6: Table illustrating the activation of mode in Example 2. Note that the
tasks σa and σb are never active in the same mode (an active task is indicated by
a hyphen) because the tasks are collision avoidance tasks in the case where the
obstacles are not overlapping.

6.3.3 Example 3

In Example 3, FOV is implemented as a low-priority set-based task (see Table 6.7).
The implementation is very similar to Example 2. However, as stated in Chapter 5,

Name Task description Type Valid set C
σa Collision avoidance Set-based Ca = [0.18,∞)
σb Collision avoidance Set-based Cb = [0.15,∞)
σ1 Position Equality -
σc Field of view Set-based Cc = (−∞, 0.2622]

Table 6.7: Implemented tasks in Example 3 sorted by decreasing priority.

lower-priority set-based tasks can not be guaranteed to be satisfied at all times.
Hence, if the FOV error exceeds the maximum value of 0.2622, rather than at-
tempting to freeze the task at its current value, an effort is made to push it back
to the boundary of the valid set:

σ̃c = σFOV,max − σc = 0.2622− σc (6.30)

Mode 1: q̇ref = f1 , J†1Λ1σ̃1 (6.31)

Mode 2: q̇ref = f2 ,NaJ
†
1Λ1σ̃1 (6.32)

Mode 3: q̇ref = f3 ,NbJ
†
1Λ1σ̃1 (6.33)

Mode 4: q̇ref = f4 , J†1Λ1σ̃1 +N1J
†
c Λcσ̃c (6.34)

Mode 5: q̇ref = f5 ,NaJ
†
1Λ1σ̃1 +Na1J

†
c Λcσ̃c (6.35)

Mode 6: q̇ref = f6 ,NbJ
†
1Λ1σ̃1 +Nb1J

†
c Λcσ̃c (6.36)
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6. Set-based Tasks: Implementation and Experimental Results

The implementation is identical to Example 2 with modes defined by (6.31)-(6.36),
so the active mode is chosen by Table 6.5.

The results from running Examples 1-3 on the UR5 manipulator are illustrated
in Figure 6.4, and Figure 6.5 displays screenshots and images from simulation and
actual experiment from Example 1.

In all examples, the position task is fulfilled as predicted by the theory pre-
sented in Chapter’4 and 5, i.e. the two waypoints are reached by the end effector.
Furthermore, the end effector avoids the two obstacles by locking the distance to
the obstacle center at the obstacle radius until the other active tasks drive the end
effector away from the obstacle center on their own accord. This can be seen in
Figure 6.4(a)-6.4(c), and is also confirmed by Figure 6.4(g)-6.4(i): The set-based
collision avoidance tasks never exceed the valid sets Ca and Cb, but freeze on the
boundary of these sets.

Figure 6.4(d)-6.4(f) display the active mode over time, and confirm that mode
changes coincide with set-based tasks either being activated (frozen on bound-
ary/leaving valid set) or deactivated (unfrozen/approaching valid set). An increase
in mode means a new set-based task has been activated and vice versa.

In Example 1, FOV is implemented as an equality task with lower priority
than the position task with the goal of aligning the FOV vector a with ades =[
1 0 0

]T. This corresponds to the z-axis of the end effector being parallel to the
x-axis of the base coordinate system. As can be seen in Figure 6.4(j), the norm of
the error between a and ades converges to zero at about t = 30 s, and Figure 6.5
shows that in the end configuration, these two vectors are indeed parallel.

In Example 2, FOV is a high-priority set-based task with a maximum value
of 0.2622, corresponding to the angle between a and ades not exceeding 15◦. The
task has initial conditions outside its valid set Cc (Figure 6.4(k)). However, the
other active tasks naturally bring the FOV closer to and eventually (at around
t = 4 s) into Cc, and thus it is not necessary to freeze σc. Once σc enters Cc, the
task will always stay in this set. At around t = 13 s, the system enters mode 4
and σc is frozen because the error between the actual and desired FOV vectors
has reached its upper limit and keeping the task deactivated would result in the
maximum value being violated. Shortly after, the end effector reaches the second
obstacle, and so mode 6 is activated where both σb and σc are frozen. Once the
end effector has moved around the obstacle, σb is released. σc, however, can not be
released without leaving Cc, and so the system goes back to mode 4 and remains
there for the duration of the example.

In Example 3, FOV is a low-priority set-based task with the same maximum
value as Example 2. By comparing Figure 6.4(k) and 6.4(l) it is evident that these
implementations behave similarly until t = 13 s, when the system enters mode 4 and
activates σc. In Example 2, the task is frozen on the boundary, which is guaranteed
due to the fact it is high priority. As explained in Chapter 5, low priority set-
based tasks can not be guaranteed to actually freeze on the boundary, and they
are therefore activated with the goal of pushing the task back to its boundary. This
is confirmed by Figure 6.4(l). In this example, σc does indeed exceed its maximum
value in spite of the system activating the task. However, eventually σc converges
back to the boundary of Cc.
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Figure 6.4: Logged data from experimental results, Example 1-3. In Figure (a)-
(c) the end effector trajectory is displayed. Obstacles shown as spheres and way-
points as red dots. Figure (d)-(f) illustrate the active mode over time, and Figure
(g)-(i) the distance between the end effector and the obstacle centers. Finally, the
FOV task is shown in Figure (j)-(l).
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Figure 6.4(j) and 6.4(l) show that implementing FOV as a lower priority equality
and set-based render similar results. As expected, the equality task converges to
the exact desired value and the set-based to the boundary of the valid set. Even
so, in the case that the system has several other tasks with even lower priority,
it might be beneficial to implement FOV as a set-based task as this imposes less
constraint on the lower-priority tasks when inactive.

(a) t = 0 s (b) t = 16 s (c) t = 40 s

Figure 6.5: Pictures from simulation and actual experiments, Example 1. In the
simulation, the base and end effector coordinate system is illustrated with green,
blue and red axes for the x-, y- and z-axes respectively. These correspond to the
coordinate frames of the actual robot.

6.3.4 Example 4

In this example, the system has been given a time-varying trajectory for the end
effector to track:

σ1,des(t) = σpos,des(t) =

 0.5 sin2(0.1t) + 0.2
0.5 cos(0.1t) + 0.25 sin(0.1t)
0.5 sin(0.1t) cos(0.1t) + 0.1

 (6.37)

The task gain matrix has been chosen as

Λpos = diag(
[
0.15 0.15 0.15

]
). (6.38)

In addition, the system is also given a valid workspace: A minimum and maximum
value for the x, y and z position of the end effector. This is implemented as three set-
based tasks that are equal to the first, second and third element of σpos respectively.
These set-based tasks are all implemented as high-priority as shown in Table 6.8.

A system with 3 set-based tasks has 23 = 8 modes to consider. These are
listed below and activated according to Table 6.9, where a hyphen indicates that
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Name Task description Type Valid set C
σa Limited workspace x-direction Set-based Ca = [0.1, 0.6]
σb Limited workspace y-direction Set-based Cb = [−0.5, 0.4]
σc Limited workspace z-direction Set-based Cc = [−0.3, 0.25]
σ1 Position Equality -

Table 6.8: Implemented tasks in Example 4 sorted by decreasing priority.

a set-based task is active in that mode.

Mode 1: q̇des = f1 , J†1Λ1σ̃1 (6.39)

Mode 2: q̇des = f2 ,NaJ
†
1Λ1σ̃1 (6.40)

Mode 3: q̇des = f3 ,NbJ
†
1Λ1σ̃1 (6.41)

Mode 4: q̇des = f4 ,NcJ
†
1Λ1σ̃1 (6.42)

Mode 5: q̇des = f5 ,NA
abJ

†
1Λ1σ̃1 (6.43)

Mode 6: q̇des = f6 ,NA
acJ
†
1Λ1σ̃1 (6.44)

Mode 7: q̇des = f7 ,NA
bcJ

†
1Λ1σ̃1 (6.45)

Mode 8: q̇des = f8 ,NA
abcJ

†
1Λ1σ̃1 (6.46)

Denote the boolean variables

φi , in_T_RC (Jφfi, σφ, σφ,min, σφ,max) for i ∈ {1, ..., 8} and φ ∈ {a, ..., c} .
(6.47)

Priorities (i) ai bi ci Active mode
1 True True True f1

2 - True True f2

3 True - True f3

4 True True - f4

5 - - True f5

6 - True - f6

7 True - - f7

8 - - - f8

Table 6.9: Table illustrating the activation of mode in Example 4.

The results of Example 4 are shown in Figure 6.6, 6.8 and 6.7. The system
is unable to track the equality task perfectly as the desired trajectory moves in
and out of the allowed workspace (Figure 6.6 and 6.7). Mathematically, this is
explained by the fact that the set-based tasks and the position equality task are not
linearly independent (in fact, they are equal to each other). Thus Assumption 4.1 in
Chapter 5 is not satisfied, and the equality task errors can no longer be guaranteed
to converge to zero. However, as seen in Figure 6.8(b), the end effector stays within
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Figure 6.6: Desired and actual end trajectory plotted in red and blue respectively.
The allowed workspace is illustrated by the green box. Initial and end position
marked by x and o, respectively.

Figure 6.7: Actual vs. desired end effector trajectory from Example 4 plotted in
the xy-, xz- and yz-plane, respectively. The end effector trajectory is contained in
the allowed workspace at all times even though the reference trajectory moves in
and out of this workspace.

the valid workspace at all times by freezing on the boundary when following the
trajectory would bring it outside of the valid workspace. Figure 6.8(a) displays the
active mode over time. Mode changes clearly correspond to set-based tasks being
activated/deactivated on the border of their valid sets.

Videos of the experimental results can be viewed online1.

6.4 Conclusions

The method proposed in Chapter 4 and 5 for incorporating set-based tasks in the
singularity-robust multiple task-priority inverse kinematics framework has been
illustrated and validated in this chapter. In particular, the method has been im-
plemented on a 6 DOF UR5 manipulator. Four examples have been constructed to

1https://www.dropbox.com/sh/x92agg4n7ly9hdc/AAC-xh8DyJM5X6jknJhyoJdca?dl=0
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test various qualities and the performance of the algorithm. In summary, the exper-
imental results confirm the following properties: a
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(a) Active mode over time.
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(b) Reference and actual end effector po-
sition in x, y and z-direction with valid
workspace limits.

Figure 6.8: Logged data from Example 4.

• All equality tasks converge to
their desired value, given that
they are not in direct conflict
with a higher-priority set-based
task

• All high-priority set-based tasks
with initial conditions in their
valid set C stay in this set ∀t ≥ 0.

• All high-priority set-based tasks
with initial conditions outside C
can only 1) freeze at the current
value, or 2) move closer to C.
Hence, the initial condition is the
maximum deviation from C.

• If a high-priority set-based task
with initial conditions outside its
valid set eventually enters C, it
will stay in this set ∀t ≥ te, where
te is the time the task entered the
set.

• Lower-priority set-based tasks
are not necessarily satisfied.

Furthermore, it is suggested that
implementing a low-priority task as set-
based rather than as an equality task
is less restrictive on even lower priority
tasks as they are not affected by the
set-based task when it is not active.
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Part II

Curved Path Following of Marine
Vehicles in the Presence of Unknown

Ocean Currents
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Chapter 7

A Serret-Frenet approach for Surface
Vessels

In this chapter, the vehicle model is given by (2.18). We assume that the vessel in
question is equipped with sensors to measure position, heading (yaw), yaw rate and
relative velocities. Note that this chapter assumes linear damping, i.e. the quadratic
damping coefficient dq11 in (2.18) is equal to zero.

Contributions of this chapter: This chapter extends the control method in [13]
to obtain path following of curved paths for USVs also under the influence of
unknown ocean currents. This is achieved by expanding the guidance law in [13]
and combining it with an ocean current observer described in [1]. The closed-loop
system consists of feedback linearizing controllers, and is dependent on relative
velocity measurements. The path is represented by a Serret-Frenet reference frame.

Organization of this chapter: Section 7.1 defines the control objective. The
suggested control system is then introduced in Section 7.2 followed by the main re-
sult in Section 7.3. Simulations results and conclusions are presented in Sections 7.4
and 7.5, respectively.

Publications: The results of this chapter are based on [63].

7.1 Control Objectives

This section formalizes the control problem solved in this chapter. The control
system should make the vessel follow a given smooth path C and maintain a desired
constant relative surge velocity ur,des > 0 in the presence of unknown constant
irrotational ocean current Vc = [Vx, Vy, 0]T . By Assumption 2.3 (Section 2.4.1)
the current is bounded by some Vmax > 0.

The path C is parametrized with respect to the North-East-Down frame {i} as
a function of the arc length s. To accomplish this, a virtual reference Serret-Frenet
frame {f} is introduced, and the path is given by C , {(xf (s), yf (s), ψf (s))}. The
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7. A Serret-Frenet approach for Surface Vessels

Serret-Frenet frame is anchored in and propagates along C with instantaneous
speed ṡ.

Denoting xb/f and yb/f as the position of the body frame {b} relative to the
Serret-Frenet frame {f} and ψb/f , ψ−ψf as the relative orientation of the vessel
relative to the {f}-frame, the control objectives can be formalized as follows:

lim
t→∞

xb/f (t) = 0,

lim
t→∞

yb/f (t) = 0,

lim
t→∞

ur(t) = ur,des.

(7.1)

The reference frames, xb/f and yb/f are illustrated in Figure 7.1. Clearly, ensuring
that xb/f and yb/f converge to zero will result in the vessel converging to the path.
Since the Serret-Frenet frame is virtual, we are free to choose the evolution ṡ of
this frame along the path.

The dynamics of the body frame relative to the Serret-Frenet can be expressed
as follows [13]:

[
ẋb/f
yb/f

]
=

[
cos(ψb/f ) − sin(ψb/f )
sin(ψb/f ) cos(ψb/f )

] [
u
v

]
−
[
ṡ
0

]
− ṡ

[
0 −κ
κ 0

] [
xb/f
yb/f

]
(7.2)

Here, κ is the curvature of the path C .
In this chapter the relative surge velocity ur is controlled. As such, the total path

following speed U =
√
u2 + v2 is unconstrained. For speed profile planning/tracking

scenarios, this is not ideal. On the other hand, controlling the relative velocity of
the vessel gives direct control of energy consumption.

Assumption 7.1: The propulsion system is rated with power and thrust capasity
such that ur,des satisfies 0 ≤ Vmax < ur,des.

Remark 7.1: Assumption 7.1 is necessary to prevent the vessel from drifting away
while following the desired path.

7.2 The Control System

This section presents a control system that solves the control objectives in (7.1).
The system consists of an ocean current observer, a guidance law, an update law
for the Serret-Frenet frame, and surge and yaw controllers.

7.2.1 Ocean Current Observer

The current estimator for a surface ship is given in [1], and is a Luenberger type
observer based on the model in (2.18). In addition to estimating the current com-
ponents Vx and Vy, it gives estimates of the known states x and y that can be
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!

x!(North)!

y!(East)!

T!

N!

u!

v!

s!

!!/!!

!!/!! Desired!path!C!

(!! , !!)!

(!, !)!

Figure 7.1: The inertial frame x-axis points north and the y-axis points east. The
Serret-Frenet frame has axes denoted T and N and is anchored in the desired path.
The position of this frame relative to the inertial frame is (xf (s), yf (s). The body
frame is fixed on the marine surface vessel. The position of the body frame relative
to the inertial frame and Serret-Frenet frame is denoted (x, y) and (xb/f , yb/f )
respectively.

compared to the actual, known states. The observer is given below:

˙̂x = cos(ψ)ur − sin(ψ)vr + V̂x + kx1
x̃

˙̂y = sin(ψ)ur + cos(ψ)vr + V̂y + ky1 ỹ

˙̂
Vx = kx2

x̃

˙̂
Vy = ky2 ỹ

(7.3)

Here, x̂, ŷ, V̂x and V̂y are the estimates of x, y, Vx and Vy, and x̃ , x − x̂,
ỹ , y− ŷ, Ṽx , Vx− V̂x and Ṽy , Vy− V̂y are the estimation errors. If the constant
gain parameters kx1 , ky1 , kx2 and ky2 are greater than zero, the errors x̃, ỹ, Ṽx and
Ṽy will globally exponentially converge to zero (see Section 7.3).

Assumption 7.2: The current estimates are saturated in accordance with As-
sumption 2.3 in Section 2.4.1:

√
V̂ 2
x + V̂ 2

y ≤ Vmax < ur,des.

Remark 7.2: The saturation is placed on the estimated current after the feedback
loop so the saturation does not affect the stability of the observer.

In this chapter, the following notation is used for the ocean current and ocean
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7. A Serret-Frenet approach for Surface Vessels

current estimate in the {f}-frame:

V fx = cos(ψf )Vx + sin(ψf )Vy,

V fy = − sin(ψf )Vx + cos(ψf )Vy,

V̂ fx = cos(ψf )V̂x + sin(ψf )V̂y,

V̂ fy = − sin(ψf )V̂x + cos(ψf )V̂y.

(7.4)

7.2.2 Guidance and Update Laws

Equation (7.5) and (7.6) contain the update law used to drive the {f}-frame for-
ward along the desired path and the guidance law providing the yaw controller
with its reference, respectively.

ṡ =
√
u2
r,des + v2

r︸ ︷︷ ︸
,Udes

√
∆2 + x2

b/f + xb/f√
∆2 + x2

b/f + (yb/f + g)2
+ V̂ fx , (7.5)

ψdes = ψf − arctan

(
vr

ur,des

)
− arctan

 yb/f + g√
∆2 + x2

b/f

 , (7.6)

where g is the solution to the second-order equation

(V̂ f
2

y − U2
des)︸ ︷︷ ︸

a

g2 + 2 V̂ f
2

y yb/f︸ ︷︷ ︸
b

g + V̂ f
2

y

(
∆2 + x2

b/f + y2
b/f

)
︸ ︷︷ ︸

c

= 0, (7.7)

and ∆ > 0 is a design parameter.
Remark 7.3: Assumption 7.1-7.2 ensure that the solution(s) of (7.7) are real and
finite.

Equation (7.7) is a second order equation with parameters (a, 2b, c) and thus it
has two possible solutions:

g1 ,
−b−

√
b2 − ac
a

,

g2 ,
−b+

√
b2 − ac
a

.

