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Nonspherical particle suspensions in wall turbulence

Niranjan Reddy Challabotla
Fluids Engineering Division
Department of Energy and Process Engineering
Norwegian University of Science and Technology
NO-7491 Trondheim, Norway.

Abstract

In the present PhD thesis, we investigate the dynamics of small non-spherical
particles suspended in a fully developed turbulent channel flow. Non-spherical par-
ticles are approximated as axisymmetric spheroidal and triaxial ellipsoidal particles,
which are characterized by their inertia and shape. As a starting point, the rota-
tional dynamics of an inertial oblate spheroidal particle suspended in a creeping
linear shear flow is investigated, which is later used in interpreting the results ob-
tained in complex turbulent flows. The three-dimensional turbulent flow field is
obtained from the Navier-Stokes equations by means of direct numerical simulation
in an Eulerian reference frame. The particles are tracked using Lagrangian point
particle approach. Existing methodology to simulate the prolate spheroidal parti-
cles in wall-bounded turbulent channel flow is extended to investigate the dynamics
of oblate spheroidal particles and triaxial ellipsoidal particles. The effects of parti-
cle inertia, particle shape, and fluid shear on particle rotation and orientation are
reported with respect to both fluid and particle reference frame. Particles at the
channel center and near the wall show different rotation patterns and surprisingly
different effects of particle inertia. Finally, we report the systematic investigation
of the gravity force effects on the dynamics of prolate spheroidal particles.

Descriptors: Wall turbulence, Particle-laden flows, Direct numerical simulations,
Spheroidal particle, Triaxial ellipsiodal particle, Orientation, Rotation, Gravity.
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CHAPTER 1

Introduction

Particle-laden flows are a class of two-phase flow, in which continuous/carrier phase
exchanges mass, momentum, and energy with a dispersed particle phase. These
kind of flows often encountered in industrial, environmental and biological applica-
tions such as: pulp fibers in paper making processes (Lundell et al. 2011), wood
fibers in biomass combustion (Ma et al. 2007), pneumatic conveying (Hilton and
Cleary 2011), flakes in flow visualization (Gauthier et al. 1998), ice crystals in clouds
(Shaw 2003) and phytoplankton transport in the ocean (Guasto et al. 2012). A
better understanding of the complex dynamics of non-spherical particles suspended
in a fluid flow is necessary to make advances in these applications. In most of these
applications, the continuous fluid flow is turbulent, and the particle shape is non-
spherical. Several researchers contributed to advancement of this topic in the last
decade. A brief introduction to turbulence and literature review on non-spherical
particles suspensions in fluid flow are described in the following sections.

1.1. Turbulence

Turbulence is a fascinating topic of discussion among fluid dynamicists. Most of
the flows encountered in our everyday life are turbulent, such as: smoke rising from
a cigarette or chimney; wake behind ships, car or airplane wings; flow through
pipelines and currents in the atmosphere or ocean etc. Turbulence is an irregular,
three-dimensional, time-dependent motion characterized by the presence of three-
dimensional vorticity, chaotic, diffusive and dissipative nature. Turbulent flows are
also characterized by high Reynolds numbers Re, defined as Re = ul/ν, where u, l
and ν are characteristic velocity, length scale and kinematic viscosity respectively.
The flow is laminar below the critical value of Re. Turbulent flows can often be
observed to arise from laminar flows due to instabilities. This happens because
small disturbances in the flow are no longer damped by the flow, but begin to grow
by taking energy from the original laminar flow. Turbulent flow occurs over a wide
range of length and timescales. The turbulent energy cascade theory describes the
sequential energy transfer from large eddies to smaller eddies and all the way to the
smallest turbulent length scale or Kolmogorov scale where the energy is ultimately
dissipated by viscosity. The mathematical description of turbulence was described
independently by Navier (1822) and Stokes (1845). Due to non-linear nature of
these equations, there is no general solution that exists until now. The solution to
turbulence remains an open question. Nobel Laureate Richard Feynman described
turbuence as the most important unsolved problem in classical physics. Readers are
suggested to refer to the textbooks (Tennekes and Lumley 1972; Pope 2000 and
Davidson 2004) for detailed understanding of the turbulent flows.
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8 1. INTRODUCTION

1.2. Modeling of turbulent flows

With the advent of computers, fluid dynamicists continuously developed sophisti-
cated numerical techniques to simulate turbulent flows. Now that computers are
becoming even more powerful, increasingly larger numerical simulations can be per-
formed. Numerical simulations of turbulent flows can be broadly divided into three
main categories depending on the range of scales resolved.

• Reynolds-Averaged NavierStokes (RANS), flow variables are split into mean
and fluctuating parts using Reynolds-decomposition. The insertion of the
decomposed variables into the NavierStokes equations, followed by an aver-
aging of the equations, give rise to the closure problem of Reynolds-stress
tensor. The topic of approximating Reynolds-stress tensor resulted in the
development of various turbulence models such as zero equation, one equa-
tion, two equation and Reynolds stress transport models. In RANS models,
all turbulent scales are modeled. RANS models are widely used in industrial
applications where the geometry and physics of the problem are complicated,
and the interest is in the averaged flow variables.

• Large Eddy Simulations (LES), the large scale motions of turbulent flow
are computed directly, and only small scale motions are modeled by using
subgrid-scale models. The results obtained using LES are more accurate
compared to RANS approach, since the large eddies contain most of the
turbulent energy and are responsible for most of the momentum transfer and
turbulent mixing. Often LES is a compromise between RANS and Direct
Numerical Simulations (DNS) approach because of the computational time,
data storage requirements, and the accuracy.

• Direct Numerical Simulations, complete NavierStokes equations are numer-
ically solved directly without using any turbulence model with appropriate
initial and boundary conditions. DNS requires a very fine mesh and small
time step to capture all the scales present in turbulent flows. The computa-
tional requirements for DNS increases approximately with Re11/4. Therefore
DNS simulations are computationally very expensive and at present can be
applied only to low Reynolds number flows of the order 104. However, most
of the real life flows have high Reynolds number, and many of these flows
are impossible to solve using DNS even with the existing state-of-the-art
computational resources. Currently, DNS is mostly used by academic re-
searchers to investigate the turbulent flows over simple geometries in great
detail. Readers are suggested to refer to the textbooks (Wilcox 1994; Durbin
and Reif 2001; Launder and Sandham 2002 and Sagaut 2006) for detailed
understanding of the modeling of turbulent flows.

1.3. Non-spherical particle suspensions

Much of the knowledge on particle-laden flows is gained via theoretical, experi-
mental or computational work under the hypothesis of perfectly spherical particles.
The assumption of spherical shape greatly simplifies the challenge of mathematical
and numerical treatment of the particle behavior in flow. Spherical particles are
isotropic, thus the rotational motion of the particle does not affect the translational
motion. Review of the research work related to spherical particles in different kind
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of flows was reported by Shirolkar et al. (1996); Loth (2000); Mashayek and Pandya
(2003); Guha (2008); Toschi and Bodenschatz (2009) and Balachandar and Eaton
(2010). Non-spherical particles suspensions in fluid flow have received considerably
less attention compared to suspensions of spherical particles. The topic of non-
spherical particles in turbulent flows is quite challenging due to the complex nature
of turbulence and coupling between translational and rotational motion of parti-
cles. In the literature, small non-spherical particles were often approximated by
axisymmetric spheroidal particles prolate (rod-like) and Obalte (disk-like) sphero-
dial particles.

The dynamics of an ellipsoidal particle suspended in a creeping flow was first
studied by Jeffery (1922), later several researchers (Brenner 1963, 1964; Harper and
Chang 1968 and Gallily and Cohen 1979) have contributed to the advancement
of the theory related to the translational and rotational motion of non-spherical
particles in shear flows. In all these studies Stokes-flow conditions were assumed
around the particle and both the effects of the fluid and the particle inertia were
thus neglected. Lin et al. (2003) summarized the work related to the dynamics
of non-spherical particles in laminar shear flows. In the absence of fluid inertia,
particle inertia results in a drift towards tumbling of rods with modest inertia
(Subramanian and Koch 2005 and Lundell and Carlsson 2010) whereas spinning
was observed for heavy rods (Nilsen and Andersson 2013). Computer simulations
using a lattice Boltzmann method were used to identify different rotational states
of a spheroidal particle as a function of the particle Reynolds number (Qi and Luo
2003; Yu et al. 2007; Huang et al. 2012 and Rosén et al. 2014). Recently, Rosén et
al. (2015) and Rosén et al. (2016) reported the different rotational states observed
for a prolate spheroidal particle due to the combined effects of fluid and particle
inertia.

The dynamics of non-spherical particles in homogeneous isotropic turbulence
have been explored by experimental investigations (Bellani et al. 2012; Parsa et
al. 2012 and Ni et al. 2015) and computational studies (Fan and Ahmadi 1995;
Olson 2001; Shin and Koch 2005; Gustavsson et al. 2014; Marcus et al. 2014; Ni
et al. 2014 and Byron et al. 2015). It has been shown that non-spherical parti-
cles preferentially align with respect to fluid vorticity and/or strain, which causes
particle rotation to differ from that of fluid parcels, even though the particles are
non-inertial. Rod-like particles preferentially align with the fluid vorticity vector
and the vorticity component along the rod axis does not contribute to their tum-
bling. In contrast to the rod-like particles, disk-like particles align perpendicular
to the fluid vorticity vector and this preferential orientation results in higher tum-
bling rates. In other words, rods spin and disks tumble (Byron et al. 2015). The
Lagrangian fluid stretching in turbulence aligns the major axis of an anisotropic
particle with the fluid vorticity (Ni et al. 2014). The variance of the total rotation
rate of a spheroidal particle is almost independent of the particle shape (Byron et
al. 2015). Strong effects of particle shape on tumbling and spinning were reported
for small deviations from spherical shape. Orientation statistics, settling velocities
(Siewert et al. 2014a) and collision rates (Siewert et al. 2014b) of inertial spheroids
in decaying isotropic turbulence were reported.

Direct numerical simulations of the turbulent flow field coupled with a La-
grangian point-particle tracking methodology were successfully employed by differ-
ent research groups to investigate the dynamics of non-spherical inertial particles



10 1. INTRODUCTION

in wall-bounded turbulent flows. The modelling of the translation and rotational
motion of the rigid spheroidal particles relies on the analytical expressions for drag
force (Brenner 1964) and torque (Jeffery 1922). These expressions were derived
based on the assumption of Stokes flow conditions in the vicinity of the particle.
Zhang et al. (2001), and later followed by several others (Mortensen et al. 2008;
Marchioli et al. 2010; Zhao and Wachem 2013; Zhao et al. 2014) focused on the
orientation, transport, and deposition of rod-like particles suspended in a turbulent
channel flow over a wide range of particle parameters. The particle inertia resulted
in accumulation of particles in the near-wall region and preferential concentration
in the low-speed streaks. Particles in the near-wall region moreover tended to pref-
erentially orient themselves in the streamwise direction and this tendency increased
with aspect ratio. Yin et al. (2003) developed a methodology for modelling the
dynamics of non-spherical particles in flows by assuming shape and orientation
dependent drag and lift-force correlations, which is valid beyond the Stokes flow
regime. Later this methodology along with Large-eddy simulations techniques has
been adopted by Njobuenwu and Fairweather (2014, 2015, 2016) to investigate the
influence of a wide range of particle shapes and inertia on the translational and
rotational behavior of spheroidal particles in wall-bounded turbulent flows. Ex-
perimental studies on non-spherical particles in wall-bounded turbulent flows are
scarce (Abbasi Hoseini et al. 2015). The readers are suggested to refer to the spe-
cial journal issue on anisotropic particles (Andersson and Soldati 2013), and review
article by Voth and Soldati (2017), which reports the state-of-the-art on anisotropic
particles in turbulent flows.

Particle-resolved simulations using an immersed boundary method for finite-
sized spherical particles (Lucci et al. 2010 and Uhlmann 2008) and Lattice Boltz-
mann method for spheroidal particles (Do-Quang et al. 2014) have recently emerged.
At present these computationally expensive approaches are unable to handle sus-
pensions of millions of small size particles, as often required to obtain reliable
particle statistics in turbulent flows.

1.4. Objectives

The main goal of the PhD work is to extend the knowledge of the small non-spherical
particles suspended in wall turbulence by using Direct numerical simulations cou-
pled with Lagrangian point particle tracking method. We explored the effects of
particle inertia, particle shape, and fluid shear on orientaional and rotational dy-
namics of axisymmetric spheroidal and triaxial ellipsoidal particles.



CHAPTER 2

Governing equations and numerical methods

The Eulerian-Lagrangian methodology is adopted to simulate the particle-laden
turbulent channel flow. The flow field is obtained by direct numerical simulations
(DNS) of the Navier-Stokes equations in an Eulerian framework. The non-spherical
particles are tracked in a Lagrangian framework using a point particle approach.

2.1. Fluid flow

In the present work, fully developed turbulent channel flow is considered. Turbu-
lent channel flow is one of the canonical wall-bounded flows, together with turbulent
pipe and boundary layer flow. The fluid flow is assumed to be incompressible, New-
tonian and isothermal which is governed by the mass and momentum conservation
equations,

∂ui
∂xi

= 0 (2.1)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Reτ

∂2ui
∂xj∂xj

(2.2)

where ui is the ith component of the velocity vector, ∂p/∂xi is pressure gradient
that drives the flow and Reτ = uτh/ν is the Reynolds number based on the shear
velocity, uτ , and on the half channel height, h. The variables in equation (2.1) and
(2.2) are normalized by the viscous scale for velocity (uτ ), length (ν/uτ ), and time
(ν/u2τ ).

2.1.1. Numerical methodology

A pseudo-spectral DNS code is used to simulate the fully developed turbulent chan-
nel flow. The code is written in FORTRAN language, and it was originally devel-
oped at TU Delft by Prof. Boersma and Dr. Gillessen and later developed in Prof.
Helge I. Andersson’s group at NTNU (Mortensen 2007 and Zhao 2011).

The channel flow geometry is shown in Figure (2.1) with dimensions Lx =
12h; Ly = 6h and Lz = 2h in streamwise (x), spanwise (y) and wall-normal (z)
directions, respectively. Periodic boundary conditions are imposed in homogeneous
streamwise and spanwise directions. No-slip boundary conditions are imposed at
the channel walls (at z = 0 and 2h). The flow is driven by a constant pressure
gradient in the streamwise direction, which ensures that the mass flux through the
channel remains constant. Frictional Reynolds number of the flow Reτ = 180. More
recently, DNS of higher Reynolds number turbulent channel flow was reported by
Lee and Moser (2015) up to Reτ ≈5200.

11



12 2. GOVERNING EQUATIONS AND NUMERICAL METHODS

Figure 2.1. Geometry of the channel flow computational domain.

The computational domain is discretized with Nx= 192, Ny= 192 and Nz=192
grid points in x, y and z directions, respectively. Staggered grid system is used in
the present code with velocity components u, v and pressure p are imposed at the
cell center and the velocity component w is defined at the cell-face center. Grid
resolution in the streamwise and spanwise directions are ∆x+=11.3 and ∆y+=5.6.
Non-uniform mesh is adopted in the wall-normal direction using hyperbolic tangent
stretching function. The first mesh point away from the wall is at z+ = 0.9, and
the maximum spacing at the centerline of the channel is 2.86 wall units. The time
step used is ∆t+ = 0.036.

In the homogeneous streamwise and spanwise directions, spatial derivatives are
computed with a pseudo-spectral method by transforming variables into spectral
space, using Fourier series representation. For example, the velocity vector ui can
be expressed as ,

ui(xi, t) =
∑

k

ûk(t)eikxi (2.3)

where xi = (x, y, z) is the position vector in physical space and k = (kx, kx, z) is
the wave number in spectral space. In spectral space, the first and second deriva-
tives for example in the streamwise direction are determined by multiplying the
transformed terms with ikx and −k2x. The computed derivatives in spectral space
are then transformed back into the physical space. In the wall-normal direction,
the derivatives are computed by a second-order central finite difference method.

The Navier-Stokes equations (2.2) are advanced in time with a standard second-
order explicit Adams-Bashforth scheme. Standard projection method is used to
enforce the mass conservation, which is summarized as,

Step 1: Time integration of the Navier-Stokes equations (2.2) gives

ui
n+1 − uin

∆t
=

3

2
T (ui

n)− 1

2
T (ui

n−1)− ∂pn+1

∂xi
, (2.4)

where T (ui
n) = −ujn ∂ui

n

∂xj
+ 1

Reτ
∂2ui

n

∂xj∂xj
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Step 2: Compute the intermediated velocity u∗i at time between tn and tn+1 by
neglecting pressure pn as,

ui
∗ − uin

∆t
=

3

2
T (ui

n)− 1

2
T (ui

n−1) (2.5)

Step 3: The difference between equations (2.4) and (2.5) gives,

ui
n+1 − ui∗ = −∆t

∂pn+1

∂xi
(2.6)

Step 4: By applying the divergence of the above equation and the continuity equa-
tion at the new time level, which results in pressure Poisson equation

∇2pn+1 =
ρ∇.u∗

∆t
. (2.7)

The above equation (2.7) is solved by using fast Fourier transform (FFT) in the
homogeneous directions and with tridiagonal matrix algorithm in the wall-normal
direction. After computing the pressure at new time level pn+1, equation (2.4) is
solved to obtain the velocity at the new time level ui

n+1.

2.2. Particle dynamics

This section describes the governing equations and numerical methods for sim-
ulating the dynamics of non-spherical particles suspended in turbulent channel
flow. Particles are tracked at each time step in Lagrangian framework by com-
puting forces and torques acting on the particle. The point-particle methodology
is adopted which can be justified for particle size smaller than the Kolmogorov
length scale of the fluid flow, such that the neighboring fluid flow can be assumed
as Stoksian or creeping flow. Hence, the particle Reynolds number should satisfy
the following criteria:

Rep =
|ui − vi| d

ν
< 1 (2.8)

where, (ui−vi) is the slip-velocity, defined as the difference between local fluid (ui)
and particle (vi) velocity, d is the characteristic particle size. In the literature, there
exist analytical expressions for different forces and torques acting on the particles
suspended in Stokes flow conditions. These expressions can be utilized to compute
the particle dynamics by coupling with direct numerical simulations of fluid flow
without actually resolving the particle.

In the present work, non-spherical particles are represented as axisymmetric
spheroidal particles as shown in Figure 2.2. A spheroidal particle with three semi-
axes a, b and c is characterized by aspect ratio defined as λ = c/a which distin-
guishes between prolate (λ > 1) and oblate (λ < 1) spheroids, whereas λ = 1 corre-
sponds to an isotropic particle, i.e. a sphere. Governing equations and methodology
for modeling of spheroidal particles is discussed in the following section. Generaliza-
tion of this methodology to triaxial ellipsoids is described in article 7 and appendix
1.

Three different Cartesian coordinates are introduced to describe the particle
dynamics as shown in Figure 2.3. The inertial frame xi = < x, y, z > is used to
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Figure 2.2. Spheroidal particles (a) oblate (or disk-like), (b)
sphere and (c) prolate (or rod-like).

Figure 2.3. Cartesian coordinate systems: inertial frame x, par-
ticle frame x′, and co-moving frame x′′.

describe the continuous fluid flow and the translational motion of the particle. The
particle frame x′i = < x′, y′, z′ > with its origin at the particle mass center and
aligned with principal axes is used to describe the particle rotational motion. The
co-moving frame x′′i = < x′′, y′′, z′′ > with its origin coinciding with that of the
particle frame and its axes being parallel to the corresponding axes of the inertial
frame. Euler angles (φ, θ, ψ) are used to represent the orientation of the particle.
The transformation between the co-moving and the particle frame of reference is
given by the rotational matrix REul as (Goldstein 1980):

x′i = REulx
′′
i (2.9)
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where the rotational matrix REul is given by

REul =




cosψ cosϕ− cos θ sinϕ sinψ cosψ sinϕ+ cos θ cosϕ sinψ sinψ sin θ
− sinψ cosψ − cos θ sinϕ cosψ − sinψ sinϕ+ cos θ cosϕ cosψ cosψ cos θ

sin θ sinϕ − sin θ cosϕ cos θ


 .

(2.10)

Euler parameters or quaternions are introduced to avoid singularities (Goldstein
1980),

e0 = cos (ψ+ϕ)
2 cos θ2 ,

e1 = cos (ψ−ϕ)
2 sin θ

2 ,

e2 = sin (ψ−ϕ)
2 sin θ

2 ,

e3 = sin (ψ+ϕ)
2 cos θ2 .

