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Abstract

Many studies have calculated the pollution resulting from consumption activities. A
common assumption in many of these studies is that imports are produced using do-
mestic technology. Studies of economic factors embodied in trade have shown that
regional technology differences are important for modeling of international trade
patterns. Therefor, it is likely that calculations of pollution embodied in interna-
tional trade will require the consideration of regional technology differences. This
article develops a framework based on input-output analysis (IOA) for calculating
production factors and pollution embodied in trade. In its most general form, the
model has significant data requirements. Consequently, many simplifications are
discussed that lead to reductions in data requirements, without the introduction of
large errors. The framework is applied to the case of Norway in a companion article
(Peters et al., 2004).
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1 Introduction

Consumer demand is the central cause of all factor use and environmental pollutants;
both directly and indirectly. When production for consumer demand occurs in the same
country as consumption, then government policy can be used to regulate factor use and
the release of pollutants. Increasing competition in economies open to trade has lead
to increasing production in foreign countries for domestic consumption. In particular,
regulating the resulting pollution embodied in trade is becoming a critical issue to stem
global pollution levels. This article develops a model to accurately quantify the factor use
and pollution embodied in trade.

Wyckoff and Roop (1994) estimated that about 13% of the total carbon emissions of six
of the largest OECD countries was embodied in manufactured imports in the mid-1980’s.
The total carbon emissions embodied in import was as high as 40% for France. Lenzen
(1998) found that 31% of Australian emissions are exported, while 21% of emissions occur
in foreign regions (relative to total Australian emissions). Consequently, Australia is a
net exporter of carbon1. Hertwich et al. (2002) found that over 70% of the emissions in
Norway are associated with export. Compared to consumer demand, around one third
of Norwegian emissions are embodied in imports. Further, Norway exports five times
more carbon than it imports. Many other studies perform similar calculations and obtain
similar results (e.g. Bullard and Herendeen, 1975; Gay and Proops, 1993; Battjes et al.,
1998; Machado et al., 2001; Muradian et al., 2002; Ahmad and Wyckoff, 2003; Lenzen
et al., 2004).

The economic literature on international trade is particularly interested in the factors
of production embodied in trade (Samuelson, 1953; Vanek, 1968). The typical factors
of production considered by economists are various disaggregation of labor, capital, and
sometimes land. Mathematically, the determination of factors embodied in trade has
many parallels with pollution embodied in trade. The Heckscher–Ohlin–Vanek (HOV)
model commonly employed to describe international trade is found to fail dismally em-
pirically (Trefler, 1993, 1995; Hakura, 2001). However, a relaxation of some of the model
assumptions shows that the modified HOV model can relatively accurately model factor
embodiments in trade (Hakura, 2001). Of particular importance is the need to relax the
assumption of identical technology in each region.

A common weakness of the studies determining carbon embodied in trade is that
they assume that the foreign countries use the same technology as the domestic country.
Partly this is due to lack of data and partly due to a lack of a consistent theoretical
framework. The error obtained by assuming identical technologies is likely to be small
for countries with similar technologies and energy sources, but quite different when the
countries have large technological differences. Perhaps of most concern is the factors and
pollutants embodied in trade when the trading partners are developed and developing
countries. Haukland (2004) shows that the total carbon dioxide emissions per unit output
for Norway and China show a difference of up to three orders of magnitude for some
sectors and pollutants. Only recently have studies emerged that consider directly different

1Compared to the HOV model, discussed below, this would suggest Australia has a comparative
advantage in carbon intensive goods. This more likely reflects a cost advantage in “energy” intensive
goods compared with a pollution advantage in carbon intensive goods.
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technology in each region (Ahmad and Wyckoff, 2003; Lenzen et al., 2004); however, both
these studies assume that the developing countries have the same technology as developed
countries.

The model developed in this article has many similarities with interregional and multi-
regional input-output models (see for instance, Miller and Blair (1985)). Interregional
studies have shown that feedback effects between regions are relatively small and the extra
data requirements may not be justified (Round, 2001). However, in the present study,
factor usage intensities vary widely between regions and consequently, small feedback
effects can be amplified to significant amounts. A recent model with particular focus on
CO2 embodied in trade shows that uni-directional trade makes a significant difference,
but multi-regional trade only offers improvements of up to a few percent (Lenzen et al.,
2004).

Lenzen et al. (2004) developed a multi-region model using the make-use framework of
input-output analysis (although still implicitly using the industry-technology assumption).
The focus of that model is to determine the balance of trade for CO2 emissions. The model
presented here describes several simplification that can be used when calculating a trade
balance for a given region. Ahmad and Wyckoff (2003) applied similar simplifications
to determine the balance of trade for CO2 emissions in OECD countries. They consider
the emissions from total imports and exports, but their framework cannot be applied to
arbitrary demands. The model developed in this article has a focus on arbitrary demands.

This paper develops a model to determine factors embodied in trade. The central
framework of the model is input-output analysis (IOA). Several key issues are revealed
in the development of the model, for consistency between future studies, these issues are
discussed. The first sections address some important issues. The middle sections present
the model. Companion studies applies the framework to Norway at a variety of scales
(Peters et al., 2004; Briceno et al., 2005).

2 Input-output framework

The model developed in this article is based on input-output analysis (IOA) (Leontief,
1941; Miller and Blair, 1985; United Nations, 1999). In summary, the total output of the
economy is given by intermediate consumption and final consumption,

x = Ax + y (1)

where A is the interindustry requirements matrix and y represents various demands on
the economy. Solving for the total output, x, gives

x = (I − A)−1y (2)

This gives the interpretation of the Leontief inverse; the change in output for unit change
in demand. If entry j in y changes by unity, then column j of (I−A)−1 gives the required
output from all industry sectors.

It is possible to perform IOA calculations at both a commodity level and an industry
level. For many studies it is desirable to construct the data at the commodity level
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as this is what consumers purchase. Many countries collect IO data in the make-use
framework and allow for secondary production (Miller and Blair, 1985; United Nations,
1999). Through the make-use framework it is usually possible to construct symmetric
tables at the commodity level. Unfortunately, in some countries the symmetric tables
are available only at the industry level. In addition, the factor use intensities are usually
produced on an industry basis only. So at some stage the commodity detail has to be
transformed to the industry detail. Consequently, most IO studies are performed at the
industry level.