(7.8)

To prove stability, the term g must have the same sign as V̂ fy (this is shown in
Appendix A). By simple analysis and Assumption 7.1-7.2, a < 0 and c ≥ 0. Fur-
thermore, since

√
b2 − ac ≥ b, g1 will always be positive (≥ 0) and g2 will always

be negative (≤ 0). Thus, g is chosen as follows:

g =

{
g1 V̂ fy ≥ 0

g2 V̂ fy < 0
(7.9)
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7.2.3 Surge and Yaw Controllers

A feedback linearizing P-controller is used to ensure tracking of the desired relative
surge velocity ur,des(t).

τu = −Fur (vr, r) +
d11

m11
ur,des + u̇rdes − kur (ur − ur,des). (7.10)

The gain kur > 0 is constant, and the expression for Fur is given in (2.19). The
terms m11 and d11 are mass and damping coefficients as defined in (2.16). The
controller (7.10) guarantees exponential tracking of ur,des(t), see Section 7.3. Note
that part of the damping is not canceled in order to guarantee some robustness
with respect to model uncertainties.

Similarly, a feedback linearizing PD-controller is used to track the desired yaw
angle ψdes. In this case ψdes(t) is provided by the guidance law (7.6) and ψ̇des(t) is
calculated by taking the time derivative of ψdes(t).

τr = −Fr(ur, vr, r) + ψ̈des − kψ(ψ − ψdes)− kr(ψ̇ − ψ̇des). (7.11)

kψ and kr are strictly positive constant controller gains, and the expression for
Fr(ur, vr, r) is given in (2.22). This controller ensures exponential tracking of ψdes
and ψ̇des (proven in Section 7.3).

7.2.4 State Measurements

The control system proposed in this chapter assumes that η (position and head-
ing/yaw) and νr (relative surge and sway velocity and yaw rate) are measured.
Ships are usually equipped with a large variety of sensors that combined provide
sensor data to estimate the vessel state [31]. For instance, Global Navigation Satel-
lite System (GNSS) receivers can provide position and velocity measurements and
a gyrocompass to measure yaw ψ yaw rate r.

To measure relative velocity, Acoustic Doppler Current Profilers (ADCP), Pit-
ometer Logs and Paddle meters can be used [20]. ADCP uses acoustic measure-
ments to capture the relative velocity. The Pitometer log compares the dynamic
and static pressures of the fluid, and the Paddle meter measures spin velocity of a
paddle driven by the flow itself. We assume that the measurements are filtered to
remove first-order wave-induced motions and measurement noise.

7.3 Main Result

This section presents the conditions under which the proposed control system
achieves the control objectives (7.1). First, consider the error vector

ξ =
[
ũr ψ̃

˙̃
ψ Ṽx Ṽy x̃ ỹ

]T
,

(7.12)

where ũr , ur − ur,des, ψ̃ , ψ − ψdes,
˙̃
ψ , r − ψ̇des, Ṽx , Vx − V̂x, Ṽy , Vy − V̂y,

x̃ , x− x̂ and ỹ , y − ŷ are the controller and observer errors.
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Proposition 7.1. Given an underactuated surface vessel described by the dynam-
ical system (2.18). If Assumption 2.1-2.3 hold, the ocean current observer (7.3)
and feedback linearizing controllers (7.10) and (7.11) ensure that ξ = 0 is a UGES
equilibrium point and that the references provided by the guidance system are ex-
ponentially tracked.

Proof. By combining the ocean current observer (7.3) and feedback linearizing
controllers (7.10) and (7.11) with the USV model (2.18), the error dynamics is
reduced to

ξ̇ =



−(kur + d11
m11

) 0 0 0 0 0 0

0 0 1 0 0 0 0
0 −kψ −kr 0 0 0 0
0 0 0 0 0 −kx2

0
0 0 0 0 0 0 −ky2
0 0 0 1 0 −kx1

0
0 0 0 0 1 0 −ky1


︸ ︷︷ ︸

,Λ

ξ. (7.13)

The system (7.13) is linear and time-invariant. Furthermore, all controller and
observer gains and d11

m11
are strictly positive, and it is straightforward to show that

all eigenvalues of Λ are strictly in the left half plane. Hence, Λ is Hurwitz and the
origin ξ = 0 of (7.13) is UGES.

Assumption 7.3: The controllers (7.11) and (7.10) are tuned such that the error
dynamics (7.13) is fast compared to the cross-track error dynamics (7.2). Hence,
ξ can be assumed to be zero.

Theorem 7.1. Given an underactuated surface vessel described by the dynamical
system (2.18). If Assumption 2.1-2.3 and 7.1-7.3 hold, the current observer (7.3)
and the controllers given by (7.10)-(7.11) in combination with the update and guid-
ance law (7.5) and (7.6) give a cross-track error dynamics for which the equilibrium
point (xb/f , yb/f ) = (0, 0) is UGAS, and the control objectives (7.1) are achieved.

Proof. The dynamics of the body frame relative to the Serret-Frenet is given in (7.2)
and can be rewritten as[

ẋb/f
yb/f

]
=

[
cos(ψb/f ) − sin(ψb/f )
sin(ψb/f ) cos(ψb/f )

] [
ur
vr

]
−
[
ṡ
0

]
− ṡ

[
0 −κ
κ 0

] [
xb/f
yb/f

]
+

[
cos(ψf ) sin(ψf )
− sin(ψf ) cos(ψf )

] [
Vx
Vy

]
.

(7.14)

Using the expressions for the current observer (7.3), the update law (7.5), guidance
law (7.6) and controllers (7.10)-(7.11), (7.14) can be expressed as

[
ẋb/f
ẏb/f

]
=


−Udes

xb/f√
∆2+x2

b/f
+(yb/f+g)2

−Udes
yb/f√

∆2+x2
b/f

+(yb/f+g)2

− ṡ [0 −κ
κ 0

] [
xb/f
yb/f

]
+H(t, Udes, ξ)ξ, (7.15)

90



7.4. Simulation Results

where

H(t, Udes, ξ) =

[
cos(ψb/f ) h1(t, Udes, ξ) 0 cos(ψf ) sin(ψf ) 0 0
sin(ψb/f ) h2(t, Udes, ξ) 0 − sin(ψf ) cos(ψf ) 0 0

]T
(7.16)

and

h1(t, Udes, ξ) =
cos(ψ̃)− 1

ψ̃
Udes

√
∆2 + x2

b/f√
∆2 + x2

b/f + (yb/f + g)2

+
sin(ψ̃)

ψ̃
Udes

yb/f + g√
∆2 + x2

b/f + (yb/f + g)2
,

h2(t, Udes, ξ) =
sin(ψ̃)

ψ̃
Udes

√
∆2 + x2

b/f√
∆2 + x2

b/f + (yb/f + g)2

− cos(ψ̃)− 1

ψ̃
Udes

yb/f + g√
∆2 + x2

b/f + (yb/f + g)2
.

(7.17)

The details of the above calculation are given in Appendix A.
By Assumption 7.3, ξ = 0, reducing the error dynamics to

[
ẋb/f
ẏb/f

]
=

−Udes
xb/f√

∆2+x2
b/f

+(yb/f+g)2

−Udes
yb/f√

∆2+x2
b/f

+(yb/f+g)2

− ṡ [0 −κ
κ 0

] [
xb/f
yb/f

]
.

(7.18)

The stability of the system (7.18) can be proven using the quadratic positive definite
Lyapunov function V = 1

2 (x2
b/f + y2

b/f ).

V̇ = ẋb/fxb/f + ẏb/fyb/f

= −Udes
x2
b/f + y2

b/f√
∆2 + x2

b/f + (yb/f + g)2
+ ṡκxb/fyb/f − ṡκxb/fyb/f

,W (xb/f , yb/f , g) < 0 (7.19)

V̇ is negative definite and thus the nominal system (7.18) is UGAS and xb/f and
yb/f converge to zero. Furthermore, by Proposition 1, and ũr exponentially to zero.
Thus the control objectives are satisfied.

7.4 Simulation Results

This section presents simulation results when the desired path is a straight line
and a circular path, respectively. Numeric values for the ship model are given
in [35]. In all simulations, the desired relative surge velocity ur,des = 5 m/s and
the ocean current is Vc = [−1, 1.2]T m/s. The look-ahead distance ∆ = 50 m and
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the controller and observer gains are kur = 0.1 s−1, kψ = 0.04 s−2, kr = 0.1 s−1,
kx1 = 4 s−1, kx2 = 0.05 s−2, ky1 = 4 s−1 and ky2 = 0.05 s−2.

Two desired paths have been defined and simulated:

C1 :=

xf (s) = s cos(ψf (s))
yf (s) = s sin(ψf (s))
ψf (s) = 40◦

(7.20)

C2 :=

xf (s) = R cos( sR ) + C1

yf (s) = R sin( sR ) + C2

ψf (s) = s
R + π

2

(7.21)

In C2, R = 400 m, C1 = 0 m and C2 = 800 m.
Simulation results are shown in Figure 7.2-7.7, and confirm that the control

objectives are fulfilled. The ship converges to the desired path and xb/f and yb/f
converge to zero. Furthermore, the controllers ensure that ur(t), ψ(t) and r(t)
converge to and track their respective references, as shown in Figure 7.4 and 7.7.
Finally, the current observer correctly estimates the ocean currents (Figure 7.3
and 7.6). Finally, notice in Figure 7.2 and 7.5 that when the USV is on the path,
the heading is not aligned with the tangent of the path, but side-slips to counteract
the effects of the ocean current and the curvature of the path.

All simulations were conducted with an appropriate saturation on the thruster
force T and the rudder angle δ, confirming that the control system is applicable in
a real-life scenario.
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Figure 7.2: Desired and actual path C1.
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for C1.
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Figure 7.4: Desired vs. actual surge
velocity, yaw and yaw rate for C1.

7.5 Conclusions

In this chapter a guidance and control system for an underactuated surface vessel
is developed to solve the control objective of making the vessel follow a general
path in the presence of unknown ocean currents. The results are motivated by
the path following methods of [13], and by expanding these guidance and update
laws and combining them with an ocean current observer [1], convergence to the
desired path is achieved with UGAS stability properties under explicit conditions.
Simulation results verify the theoretical results.
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Figure 7.5: Desired and actual path C2.
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current for C2.
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Chapter 8

A Serret-Frenet approach for
Underwater Vehicles

In this chapter, the vehicle model is given by (2.36). We assume that the vessel in
question is equipped with sensors to measure position, attitude, relative velocities
and pitch and yaw rate.

Contributions of this chapter: Chapter 7 presented a path following control
method which allows underactuated surface vehicles to follow a predefined curved
path under the influence of ocean currents. This chapter extends the result to
AUVs, and is motivated by [13], in which curved path following is achieved for
underwater vehicles when no ocean currents affect the vehicle.

Organization of this chapter: This chapter is organized as follows. Section 8.1
defines the control objectives. In Section 8.2 the control system that is proposed
to solve the path following task is presented followed by a stability analysis of the
closed-loop system in Section 8.3. Simulation results and conclusions are given in
Section 8.4 and 8.5, respectively.

Publications: The results of this chapter are based on [64].

8.1 Control Objectives

This section specifies the control problem considered in this chapter. The control
system should ensure that the vehicle converges to and follows a given continuously
differentiable path C while maintaining a desired constant relative surge velocity
ur,des > 0 in the presence of unknown constant irrotational ocean currents. By
Assumption 2.8 (Section 2.4.2), the current is bounded by some Vmax > 0.

The path C is parametrized with respect to the inertial frame {i} as a function
of the arc length s: C , {(xf (s), yf (s), z(s), θf (s), ψf (s))}. To achieve the control
objectives a virtual reference Serret-Frenet frame {f} is introduced. This frame is
anchored in and propagates along C with instantaneous speed ṡ.
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Denoting xb/f , yb/f and zb/f as the position of the body frame {b} relative to
the Serret-Frenet frame {f}, the control objectives can be formalized as follows:

lim
t→∞

xb/f (t) = 0,

lim
t→∞

yb/f (t) = 0,

lim
t→∞

zb/f (t) = 0,

lim
t→∞

ur(t) = ur,des.

(8.1)

The Serret-Frenet frame is illustrated in two dimensions in Figure 7.1. When xb/f ,
yb/f and zf/b are zero, the vehicle is on the desired path. Since the Serret-Frenet
frame is virtual, we are free to choose the evolution ṡ of this frame along the path,
and can use this to control the AUV velocity along the path. In this chapter the
objective is to control the relative surge velocity ur.
Assumption 8.1: The propulsion system is rated with power and thrust capasity
such that choosing ur,des to satisfy 0 ≤ Vmax ≤ kur,des, 0 < k < 1, is feasible.
Remark 8.1: For most marine vehicles Assumption 8.1 is easily fulfilled since their
propulsion systems are designed to give much more than 5 meters per second of
relative speed ur,des. The ocean current usually has an intensity of less than 1 meter
per second [20]. In addition, we are free to choose the value of the design parameter
k, which may be chosen close to one to make Assumption 8.1 less strict.

The dynamics of the body frame relative to the Serret-Frenet can be expressed
as follows [13]:ẋb/fẏb/f

ẏb/f

 = Rf
b (Θfb)

uv
w

−
ṡ0

0

− ṡ
0 −κ 0
κ 0 −τ
0 τ 0

xb/fyb/f
zb/f

 (8.2)

Here, κ and τ describe the path curvature and torsion, respectively, and the rotation
matrix Rf

b (θfb) is defined in 2.1.
Since the orientation of underwater vehicles includes rotations about several

axes, it is not straightforward to define a desired absolute rotation for the vehicle.
Therefore, a fourth reference frame {c} is introduced. This is related to the {b}-
frame through a rotation of an angle −βc about the body z-axis and an angle αc
about the rotated y-axis, where

αc , arctan

(
wr
ur,des

)
, (8.3)

βc , arctan

 vr√
u2
r,des + w2

r

 , (8.4)

Θcb =

 0
αc
−βc


,

(8.5)
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describe the angle of attack and side-slip of the AUV, respectively [31]. The orien-
tation of the {c}-frame relative to the {f}-frame is then described by

Θfc =

φfcθfc
ψfc


,

(8.6)

which can be calculated based on the rotation matrix

Rf
c (Θfc) = Ri

f (Θif )TRi
b(Θib)R

c
b(Θcb)

T . (8.7)

Here,

Θib =

0
θ
ψ

 (8.8)

is the AUV pitch and yaw angle relative to the inertial frame defined in Sec-
tion 2.4.2, and

Θif =

 0
θf
ψf

 (8.9)

is the pitch and yaw angle of the Serret-Frenet reference frame relative to the
inertial frame. The relative orientation Θfc (not the absolute orientation Θib) is
then the controlled state as explained in Section 8.2.

8.2 The Control System

In this section a control system that aims to solve the control objectives (8.1) is
proposed. This includes an ocean current observer, an update law for the refer-
ence frame {f}, guidance laws for the vehicle attitude and surge, pitch and yaw
controllers.

8.2.1 Ocean Current Observer

A current estimator for a surface vessel is given in [1] and used in Chapter 7. The
observer is a Luenberger type observer based on the kinematics of a surface vessel
model. In this chapter this observer is extended from two to three by including the
kinematics in the dynamical model in (2.36). In addition to estimating the current
components Vx, Vy and Vz, it provides estimates of the known position states x, y
and z that can be compared to the actual states:

˙̂x = cos(θ) cos(ψ)ur − sin(ψ)vr + sin(θ) cos(ψ)wr + V̂x + kx1
x̃

˙̂y = cos(θ) sin(ψ)ur + cos(ψ)vr + sin(θ) sin(ψ)wr + V̂y + ky1 ỹ

˙̂z = − sin(θ)ur + cos(θ)wr + V̂z + kz1 z̃

˙̂
Vx = kx2 x̃

˙̂
Vy = ky2 ỹ

˙̂
Vz = kz2 z̃

(8.10)
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Here, x̂, ŷ, ẑ, V̂x, V̂y and V̂z are the estimates of x, y, z, Vx, Vy and Vz, respectively.
Furthermore, x̃ = x − x̂, ỹ = y − ŷ, z̃ = z − ẑ, Ṽx = Vx − V̂x, Ṽy = Vy − V̂y and
Ṽz = Vz − V̂z. are the observer error signals. If the constant gain parameters kx1

,
ky1 , kz1 , kx2

, ky2 and kz2 are chosen greater than zero, the errors x̃, ỹ, z̃, Ṽx, Ṽy
and Ṽz will globally exponentially converge to zero (see Section 8.3).
Assumption 8.2: The current estimates are saturated in accordance with As-
sumption 2.8, Section 2.4.2:

√
V̂ 2
x + V̂ 2

y + V̂ 2
z ≤ Vmax < ur,des.

Remark 8.2: The saturation is placed on the estimated current after the feedback
loop so the saturation does not affect the stability of the observer.

In this chapter, the following notation is used for the ocean current and ocean
current estimates expressed in the {f}-frame.

V f
c =

V fxV fy
V fz

 = Ri
f (Θif )T

VxVy
Vz


,

(8.11)

V̂ f
c =

V̂xV̂y
V̂z

 = Ri
f (Θif )T

V̂ fxV̂ fy
V̂ fz


.

(8.12)

8.2.2 Guidance and Update Laws

The update law used to drive the Serret-Frenet frame forward along the desired
path can be freely chosen as the {f}-frame is a virtual reference frame. This chapter
proposes the following update law:

ṡ =
√
u2
r,des + v2

r + w2
r︸ ︷︷ ︸

,Udes

√
∆2 + y2

b/f√
∆2 + y2

b/f + (zb/f + f)2

√
∆2 + x2

b/f + z2
b/f√

∆2 + x2
b/f + (yb/f + g)2 + z2

b/f

+ Udes
xb/f√

∆2 + x2
b/f + y2

b/f + z2
b/f

+ V̂ fx (8.13)

The guidance laws providing the pitch and yaw controller with their references are
chosen as follows:

θfc,des = arctan

 zb/f + f√
∆2 + y2

b/f

 (8.14)

ψfc,des = − arctan

 yb/f + g√
∆2 + x2

b/f + z2
b/f

 , (8.15)

where f is the solution to the second order equation(
V̂ f

2

z − U2
des

)
︸ ︷︷ ︸

af

f2 + 2 V̂ f
2

z zb/f︸ ︷︷ ︸
bf

f + V̂ f
2

z

(
∆2 + y2

b/f + z2
b/f

)
︸ ︷︷ ︸

cf

= 0, (8.16)
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and g is the solution to the second order equation(
V̂ f

2

y − cos2(θfc,des)U
2
des

)
︸ ︷︷ ︸

ag

g2 + 2 V̂ f
2

y yb/f︸ ︷︷ ︸
bg

g + V̂ f
2

y

(
∆2 + x2

b/f + y2
b/f + z2

b/f

)
︸ ︷︷ ︸

cg

= 0.