(2.11)

The Euler parameters are dependent and should satisfy the following constraint

e20 + e21 + e22 + e23 = 1. (2.12)

The transformation matrix REul in equation (2.10) can be rewritten in terms of
Euler parameters

REul =



e20 + e21 − e22 − e23 2 (e1e2 + e0e3) 2 (e1e3 − e0e2)
2 (e1e2 − e0e2) e20 − e21 + e22 − e23 2 (e2e3 + e0e1)
2 (e1e3 + e0e2) 2 (e2e3 − e0e1) e20 − e21 − e22 + e23


 . (2.13)

2.2.1. Translational Dynamics

The generalized equation governing the motion of a rigid spherical particle in an
unsteady non-uniform flow at low Reynolds number is given by Maxey and Riley
(1983) as,

mp
dvi
dt = (mp −mF )gδx,i +mF

Dui
Dt −

1
2mF

d
dt

{
(vi − ui)− a2

10∇
2ui

}

−6πaµ
{

(vi − ui)− a2

6 ∇
2ui

}
− 6πa2µ

t∫
0

d
dt

{
(vi−ui)− a

2

6 ∇
2ui
}

[πν(t−τ)]1/2 dτ
(2.14)

where vi is the velocity of the particle, ui is the undisturbed velocity of the fluid,
g is gravitational acceleration, mF is the mass of displaced fluid, µ is the dynamic
viscosity and ν is the kinematic viscosity of the fluid. Right-hand side of the equa-
tion (2.14) represents the five different kinds of fluid forces acting on the particle,
from left to right are: gravity and buoyancy force, pressure gradient force, added
mass force, Stokes drag force, and Basset history force. The similar generalized
equation as (2.14) is not yet known for non-spherical particle. In case of gas-solid
flows with high particle-to-fluid density (ρp/ρf >> 1), only Stokes drag force and
gravity forces are dominant, and we can neglect all other forces in the equation .

Unlike a spherical particle, the translational and rotational motion of spheroidal
particles are strongly coupled through its orientation. The translational motion of
a single spheroidal particle is governed by,

mp
dvi
dt

= πµaKij∆uj ±
(

1− 1

D

)
mpgδx,i (2.15)
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where ∆uj = uj − vj is the slip velocity defined as the difference between fluid
velocity uj at the particle location and the particle velocity vj , mp is the particle
mass, D = ρp/ρf is the ratio between the particle and fluid densities, and Kij is the
resistance tensor defined in the inertial frame of reference which is related to the
resistance tensor K ′ij in the particle frame of reference as Kij = RTEulK

′
ijREul.

K ′ij is a diagonal matrix with its elements given by Gallily and Cohen (1979) and
Siewert et al. (2014a) as shown in Table 2.1, which are uniquely determined by
the particle geometry. The first term on the right-hand side of equation (2.15)
represents the hydrodynamic drag force from the surrounding fluid acting on a
spheroidal particle as derived by Brenner (1964). This expression for the drag force
is valid only when the particle Reynolds number Rep is low, such that the force
acting on the particle is linearly dependent on the slip velocity ∆uj . The second
term in equation (2.15) represents the gravity and buoyancy forces.

Table 2.1. Analytical expressions for resistance tensor components

λ < 1 λ = 1 λ > 1

kx′x′ = ky′y′
32πa
√

(1−λ2)
3

(3−2λ2)(π−C)−2λ
√

(1−λ2)
6πa

16πa
√

(λ2−1)
3

(2λ2−3) ln
(
λ+
√

(λ2−1)
)
+λ
√

(λ2−1)

kz′z′
16πa
√

(1−λ2)
3

(1−2λ2)(π−C)+2λ
√

(1−λ2)
6πa

8πa
√

(λ2−1)
3

(2λ2−1) ln
(
λ+
√

(λ2−1)
)
−λ
√

(λ2−1)

where C = 2tan−1
(
λ
(
1− λ2

)−1/2)
.

The translational displacement of the particle at each time step is determined
by

dxi
dt

= vi (2.16)

2.2.2. Rotational Dynamics

The rotational motion of the particle is governed by Euler’s equations expressed in
the particle frame of reference

I ′ij
dω′j
dt

+ εijkω
′
jI
′
klω
′
l = N ′i (2.17)

where ω′i is the angular velocity of the particle and I ′ij is the moment of inertia
tensor. For spheroidal particles, moment of inertia components along the principal
axes of the particle are

I ′xx = I ′yy =

(
1 + λ2

)
ma2

5
; I ′zz =

2ma2

5
. (2.18)

The torque components N ′i for a triaxial ellipsoidal particle in creeping shear flow
originally derived by Jeffery (1922) and simplify for a spheroid to
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N ′x = 16πµa3λ
3(β0+λ2γ0)

[(
1− λ2

)
S′yz +

(
1 + λ2

)
(Ω′x − ω′x)

]

N ′y = 16πµa3λ
3(α0+λ2γ0)

[(
λ2 − 1

)
S′xz +

(
1 + λ2

) (
Ω′y − ω′y

)]

N ′z = 32πµa3λ
3(α0+β0)

(Ω′z − ω′z) .
(2.19)

Here, S′ij and Ω′i denote the fluid rate-of-strain tensor and rate-of-rotation vector,
defined as

S′yz = 1
2 (u′z,y + u′y,z)

S′xz = 1
2 (u′x,z + u′z,x)

Ω′x = 1
2 (u′z,y − u′y,z)

Ω′y = 1
2 (u′x,z − u′z,x)

Ω′z = 1
2 (u′y,x − u′x,y)

The analytically derived expressions for shape factors α0, β0, and γ0 for spher-
oidal particle were shown in Table 2.2 (Gallily and Cohen 1979 and Siewert et al.
2014a).

Table 2.2. Analytical expressions for shape factors

λ < 1 λ = 1 λ > 1

α0 = β0
−λ

2
√

(1−λ2)
3

(
C − π + 2λ

√
(1− λ2)

)
2
3

λ2

λ2−1 + λ

2
√

(λ2−1)
3K

γ0
1√

(1−λ2)
3

(
λC − λπ + 2

√
(1− λ2)

)
2
3 − 2

λ2−1 −
λ√

(λ2−1)
3K

where K = ln

(
λ−
√

(λ2−1)
λ+
√

(λ2−1)

)
.

Time rate of change of the Euler parameters is related to the particle angular
velocity and represented as




ė0
ė1
ė2
ė3


 =

1

2




e0 −e1 −e2 −e3
e1 e0 −e3 e2
e2 e3 e0 −e1
e3 −e2 e1 e0







0
ω′x
ω′y
ω′z


 (2.20)

In summary, the dynamics of the spheroidal particle is completely described by
solving thirteen coupled equations: three for translational velocity (equation 2.15),
three for angular velocity (equation 2.17), three for particle position (equation 2.16),
and four for particle orientation (equation 2.20). These equations are solved at each
time step along with the integration of the Navier-Stokes equations.

2.2.3. Particle response time

The ability of an inertial particle to adjust to the ambient flow field can be estimated
in terms of a particle response time τp. Shapiro and Goldenberg (1993) introduced a
translational relaxation time based on the assumption of isotropic particle orienta-
tion. Later this time scale has been adopted by Marchioli et al. (2010); Mortensen
et al. (2008) and other researchers. In the present work, we have derived expres-
sion for disk-like particles. By means of the elements of the translational resistance
tensor in Table 2.1, we obtain expressions for particle response time,
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τp, prolate = 2πaλ

(
(π−K)(1−λ2)
16πa
√

(1−λ2)
3

)
2Da2

9ν ;

τp, oblate = 2Da2

9ν
λ(π−C)

2
√

(1−λ2)
.

(2.21)

A Stokes number St is then be defined as the ratio between the particle response
time τp and the viscous timescale τv = ν/u2τ and thus representative of the near-wall
turbulence.

2.2.4. Numerical Methodology

The translational (equation 2.15) and rotational (equation 2.17) equations of the
particle motion are solved using a mixed differencing procedure (Fan and Ahmadi
1995). Particle position and orientation are updated using a second-order Adams-
Bashforth scheme. Time step size used during the integration of the particle equa-
tions is the same as that used in Navier-Stokes equations. The velocity field at
particle location is obtained by means of a second-order quadratic interpolation
scheme. The particle boundary conditions are periodic in the two homogeneous
directions. Particle-wall collisions are fully elastic, similar to the collision model
adopted by Mortensen et al. (2008); Marchioli et al. (2010) and Zhao et al. (2014).
This implies that particle keeps its linear and angular momentum in the homo-
geneous directions upon touching the wall. A collision is defined to occur every
time that the distance from the center of mass of a spheroid to the closest wall
becomes less than the semi-axis a. It is also assumed that the particle suspension
is sufficiently dilute that one-way coupled simulations can be justified and particle-
particle collisions are rare and therefore neglected. The size of the spheroids does
not exceed the Kolmogorov length scale. The assumption of Stokes flow in the
immediate vicinity of a particle, on which the expressions for the force and torque
components in equation (2.15) and equation (2.17) are based, can thus be justified.

2.3. Parallelization of Computer Code

The current FORTRAN computer code is parallelized by using the Message Passing
Interface (MPI). The computational domain is divided into slices in the wall-normal
direction, and the derivatives were computed by communicating the variables to the
adjacent slices. Furthermore, the computational domain in the streamwise direction
is also divided into slices to solve the Fourier transformed Poisson equation. The
total number of particles tracked is divided equally between the processors, i.e.
each processor computes the same amount of particles. Simulations were performed
using 64 processors on NOTUR super computers Vilje and Stallo.



CHAPTER 3

Summary of articles

This chapter presents a brief summary of the main findings reported in seven ap-
pended articles and appendix. Outline of the scientific articles is shown in Figure
3.1.

 

Article 1 

 Single Oblate spheroid 

 Creeping flow 

Article 2 

 Oblate spheroids 

 Stokes number St = 1 and 30 

 Aspect ratio λ = 0.01 to 1 

 

Article 3 

 Tracer spheroids 

(prolate and oblate) 

 St = 0 

 λ = 0.01 to 50 

 

Article 4 

 Spheroids (prolate 

and oblate) 

 St = 0, 1 and 30 

 λ = 0.01 to 50 

 Spinning and 

tumbling 

 

Article 5 

 Prolate spheroids 

 St = 5 and 100 

 λ = 3 and 10 

Article 6 

 Prolate spheroids 

 St = 1, 5, 30 and 100 

 λ = 1, 3 and 10 

Gravity effects 

Article 6 

 Tracer triaxial 

ellipsoids 

 St = 0 

 λ1 = 0.1 to 10 

 λ2 = 0.1 to 10 

Appendix 

 Triaxial ellipsoids 

 St = 30 

 λ1 = 0.1 to 10 

 λ2 = 0.1 to 10 

Turbulent channel flow 

Figure 3.1. Outline of the scientific articles.
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Article 1

On rotational dynamics of inertial disks in creeping shear flow.
Niranjan Reddy Challabotla, Christopher Nilsen & Helge I. Andersson

In this paper, rotational dynamics of single oblate spheroidal or disk-like particle
suspended in creeping shear flow has been investigated over a wide range of particle
aspect ratios and Stoke numbers. Nonlinear coupled ODEs governing the particle
motion are solved using MATLAB. A shape-dependent time scale is proposed for
rotation of an oblate spheroid about its symmetric axis in the flow gradient plane.
Irrespective of the particle aspect ratio, Stokes number, and initial orientation, an
oblate spheroid finally reaches a steady state rotation in flow-gradient plane. Two
qualitatively different stages were observed during the drift of the orientation of the
rotation axis towards the fluid vorticity vector. First, the wobbling drift towards
rotation in the velocity-gradient plane becomes slower with increasing particle iner-
tia, except for the least inertial spheroids. The duration of the second stage, during
which the spheroid spins up to match the fluid angular velocity, becomes indepen-
dent of the aspect ratio for relatively flat particles. This work is also a starting
point for understanding the dynamics of oblate spheroidal particles suspended in
wall-bounded turbulent flows, which is the topic of article 2.

Article 2

Orientation and rotation of inertial disk particles in wall turbulence.
Niranjan Reddy Challabotla, Lihao Zhao & Helge I. Andersson

In the literature, vast majority of studies have focused on rod-like particles due to
their relevance in many applications. In contrast, investigations of the dynamics of
disk-like particles are scarce. This motivated us to work on this topic. Numerical
methodology was developed and implemented in the existing in-house FORTRAN
code to simulate the disk-like particles. The methodology was validated by com-
paring results in creeping shear flow reported in article 1. The orientation and
rotational dynamics of inertial oblate spheroids suspended in a fully developed tur-
bulent channel flow have been explored. Strong influence of the particle shape was
observed on the orientation and rotation of light inertial particles with St = 1 and
this effect was damped as the particle inertia increased to St = 30. The symmetry
axis of the inertial disk-like particles exhibited a strong preferential alignment with
the mean fluid vorticity vector or spanwise direction in the near-wall region which
was qualitatively different from the preferred orientation of rod-like particles in the
streamwise direction. This article was selected as Focus on Fluid Article in JFM.

Article 3

Shape effects on dynamics of inertia-free spheroids in wall turbulence.
Niranjan Reddy Challabotla, Lihao Zhao & Helge I. Andersson

Strong shape effects observed on the dynamics of low inertial disk-like particles at
St = 1 reported in article 2 and the earlier results reported in the literature for rod-
like particles motivated us to work on this topic. This article reported results for
inertia-free spheroidal particles suspended in a turbulent channel flow. Although
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the inertia-free spheroids passively translate along with the fluid, the particle orien-
tation and rotation strongly depend on the particle shape. A wide range of aspect
ratios from λ = 0.01 to 50, i.e., from flat disks to long rods, are covered for the
first time in order to provide a comprehensive coverage of the shape effects on the
particle dynamics. The flattest disks were strongly aligned in the wall-normal direc-
tion, whereas the longest rods aligned themselves with the wall. The strong mean
spanwise spin observed for spherical particles (λ = 1) decreased with increasing as-
phericity both for rod-like and disk-like spheroids. The substantial reduction of the
mean spin of spheroids with high asphericity was attributed to Jeffery-like orbiting.

Article 4

Rotation of nonspherical particles in turbulent channel flow.
Niranjan Reddy Challabotla, Lihao Zhao, Helge I. Andersson & Evan A. Var-

iano

This work is a major step forward in understanding of the complex dynamics of
non-spherical particle suspensions in wall-bounded turbulent flows. In this arti-
cle, we investigated the dynamics of spheroidal particles in particle reference frame.
Channel flow allowed us to examine the transition in behavior from nearly isotropic
turbulence at the channel center to highly sheared anisotropic turbulence near the
channel wall. In the channel center, we have found that inertia-free spheroids were
tumbling and spinning just as in homogeneous isotropic turbulence, whereas inertia
reduced the preferential spinning or tumbling and led to a more isotropic rotation.
Spheroids in the wall region were affected both by mean shear and anisotropic fluid
vorticity, and their rotational behavior is totally different from at channel center.

Article 5 & Article 6

Gravity effects on fiber dynamics in wall turbulence.
On fiber behavior in turbulent vertical channel flow.
Niranjan Reddy Challabotla, Lihao Zhao & Helge I. Andersson

In article 5 & 6, we investigated the dynamic behavior of inertial rod-like parti-
cles or fibers suspended in a turbulent vertical channel flow. Gravity is inevitably
present in all industrial applications and experimental studies, but in most of the
computational investigations reported in the literature ignored the gravity force.
This motivated us to simulate fiber suspensions in the downward and upward flow
configurations and compare with results from channel flow simulations in which
gravity is neglected. Article 5 consists of preliminary results for St = 5 and 100.
Results were reported for gravity effects on the fiber orientations, velocities, and
slip velocities. This work was initially presented at THMT-2015 conference and
later published as an invited paper in a special issue of FTAC journal. Detailed re-
sults including more Stokes numbers and comparison with spherical particles were
reported in article 6. In article 5, we have fixed the particle size and varied the
particle density to keep Stokes number as constant (see equation 2.21) and oppo-
site approach was adopted in article 6 which is more realistic when considering the
gravity force. However, the difference between results obtained by both methods
is negligible. The results showed that gravity has a negligible effect for fibers with
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modest inertia, i.e. low Stokes numbers, whereas gravity turned out to have a ma-
jor impact on the dynamics of highly inertial fibers. Irrespective of the bulk flow
direction, a preferential alignment of the inertial fibers with the gravity force was
found in the channel center where fibers have been known to orient randomly in
absence of gravity. In the downward channel flow, the drift velocity of the fibers to-
wards the walls was substantially higher for fibers than for spheres and also higher
than when gravity was neglected. In the upward flow configuration, the modest
drift velocity of inertial spheres was totally quenched for all fibers irrespective of
shape.

Article 7

Orientation and rotation dynamics of tracer triaxial ellipsoidal parti-
cles in wall turbulence.
Niranjan Reddy Challabotla, Lihao Zhao & Helge I. Andersson

In this article, we extended the methodology used in article 3 to investigate the
dynamics of more general triaxial ellipsoidal particles suspended in wall-bounded
turbulent flows. The triaxial ellipsoids were characterized by two independent shape
parameters λ1 and λ2 that both were varied from 0.1 to 10. The tumbling rates
observed in the channel center closely resembled tumbling of triaxial ellipsoids in
homogeneous isotropic turbulence. The particle enstrophy turned out to be almost
independent of particle shape. In the near-wall region, however, the particle enstro-
phy was highest for spherical particles and diminished with increasing asphericity.
The reduction of the enstrophy was by far more pronounced for triaxial ellipsoids
than for axisymmetric particles. We also inferred that triaxial ellipsoids exhibited a
dual nature, namely tumbling like a disk about one axis and as a rod about another
axis.

Appendix 1

Rotation of inertial triaxial ellipsoidal particles in wall turbulence.
Niranjan Reddy Challabotla

The main objective of this appendix was to extend the present numerical code to
simulate the inertial triaxial ellipsoidal particles suspended in fully developed tur-
bulent channel flow. This work represents a generalization of our earlier simulations
on axisymmetric particles and aims to uncover the influence of triaxiality on the
particle dynamics. Simulations were performed for wide range of particle shapes
and fixed Stokes number St = 30. Statistics for rotation rates of particles were
reported.



CHAPTER 4

Conclusions

4.1. Summary

• The present thesis contributed to advancing the knowledge of small-non
spherical particles suspended in wall turbulence by addressing some of the
open questions in this research community.

• DNS coupled with Lagrangian point particle methodology adopted in the
present work is successful in obtaining reliable statistics for dynamics of el-
lipsoidal particle suspensions in a fully developed turbulent channel flow.
First time, this methodology has been extended to study the dynamics of
disk-like (article 2) and more general triaxial particles (article 7). Results
obtained for particles in channel center are in close agreement with the
experimental measurements reported by Parsa et al. (2012) and other com-
putational investigations for homogeneous isotropic turbulence.

• In the near-wall region, inertia-free disk-like particles exhibited preferential
alignment with the wall-normal direction whereas inertial disk-like particles
aligned preferentially with the spanwise direction. Preferential alignment of
inertial disk-like particles is consistent with our finding in article 1 that a
single inertial disk-like particle in uniform shear flow ultimately rotates in
flow gradient plane. The preferential alignment of these particles combined
with the strong velocity gradients in the near-wall region resulted in inter-
esting rotational statistics: mean spanwise rotation of inertia-free particles
is damped, whereas inertial particles attained rotation rate which almost
equal to mean fluid rotation. The particle aspect ratio has a strong influ-
ence on the dynamics of inertia-free particles and this has been diminished
for inertial particles.

• In the near-wall region, spheroidal particle rotation is affected both by mean
shear and anisotropic fluid vorticity, and their rotational behavior is totally
different from at channel center. Particle enstrophy is independent of the
particle aspect ratio in channel center, however, near-wall particle enstrophy
is strongly dependent on shape with lower particle enstrophy as the particle
asphericity increases.

• In the channel center region, all particles approached an isotropic orientation
irrespective of the particle aspect ratio and inertia. Preferential tumbling
for disks and spinning for rods has been observed similar to homogeneous
isotropic turbulence, whereas inertia damped the preferential tumbling or
spinning and led to a more isotropic rotation.

23
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• The present work reported in article 5 & 6 strongly suggested that the actual
gravity configuration might play an important role in the distribution of
particles across the channel.

• The dynamics of triaxial tracer particles is similar to that of disk-like parti-
cles in a certain direction, but resembles that of rod-like particles in another
direction in both the Lagrangian particle frame and in the Eulerian labo-
ratory frame, but the underlying physical mechanisms are different. The
strong alignment of the major axis in the streamwise direction and of the
minor axis in the wall-normal direction in the near-wall region resulted in a
substantial reduction of the mean angular rotation rate.

4.2. Future work

• In our work, only the drag and gravity forces were considered. Development
of reliable models for other forces acting on the non-spherical particle such
as lift, added mass, and basset-history force can be an important research
topic.

• We adopted drag force correlation which is valid strictly in the Stoke regime
i.e. Rep < 1. Recently, some attempts have been made to establish reliable
correlations for the drag force and torque on spheroidal particles (Hölzer and
Sommerfeld 2008; Ouchene et al. 2015 and Zastawny et al. 2012) outside
the Stokes flow regime, i.e. for Rep > 1, which can be integrated with the
current DNS point particle methodology.

• In all our simulations, particle concentration is assumed to be dilute i.e. only
the effect of turbulence on particle is considered and the feedback from par-
ticle on flow is neglected. Including particle-particle collision, particle-wall
collision models can improve the capability of the present code to predict the
higher concentration particle suspensions. Recently some of these aspects
were looked at by other groups (Zhao et al. 2015 and Zhao and Wachem
2013).