In this article it is assumed that the IO data are at the industry level; the number of
industry sectors is given by n. Further, it is assumed that the entries of A are in monetary
units. Mixed units can be used as described by Chapman (1974), Bullard and Herendeen
(1975), and Duchin (2004).

2.1 Factor usage and pollutant emissions

Given the output of an economy, x, the factor input required to produce the output is
given by

F (I − A)−1y (3)

where F is a k∗ × n matrix representing the factor use intensities and k∗ is the number
of factors considered. The Fαi element is the input of factor α in the sector i per unit
output of that sector.

Similarly, the pollution generated by an output of x is given by

G(I − A)−1y (4)

where G is an l × n matrix representing the pollution intensities and l is the number of
pollutants considered. The Gαi element is the amount of pollutant α emitted in the sector
i per unit output of that sector.

For the purpose of this paper, pollutants and factors are considered equivalent (com-
pare with Lenzen (2001b)). The matrix F will be a k × n matrix, where k = k∗ + l is
the total number of factors and pollutants considered. To this end, “factors embodied
in trade” refers to both the traditional economic factors (labor, capital) and pollutants
(carbon dioxide, toxic chemicals, etc) embodied in trade. The term “factor usage” refers
to both the use of traditional factors in production and the pollution released from pro-
duction processes.

2.2 Elements of demand

The ultimate objective of the model is to determine the factor usage resulting from a
given demand of products in a domestic economy. Depending on the nature of the study,
the model needs to be adaptable to a variety of demands. On a national level, one may be
interested in the factor usage resulting from a total demand of the entire economy. On a
smaller focus, one may be interested in the demand resulting from household consumption.
Depending on the scale of interest, several issues arise.
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The final demand is often broken down into numerous components, for example,

y = yd + yi

︸ ︷︷ ︸
private

+ yg + ygi

︸ ︷︷ ︸
government

+yc + ym + ye −M (5)

where yd is the private domestic demand on domestic production, yi is the private domestic
demand on imported products, yf = yd + yi is the final private domestic demand, yg is
the government domestic demand on domestic production, ygi is the government domestic
demand on imported products, yc is gross fixed capital formation, ym is the trade and
transport margins, ye exports, and M imports to both final demand and to interindustry
demand.

This breakdown of final demand is by no means exhaustive, and ultimately depends on
data availability and the nature of the application. Various demand terms are discussed
throughout the text where relevant. Further details can be found in many references on
input-output analysis, for example United Nations (1999). Some relevant demands are
discussed now.

2.2.1 Household demands

The household demands are relatively straightforward. Demands on domestically pro-
duced products and imported products are usually distinguished. The imports are usu-
ally valued in basic prices. It is important to capture the impacts of both competitive
and non-competitive imports; the issue of non-competitive imports is discussed further
below. Of particular interest is studying the expenditure various households as opposed
to total household expenditure (see Peters et al., 2004, for more details). When studying
structural changes in an economy it is often useful to ensure that household income can
cover household expenditure; one method to achieve this is through Social Accounting
Matrices (United Nations, 1999).

2.2.2 Gross fixed capital formation

Gross fixed capital formation is measured by the total value of a producer’s acquisitions,
less disposals, of fixed assets (United Nations, 1993). It can be argued that interindustry
gross capital formation should be included into intermediate inputs as it ultimately oc-
curs to facilitate production (Lenzen, 2001b). Ultimately, the treatment of gross capital
formation depends on the application being studied and the detail of the data available.

Gross capital formation can be “internalized” into the standard input-output frame-
work (Lenzen, 1998, 2001b). Let the total non-capital demands on the economy be given
by, yt, and the gross capital formation by, yc. The total output of the economy is given
by

x = Ax + yt + yc (6)

Following Lenzen (2001b), let
yc = Kx (7)

where K represents the capital requirements for a unit of output. Thus, the total output
of the economy can also be given by

x = (A + K)x + yt (8)
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Consequently, the total output of the economy can be expressed equivalently as,

x = (I − (A + K))−1yt = (I − A)−1(yt + yc) (9)

This equivalence shows that if the total demands on the economy are considered, then
it does not matter if the capital requirements are internalized or not. In this case, there
is little justification for constructing K. For arbitrary demands, however, the resulting
output will vary depending on the treatment of capital. In this case, if it is assumed that
capital is purchased to facilitate production, then capital should be internalized into the
interindustry requirements matrix, A 7−→ A + K.

Whether capital should be internalized into the interindustry requirements matrix de-
pends on the application being studied. For an economy heavily dependent on exports,
the majority of capital expenditures might be in the expansion of exporting industries.
Thus in a study of household demands the capital requirements might lead to unrealis-
tically high outputs in some sectors as a result of capital expenditure in the exporting
sectors. This would suggest that the capital demands should be broken down into separate
categories for interindustry, government, private, export, and so on.

Another issue of importance is the type of capital expenditure. Some capital expendi-
ture may be used for replacement, other capital might be used for expansion (e.g. Miller
and Blair, 1985). Also, the capital expenditures may vary by large amounts from year
to year. These points suggest that to correctly model capital requires the consideration
of temporal effects. In this case, consideration should be given to dynamic IO models
(Duchin and Szyld, 1985; Fleissner, 1990).

The data to construct the capital requirements matrix is not always readily available.
To illustrate the difficulties in determining K it is worth noting that Lenzen (2001b)
estimated K from “several disparate unpublished working estimates” and estimated the
error in the elements of K to be 50-70%. Also, distinguishing between what is capital
expenditure and what is an interindustry requirements for production can be difficult; the
reporting industry might have a different view as the statistical office constructing the IO
data.

2.2.3 Government demand

The relationship between government demand and private demand is not straightforward.
It could be argued that if there was no private demand, then there would be no government
demand. From this viewpoint, all government demand is a consequence of private demand
and so the two should be treated together. In contrast, in a study focussing on the
consequences of private consumption patterns government demand may be considered
as separate from household demand. For instance, how is government expenditure on
defence related to household consumption of food? On the contrary, some government
expenditure, such as welfare, is directly used by households (United Nations, 1999).

The treatment of government demand in relation to private demand is likely to be
dependent on the study being performed and on the detail of data available. For many
studies, it may be worthwhile to internalize government expenditure into the interindustry
requirements matrix as for capital in the previous section. Further, for many studies it
may be important to capture changes to government income or expenditure. For instance,
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a large shift in household expenditure away from personal transportation services to public
transportation may have many indirect effects on government income and expenditure.