(8.17)
Here, ∆ > 0 is a design parameter. Note that the guidance laws are defined for the
relative orientations θfc and ψfc as defined in Section 8.1.

In this chapter the analysis is restricted to a domain D where θfc,des is bounded
by the same design parameter k as the desired relative surge velocity in Assump-
tion 8.1:

D =
{

(θ, θfc, θfc,des) ∈ R3 : |θ| < π/2, |θfc| < π/2, |θfc,des| < arccos(k)
}

(8.18)

Remark 8.3: |θfc,des| < arccos(k) and Assumption 8.1-8.2 ensure that the solu-
tions of f and g are real and finite.

Remark 8.4: If k is chosen close to 1, it greatly limits the valid values of θfc,des,
but the control system will work for ocean currents that has a maximum magnitude
close to the desired relative surge velocity urdes. Similarly, if k is chosen close to
0, θfc,des can take on values close to ±π/2, but the current has to be very limited
compared to the desired relative surge velocity. If the current is relatively strong,
this can be overcome by choosing a large urdes.

Remark 8.5: The restrictions on θ and θfc are to avoid the singularities that occur
due to Euler angle representation.

Remark 8.6: Deriving explicit conditions that ensure that the domain D is invari-
ant is not straight forward and will remain a topic of future work.

Equation (8.16) and (8.17) are second order equations with parameters (af , 2bf , cf )
and (ag, 2bg, cg). Thus, these equations have two possible solutions:

i1 ,
−bi −

√
b2i − aici
ai

,

i2 ,
−bi +

√
b2i − aic
ai

,

(8.19)

for i = {f, g}. To compensate for the ocean current, f must have the same sign as
V̂ fz and g must have the same sign as V̂ fy (this will be shown in Section 8.3). In D
and by Assumption 8.2, ai < 0 and ci ≥ 0. Furthermore, since

√
b2i − aici ≥ bi, i1

will always be positive (≥ 0) and i2 will always be negative (≤ 0). Hence, f and g
are thus chosen as follows:

f =

{
f1 V̂ fz ≥ 0

f2 V̂ fz < 0
(8.20)

g =

{
g1 V̂ fy ≥ 0

g2 V̂ fy < 0
(8.21)
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8.2.3 Controllers

A feedback linearizing P-controller is used to ensure tracking of the desired relative
surge velocity ur,des(t).

τu = −Fur (ur, vr, wr, r, q) + u̇r,des − kur (ur − ur,des) (8.22)

The gain kur > 0 is constant and Fur (ur, vr, r, q) is defined in (2.37).
In addition to ur(t), the controlled states are the relative orientation θfc(t),

ψfc(t) and the rotational velocities q and r. The controller is an integrator back-
stepping controller that ensures that the difference between the actual and desired
states converge to zero. The errors z1 and z2 are defined as

z1 ,

[
θ̃fc
ψ̃fc

]
,

[
θfc
ψfc

]
−
[
θfc,des
ψfc,des

]
,

(8.23)

z2 ,

[
q̃
r̃

]
,

[
q
r

]
−
[
qdes
rdes

]
.

(8.24)

The controller is then given as[
τq
τr

]
=

[
q̇des
ṙdes

]
−
[
Fq(θ, ur, wr, q)
Fr(ur, vr, r)

]
−ATz1 −K2z2, (8.25)

where

A ,

[
cos(φfc) − sin(φfc)
sin(φfc)
cos(θfc)

cos(φfc)
cos(θfc)

] [
cos(βc) − sin(βc) sin(αc)

0 cos(αc)

]
,

(8.26)

[
qdes
rdes

]
, −A−1(Φ +K1z1), (8.27)

Φ = −
[
θ̇fc,des

ψ̇fc,des

]
+

[
cos(φfc) − sin(φfc)
sin(φfc)
cos(θfc)

cos(φfc)
cos(θfc)

]
L(ωcbc − [Rf

c (Θfc)]
Tωfif ), (8.28)

L =

[
0 1 0
0 0 1

]
,

(8.29)

ωcbc = [−β̇c sin(αc),−α̇c, β̇c cos(αc)]
T , ωfif = ṡ[τ(s), 0, κ(s)]T and K1 and K2 are

positive definite, symmetric gain matrices. Furthermore, τ(s) and κ(s) are the path
torsion and curvature, and θfc,des and ψfc,des are given by (8.14) and (8.15). The
functions Fq(θ, ur, wr, q) and Fr(ur, vr, r) are defined in (2.43)-(2.44).
Remark 8.7: A is not defined for θfc = ±π/2.This is due to the well-known
singularity of Euler angle representation. The singularity is not contained the con-
sidered domain D (8.18). The guidance law (8.14) is designed so the desired value
|θfc,des| < π/2. Furthermore, unless the singularity θfc = ±π/2 is reached, θfc will
exponentially converge to θfc,des (see Proposition 8.1). Thus, unless θfc(0) = π/2
as an initial condition, the singularity will never be reached in the physical system.
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8.2.4 State Measurements

The control system proposed in this chapter requires that η and νr are measured.
Underwater vehicles are usually equipped with a large variety of sensors that can
be used to estimate the vessel state [31]. For instance, absolute position and veloc-
ity can be estimated using an Inertial Measurement Unit (IMU) and a LongBase
Line transponder system. Acoustic Doppler Current Profilers (ADCP), Pitometer
Logs and Paddle meters can be used to measure relative velocity. ADCP estimates
relative velocity using acoustic measurements, the Pitometer log compares the dy-
namic and static pressures of the fluid, and the Paddle meter measures spin velocity
of a paddle driven by the flow itself [22].

Since the controllers (8.22) and (8.25) depend on the time derivative of the
reference signals, they are susceptible to measurement noise. Thus, it is important
that the AUV is equipped with reliable sensors with minimal measurement noise.
The effects of measurement noise can also be minimized by utilizing a low-pass
filter on the sensor data.

8.3 Main Result

This section presents the conditions under which the proposed control system
achieves the control objectives (8.1). First, consider the error vector

ξ =

[
ξ1

ξ2

]
,

(8.30)

ξ1 =

ũrz1

z2


,

(8.31)

ξ2 =
[
Ṽx Ṽy Ṽz x̃ ỹ z̃

]T
,

(8.32)

where ũr , ur − ur,des, z1 and z2 are defined in (8.23)-(8.24) and the observer
errors ξ2 are defined in Section 8.2.1.

Proposition 8.1. Given an underactuated surface vessel described by the dynam-
ical system (2.36). If Assumption 2.5-2.8 (Section 2.4.2) hold, the ocean current
observer (8.10) and feedback linearizing controllers (8.22) and (8.25) ensure that
ξ = 0 is an exponentially stable equilibrium point and that the references provided
by the guidance system are exponentially tracked.

Proof. By combining the controllers (8.22)-(8.25) with the USV model (2.36), the
error dynamics is reduced to

ξ̇1 =

−kur 0 0
0 −K1 A
0 −AT −K2

 ξ1. (8.33)

The details of the above calculation are given in Appendix B. Consider the positive
definite and radially unbounded Lyapunov function candidate

V =
1

2
ξT1 ξ1 (8.34)

101



8. A Serret-Frenet approach for Underwater Vehicles

along the solutions of the system (8.33), which results in

V̇ = −kur ũ2
r + zT1 (−K1z1 +Az2) + zT2 (−ATz1 −K2z2)

= −kur ũ2
r − zT1 K1z1 − zT2 K2z2

≤ −λ||ξ1||2, (8.35)

where λ = min (kur , eig(K1), eig(K2)) > 0. Hence, the equilibrium point ξ1 = 0 is
exponentially stable.

Remark 8.8: Note that the equilibrium point is not globally stable, due to the
singularity in A.

Furthermore, by inserting the USV kinematics (2.36) into the ocean current
observer dynamics (8.10), the error dynamics ξ2 can be expressed as

ξ̇2 =


0 0 0 −kx2 0 0
0 0 0 0 −ky2 0
0 0 0 0 0 −kz2
1 0 0 −kx1 0 0
0 1 0 0 −ky1 0
0 0 1 0 0 −kz1

 ξ2. (8.36)

The system (8.36) is linear and time-invariant. Furthermore, all observer gains are
strictly positive, and it is straightforward to show that all eigenvalues of Λ are
strictly in the left half plane. Hence, Λ is Hurwitz and the origin ξ2 = 0 of (8.36)
is UGES.

Assumption 8.3: The current observer (8.10) and controllers (8.22) and (8.25)
are tuned such that the error dynamics (8.33) and (8.36) are fast compared to the
cross-track error dynamics (8.2). Hence, ξ can be assumed to be zero.

Theorem 8.1. Given an underactuated underwater vehicle described by the dy-
namical system (2.36) and (θ(t), θfc(t), θfc,des(t)) ∈ D,∀t ≥ t0. If Assumption 2.5-
2.8 and 8.1-8.3 hold, then the ocean current observer (8.10), update law (8.13),
guidance laws (8.14)-(8.15) and controllers (8.22) and (8.25) result in cross-track
error dynamics for which the equilibrium point (xb/f , yb/f , zb/f ) = (0, 0, 0) is asymp-
totically stable, and the control objectives (8.1) are achieved.

Proof. The error dynamics are given in (8.2) and can be rewritten asẋb/fẏb/f
żb/f

 = Rf
b (Θfb)

urvr
wr

−
ṡ0

0

− ṡ
0 −κ 0
κ 0 −τ
0 τ 0

xb/fyb/f
zb/f

+ [Ri
f (Θif )]T

VxVy
Vz


.

(8.37)
Inserting the expressions for the current observer (8.10), the update law (8.13),
guidance laws (8.14)-(8.15) and controllers (8.22) and (8.25), this can be further
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rewritten as

ẋb/fẏb/f
żb/f

 =


−Udes

xb/f√
∆2+x2

b/f
+y2

b/f
+z2

b/f

−Udes

√
∆2+y2

b/f√
∆2+y2

b/f
+(zb/f+f)2

yb/f√
∆2+x2

b/f
+(yb/f+g)2+z2

b/f

−Udes
zb/f√

∆2+y2
b/f

+(zb/f+f)2


− ṡ

0 −κ 0
κ 0 −τ
0 τ 0

xb/fyb/f
zb/f

+H(t, Udes, ξ)ξ,

(8.38)

where

H(t, Udes, ξ)
T = (8.39)

c(θfb)c(ψfb) c(θfb)s(ψfb) −s(θfb)
h11 h21 h31

h12 h22 0
0 0 0
0 0 0

c(ψf )c(θf ) c(ψf )s(φf )s(θf )− c(φf )s(ψf ) c(φf )c(ψf )s(θf ) + s(φf )s(ψf )
c(θf )s(ψf ) s(φf )s(ψf )s(θf ) + c(φf )c(ψf ) c(φf )s(ψf )s(θf )− c(ψf )s(φf )
−s(θf ) c(θf )s(φf ) c(φf )c(θf )

0 0 0
0 0 0
0 0 0


and

h11 = Udes

(
sin(θ̃fc)

θ̃fc
sin(θfc,des)

(
− cos(ψfc,des) cos(ψ̃fc) + sin(ψfc,des) sin(ψ̃fc)

)
+

cos(θ̃fc)− 1

θ̃fc
cos(θfc,des) cos(ψfc,des)

)
,

h12 = Udes cos(θfc,des) cos(θ̃fc)

(
− sin(ψ̃fc)

ψ̃fc
sin(ψfc,des) +

cos(ψ̃fc)− 1

ψ̃fc
cos(ψfc,des)

)
,

h21 = Udes

(
sin(θ̃fc)

θ̃fc
sin(θfc,des)

(
− sin(ψfc,des) cos(ψ̃fc)− cos(ψfc,des) sin(ψ̃fc)

)
+

cos(θ̃fc)− 1

θ̃fc
cos(θfc,des) sin(ψfc,des)

)
,

h22 = Udes cos(θfc,des) cos(θ̃fc)

(
sin(ψ̃fc)

ψ̃fc
cos(ψfc,des) +

cos(ψ̃fc)− 1

ψ̃fc
sin(ψfc,des)

)
,

h31 = Udes

(
− sin(θ̃fc)

θ̃fc
cos(θfc,des)−

cos(θ̃fc)− 1

θ̃fc
sin(θfc,des)

)
.
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Rewriting (8.37) into (8.38) is quite extensive, and the details are presented in
Appendix C. The matrix H(t, Udes, ξ) is defined and finite for all ξ. Applying
Assumption 8.3, we can assume that ξ = 0, which reduces the dynamics to

ẋb/fẏb/f
żb/f

 =


−Udes

xb/f√
∆2+x2

b/f
+y2

b/f
+z2

b/f

−Udes

√
∆2+y2

b/f√
∆2+y2

b/f
+(zb/f+f)2

yb/f√
∆2+x2

b/f
+(yb/f+g)2+z2

b/f

−Udes
zb/f√

∆2+y2
b/f

+(zb/f+f)2


− ṡ

0 −κ 0
κ 0 −τ
0 τ 0

xb/fyb/f
zb/f


.

(8.40)

The stability of the system (8.40) can be proven using the quadratic positive definite
Lyapunov function V = 1

2 (x2
b/f + y2

b/f + z2
b/f ).

V̇ = ẋb/fxb/f + ẏb/fyb/f + żb/fzb/f

= −Udes

 x2
b/f√

∆2 + x2
b/f + y2

b/f + z2
b/f

+
z2
b/f√

∆2 + y2
b/f + (zb/f + f)2

+

√
∆2 + y2

b/f√
∆2 + y2

b/f + (zb/f + f)2

y2
b/f√

∆2 + x2
b/f + (yb/f + g)2 + z2

b/f


≤ −ur,des

 x2
b/f√

∆2 + x2
b/f + y2

b/f + z2
b/f

+
z2
b/f√

∆2 + y2
b/f + (zb/f + f)2

+

√
∆2 + y2

b/f√
∆2 + y2

b/f + (zb/f + f)2

y2
b/f√

∆2 + x2
b/f + (yb/f + g)2 + z2

b/f


,W (xb/f , yb/f , zb/f ) < 0 (8.41)

V̇ is negative definite and thus the system (8.40) is asymptotically stable in D.
Hence, we can conclude that the control objectives are satisfied in this region.
Note that global stability can not be claimed due to the singularities of the Euler
angle representation.

8.4 Simulation Results

This section presents simulation results when the desired path is a straight line
and a helix path, respectively. The simulated vehicle is the HUGIN AUV, which
is produced by Kongsberg Maritime. In all simulations, the desired relative surge
velocity ur,des = 5 m/s and the ocean current is Vc = [0.5,−0.5, 0.5]T m/s. The
look-ahead distance ∆ = 50 m and the controller and observer gains are kur = 0.1
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s−1,K1 = I s−1,K2 = I s−1, kx1
= ky1 = kz1 = 4 s−1, and kx2

= ky2 = kz2 = 0.05
s−2.

Two desired paths have been defined and simulated:

C1 :=



xf (s) = s
yf (s) = 0
zf (s) = s sin(θf (s))
θf (s) = −π4
ψf (s) = 0
κ(s) = 0
τ(s) = 0

(8.42)

C2 :=



xf (s) = R cos( s√
R2+( h2π )2

)

yf (s) = R sin( s√
R2+( h2π )2

)

zf (s) = h
2π

s√
R2+( h2π )2

θf (s) = − arctan( h
2πR )

ψf (s) =
s cos(θf (s))

R + π
2

κ(s) = R
R2+( h2π )2

τ(s) =
h
2π

R2+( h2π )2

(8.43)

In C2, R = 200 m and h = 100 m.
It is trivial to verify that all Assumption are fulfilled. For instance, given a

Vmax = 1 m/s and k=0.2, then |Vc| = 0.866ms < Vmax = kur,des. Hence, As-
sumption 8.1 is satisfied. The ocean current observer is implemented with the
same saturation, |V̂c| < Vmax. Furthermore, the simulations results confirm that
|θfc,des| < arccos(k) and that |θ| and |θfc| < π/2, hence the system is always in
the considered domain D (8.18).

The simulation results are shown in Figure 8.1-8.6, and confirm that the control
objectives are fulfilled. The AUV converges to the desired path, so the path errors
xb/f , yb/f , zb/f converge to 0. The controller ensure that the controlled states
approach their reference values (Figure 8.4 and 8.8). Furthermore, the current
observer correctly estimates the ocean currents (Figure 8.3 and 8.7).

Figure 8.2 and 8.6 display the movement of the AUV in the xy- and xz-plane.
The vehicle is not aligned with the tangent of the path, but side-slips to counteract
the influence of the ocean current, resulting in a total velocity that is aligned with
the desired path.

All simulations were conducted with an appropriate saturation on the thruster
force T and the rudder angles δq and δr, confirming that the control system is
applicable in a real-life scenario.

8.5 Conclusions

In this chapter a guidance and control system for an underactuated underwater
vehicle is developed to solve the control objective of making the vehicle follow a
general path in the presence of unknown ocean currents. The result is motivated
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by the path following methods of [13], and by expanding these guidance and up-
date laws and combining them with an ocean current observer, convergence to
the desired path is achieved with asymptotic stability properties under explicit
conditions. Simulation results verify the theoretical results.

Figure 8.1: Desired and actual path C1.

(a) xy-plane (b) xz-plane

Figure 8.2: Path following of C1. The vehicle side-slips to counteract the effects of
the ocean current, so the total velocity is aligned with the path. Note in 8.2(b),
the current direction is equal of that of the path, and so there is no side-slip in this
direction.
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Figure 8.5: Desired and actual path C2.
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(a) xy-plane (b) xz-plane

Figure 8.6: Path following of C2. The vehicle side-slips to counteract the effects of
the ocean current, so the total velocity is aligned with the path.
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Chapter 9

Line-of-Sight with side-slip for
Surface Vessels and AUVs in the
horizontal plane

In this chapter, the vehicle model is given by (2.23). We assume that the vessel
in question is equipped with sensors to measure position, heading (yaw), yaw rate
and absolute velocities.