• It has been shown that the preferential alignment of spheroid particle major
axis is in the strongest Lagrangian stretching direction (Ni et al. 2014) in
homogeneous isotropic turbulent flows. Similar physical understanding is
not yet known for preferential alignment of spheroids in the near-wall region
of wall-bounded turbulent flows.
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The rotational motion of an inertial disk-like particle in a creeping linear shear flow is investigated. 
A disk-like particle in a linear shear flow tends to rotate in the velocity-gradient plane as do rod-like 
particles. Unlike prolate spheroids, however, oblate spheroids always attain the same steady rotation in 
the shear plane irrespective of their initial orientation. The drift of the orientation of the rotation axis 
towards the vorticity vector consists of two qualitatively different stages. First, the wobbling drift towards 
rotation in the velocity-gradient plane becomes slower with increasing particle inertia, except for the 
least inertial spheroids. The duration of the second stage, during which the spheroid spins up to match 
the angular fluid velocity, becomes independent of the aspect ratio for relatively flat particles, provided 
that a new shape-dependent Stokes number is used.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The rotational dynamics of inertial spheroidal particles crucially 
depends on the aspect ratio as well as the inertia of the particle. 
A bi-axial ellipsoid, i.e. a spheroid, is a frequently adopted model 
shape for non-spherical particles. The aspect ratio k, defined as the 
ratio between the two equal axes and the symmetry axis, distin-
guishes between rod-like particles (prolate spheroids with k < 1) 
and disk-like particles (oblate spheroids with k > 1) and k = 1 cor-
responds to spherical particles. The rotational motion of single or 
many rod-like particles have recently received renewed attention 
of which the studies reported by Mortensen et al. [1], Lundell and
Carlsson [2], Bellani et al. [3], Parsa et al. [4], Andersson et al. [5], 
and Nilsen and Andersson [6] are relevant examples. A topical jour-
nal issue was devoted to the dynamics of anisotropic particles in 
turbulent flows; see Andersson and Soldati [7].

The literature reporting the rotational dynamics of disk-like par-
ticles is comparatively scarce. Although the rotational motion of 
disk-like particles seems to be simpler than the intricate rotation 
of rod-like particles, see e.g. Qi and Luo [8], the dynamics of disk-
like particles still require further exploration. Anisometric particles 
resembling thin disks immersed in a viscous fluid are encountered 
in nature (e.g. seeds, human red blood cells). A great interest in 
the behaviour of platelets exists in biomedical research, e.g. micro-
circulation flow (Mody and King [9]). Thin reflective flakes are 
commonly used for experimental flow visualization studies; e.g. 
Savaş [10], Gauthier et al. [11], and Philippe et al. [12].

* Corresponding author.
E-mail address: niranjan.r.challabotla@ntnu.no (N.R. Challabotla).

Analytical and numerical investigations of anisometric particles 
are usually based on the analytical derivations made by Jeffery [13]
for tri-axial ellipsoidal particles in a creeping shear flow. Disk-like 
particles are thus modeled as oblate spheroids where the ratio be-
tween the two equal major axes and the minor axis is the aspect 
ratio k > 1 which is a dimensionless measure of the flatness of the 
spheroidal particle.

Let us first take a look at earlier findings for massless disk-like 
particles. According to the Jeffery theory, the time evolution of a 
unit vector p parallel to the particle symmetry axis is governed by

dp

dt
= Ω · p − k2 − 1

k2 + 1

[
S · p − p · (p · S · p)

]
. (1)

The direction of the unit vector p identifies the orientation of the 
axisymmetric particle and Ω and S are the anti-symmetric and 
symmetric parts of the fluid velocity gradient tensor in the particle 
frame, respectively, i.e. the rate-of-rotation and rate-of-strain ten-
sors. This equation is valid for inertia-free axisymmetric ellipsoids 
irrespective of whether k < 1 or k > 1; see e.g. Leal and Hinch [14]
and Gauthier et al. [11]. A disk-like particle spends most of the 
time with p along the shear axis, whereas the particle orientation 
vector is mostly along the flow axis for a rod-like particle. These 
motions are in accordance with experimental studies of Goldsmith 
and Mason [15] in laminar Taylor–Couette flow in a coaxial cylin-
der apparatus.

Recent DNS studies of anisometric particles with k in the range 
from 0.01 to 100 in homogeneous and isotropic turbulence by 
Parsa et al. [4] showed that the mean square rotation rate 〈ṗi ṗi〉 of 
disk-like particles (k > 1) is much larger than for spheres (k = 1). 
This can be qualitatively understood as the additional contribution 

http://dx.doi.org/10.1016/j.physleta.2014.10.045
0375-9601/© 2014 Elsevier B.V. All rights reserved.
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of strain S to the rotation rate in Eq. (1). Disk-like particles also 
show some effects of alignment with the vorticity vector 2Ω al-
though their mean square rotation rate is substantially closer to 
the randomly oriented case

〈ṗi ṗi〉
〈ε〉/ν = 1

6
+ 1

10

(
k2 − 1

k2 + 1

)2

(2)

derived from Eq. (1) than are rod-like particles. Here, ε is the en-
ergy dissipation rate 2νSij Si j and ν is the kinematic viscosity of 
the fluid.

The orientation of disk-like particles was utilized in an ex-
perimental study of the Taylor–Couette instability by Philippe et 
al. [12]. A preferential orientation of the suspended clay particles 
(flakes) was reported. As soon as the Taylor–Couette vortices ap-
peared, the average orientation of the particles was slightly shifted 
under secondary flow effect depending on their positions in the 
vortices. These experimental observations are consistent with the 
analysis of Angilella [16] who showed that a massless and in-
finitely thin circular disk (i.e. k → ∞) has a stable equilibrium 
position with p in the shear plane and perpendicular to the ve-
locity.

Investigations of the dynamics of inertial spheroids have mostly 
been concerned with the translational and rotational motion of 
prolate spheroids. Qi and Luo [8] studied the rotation of neutrally 
buoyant spheroids by means of lattice Boltzmann simulations. At 
low particle Reynolds numbers Re the oblate spheroid eventually 
spins at a constant rate around its minor axis, which is parallel to 
the flow vorticity vector. This state is called ‘spinning’. However, a 
transition occurs at Re ≈ 220 beyond which the oblate spheroid 
still spins about its minor axis, but the minor axis has now a 
finite inclination with the vorticity. This is called ‘inclined spin-
ning’ and the inclination angle increases monotonically with Re. 
Yu et al. [17] called the ‘spinning’ mode of Qi and Luo [8] a ‘log-
rolling’ mode and they reported a rather different critical transition 
Reynolds number. They also found a second transition to a ‘mo-
tionless mode’ not observed by Qi and Luo [8]. Huang et al. [18]
used a lattice Boltzmann method to simulate neutrally buoyant 
spheroids in laminar Couette flow. They found that the tumbling 
period of an oblate spheroid increased with Re. In addition to the 
transition reported by Qi and Luo [8], they also found a second 
transition to the ‘motionless mode’ first reported by Yu et al. [17]. 
Einarsson et al. [19] very recently derived an asymptotic equation 
of motion for small Stokes numbers (modest inertia) for the orien-
tation vector p valid for both prolate and oblate spheroids.

The aim of the present study is to examine the rotational dy-
namics of inertial disk-like particles in a creeping linear shear flow. 
The objective is to explore how the particle dynamics are affected 
by the particle shape (aspect ratio k > 1) and particle inertia (to 
be quantified by a new shape-dependent Stokes number St). The 
mathematical modeling closely follows the recent work by Lundell 
and Carlsson [2] in which the effect of inertia and aspect ratio on 
rod-like particles (k < 1) in creeping shear was studied. Although 
gravity might affect the rotational dynamics of the heavier parti-
cles (St � 1) the effect of gravity is not included in this work.

2. Problem statement

We consider the linear shear flow u′ = κz′ in the (x′ , z′) plane. 
The shear rate κ is constant here, as in Lundell and Carlsson [2], 
whereas a time-varying shear rate was considered by Nilsen and
Andersson [6]. The Reynolds number Re = κa2/ν 
 1 in order to 
justify the assumption of creeping fluid motion in the vicinity of 
the particles, i.e. that the flow is inertia-free. 2a is the minor axis, 
i.e. the symmetry axis, of the oblate spheroid whose surface is de-
scribed by

x2

a2
+ y2

b2
+ z2

b2
= 1 (3)

in a particle frame of reference. The particle aspect ratio k = b/a is 
thus the essential non-dimensional geometric parameter.

The Stokes number StLC is defined as the ratio between the par-
ticle time scale τ = a2ρp/μ f and the time scale κ−1 of the shear 
flow

StLC = κa2

ν

ρp

ρ f
= Re

ρp

ρ f
. (4)

The Stokes number is therefore known for a given Reynolds num-
ber Re and particle-to-fluid density ratio ρp/ρ f . This Stokes num-
ber, which is the same as that used by Lundell and Carlsson [2], 
does not necessarily allow physical interpretations in the same way 
as in turbulent flows. This is partly due to the time scale κ−1 of 
the flow, which is not representative for any dynamics. Aside from 
a factor 2/9 the particle time scale τ used here is the relaxation 
time for translational motion of a spherical particle with radius a, 
although it is likely that the dynamic response of a disk-like par-
ticle to changes in the flow field depends also on the orientation 
and shape of the particle.

3. Mathematical modelling

3.1. Kinematics

The orientation of a spheroid is represented by a quaternion

e = [e0 e1 e2 e3]T , (5)

which is defined by means of the Euler angles (φ, θ , ψ ) in accor-
dance with the x-convention of Goldstein [20]; see also Ref. [21]. 
An orthogonal rotation matrix R can be defined in terms of the 
components of the quaternion (5) as

R = EGT (6)

where

E =
⎡
⎣ −e1 e0 −e3 e2

−e2 e3 e0 −e1
−e3 −e2 e1 e0

⎤
⎦ and

G =
⎡
⎣ −e1 e0 e3 −e2

−e2 −e3 e0 e1
−e3 e2 −e1 e0

⎤
⎦ . (7)

A vector a′ in the fixed coordinate system is now related to the 
vector a in the coordinate system fixed to the particle according to 
a′ = Ra. A flow field u′ = Kx′ in the inertial system now becomes

u = RTKRx (8)

in the particle frame of reference. Here, the velocity gradient ten-
sor K is Kij = κδi1δ3 j for the present shear flow case.

3.2. Dynamics

The rotation ω of a spheroid is governed by the non-dimen-
sional Euler’s equation

I · ω̇ + ω × (I · ω) = 16π

3StLC
M (9)

together with the time-variation (denoted by a dot) of the quater-
nion

ė = 1

2
GT ω. (10)
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The moment of inertia for an oblate spheroid is

I = 4

15
πk2

⎡
⎣ 2k2 0 0

0 1 + k2 0
0 0 1 + k2

⎤
⎦ . (11)

The non-dimensional torque M from the shearing fluid flow on a 
tri-axial ellipsoidal particle was originally derived by Jeffery [13]. 
For the axisymmetric ellipsoid (3) the Jeffery-torque simplifies to:

M =
⎡
⎣ 2(β0 + γ0)

−1(Ωzy − ωx)

(k2γ0 + α0)
−1{(k2 − 1)Sxz + (k2 + 1)(Ωxz − ωy)}

(α0 + k2β0)
−1{(1 − k2)Sxy + (1 + k2)(Ωyx − ωz)}

⎤
⎦ ,

(12)

where S and Ω now are the non-dimensionalized fluid rate-
of-strain and rate-of-rotation tensors in the particle frame-of-
reference. Similarly the expressions for the non-dimensional co-
efficients simplify to:

α0 =
∞∫

0

dλ

(1 + λ)3/2(k2 + λ)
and

β0 = γ0 =
∞∫

0

dλ

(k2 + λ)2(1 + λ)1/2
, (13)

see Gallily and Cohen [22] and Lundell and Carlsson [2]. The vec-
tor equations (9) and (10) govern the rate-of-change with time of 
the angular velocity ω and the quaternion e and comprise seven 
non-linearly coupled ordinary differential equations (ODEs).

4. Analytical solution and time scale considerations

Let us first look at the rotation of an oblate spheroid about its 
minor axis in the flow gradient plane. Since the two semi-major 
axes are equal for an oblate spheroid, Mx in Eq. (12) has simplified 
such that the x-component of Euler’s equation (9) can be solved 
analytically. If ωx is initially set to zero, we obtain the analytical 
solution:

ωx = Ωzy
(
1 − e−t/τrot

)
, (14)

where t is dimensionless time normalized with κ−1. For the sim-
ple shear flow considered in the present study, the fluid rate-of-
rotation in the particle frame non-dimensionalized with the shear 
rate κ in the inertial frame becomes 1/2. The relaxation time τrot

for rotation about the x-axis can be expressed as:

τrot = τ

10
k4β0 (15)

where τrot and τ are both normalized by means of the time scale 
κ−1 of the linear shear flow. The new time scale τrot in Eq. (15), 
which is proportional to the time scale 2τ/9 which characterizes 
the translational motion of spherical particles, exhibits a strong ex-
plicit dependence on the flatness k of the disk-like particle. More-
over, τrot also depends implicitly on the particle shape through the 
dimensionless coefficient β0 defined in Eq. (13). Here the dimen-
sional τ is as defined in conjunction with Eq. (4). Let us recall, 
however, that the rotational response time for spherical particles 
is 3/10 of the translational relaxation time 2τ/9, i.e. τ/15; see 
Zhao and Andersson [23].

In view of the preceding arguments, a physically more relevant 
Stokes number St should be based on τrot defined in Eq. (15) rather 
than on τ . This gives the new Stokes number

St = StLC

10
k4β0 (16)

where StLC is the Stokes number already defined in Eq. (4). The 
Stokes number St is believed to be a better choice than StLC for pa-
rameterization of the rotational dynamics of oblate spheroids since 
it involves the aspect ratio k explicitly and also indirectly through 
the shape factor β0 defined in Eq. (13). The ratio St/StLC increases 
monotonically from 1/15 ≈ 0.07 for spherical particles (k = 1) to 
1.39 and 15.5 for k = 10 and 100, respectively.

In computer simulations of rod-like particles suspended in a 
turbulent flow field, a particle relaxation time based on the as-
sumption of an isotropic particle orientation due to Shapiro and
Goldenberg [24] is routinely used by, for instance, Mortensen et al. 
[1] and Andersson et al. [5].

5. Computed results

The two-parameter problem defined in the mathematical mod-
elling section has been solved for Stokes numbers St in the range 
from 0.1 to 100 and particle aspect ratios k in the range from 1.5 to 
60. It is noteworthy that the analysis is based on the Stokes num-
ber St defined in Eq. (16) rather than on the shape-independent 
Stokes number StLC used by Lundell and Carlsson [2]. The set of 
ODEs (9), (10) is integrated forward in time by means of the built-
in MATLAB functions ode15s and ode45; see Ref. [25]. Irrespective 
of Stokes number and aspect ratio, the oblate spheroid is ini-
tially positioned with its symmetry axis almost in the z′-direction 
so that the particle orientation vector p is nearly perpendicu-
lar to the fluid vorticity vector. Since the particular orientation 
φ = θ = ψ = 0 is neutrally stable, we considered the slightly per-
turbed initial orientation φ = 0, θ = 0.001, and ψ = 0.001. The 
effect of different initial orientations on the rotational motion is 
examined in Appendix A where it is shown that an oblate spheroid 
eventually attains the same state of steady rotation in the flow gra-
dient plane irrespective of its initial orientation.

The trajectory of a point on the equator of a spheroidal particle 
is shown in Fig. 1. At St = 1 the modestly oblate spheroid (k = 1.5) 
to the left in Fig. 1(b) rapidly flips away from its initial orientation 
and rotates about its minor axis x, i.e. the symmetry axis, which 
gradually becomes perpendicular to the shear plane (x′ , z′). For the 
higher Stokes numbers St = 10 and 100, a wobbling motion of the 
oblate spheroid persists over a relatively long time interval until 
the spheroid eventually spins up and rotates in the shear plane. 
The behaviour of the spheroid with the least inertia in Fig. 1(a) 
exhibits the same trend as the most inertial spheroid in Fig. 1(d). 
The rotational motion of a more disk-like spheroid (k = 10) is dis-
played to the right in Fig. 1. The disk at St = 1 takes longer time 
before aligning in the flow-gradient plane in comparison with the 
rapid transition observed in Fig. 1(b). At higher Stokes numbers the 
flatter spheroids (k = 10) in Fig. 1(g, h) reach a steady state faster 
than the only modestly flat particles (k = 1.5) in Fig. 1(c, d).

The particle trajectories shown in Fig. 1(e) are different from 
the findings of Gauthier et al. [11] for non-inertial disks with 
k = 10. They found that the orientation vector p described a closed 
orbit, a so-called Jeffery-orbit, with p most of the time along the 
shear direction z′ . The Jeffery-orbit of an inertia-free disk is deter-
mined by its initial conditions which are never forgotten, whereas 
the effect of the initial orientation is eventually forgotten by iner-
tial disks (this essential issue is addressed in Appendix A). The dif-
ferences between the trajectories found here and those in Ref. [11]
are therefore due to the inclusion of particle inertia in the present 
case. Inertia forces the oblate spheroid towards the flow gradient 
plane, as is also the case for prolate spheroids (Lundell and Carls-
son [2]).

The time evolution of the angular velocity ωx about the sym-
metry axis and the angular velocity ωyz ≡ (ω2

y + ω2
z )

1/2 about an 
axis perpendicular to the symmetry axis are shown in Fig. 2 for 
St = 1 (left) and for St = 100 (right) for three different aspect 
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Fig. 1. Trajectory of a point on the equator of an oblate spheroid during spin-up. 
Aspect ratio k = 1.5 to the left and k = 10 to the right for some different Stokes 
numbers. St = 0.1 (a, e), St = 1 (b, f), St = 10 (c, g), and St = 100 (d, h).

ratios k. In all cases the oblate spheroid is set into rotation from its 
initial state ω = 0. During an initial stage of the particle rotation, 
the resultant angular velocity ωyz varies periodically whereas the 
angular velocity about the symmetry axis ωx ≈ 0. Somewhat later, 
however, ωx increases monotonically towards the asymptotic limit 
0.5 while ωyz gradually decays to zero. These trends reflect the 
wobbling of the oblate spheroid before the stable rotation with the 
symmetry axis perpendicular to the shear-plane (x′ , z′) and period 
4π has been established. This is the same rotation period as for 
an inertial sphere (k = 1). Independent of aspect ratio k, a oblate 
spheroid is spun up to the same steady rotation as a spherical 
particle. However, a disk-like particle with only modest inertia 
(St = 1.0) approaches the flow-gradient plane more slowly as k is 
increased, whereas the opposite trend is observed for large inertia 
(St = 100). These trends refer to the first stage of the transient ro-
tation during which ωx 
 0.5. Inertia has been shown before by 
Lundell and Carlsson [2] to induce a drift of the particle orienta-
tion of prolate spheroids (k < 1) towards the flow-gradient plane 
and Nilsen and Andersson [6] showed that the rotation period of 
a prolate spheroid was crucially dependent on the Stokes number 
and the aspect ratio and qualitatively different from the present 
results for an oblate spheroid.

Fig. 2. Evolution of the angular velocity of an oblate spheroid during spin-up. Stokes 
number St = 1.0 to the left (panels a, b, and c) and St = 100 to the right (panels d, 
e, and f) for some different aspect ratios. k = 1.5 (a, d), k = 10 (b, e), k = 60 (c, f).

Fig. 3. Evolution of P R with time for oblate spheroids with k = 10 for different 
Stokes numbers.

In view of the behaviour of the angular velocities in Fig. 2 we 
now define a rotation parameter

P R = 2
[(

0.5 − |ωx|
)2 + ω2

y + ω2
z

]1/2

= 2
[(

0.5 − |ωx|
)2 + ω2

yz

]1/2
(17)

such that P R varies from the initial value 1.0 for a non-rotating 
spheroid to 0 at large times when ωx tends to either +0.5 or 
−0.5 while ωy and ωz approach zero. The results in Fig. 3 show 
how an oblate spheroid with aspect ratio k = 10 adjusts from the 
non-rotating initial condition to the ultimate state of steady ro-
tation. The duration of the transient stage from ω = 0 to ω∞ =
0.5ex depends severely on the Stokes number. The distinctly dif-
ferent transient behaviour for St = 1 and St = 100 spheroids could 
be observed already by comparing panels (b) and (e) in Fig. 2. 
With increasing inertia, i.e. higher Stokes number St, the spheroid 
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Fig. 4. Evolution of P R with time for oblate spheroids with Stokes number St = 100
for different aspect ratios k.

generally requires a substantially longer time to spin up from rest 
and attain its ultimate steady-state rotation about its minor axis. 
This monotonic trend applies for St ≥ 3. However, at the lowest 
Stokes number considered, i.e. St = 0.1, the spheroid approaches 
the flow-gradient plane even more slowly than the most inertial 
spheroid. This is attributed to the exceptionally slow growth of tiny 
perturbations during the first stage of the transient. After the long 
first stage of adaptation, the last stage of the spin-up process, dur-
ing which P R decays to zero, is short and fully in accordance with 
the very modest inertia of the St = 0.1 spheroid. It is worthwhile 
to recall that the time to reach the final state of rotational mo-
tion is shortest for intermediate Stokes numbers also for prolate 
spheroids; see Fig. 7 in Lundell and Carlsson [2].

The time evolution of the rotation parameter P R is also shown 
in Fig. 4 for different particle aspect ratios k and Stokes number 
St = 100. It is readily observed that a nearly spherical spheroid 
(k = 1.5) spins up slowly and ultimately reaches the asymptotic 
state of steady rotation P R = 0. However, the more disk-like par-
ticles, i.e. the flatter spheroids with k > 1.5, approach the steady 
rotational state substantially faster. As the aspect ratio k increases 
above five, the overall spin-up time seems to be independent of 
the aspect ratio and of the order of 1000 non-dimensional time 
units. It is noteworhty that this collapse of the spin-up histories 
for k > 5 at a given Stokes number has been achieved by adopting 
the shape-dependent Stokes number defined in Eq. (16).