2.2.4 Trade and transport margins

If the IO data is valued in basic or producer prices then there may be a final demand
category for trade and transport margins. As for capital and government demand, the
treatment of trade and transport margins requires some consideration. In some cases, it
may be possible to internalize trade and transport margins into the interindustry require-
ments matrix. Margins vary depending on the destination of the purchase—household,
export, import—and may also vary with quantity. The treatment of trade and transport
margins is particularly important for studies of household consumption. The trade and
transport margins may vary for different household purchasers. Further, different types
of the same product may have different margins; for instance, cheap and luxury cars.
An important area that is often inadequately handled in the IOA is the emissions from
international transportation; particularly of imports. The final treatment of trade and
transport margins will depend on assumptions made for a particular study.

2.2.5 Exports

Exports are usually straightforward and it is not often distinguished where the exports
go. The treatment of re-exports needs to be considered; and this may vary from country
to country. For the framework here it is useful to distinguish between exports that go to
final demand and exports that go to industry.

2.2.6 Imports

Imports can be considered as either competitive or non-competitive. The competitive
imports are produced by the domestic economy, the non-competitive imports are not
produced in the domestic economy. It is possible to deal with both types of imports
through the make-use framework; although this requires assuming that the imports are
produced with domestic technology. Since non-competitive imports are not produced in
the domestic economy they are difficult to incorporate into IOA analysis.

Consider a non-competitive import. An extra row can be added to the make and
use tables for this import. The region does not make this import (it is non-competitive)
so in the make table this row consists of zeros. For the same reason, the domestic use
matrix has zeros for this import. However, in the imported use matrix, the new row for
the non-competitive import is non-zero and represents the use of the import by domestic
industries.

From the make and use framework, it is then possible to construct the interindus-
try requirements matrices for domestically produced and imported products. At the
commodity-commodity level, the interindustry requirements matrix for domestically pro-
duced products will have zeros in the row and column for the non-competitive import, but
the interindustry requirements matrix for non-competitive imports has non-zero elements
for this import. At the industry-industry level, all detail of the non-competitive imports
are lost since the domestic economy does not produce the non-competitive imports. Thus
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the standard make-use framework needs to be modified to account for non-competitive
imports at the industry level. Appendix A gives an illustrative example of the problems
in dealing with non-competitive imports.

3 Domestic outputs for arbitrary demands

In this section, the input-output structure to deal with imports and exports is discussed
in detail. This work is a precursor to a detailed assessment of factors embodied in trade.
For simplicity, it is assumed that all government demand and capital demand is included
in private domestic demand, yd. The notation used in this section is shown in Table 1.

Variable Description
x Output of the given economy
yd Final domestic demand on domestic production
yim Final domestic demand on imported production
yex Final export demand on domestic production
yf = yd + yim Final domestic demand of consumers
yt = yd + yex Total demand on domestic production
m = Aimx + yim Total imports to both domestic intermediate

demand and domestic final demand

Ad Interindustry requirements on domestic production
Aim Interindustry requirements of imports
A = Ad + Aim Total interindustry requirements
F d Industry requirements of domestic production factors

Table 1: The notation used in section 3.

In a given region, some of the imports go directly to the final consumer and the
remainder go directly to fulfill intermediate demand in production processes. Exports are
treated as final demand. This can be written more formally as (United Nations, 1999)

x = (Ad + Aim)x + yd + yex + yim −m (10)

A balance must hold for the imports,

m = Aimx + yim (11)

That is, the total imported is equal to total imported for intermediate demand plus the
total imported for final demand. From this balance, it is easy to show that

x = Adx + yd + yex = Adx + yt (12)

This result is intuitive, it states that imports do not change the total output of an economy
unless there is a drop in demand for domestically produced goods, yt, or domestically
produced intermediate demand, Ad. For a more detailed discussion of these points see
Appendix B.
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It is important to note that these equations use Ad and not A. A represents the
technology used in the economy, the Ad represents the amount of domestic inputs used
by the technology. If there are no imports into intermediate demand, Aim = 0, then it
follows that A = Ad. This rarely happens in reality.

From (12), the output for given demands can be determined. The total output for all
demands on domestic production is

x = (I − Ad)−1yt (13)

Recall that the Leontief inverse, (I − Ad)−1, represents the output for a unit demand, as
discussed earlier. So the Leontief inverse allows decomposition of separate demands. The
output required for a domestic final demand of domestic production, yd, is simply

xd = (I − Ad)−1yd (14)

The output required for a demand, yex, of exports is

xex = (I − Ad)−1yex (15)

Extending this further, the output for an arbitrary demand is

x∗ = (I − Ad)−1y∗ (16)

where y∗ could represent government demand, capital demand, household demand, a unit
demand on a particular sector, and so on. These outputs can also be written in terms of
A instead of Ad; this is discussed in Appendix C. Note, that if Aim 6= 0 then a proportion
of production, given by Aimx∗ occurs in foreign regions.

By using the direct multiplier for factor usage, F d, the total factors embodied in
production can be determined,

E∗ = F d(I − Ad)−1y∗ (17)

The term F d(I − Ad)−1 is often called a multiplier. The direct factors used are given by
F d, while the total factor use is given by F d(I − Ad)−1; the Leontief inverse captures all
the indirect effects. Lenzen (2001b) considers different multipliers in detail. He compares
the size of the multipliers when various components are incorporated into the multiplier
expression; for instance, capital, imports, and so on.

Now, consider the factor usage embodied in a countries imports. To produce the
arbitrary demand y∗ in the domestic economy usually requires imports into production;
the required imports are given by m = Aimx∗. The output in the foreign region i is then
given by

xi = (I − Ad
i )
−1mi (18)

where mi is the import from country i and Ad
i is the relevant interindustry coefficients

matrix in that country. The embodied factors are given by

Ei = F d
i xi = F d

i (I − Ad
i )
−1mi (19)
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where F d
i is the factor use intensity in region i. In turn, this foreign region may require

imports to produce the demand, mi. In general, these indirect imports and embodied
production factors may continue far upstream in the same way that interindustry demands
continue far upstream on the domestic level. As a result, an import from one country
indirectly includes imports from many other countries. The mathematical formulation to
analyze this problem becomes more complex and is now presented.