Contributions of this chapter: This chapter proves that the LOS guidance law
suggested in [33] for curved path following is suitable also for curved path following
in combination with ocean current compensation by using adaptive feedback lin-
earization combined with sliding mode. The proposed guidance and control system
requires measurements of absolute velocities only, and is therefore more suitable
than the control system in Chapter 7 and 8 when the vehicle in question lacks
sensors to measure relative velocities. Furthermore, the guidance law is not based
on Serret-Frenet frames, which allows for any parametrization of the path and re-
moves the need for an update law for the Serret-Frenet frame and an ocean current
observer. The results are applicable for USVs and AUVs restricted to the horizontal
plane.

Organization of this chapter: This chapter is organized as follows. The control
objectives are formalized in Section 9.1. The suggested control system is then intro-
duced in Section 9.2 followed by the main result in Section 9.3. Finally, simulations
results and conclusions are presented in Sections 9.4 and 9.5, respectively.

Publications: The results of this chapter are based on [68].

9.1 Control Objectives

This section formalizes the control problem solved in this chapter: The control
system should make the vessel follow a given smooth path C and maintain a desired
constant surge velocity udes in the presence of unknown constant irrotational ocean
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currents. C is parametrized with respect to the inertial frame i. Let θ ≥ 0 denote
the path variable. Then, the path C is parametrized by (xp(θ), yp(θ)).

The cross-track error ye is computed as the orthogonal distance between the
vessel position (x, y) to the path-tangential reference frame defined by the point
(xp(θ), yp(θ)). The path variables are illustrated in Figure 9.1. Note that the po-
sition of the path-tangential reference frame is always such that the along-track
error xe = 0. The path-tangential frame corresponds to the inertial frame rotated
by γp(θ), where

γp(θ) = arctan

(
y

′

p(θ)

x′
p(θ)

)
. (9.1)

Hence, [
0
ye

]
= RT (γp(θ))

[
x− xp(θ)
y − yp(θ)

]
,

(9.2)

where R is the rotation matrix defined in (2.1). Thus, the cross-track error is given
as

ye = −(x− xp(θ)) sin(γp(θ)) + (y − yp(θ)) cos(γp(θ)), (9.3)

where the propagation of θ is given by [31]:

θ̇ =
U√

x′
p(θ)

2
+ y′

p(θ)
2
> 0, (9.4)

and
U =

√
u2 + v2 (9.5)

is the total speed of the USV. Note that it is assumed that the path is an open
curve, i.e. the end point is different from the start point. Definition 1 [33] guarantees
that there is a unique solution for the cross-track error ye obtained by minimizing
θ. It can be shown that the cross-track error dynamics can be expressed as [33]

ẏe = −(u cos(ψ)− v sin(ψ)) sin(γp(θ))

+ (u sin(ψ) + v cos(ψ)) cos(γp(θ)).
(9.6)

It is obvious from Figure 9.1 that ye = 0 implies that the vessel is on the desired
path. Hence, we define the control objectives as

lim
t→∞

u(t) = udes,

lim
t→∞

ye(t) = 0.
(9.7)

9.2 The Control System

This section presents the proposed guidance law and controllers. The system uses
absolute velocity measurements only, making it unnecessary to buy expensive sen-
sors to measure relative velocities. The reason why only absolute velocity measure-
ments are required, is that the absolute velocity is the sum of relative velocity and
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North&

East&

C

(xp(θ), yp(θ))"

(x, y)"

γp"

ye"

Figure 9.1: Desired path C , path-tangential reference frame with orientation γp(θ)
and cross-track error ye illustrated.

ocean currents, and thus implicitly contains information about these two compo-
nents although the exact composition of relative velocities and ocean currents are
unknown. Thus, by the design of the control system, the vessel is able to compen-
sate both for the curvature of the path and the ocean current without knowing the
exact components of these measurements.

9.2.1 Guidance Laws

The desired surge velocity is chosen to be constant and positive.

udes(t) > 0, u̇des(t) ≡ 0. (9.8)

The guidance law for the USV heading is chosen as

ψdes = γp(θ)− arctan

(
v

udes

)
︸ ︷︷ ︸

,βdes

−arctan
(ye

∆

)
. (9.9)

9.2.2 Surge and Yaw Controllers

We define the following error signals:

ũ = u− udes, (9.10)

ψ̃ = ψ − ψdes, (9.11)
˙̃
ψ = r − ψ̇des, (9.12)

ξ =
[
ũ ψ̃

˙̃
ψ

]T
.

(9.13)
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An adaptive feedback linearizing PD-controller is used to ensure tracking of the
desired heading ψdes:

τr = −Fr(u, v, r)− φTr (u, v, r, ψ)θ̂r + ψ̈des

− (kψ + λkr)ψ̃ − (kr + λ)
˙̃
ψ − kdsign(

˙̃
ψ + λψ̃) (9.14)

˙̂
θr = γrφr(u, v, r, ψ)

(
˙̃
ψ + λψ̃

)
(9.15)

The gains kψ, kr, λ, kd, γr > 0 are constant and positive, and the function sign(x)
returns 1, 0 and −1 when x is positive, zero or negative, respectively. The expres-
sions for Fr(u, v, r) and φr(u, v, r, ψ) are given in (2.28) and (2.29), respectively.

Similarly, an adaptive feedback linearizing P-controller is used to ensure track-
ing of the desired surge velocity udes:

τu = − 1

m11
(m22v +m23r)r +

d11

m11
udes − φTu (ψ, r)θ̂u

+
dq11

m11
u2 + u̇des − kuũ− kesign(ũ) (9.16)

˙̂
θu = γuφu(ψ, r)ũ (9.17)

The gains ku, ke, γu are strictly positive constant controller gains. The expression
for φu(ψ, r) is given in (2.25), and mxy and dxy denote mass and damping parame-
ters as defined in (2.16). Furthermore, θ̂r and θ̂u are estimates of the ocean current
vectors θu and θr, given in (2.24).

The proposed controllers are similar to the controllers in [15], but in this chap-
ter the terms kdsign(

˙̃
ψ + λψ̃) and kesign(ũ) have been added to increase the ro-

bustness of the controller with respect to model uncertainties. Note that the con-
trollers (9.14) and (9.16) rely only on absolute velocity measurements, as relative
velocities are not available for feedback.

Proposition 9.1. Given an underactuated surface vessel described by the dynam-
ical system (2.23). If Assumption 2.1-2.3 (Section 2.4.1) hold, the adaptive con-
trollers (9.14)-(9.15) and (9.16)-(9.17) ensure that ξ = 0 is a UGES equilibrium
point and that the references provided by the guidance system are exponentially
tracked.

Proof. Defining

θ̃r = θ̂r − θr, (9.18)

s =
˙̃
ψ + λψ̃, (9.19)

the error dynamics of the heading controller system can be expressed as[
˙̃
ψ
ṡ

]
=

[
−λ 1
−kψ −kr

] [
ψ̃
s

]
−
[

0
φTr

]
θ̃r −

[
0

kdsign(s)

]
,

(9.20)

˙̃
θr = γrφr(u, v, r, ψ)s. (9.21)
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To analyze the stability properties of the interconnected system (9.20)-(9.21), we
consider the positive definite and radially unbounded Lyapunov function candidate

V =
1

2
kψψ̃

2 +
1

2
s2 +

1

2γr
θ̃Tr θ̃r, (9.22)

⇓
V̇ = −λkψψ̃2 − krs2 − kd|s| ≤ 0. (9.23)

V̇ is negative semi-definite, and thus the origin (ψ̃, s, θ̃r) = (0, 0,0) is a UGS
equilibrium point of the interconnected system (9.20)-(9.21) [55]. Since V (t) ≤
V (0), ψ̃, s and θ̃r are bounded. Thus, there exists some bounds α, β, ζ such that

|ψ̃(t)| ≤ α, (9.24)
|s(t)| ≤ β, ∀ t ≥ 0 (9.25)

||θ̃r(t)|| ≤ ζ. (9.26)

It is straightforward to show that∣∣∣Ṽx∣∣∣ ≤√Ṽ 2
x + Ṽ 2

y + Ṽ 2
x

2
+ Ṽ 2

y

2
+ ˜VxVy

2
= ||θ̃r(t)|| < ζ, (9.27)∣∣∣Ṽy∣∣∣ ≤ ||θ̃r(t)|| < ζ, (9.28)

:∣∣∣ ˜VxVy

∣∣∣ ≤ ||θ̃r(t)|| < ζ. (9.29)

Thus, ∣∣∣φTr θ̃r∣∣∣ = |φ1Ṽx + φ2Ṽy + φ3Ṽ 2
x + φ4Ṽ 2

y + φ5
˜VxVy|

≤ |φ1||Ṽx|+ |φ2||Ṽy|+ |φ3||Ṽ 2
x + |φ4||Ṽ 2

y |+ |φ5|| ˜VxVy|
≤ ζ (|φ1|+ |φ2|+ |φ3|+ |φ4|+ |φ5|) = ζ|φr|. (9.30)

Since the equilibrium point (ψ̃, s, θ̃r) = (0, 0,0) is UGS, the states have no finite
escape time and the system (9.20)-(9.21) is forward complete. Thus, we can ana-
lyze (9.20) under the assumption that θ̃r is a bounded time-varying signal. Consider
the positive definite and radially unbounded Lyapunov function candidate

Vψ =
1

2
kψψ̃

2 +
1

2
s2, (9.31)

⇓
V̇ψ = −λkψψ̃2 − krs2 − φTr θ̃s− kd|s|
≤ −λkψψ̃2 − krs2 + (|φTr θ̃| − kd)|s|
≤ −λkψψ̃2 − krs2 + (ζ|φr| − kd)|s|.

(9.32)
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We choose the gain kd > 2ζ|φr|. Thus,

V̇ψ ≤ −λkψψ̃2 − krs2 − ζ|φr||s|
≤ −λkψψ̃2 − krs2 < 0. (9.33)

V̇ψ is negative definite, and thus the origin (ψ̃, s) = (0, 0) is a UGAS equilibrium
point of the system (9.20). Furthermore, Theorem 4.10 [43] (given in Section 2.3)
is satisfied with k1 = min(kψ/2, 1/2), k2 = max(kψ/2, 1/2), k3 = min(λkψ, kr) and
a = 2. This implies that the origin (ψ̃, s) = (0, 0) is a UGES equilibrium point of
the system (9.20), and

lim
t→∞

ψ̃ = 0, (9.34)

lim
t→∞

˙̃
ψ = lim

t→∞
s− λψ̃ = 0. (9.35)

Similarly, defining

θ̃u = θ̂u − θu, (9.36)

the error dynamics of the surge controller system is given by

˙̃u = −
(
d11

m11
+ ku

)
ũ− φTu (ψ, r)θ̃u − kesign(ũ), (9.37)

˙̃θu = γuφy(ψ, r)ũ. (9.38)

To analyze the stability properties of the interconnected system (9.37)-(9.38), we
consider the positive definite and radially unbounded Lyapunov function candidate

V =
1

2
ũ2 +

1

2γu
θ̃Tu θ̃u, (9.39)

⇓

V̇ = −
(
d11

m11
+ ku

)
ũ2 − ke|ũ| ≤ 0. (9.40)

V̇ is negative semi-definite, and thus the origin (ũ, θ̃u) = (0,0) is an UGS equilib-
rium point of the interconnected system (9.37)-(9.38). Since V (t) ≤ V (0), ũ, and
θ̃u are bounded. Thus, there exists some bounds α, β, ζ such that

|ũ(t)| ≤ ι, ∀ t ≥ 0 (9.41)

||θ̃u(t)|| ≤ κ. (9.42)

Similarly as the analysis for system (9.20), we can analyze (9.37) under the as-
sumption that θ̃u is a bounded time-varying signal. Consider the positive definite
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and radially unbounded Lyapunov function candidate

Vu =
1

2
ũ2, (9.43)

⇓

V̇u = −
(
d11

m11
+ ku

)
ũ2 − φTt θ̃uũ− ke|ũ|

≤ −
(
d11

m11
+ ku

)
ũ2 + (|φTt θ̃u| − ke)|ũ|

≤ −
(
d11

m11
+ ku

)
ũ2 + (κ|φt| − ke)|ũ|. (9.44)

We choose the gain ke > 2κ|φu|. Thus,

V̇ψ ≤ −
(
d11

m11
+ ku

)
ũ2 − κ|φt||ũ|

≤ −
(
d11

m11
+ ku

)
ũ2 < 0. (9.45)

V̇u is negative definite, and thus the origin ũ = 0 is a UGAS equilibrium point of
the system (9.37). Furthermore, Theorem 4.10 [43] is satisfied with k1 = k2 = 1/2,
k3 = d11/m11 + ku and a = 2. This implies that the origin ũ = 0 is a UGES
equilibrium point of the system (9.37), and

lim
t→∞

ũ = 0. (9.46)

Thus, the errors ξ =
[
ũ ψ̃

˙̃
ψ

]T
converge exponentially to zero.

Assumption 9.1: The controllers (9.14) and (9.16) are tuned such that the error
dynamics in (9.20) and (9.37) is fast compared to the cross-track error dynam-
ics (9.6). Hence, ξ can be assumed to be zero.

9.2.3 State Measurements

The control system proposed in this chapter assumes that η (position and head-
ing/yaw) and ν (surge and sway velocity and yaw rate) are measured. Ships are
usually equipped with a large variety of sensors that combined provide sensor
data to estimate the vessel state [31]. We assume that the ship is equipped with
Global Navigation Satellite System (GNSS) receivers to provide position and veloc-
ity measurements and a gyrocompass to measure yaw ψ yaw rate r. Furthermore,
we assume that the measurements are filtered to remove first-order wave-induced
motions and measurement noise.

9.3 Main Result

This section presents the conditions under which the proposed control system
achieves the control objectives (9.7).
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Theorem 9.1. Given an underactuated surface vessel described by the dynamical
system (2.23). If Assumption 2.1-2.3 and 9.1 hold, the controllers given by (9.14)
and (9.16), and the guidance laws given by (9.8) and (9.9), give a cross-track error
dynamics for which the equilibrium point ye = 0 is UGAS and USGES, and the
control objectives (9.7) are achieved.

Proof. The dynamics of the path cross track error is given in (9.6), and can be
rewritten as follows:

ẏe = − (u cos(ψ)− v sin(ψ)) sin (γp(θ))

+ (u sin(ψ) + v cos(ψ)) cos (γp(θ))

= u (sin(ψ) cos(γp(θ))− cos(ψ) sin(γp(θ)))

+ v (cos(ψ) sin(γp(θ)) + sin(ψ) cos(γp(θ)))

= (udes + ũ) sin(ψ − γp(θ)) + v cos(ψ − γp(θ))

= Udes sin (ψ − γp(θ) + βc,des) + ũ sin(ψ − γp(θ)), (9.47)

where

Udes =
√
u2

des + v2. (9.48)

Inserting the expressions for the guidance law in yaw (9.9) and error signal (9.11),
the sine terms in (9.47) can be rewritten as below:

sin(ψ−γp(θ) + βdes) = sin
(
ψ̃ + ψdes − γp(θ) + βdes

)
= sin

(
ψ̃ − arctan

(ye
∆

))
= sin(ψ̃) cos

(
arctan

(ye
∆

))
− cos(ψ̃) sin

(
arctan

(ye
∆

))
= − sin

(
arctan

(ye
∆

))
+ sin(ψ̃) cos

(
arctan

(ye
∆

))
−
(

cos(ψ̃)− 1
)

sin
(

arctan
(ye

∆

))
= − ye√

∆2 + y2
e

+ sin(ψ̃)
∆√

∆2 + y2
e

−
(

cos(ψ̃)− 1
) ye√

∆2 + y2
e

, (9.49)

sin (ψ − γp(θ)) = sin
(
ψ̃ + ψdes − γp(θ)

)
= sin

(
ψ̃ − βdes − arctan

(ye
∆

))
= sin

(
ψ̃ − arctan

(
∆v + yeudes

∆udes − yev

))
. (9.50)
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Inserting (9.49)-(9.50) into (9.47) yields

ẏe = Udes

(
− ye√

∆2 + y2
e

+ sin(ψ̃)
∆√

∆2 + y2
e

a

−
(

cos(ψ̃)− 1
) ye√

∆2 + y2
e

)
+ ũ sin

(
ψ̃ − arctan

(
∆v + yeudes

∆udes − yev

))
= f1(t, ye) + g(t, ye, ξ)ξ, (9.51)

with

f1(t, ye) = −Udes
ye√

∆2 + y2
e

, (9.52)

g(t, ye, ψ̃) =

sin
(
ψ̃ − arctan

(
∆v+yeudes
∆udes−yev

))
Udesg1(t, ye, ψ̃)

0


T

,

(9.53)

where

g1(t, ye, ψ̃) =
sin(ψ̃)

ψ̃

∆√
∆2 + y2

e

− cos(ψ̃)− 1

ψ̃

ye√
∆2 + y2

e

. (9.54)

By Assumption 9.1, ξ = 0, reducing the error dynamics to

ẏe = f1(t, ye) = −Udes
ye√

∆2 + y2
e

. (9.55)

Stability of the nominal system can be shown using the quadratic, positive definite,
decrescent and radially unbounded Lyapunov function V = 1

2y
2
e .

V̇ = yeẏe = − Udes√
∆2 + y2

e

y2
e . (9.56)

Since
Udes =

√
u2

des + v2 ≥ udes > 0 (9.57)

by (9.8), V̇ is negative definite along the trajectories of the system (9.55), which is
UGAS (see Theorem 4.8/4.9 in Section 2.3), and

|ye(t)| ≤ |ye(t0)| ∀ t ≥ t0. (9.58)

Furthermore, using the same approach as the proof in Appendix A in [33], we define

φ(t, ye) =
Udes√

∆2 + y2
e

. (9.59)

For each r > 0 and |ye(t)| ≤ r, we have

φ(t, ye) ≥
udes√

∆2 + r2
, c(r). (9.60)

117



9. Line-of-Sight with side-slip for Surface Vessels and AUVs in the horizontal
plane

Consequently,

V̇ (y, ye) = −2φ(t, ye)V (t, ye) ≤ −2c(r)V (t, ye) ∀ |ye(t)| ≤ r. (9.61)

Given (9.58), the above holds for all trajectories generated by the initial conditions
ye(t0). Therefore, the comparison lemma (Lemma 3.4 [43]) can be used to prove
that the equilibrium point ye = 0 is USGES. The differential equation ż = −2c(r)z
has the solution z(t) = e−2c(r)(t−t0)z(t0), which implies that

w(t) ≤ e−2c(r)(t−t0)w(t0), w(t) = V (t, ye(t)). (9.62)

Furthermore,
ye(t) = 2

√
w(t), (9.63)

which implies that
ye(t) ≤ e−c(r)(t−t0)ye(t0). (9.64)

for all t ≥ t0, |ye(t0)| ≤ r and r > 0. Thus, we can conclude that the equilibrium
point ye = 0 is USGES (Definition 2.7. [50], see Section 2.3).