Although an oblate spheroid spins up to the same ultimate state 
of steady rotation in the flow-gradient plane (see Appendix A), the 
spin-up time depends on the initial orientation of the spheroid rel-
ative to that plane, as well as on the Stokes number St and the 
aspect ratio k. For a given initial orientation the results displayed 
in Figs. 2–4 suggest that the duration of the transient period from 
rest to the ultimate rotation in the plane of shear consists of a 
first stage with unsteady rotation with ω2

yz � ω2
x and a subse-

quent spin-up during which ωyz decays to zero and ωx tends to 
±1/2, i.e. stable rotation about the x-axis in the (x′ , z′)-plane. The 
numerical solutions in Figs. 3 and 4 furthermore suggest that af-
ter the first stage with unsteady rotation the remaining approach 
towards the asymptotically steady state is almost exponential. Re-
call also the exponential evolution given by the analytical solution 
(14). The decay rates, i.e. the slopes in Fig. 4, increase with k. The 
flatter the disk, the higher the spin-up rate. The disks are rotating 
with non-zero components of the angular velocity vector ω along 
all three directions of the particle frame of reference; see Fig. 2. 
The analytical solution (14) is, however, valid only if ωx and ωy
both are zero. On the other hand, if the orientation vector p is 
initially perpendicular to the flow gradient plane (i.e. aligned with 
flow vorticity vector), the spin-up is truly exponential and matches 

Fig. 5. Duration of the last part of the spin-up process for different aspect ratios k
and three different Stokes numbers. Dotted line: St = 10; broken line: St = 30; solid 
line: St = 100.

the analytical solution (14). See the effect of some different initial
orientations in Fig. A.1.

The duration T of this final stage of adaptation of the parti-
cle rotation can be defined as the time lapse from P R = 0.5 to 
P R = 0.01. The variation of T in the (St, k) parameter space is 
shown in Fig. 5. As expected, T increases with increasing iner-
tia, i.e. higher Stokes numbers. For a given Stokes number, on the 
other hand, T is almost independent of the flatness of the spheroid 
for k > 10. This observation provides further support of the new 
shape-dependent Stokes number defined in Eq. (16). The duration 
T of the final spin-up process increases rapidly with decreasing 
flatness for k < 10, i.e. as the spheroid approaches spherical shape.

6. Conclusions

The rotational motion of inertial disk-like particles in creeping 
linear shear flow has been studied over a wide range of particle 
aspect ratios k and Stokes numbers St. The present study of the 
dynamics of oblate spheroids may therefore be considered as a 
sequel to the investigation by Lundell and Carlsson [2] of three-
dimensional rotation of prolate spheroids in shear flow.

Starting from rest at an arbitrarily chosen initial state, a disk-
like particle eventually tends to rotate in the velocity-gradient 
plane, as did the prolate spheroids. However, contrary to spheroidal 
particles with k < 1, the oblate spheroids with k > 1 rotates about 
their symmetry axis. The present findings for inertial spheroids 
are different from the observations of non-inertial spheroids by 
Gauthier et al. [11] who found that inertia-free disk-like particles 
oriented with p, and thus the particle symmetry axis, mostly along 
the z′-direction. The distinctly different behaviour of the present 
spheroids is ascribed to particle inertia. Qi and Luo [8] studied 
the rotational motion of finite-sized inertial spheroids at Reynolds 
numbers well above unity using the lattice-Boltzmann method. 
Neutrally buoyant oblate spheroids with aspect ratio k = 2 turned 
out to spin up to a state of steady rotation about its minor axis 
with p aligned with the vorticity vector, i.e. in keeping with the 
present findings for Re 
 1.

It is noteworthy that the drift of the orientation of the rotation 
axis towards the vorticity vector consists of two qualitatively dif-
ferent stages. The time scale of the first stage, in which the particle 
orientation changes from its arbitrary initial state to partial align-
ment with the vorticity vector, turns out to depend on the flatness 
and inertia of the disk-like particle. The last stage of the transient 
represents the spin-up of the axial rotation to the angular veloc-
ity of the fluid. If the particle is initially in the flow gradient plane, 
this spin-up is described by the analytical solution (14). In terms 
of a new Stokes number St based on the relaxation time τrot for 
rotation about the symmetry axis, as defined in Eq. (15), the du-
ration of the spin-up stage becomes independent of particle shape 
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Fig. A.1. Spin-up of an inertial spheroid with St = 100 and k = 10 for six differ-
ent initial orientations. The dotted line corresponds to an initial orientation with p
perpendicular to the flow gradient plane and matches with the analytical solution 
(14). The solid line corresponds to the initial orientation of the oblate spheroids in 
Figs. 1–5.

for k greater than about 10 for a given Stokes number. Irrespec-
tive of its initial orientation, a prolate spheroid ultimately reaches 
the same state of steady rotation about the minor axis. The tran-
sient period required to achieve this stable steady state depends 
not only on the Stokes number St and the aspect ratio k but also 
on the initial orientation.

In a recent study of triaxial ellipsoids in linear shear flow, 
Lundell [26] showed that elongated ellipsoids can exhibit chaotic 
rotation even if they are almost axisymmetric, i.e. near-perfect pro-
late spheroids. On the contrary, rotation around the shortest axis 
of a flattened ellipsoid turned out to be stable even though they 
are almost axisymmetric, i.e. near-perfect oblate spheroids. Thus, 
compared with the prolate spheroid, the oblate spheroid has a 
considerable stability margin. Minute deviations from the perfect 
spheroidal shape do not give rise to instabilities which alter the 
solutions and conclusions presented in the present paper.
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Appendix A

Calculations are also performed to investigate the effect of the 
initial orientation of the spheroid on the rotational dynamics. The 
time evolutions of the rotational parameter P R for different ini-
tial orientations are shown in Fig. A.1 for the particular parameter 
combination St = 100 and k = 10 case. The dotted line corresponds 
to a case in which the oblate spheroid is initially oriented with p
aligned with the vorticity axis. The spheroid therefore rotates only 
about its minor axis, i.e. ωyz = 0, and asymptotically spins up to 
the state of steady rotation. The linear decay of P R in the semi-
logarithmic plot in Fig. A.1 is fully consistent with the exponential 
spin-up given by the analytical solution (14). In all other cases, 
in which the initial orientation of p is inclined with respect to 
the vorticity vector, the disk-like spheroid first undergoes a wob-
bling motion about a major axis which gradually decays to zero 
before the spheroid is spun up to steady rotation about its minor 
axis. This observation is consistent with Huang et al. [18] who re-
cently concluded that oblate spheroid dynamics is insensitive to 

the initial orientation of the spheroid. It is noteworthy that expo-
nential spin-up is observed irrespective of the initial orientation of 
the oblate spheroid in Fig. A.1 and, furthermore, that the spin-up 
rate in the final stage of spin-up process seems to be independent 
of the initial orientation provided that the spheroid is not oriented 
with p aligned with the fluid vorticity vector from the very begin-
ning.

Although an oblate spheroid spins up to the same ultimate state 
of steady rotation in the flow-gradient plane, the overall spin-up 
time depends on the initial orientation of the spheroid relative to 
that plane, as well as on the Stokes number St and the aspect ra-
tio k. The fastest adaptation to the rotation of the linear shear flow 
takes place when the spheroid is initially in the shear plane.

References

[1] P.H. Mortensen, H.I. Andersson, J.J.J. Gillissen, B.J. Boersma, Dynamics of prolate 
ellipsoidal particles in turbulent channel flow, Phys. Fluids 20 (2008) 093302.

[2] F. Lundell, A. Carlsson, Heavy ellipsoids in creeping shear flow: transitions of 
the particle rotation rate and orbit change, Phys. Rev. E 81 (2010) 016323.

[3] G. Bellani, M.L. Byron, A.G. Collignon, C.R. Meyer, E.A. Variano, Shape effects 
on turbulent modulation by large nearly buoyant particles, J. Fluid Mech. 712 
(2012) 41–60.

[4] S. Parsa, E. Calzavarini, F. Toschi, G.A. Voth, Rotation rate of rods in turbulent 
fluid flow, Phys. Rev. Lett. 109 (2012) 134501.

[5] H.I. Andersson, L. Zhao, M. Barri, Torque-coupling and particle-turbulence in-
teractions, J. Fluid Mech. 696 (2012) 319–329.

[6] C. Nilsen, H.I. Andersson, Chaotic rotation of inertial spheroids in oscillating 
shear flow, Phys. Fluids 25 (2013) 013303.

[7] H.I. Andersson, A. Soldati, Anisotropic particles in turbulence: status and out-
look, Acta Mech. 224 (2013) 2219–2223.

[8] D. Qi, L.-S. Luo, Rotational and orientational behaviour of three-dimensional 
spheroidal particles in Couette flows, J. Fluid Mech. 477 (2003) 201–213.

[9] A.N. Mody, M.R. King, Three-dimensional simulations of a platelet-shaped 
spheroid near a wall in shear flow, Phys. Fluids 17 (2005) 113302.
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The rotational motion of inertia-free spheroids has been studied in a numerically
simulated turbulent channel flow. Although inertia-free spheroids were translated
as tracers with the flow, neither the disk-like nor the rod-like particles adapted
to the fluid rotation. The flattest disks preferentially aligned their symmetry axes
normal to the wall, whereas the longest rods were parallel with the wall. The
shape-dependence of the particle orientations carried over to the particle rotation
such that the mean spin was reduced with increasing departure from sphericity.
The streamwise spin fluctuations were enhanced due to asphericity, but substan-
tially more for prolate than for oblate spheroids. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4922864]

Understanding the dynamics of non-spherical particles suspended in turbulent flows is a key
in making advances in several engineering and environmental applications such as clouds in the
atmosphere, plankton dynamics in the ocean, combustion systems, and paper making, to name a
few. Non-spherical particles react on turbulent flow structures in complex ways which depend both
on particle shape and inertia. Inertia-free particles with size smaller than the Kolmogorov length
scale are expected to behave as tracers which passively follow the fluid motion, whereas inertial
particles will have trajectories different from those of tracer particles in the same flow field. A
bi-axial ellipsoid, i.e., a spheroid, is widely adopted to closely represent non-spherical particles and
the shape of a spheroid is readily parameterized by the aspect ratio λ = 2b/2a defined as the ratio
between the symmetry axis and the two equal axes.

The dynamics of inertia-free spheroidal particles in homogeneous isotropic turbulence has been
subject to several numerical studies1–6 and also a few experimental investigations.7–9 It has been
observed that disk-like particles tumble more than rod-like particles.4,5,7,8 Rod-like particles pref-
erentially align with the fluid vorticity vector and the vorticity component along the rod axis does
not contribute to their tumbling.2,3,6,7 In contrast to the rod-like particles, disks align perpendicular
to the fluid vorticity vector and this preferential orientation results in higher tumbling rates.5,9 The
Lagrangian fluid stretching in turbulence aligns the major axis of an anisotropic particle with the
fluid vorticity.6 The variance of the total rotation rate of a spheroidal particle is almost independent
of the particle shape.4 Strong effects of particle shape on tumbling and spinning were reported
for small deviations from spherical shape in the range of 0.1 < λ < 10. The particle rotation rates
turned out to be almost insensitive to the changes in particle shape outside of this interval.4

Recently, orientation statistics, settling velocities,10 and collision rates11 of inertial spheroids in
decaying isotropic turbulence were reported from direct numerical simulations (DNSs). However,
the majority of previous studies on dynamics of inertial spheroidal particles have been performed in
turbulent channel flows. In particular, the dynamical behaviour of inertial rod-like particles has been
explored by means of DNS along with the Lagrangian point-particle methodology.12–17 The orien-
tational and rotational dynamics of inertial disk-like particles in channel flow turbulence have only
very recently been reported.18 In all these studies, the spheroidal particles were characterized by the
aspect ratio λ and a Stokes number, St, based on the viscous time scale. For St ≤ 1, the orientation
of rod-like particles (λ > 1) was essentially independent of the particle inertia17 and the particles
almost passively followed the fluid motion. Most earlier studies focused on spheroids with little
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(0 < St ≤ 1) and moderate (1 < St < 100) inertia. Inertia effects on particle dynamics were substan-
tial for St > 1, whereas shape effects were significant for St ≤ 1. The orientation of inertia-free
rods St = 0 has been addressed by means of alternative approaches based on a Fokker-Planck-type
equation19 or second-moments of the fiber orientation vector20 and a detailed comparison between
these two methods was made by Gillissen et al.21

This letter presents results for inertia-free spheroidal particles suspended in a turbulent chan-
nel flow. Although the inertia-free spheroids passively translate along with the fluid, the particle
orientation and rotation strongly depend on the particle shape. Earlier studies have focused on either
prolate (λ > 1) or oblate (λ < 1) inertial spheroids. In the present study of inertia-free spheroids, a
wide range of aspect ratios from 0.01 to 50, i.e., from flat disks to long rods, is covered for the first
time in order to provide a comprehensive coverage of the shape effects on the particle dynamics.

We adopt an Eulerian-Lagrangian approach to study the dynamics of inertia-free spheroidal
particles suspended in a fully developed turbulent channel flow. The continuous fluid phase is
governed by the incompressible Navier-Stokes equations that are integrated numerically in a DNS
approach with the same Navier-Stokes solver as in our earlier studies.13,16

Inertia-free spheroidal point-particles are suspended in the continuous fluid flow similarly as in
several earlier studies.12–18 The translational motion of the spheroids coincides with the fluid flow
and the rotational motion adjusts such that the Jeffery-torques22 vanish exactly, i.e.,

ω′x = −ΛS′yz + Ω
′
x,

ω′y = ΛS′xz + Ω
′
y,

ω′z = Ω
′
z.

(1)

This set of equations demonstrates the coupling between the particle rotation vector ω′i, fluid rota-
tion vector Ω′i, and the fluid strain rate tensor S′i j. The shape parameter Λ = (λ2 − 1)/(λ2 + 1) is
a measure of the degree of asphericity and Λ = 0 for spheres. Equation (1) is formulated in the
particle frame-of-reference x′ = ⟨x ′, y ′, z′⟩ with origin at the particle center of mass and coordinate
axes aligned with the principal directions of inertia.

The frictional Reynolds number based on the channel half-height h and the friction velocity uτ
is Reτ = 180. The friction velocity is defined in terms of the wall shear stress τw as uτ = (τw/ρ)1/2,
where τw is proportional with the prescribed driving mean pressure gradient. All variables are
normalized by viscous scales for velocity (uτ), length (ν/uτ), and time (ν/u2

τ). The size of the
computational domain is 12h × 6h × 2h in the streamwise, spanwise, and wall-normal directions,
respectively, and 192 grid points are used in each direction. The grid resolution in the streamwise
and spanwise directions becomes ∆x+ = 11.3 and ∆y+ = 5.6, while the non-uniform grid spacing in
the wall-normal direction varies from ∆z+ = 0.9 next to the walls to 2.86 in the channel center. The
time integration is performed with a constant time step ∆t+ = 0.036. Periodic boundary conditions
are used in the two homogeneous directions and no-slip and impermeability conditions are imposed
at the channel walls.

The suspension of spheroids is assumed to be dilute and the particle size is smaller than the
Kolmogorov length. These assumptions justify the one-way coupled simulation where the feedback
from the spheroidal particles on the fluid phase is ignored as well as neglection of particle-particle
collisions and the use of the Jeffery torques. Particle-wall collisions are fully elastic so that a spheroid
keeps its linear and angular momentum in the two homogeneous directions after a collision. A colli-
sion occurs every time the center of a spheroid comes closer to the wall than a distance equal to the
semi-axis a. Simulations of inertia-free spheroids (St = 0) are performed for seven different particle
shapes λ = 0.01, 0.33, 0.5, 1, 3, 10, and 50 all with a+ = 0.36. At time t+ = 0, 500 000 spheroids of
each shape are randomly injected into the same turbulence field. Orientational and rotational particle
statistics are computed by averaging instantaneous data in time between 720 ν/u2

τ and 2520 ν/u2
τ and

also in the homogeneous streamwise and spanwise directions. Particle-wall collisions are rare with
only about 5 collisions with each of the walls during a viscous time unit (ν/u2

τ).
Inertia-free spheroidal particles translate passively along with the local fluid irrespective of par-

ticle shape. However, the shape parameterized by λ orΛ has a strong influence on particle orientation
and the rotation dynamics, as illustrated by the instantaneous plots in Figure 1. In contrast to the
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FIG. 1. Instantaneous distribution of rod-like particles with aspect ratios (a) λ= 50 and (b) λ= 3 and disk-like particles with
aspect ratios (c) λ= 0.5 and (d) λ= 0.01. The spheroidal particles are projected into the (x, z)-plane and the shape reflects the
particle orientation and colour-coding indicates the particles’ spanwise angular velocity ωy normalized by the viscous time
scale.

preferential concentration of inertial spheroids,13,16,18 the present inertia-free particles are uniformly
distributed across the channel. Randomly orientated spheroids can be observed in the central region
of the channel and attributed to the almost isotropic fluid vorticity.23 The shape effect becomes essen-
tial away from the core region of the channel and, in particular, in the near-wall regions where the
vorticity field is highly anisotropic. The preferential orientation of the rod-like particles in Figures 1(a)
and 1(b) is qualitatively different from the preferential orientation of the disk-like particles in Figs. 1(c)
and 1(d). The longest rods with aspect ratio λ = 50 exhibit a strong preferential alignment in the
streamwise direction which is hardly observed for λ = 3. Similarly, disks with λ = 0.01 show a strong
preferential orientation with their symmetry axis in the wall-normal direction and this tendency is
also reduced for λ = 0.5. The colour-coding reveals that the highest rates of spanwise rotation occur
in the vicinity of the channel walls, obviously associated with the high level of fluid vorticity. To
further address the role of the particle shape on the particle dynamics, orientational and rotational
statistics are presented next.

The variations of the absolute values of the mean direction cosines from the wall to the channel
center are shown in Figure 2 for the entire range of aspect ratios from λ = 0.01 to 50. A direction
cosine cosθi is defined as the projection of the particle orientation unit vector onto the xi-direction.
Throughout the viscous sub-layer and the buffer layer which extends to z+ ≈ 30, rod-like particles
are orientated distinctly different from disk-like particles. It can be observed from Figure 2(a)
that the preferred orientation of the spheroids varies monotonically from misalignment towards
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FIG. 2. The mean absolute values of the direction cosines ⟨|cosθi |⟩ for seven different particle aspect ratios λ. (a) Streamwise
direction, (b) spanwise direction, and (c) wall-normal direction.

alignment in the streamwise direction as the aspect ratio increases from 0.01 to 50. The flattest
disks (λ = 0.01) are preferentially orientated perpendicular to the flow direction, whereas the longest
rods with λ = 50 are preferentially aligned with the mean flow. The opposite trend is observed in
Figure 2(c), which shows that the flattest inertia-free disks preferentially align their symmetry axes
normal to the wall. This tendency is gradually weakened as the flatness is reduced and the shape
approaches that of a sphere. This finding is consistent with an observation made by Gustavsson
et al.5 that inertia-free disks in homogeneous isotropic turbulence preferentially align their symmetry
axes orthogonal to the fluid vorticity vector. However, Challabotla et al.18 reported that inertial disks
exhibited a strong preferential orientation in the spanwise direction, i.e., |cosθy | ≈ 1, whereas the
flattest disks (λ = 0.01) with only modest inertia (St = 1) surprisingly exhibited a strong preference
for wall-normal orientation, i.e., in keeping with |cosθz | ≈ 1 for the present inertia-free disks.

Less clear-cut variations are seen in Figure 2(b). Rod-like spheroids in the viscous sub-layer
z+ < 5 exhibit a preferential orientation in the spanwise direction for moderate aspect ratios λ = 3 and
10, whereas the longest rods mostly align themselves in the streamwise direction. These observations
for inertia-free spheroids agree with earlier findings13,14,17 for low-inertia rod-like particles (St ≤ 1).
In the core region of the channel, however, |cosθx | ≈ |cosθy | ≈ |cosθz | ≈ 0.5 irrespective of particle
shape. This suggests that both inertia-free rods and disks orient themselves randomly in the almost
isotropic vorticity field.

The strongly anisotropic fluid vorticity field in the near-wall region,23 in combination with the
preferential particle orientations observed in Fig. 2, makes the rotational dynamics of the spheroidal
particles crucially shape-dependent. The mean particle spin or angular velocity about the spanwise
axis is shown in Figure 3(a), whereas the mean spin in the two other directions is zero. An excep-
tionally strong shape effect on



ωy

�
is seen in the vicinity of the walls, but this shape dependency

gradually fades away outside of the buffer region. The spherical particles rotate faster than any of
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FIG. 3. Mean and fluctuating particle angular velocity components normalized by the viscous time scale. The corresponding
fluid vorticity components are shown as ♦ symbols. (a) Mean spanwise angular velocity



ωy

�
, (b) angular velocity

fluctuations in the streamwise direction rms(ω′x), (c) angular velocity fluctuations in the spanwise direction rms(ω′y), and
(d) angular velocity fluctuations in the wall-normal direction rms(ω′z).

the other particle shapes and the spinning of the inertia-free spheres inevitably matches the fluid
spin. The mean spin decreases with increasing asphericity Λ and the flattest disks (λ = 0.01) and the
longest rods (λ = 50) rotate substantially slower than the spheres. This phenomenon can be attributed
to their preferential orientation. The strong preferential orientation of highly aspherical spheroids,
i.e., |Λ| ≈ 1, makes the observed orientation and rotation in the viscous sub-layer qualitatively consis-
tent with spheroids in Jeffery orbits in linear shear flow. Voth24 argued that disk-shaped particles in
orbits that bring their symmetry axis near the wall-normal direction will spend a long time in this
orientation before tumbling. Here, we similarly observed that rod-like particles orbiting with their
symmetry axis almost aligned in the streamwise direction rarely tumble. The substantial reduction of
the mean spin of spheroids with high asphericity can therefore be attributed to Jeffery-like orbiting.