4 Output and factors embodied in trade

This section now introduces the added complexities to calculate factors that are embodied
in trade. In the previous section it was shown how to determine domestic outputs, x∗, for
a given demand, y∗; see (16). To produce y∗ requires imports of Aimx∗. In general, the
imports may come from a number of different regions with different technologies; each of
these regions also places import demands on foreign economies. This leads to an infinite
number of upstream imports. To simplify the presentation only two regions are considered
initially, the more general case is formulated later.

For the case of multiple trading regions the notation needs to be modified to accom-
modate an index for each region. Table 2 shows the notation used in the multiregion
formulations.

Name Description
xi Output of region i.
yi Final domestic demand on domestic production (c.f., yd).
yij Import to final demand from region i to region j (c.f., yim).
mij = Aijxj + yij Import from region i to region j.

Ad
i Interindustry requirements on domestic production in region i.

Aij Interindustry requirements of imports from region i to j.
Ai = Ad

i +
∑

j 6=i Aij Total interindustry requirements in region i.
Fi Direct factor requirements in region i.

Table 2: The notation used for the multi-region formulations.

4.1 Two trading regions

Consider two trading regions,

x1 = A1x1 + y1 + m12 −m21 (20)

and
x2 = A2x2 + y2 + m21 −m12 (21)

Let region 1 be identified as the domestic economy. Region 2 is identified as the foreign
economy. Note that the total imports from region 1 to region 2 are the same as the
exports from region 1 to region 2. We want to determine the total output for an arbitrary
demand in the domestic economy, region 1. To this end, put y2 = 0.
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There are several different scenarios that may arise, depending on the complexity
considered. Ultimately, the choice of model depends on data availability. These cases are
considered in turn.

4.1.1 Case 1: Region 1 imports to interindustry only and does not export

In this case the variables simplify as m12 = 0 and m21 = A21x1. The resulting system of
equations after simplification are

x1 = Ad
1x1 + y1 (22)

where the imports have dropped out as discussed earlier, and

x2 = A2x2 + A21x1 (23)

That is, the second region only produces for interindustry exports to region 1, further,
A2 = Ad

2 since region 2 does not have interindustry imports.
These equations can be solved as follows,

x1 = (I − Ad
1)
−1y1 (24)

x2 = (I − A2)
−1 [A21x1] = (I − Ad

2)
−1A21(I − Ad

1)
−1y1 (25)

The total output resulting from the production of y1 is given by x1 +x2. By using the
factor use intensities in each region then the total factor use resulting from the production
of y1 is given by F1x1 + F2x2. The F1x1 is the domestic factor use and F2x2 is the factor
use in the foreign region and consequently the factors embodied in trade.

If it is assumed that both regions have the same technology, A = A2 = A1 = Ad
1 +A21,

then addition of (22) and (23) gives the total output

x = x1 + x2 = (I − A)−1y1 (26)

and the total factor use
F (I − A)−1y1 (27)

These last two equations offer a good check to our derivation. By assuming that
each region has the same technology, is equivalent to assuming that all of the demand
was produced in one region. That is, it is irrelevant where the imports are produced,
so assume the imports are produced in region 1. Thus, the output is expected to be
(I − A)−1y1. This check becomes particularly useful in the more complex scenarios.

4.1.2 Case 2: Region 1 imports to interindustry only and exports to region
2

In this case the variables simplify as m12 = A12x2 and m21 = A21x1. The system is
considerably more complex as Case 1. For a given domestic demand, a proportion of
the interindustry demand is imported, but in the production of the intermediate demand
the foreign region may import from the domestic region, which in turn imports some
intermediate demand from the foreign region, and so on.
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The resulting system of equations after simplification is

x1 = Ad
1x1 + y1 + A12x2 (28)

x2 = Ad
2x2 + A21x1 (29)

That is, region 1 and 2 trade between intermediate industries.
By adding these two equations and simplifying the total output for the demand y1 is

given by
x = x1 + x2 = A1x1 + A2x2 + y1 (30)

If it is assumed that the both regions use the same technology, A = A1 = A2 then it
follows that

x = (I − A)−1y1 (31)

which following the previous section is the expected result.
At this stage, there is no benefit in explicitly deriving expressions for x1 and x2,

however, for later generalization there is benefit of including the expressions in a matrix
form, (

x1

x2

)
=

(
Ad

1 A12

A21 Ad
2

) (
x1

x2

)
+

(
y1

0

)
(32)

This is essentially the interregional IO model presented by Miller and Blair (1985). Also
compare this with Strømman and Gauteplass (2003).

The total factor use resulting from the demand is then given by

x =
(

F1 F2

) (
x1

x2

)
(33)

4.1.3 Case 3: General case for 2 regions

In this case the variables simplify as m12 = A12x2 + y12 and m21 = A21x1 + y21. This case
is an increase in complexity of Case 2 to allow for imports directly to domestic consumers.
In matrix form, the resulting equations are

(
x1

x2

)
=

(
Ad

1 A12

A21 Ad
2

) (
x1

x2

)
+

(
y1 + y12

y2 + y21

)
(34)

Four cases can be considered:

1. y1 6= 0, y21 = 0, y2 = 0, y12 = 0: This is Case 2 above

2. y1 = 0, y21 = 0, y2 6= 0, y12 = 0: This is Case 2 above, but region 2 is considered as
the domestic economy, and region 1 is considered the foreign economy.

3. y1 = 0, y21 6= 0, y2 = 0, y12 = 0: This allows a determination of the total output
resulting from an import to domestic final demand in region 1. In this case, y21 is
given exogenously.

4. y1 = 0, y21 6= 0, y2 = 0, y12 = 0: Same as the previous point, but region 2 is
considered as the domestic economy, and region 1 is considered the foreign economy.
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These four cases, show that Case 2 can be used to described all possible scenarios
of imports and exports both to interindustry demand and to final demand. By putting
the relevant demands to zero, as in the four points above, it is possible to determine the
output from each of the regions for the given demand. It is a case of simply summing all
the respective outputs to get the desired result.