We have thus proved that the cross track error dynamics (9.6) have global
convergence to the equilibrium point ye = 0. In addition, the local convergence
properties are even stronger than asymptotic. In particular, it is shown that ye = 0
is USGES and that the control objectives (9.7) are satisfied.

9.4 Simulation Results

This section presents simulation results for two different curved paths. The sim-
ulated vehicle is a HUGIN AUV, produced by Kongsberg Maritime, restricted to
movement in the horizontal plane. In all simulations, the desired relative surge
velocity is chosen as udes = 3 m/s and the lookahead distance ∆ as ∆ = 50 m.
The ocean current Vc = [0.3, 0.3]T m/s, and the controller gains are chosen as
kψ = 1.2s−2, kr = 1.3s−1, λ = 0.5s−1, kd = 0.1s−2, ku = 0.1s−1 and ke = 0.1ms−2.
The dimensionless adaptive gains are chosen as γu = γr = 0.1. Note that to avoid
chattering about the equilibrium point, in the simulations the discontinuous term
sign(z) in the controllers (9.14) and (9.16) has been replaced with the continuous
function tanh(10z).

Two desired paths have been defined and simulated:

C1 :=

{
xp(θ) = θ
yp(θ) = 30 sin(0.005θ)

(9.65)

C2 :=

{
xp(θ) = 1.2θ sin(0.005θ)
yp(θ) = 600 cos(0.005θ)− 650

(9.66)

Simulations results for the two paths are presented in Figure 9.2-9.3 and 9.4-9.5,
respectively. In both simulations, the cross-track error converges to zero and the
relative surge velocity to the constant desired value. Thus, the control objectives
are satisfied, and the controllers achieve tracking of the references ψdes and ψ̇des.

Figure 9.2 and 9.4 both illustrate that the USV side-slips to follow the desired
path. The AUV heading is not aligned with the path heading, but the AUV velocity
is aligned with the path, ensuring that the vessel follows the curved path without
knowledge of the ocean current direction or magnitude.
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path C1.
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Figure 9.3: Cross-track error and desired
vs. actual surge velocity, yaw and yaw
rate for C1.
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Figure 9.4: Desired and actual
path C2.
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vs. actual surge velocity, yaw and yaw
rate for C2.
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9.5 Conclusions

In this chapter a guidance and control system for underactuated surface vessels is
developed to solve the control objective of making the vessel follow a curved path
in the presence of unknown ocean currents. The results are also applicable to AUVs
moving in the horizontal plane.

The chapter is motivated by the guidance law suggested in [33] designed for
curved path following when no ocean currents are considered. Furthermore, the
guidance and control system presented in this chapter does not depend on the
relative velocity sensors required by the control system in Chapter 7 and 8. It is
proven that a similar guidance law combined with an adaptive feedback linearizing
controller with sliding mode, achieves convergence to the desired path with UGAS
and USGES stability properties under explicit conditions. Only absolute velocity
measurement are required. Simulation results verify the theoretical results.
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Part III

A Set-based Approach for Path
Following of Marine Vehicles with

Collision Avoidance
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Chapter 10

Set-based Line-of-Sight Path
Following with Collision Avoidance

This chapter considers guidance and control of a USV described by (2.18) when
no ocean currents are present. Furthermore, we assume linear damping in surge,
so the constant dq11 in (2.18) is zero.

Contributions of this chapter: The contribution of this chapter is twofold.
Firstly, it is suggested to apply the set-based theory presented in Chapter 4-6 to
satisfy two objectives: Collision avoidance and path following for an unmanned
surface vehicle. The approach defines collision avoidance as a high-priority set-
based task and path following as a low-priority equality task, and is adapted to
the underactuated USV by switching between two predefined guidance laws rather
than combining them using the Null-Space-Based Inverse Kinematics approach for
fully actuated systems as in Part I in this thesis. The guidance laws, if satisfied,
will ensure path following and collision avoidance respectively. Thus the system
is equipped with one path following mode and one collision avoidance mode, in
addition to a defined and deterministic method for switching between these two.
This results in a tighter coupling between collision avoidance, path planning and
guidance than standard VO implementations. Furthermore, this method can be
used for any combination of path following and collision avoidance guidance laws,
making it a highly generic solution. Secondly, a specific LOS-based guidance law
for collision avoidance is suggested. This guidance law, if satisfied, will ensure that
the USV tracks a circle with constant radius about the obstacle center, which may
be stationary or moving, and is specifically designed to assure collision avoidance
while abiding by the COLREGs. The guidance system is especially suitable to
avoid collisions with small and dynamic obstacles, and can easily be combined
with existing global path planning methods that handle topography [41].

Organization of this chapter: The control objectives are formalized in Sec-
tion 10.1. The suggested guidance and control system is presented in Section 10.2
and the main results in Section 10.3 before simulation results are given in Sec-
tion 10.4. Conclusions are given in Section 10.5.

123
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Publications: The results of this chapter are based on [61].

10.1 Control Objectives

This section formalizes the control problem solved in this chapter. The USV has
several objectives: avoid all obstacles in a COLREGs compliant manner, follow
a predefined path C and keep a given surge velocity along the path. It is clear
that the two first objectives may be in conflict. Hence, in the case both cannot be
achieved, collision avoidance needs to have first priority to ensure safe passage of
the USV.

The path cross-track error ye is computed as the shortest distance between the
USV and any point on the path, and is defined so that ye = 0 implies that the
USV is on the desired path. In the case of a path parametrized as a function of θ it
is the orthogonal distance between the USV position (x, y) to the path-tangential
reference frame defined by the point (xp(θ), yp(θ)). It is assumed that the path is
an open curve, i.e. the end point is different from the start point.

The control objectives are formalized in prioritized order below:
1. The distance between the USV with position p(t) and every obstacle with

position po(t) should always be greater than or equal to some safe distance
Ro:

|p(t)− po(t)| ≥ Ro ∀ t ≥ t0 (10.1)

2. The USV should converge to the desired path.

lim
t→∞

ye(t) = 0 (10.2)

3. The USV surge velocity should track to some desired, positive velocity.

lim
t→∞

u(t) = udes(t) (10.3)

Note that udes(t) will be provided by the set-based guidance system and will depend
on the mode of the system, i.e. if the USV is in path following mode or collision
avoidance mode.

10.2 The Control System

This section presents the guidance and control system consisting of guidance laws
and controllers. The guidance system consists of separate guidance laws for path
following and collision avoidance, and an algorithm to switch between these two.

10.2.1 Guidance Laws for Path Following

The desired surge velocity udes for path following is constant, positive and is de-
noted upf. Furthermore, the desired heading for path following is denoted ψpf,
where ψpf is a suitable guidance law for following the desired path in question. For
instance, in the case of a straight line path, a suitable choice for ψpf would be a
LOS guidance law designed for straight paths as given in [35], which is proven to
give UGAS and ULES, and thus makes the path cross-track error converge to zero.
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10.2. The Control System

Assumption 10.1: The path following guidance law is chosen so that, if satisfied,
the path cross-track error will converge to zero.
Remark 10.1: The above is not a strict assumption as it provides freedom to
choose between a variety of stable path following schemes, such as for instance
Line-of-Sight.

10.2.2 Guidance Laws for collision avoidance

This chapter suggests a specific guidance law to safely avoid obstacles while abiding
COLREGs. Note that this guidance law is completely independent of the set-based
algorithm presented in the next subsection, and that it may be replaced by any
other guidance law to ensure collision avoidance.

In the case of collision avoidance, the goal is to track a safe radius around the
object center. If this radius is maintained, a collision will never occur. Denote the
obstacle safe radius as Ro, the obstacle center as

po(t) =

[
xo(t)
yo(t)

]
(10.4)

and the obstacle velocity as

Uo =
√
ẋ2

o + ẏ2
o . (10.5)

Assumption 10.2: The obstacle speed is upper bounded by Uo,max:

Uo ≤ Uo,max (10.6)

Denote

φ = arctan

(
y − yo
x− xo

)
, (10.7)

βo = arctan

(
ẏo
ẋo

)
, (10.8)

Vo = Uo cos(φ− βo), (10.9)

where φ and βo are illustrated in Figure 10.1. The velocity Vo describes the velocity
of the obstacle relative to the position of the USV, where a positive Vo suggests
that the obstacle is moving closer to the USV. It reaches its maximum value of Uo
when the obstacle is moving straight towards the current position of the USV (not
taking the USV velocity or heading into account).

The desired surge velocity udes for collision avoidance is constant, positive and
is denoted uoa.
Assumption 10.3: We assume that the obstacle speed is lower than the desired
surge velocity, i.e.

uoa > Uo,max. (10.10)
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Remark 10.2: It is natural to assume that the USV moves sufficiently fast to avoid
the obstacle by moving around it. Furthermore, Assumption 10.2-10.3 ensure that
the term k in the collision avoidance heading guidance law (10.11) is real.

The following guidance law giving the desired heading for collision avoidance is
proposed:

ψoa = φ+ λ

(
π

2
− arctan

(
e+ k

∆

))
− arctan

(
v

uoa

)
, (10.11)

where λ = 1 corresponds to clock-wise motion and λ = −1 to counter-clockwise
motion. Note that λ should be chosen in accordance with COLREGs, see Sec-
tion 10.2.3. The guidance parameter ∆ > 0 is a design parameter corresponding to
the look-ahead distance, e is the cross-track error of the circular path defined as

e = Ro − ρ = Ro −
√

(x− xo)2 + (y − yo)2, (10.12)

and k is defined as

k =

{
k1 Vo ≥ 0
k2 Vo < 0,

(10.13)

k{1,2} =
−b {+,−}

√
b2 − 4ac

2a
, (10.14)

where

a = U2
oa − V 2

o , (10.15)

b = −2V 2
o e, (10.16)

c = −V 2
o (∆2 + e2), (10.17)

and
Uoa =

√
u2

oa + v2. (10.18)

By Assumption 10.2-10.32 and 3, it is easy to verify that a > 0 and c ≤ 0. Hence
k1 ≥ 0 and k2 ≤ 0. The parameter k is designed to compensate for the movement
of the obstacle, and thus the sign of the compensation shifts as the USV traverses
the obstacle radius and the movement of the obstacle relative to the USV changes.

Theorem 10.1. Given Assumption 10.2-10.3, if the guidance laws udes = uoa and
ψdes = ψoa are satisfied, the cross-track error e will asymptotically converge to zero
and the USV (2.18) will track the radius Ro about the obstacle center po(t).

Proof. The error dynamics is given by

ė = Ṙo − ρ̇ = −ρ̇, (10.19)

where
ρ =

√
(x− xo)2 + (y − yo)2 (10.20)

Rewriting into polar coordinates,

x− xo = ρ cos(φ) (10.21)
y − yo = ρ sin(φ), (10.22)
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10.2. The Control System

Figure 10.1: Illustration of parameters used for collision avoidance.

where φ is defined in (10.7), the derivative is given as

ρ̇ =
2(x− xo)(ẋ− ẋo) + 2(y − yo)(ẏ − ẏo)

2
√

(x− xo)2 + (y − yo)2

=
ρ cos(φ)(ẋ− ẋo) + ρ sin(φ)(ẏ − ẏo)

ρ

= u cos(φ− ψ) + v sin(φ− ψ)−
√
ẋ2

o + ẏ2
o cos

(
φ− arctan

(
ẏo
ẋo

))
= U cos (φ− ψ − β)− Vo. (10.23)

Under the conditions of Theorem 1, u = uoa (10.10) and ψ = ψoa (10.11). It can
be shown that this reduces the error dynamics to

ė = − Uoa√
∆2 + (e+ k)2

e− Uoa√
∆2 + (e+ k)2

k + Vo. (10.24)

Furthermore, given the proposed solution of k (10.13)-(10.14),

− Uoa√
∆2 + (e+ k)2

k + Vo ≡ 0,

so
ė = − Uoa√

∆2 + (e+ k)2
e. (10.25)

Using the positive definite Lyapunov function V (e) = 0.5e2,

V̇ = − Uoa√
∆2 + (e+ k)2

e2 (10.26)
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is negative definite and hence the equilibrium point e = 0 of (10.24) is UGAS [43].

10.2.3 Choosing λ

In the guidance law for collision avoidance (10.11), λ determines whether the USV
circumvents an obstacle with a clockwise or counterclockwise motion. COLREGs
provides definitions and rules to the various collision avoidance scenarios, see Fig-
ure 10.2 [49]. A formal classification is illustrated in Figure 10.3.

• Overtaking: Overtaking is allowed on either side of the obstacle as long as
the USV keeps a sufficient distance to the obstacle. COLREGs defines over-
taking as approaching another vessel at more than 22.5 degrees abaft her
beam. This corresponds to the angle ω (illustrated in Figure 10.3) between
the heading of the obstacle and the position of the USV is larger than 112.5◦

or less than −112.5◦. This chapter suggests considering both clockwise and
counter-clockwise motion by calculating ψoa (10.11) for both λ = −1 (coun-
terclockwise) and λ = 1 (clockwise), and denoting this as ψoa,cc and ψoa,c
respectively. The direction closest to the current heading ψ of the USV is
then chosen, thereby avoiding a sharp turn. This is formalized as

λ =

{
−1 |ψ − ψoa,cc| ≤ |ψ − ψoa,c|

1 |ψ − ψoa,cc| > |ψ − ψoa,c|.
(10.27)

• Crossing from left: In this case, the USV has the right of way. Technically,
no collision avoidance should be activated. However, an autonomous system
should be able to avoid a collision even in the case that the other vehicle
does not abide by the rules. Hence, this chapter suggests activating collision
avoidance with λ = −1, corresponding to counterclockwise motion. Thus, if
the obstacle complies with COLREGs, the USV’s deviation of the path is
minimized. Unlike overtaking, COLREGs does not specify a specific angle
for this premise. Thus, this chapter defines this scenario as ω ∈ [α, 112.5◦)
for some positive angle α. In all simulations, α = 15◦ [11].

• Crossing from right: In this situation, the USV is the give-way vessel and
must avoid the obstacle by moving in a counterclockwise motion, indicating
λ = −1. This scenario is defined as ω ∈ [−112.5◦,−α).

• Head-on: When two vessels meet head-on, both vehicles should alter course so
that they will pass with the other vessel on their port side. This corresponds
to a counterclockwise motion, therefore λ = −1. This case is activated when
ω ∈ [−α, α).

Note that as the USV circumvents the obstacle and ω changes, the setting is
not reclassified. Hence, as the set-based algorithm enters collision avoidance mode,
it is determined what collision avoidance scenario is applicable and λ is determined
as described above. This value for λ is kept until the next time the system enters
obstacle mode.
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10.2. The Control System

Figure 10.2: COLREGs scenarioes and the correct behavior of the involved vessels.
USV in shown in blue and obstacle in orange. From left to right: Overtaking,
crossing from left, crossing from right, head-on.

Figure 10.3: The different COLREGs scenarios as function of ω. From the top and
clockwise: Head-on, crossing from left, overtaking, crossing from right. This specific
illustration displays an overtaking situation, which is the only scenario where the
required direction of the motion (clockwise or counterclockwise) is not strictly spec-
ified by COLREGs. Therefore, the motion most aligned with the current heading
is chosen, in this case clockwise, given by ψoa,c.
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10.2.4 Set-Based Guidance

The two previous subsections have presented guidance laws for surge velocity and
heading for path following and collision avoidance. These two different scenarios
are considered the two modes of the system, and we will in the following, based
on the set-based control approach [66] presented in Chapter 4, develop a method
for switching between these two. Note that this approach can be used with any
combination of methods for path following and collision avoidance and is not limited
to the collision avoidance approach presented in the previous subsection.

We define the task σ as the distance between an obstacle center and the USV,
which is given by ρ (10.12):

σ =
√

(x− xc)2 + (y − yc)2 (10.28)

The task derivative is defined in the proof of Theorem 10.1 as

σ̇ = U cos (φ− ψ − β)− Vo. (10.29)

Furthermore, we define a mode change radius Rm > Ro around the obstacle.
Assumption 10.4: The radius Rm is chosen sufficiently large that in case of
a switch to collision avoidance modus, the USV can converge to the radius Ro
without overshoot. This will depend on the velocities of the USV and obstacle, the
look-ahead distance ∆ and the maximum turning radius of the USV.

Given our specified control objectives (10.1)-(10.2), the desired behavior of the
USV is to follow the desired path C as long as this is possible while avoiding
collisions. Path following is therefore considered the default mode. If the USV is
outside the radius Rm, path following is always active. However, in agreement with
the method in [66], we allow the path following mode to be active inside Rm under
the condition that this will increase or maintain the current distance between the
obstacle center and the USV, i.e. if σ̇ ≥ 0 with u = upf and ψ = ψpf. In other
words, inside Rm collision avoidance is active as long as the desired behavior in
path following mode will result in the USV decreasing the distance to the obstacle.
In this case, the guidance laws for collision avoidance will ensure that the USV
converges to the safe distance Ro from the obstacle center until such a time that
the path following guidance law will take the USV further away from the obstacle.
This switching behavior can be captured by the tangent cone. The tangent cone to
the set D = [σmin, σmax] at the point σ ∈ D is defined as

TD(σ) =

 [ 0,∞ ) σ = σmin

R σ ∈ (σmin, σmax)
( −∞, 0 ] σ = σmax

. (10.30)

Note that σ̇(t) ∈ TD(σ(t)) ∀ t ≥ t0 implies that σ(t) ∈ D ∀ t ≥ t0. Thus, we can
define a valid set D for our collision avoidance task and remain in path following
mode as long as our collision avoidance task σ and the corresponding σ̇ is in the
tangent cone of D. We suggest defining

D = [min(Rm,max(σ,Ro)) ,∞), (10.31)
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Figure 10.4: The set D = [min(Rm,max(σ,Ro)),∞) used in Algorithm 10.1 illus-
trated in green. Outside Rm (left), the USV is always in the tangent cone of D
and thus path following mode is active. For Ro ≤ σ ≤ Rm (center), σ is always
on the lower border of D by definition. Hence, path following is active only if the
corresponding σ̇ ≥ 0. For σ < Ro (right), the USV is outside the set D and the
collision avoidance control objective is violated.

which is illustrated in Figure 10.4. As long as σ ∈ D, the collision avoidance
objective (10.1) is satisfied. A practical implementation of the tangent cone is
given in Algorithm 6.1.