Figures 3(b)–3(d) show the shape dependence of the particle angular velocity fluctuations. The
distinct shape effects on the root-mean-square (rms) values gradually diminish with the distance from
the wall, as did the mean spin. From Figure 3(b), we observe that aspherical particles, i.e., λ , 1,
exhibit stronger fluctuations of the streamwise angular velocity ωx than spheres in the buffer region
and in the logarithmic region. This phenomenon cannot be caused by the particles’ preferential
sampling of low- or high-vorticity regions since the present inertia-free particles do not concentrate
preferentially but are evenly distributed throughout the fluid. From Figure 2(a), we learned that the
longer (λ ≥ 10) rod-like spheroids aligned in the streamwise direction. This preferential orientation
enables the high level of spin about the x-axis of the long rods as compared with the shorter λ = 3
particles and the oblate spheroids.

More complex shapes effects are observed in Figures 3(c) and 3(d). In general, however, the
spin fluctuations in the spanwise and wall-normal directions tend to decrease outside of z+ ≈ 15
with increasing asphericity Λ, i.e., as the rod-like particles become longer and the disk-like particles
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become flatter. The strong spin anisotropy observed in the near-wall region is obviously a combined
effect of the anisotropic fluid vorticity and the preferential particle orientation.

In this letter, orientation and rotation statistics of inertia-free spherodial particles in wall-bounded
turbulence have been reported. Seven different spheroidal tracers were considered, ranging from
oblate disk-like particles (λ = 0.01) to prolate rod-like particles with λ = 50. The flattest disks were
strongly aligned in the wall-normal direction, whereas the longest rods aligned themselves with the
wall. The inertia-free particles were evenly distributed across the channel, but the shape-dependence
of their preferred orientations carried over to their angular velocities. The strong mean spanwise
spin observed for spherical particles (λ = 1) decreased with increasing asphericity both for rod-like
and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin
anisotropies which exhibited a complex dependence on λ caused by the shape-dependent preferential
orientation of the spheroidal particles. The substantial reduction of the mean spin of spheroids with
high asphericity was attributed to Jeffery-like orbiting.

This study has been supported by the Research Council of Norway through research fellowships
to N.R.C. and L.Z.(Project No. 213917/F20 Turbulent Particle Suspensions) and grants of computing
time (Programme for Supercomputing). COST Action FP1005 is gratefully acknowledged.
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The effects of particle inertia, particle shape, and fluid shear on particle rotation are examined using
direct numerical simulation of turbulent channel flow. Particles at the channel center (nearly isotropic
turbulence) and near the wall (highly sheared flow) show different rotation patterns and surprisingly
different effects of particle inertia. Oblate particles at the center tend to rotate orthogonally to their
symmetry axes, whereas prolate particles rotate around their symmetry axes. This trend is weakened by
increasing inertia so that highly inertial oblate spheroids rotate nearly isotropically about their principle
axes at the channel center. Near the walls, inertia does not move the rotation of spheroids towards isotropy
but, rather, reverses the trend, causing oblate spheroids to rotate strongly about their symmetry axes and
prolate spheroids to rotate normal to their symmetry axes. The observed phenomena are mostly ascribed to
preferential orientations of the spheroids.

DOI: 10.1103/PhysRevLett.115.244501 PACS numbers: 47.55.Kf, 47.27.ek, 47.27.nd

Aspherical particles are encountered in many natural and
industrial processes: sediment transport in estuaries [1], ice
crystals in the atmosphere [2,3], pulp fibers in paper
making [4], and planktonic and swimming microorganisms
in the ocean [5,6]. Furthermore, all of these example
particles have non-negligible inertia, meaning that they
do not instantly adjust to equilibrium with the dynamic
behavior of the fluids in which they are embedded.
Previous studies have revealed the dynamics of inertia-

free aspherical particles in homogeneous isotropic turbu-
lence [7–14]. These have shown particles to preferentially
align with respect to fluid vorticity and/or strain, which
causes particle rotation to differ from that of fluid parcels,
even though the particles are noninertial. Specifically, rods
tend to align their symmetry axis with the local fluid
vorticity vector, which leads them to rotate preferentially
around their symmetry axis [9]. Disks align one of their
long axes with the local fluid vorticity, leading to minimal
rotation about their symmetry axis. In other words, “rods
spin and disks tumble” [13].
Inertial particles have been investigated in homogeneous

isotropic turbulence [15,16] and (more commonly) in
turbulent channel flow [17–22]. Analysis has focused on
particle clustering, turbophoresis, and particle motion. The
analyses of particle motion in channel flow have been
conducted entirely in the laboratory frame and have not
yet considered the interesting behavior that can be seen by
examiningparticlemotionwith respect to their principle axes.
These recent studies leave the following questions

unanswered: To what extent will particle inertia affect
the partition between tumbling and spinning in homo-
geneous isotropic turbulence? How does strong fluid shear
change the tumbling and spinning? Does the tumbling and
spinning of spheroids seen in isotropic turbulence also

occur in the nearly isotropic core region of a turbulent
channel flow? Finally, do aspherical particles orient pref-
erentially, and if so, where?
In this Letter, we, therefore, examine the motion of

aspherical inertial particles in turbulent channel flow with
respect to their local axes. Channel flow allows us to
examine the transition in behavior from nearly isotropic
turbulence at the channel center to highly sheared aniso-
tropic turbulence near the channel wall. In this flow, we
consider the combined effects of particle shape (from oblate
to prolate) and particle inertia. These results serve to extend
and unite the hitherto disparate studies of channel flow and
homogeneous isotropic turbulence.
Direct numerical simulation (DNS) with a pseudospec-

tral method was performed to simulate a turbulent channel
flow closely matching that of Kim et al. [23]. The flow is
periodic in streamwise (x) and cross-stream (y) directions
and has no-slip boundaries at the top and bottom walls. The
Reynolds number is based on the wall friction velocity (uτ),
and the channel half-height (h) is 180 [18,21]. We consider
two regions of the flow: a region near the channel center
(zþ ¼ 180), where turbulence is nearly homogeneous and
isotropic [24], and a region near the channel wall
(zþ ¼ 10), which is in the buffer layer. At this location,
the flow has a strong mean shear, large values for the
Reynolds shear stress -huwi, and the velocity fluctuation
magnitudes are maximized.
In the simulation, swarms of 500 000 noninteracting

particles of each type are randomly injected into the fully
developed turbulent channel flow at tþ ¼ 0 (tþ is normal-
ized by the wall-shear time scale νu−2τ ), and the statistics are
computed by averaging instantaneous data in homogeneous
directions over a time window of 7200 < tþ < 9000 for
inertial spheroids and 720 < tþ < 2520 for tracer
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spheroids. The particle motion is computed using a one-
way coupling scheme, in which Lagrangian particle paths
in the Eulerian DNS field are determined using Newtonian
mechanics. Forces and torques acting on a spheroid are
taken from Brenner [25] and Jeffery [26], respectively, who
give expressions assuming steady flow in the creeping flow
regime. These drag-type forces are the only ones consid-
ered in the present study; gravity, added mass force, and
history force are considered second order in importance.
All particle dimensions are smaller than (or on the order of)
the Kolmogorov length scale. The numerical methods and
validation are described in Ref. [18] for prolate spheroids
and Ref. [21] for oblate spheroids.
The translational Stokes numbers (St) are derived based

on a particle time scale (τ) that assumes isotropic particle
orientation relative to the ambient flow [18,21,27]:

τ ¼

8
>>><

>>>:

2Da2
9ν

λfπ−2tan−1½λð1−λ2Þ−1=2�g
2ð1−λ2Þ12 λ ≤ 1

2Da2
9ν

λ ln

h
λþ

ffiffiffiffiffiffiffiffiffiffi
ðλ2−1Þ

p i

ffiffiffiffiffiffiffiffiffiffi
ðλ2−1Þ

p λ ≥ 1

; ð1Þ

where D is the density ratio between particle and fluid, and
the aspect ratio λ ¼ 2c=2a is the ratio between the
symmetry axis (length 2c) and the two equal axes (length
2a). Particles are selected to sample a range of λ values,
from 0.01 (oblate) to 50 (prolate). For each λ value, three
different particle densities are considered in order to sample
a range of translational Stokes numbers. The Stokes
numbers are set to zero, 0.074, and 2.222 (based on the
Kolmogorov time scale τη at the channel centerline) or,
equivalently, to zero, 1, and 30 (based on the channel wall-
shear time scale).
The rotational Stokes numbers differ from the transla-

tional ones, because the time scale over which a particle
reaches rotational equilibrium with the surrounding flow
depends on the moment-of-inertia tensor. A first-order
calculation of rotational response time can be made by
considering a flow with zero fluid strain and using the

steady-flow torque equations of Jeffery [26] to examine a
particle approaching equilibrium with the local flow. From
this, we see that spheroids approach rotational equilibrium
faster than they approach translational equilibrium, regard-
less of particle shape and which principle axis is being
considered. For example, given three spheroids with
identical translational relaxation times τ that are coming
to rotational equilibrium about their symmetry axis (z0), a
prolate spheroid (aspect ratio λ ¼ 10) will come to rota-
tional equilibrium in 0.13τ, a sphere (aspect ratio λ ¼ 1) in
0.3τ, and an oblate spheroid (aspect ratio λ ¼ 0.1) in 0.4τ.
Let ωi and Ωi denote the angular velocity of a particle

and a fluid element, respectively. We decompose the
particle enstrophy (hωiωii) into “spin” and “tumbling”
components, where spin describes only the rotation about a
spheroid’s symmetry axis (z0) as hωz0ωz0 i, and tumbling
describes rotation about the other two axes (x0 and y0) as
hωx0ωx0 i þ hωy0ωy0 i. We observe from Fig. 1(a) that for
St ¼ 0 particles at the channel center, oblate spheroids
tumble more than prolate spheroids; this result is consistent
with the previous findings in homogeneous isotropic
turbulence [9–11,13]. The other results in Fig. 1 show that
inertia reduces particle enstrophy and makes rotation more
isotropic with respect to the particles’ principle axes, i.e.,
weakening the tendency of disks to preferentially tumble
and rods to preferentially spin. Figure 1(c) also shows that
local fluid enstrophy decreases with increasing particle
inertia, indicating that inertial spheroids preferentially
sample regions of low fluid vorticity, in contrast to tracers
which are distributed randomly.
Spheroids’ tendency to emphasize specific components

of rotation can be explained by examining their orientation
relative to fluid vorticity; the inner product between a
particle’s orientation vector and the local fluid vorticity
vector yields an angle α shown in Fig. 2 for the nearly
isotropic channel center. For St ¼ 0 particles, the results
replicate previous observations [8–14] for disks and rods.
Disks tend to align with their symmetry axis (z0) orthogonal
to the fluid vorticity, causing strong tumbling [8–14] and
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FIG. 1 (color online). Channel-center results of (a) tumbling components, (b) spinning component, and (c) total particle enstrophy
versus aspect ratio λ. Tumbling (a) has a strong response to inertia for disks and a weak response to inertia for rods. Spinning (b) has a
weak response to inertia for disks and a strong response to inertia for rods. The black lines and thick red lines (c) represent the particle
enstrophy hωiωii and the fluid enstrophy hΩiΩii sampled by the particles (Eulerian fluid enstrophy is 0.247τ−2η ), respectively. Star
quantities are normalized with Kolmogorov time scale τη; symbols in (a) are laboratory data by Parsa et al. [9] and Marcus et al. [10].
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weak spinning [11,13]. Rods align parallel to local vorticity
[8,10–14] and, thus, spin along with it. The most recent
studies [12–14] also showed that the preferential alignment
of the major axis of tracer spheroids in the direction of the
fluid vorticity vector arises because both independently
tend to align with the strongest Lagrangian stretching
direction. This alignment effect becomes slightly stronger
for particles with greater departure from sphericity, which
can be seen by comparing corresponding lines between
Figs. 2(a)and 2(b).
Increased particle inertia weakens the alignment effect

for all shapes studied, making rods less likely to emphasize
spinning and disks less likely to emphasize tumbling
(Fig. 1). This tendency could be caused by two mecha-
nisms. First, when inertial spheroids avoid sampling
regions of strong vorticity [see Fig. 1(c)], they also avoid
regions where they will experience strong alignment,
because strain-vorticity alignment is strongest in the
presence of strong vorticity [12,13]. Second, because
inertial particles do not follow the flow passively
[20,28,29] (even an inertial sphere does not rotate along
with the local fluid rotation [28]), it is likely that spheroids’
inertia induces a temporal filter on the rotational motion

and, thus, prevents the particle from extracting all available
vorticity from the flow. Roughly, inertial spheroids will not
align with or rotate along with motions whose duration is
less than the particle relaxation time, which leads to less
alignment and less emphasis on either tumbling or
spinning.
Results for the near-wall region (zþ ¼ 10) are seen in

Fig. 3, which is analogous to Fig. 1 but shows very different
behavior. Weakly inertial (St ¼ 0 and 1) disks tumble,
especially when their aspect ratio is near 1, but they also
exhibit a fair amount of spinning as well. Strongly inertial
disks almost exclusively spin. Short and weakly inertial
rods almost equally spin and tumble, and the amount of
spinning increases with length. As inertia increases, both
short and long rods emphasize tumbling more than spin-
ning, which indicates that the inertia effect is more
dominant than the shape effect.
Similar to the case of the channel center, particle ens-

trophy near the wall [black lines in Fig. 3(c)] is less than
that of the surrounding fluid [thick red lines in Fig. 3(c)].
Unlike the channel center, however, near-wall particle
enstrophy is strongly dependent on shape. Stronger aspher-
icity leads to lower particle enstrophy. The effect of inertia

FIG. 2 (color online). Channel-center distributions of particles’ instantaneous alignment α with local fluid vorticity for (a) moderate
asphericity and (b) extreme asphericity. Solid lines are inertia-free; dashed lines are inertial. Blue lines with diamond symbols are disks,
red lines with circle symbols are rods, and green lines with triangle symbols are spheres.
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FIG. 3 (color online). Near-wall results of the (a) tumbling and (b) spinning component of particle enstrophy and (c) total particle and
fluid enstrophy. The black lines and thick red lines (c) represent the particle enstrophy hωiωii and the fluid enstrophy hΩiΩii sampled by
the particles, respectively. Plus quantities are normalized by ν−2u4τ.
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in the near-wall region (enstrophy increasing with particle
inertia) is opposite to the case seen at the channel center
(enstrophy decreasing with particle inertia). The thick red
lines in Fig. 3(c) provide a partial explanation of this effect,
showing that particle inertia causes spheroids to preferen-
tially sample high-vorticity flow structures in the near-wall
region. Such preferential sampling is related to particle
clustering, and near-wall clustering has been discussed
previously in the literature [20].
The preferential sampling seen near the wall is opposite

to that at the channel center, suggesting that different
mechanisms dominate particle clustering in isotropic tur-
bulence than in highly sheared near-wall turbulence.
Because both types of preferential sampling are shape
independent [the thick red lines are nearly flat in Figs. 1(c)
and 3(c)], our data suggest that the strong shape depend-
ence of particle enstrophy in the near-wall region is caused
by more than particle clustering. To explain this behavior,
we examine spheroid alignment relative to local vorticity
(Fig. 4). When their inertia is increased, disks will switch
from perpendicular (St ¼ 0) to parallel (St ¼ 30) alignment
relative to fluid vorticity [21] and, therefore, emphasize
spinning induced by the mean fluid shear [Fig. 3(b)]. A
similar effect is seen for rods: when their inertia is
increased, rods switch from parallel (or partly parallel)
[19,20,30] to perpendicular alignment relative to vorticity,
thereby emphasizing tumbling [Fig. 3(a)].
Alignment between spheroids and fluid vorticity is

caused by a different mechanism near the wall than in
the channel center. Near the channel wall, the large mean
velocity gradient dhUi=dz provides a strong mean vorticity
in the cross-stream y direction, and the local turbulence
field is anisotropic, with vorticity fluctuations being
strongest in the y direction and weakest in the x direction
[23,24]. Recent work on the rotational dynamics of a single
oblate spheroid in a uniform shear flow revises the concept
of Jeffery orbits to show that an inertial disk eventually
rotates in the shear plane irrespective of its initial conditions
[31]. Similarly, a prolate spheroid drifts towards rotation in

the x-z plane [32]. Similar behaviors of inertial spheroids
(St ¼ 30) in wall turbulence are observed here; i.e., disks
emphasize spinning in the x-z plane (aligned with the
vorticity vector), whereas rods emphasize tumbling in the
x-z plane (aligned normal to the vorticity vector). These
observations suggest that inertial spheroids in near-wall
turbulence behave just like those in a linear shear flow. The
likely reason is that the inertial spheroids filter the effect of
small-scale turbulent fluctuations and only respond effec-
tively to the largest flow structures and the mean shear. In
other words, inertia causes the mean-shear effect to
dominate the rotational dynamics of inertial spheroids in
wall turbulence.
Tracer spheroids in the wall region, in contrast to inertial

spheroids discussed above, exhibit more complex rotational
dynamics, and their preferential alignment is caused by
other mechanisms. First, we observe from Fig. 4(b) that
inertia-free spheroids tend to align with their symmetry axis
normal to the vorticity vector, typically in the streamwise
direction. This preferential alignment is consistent with
numerical [18–22] and experimental findings [30] in wall
turbulence. However, the preferential orientation of the
St ¼ 0 spheroids in the near-wall region cannot explain the
emphasized tumbling or spinning; e.g., both tracer disks
and rods only weakly tumble [Fig. 3(a)] even though they
both align [Fig. 4(b)] normal to mean vorticity vector. This
observation suggests that an inertia-free spheroid does not
respond efficiently to mean shear. Recently, Voth [33]
argued that a weakly inertial oblate spheroid aligned near
the wall-normal direction will spend a long time in this
orientation before tumbling. Challabotla et al. [34] sim-
ilarly observed that prolate tracers with their symmetry axis
almost aligned in the streamwise direction rarely tumble,
and the observed orientation and rotation of tracer sphe-
roids in the viscous sublayer was qualitatively consistent
with spheroids in Jeffery orbits in linear shear flow. Thus,
we conclude that the weak tumbling and spinning for
inertia-free spheroids with a high aspect ratio can be
attributed to Jeffery-like orbiting. However, the mechanism

FIG. 4 (color online). Near-wall distributions of particles’ instantaneous alignment α with local fluid vorticity for (a) moderate
asphericity and (b) extreme asphericity. Solid lines are inertia-free; dashed lines are inertial. Blue lines with diamond symbols are disks,
red lines with circle symbols are rods, and green lines with triangle symbols are spheres.
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that aligns such particles preferentially in that orientation
remains an open question.
A possible explanation for the preferential alignment is

suggested by recent findings concerning preferential align-
ment of a spheroid’s major axis in the Lagrangian strongest
stretching direction in homogeneous isotropic turbulence
[12,13]. Lagrangian coherent structures (LCSs) [35] act as
organizers of transport in fluid flows having a clear impact
on the particle trajectories [36]. Near-wall LCSs have been
studied in channel flow turbulence [36–38] and “curved
legs” of the coherent streamwise structure inclined in the
streamwise direction with about 20° were reported [38]. In
the present study, the major axis of the inertia-free
spheroids and the near-wall quasistreamwise vortices’
vector are both almost aligned in the streamwise x
direction. Just as in the channel center, this preferred
alignment of the spheroids with the quasistreamwise
vortices makes disks tumble more than spin and rods spin
more than tumble. We, therefore, hypothesize that the light
spheroids are captured by, and partially move along with,
the coherent vortices in the wall turbulence and, therefore,
preferentially align in the streamwise direction.
In conclusion, we have explored rotation about the

principle axes of spheroids suspended in turbulent channel
flow. In the channel center, we have found that inertia-free
spheroids were tumbling and spinning just as in homo-
geneous isotropic turbulence [9,10], whereas inertia
reduced the preferential spinning or tumbling and led to
a more isotropic rotation. This observation is likely caused
by preferential clustering of the inertial spheroids in low-
vorticity regions and inertial filtering of the local vorticity.
Spheroids in the wall region are affected both by mean

shear and anisotropic fluid vorticity, and their rotational
behavior is totally different from at channel center. We
argue that inertial spheroids respond strongly to the mean
shear, whereas inertia-free spheroids do not. The complex
rotation of these tracers is a consequence of the preferential
orientation of the inertia-free spheroids. We hypothesize
that the preferential orientation of these particles is caused
by interactions with the coherent vortex structures in wall
turbulence.
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H I G H L I G H T S

� Dynamics of inertial fibers in turbulent vertical channel flow has been investigated.
� Eulerian–Lagrangian methodology was adopted to simulate fiber orientation and motion.
� The drift velocity of the fibers towards the wall was substantially higher in downward flow.
� Suppressed drift velocity in upward flow resulted in a more uniform fiber distribution.
� Presence of gravity induced preferential alignment of inertial fibers with flow direction at the channel center.
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a b s t r a c t

In the present work, the dynamic behavior of inertial fibers suspended in a turbulent vertical channel
flow has been investigated. The three-dimensional turbulent flow field was obtained from the Navier–
Stokes equations by means of direct numerical simulation in an Eulerian reference frame. The fibers were
modeled as prolate spheroidal particles in a Lagrangian frame and characterized by their inertia and
shape. The translation and rotation of the individual fibers were governed by viscous forces and torques
as well as by gravity and buoyancy according to Newton’s laws of motion. The test matrix comprised four
different Stokes numbers (inertia) and three different aspect ratios (shape). The twelve different fiber
types were suspended both in a downward and in an upward channel flow. Fiber orientation and velocity
statistics were compared with channel flow results in absence of gravity.