4.2 General m-region model

In this section the 2-region model is generalized to an m region model. For simplicity,
only the domestic final demands in region 1 are considered; yi = 0 for i > 1. Due to
the symmetry of the problem, any region can be considered as the domestic economy by
labeling it as region 1. The resulting system of equations solves for the output in the
domestic economy,

x1 = Ad
1x1 + y1 +

∑

j 6=1

(A1jxj + y1j)

︸ ︷︷ ︸
exports

for i = 1 (35)

where the export terms are all exports from region 1 to interindustry and final demand
in all other regions. The outputs in the foreign regions are,

xi = Ad
i xi +

∑

j 6=i

(Aijxj + yij)

︸ ︷︷ ︸
exports

for all i 6= 1 (36)

where the exports terms are to interindustry and final demand in all other regions. As
in Case 2 above, it is straightforward to show by summation that the desired result is
obtained for identical technologies; this is left as an exercise for the reader. Writing these
equations in matrix form gives




x1

x2

x3
...

xm




=




Ad
1 A12 A13 . . . A1m

A21 Ad
2 A23 . . . A2m

A31 A32 Ad
3 . . . A3m

...
...

...
. . .

...
Am1 Am2 Am3 . . . Ad

m







x1

x2

x3
...

xm




+




yd
1 +

∑
j 6=1 y1j

y21

y31
...

ym1




(37)

The matrix is a generalization of the interindustry requirements, A, in standard IOA.
The columns in the matrix represent the inputs into production; the off diagonal matrices
are the imports into production from foreign regions. The rows represent the exports
to foreign regions. The first element in the demand vector represents final demand on
domestic production and the other elements are imports into final demand.

The factors embodied in trade from each region is given by Fixi and the total factor
use for a given demand is,

E =
∑

i

Fixi (38)

where Fi is the direct factor use intensity in each region, i.
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The matrix equation, (37), is the same as the multi-regional models developed by
Miller and Blair (1985). Lenzen et al. (2004) developed a similar model using the make-
use framework. On collapsing their make-use blocks into symmetric matrices the same
model results; they implicitly assume an Industry Technology Assumption. Ahmad and
Wyckoff (2003) also used a similar model to calculate emissions embodied in trade.

4.3 General case: Simplifications

To solve the above system requires knowledge of the interindustry import shares in each
region, Aij. Consequently, this type of calculation requires significant data collection at
a detail that is not currently available. This problem can be alleviated through several
simplifications and approximations.

4.3.1 Direct trade dominates

Consider the factor usage for an arbitrary demand placed on the domestic economy (region
1). As a first approximation a similar approach to Case 1 for 2 regions can be taken. That
is, the only interindustry trade that occurs is imports to industry in the domestic economy.
In reality it is likely that the “second order” effects of interindustry trade amongst regions
would be insignificant. For instance, Lenzen et al. (2004) find these effects to be around
1% (see their Table 7). Further, these terms are often assumed to be negligible in the
similar interregional trade models (Round, 2001).

Mathematically, this simplification reduces (37) to,



x1

x2

x3
...

xm




=




Ad
1 0 0 . . . 0

A21 Ad
2 0 . . . 0

A31 0 Ad
3 . . . 0

...
...

...
. . .

...
Am1 0 0 . . . Ad

m







x1

x2

x3
...

xm




+




yd
1 + yex

1

y21

y31
...

ym1




(39)

where
yex

1 =
∑

j 6=1

(
Aim

1j xj + y1j

)
(40)

is the total exports from Norway to all regions to both industry and final demand.

4.3.2 Using trade shares to estimate Aij

Data on Aij is rarely available; however, many countries construct Aim
i =

∑
j 6=i Aij. Also,

data on the total trade flows between regions is often tabulated. Using this information,
it is possible to estimate the share of trade flows from each region,

{sij}k =
{mij}k

{mtotal}k

(41)

where {mij}k is the total imports of good k from region i to j and {mtotal}k is the total
imports of good k into region j. Calculations show that it is important to consider the
trade shares in individual sectors and not the average of all sectors (Peters et al., 2004).
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Once the vector sij has been constructed Aij and yij can be estimated as

Aij = sijA
im
i (42)

and
yij = sijy

im
i (43)

4.3.3 Grouping of like regions

Another way of reducing the data requirements is to assume that certain groups of coun-
tries have similar technology. This is particularly relevant for developing countries where
sufficient data might not be readily available. For instance, if it is assumed that all Asian
countries (except Japan) have similar technology to China, then Asia can be treated as
one region with the technology of China. Similar approximations can be made for other
grouped regions; North America, Europe, Africa, Latin America, and so on.

5 Simplifications for specific problems

As is discussed in Munksgaard et al. (2005) there are three scales of interest in consump-
tion related issues; national, regional, and local. In the context of the work presented here,
there are two scales; total demand (national) and arbitrary demand (regional and local).
In the case of total demands, the above model has many simplifications. In particular, it
is possible to perform the calculations without the import shares, Aim.

5.1 Trade balances

The study by Lenzen et al. (2004) focuses on a method of obtaining a CO2 trade balance
(Munksgaard and Pedersen, 2001). Given the desirability for determining the trade bal-
ance on a policy level, it is important that a reasonable estimate of the trade balance can
be obtained by most national statistical offices. Fortunately, many simplifications result
when considering the total demand of an economy.

For the following, consider a determination of the CO2 trade balance for region 1. The
total domestic emissions for the domestic demand is given by

Ed
1 = F1(I − Ad

1)
−1yd

1 (44)

The total domestic emissions due to all exports from region 1 is given by

Eex
1 = F1(I − Ad

1)
−1

∑

j 6=1

m1j (45)

The emissions in all other regions due to imports to region 1 is given by

Ei = Fi(I − Ad
i )
−1

∑

j 6=i

mj1 (46)
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where m1j is the total imports from region j to region 1 (including direct consumption of
imports). The sum of all the foreign emissions,

Eim
1 =

∑

i6=1

Ei (47)

is the emissions occurring in foreign regions due to production in region 1.
From this information different approaches can be used to allocate who is responsible

for factor usage; or more relevantly, pollution (Munksgaard and Pedersen, 2001). If the
producer is made responsible for emissions then the total emissions are

P1 = Ed
1 + Eex

1 (48)

If the consumer is made responsible then,

C1 = Ed
1 + Eim

1 (49)

A trade balance can also be considered

B1 = P1 − C1 = Eex
1 − Eim

1 (50)

The study by Ahmad and Wyckoff (2003) focused on trade balances and issues of
allocating responsibility applied the above simplification to most OECD countries. In
the limit of considering all countries, their method implicitly includes all multidirectional
flows, without requiring the interindustry requirements of imports, Aij. Although, if the
study requires emissions for arbitrary demands, then the method used by Ahmad and
Wyckoff (2003) cannot be applied.