Thus, we define our control algorithm as in Algorithm 10.1 where in_T_RC is the
tangent cone function defined in Algorithm 6.1 and σ and σ̇ are defined in (10.28)
and (10.29) with u = upf and ψ = ψpf. Note that in case of multiple obstacles, one
has to consider one task per obstacle and check which obstacle, if any, is not in
the tangent cone and thereby requires circumvention. The problem of overlapping
obstacles is a topic for future work.

10.2.5 Surge and Yaw Controllers

This section presents surge and yaw controllers to ensure tracking of the desired
surge velocity udes(t) and heading ψdes(t) provided by the set-based guidance sys-
tem presented in the previous subsection. A feedback linearizing P-controller is
used to ensure tracking of the desired relative surge velocity udes(t):

τu = −Fu(v, r) +
d11

m11
udes + u̇des − ku(u− udes) (10.32)

The gain ku > 0 is constant. Part of the damping is not canceled in order to guar-
antee some robustness with respect to model uncertainties. Similarly, a feedback
linearizing PD-controller is used to track the desired yaw angle ψdes. In this case
ψ̇des(t) is calculated by taking the time derivative of ψdes(t). Note that to pre-
vent ψ̇des growing very large when switching between path following and collision
avoidance, a smoothing function may be applied (see Section 10.4).

τr = −Fr(u, v, r) + ψ̈des − kψ(ψ − ψdes)− kr(ψ̇ − ψ̇des), (10.33)
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where kψ and kr are strictly positive constant controller gains.

Algorithm 10.1: Set-based guidance algorithm.
1 Initialize:
2 last_mode = path_following;
3 λ = −1;
4 while True do
5 a = in_T_RC(σ, σ̇, min(Rm,max(σ,Ro)), ∞);
6 if a is True then
7 udes = upf;
8 ψdes = ψpf;
9 mode = path_following;

10 else
11 if last_mode is path_following then
12 choose λ in accordance with COLREGs
13 end
14 udes = uoa;
15 ψdes = ψoa(λ);
16 mode = obstacle_avoidance;
17 end
18 last_mode = mode
19 end

10.3 Main Result

This section presents the conditions under which the proposed control system
achieves the control objectives (10.1)-(10.3).

Theorem 10.2. Given an underactuated USV described by the dynamical sys-
tem (2.18) with Vx = Vy = dq11 = 0. If Assumption 2.1-2.3 and 10.1-10.4 hold,
and the surge and yaw references provided by the set-based guidance system in Al-
gorithm 10.1 are tracked, the control objective (10.1) is satisfied. Furthermore, as
long as the system is in path following mode, the control objective (10.2) is also
fulfilled.

Proof. In collision avoidance mode, the guidance laws for surge and yaw (10.11)
ensure that the distance between the USV and an obstacle at position po(t), de-
noted ρ, converges to a constant value Ro (Theorem 1). Given Assumption 10.4,
this mode is always activated at a distance large enough that ρ → Ro without
overshoot. Hence, we can apply the proof in Chapter 4 regarding satisfaction of
set-based tasks with a valid set defined in (10.31). Thus, the first control objective
is satisfied. Furthermore, the control objective (10.2) is fulfilled in path following
mode by Assumption 10.1.

Proposition 10.1. Given an underactuated USV described by the dynamical sys-
tem (2.18) with Vx = Vy = dq11 = 0. If Assumption 2.1-2.3 and 10.1-10.4 hold, the
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controllers (10.32) and (10.33) ensure that the references provided by the set-based
guidance system in Algorithm 10.1 are tracked, and the control objective (10.3) is
satisfied.

Proof. Define the following error signals:

ũ = u− udes, (10.34)

ψ̃ = ψ − ψdes, (10.35)

r̃ = r − ψ̇des. (10.36)

The surge and yaw controllers (10.32) and (10.33) reduce the error dynamics to

ξ̇ =

 ˙̃ur
˙̃
ψ
¨̃
ψ

 =

−(kur + d11
m11

) 0 0

0 0 1
0 −kψ −kr


ũrψ̃

˙̃
ψ

 = Λξ. (10.37)

The system is linear and time-invariant. All controller gains and d11/m11 are
strictly positive, meaning that Λ is Hurwitz and the origin ξ = 0 is UGES. Thus
the error signals converge to zero and the control objective (10.3) is satisfied.

10.4 Simulation Results: Straight Line Path

This section presents simulation results in the case where the desired path C is
a straight line path, and where a traditional LOS guidance law is used for path
following. Without loss of generality, we assume that the inertial frame has been
rotated so the path is aligned with the inertial x-axis. Thus, the cross-track error
of the path is given by the vehicle y-position and the LOS guidance law for path
following is

ψpf = arctan
(
− y

∆

)
. (10.38)

In the simulations, we use the vehicle model described by (2.18) with numeric
values given in [35]. The desired surge velocity is chosen to be 4 m/s both during
path following and obstacle avoidance, i.e. upf = uoa = 4 m/s. The look-ahead
distance ∆ is chosen as ∆ = 75 m, which is in accordance with the condition given
in [35] for stability of the path following guidance control system. Furthermore,
the controller gains are chosen as ku = 0.1 s−1, kψ = 0.04 s−2 and kr = 0.9 s−1.
Three obstacles moving at constant speed have been added to the simulation, see
Table 10.1. Furthermore, a smoothing function has been implemented to prevent
jumps in the desired heading when switching between path following and collision
avoidance. Note that this smoothing function ensures a smooth transition over time
between ψpf and ψoa when switching between modes, but is not active in deciding
whether or not a switch in the set-based guidance occurs. Hence, it does not suffer
from the same drawbacks as the potential field approach as discussed in Chapter 1.
The implemented smoothing function has been chosen as

α(t, tswitch) = (1/π) arctan (5(t− tswitch − 2)) + (1/2). (10.39)
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Obstacle Details
Obstacle 1 • Ro = 75 m

• Rm = 220 m

• Initial position: po(0) = [300, 25]T m

• Velocity: ṗc(t) = [−0.3, 0.0]T m/s

Obstacle 2 • Ro = 100 m

• Rm = 250 m

• Initial position: po(0) = [780, 125]T m

• Velocity: ṗc(t) = [0.0,−0.5]T m/s

Obstacle 3 • Ro = 100 m

• Rm = 200 m

• Initial position: po(0) = [960, 50]T m

• Velocity: ṗc(t) = [1.0, 0.0]T m/s

Table 10.1: Table of implemented obstacles in simulation.

To test robustness, these simulations consider only obstacles that do not abide
by COLREGs, meaning that they do nothing to prevent a collision with the USV.

The simulation results are illustrated in Fig 10.5. The vessel successfully avoids
the obstacles (Figure 10.6) and converges to the desired straight line path when
it is possible to do so. Figure 10.7 illustrates the path following cross-track error,
which converges to zero in path following mode, and the desired and actual surge
velocity and heading. The controllers (10.32) and (10.33) are able to track their
references well. Thus, the control objectives (10.1)-(10.3) are satisfied.

10.5 Conclusions

This chapter presents a guidance and control system for a USV that allows for
collision avoidance of moving obstacles while following a predefined desired path.
Based on recent results in set-based guidance theory, this chapter develops a colli-
sion avoidance method that take the underactuation of the USV into account. The
proposed system switches between two guidance laws that, if satisfied, ensure path
following and collision avoidance, respectively. Note that this approach can be used
with any combination of methods for path following and collision avoidance.

Furthermore, this chapter has suggested a specific guidance law for the colli-
sion avoidance mode that will, if satisfied, make the USV track a circle with a
constant safe radius about the moving obstacle center. The suggested guidance law
for collision avoidance has a parameter λ = ±1 corresponding to clockwise and
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counterclockwise motion. A method for choosing λ has been presented to ensure
that the USV abides by COLREGs while avoiding the obstacles.

The set-based guidance system has been proved to prevent collisions given that
certain, specified assumptions on the obstacle velocity are satisfied and the ref-
erences provided by the guidance system are tracked. Furthermore, the proposed
controllers ensure exponential tracking of the references.

Presented simulation results illustrate the effectiveness of the proposed method.
To prove robustness, the simulated obstacles do not abide by COLREGs, and the
USV still successfully circumvents them in a COLREGs manner and converges
back to the desired path as soon as this is safe.

Future work includes expanding the results to the case of overlapping obstacles
and experimental verification.

135



10. Set-based Line-of-Sight Path Following with Collision Avoidance

−500 0 500
−200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

East [m]

N
o
rt
h
[m

]

(a) Time = 130 s

−500 0 500
−200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

East [m]

N
o
rt
h
[m

]

(b) Time = 250 s

−500 0 500
−200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

East [m]

N
o
rt
h
[m

]

(c) Time = 450 s

−500 0 500
−200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

East [m]

N
o
rt
h
[m

]

(d) Time = 550 s

Figure 10.5: Trajectory for straight line path following with collision avoidance.
Desired path in green, USV path in blue and the radii Ro and Rm of the obstacles
in dashed red and black, respectively. In this simulation, the USV encounters three
obstacles corresponding to a head-on, crossing from right and overtaking situation.
All obstacles are successfully circumvented in a COLREGs manner and the USV
converges back to the path as soon as this is safe.
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Figure 10.6: Distance between the USV and the three obstacles over time. The
distance is always greater or equal to the minimum allowed safe distance Ro, con-
firming that control objective 1 is satisfied.
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Figure 10.7: The path following error over time (top) and the reference vs. actual
surge velocity (center) and heading (bottom). The UVS follows the path as long as
this is possible without colliding and deviates from it when it is necessary to avoid
obstacles. When the system returns to path following mode the USV converges
back to the desired path. The controllers are able to track the references for u and
ψ.
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Chapter 11

Conclusions and Future Work

In this thesis, a detailed conclusion is given at the end of each chapter. This chapter
presents a more general overview, conclusions and topics of future work.

In Part I of this thesis, an extension of the singularity-robust multiple task-
priority inverse kinematics framework is presented to systematically handle set-
based tasks in addition to equality tasks, for which the system has been developed.
As a default solution, only the equality tasks are considered and implemented
with the desired priority by projecting the low-priority task velocities through
the null-spaces of the high-priority tasks. However, if this solution would result
in a set-based task (e.g. a joint limit) being violated, this task is included in the
task hierarchy with a certain priority with the goal of freezing the task at its
current value. It is shown that set-based tasks given high priority, i.e. above the
highest priority equality task, are satisfied at all times, but that the same cannot
be guaranteed for low-priority set-based tasks. However, several tasks might be
suitable as low-priority tasks in the case that satisfaction of said tasks is not crucial
for the operation, such as field of view, manipulability, etc. Furthermore, by defining
lower-priority set-based tasks, the overall system will ignore the task when it is
satisfied, thereby resulting in more freedom to achieve the remaining tasks. Due to
the switching between set-based tasks being active/inactive, the resulting closed-
loop dynamic system can be described as a discontinuous differential equation.
Using switched control systems theory it is proven that the equality task errors
converge asymptotically to zero when including set-based tasks into the framework
given that certain, specified conditions are satisfied. Should these conditions not
be satisfied, the proposed system respects the given priority of the tasks (e.g. if the
desired trajectory goes through an obstacle and the collision avoidance task has
high priority, the system will deviate from the trajectory to avoid the obstacle).
Simulations and experimental results are presented that validate the theory and
illustrate the effectiveness of the method, in addition to a practical implementation
of the proposed algorithm.

Due to the switched system, the proposed method may ask for very high joint
accelerations when switching from one solution to another. Therefore, it is a topic
of future work to develop a smooth switching method that also maintains the strict
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priority of the tasks. Furthermore, this highly generic method may be utilized in a
number of applications, some of which may require certain adaptations. For colli-
sion avoidance purposes, closing the loop to also include obstacle detection would
be highly relevant for both industrial purposes and marine applications. By apply-
ing set-based tasks for manipulability and singularity avoidance, the performance
of manipulator systems may be enhanced, and set-based orientation control may be
useful for spraypaint, welding, pick and place movements, etc. Further exploration
of these possibilities will be conducted in the immediate future.

Part II presents guidance and control systems for curved path following of
underactuated marine vehicles in the presence of unknown ocean currents. Dif-
ferent approaches are suggested based on the available sensors on the vehicle. In
particular, the results of Chapter 7 and 8 are applicable when relative velocity
measurements are obtainable, whereas Chapter 9 is based on absolute measure-
ments only. Common for all chapters in Part II is that path following is achieved
by allowing the vehicle to side-slip. This ensures that the total vehicle velocity is
aligned with the desired path, even if the heading is not. When relative velocity
measurements are avaliable, the ocean current must be estimated to achieve the
correct side-slip angle. In the case of absolute velocity measurements, however, the
total effect of the curvature of the path and the current is captured by the abso-
lute velocity measurement and thus there is no need to estimate the current. For
all chapters, convergence to the desired path is achieved with asymptotic stability
properties under explicit conditions. For surface vehicles (Chapter 7 and 9) the
results hold globally, whereas for underwater vehicles (Chapter 8) they hold for a
defined domain (due to the well-known singularity of Euler angle representation).

Future work for this part consist of running experimental results to validate the
correctness of the proposed systems, and to extend the results of Chapter 9 to the
underwater case.

Finally, Part III combines Part I and II to make a switched guidance system for
underactuated surface vehicles to achieve collision avoidance and path following.
The proposed method is generic and may be used for any combination of meth-
ods for path following and collision avoidance. Furthermore, a specific guidance
law for the collision avoidance mode if presented that will, if satisfied, make the
USV track a circle with a constant safe radius about the moving obstacle center.
The suggested guidance law for collision avoidance has a parameter λ = ±1 cor-
responding to clockwise and counterclockwise motion. A method for choosing λ is
suggested to ensure that the surface vessel abides by COLREGs while avoiding the
obstacles. The set-based guidance system is proven to prevent collisions given that
certain, specified assumptions on the obstacle velocity are satisfied and the refer-
ences provided by the guidance system are tracked. Furthermore, path following is
achieved as long as the surface vessel can safely follow the path without colliding.
Presented simulation results illustrate the effectiveness of the proposed method.

The results presented in Chapter 10 are valid for the case of obstacles that do
not overlap, and for obstacles that do not themselves abide by COLREGs. The
case of overlapping obstacles (e.g. numerous vehicles moving in a close formation)
remains to be investigated, as does the case where all vessels are implemented
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with the proposed guidance system. Furthermore, although the developed theory
is applicable also for curved path following, the initial simulation is for a straight
line path. Finally, the proposed obstacle avoidance method should be expanded to
ensure tracking of a safe radius about an obstacle center also in the case of ocean
currents, and the results should be extended to the 3D case to be applicable for
underwater vehicles and unmanned aerial vehicles.
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Appendix A

This appendix is related to Chapter 7 and describes in detail the step by step
calculations to rewrite (7.14) into (7.15) given the expressions for the current ob-
server (7.3), the update law (7.5), guidance law (7.6) and controllers (7.10)-(7.11).
The equations are reprinted below for readability.

The ocean current observer is given as

˙̂x = cos(ψ)ur − sin(ψ)vr + V̂x + kx1 x̃,

˙̂y = sin(ψ)ur + cos(ψ)vr + V̂y + ky1 ỹ,

˙̂
Vx = kx2 x̃,

˙̂
Vy = ky2 ỹ,

(A.1)

where x̂, ŷ, V̂x and V̂y are the estimates of x, y, Vx and Vy, and x̃ , x− x̂, ỹ , y− ŷ,
Ṽx , Vx − V̂x and Ṽy , Vy − V̂y are the estimation errors. The ocean current and
the corresponding estimates in the {f}-frame are denoted

V fx = cos(ψf )Vx + sin(ψf )Vy,

V fy = − sin(ψf )Vx + cos(ψf )Vy,

V̂ fx = cos(ψf )V̂x + sin(ψf )V̂y,

V̂ fy = − sin(ψf )V̂x + cos(ψf )V̂y,

(A.2)

and the update law is defined as

ṡ =
√
u2
r,des + v2

r︸ ︷︷ ︸
,Udes

√
∆2 + x2

b/f + xb/f√
∆2 + x2

b/f + (yb/f + g)2
+ V̂ fx . (A.3)

Furthermore, the guidance law is given as

ψdes = ψf − arctan

(
vr

ur,des

)
− arctan

 yb/f + g√
∆2 + x2

b/f

 , (A.4)
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where g is the solution to the second-order equation

(V̂ f
2

y − U2
des)︸ ︷︷ ︸

a

g2 + 2 V̂ f
2

y yb/f︸ ︷︷ ︸
b

g + V̂ f
2

y

(
∆2 + x2

b/f + y2
b/f

)
︸ ︷︷ ︸

c

= 0, (A.5)

and ∆ > 0 is a design parameter. By Assumption 7.1-7.2, the solution(s) of (A.5)
are real and finite. Equation (A.5) is a second order equation with parameters
(a, 2b, c) and thus it has two possible solutions:

g1 ,
−b−

√
b2 − ac
a

,

g2 ,
−b+

√
b2 − ac
a

.

(A.6)

By simple analysis and Assumption 7.1-7.2, a < 0 and c ≥ 0. Furthermore, since√
b2 − ac ≥ b, g1 will always be positive (≥ 0) and g2 will always be negative (≤ 0).