The results showed that gravity has a negligible effect for fibers with modest inertia, i.e. low Stokes
numbers, whereas gravity turned out to have a major impact on the dynamics of highly inertial fibers.
Irrespective of the bulk flow direction, a preferential alignment of the inertial fibers with the gravity force
was found in the channel center where fibers have been known to orient randomly in absence of gravity.
In the downward channel flow, the drift velocity of the fibers towards the walls was substantially higher
for fibers than for spheres and also higher than when gravity was neglected. In the upward flow con-
figuration, the modest drift velocity of inertial spheres was totally quenched for all fibers irrespective of
shape. The suppressed drift velocity resulted in a more uniform fiber distribution throughout the channel
as compared to the distinct near-wall accumulation in downward flow and in absence of gravity. This
suggests that an upward flow configuration should be the preferred choice if a uniform fiber distribution
is desired, as in a biomass combustion reactor.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Turbulent suspension flows of non-spherical particles occur in
many industrial, environmental, and biological applications such
as in paper making processes (Lundell et al., 2011), fluidized bed
reactors (Loranger et al., 2009), biomass combustion (Ma et al.,
2007), aerosol transport (Kleinstreuer and Feng, 2013), pneumatic
conveying (Hilton and Cleary, 2011), and phytoplankton transport

in the ocean (Guasto et al., 2012). Studies of the dynamics of non-
spherical particles in turbulent flows play an important role in the
advancement of design of industrial processes and better under-
standing of natural processes. In the literature there exists a large
number of studies focusing on spherical particle suspensions in
wall-bounded turbulent flows (Kulick et al., 1994; Marchioli et al.,
2007; Marchioli and Soldati, 2002; Maxey and Riley, 1983; Mor-
tensen et al., 2007; Nilsen et al., 2013; Rouson and Eaton, 2001).
Non-spherical particles suspended in fluid turbulence have re-
ceived considerably less attention compared to suspensions of
spherical particles. In the majority of applications, the non-sphe-
rical particle can be closely approximated by a regularly-shaped
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axi-symmetric particle, notably a spheroidal particle which is
characterized by its shape and inertia quantified by the aspect
ratio λ and the response time τp, respectively. Following the
seminal mathematical analysis by Jeffery (1922) for an ellipsoidal
particle suspended in a creeping flow, several researchers (Bren-
ner, 1963, 1964; Gallily and Cohen, 1979; Harper and Chang, 1968)
have contributed to the advancement of the theory related to the
translational and rotational motion of spheroidal particles in shear
flows. In all these studies Stokes-flow conditions were assumed
around the particle and both the effects of fluid and particle inertia
were thus neglected. Lin et al. (2003) summarized the work re-
lated to the dynamics of non-spherical particles in laminar shear
flows. In the absence of fluid inertia, particle inertia results in a
drift towards tumbling of rods with modest inertia (Lundell and
Carlsson, 2010; Subramanian and Koch, 2006) whereas spinning is
observed for heavy rods (Lundell and Carlsson, 2010; Nilsen and
Andersson, 2013). Computer simulations using a lattice Boltzmann
method were used to identify different rotational states of a
spheroidal particle as a function of the particle Reynolds number
Rep¼Gd2ν�1 based on the equatorial diameter d and the shear rate
G (Huang et al., 2012; Qi and Luo, 2003; Rosén et al., 2014; Yu
et al., 2007). Recently Rosén et al. (2015) reported the different
rotational states observed for a prolate spheroidal particle due to
the combined effects of fluid and particle inertia.

The dynamics of non-spherical particles in turbulent flows is
exceedingly more complex than in laminar shear flows. The pre-
vailing approach has been to consider the motion of spherical
particles and how they concentrate themselves in the turbulent
environment. Recently there is an increased focus on the under-
standing of the behavior of non-spherical particles in turbulent
flows. The dynamics of non-spherical particles in homogeneous
isotropic turbulence have been explored in experimental in-
vestigations (Bellani et al., 2012; Ni et al., 2015; Parsa et al., 2011)
and computational studies (Byron et al., 2015; Fan and Ahmadi,
1995; Gustavsson et al., 2014; Marcus et al., 2014; Ni et al., 2014;
Olson, 2001; Parsa et al., 2012; Shin and Koch, 2005).

Experimental studies on non-spherical particles in wall-boun-
ded turbulent flows are scarce (Abbasi Hoseini et al., 2015). Yin
et al. (2003) and Zastawny et al. (2012) developed a methodology
for modeling the dynamics of non-spherical particle-laden flows
by assuming shape and orientation dependent drag and lift-force
correlations. Later this methodology has been adopted by Njo-
buenwu and Fairweather (2014, 2015) to investigate the influence
of a wide range of particle shapes and inertia on the translational

and rotational behavior of ellipsoidal particles in wall-bounded
turbulent flows. More accurate direct numerical simulations
(DNSs) of the turbulent flow field coupled with a Lagrangian
point-particle tracking methodology were successfully employed
by some different research groups to investigate the dynamics of
non-spherical inertial particles in wall-bounded turbulent flows.
Zhang et al. (2001), and later followed by several others (Challa-
botla et al., 2015; Marchioli et al., 2010; Mortensen et al., 2008a, b;
Zhao and van Wachem, 2013; Zhao et al., 2015) focused on the
orientation, transport, and deposition of fibers suspended in a
turbulent channel flow over a wide range of particle parameters
(aspect ratio λ and inertia τp). The fiber inertia resulted in accu-
mulation of fibers in the near-wall region and preferential con-
centration in the low-speed streaks which characterize wall tur-
bulence. The fibers in the near-wall region moreover tended to
preferentially orient themselves in the streamwise direction and
this tendency increased with aspect ratio. A first attempt towards
fully-resolved simulations of finite-size rod-like particles sus-
pended in a turbulent channel by means of a lattice Boltzmann
approach was recently reported by Do-Quang et al. (2014).

The role of gravity is believed to be of practical importance in
fiber-suspended turbulent flows. In all industrial applications and
experimental studies gravity is inevitably present, but in most of
the abovementioned computational investigations the gravity
force has been neglected. For example in bio-mass combustion
reactors, as depicted in Fig. 1, the injection of biomass fibers either
from the top or the bottom might have significant effect on the
influence of the combustion efficiency. In order to optimize the
reactor design, it is essential to better understand the fiber dy-
namics in different gravity configurations. Only a few systematic
investigations have been carried out with the view to understand
the effect of gravity on the dynamics of particle-laden turbulent
flows. Gravity effects on spherical particle dispersion and deposi-
tion via the crossing trajectory mechanism in a vertical pipe flow
were reported by Uijttewaal and Oliemans (1996). A comprehen-
sive and systematic study of gravity and lift force effects on
spherical particle velocity and deposition statistics in a turbulent
vertical channel flow were reported by Marchioli et al. (2007).
Recently, Nilsen et al. (2013) showed that gravity has a significant
influence on the slip velocity of inertial spheres. The statistics
deduced for the heaviest spherical particles were strongly de-
pendent on the actual gravity configuration. Zhang et al. (2001)
studied transport and deposition of ellipsoidal particles in a tur-
bulent channel flow and observed strong effects of gravity at low

Fig. 1. Two qualitatively different types of entrained flow gasifiers: (a) side feed reactor, and (b) top feed reactor (adapted from Basu (2010)).
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shearing velocities. Preliminary results from large-eddy simula-
tions (LESs) of a vertical channel flow suspended with needle-like
and disk-like particles were very recently presented by Njo-
buenwu and Fairweather (2014). With the view to accurately
predict the particle deposition rate they included a stochastic term
to represent Brownian motion and a dispersion term to account
for the sub-grid-scale motions of the unresolved turbulence. The
orientation and settling velocity statistics over a wide range of
ellipsoidal particles in decaying isotropic turbulence were re-
ported by Siewert et al. (2014).

The computational investigations of inertial fiber-like particles
embedded in a turbulent channel flow showed distinct pre-
ferential concentrations and preferential orientations of the elon-
gated particles which depended on fiber inertia and fiber shape
and varied from the wall regions to the core of the channel.
However, the presence of gravity was systematically neglected
although a gravity force is likely to de-correlate the fiber from the
local fluid velocity and either accelerate or decelerate the inertial
fibers depending on whether the bulk flow is up or down, i.e.
against or along the gravity direction. The present investigation is
an extension of the earlier studies by Mortensen et al. (2008a,
2008b) and Zhao et al. (2014) in which the gravity force was ne-
glected. We now include gravity and buoyancy in the fibers’
equation of motion in order to perform a systematic study of
gravity effects on the fiber orientations, fiber velocities, and slip
velocities. The fibers will be characterized both by shape and in-
ertia. Some sample results were presented by Challabotla et al.
(2016). Now further results from simulations of upward flow and
downward flow in a vertical channel will be compared with results
from channel flow simulations in which gravity is neglected. We
thereby aim to address the obvious conjecture that inertial fibers
are affected oppositely in upward and downward flow
configurations.

2. Methodology

The dynamics of rigid fibers suspended in a turbulent vertical
channel flow is studied by adopting an Eulerian–Lagrangian ap-
proach. The viscous fluid is assumed to be incompressible, iso-
thermal, and Newtonian. The fluid flow in which the rigid fibers
are suspended is governed by continuity (mass conservation) and
the Navier–Stokes equations,

∂
∂ = ( )
u
x

0
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i

i

2

x, iii
ifjf

j i j j

u u up dP gu
t x x x x dx

 .

/w h
In the above equations ui is the component of the fluid velocity
vector in the xi-direction and p is the fluctuating pressure, while
ρf and μ are the density and dynamic viscosity of the fluid, re-
spectively. Here, the three coordinate directions xi ¼〈x, y, z〉 refer to
the streamwise, spanwise, and wall-normal directions, as shown in
Fig. 2. The last term in the momentum equation (2) represents the
driving mean pressure gradient and the gravity force per volume
unit. The mean pressure P is supposed to decrease in the stream-
wise x-direction so that the pressure gradient dP/dx o 0 drives the
flow in the positive x-direction which is either upwards (GU) or
downwards (GD) and corresponds to a negative or a positive gravity
force ρfg, respectively. In both cases the two driving forces are
balanced by the wall shear stress τw and h is half of the distance
between the two parallel channel walls.

The rigid fibers suspended in the continuous fluid are modeled
as prolate spheroidal point-particles with aspect ratio λ¼b/a 41
where a and b are the semi-minor and semi-major axes, respec-
tively. The particular case λ¼1 represents spherical particles. The
mathematical modeling of the spheroidal point-particles follows
the methodology outlined by Zhang et al. (2001) and subsequently
adopted by Mortensen et al. (2008a, 2008b) and Marchioli et al.
(2010). The translational and rotational motions of one single fiber
is governed by,

= ( )m
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wheremp is the mass of the fiber and ϵijk is the Levi-Civita alternating
or permutation tensor. Two different Cartesian frames of reference
are used. The translational motion of a fiber is governed by Newton’s
2nd law of motion (3), which is expressed in the inertial frame
xi¼ 〈x1, x2, x3〉 or 〈x, y, z〉 and the rotational motion is governed by
Euler’s Eq. (4), which is formulated in the fiber frame x ′i ¼〈x′1, x′2, x′3〉
with its origin at the fiber mass center and the coordinate axes
aligned with the principal directions of inertia. Thus, vi ¼ dxi/dt
denotes the translational fiber velocity in the inertial frame,
whereasω′i is the angular velocity of the fiber in the particle frame
and I′ij is the moment of inertia tensor for the spheroidal fiber.

Fig. 2. Gravity configurations: (a) no-gravity flow G0, (b) downward flow GD, and (c) upward flow GU.
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If the fibers are sufficiently small so that the neighboring flow
can be considered as Stokesian, the force Fi acting on a fiber can be
expressed as:

πμ δ= Δ ± − ( )
⎛
⎝⎜

⎞
⎠⎟F aK u

D
m g1

1
,

5i ij j p x i,

where Δuj¼uj�vj is the slip velocity defined as the difference
between fluid velocity uj at the fiber location and the fiber velocity
vj and D¼ρp/ρf is the ratio between the fiber and fluid densities.
Here, the resistance tensor Kij is represented in the inertial frame
and related to the resistance tensor K′ij in the fiber frame as
Kij¼At

ikK′klAlj where Aij denotes the orthogonal transformation
matrix which relates the same vector in the two different frames
through the linear transformation xi¼Aij x′j. The first term on the
right-hand side of Eq. (5) represents the hydrodynamic drag force
from the surrounding fluid acting on a non-spherical particle as
derived by Brenner (1964). This expression for the drag force is
valid only when the particle Reynolds number Rep is low such that
the force acting on the fiber is linearly dependent on the slip ve-
locity Δuj. The second term in Eq. (5) represents the gravity and
buoyancy forces. Just as in equation (2), positive and negative
gravity correspond to downwards (GD) and upwards (GU) flow,
respectively.

Similarly as the drag force in the first part of Eq. (5), the torque
′Ni in Eq. (4) is dependent on the relative angular velocity between

the fluid and the fiber, but also on the fluid strain-rates, i.e.
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The parameters α0, β0 and γ0 depend on the fiber aspect ratio λ.
Here, S′ij and Ω′i denote the fluid strain-rate tensor and rate-of-
rotation vector, respectively. These expressions were first derived
by Jeffery (1922) for an ellipsoidal particle in creeping flow.

The shape of a fiber is characterized by the aspect ratio λ,
whereas the ability of the fiber to adjust to the ambient flow field
can be estimated in terms of the fiber response time:
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where τp was defined by Shapiro and Goldenberg (1993) as a re-
presentative time scale of the translational motion of an ellipsoidal
particle. The Stokes number St is the non-dimensionalized fiber
response time based on the wall variables.

The flow is driven through a vertical plane channel by means of
a constant force which comprises the mean pressure gradient dP/
dx and gravity ρfg. The total driving force, i.e. the last term to the
right in equation (2), is exactly balanced by the wall-shear stress
τw. The frictional Reynolds number Reτ¼uτh/ν is defined in terms
of the wall-friction velocity τ ρ=τu /w f and the kinematic fluid
viscosity ν ¼μ/ρf .

The instantaneous turbulent flow field is obtained by integra-
tion of the governing Navier–Stokes equation (2) subjected to the
incompressibility constraint (1). For Reτ¼180 direct numerical si-
mulations are performed on a 12h�6h�2h computational do-
main with 192�192�192 grid points in the streamwise (x),
spanwise (y), and wall-normal (z) directions, respectively. In the
wall-normal direction the grid is refined towards the channel
walls such that Δzþ varies between 0.9 and 2.86. The grid re-
solutions in the two homogeneous directions are uniform with

Δxþ¼11.3 and Δyþ¼5.6. The time step used is Δtþ¼0.036.
Periodic boundary conditions are used in the homogeneous
streamwise and spanwise directions and no-slip and imperme-
ability conditions are imposed at the channel walls. The DNS sol-
ver used is same as that employed by Gillissen et al. (2007) and
Mortensen et al. (2008a, 2008b).

Along with the integration of the flow field Eqs. (1) and (2), the
equations for the translational (3) and rotational (4) motion of the
fibers are integrated in time with an explicit second-order accurate
Adams-Bashforth scheme. The time step used during the integra-
tion of the fiber equations is the same as that used for the Navier–
Stokes equations. The time rate-of-change of the four Euler para-
meters is obtained from the three components of the fiber angular
velocity ω′

i. After re-normalization, the new values of the Euler
parameters completely specify the fiber orientation, i.e. the angle
θi between the symmetry axis of a fiber and the xi-axis of the
inertial reference frame in which the fluid flow problem is for-
mulated (Eqs. (1) and (2)) and solved (Mortensen et al., 2008a).
Spatial derivatives in the two homogeneous directions are com-
puted with a pseudo-spectral method and in the wall-normal di-
rection the derivatives are computed by a second-order central
finite-difference method. The flow variables at a fiber location are
interpolated by means of a second-order quadratic interpolation
scheme. The particle boundary conditions are periodic in the two
homogeneous directions. Fiber-wall collisions are fully elastic, si-
milar to the collision model used by Marchioli et al. (2010) and
Zhao et al. (2014). This implies that a fiber keeps its linear and
angular momentum in the homogeneous directions upon touching
the wall. A collision is defined to occur every time that the dis-
tance from the center of mass of a fiber to the closest wall becomes
less than the semi-minor axis a. The present pragmatic model
gives probably an unrealistic representation of the orientation and
rotation states after a wall collision; see e.g. (Ozolins and Strautins,
2014; Zhao and van Wachem, 2013). An alternative collision de-
tection rule, for instance based on the impact of one tip of the fiber
with the wall, might yield quantitative differences for high-aspect-
ratio fibers.

In the present work it is assumed that the fiber suspension is
sufficiently dilute so that the one-way coupled Eulerian–La-
grangian approach can be justified, i.e. although the fiber motion is
affected by the fluid motion, the feedback from the fibers onto the
fluid is negligible. Moreover, particle-particle collisions are rare
and can also be neglected. In real situations, however, the flow
might be modulated by the presence of inertial particles in areas
with high particle concentrations. Attenuation or augmentation of
fluid turbulence depends on several factors, such as the density
ratio, the local volume fraction, and the particle size; see e.g.
Balachandar and Eaton (2010). The modulated turbulence field
may in turn affect the particle transport mechanisms, especially in
the near-wall region where relatively high particle concentrations
can be observed (Li et al., 2001; Zhao et al., 2013). However, the
present study is concerned with the effect of gravity on the dy-
namics of inertial fibers in channel flow turbulence. We therefore
neglect any potential effects of particle-fluid interactions and
confine ourselves to one-way coupled simulations.

Simulations are performed for fiber Stokes numbers St¼1, 5, 30
and 100 and aspect ratios λ¼1.001, 3 and 10. The density ratio D is
kept the same (D¼1000) for all the twelve different fiber classes,
whereas the semi-minor axis is varied, as shown in Table 1. The
mathematical expressions for the resistance tensor Kij in Eq. (5) and
the shape parameters α0, β0 and γ0 in Eq. (6) exhibit singularities for
λ¼1; see e.g. (Zhao et al., 2014). Particles with aspect ratio λ¼1.001
are therefore considered as representatives of spherical particles.
Detailed comparisons with earlier results for truly spherical particles,
for instance those of Mortensen et al. (2007), demonstrate a perfect
match with the present results for λ¼1.001.
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Following the work by Marchioli et al. (2007) for spherical
particles, the three different gravity configurations depicted in
Fig. 2 are considered for each of the twelve fiber classes: no gravity
(G0), downward flow (GD), and upward flow (GU). This amounts
to a total of 3x12 different cases. In each case 200,000 fibers are
tracked in the same turbulence field. Fiber statistics are computed
by averaging instantaneous data in time from tþ¼5400 to 10,800

and also in the homogeneous streamwise and spanwise directions.
In order to obtain reliable particle statistics, the present simula-
tions were run longer than in earlier studies of fiber suspension
flows to enable statistics to be gathered over 5400 viscous time
units. This time window compares favorably with the sampling
times used by others, e.g. 450 (Marchioli et al., 2007), 2880
(Mortensen et al., 2008a), and 1200 (Marchioli et al., 2010).

Table 1
The twelve different fiber classes considered (density ratio D¼1000). Prolate spheroids with aspect ratio λ¼1.001 represent spherical particles. The particle Reynolds number
is defined as Rep¼Deq〈ΔUx〉/ν, where Deq is the volume-equivalent fiber diameter.

Stokes number (St) Aspect ratio (λ) Semi minor axis (aþ) Channel averaged Rep Maximum Rep

GD G0 GU GD G0 GU

1 1.001 0.067 0.0038 0.0018 0.0043 0.0118 0.0083 0.0049
3 0.049 0.0082 0.0037 0.0091 0.0254 0.0174 0.0107
10 0.039 0.0099 0.0044 0.0110 0.0324 0.0220 0.0131

5 1.001 0.150 0.0162 0.0078 0.0213 0.0465 0.0291 0.0281
3 0.110 0.0410 0.0172 0.0456 0.1267 0.0735 0.0622
10 0.086 0.0514 0.0206 0.0558 0.1682 0.0945 0.1400

30 1.001 0.367 0.1002 0.0257 0.1303 0.1661 0.0501 0.1568
3 0.269 0.2547 0.0510 0.2879 0.5467 0.2011 0.3581
10 0.212 0.3126 0.0604 0.3362 0.7378 0.2391 0.4203

100 1.001 0.671 3.4228 0.6460 4.0427 5.2272 1.7165 4.6201
3 0.491 7.5210 1.3853 8.5917 14.0750 4.5420 9.9174
10 0.387 8.6628 1.6558 10.008 15.8340 5.5584 11.6150

Fig. 3. Statistically averaged particle number density distribution for (a) St¼1, (b) St¼5, (c) St¼30 and (d) St¼100. G0: no-gravity flow; GD: downward flow; and GU:
upward flow.
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3. Results and discussion

The main objective of this work is to present and discuss the
effects of gravity on the concentration, velocity and orientation
statistics of the rigid fibers suspended in upward (GU) and
downward (GD) vertical channel flow. The case without gravity
(G0) will serve as a reference. For the particular density ratio
D¼1000, the buoyancy force in Eq. (5) plays a negligible role
compared with the gravity force.