Perhaps of more interest however, is the emissions occurring in non-OECD countries.
The OECD countries may record the exports and imports to developing countries, but
still the Ad matrix is required for the developing countries. This data may not be available
in the detail required. To alleviate this problem somewhat, like regions can be grouped
together as discussed earlier. Some total interindustry coefficient matrices, A, exist for
developing countries, together with emissions intensities (China and India for example).
Lenzen et al. (2004) use the interindustry requirements of Australia for the rest of the
world and Ahmad and Wyckoff (2003) assumed that the rest of the world had the same
technology as the USA2. The results in Peters et al. (2004) show that it is important to
include the technology differences of developing countries.

5.2 Error in using A and not Ad

The error in using A and not Ad can be viewed in two different ways. First, recall that if
the output

x = (I − A)−1y (51)

is used then it is assumed that imports have been produced with domestic technology (see
Case 2 for the 2-region model). So if A is used instead of Ad then multidirectional trade

2Note that Ahmad and Wyckoff (2003) looked at the likely impacts of including Chinese technology,
but their final results did not include these impacts.
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is included, but with domestic technology. This assumption may be adequate for many
calculations, and in fact, it may be superior to use A instead of Ad if Aim is unavailable.
With this in mind, it is still worth investigating the implications of using A and not Ad.

The error in using A and not Ad is given by

ε =
‖x− x̄‖
‖x‖ (52)

where x = (I − Ad)−1y is the correct answer and x̄ = (I − A)−1y is the approximation.
Further manipulations shows that

ε =
‖(I − A)−1Aimx‖

‖x‖ (53)

which shows that the error decreases with smaller values of Aim.
In some cases, particularly for a region that trades primarily with countries with

similar technologies, the errors of using Ad and ignoring interregional trade are likely to
be greater than the error in capturing interregional trade in A. Although a verification
of this would require a variety of case studies.

6 Other relevant issues

There are many other relevant technical issues that must be accounted for when per-
forming IOA in a multiregional study. This section briefly discusses the main areas of
concern.

6.1 Valuation

The choice of valuation needs to be considered; basic, producer, or purchaser prices. The
different valuations differ primarily in the trade and transport margins, and taxes and
subsidies. Typically margins and taxes are applied at different rates in different sectors
and on different products. Even across the same goods, margins and taxes can differ for
a variety of reasons (United Nations, 1999):

• Margins may vary depending on if the product is purchased from the producer,
wholesaler or retailer.

• Different establishments offer different levels of service.

• Discounts may be given for bulk purchases.

• Brand names and luxury items may attract a larger margin.

• Mode of transport might vary for different customers.

• Taxes may vary depending on the end use of the product.
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For these reasons it is more homogenous to work in basic prices than purchaser prices.
Basic prices are more representative of the production value of a product rather than the
market value. Although, within the aggregations used for products, it may be difficult
to distinguish the margins for individual products. This makes calculations of individual
consumption profiles difficult (Peters et al., 2004).

6.2 Inflation

The data covering a variety of regions is likely to come from a variety of sources and
different time periods. Adjustments for inflation are required to make the data consistent
for a given time period. Inflation is usually measured using the Consumer Price Index
(CPI). In some regions it is possible to get the CPI for certain classes of goods; for
instance, energy products.

6.3 Exchange rates

Since foreign regions are being compared with the domestic economy then exchange rates
between regions must be considered. If the interindustry coefficients matrices, A, are
in monetary units, then a currency conversion is not required as the entries are unitless
coefficients. However, conversions may be required for trade flows and the factor use
intensities.

A problem arises since one unit of a given currency may buy different quantities of
a particular good in different countries. As an example of the likely errors it is worth
considering the variation in cost of a commonly traded good by region. The export price
of unwrought aluminium in 2000 varied considerably across regions3 (in kg/US$); Norway
1.73, Sweden 1.70, United Kingdom 1.61, United States 1.44, Germany 1.67, Denmark
1.42, Japan 2.55, and China 1.45. These price differences are considerable and the choice
of exchange rate will greatly alter the results.

There are two primary ways to convert the currencies between regions; Market Ex-
change Rate (MER) and Purchasing Price Parity (PPP). The MER is the market price of
one currency in terms of another. It fluctuates on a daily basis; however, the data used in
IOA is typically the total of annual transactions, and thus fluctuations in exchange rates
can be averaged over a 12 month period. Further, the MER does not necessarily reflect
relative prices of goods and services between countries. Due to these reasons the PPP
was developed. It compares the prices of a basket of common household goods between
regions. It is generally stable over time and gives a better reflection of the purchasing
power of consumers in different regions. However, there are also some fundamental issues
in the use of PPP such as the desired basket of goods varies in different regions, the basket
of goods varies with wealth, the presence of bartered items, and various transaction costs
are misrepresented. The differences are expected to be largest when comparing devel-
oped and developing countries. For further details refer to Samuelson (1964), Vachris and
Thomas (1999), and Lafrance and Schembri (2002).

The example of unwrought aluminum above implies that PPP would be a better
measure. It is also likely that the PPP will vary across sectors. Thus the accurate use

3Source: http://www.unctad.org/
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of PPP will require a considerable amount of data collection. We are not aware of any
studies that look at the variations of PPP across sectors, and whether the average PPP
is a better measure of the average across industry sectors than MER.

6.4 Industry classification and aggregation

Often the data from different regions is collected at different levels of aggregation and
industry classifications. To perform the analysis will require mapping the data, at some
stage, to a consistent industry classification. For some classifications it is possible to
obtain correspondence tables, otherwise, the correspondence tables need to be constructed
by referring to the different classification descriptions. A further problem is that the
classifications are often specific to a given economy. This means that it is often not
possible to get a consistent match between different classifications.

Another issue with classifications is that some data is in an industry classification and
other data is in a product classification. For example, survey’s of consumer expenditure
and trade flow data is usually in a product classification, while IO data is usually at
the industry level. Usually there is not a one-to-one correspondence between product
and industry classifications. This requires several assumptions and approximations to be
made. For instance, Peters et al. (2004) ensure that when product data is mapped to the
industry level, it balances with the industry outputs in the IO data.