Thus, g is chosen as follows:

g =

{
g1 V̂ fy ≥ 0

g2 V̂ fy < 0
(A.7)

Finally, the feedback linearizing controllers are given as

τu = −Fur (vr, r) +
d11

m11
ur,des + u̇rdes − kur (ur − ur,des), (A.8)

τr = −Fr(ur, vr, r) + ψ̈des − kψ(ψ − ψdes)− kr(ψ̇ − ψ̇des), (A.9)

where the controller gains kur > 0, kψ and kr are constant and strictly positive,
and the expressions for Fur and Fr(ur, vr, r) are given in (2.19). The termsm11 and
d11 are mass and damping coefficients as defined in (2.16). The controller errors
are defined as ũr , ur − ur,des, ψ̃ , ψ − ψdes and ˙̃

ψ , r − ψ̇des.
Equation (7.14) describes the path error dynamics and is given as

[
ẋb/f
yb/f

]
=

[
cos(ψb/f ) − sin(ψb/f )
sin(ψb/f ) cos(ψb/f )

] [
ur
vr

]
−
[
ṡ
0

]
− ṡ

[
0 −κ
κ 0

] [
xb/f
yb/f

]
+

[
cos(ψf ) sin(ψf )
− sin(ψf ) cos(ψf )

] [
Vx
Vy

]
.

(A.10)

Here, ψf denotes the heading of the Serret-Frenet reference frame and

ψb/f = ψ − ψf
= ψ̃ + ψdes − ψf .

(A.11)
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Inserting (A.4) into (A.11) yields

ψb/f = ψ̃ + ψf − arctan

(
vr

ur,des

)
− arctan

 yb/f + g√
∆2 + x2

b/f

− ψf
= ψ̃ − arctan

vr
√

∆2 + x2
b/f + ur,des(yb/f + g)

ur,des

√
∆2 + x2

b/f − vr(yb/f + g)


.︸ ︷︷ ︸

,α

(A.12)

In the above equation, the trigonometric formula (2.6) has been used. Thus,

cos(ψb/f ) = cos(ψ̃ − α)

= cos(ψ̃) cos(α) + sin(ψ̃) sin(α)

= cos(α) + cos(α)
(

cos(ψ̃)− 1
)

+ sin(ψ̃) sin(α)

= cos(α) + ψ̃

[
cos(ψ̃)− 1

ψ̃
cos(α) +

sin(ψ̃)

ψ̃
sin(α)

]
,

(A.13)

and

sin(ψb/f ) = sin(ψ̃ − α)

= sin(ψ̃) cos(α)− cos(ψ̃) sin(α)

= − sin(α)− sin(α)
(

cos(ψ̃)− 1
)

+ sin(ψ̃) cos(α)

= − sin(α) + ψ̃

[
sin(ψ̃)

ψ̃
cos(α)− cos(ψ̃)− 1

ψ̃
sin(α)

]
.

(A.14)

Using the formulas stated in (2.7), the following relationship is clear:

cos(α) =
ur,des

√
∆2 + x2

b/f − vr(yb/f + g)

Udes

√
∆2 + x2

b/f + (yb/f + g)2
,

sin(α) =
vr
√

∆2 + x2
b/f + ur,des(yb/f + g)

Udes

√
∆2 + x2

b/f + (yb/f + g)2
.

(A.15)
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This can be inserted into (A.10).

ẋb/f = cos(ψb/f )ur − sin(ψb/f )vr − ṡ+ ṡκyb/f + cos(ψf )Vx + sin(ψf )Vy

= cos(ψb/f )(ũr + ur,des)− sin(ψb/f )vr − ṡ+ ṡκyb/f + cos(ψf )Vx + sin(ψf )Vy

= ur,des cos(α) + vr sin(α)− ṡ+ ṡκyb/f + cos(ψf )Vx + sin(ψf )Vy + cos(ψb/f )ũr

+ ψ̃

[
cos(ψ̃)− 1

ψ̃
(ur,des cos(α) + vr sin(α)) +

sin(ψ̃)

ψ̃
(ur,des sin(α)− vr cos(α))

]

= Udes

√
∆2 + x2b/f√

∆2 + x2b/f + (yb/f + g)2
− ṡ+ ṡκyb/f + cos(ψf )Vx + sin(ψf )Vy + cos(ψb/f )ũr

+ ψ̃

cos(ψ̃)− 1

ψ̃

Udes

√
∆2 + x2b/f√

∆2 + x2b/f + (yb/f + g)2
+

sin(ψ̃)

ψ̃

Udes(yb/f + g)√
∆2 + x2b/f + (yb/f + g)2


.

(A.16)

Inserting for ṡ defined in (A.3), (A.16) reduces to

ẋb/f = −Udes
xb/f√

∆2 + x2b/f + (yb/f + g)2
+ ṡκyb/f + cos(ψb/f )ũr + cos(ψf )Ṽx + sin(ψf )Ṽy

+ ψ̃

cos(ψ̃)− 1

ψ̃

Udes

√
∆2 + x2b/f√

∆2 + x2b/f + (yb/f + g)2
+

sin(ψ̃)

ψ̃

Udes(yb/f + g)√
∆2 + x2b/f + (yb/f + g)2


.︸ ︷︷ ︸

,h1(t,Udes,ξ)

(A.17)

Similarily,

ẏb/f = sin(ψb/f )ur + cos(ψb/f )vr − ṡκxb/f − sin(ψf )Vx + cos(ψf )Vy

= sin(ψb/f )(ũr + ur,des) + cos(ψb/f )vr − ṡκxb/f − sin(ψf )Vx + cos(ψf )Vy

= vr cos(α)− ur,des sin(α)− ṡκxb/f − sin(ψf )Vx + cos(ψf )Vy + sin(ψb/f )ũr

+ ψ̃

[
cos(ψ̃)− 1

ψ̃
(vr cos(α)− ur,des sin(α)) +

sin(ψ̃)

ψ̃
(ur,des cos(α) + vr sin(α))

]
= −Udes

yb/f + g√
∆2 + x2b/f + (yb/f + g)2

− ṡκxb/f − sin(ψf )Vx + cos(ψf )Vy + sin(ψb/f )ũr

+ ψ̃

 sin(ψ̃)

ψ̃

Udes

√
∆2 + x2b/f√

∆2 + x2b/f + (yb/f + g)2
− cos(ψ̃)− 1

ψ̃

Udes(yb/f + g)√
∆2 + x2b/f + (yb/f + g)2


(A.18)

Note that the term g is chosen so that

−Udes
g√

∆2 + x2
b/f + (yb/f + g)2

+ V̂ fy

= −Udes
g√

∆2 + x2
b/f + (yb/f + g)2

− sin(ψf )V̂x + cos(ψf )V̂y = 0.
(A.19)
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Solving the above equation with respect to g leads to the second-order equa-
tion (A.5), which has been proven to have real solutions, g1 ≥ 0 and g2 ≤ 0.
Thus, by choosing g as in (A.7), (A.18) reduces to

ẏb/f = −Udes
yb/f√

∆2 + x2b/f + (yb/f + g)2
− ṡκxb/f + sin(ψb/f )ũr − sin(ψf )Ṽx + cos(ψf )Ṽy

+ ψ̃

 sin(ψ̃)

ψ̃

√
Udes∆2 + x2b/f√

∆2 + x2b/f + (yb/f + g)2
− cos(ψ̃)− 1

ψ̃

Udes(yb/f + g)√
∆2 + x2b/f + (yb/f + g)2


︸ ︷︷ ︸

,h2(t,Udes,ξ)

.

(A.20)

This can be expressed as (7.15), thus concluding this appendix:

[
ẋb/f
ẏb/f

]
=

−Udes
xb/f√

∆2+x2
b/f

+(yb/f+g)2

−Udes
yb/f√

∆2+x2
b/f

+(yb/f+g)2

− ṡ [0 −κ
κ 0

] [
xb/f
yb/f

]
+H(t, Udes, ξ)ξ

(A.21)

H(t, Udes, ξ) =

[
cos(ψb/f ) h1(t, Udes, ξ) 0 cos(ψf ) sin(ψf ) 0 0
sin(ψb/f ) h2(t, Udes, ξ) 0 − sin(ψf ) cos(ψf ) 0 0

]
(A.22)

ξ =
[
ũr ψ̃

˙̃
ψ Ṽx Ṽy x̃ ỹ

]T
(A.23)
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Appendix B

This appendix is related to Chapter 8 and describes in detail the step by step cal-
culations to derive the expression (8.33) for the controller error dynamics given the
controllers (8.22)-(8.25) with the AUV model (2.36). The equations are reprinted
below for readability.

The AUV model in component form is defined as

ẋ = cos(θ) cos(ψ)ur − sin(ψ)vr + sin(θ) cos(ψ)wr + Vx,

ẏ = cos(θ) sin(ψ)ur + cos(ψ)vr + sin(θ) sin(ψ)wr + Vy,

ż = − sin(θ)ur + cos(θ)wr + Vz,

θ̇ = q,

ψ̇ =
r

cos(θ)
,

u̇r = Fur (ur, vr, wr, r, q) + τu,

v̇r = Xvr (ur)r + Yvr (ur)vr,

ẇr = Xwr (ur)q + Ywr (ur)wr + Zwr sin(θ),

q̇ = Fq(θ, ur, wr, q) + τq,

ṙ = Fr(ur, vr, r) + τr,

(B.1)

and the controllers are given below.

τu = −Fur (ur, vr, wr, r, q) + u̇r,des − kur (ur − ur,des) (B.2)

The gain kur > 0 is constant and Fur (ur, vr, r, q) is defined in (2.37). The controller
error is denoted ũr , ur − ur,des. Thus,

˙̃ur = u̇r − u̇r,des

= Fur (ur, vr, wr, r, q) + τu − u̇r,des

= Fur (ur, vr, wr, r, q)− Fur (ur, vr, wr, r, q) + u̇r,des − kur (ur − ur,des)− u̇r,des

= −kur ũr. (B.3)

In addition to ur(t), the controlled states are the relative orientation θfc(t),
ψfc(t) and the rotational velocities q and r. The rudder controller is an integrator
backstepping controller that ensures that the difference between the actual and
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desired states converge to zero. The errors z1 and z2 are defined as

z1 ,

[
θ̃fc
ψ̃fc

]
,

[
θfc
ψfc

]
−
[
θfc,des
ψfc,des

]
,

(B.4)

z2 ,

[
q̃
r̃

]
,

[
q
r

]
−
[
qdes
rdes

]
.

(B.5)

The controller is then given as[
τq
τr

]
=

[
q̇des
ṙdes

]
−
[
Fq(θ, ur, wr, q)
Fr(ur, vr, r)

]
−ATz1 −K2z2, (B.6)

where

A ,

[
cos(φfc) − sin(φfc)
sin(φfc)
cos(θfc)

cos(φfc)
cos(θfc)

] [
cos(βc) − sin(βc) sin(αc)

0 cos(αc)

]
, (B.7)

[
qdes
rdes

]
, −A−1(Φ +K1z1), (B.8)

Φ = −
[
θ̇fc,des

ψ̇fc,des

]
+

[
cos(φfc) − sin(φfc)
sin(φfc)
cos(θfc)

cos(φfc)
cos(θfc)

]
L(ωcbc − [Rf

c (Θfc)]
Tωfif ), (B.9)

L =

[
0 1 0
0 0 1

]
,

(B.10)

ωcbc = [−β̇c sin(αc),−α̇c, β̇c cos(αc)]
T , ωfif = ṡ[τ(s), 0, κ(s)]T and K1 and K2 are

positive definite, symmetric gain matrices. Furthermore, τ(s) and κ(s) are the
path torsion and curvature, and the functions Fq(θ, ur, wr, q) and Fr(ur, vr, r) are
defined in (2.43)-(2.44). Furthermore,

αc , arctan

(
wr
ur,des

)
, (B.11)

βc , arctan

 vr√
u2
r,des + w2

r

 , (B.12)

Θcb =

 0
αc
−βc


.

(B.13)

The time-derivative of z1 is given as

ż1 =

[
θ̇fc
ψ̇fc

]
−
[
θ̇fc,des

ψ̇fc,des

]
.

(B.14)

Using standard rules for differntial kinematics from [31],φ̇fcθ̇fc
ψ̇fc

 =

1 sin(φfc) tan(θfc) cos(φfc) tan(θfc)
0 cos(φfc) − sin(φfc)
0 sin(φfc)/ cos(θfc) cos(φfc)/ cos(θfc)

ωcfc. (B.15)
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Here ωcfc denotes the angular velocity of frame {c} relative to {f} expressed in
{c}, and can be decomposed as

ωcfc = ωcic − ωcif = ωcib + ωcbc − ωcif = Rc
b(Θcb)ω

b
ib + ωcbc −Rc

f (Θfc)ω
f
if . (B.16)

Here, ωbib is the rotational velocity of the body relative to the inertial frame and is
given by the AUV states ωbib = [0, q, r]T , ωcbc = −ωccb = [−β̇c sin(αc),−α̇c, β̇c cos(αc)]

T

through a similar transformation as (B.15) and ωfif = ṡ[τ(s), 0, κ(s)]T by definition
of the Serret-Frenet reference frame [26]. Thus,

ż1 =

[
cos(φfc) − sin(φfc)

sin(φfc)/ cos(θfc) cos(φfc)/ cos(θfc)

]
︸ ︷︷ ︸

,Bfc

Lωcfc −
[
θ̇fc,des

ψ̇fc,des

]
,

= BfcLω
c
fc −

[
θ̇fc,des

ψ̇fc,des

]
= BfcL(Rc

b(Θcb)ω
b
ib + ωcbc −Rc

f (Θfc)ω
f
if )−

[
θ̇fc,des

ψ̇fc,des

]

= BfcLR
c
b(Θcb)

0
q
r

− [ θ̇fc,des

ψ̇fc,des

]
+BfcL(ωcbc −Rc

f (Θfc)ω
f
if )

= Bfc

[
cos(βc) − sin(βc) sin(αc)

0 cos(αc)

] [
q
r

]
−
[
θ̇fc,des

ψ̇fc,des

]
+BfcL(ωcbc −Rc

f (Θfc)ω
f
if )

= A

[
q
r

]
+ Φ, (B.17)

whereA, Φ and L are defined in (B.7), (B.9) and (B.10), respectively. Furthermore,
by inserting (B.5) and (B.8), the z1 dynamics can be further rewritten into

ż1 = A(z2 +

[
qdes
rdes

]
) + Φ

= Az2 +A
(
−A−1(Φ +K1z1)

)
+ Φ

= Az2 −K1z1. (B.18)

Similarly,

ż2 =

[
q̇
ṙ

]
−
[
q̇des
ṙdes

]
=

[
Fq(θ, ur, wr, q)
Fr(ur, vr, r)

]
+

[
τq
τr

]
−
[
q̇des
ṙdes

]
=

[
Fq(θ, ur, wr, q)
Fr(ur, vr, r)

]
+

[
q̇des
ṙdes

]
−
[
Fq(θ, ur, wr, q)
Fr(ur, vr, r)

]
−ATz1 −K2z2 −

[
q̇des
ṙdes

]
= −ATz1 −K2z2. (B.19)

when inserting (B.1) and (B.6) into the time derivative of the definition (B.5).
Thus, the error dynamics for ξ1 =

[
ũr zT1 zT2

]T can be expressed as in (8.33),
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Q.E.D.

ξ̇1 =

−kur 0 0
0 −K1 A
0 −AT −K2

 ξ1 (B.20)
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Appendix C

This appendix is related to Chapter 8 and describes in detail the step by step
calculations to rewrite (8.37) into (8.38) given the expressions for the current ob-
server (8.10), the update law (8.13) and guidance laws (8.14)-(8.15). The equations
are reprinted below for readability.

The ocean current observer is given as

˙̂x = cos(θ) cos(ψ)ur − sin(ψ)vr + sin(θ) cos(ψ)wr + V̂x + kx1
x̃,

˙̂y = cos(θ) sin(ψ)ur + cos(ψ)vr + sin(θ) sin(ψ)wr + V̂y + ky1 ỹ,

˙̂z = − sin(θ)ur + cos(θ)wr + V̂z + kz1 z̃,

˙̂
Vx = kx2

x̃,

˙̂
Vy = ky2 ỹ,

˙̂
Vz = kz2 z̃,

(C.1)

where x̂, ŷ, ẑ, V̂x, V̂y and V̂z are the estimates of x, y, z, Vx, Vy and Vz, respectively.
Furthermore, x̃ = x − x̂, ỹ = y − ŷ, z̃ = z − ẑ, Ṽx = Vx − V̂x, Ṽy = Vy − V̂y
and Ṽz = Vz − V̂z. are the observer error signals. The ocean current and the
corresponding estimates in the {f}-frame are denoted

V f
c =

V fxV fy
V fz

 = Ri
f (Θif )T

VxVy
Vz


,

(C.2)

V̂ f
c =

V̂xV̂y
V̂z

 = Ri
f (Θif )T

V̂ fxV̂ fy
V̂ fz


.

(C.3)

and the update law is defined as

ṡ =
√
u2
r,des + v2

r + w2
r︸ ︷︷ ︸

,Udes

√
∆2 + y2

b/f√
∆2 + y2

b/f + (zb/f + f)2

√
∆2 + x2

b/f + z2
b/f√

∆2 + x2
b/f + (yb/f + g)2 + z2

b/f

+ Udes
xb/f√

∆2 + x2
b/f + y2

b/f + z2
b/f

+ V̂ fx (C.4)
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Furthermore, the guidance laws are given as

θfc,des = arctan

 zb/f + f√
∆2 + y2

b/f

 (C.5)

ψfc,des = − arctan

 yb/f + g√
∆2 + x2

b/f + z2
b/f

 , (C.6)

where f is the solution to the second order equation(
V̂ f

2

z − U2
des

)
︸ ︷︷ ︸

af

f2 + 2 V̂ f
2

z zb/f︸ ︷︷ ︸
bf

f + V̂ f
2

z

(
∆2 + y2

b/f + z2
b/f

)
︸ ︷︷ ︸

cf

= 0, (C.7)

and g is the solution to the second order equation(
V̂ f

2

y − cos2(θfc,des)U
2
des

)
︸ ︷︷ ︸

ag

g2 + 2 V̂ f
2

y yb/f︸ ︷︷ ︸
bg

g + V̂ f
2

y

(
∆2 + x2

b/f + y2
b/f + z2

b/f

)
︸ ︷︷ ︸

cg

= 0.