To better understand the gravity effects on the dynamics of the
fibers suspended in the turbulent channel flow, we first consider
the variation of averaged fiber number density Np as function of
the distance zþ to the wall, as shown in Fig. 3. Fiber number
density profiles are computed at different stages of the simulation
by adopting a bin size similar to that of the grid spacing Δz in
wall-normal direction (i.e. 192 bins) and by counting the number
of fibers in each bin all over the (x, y)-plane. The fiber number
density is normalized by the initial fiber number density. The four
panels shown in Fig. 3 are for increasing Stokes number St from
1 to 100, and each panel shows the effect of fiber elongation λ for
the three different gravity configurations. For the special case of
spherical particles (λ¼1), the gravity effects are significant only for
particles with StZ30. In the downflow configuration (GD) an in-
creased particle concentration is observed in the central region of
the channel when compared to that in the upflow configuration
(GU) and in absence of gravity (G0). This observation for spherical
particles is consistent with previous results reported by Marchioli
et al. (2007) and Nilsen et al. (2013). It should be noted that the
concentration of the more inertial fibers (StZ5) has not yet

reached a steady state, similarly as for spherical particles studied
by Marchioli et al. (2008).

In the absence of gravity, inertial fibers are drifting with rela-
tively high streamwise momentum from the center region of the
channel towards the wall region and accumulate in low-speed
streaks in the wall vicinity (Marchioli et al., 2010; Zhao et al.,
2014). This phenomenon results in an excess fiber concentration in
the near-wall region. The presence of gravity has apparently no
influence on the least inertial fibers (St¼1) and all the con-
centration distributions in Fig. 3(a) overlap except in the im-
mediate vicinity of the wall. One can observe, however, that the
flow direction relative to the gravity has a significant effect on the
fiber number density distribution for StZ5 and the effect is re-
markably stronger for fibers (λZ3) than for spheres (λ¼1). In-
deed, the particle number density for spheres with St¼5 in Fig. 3
(b) is totally unaffected by gravity whereas the Np–distributions for
fibers are not. It is also noteworthy that the fibers are more evenly
distributed in the upward flow than in the absence of gravity,
whereas a high fiber concentration is observed next to the wall in
the downflow case. For the most inertial fibers (St¼100), on the
other hand, the effect of gravity is reduced and so is the differences
between the elongated fibers and spheres. The trends observed for
fibers in the presence of gravity are different from the observation
for spherical particles reported by Marchioli et al. (2007) and
Nilsen et al. (2013). The differences in the fiber number density
(Np) distributions in the different flow configurations are believed
to affect other fiber statistics such as the fiber mean and fluctu-
ating velocity components and the fiber orientations. Such al-
terations will be considered in the following.

Fig. 4. Mean fiber 〈vx〉 and local fluid 〈ux〉 streamwise velocities for (a) St¼1, (b) St¼5, (c) St¼30 and (d) St¼100. G0: no-gravity flow; GD: downward flow; and GU: upward
flow.
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The variation of the mean streamwise fiber velocity 〈vx〉 from
the wall to the center of the channel is shown as a function of the
wall-normal coordinate zþ in the semi-logarithmic plots in Fig. 4.
Here, and in the following, all velocities are normalized with the
fluid frictional velocity uτ. The results for fibers without gravity
(G0) show an almost negligible effect of the aspect ratio and are in
close agreement with the results reported by Mortensen et al.
(2008a) and Marchioli et al. (2010). For Stokes number St¼1, the
mean fiber velocities are also practically unaffected by the pre-
sence of gravity, irrespective of whether the bulk flow is upwards
(GU) or downwards (GD). With increasing inertia, however, the
influence of the gravity force becomes gradually more important.
The inertial fibers clearly lead the fluid (solid line) in the downflow
case and lag behind the fluid in the upward flow. This is primarily
due to the increase of the settling velocity of a fiber in a fluid at rest
with increasing fiber inertia. The fiber velocity next to the wall is
always downwards, i.e. positive for downflow and negative for
upflow. Similar trends were reported for spherical particles by
Marchioli et al. (2007). These results suggest that the presence of a
gravity force strongly de-correlates the fiber velocity from the fluid
velocity for inertial fibers with St¼30 and 100. The effect of fiber
elongation on the mean velocity distributions is practically negli-
gible, except for the fibers in the viscous sublayer zþr10.

The mean wall-normal velocity 〈vz〉 of the fibers, the so-called
drift velocity, plays an important role in the fiber transfer me-
chanisms towards and away from the channel walls. Fig. 5 shows
profiles of the mean fiber wall-normal velocity, 〈vz〉, as a function
of the wall-normal coordinate, zþ . In absence of gravity, a modest
drift velocity can be observed and this drift velocity increases with
increasing fiber inertia and reaches a maximum for Stokes number

St ¼ 30. The presence of gravity is seen to have only a modest
influence on the drift velocity for spherical particles, whereas re-
markably strong effects are observed for the elongated particles
(λ41). Fibers in the downflow configuration experience a sub-
stantially larger drift velocity than the spheres and this phenom-
enon is most clearly pronounced for St¼30 where 〈vz〉 E 0.07. In
the upward flow configuration, on the contrary, the drift velocity
of the fibers are essentially zero, in contrast with the negative 〈vz〉
observed for spherical particles. The negligible drift velocity of the
fibers in the upflow configuration GU suggests that these fibers
have reached an almost statistically steady state of the fiber
number density Np shown in Fig. 3. Fibers in the downflow con-
figuration (GD), however, have a higher drift velocity towards the
channel walls which reflects an increased transport of fibers from
the core region and eventually a higher fiber number density in
the near-wall region, as shown in Fig. 3. Although the fiber con-
centration distributions in Fig. 3 are still in a transient stage, the
qualitative trends observed with respect to the effects of gravity,
inertia and shape are trustworthy. Irrespective of the ultimate fiber
distributions, however, the magnitudes of the observed drift ve-
locities in Fig. 5 are believed to decay asymptotically to zero if the
simulations were allowed to run even further.

Let us now proceed and look at the difference between the
fluid and the fiber velocities, i.e. the slip velocity Δui¼ui�vi stu-
died for instance by Mortensen et al. (2008a) and Zhao et al.
(2014). The mean velocity slip in the streamwise and wall-normal
directions are shown in Figs. 6 and 7, respectively. The mean
spanwise slip 〈Δuy〉 should be zero and this has been used to check
(not shown) that the sampling time used in the present study is
sufficient to produce reliable statistics. The streamwise mean slip

Fig. 5. Mean fiber wall-normal velocities 〈vz〉 for (a) St¼1, (b) St¼5, (c) St¼30 and (d) St¼100. G0: no-gravity flow; GD: downward flow; and GU: upward flow.
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〈Δux〉 in Fig. 6 is negative in the near-wall region and slightly
positive in the rest of the channel in absence of gravity. This shows
that the fibers lead the fluid near the wall and lag behind the fluid
in the core region. This effect increases with increasing inertia (St),
but is almost independent of shape (λ), similarly as already re-
ported by Mortensen et al. (2008a) and Zhao et al. (2014).

In the downflow configuration (GD), however, the mean
streamwise slip velocity 〈Δux〉 is negative throughout the entire
channel, irrespective of fiber inertia (St) and shape (λ). This is a
direct consequence of the settling velocity of the fibers which
implies that the fibers everywhere lead the fluid and thus ex-
perience a negative viscous drag force which opposes the gravity
force in Eq. (5). In the upflow configuration (GU), negative drag
persists only in the near-wall region when 〈Δux〉 remains negative
for low Stokes numbers and thus adds to the gravity effect. For
St¼30 and above, the mean slip is consistently positive even in the
wall vicinity. The viscous fluid therefore tends to drag the fibers
along in the positive upward direction and the Stokes drag thereby
opposes the gravity force. It is remarkable that the results in Fig. 6
are essentially independent of the aspect ratio. A shape effect can
be seen for zþo100. The modest shape-dependence is most
pronounced in downward flow where fibers (λ41) experience a
larger negative slip 〈Δux〉 than spheres (λ¼1).

We have observed a larger slip velocity in presence of gravity.
Nevertheless, the particle Reynolds number Rep is consistently
lower than unity, except for the most inertial fibers (see Table 1).
The Stokes flow approximation, on which the expressions for the
viscous force in Eq. (5) and the torques in Eq. (6) are based, is
therefore a reasonable assumption, except for St¼100. These latter

results can, however, be considered as qualitatively correct and are
included here to provide the trends of the effects caused by the
different parameters.

The mean slip velocity in the wall-normal direction in Fig. 7
shows no discernible shape dependence in absence of gravity.
However, spherical particles exhibit a major non-monotonic de-
pendence on inertia, which reproduces the trend reported by Zhao
et al. (2012) when gravity is ignored. Thus, the largest slip velocity
is found for St¼30 at zþE20. Spheres as well as fibers with
modest inertia in Fig. 7(a, b) are furthermore unaffected by the
flow direction. The mean slip velocity 〈Δuz〉 is negative in the
center region of channel which indicates that the fibers are driven
by the Stokes drag force towards the wall by sweeping events. In
the near-wall region, the positive slip velocity suggests that ejec-
tion events are dominating the fiber transport towards the channel
center.

As fiber inertia is further increased to St¼30 and 100 the
gravity starts to play an important role for the mean slip velocity,
as shown in Fig. 7(c, d). Whether the bulk flow is upwards or
downwards has a major influence on the mean slip velocity 〈Δuz〉
in the horizontal direction for fibers as well as for spheres. We
learned from Fig. 6 that the fibers in the downflow configuration
experienced a negative slip velocity which gave rise to upward
drag. The positive 〈Δuz〉 in Fig. 7(c, d) can arise from three different
reasons: (1) vzouzo0; (2) uz40 and vzo0; (3) uz4vz4 0. By
revisiting Fig. 5, we recall that the fibers in the central region are
moving faster towards the wall than the local fluid by means of
sweeps; i.e. case (1). The second combination (2) arises in the
near-wall region where the fiber velocity is negative but the fluid

Fig. 6. Mean streamwise slip velocity 〈Δux〉 for (a) St¼1, (b) St¼5, (c) St¼30 and (d) St¼100. G0: no-gravity flow; GD: downward flow; and GU: upward flow.
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velocity is positive when fluid is ejected away from the wall. If the
three different gravity configurations are compared, we observe
that the largest slip velocity 〈Δuz〉 occurs in the downward flow
whereas lowest slip velocity is found in upward flow. The particle
shape affects the findings only in the downflow configuration such
that an increasing aspect ratio λ tends to accentuate the gravity
effect.

Based on these findings, together with the results in Figs. 3 and
5, we hypothesize that the presence of gravity affects the turbo-
phoresis, i.e. the tendency of inertial particles to move towards
regions of lower turbulence intensity (see e.g. Marchioli and Sol-
dati (2002) and references therein). In the case of downward flow,

the turbophoresis is augmented so that particle concentration
maxima appear both in the channel center and next to the walls.
On the other hand, gravity attenuates the turbophoresis effect in
the upward flow, which in turn leads to a more even fiber dis-
tribution across the channel. This subtle effect of gravity is dis-
tinctly different for spheres (λ¼1) and fibers (λ41).

The fiber-laden vertical channel flow is turbulent and the fiber
velocities are therefore fluctuating about their mean values simi-
larly as the fluid velocities. Root-mean-square (rms) values of the
streamwise and wall-normal fiber velocity components are shown
in Figs. 8 and 9, respectively, for modest (left) and high (right)
inertia. For St¼5, the present results are almost indistinguishable

Fig. 7. Mean fiber wall-normal slip velocity 〈Δuz〉 for (a) St¼1, (b) St¼5, (c) St¼30 and (d) St¼100. G0: no-gravity flow; GD: downward flow; and GU: upward flow.

Fig. 8. rms-values of fiber and fluid streamwise velocity fluctuations for (a) St¼5 and (b) St¼100. G0: no-gravity flow; GD: downward flow; and GU: upward flow.
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from the results reported by Mortensen et al. (2008a). The particle
rms velocities exceed the corresponding fluid velocity fluctuations
in the streamwise direction in Figs. 8(a), whereas rms (v′z) o rms
(u′z) all the way from the channel walls to the center in Fig. 9(a).
The influence of the fiber aspect ratio on the particle intensities is
negligible at this Stokes number, also in accordance with the
earlier results of Mortensen et al. (2008a). Moreover, the rms-
profiles for the three different flow configurations are also over-
lapping. This implies that also gravity, together with the shape
parameter λ, has negligible effects on the fiber velocity
fluctuations.

The more inertial fibers with St¼100 behave rather differently,
except the streamwise fluctuations in absence of gravity in Fig. 8
(b) which exceed the fluid fluctuations in the near-wall region and
approach rms (u'x) in the center. The wall-normal fluctuations in
Fig. 9(b) are substantially reduced in comparison with the corre-
sponding fluid velocity fluctuations. These results appear to be
independent of the fiber aspect ratio λ and the remarkable re-
duction of the fiber velocity fluctuations from St¼5 to St¼100 can
only be ascribed to fiber inertia.

The presence of gravity affects the velocity fluctuations of the
St¼100 fibers such that the streamwise fluctuations are higher in
the downflow than in the upflow configuration. Irrespective of
flow direction, however, the wall-normal velocity fluctuations are
damped compared with the case in which gravity is neglected and
the amount of damping depends on aspect ratio.

Let us finally look at how the mean absolute direction cosines
depend on fiber shape and gravity. Here, fiber orientation is mea-
sured as 〈|cos(θi)|〉, referred to as direction cosine hereinafter, and
defined in terms of the angle θi between the symmetry axis of a fiber
and the xi-axis of the inertial frame. Fig. 10 shows results for fibers
with modest inertia to the left and for strong inertia to the right. The
former are in close agreement with the results shown by Mortensen
et al. (2008a) and Marchioli et al. (2010) also for St¼5 and show the
same dependence on the aspect ratio, namely that the elongated
fibers tend to align in the streamwise direction (|cos(θx)|40.5) in the
wall region. Also the recent experiments in a water table flow by
Abbasi Hoseini et al. (2015) showed that fibers at zþE14 oriented
themselves in the streamwise direction. Mortensen et al. (2008a)
conjectured that the excess streamwise fluid velocity fluctuations in
the vicinity of the walls contributed to the preferential streamwise
orientation by aligning the fibers in the x-direction. This may also
explain the present observation that the orientation of the St¼5 fi-
bers are unaffected by gravity. However, the preferential fiber or-
ientation in the near-wall region ceases in the center of the channel
where |cos(θx)|E |cos(θy)|E |cos(θz)|E0.5 in Fig. 10 and reflects a
random orientation of the fibers. Here, at zþ�180, the turbulent

velocity field is undoubtedly anisotropic. However, the vorticity field
is nearly isotropic, as shown by Andersson et al. (2015). We therefore
believe that the isotropic fiber orientation is a direct implication of
the almost isotropic fluid vorticity.

The very inertial fibers are probably more resistant to turbulent
velocity fluctuations and the results for St¼100 to the right in
Fig. 10 show a reduced preference for streamwise orientation near
the wall. While the alteration of the preferred orientation appears
to be an effect of inertia, the orientation of the inertial fibers in the
channel center is also affected by gravity. It is noteworthy that
these fibers remain almost randomly orientated (as for St¼5) in
absence of gravity, whereas a distinct preference for streamwise
orientation with 〈|cosθx|〉 well above 0.5 are found both in the
upflow and downflow configurations. This finding in the almost
isotropic core region is consistent with the recent observation by
Siewert et al. (2014) that fibers in decaying isotropic turbulence
tend to align preferentially in the vertical direction, i.e. aligned
with the gravitational acceleration.

4. Concluding remarks

Computer simulations have been performed to explore fiber
dynamics in wall-turbulence in presence of the gravity force. The
present study therefore represents an extension of the earlier
work by Mortensen et al. (2008a, 2008b) and Marchioli et al.
(2010) in which gravity was ignored and only fiber inertia and
shape were considered. Our results generally show that gravity has
a negligible effect on fiber orientation and velocity statistics for
fibers with modest inertia, i.e. low Stokes numbers. At higher
Stokes numbers, however, gravity turns out to have a major impact
on the fiber dynamics. In the downward channel flow, the drift
velocity of the fibers towards the walls was substantially higher for
fibers than for spheres and also higher than when gravity was
neglected. In the upward flow configuration, on the other hand,
the modest drift velocity of inertial spheres was totally quenched
for all fibers irrespective of shape. The suppressed drift velocity in
the upward flow resulted in a more uniform fiber distribution
throughout the channel as compared to the distinct near-wall
accumulation in downward flow and in absence of gravity.

Inertial fibers have been known to orientate isotropically in the
almost isotropic vorticity field in the channel center in absence of
gravity. However, we observed a preferential alignment with the
gravity force in the vertical channel and irrespective of the bulk
flow direction. The conjecture that inertial fibers are affected op-
positely in upward and downward flow configuration has there-
fore been disproved.

Fig. 9. rms-values of fiber and fluid wall-normal velocity fluctuations for (a) St¼5 and (b) St¼100. G0: no-gravity flow; GD: downward flow; and GU: upward flow.
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We have learned that the gravity force in Eq. (5) plays a subtle role
on the dynamics of inertial fibers inwall-bounded turbulent flows. The
present findings strongly suggest that the actual gravity configuration
might play an important role in the optimization of industrial pro-
cesses. If a uniform fiber distribution is desired, as in a biomass com-
bustion reactor (recall Fig. 1), an upward flow configuration should be
the preferred choice. On the other hand, a downflow configuration
should be attractive with the view to enhance aerosol deposition.
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Abstract. The rotational dynamics of triaxial ellipsoidal particles in turbulent channel flow have been explored. The non-

inertial particles were traced in a Lagrangian way in an Eulerian flow field that resulted from a direct numerical simulation. 

Although the tracer particles translated along with the local fluid they did not adhere to the local fluid rotation. The triaxial 

ellipsoids were characterized by two independent shape parameters that both were varied from 0.1 to 10. In spite of the 

anisotropic turbulence in the channel center the tumbling of the particles closely resembled earlier results in homogeneous 

isotropic turbulence.  The orientation of the particles varied substantially from the center to the near-wall region where 

triaxial particles tended to align their major axis in the mean flow direction and their minor axis in the wall-normal direction. 

These preferential alignments caused the ellipsoid to tumble as a rod about the major axis and like a disk about the minor 

axis. These observations show the dual nature of triaxial ellipsoids embedded in real turbulence.  

 

I. INTRODUCTION 

 
Non-spherical particles suspended in a fluid flow are frequently encountered, for instance aerosols inhaled into the 

human respiratory system or cellulose fibre suspensions in paper making. A better understanding of the complex dynamics of 

non-spherical particles is necessary to make advances in the management of such particle-fluid systems. The vast majority of 

earlier studies have focused on the dynamics of non-spherical particles by approximating the actual particle shape as an 

axisymmetric ellipsoid, i.e. either prolate (rod-like) or oblate (disk-like) spheroids; see e.g.1, 2. Attempts to study the 

dynamical behaviour of non-axisymmetric particles are scarce and so far limited either to simple shear flows or isotropic 

turbulence.  

Jeffery3 derived analytical expressions for the torque acting on a triaxial ellipsoidal particle immersed in creeping shear 

flow. He also showed that inertia-free axisymmetric particles rotate in closed periodic orbits, so-called Jeffery orbits, which 

in addition to their aspect ratio are dependent on the initial orientation of the tracer particles. Numerical examples reported by 

Gierszewski and  Chaffey4 showed that the motion of a non-axisymmetric particle in a simple shear flow is qualitatively 

different from that of an axisymmetric particle. Hinch and  Leal5 showed that any deviations from axisymmetric spheroidal 
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geometry resulted in a substantial change in the particle’s rotational motion and found that the motion of a triaxial ellipsoid 

with comparable axes is doubly periodic. The existence of chaotic rotational motion of triaxial particles in simple shear flows 

was reported for non-inertial particles6 and for inertial particles.7 Even slight imperfections of a spheroidal shape can produce 

substantial effects on the rotational particle dynamics.8 They also demonstrated that the tumbling of the particle may indeed 

be periodic, doubly periodic, or possibly chaotic, depending on particle shape and initial orientation. 

Recently, Chevillard and  Meneveau9 generalized results of Parsa, et al.10 by reporting orientation statistics and rotation 

rates of tracer triaxial ellipsoidal particles suspended in homogeneous isotropic turbulence (HIT). To the present authors’ best 

knowledge, no other study has reported on rotation dynamics of triaxial particles in a turbulent environment. We anticipate 

that the orientational and rotational behaviour of triaxial ellipsoids are completely different in anisotropic wall turbulence 

than in HIT. To explore these differences, we simulate triaxial tracer particles suspended in fully-developed turbulent channel 

flow. This work represents a generalization of our simulations of axisymmetric tracer particles by Challabotla, et al.11 and 

aims to uncover the influence of triaxiality on the particle dynamics.  