6.5 Data sources

Data for a multiregional study unfortunately comes from a variety of sources. Each source
often has its own aggregation, different methodologies, and different country coverage.
These problems even occur within the same country; for instance, IO data and energy
data may be at different aggregations. It would be ideal if data was available from one
reliable source to ensure consistency and completeness. To a degree this is starting to
happen; for example, the EU’s EuroStat database4.

6.6 International transportation

Through most IO studies the impacts of international transportation is missed. One of the
reasons for this problem is difficulties in where to allocated certain impacts due to the very
international nature of the shipping industry. To estimate impacts due to international
transportation would usually require an explicit analysis.

6.7 Competitive and non-competitive imports

It is important to capture the impacts of non-competitive imports. At the industry level,
it is easy to loose information of non-competitive imports. The issues associated with
non-competitive imports are discussed in Appendix A with a detailed example.

4http://europa.eu.int/comm/eurostat
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6.8 Errors

Errors can enter into the calculations in many ways. The IO data always has an error
associated with it (Lenzen, 2001a,b), in some cases the size of the errors are documented.
Errors also arise in the adjustments for currency conversions, inflation, concordances,
aggregation, and so on. In a multi-regional case specific data may not be available and
needs to be estimated. The magnitude of these errors is often difficult to estimate, but
the errors still need to be accounted for. Ideally, some sort of error analysis needs to be
performed; such as Monte-Carlo analysis.

7 Conclusion

An important consideration in the determination of environmental impacts and factors
embodied in trade is to account for the technology differences across regions. This article
has developed a framework using IOA to explicitly determine the factors embodied in
trade. In its general form, the model requires significant data collection. Several simpli-
fications were suggested to reduce data requirements without introducing a large error.
A companion article applies this framework to the case of Norway (Peters et al., 2004).
Also, several technical issues in performing multiregional studies were discussed.
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A Constructing Ad, Acm, and Ancm

In this appendix we work through a hypothetical example for dealing with competitive
and non-competitive imports through the make-use framework.

A.1 Given Data

Consider a hypothetical economy with three industries A, B, and C and five commodities
α, β, γ, δ, and ε. ε is a non-competitive import. The economy does not import γ into
industry. The make matrix is,

M =

A B C q
α 156 24 0 180
β 9 80 0 89
γ 0 0 62 62
δ 93 74 20 187
ε 0 0 0 0
g 258 178 82 518

(54)

The use of products produced domestically,

Ud =

A B C q
α 10 20 5 25
β 20 18 6 44
γ 5 4 3 12
δ 22 34 6 62
ε 0 0 0 0

(55)

The use of competitive imports,

U cm =

A B C q
α 9 8 5 22
β 9 0 2 11
γ 0 0 0 0
δ 7 12 2 21
ε 0 0 0 0

(56)

The use of non-competitive imports,

Uncm =

A B C q
α 0 0 0 0
β 0 0 0 0
γ 0 0 0 0
δ 0 0 0 0
ε 4 3 2 9

(57)
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The sum of the rows in the make matrix M is the total output of each product,

qd = Mi =




180
89
65
187
0




(58)

The sum of the columns is the total output of each industry

gd = M ′i =




258
178
82


 (59)

The total output of the domestic economy less the commodities used in domestic
production gives the final demand by consumers on domestic production (see equation
4.5 in United Nations, 1999),

yd = qd − Udi =




145
45
50
125
0




(60)

For this example, the import to final consumers is somewhat arbitrary

ycm =




20
68
29
8
0




(61)

and

yncm =




0
0
0
0
67




(62)

The total imports is given by the final demand on imports, plus the imports used by
industry,

qcm = ycm + U cmi =




42
79
29
29
0




(63)
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and

qncm = yncm + Uncmi =




0
0
0
0
76




(64)

A.2 Constructing the share matrices

The market share matrix, D = M ′q̂−1, describes which industries produce which products
(it is an industry by product matrix). Each column must add to one. A complication
arises in constructing the share matrix since some elements of the vector qd may contain
zeros due to non-competitive imports. If an element of qd is zero then it means that no
industry produces that particular commodity. Consequently, the corresponding column
in the share matrix must be zero (note the transpose of rows and columns). That is, when
constructing the share matrix, if an element of qd is zero then the corresponding row of
M is zeros and column of D is zeros. Thus

D = M ′q̂−1 =

α β γ δ ε
A 0.8667 0.1011 0 0.4973 0
B 0.1333 0.8989 0 0.3957 0
C 0 0 1.0 0.1070 0

(65)

The use coefficient matrix, B = Uĝ−1, represents the proportion of each commodity used
by each industry. There is a matrix for both domestic use and the use of imports,

Bd = Udĝ−1 =

A B C
α 0.0388 0.1124 0.0610
β 0.0775 0.1011 0.0732
γ 0.0194 0.0225 0.0366
δ 0.0853 0.1910 0.0732
ε 0 0 0

(66)

Bcm = U cmĝ−1 =

A B C
α 0.0349 0.0449 0.0610
β 0.0349 0 0.0244
γ 0 0 0
δ 0.0271 0.0674 0.0244
ε 0 0 0

(67)

and

Bncm = Uncmĝ−1 =

A B C
α 0 0 0
β 0 0 0
γ 0 0 0
δ 0 0 0
ε 0.0155 0.0169 0.0244

(68)
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A.3 Industry Technology Assumption

The Industry Technology Assumption is used here. The Commodity Technology Assump-
tion is not really an option since a method would be needed to convert the make and use
matrices into square matrices. The advantages and disadvantages of each technology as-
sumption are not discussed here, but it is noted that this is an active area of research (see
Miller and Blair, 1985; United Nations, 1999).

A.3.1 Commodity-commodity level

The various interindustry requirements matrices can now be constructed. The commodity-
commodity matrices are given by

Ad = BdD =




0.0486 0.1049 0.0610 0.0703 0
0.0807 0.0987 0.0732 0.0864 0
0.0198 0.0222 0.0366 0.0224 0
0.0994 0.1803 0.0732 0.1258 0

0 0 0 0 0




(69)

Acm = BcmD =




0.0362 0.0439 0.0610 0.0417 0
0.0302 0.0035 0.0244 0.0200 0

0 0 0 0 0
0.0325 0.0633 0.0244 0.0428 0

0 0 0 0 0




(70)

Ancm = BncmD =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.0157 0.0167 0.0244 0.0170 0




(71)

and the technology is given by

A = Ad + Acm + Ancm =




0.0848 0.1488 0.1220 0.1119 0
0.1109 0.1023 0.0976 0.1064 0
0.0198 0.0222 0.0366 0.0224 0
0.1319 0.2437 0.0976 0.1686 0
0.0157 0.0167 0.0244 0.0170 0




(72)

From these matrices the total output can be verified

xd = (I − Ad)−1yd =




180
89
62
187
0




(73)
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Alternatively,

xd = (I − A)−1(yd + ycm + yncm − qcm − qncm) =




180
89
62
187
0




(74)

Both of these equations equate with the total output of the economy, qd.
The total imports are given by

qcm = ycm + Acmxd (75)

and
qncm = yncm + Ancmxd (76)

Interestingly, it is possible to determine the amount of non-competitive imports at
the commodity level. That is, Ancmxd = qncm = (0, 0, 0, 0, 9)′, also Acmxd = qcm =
(22, 11, 0, 21, 0)′.