(C.8)
Here, ∆ > 0 is a design parameter. In Chapter 8, the analysis is restricted to a
domain D where θfc,des is bounded by a parameter 0 < k < 1 (see Assumption 8.1):

D =
{

(θ, θfc, θfc,des) ∈ R3 : |θ| < π/2, |θfc| < π/2, |θfc,des| < arccos(k)
}

(C.9)

Assumption 8.1-8.2 and |θfc,des| < arccos(k) ensure that the solutions of f and
g are real and finite. Equation (C.7) and (C.8) are second order equations with
parameters (af , 2bf , cf ) and (ag, 2bg, cg). Thus, these equations have two possible
solutions:

i1 ,
−bi −

√
b2i − aici
ai

,

i2 ,
−bi +

√
b2i − aic
ai

,

(C.10)

for i = {f, g}. In D and by Assumption 8.2, ai < 0 and ci ≥ 0. Furthermore, since√
b2i − aici ≥ bi, i1 will always be positive (≥ 0) and i2 will always be negative

(≤ 0). Hence, f and g are thus chosen as follows:

f =

{
f1 V̂ fz ≥ 0

f2 V̂ fz < 0
(C.11)

g =

{
g1 V̂ fy ≥ 0

g2 V̂ fy < 0
(C.12)
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Finally, the controller errors are defined as

ũr = ur − ur,des, (C.13)

z1 =

[
θ̃fc
ψ̃fc

]
,

[
θfc
ψfc

]
−
[
θfc,des
ψfc,des

]
,

(C.14)

z2 =

[
q̃
r̃

]
,

[
q
r

]
−
[
qdes
rdes

]
.

(C.15)

Equation (8.37) describes the path error dynamics and is given as

ẋb/fẏb/f
żb/f

 = Rf
b (Θfb)

ur

vr
wr

−
ṡ0

0

− ṡ
0 −κ 0
κ 0 −τ
0 τ 0

xb/fyb/f
zb/f

+[Ri
f (Θif )]T

Vx

Vy

Vz


.

(C.16)

Here, Θif = [0, θf , ψf ] denotes the orientation of the Serret-Frenet reference frame
relative to the inertial frame.

The rotation matrix Rf
b (Θfb) can be rewritten as

Rf
b (Θfb) = Rf

c (Θfc)R
c
b(Θcb), (C.17)

where Θfc = [φfc, θfc, ψfc]
T is calculated from the rotation matrix in (8.7), Θcb =

[0, αc,−βc]T and

αc , arctan

(
wr
ur,des

)
,

βc , arctan

 vr√
u2
r,des + w2

r


.

(C.18)

Using the formula (2.7),

sin(αc) =
wr√

u2
r,des + w2

r

,

cos(αc) =
ur,des√

u2
r,des + w2

r

,

sin(βc) =
vr√

u2
r,des + v2

r + w2
r

=
vr
Udes

,

cos(βc) =

√
u2
r,des + w2

r

Udes
.

(C.19)
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Hence,

Rf
b (Θfb)

ur

vr
wr

 = Rf
b (Θfb)

ur,des

vr
wr

+Rf
b (Θfb)

ũ0
0


= Rf

c (Θfc)R
c
b(Θcb)

ur,des

vr
wr

+Rf
b (Θfb)

ũ0
0


= Rf

c (Θfc)

 cos(αc) cos(βc) sin(βc) sin(αc) cos(βc)
− cos(αc) sin(βc) cos(βc) − sin(αc) sin(βc)
− sin(αc) 0 cos(αc)

ur,des

vr
wr


+Rf

b (Θfb)

ũ0
0



= Rf
c (Θfc)


ur,des√

u2
r,des+w2

r

√
u2
r,des+w2

r

Udes

vr
Udes

wr√
u2
r,des+w2

r

√
u2
r,des+w2

r

Udes

− ur,des√
u2
r,des+w2

r

vr
Udes

√
u2
r,des+w2

r

Udes
− wr√

u2
r,des+w2

r

vr
Udes

− wr√
u2
r,des+w2

r

0
ur,des√

u2
r,des+w2

r


ur,des

vr
wr



+Rf
b (Θfb)

ũ0
0



= Rf
c (Θfc)


u2
r,des+v2

r+w2
r

Udes
−u2

r,desvr+(u2
r,des+w2

r)vr−w2
rvr√

u2
r,des+w2

rUdes
−ur,deswr+ur,deswr√

u2
r,des+w2

r

+Rf
b (Θfb)

ũ0
0



= Rf
c (Θfc)

Udes

0
0

+Rf
b (Θfb)

ũ0
0


=

Udes cos(θfc) cos(ψfc)
Udes cos(θfc) sin(ψfc)
−Udes sin(θfc)

+

ũr cos(θfb) cos(ψfb)
ũr cos(θfb) sin(ψfb)
−ũr sin(θfb)


.

(C.20)

Furthermore,

cos(θfc) = cos(θfc,des + θ̃fc) = cos(θfc,des)

+ cos(θfc,des)
(

cos(θ̃fc)− 1
)
− sin(θfc,des) sin(θ̃fc), (C.21)

sin(θfc) = sin(θfc,des + θ̃fc) = sin(θfc,des)

+ sin(θfc,des)
(

cos(θ̃fc)− 1
)

+ cos(θfc,des) sin(θ̃fc), (C.22)

cos(ψfc) = cos(ψfc,des + ψ̃fc) = cos(ψfc,des)

+ cos(ψfc,des)
(

cos(ψ̃fc)− 1
)
− sin(ψfc,des) sin(ψ̃fc), (C.23)

sin(ψfc) = sin(ψfc,des + ψ̃fc) = sin(ψfc,des)

+ sin(ψfc,des)
(

cos(ψ̃fc)− 1
)

+ cos(ψfc,des) sin(ψ̃fc), (C.24)
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and

cos(θfc) cos(ψfc) = cos(θfc,des + θ̃fc) cos(ψfc,des + ψ̃fc)

= cos(θfc,des) cos(ψfc,des)− sin(θfc,des) sin(θ̃fc) cos(ψfc,des) cos(ψ̃fc)

+ sin(θfc,des) sin(θ̃fc) sin(ψfc,des) sin(ψ̃fc) + cos(θfc,des) cos(ψfc,des)
(

cos(θ̃fc)− 1
)

− cos(θfc,des) cos(θ̃fc) sin(ψfc,des) sin(ψ̃fc)

+ cos(θfc,des) cos(θ̃fc) cos(ψfc,des)
(

cos(ψ̃fc)− 1
)

= cos(θfc,des) cos(ψfc,des) + θ̃fc

[
− sin(θ̃fc)

θ̃fc
sin(θfc,des) cos(ψfc,des) cos(ψ̃fc)

+
sin(θ̃fc)

θ̃fc
sin(θfc,des) sin(ψfc,des) sin(ψ̃fc) +

cos(θ̃fc)− 1

θ̃fc
cos(θfc,des) cos(ψfc,des)

]
+ ψ̃fc

[
− sin(ψ̃fc)

ψ̃fc

cos(θfc,des) cos(θ̃fc) sin(ψfc,des)

+
cos(ψ̃fc)− 1

ψ̃fc

cos(θfc,des) cos(θ̃fc) cos(ψfc,des)

]
,

(C.25)

cos(θfc) sin(ψfc) = cos(θfc,des + θ̃fc) sin(ψfc,des + ψ̃fc)

= cos(θfc,des) sin(ψfc,des)− sin(θfc,des) sin(θ̃fc) sin(ψfc,des) cos(ψθfc)

− sin(θfc,des) sin(θ̃fc) cos(ψfc,des) sin(ψθfc) + cos(θfc,des) sin(ψfc,des)
(

cos(θ̃fc)− 1
)

+ cos(θfc,des) cos(θ̃fc) cos(ψfc,des) sin(ψθfc)

+ cos(θfc,des) cos(θ̃fc) sin(ψfc,des)
(

cos(θ̃fc)− 1
)

= cos(θfc,des) sin(ψfc,des) + θ̃fc

[
− sin(θ̃fc)

θ̃fc
sin(θfc,des) sin(ψfc,des) cos(ψ̃fc)

− sin(θ̃fc)

θ̃fc
sin(θfc,des) cos(ψfc,des) sin(ψθfc) +

cos(θ̃fc)− 1

θ̃fc
cos(θfc,des) sin(ψfc,des)

]
+ ψ̃fc

[
sin(ψ̃fc)

ψ̃fc

cos(θfc,des) cos(θ̃fc) cos(ψfc,des)

+
cos(ψ̃fc)− 1

ψ̃fc

cos(θfc,des) cos(θ̃fc) sin(ψfc,des)

]
,

(C.26)

sin(θfc) = sin(θfc,des + θ̃fc) = sin(θfc,des) + sin(θfc,des)
(

cos(θ̃fc)− 1
)

+ cos(θfc,des) sin(θ̃fc)

= sin(θfc,des) + θ̃fc

[
sin(θ̃fc)

θ̃fc
cos(θfc,des) +

cos(θ̃fc)− 1

θ̃fc
sin(θfc,des)

]
.

(C.27)
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Inserting the above equations into (C.20) yields the following result:

Rf
b (Θfb)

urvr
wr

 =

Udes cos(θfc) cos(ψfc)
Udes cos(θfc) sin(ψfc)
−Udes sin(θfc)

+

ũr cos(θfb) cos(ψfb)
ũr cos(θfb) sin(ψfb)
−ũr sin(θfb)


=

Udes cos(θfc,des) cos(ψfc,des)
Udes cos(θfc,des) sin(ψfc,des)

−Udes sin(θfc,des)

+

cos(θfb) cos(ψfb) h11 h12

cos(θfb) sin(ψfb) h21 h22

− sin(θfb) h31 0


︸ ︷︷ ︸

,H1

 ũrθ̃fc
ψ̃fc


,

(C.28)

where

h11 = Udes

(
sin(θ̃fc)

θ̃fc
sin(θfc,des)

(
− cos(ψfc,des) cos(ψ̃fc) + sin(ψfc,des) sin(ψ̃fc)

)
+

cos(θ̃fc)− 1

θ̃fc
cos(θfc,des) cos(ψfc,des)

)
,

(C.29)

h12 = Udes cos(θfc,des) cos(θ̃fc)

(
− sin(ψ̃fc)

ψ̃fc

sin(ψfc,des) +
cos(ψ̃fc)− 1

ψ̃fc

cos(ψfc,des)

)
,

(C.30)

h21 = Udes

(
sin(θ̃fc)

θ̃fc
sin(θfc,des)

(
− sin(ψfc,des) cos(ψ̃fc)− cos(ψfc,des) sin(ψ̃fc)

)
+

cos(θ̃fc)− 1

θ̃fc
cos(θfc,des) sin(ψfc,des)

)
,

(C.31)

h22 = Udes cos(θfc,des) cos(θ̃fc)

(
sin(ψ̃fc)

ψ̃fc

cos(ψfc,des) +
cos(ψ̃fc)− 1

ψ̃fc

sin(ψfc,des)

)
,

(C.32)

h31 = Udes

(
− sin(θ̃fc)

θ̃fc
cos(θfc,des)−

cos(θ̃fc)− 1

θ̃fc
sin(θfc,des)

)
.

(C.33)

Thus, the dynamics of xb/f , yb/f and zb/f in equation (C.16) can be rewritten as

ẋb/fẏb/f
żb/f

 = Rf
b (Θfb)

ur

vr
wr

−
ṡ0

0

− ṡ
0 −κ 0
κ 0 −τ
0 τ 0

xb/fyb/f
zb/f

+Ri
f (Θif )TVc

=

Udes cos(θfc,des) cos(ψfc,des)
Udes cos(θfc,des) sin(ψfc,des)

−Udes sin(θfc,des)

+H1

 ũr

θ̃fc
ψ̃fc

−
ṡ0

0

− ṡ
0 −κ 0
κ 0 −τ
0 τ 0

xb/fyb/f
zb/f

+ V f
c

(C.34)
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By applying (2.7) and inserting the guidance laws (C.5)-(C.6),

cos(θfc,des) =

√
∆2 + y2

b/f√
∆2 + y2

b/f + (zb/f + f)2
, (C.35)

sin(θfc,des) =
zb/f + f√

∆2 + y2
b/f + (zb/f + f)2

, (C.36)

cos(ψfc,des) =

√
∆2 + x2

b/f + z2
b/f√

∆2 + x2
b/f + (yb/f + g)2 + z2

b/f

, (C.37)

sin(ψfc,des) = −
yb/f + g√

∆2 + x2
b/f + (yb/f + g)2 + z2

b/f

. (C.38)

This can be inserted into the xb/f , yb/f and zb/f dynamics in (C.34).

ẋb/f = Udes cos(θfc,des) cos(ψfc,des) + cos(θfb) cos(ψfb)ũr + h11θ̃fc,des + h12ψ̃fc

− ṡ+ κṡyb/f + V fx

= Udes

√
∆2 + y2

b/f√
∆2 + y2

b/f + (zb/f + f)2

√
∆2 + x2

b/f + z2
b/f√

∆2 + x2
b/f + (yb/f + g)2 + z2

b/f

− ṡ+ κṡyb/f + V fx + cos(θfb) cos(ψfb)ũr + h11θ̃fc,des + h12ψ̃fc (C.39)

Inserting for ṡ as defined in (C.4) and the current and current estimates as defined
in (C.2)-(C.3) results in the following expression:

ẋb/f = −Udes
xb/f√

∆2 + x2
b/f + y2

b/f + z2
b/f

+ κṡyb/f + V fx − V̂ fx + cos(θfb) cos(ψfb)ũr

+ h11θ̃fc,des + h12ψ̃fc

= −Udes
xb/f√

∆2 + x2
b/f + y2

b/f + z2
b/f

+ κṡyb/f + cos(θfb) cos(ψfb)ũr + h11θ̃fc,des

+ h12ψ̃fc + cos(ψf ) cos(θf )Ṽx + cos(θf ) sin(ψf )Ṽy − sin(θf )Ṽz (C.40)

Similarly,

ẏb/f = Udes cos(θfc,des) sin(ψfc,des) + cos(θfb) sin(ψfb)ũr + h21θ̃fc + h22ψ̃fc

− κṡxb/f + τ ṡzb/f + V fy

= −Udes cos(θfc,des)
yb/f + g√

∆2 + x2
b/f + (yb/f + g)2 + z2

b/f

− κṡxb/f + τ ṡzb/f

+ V fy + cos(θfb) sin(ψfb)ũr + h21θ̃fc + h22ψ̃fc (C.41)
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C. Appendix Chapter 8, II

Note that the term g is chosen so that

− Udes cos(θfc,des)
g√

∆2 + x2
b/f + (yb/f + g)2 + z2

b/f

+ V̂ fy = 0. (C.42)

Solving the above equation with respect to g leads to the second-order equa-
tion (C.8), which has been proven to have real solutions, g1 ≥ 0 and g2 ≤ 0.
Thus, by choosing g as in (C.12), (C.41) reduces to

ẏb/f = −Udes

√
∆2 + y2

b/f√
∆2 + y2

b/f + (zb/f + f)2

yb/f√
∆2 + x2

b/f + (yb/f + g)2 + z2
b/f

− κṡxb/f + τ ṡzb/f + V fy − V̂ fy + cos(θfb) sin(ψfb)ũr + h21θ̃fc + h22ψ̃fc

= −Udes

√
∆2 + y2

b/f√
∆2 + y2

b/f + (zb/f + f)2

yb/f√
∆2 + x2

b/f + (yb/f + g)2 + z2
b/f

− κṡxb/f + τ ṡzb/f + cos(θfb) sin(ψfb)ũr + h21θ̃fc + h22ψ̃fc

+ (cos(ψf ) sin(φf ) sin(θf )− cos(φf ) sin(ψf )) Ṽx + cos(θf ) sin(φf )Ṽz

+ (cos(φf ) cos(ψf ) + sin(φf ) sin(ψf ) sin(θf )) Ṽy. (C.43)

Furthermore,

żb/f = −Udes sin(θfc,des)− sin(θfb)ũr + h31θ̃fc + h32ψ̃fc − τ ṡyb/f + V fz

= −Udes
zb/f + f√

∆2 + y2
b/f + (zb/f + f)2

− τ ṡyb/f + V fz − sin(θfb)ũr

+ h31θ̃fc + h32ψ̃fc, (C.44)

where the term f has been chosen so

− Udes
f√

∆2 + y2
b/f + (zb/f + f)2

+ V̂ fz = 0. (C.45)

Thus,

żb/f = −Udes
zb/f√

∆2 + y2
b/f + (zb/f + f)2

− τ ṡyb/f + Ṽ fz − sin(θfb)ũr + h31θ̃fc + h32ψ̃fc

= −Udes
zb/f√

∆2 + y2
b/f + (zb/f + f)2

− τ ṡyb/f − sin(θfb)ũr + h31θ̃fc + h32ψ̃fc

+ (sin(φf ) sin(ψf ) + cos(φf ) cos(ψf ) sin(θf ))Ṽx + cos(φf ) cos(θf )Ṽz

+ (cos(φf ) sin(ψf ) sin(θf )− cos(ψf ) sin(φf ))Ṽy. (C.46)
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This can be expressed as (8.38), thus concluding this appendix:

ẋb/fẏb/f
żb/f

 =


−Udes

xb/f√
∆2+x2

b/f
+y2

b/f
+z2

b/f

−Udes

√
∆2+y2

b/f√
∆2+y2

b/f
+(zb/f+f)2

yb/f√
∆2+x2

b/f
+(yb/f+g)2+z2

b/f

−Udes
zb/f√

∆2+y2
b/f

+(zb/f+f)2


− ṡ

0 −κ 0
κ 0 −τ
0 τ 0

xb/fyb/f
zb/f

+H(t, Udes, ξ)ξ

(C.47)

H(t, Udes, ξ)
T = (C.48)

c(θfb)c(ψfb) c(θfb)s(ψfb) −s(θfb)
h11 h21 h31

h12 h22 0
0 0 0
0 0 0

c(ψf )c(θf ) c(ψf )s(φf )s(θf )− c(φf )s(ψf ) c(φf )c(ψf )s(θf ) + s(φf )s(ψf )
c(θf )s(ψf ) s(φf )s(ψf )s(θf ) + c(φf )c(ψf ) c(φf )s(ψf )s(θf )− c(ψf )s(φf )
−s(θf ) c(θf )s(φf ) c(φf )c(θf )

0 0 0
0 0 0
0 0 0


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