A.3.2 Industry-industry level

The same matrices can be constructed at the industry-industry level,

Ad = DBd =




0.0838 0.2026 0.0966
0.1086 0.1815 0.1029
0.0285 0.0429 0.0444


 (77)

Acm = DBcm =




0.0473 0.0725 0.0674
0.0467 0.0327 0.0397
0.0029 0.0072 0.0026


 (78)

Ancm = DBncm =




0 0 0
0 0 0
0 0 0


 (79)

Note that this will always be zero at the industry level. The technology is given by

A = Ad + Acm + Ancm =




0.1311 0.2751 0.1641
0.1553 0.2141 0.1426
0.0314 0.0501 0.0470


 (80)

From these matrices the total output can be verified

xd = (I − Ad)−1(Dyd) =




258
178
88


 (81)
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Alternatively,

xd = (I − A)−1(Dyd + Dycm + Dyncm −Dqcm −Dqncm) =




180
89
62
187
0




(82)

Both of these equations equate with the total output of the economy at the industry level,
gd.

A.4 Discussion

The reason for the example calculations is to see what happens to the non-competitive im-
ports in the make-use framework through the manipulations to construct the interindustry
matrices. At the industry level, Ancm is always zero, implying that industries do not use
the competitive import, when in fact they do. The information is lost through converting
the data from the commodity to industry level. This is since it is implicitly assumed
through the Make matrix that the imports are made with the same technology as the
domestic economy. Since the domestic economy does not make non-competitive imports,
then this is always zero.

In contrast, the information on non-competitive imports is not lost at the commodity
level. This is easy to explain. The balance of commodities states (e.g. United Nations,
1999, eqn 4.5),

q = y + Bg (83)

where q = qd + qcm + qncm, B = Bd + Bcm + Bncm, and y = yd + ycm + yncm. Substituting
the make relationship, g = Dq, into this gives,

q = y + B(Dq) (84)

This gives the data at the commodity-commodity level. Surprisingly, this last step does
not assume that the imported goods are made with domestic technologies. The use
coefficient matrices, B, tell us what proportion of the vector on its right is produced
domestically, competitive import, or non-competitive import.

However, when converting to the industry level, (83) is pre-multiplied by D,

g = Dq = Dy + DBg (85)

It is in this step that it is assumed that the imports are made with domestic technology
since all the vectors are multiplied by the make share matrix. Thus, at the commodity-
commodity level details of competitive imports are not lost, it is the process of going to
the industry level that the information is lost.

B Further analysis on imports

To further highlight how imports work in the IOA framework it is worth considering the
interpretation of A, Ad, and Aim in more detail. Consider two cases: imports to final
demand and imports to intermediate production.
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First, consider the case of imports to final demand only, that is, the matrix Aim = 0.
Thus (10) becomes

x = Adx + yd + yex + yim −M︸ ︷︷ ︸
=0

= Adx + yd + yex (86)

As the imports increase, yd must decrease to satisfy the given domestic demand, yf .
That is, imports cause a drop in total output because the product is no longer produced
domestically.

Second, consider the case of all imports going to intermediate production processes,
that is, yim = 0. Rewriting (10) gives

x = Ax + yd + yex −M (87)

Since A = Ad + Aim then this equation becomes

x = Adx + yd + yex + Aimx−M︸ ︷︷ ︸
=0

= Adx + yd + yex (88)

It should be clear that the total interindustry production coefficients, A, must remain
constant for the given time period as A represents the technology of the economy. Thus,
for an increase in Aim there is an equal decrease in Ad. Thus, as imports increase, Ad

must decrease since A is constant.
Thus for the case of all imports going to intermediate demand, imports still has the

net effect of reducing total output. It should not be hard to see that by considering the
case where the imports go to both intermediate demand and to final demand the same
results hold. Imports do not effect the output of an economy for the static framework
considered in input-output analysis.

By combining the above arguments the net effect of imports is to reduce total output,
since A and yf are constant, that is,

x = Ax + yf + yex −M (89)

where M is the total of the imports going to both intermediate production and final
demand.

C Outputs in terms of A

Equations (14), (15), and (16)can be rewritten using A instead of Ad. This has advantages
if one wants to assume that a foreign economy has the same technology as the domestic
one. The technologies of the different economies are related through the A not Ad.

The balance equation given by (10) can be rewritten as

x = Ax + yd + yim + yex −m (90)

So the total output of the economy is also given by

x = (I − A)−1(yd + yim + yex −m) (91)
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The output is the same as in (13). Note that the import, m, must remain in the equation.
To determine the domestic output required for an arbitrary demand, y∗, is more

complex. Rewrite (16) as
x∗ − Adx∗ = y∗ (92)

Then add the proportion of imports to both sides

x∗ − Adx∗ − Aimx∗ = y∗ − Aimx∗ (93)

Simplifying,
(I − A)x∗ = y∗ − Aimx∗ (94)

Thus,
x∗ = (I − A)−1(y∗ − Aimx∗) (95)

It is noted, that the decomposition is much more complex than before. In fact, it is not
possible to determine the value of x∗ without rewriting it in the form of (16) since it
occurs on both sides of the above equation.

These equations show that the use of A to determine the outputs of a given economy
is not practical, unless determining total output. A = Ad + Aim contains information
about imports, and this information needs to be subtracted away from the final demands
so that the output does not include the contributions from imports. To determine outputs
in the domestic economy it is most practical to use Ad. Aim can be used to determine the
share of imports used in domestic production. A is used if it is the only data available or
if working with total outputs.
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