 

II. METHODOLOGY 
 

A. Mathematical modelling  

 
We adopt an Eulerian-Lagrangian approach to study the dynamics of triaxial ellipsoidal tracer particles suspended in a 

fully-developed turbulent channel flow. The continuous fluid phase is governed by the incompressible Navier-Stokes 

equations. The continuous fluid phase is represented in an Eulerian inertial frame (x, y, z) which spans the computational 

domain in streamwise x, spanwise y and wall-normal z directions. A Lagrangian particle is represented in the particle-frame 

(x′, y′, z′) with its origin in the particle center-of-mass such that the coordinate axes are aligned with the principal directions 

of the triaxial particle (see Figure 1). The particle orientation is represented by four Euler parameters which are derived from 

the three Euler angles. The variables are transformed from one frame of reference to the other using an orthogonal 

transformation matrix Aij, e.g. xi = Aijxʹj. See 12, 13 for details. 

A triaxial ellipsoidal particle with semi-axes a, b and c is defined as 

 
2 2 2

2 2 2

x' y' z'
1.

a b c
    (1) 

The geometrical shape is completely characterized by means of the two aspect ratios parameters λ1 = b/a and λ2 = c/a.  This 

parametrization represents a direct generalization of that used in our earlier studies of axisymmetric ellipsoids with two equal 

semi-axes a = b,11, 13, 14 whereas Chevillard and  Meneveau9 instead adopted the reciprocal parameters λ1
-1 and λ2

-1.  
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In absence of particle inertia, the translational motion of the triaxial particles coincides with the fluid flow whereas the 

rotational motion adjusts itself such that the Jeffery-torques3 vanish exactly at every instant of time, i.e. 
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            (2) 

 

where the primes indicate that the variables are referred to the particle frame-of-reference. This set of equations 

demonstrate the coupling between the particle rotation vector 
'

i  and fluid rotation vector
'

i  and the fluid strain rate tensor 

'

ij
S  in the particle frame. We follow the same approach as that used by Challabotla, et al.11 and deduce the time evolution of 

'

i  from equation (2) as the tracer particles are carried passively along with the local fluid.  Chevillard and  Meneveau9 

adopted an alternative approach and integrated an equation for the time rate-of-change of the unit orientation vector 

n̂ derived by Junk and  Illner15 using Lagrangian time histories of the velocity gradient tensor. 

FIG. 1. A triaxial ellipsoidal particle with three semi-axes a, b and c. The particle unit orientation vectors 
x y zˆ ˆ ˆn , n and n completely define the orientation of the particle.  
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 The rate of rotation or tumbling of a particle’s orientation vectors is defined as the sum of rotation about the two other 

semi-axis, as in Chevillard and  Meneveau9. For example, the rotation rate of the particle unit orientation vector 
xn̂ is 

x x ' ' ' '

z z y y
ˆ ˆn n          . (3) 

The particle enstrophy
' '

i i  defined as 

 

is a scalar measure of the overall rotation. 

 

B. Computational details  

 
The frictional Reynolds number based on the channel half-height h and the friction velocity uτ is Reτ = 180. The friction 

velocity is defined in terms of the wall shear stress τw as uτ = (τw/ρ)1/2 where τw is balancing the prescribed driving mean 

pressure gradient. All variables are normalized by viscous scales for velocity (uτ), length (ν/uτ), and time ( ). The size of 

the computational domain is 12h × 6h × 2h in the streamwise, spanwise and wall-normal directions, respectively, and 192 

grid points are used in each coordinate direction. The grid resolution in the streamwise and spanwise directions become Δx+ = 

11.3 and Δy+ = 5.6, while the non-uniform grid spacing in the wall-normal direction varies from Δz+ = 0.9 next to the walls to 

2.86 in the channel center. The time integration is performed with a constant time step Δt+ = 0.036. Periodic boundary 

conditions are used in the two homogeneous directions and no-slip and impermeability conditions are imposed at the channel 

walls. These numerical parameters are the same as those used in our recent simulations.11, 14, 16 

 The size of the triaxial particles is smaller than the Kolmogorov length scale and the particle suspension is assumed to be 

sufficiently dilute to justify one-way coupled simulations where any feedback from the particles on the fluid phase, as well as 

particle-particle collisions, can be neglected. A particle is assumed to collide with a wall if the particle center comes closer to 

the wall than a distance equal to the semi-axis a. The rarely occurring collisions are modelled as fully elastic so that the 

particle maintains its linear and angular momentum in the two homogeneous directions after a collision.  

Simulations are performed for a total of 25 different particle shapes by varying both particle aspect ratios λ1 and λ2 in the 

range from 0.1 to 10. 500 000 particles of each shape, all with semi-axis a+= 0.36 are randomly injected into the same 

turbulence field at time t+ = 0. Orientational and rotational particle statistics are computed by averaging instantaneous data in 

time between 720 and 2520  as well as in the homogeneous streamwise and spanwise directions.  

 

' ' ' ' ' ' ' '

i i x x y y z z               (4) 
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III. RESULTS AND DISCUSSIONS 

 
In this section we first present results that show how the tumbling rate depends on particle shape (λ1, λ2) and how the 

tumbling behaviour changes from the channel center (z+ = 180) to the wall region (z+ = 10).  We thereafter explore how the 

triaxial ellipsoids align with and rotate about the coordinate axes of the Eulerian reference frame.  

 

A. Tumbling rates in the Lagrangian reference frame  

 
Figure 2 shows the variance of the rate of rotation of the three particle orientation vectors together with the particle 

enstrophy in the channel center as a function of the two particle aspect ratios. The rate of rotation of the orientation vector 

xn̂  in Figure 2(a) shows that the tumbling rate about this principal axis varies symmetrically about the diagonal λ1 = λ2 that 

represents axisymmetric ellipsoids, i.e. spheroidal particles. The tumbling rate increases monotonically from 0.10 in the 

lower left corner (λ1 = λ2 << 1) to 0.22 in the upper right corner (λ1 = λ2 >> 1) along this diagonal, i.e. from long rod-like to 

flat disk-like particles. These data are consistent with recent results for inertia-free spheroids in the center of a channel flow 

due to Zhao, et al.14. The results are moreover in close agreement with similar results for axisymmetric particles in HIT 

reported9, 10, 17 with a value of about 0.09 for long rods, 0.17 for spheres, and 0.24 for thin disks. This dependence of the 

tumbling rate on particle shape has been explained by the alignment between the spheroid’s orientation vector and the fluid 

vorticity; see e.g.14, 17, 18. For the triaxial particles, we observe that the rotation rate 
xn̂ in the first quadrant (Q1) resembles 

that of oblate spheroids and in the third quadrant (Q3) that of prolate spheroids. This is to be expected since 
xn̂ is along the 

shortest and longest semi-axis in Q1 and Q3, respectively. However, the intermediate semi-axis a is in the 
xn̂ - direction 

along the diagonal line λ2 = (λ1)-1 with c > a > b in Q2 and c < a < b in Q4. Such triaxial ellipsoids can be categorized by the 

single shape parameter Λ ≡ λ2 = (λ1)-1 and the data plotted in Figure 2(a) show only little variation with Λ from ≈ 0.16 for 

spherical particles (Λ = 1) with a slightly increasing trend with increasing asphericity |Λ|.  

From Figure 2(b), we can observe that the rotation rate of 
yn̂ along the diagonal line λ2 = (λ1)-1 varies similarly as along 

the diagonal λ2 = λ1 in Figure 2(a). Particles in Q4 have the major axis in the 
yn̂ -direction and rotate similarly as prolate 

spheroids and particles in Q2 have their minor axis along the y’- direction and thus rotate similarly as oblate spheroids. 

Chevillard and  Meneveau9 pointed out that the rotation rate about 
zn̂ as a function of λ1 and λ2 is identical with the rotation 

rate of 
yn̂ as function of λ2 and λ1 for symmetry reasons. However, for the sake of completeness, computed data for the 
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rotation rate of 
zn̂ are shown in Figure 2(c). This plot appears as an almost perfect mirror image of that in Figure 2(b) and 

accordingly serves as verification of our implementation of the triaxial tracer particle model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
According to the results in Figure 2, we can infer that triaxial ellipsoids may exhibit a dual nature, i.e. tumbling like a 

disk about one axis and as a rod about another axis. Fourth-quadrant (λ1 > 1 > λ2) particles, for instance, tumble weakly about 

yn̂  in Figure 2(b) (rod-like behaviour) but vigorously about 
zn̂ in Figure 2(c) (disk-like wobbling). This hybrid rotational 

nature is a unique feature of triaxial particles and will be further explored in the remainder of the paper.  

Figure 2(d) shows the kinetic energy associated with the particle’s overall rotation defined in equation (4), the so-called 

particle enstrophy. The enstrophy of axisymmetric tracer ellipsoids, i.e. λ2 = λ1, has recently been observed to be almost 

FIG. 2. Variance of tumbling and rotation rates at the channel center z+ = 180 normalized by the local Kolmogorov time 

scale 
1/2( / )  . Rate of rotation of particle orientation vectors (a) 

xn̂ , b) 
yn̂ , (c) 

zn̂  and (d) particle enstrophy 
' '

i i  . 

The plots are for convenience divided into four quadrants Qi and the colour-coding is the same in all the plots.  

Q1 Q2 

Q3 Q4 

(b) (a) 

(d) (c) 
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independent of particle aspect ratio and only marginally higher for rods than for disks and attain almost the same level (≈ 

0.25) in isotropic turbulence17 as in a channel center.14  

 The present results are from the center region of a turbulent channel flow where the velocity field is known to be 

anisotropic. Nevertheless, the results in Figure 2(a, b) closely resemble the corresponding results obtained by Chevillard and  

Meneveau9 in HIT. These striking similarities might therefore seem surprising in view of the anisotropic velocity field that 

prevails in the channel center and suggest that particle rotation is primarily affected by fluid rotation (i.e. vorticity) which is 

almost isotropic midway between the two parallel channel walls.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows the rate of rotation of the particle orientation vectors (tumbling rates) and the particle enstrophy at z+ = 

10. The turbulent velocity and vorticity fields are highly anisotropic at this particular location in the buffer region of the 

turbulent boundary layer. While the particle enstrophy in the channel center was almost independent of particle shape in 

(b) 

FIG. 3. Variance of tumbling and rotation rates in the near-wall region at z+ ≈ 10 normalized by the viscous time scale time 
2( / u ) . Rate of rotation of particle orientation vectors (a) 

xn̂ , b) 
yn̂ , (c) 

zn̂  and (d) particle enstrophy 
' '

i i  . Notice 

the different colour-coding in (d).  

 

Rate of rotation of particle orientation vectors (a)  b)  (c)  and (d) particle enstrophy in near-wall region at 

z+ = 10. Values are normalized by the viscous time scale . 

Q1 Q2 

Q3 Q4 

(a) 

(c) (d) 
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Figure 2(d), the enstrophy in the wall region in Figure 3(d) exhibits a distinct maximum for spherical particles. The particle 

enstrophy is strongly damped as the particles become increasingly aspherical, as for the axisymmetric particles along the 

diagonal line λ1 = λ2. This is consistent with the results reported by Zhao, et al.14 that the rotational energy is substantially 

reduced both for disk-like (Q1) and rod-like (Q3) spheroids in wall turbulence. This damping with increasing particle 

asphericity was ascribed to the well-known preferential particle orientation observed in water-table flow experiments20, 21 as 

well as in channel flow computer simulations.11, 12, 14, 22 

The damping of the particle enstrophy with increasing asphericity is significantly stronger for non-axisymmetric particles 

than for spheroids. This can be seen by comparing the data along the diagonal line λ2 = (λ1)-1 with the enstrophy along the 

diagonal λ2 = λ1 in Figure 3(d). The ability of an anisotropic ellipsoid to adhere to the rotation of the local fluid is thus 

reduced with increasing departure from sphericity and this tendency is more pronounced for non-axisymmetric particles than 

for spheroids. 

The tumbling rates about the three particle axes in Figures 3(a, b, c) are distinctly different from those at the channel 

center in Figure 2(a, b, c) and nearly spherical particles (λ1 ≈ λ2 ≈ 1) tumble more than the others. In the channel center, 

however, disks tumbled more than rods about their symmetry axis and non-axisymmetric ellipsoids tumbled primarily about 

their shortest semi-axis. In spite of the striking differences between Figure 2 and Figure 3, disk-like particles are still more 

amenable to tumble than rods (see Figure 3(a)), but maximum tumbling occurs for modest asphericity and not for infinitely 

thin disks (λ1 ≈ λ2 → ∞) as in Fig. 2(a).  

The highest tumbling rates about 
yn̂  are observed for λ2 > λ1 ≈ 1 and for λ1 ≈ λ2 < 1 in Figure 3(b).  Such triaxial 

ellipsoids are close to being axisymmetric (c > b ≈ a and c ≈ b < a, respectively) and tumble intensively about a short axis. 

This contrasts with the rotational behaviour in the channel center where the highest tumbling rate about 
yn̂  occurred for 

highly triaxial particles, i.e. Λ >> 1. Once again, the variation of the tumbling rate about 
zn̂  in Figure 3(c) appears as a 

mirror image of that in Figure 3(b).  

 

B. Orientation and rotation in the Eulerian reference frame 

 
The rotational dynamics of any non-spherical particle is believed to depend on how the particle orient itself in a turbulent 

flow field. The different states of particle rotation are therefore distinctly different in isotropic turbulence and anisotropic 

wall turbulence. Orientation statistics of axisymmetric particles in wall turbulence have been reported by several authors, 

e.g.11, 13, 14, 23. Chevillard and  Meneveau9 investigated how triaxial tracers oriented relative to the local fluid vorticity vector 
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and to the eigendirections of the strain-rate tensor in HIT. They reported results for particle shapes along the two diagonals λ2 

= λ1  and λ2 = (λ1)-1. In the present study, however, we focus on orientation statistics of triaxial ellipsoids with axes c > a > b 

along the diagonal Λ = λ2 = (λ1)-1 > 1 in the second quadrant of Figures 2 and 3. The particle’s major axis is thus in the z'-

direction and the minor axis is in the y'-direction of the particle frame-of-reference.  The direction cosines based on the 

angles θx, θy, θz  between the principle axes of a particle and the coordinate axes x, y, z of the inertial frame-of-reference 

define the particle’s orientation in the channel. 

Figure 4 shows the variation of the orientation of the particles’ major axis (
zn̂ ) to the left and minor axis (

yn̂ ) to the 

right all the way from the wall at z+ = 0 to the channel center. Results for moderate (Λ = 3) and high (Λ = 10) triaxiality are 

compared with results for axisymmetric ellipsoids, i.e. spheroids, along the diagonal λ2 = λ1 in Q3 characterized here by the 

single parameter λ ≡ λ2
-1

 = λ1
-1. In the center of the channel, the direction cosines are all close to 0.5 which reflects randomly 

oriented particles. Although Chevillard and  Meneveau9 found that triaxial tracers were preferentially oriented relative to 

properties of the local flow field, the particle orientation relative to any fixed direction is randomized due to the isotropy of 

the turbulence field. In the center of the channel flow, however, a weak preference of the triaxial particles to align their major 

axis in the x-direction can be observed with <|cosθx|> slightly above 0.5. This is obviously an effect of the modest anisotropy 

of the turbulence in the channel center where the velocity fluctuations in the streamwise directions are larger than in the other 

directions. Moreover, the spanwise vorticity fluctuations are slightly higher than those in the two other directions 19. The 

modest preference for alignment with the mean flow direction (x) rather than with the direction of mean vorticity and largest 

vorticity fluctuations (y) is different from observations in completely isotropic turbulence where rod-like particles align with 

the vorticity direction. 

The tendency of triaxial ellipsoids to align their major axis in the x-direction becomes gradually more pronounced as the 

wall is approached and closely resembles the trend observed for rod-like particles. Similarly, the minor axis of the triaxial 

ellipsoids tends to align in the wall-normal direction, just like disk-like spheroids orient their symmetry axis perpendicular to 

the wall. These dual tendencies become even more pronounced for Λ = 10 than for Λ = 3. 

The strongest tendency of the major axis of the triaxial ellispoids to align with the mean flow direction occurs in the 

buffer region (z+ ≈ 15) for Λ = 3 and in the viscous sub-layer (z+ ≈ 5) for Λ = 10 whereas the preferential wall-normal 

orientation of the minor axis prevails all the way to the wall. All trends observed are the same for triaxial ellipsoids 

parameterized by Λ and axisymmtric ellipsoids parameterized by λ, but the shape dependence is most pronounced for the 

triaxial particles.   
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Voth24 pointed out that neutrally buoyant spheroidal particles undergo periodic motions called Jeffery orbits in simple 

shear flow. Here, oblate spheroids that brings their symmetry axis near the wall-normal direction will spend a long time in 

this orientation before tumbling, and this leads to the observed orientation in Figure 4(d) for λ = 0.1. The orientation of three-

axial ellipsoids with Λ = 10 is almost indistinguishable from that of oblate spheroids, thereby suggesting that the same 

reasoning also applies for asymmetric particles.  

The hybrid nature of the orientational statistics in Figure 4, namely that the major axis orientates as a rod-like particle 

and the minor axis as a disk-like particle, is consistent with the dual nature of the various tumbling rates shown in Figures 2 

and 3. The different modes of orientation and rotation are determined by the two geometrical parameters λ1 and λ2 as well as 

by the anisotropy of the ambient flow field. 

FIG. 4. Mean absolute direction cosines of the particle major axis (
zn̂ ) and minor axis (

yn̂ ) with respect to the inertial 

frame-of-reference for (a, b) Λ=3 and (c, d) Λ=10. (a, c) particle major axis (
zn̂ ) and (b, d) particle  minor axis (

yn̂ ). 

Results for corresponding axisymmetric particles are also plotted. 

 

 

(b) (a) 

(d) (c) 
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The spanwise component <ωy> of the mean angular velocity is shown in Figure 5(a), whereas the two other mean spin 

components are zero in the present flow configuration for symmetry reasons. It has been reported that the mean spanwise 

component <ωy> of axisymmetric tracer particles is damped compared to spherical particles and this trend is strongly 

dependent on the particle aspect ratio λ.11, 22 The same monotonic trend can be observed also for the triaxial particles with Λ 

= λ2 = (λ1)-1, but with an even stronger damping of <ωy> with increasing triaxiality Λ. The Λ = 10 particles rotate at a rate ≈ 

0.04, i.e. below 10 per cent of the normalized rotation rate 0.5 of tracer spheres. Recall that spherical tracers adhere to the 

local fluid rotation due to their isotropic shape. This finding suggests that strong alignment of the major axis in the 

streamwise direction and of the minor axis in the wall-normal direction tends to reduce <ωy> in the near-wall region. In the 

logarithmic layer (z+ > 30), however, the results for Λ = 3 and Λ = 10 are surprisingly close. The shape matters most in the 

vicinity of the channel walls, and this observation is indeed consistent with the orientation statistics in Figure 4.  

FIG. 5. Mean and fluctuating particle angular velocity components ωi for Λ = 3 and Λ = 10 in the inertial frame of the 

reference. The corresponding fluid angular velocity components Ωi are shown as black solid lines. (a) mean spanwise angular 

velocity <ωy> and angular velocity fluctuations in the (b) streamwise direction rms(ω’
x); (c) spanwise direction rms(ω’

y); (d) 

wall-normal direction rms(ω’
z).   

(b) (a) 

(d) (c) 
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Figures 5(b, c, d) show the effect of particle shape on the particle’s angular velocity fluctuations. Similar to 

axisymmetric tracer particles, we observe that triaxial particles exhibit stronger fluctuations of the streamwise angular 

velocity ωx than fluid vorticity fluctuations (tracer spheres), as shown in Figure 5(b). This cannot be caused by the particle’s 

preferential sampling of high-vorticity regions since tracer particles do not concentrate preferentially. The stronger angular 

velocity fluctuations can probably be attributed to the preferentially alignment of particle’s major axis in the streamwise x-

direction, as shown in Figures 4(a, c). From Figure 5(c) we can observe that the angular velocity fluctuations in spanwise 

direction for Λ = 10 particles are consistently lower than for Λ = 3 and for spheres in the near-wall region. This reduction is 

probably associated with the strong preferential alignment of the minor axis of these particles in the wall-normal direction 

which makes them less susceptible to the intense fluid vorticity fluctuations. For Λ = 3, however, the preferential orientation 

is weaker (see Figure 4b) and these particles therefore rotate faster as a result of the vigorous near-wall turbulence.  

As mentioned in Section IIIA, triaxial particles rotate and orient similarly as rod-like or disk-like particles depending on 

the direction considered and the two particle aspect ratios. However, in the laboratory frame, triaxial ellipsoids rotate in a 

more complex way because each component of the angular rotation vector in the inertial frame is a combination of three 

components in the particle frame. This makes the rotation of triaxial particles in the laboratory frame difficult to foresee and 

interpret since the relevant combination of angular rotation rates also largely depends on the particle orientations. We can 

therefore conclude that the dynamics of triaxial particles is similar to that of one type of axisymmetric particles in a certain 

direction, but resembles that of another type of axisymmetric particles in another direction in both the Lagrangian particle 

frame and in the Eulerian laboratory frame, but the underlying physical mechanisms are different. Moreover, the degree of 

these similarities between triaxial and axisymmetric particles depends on the actual aspect ratios λ1 and λ2.  

 

IV. CONCLUDING REMARKS 

 
Results aimed to show the orientational and rotational behaviour of triaxial tracer particles in turbulent channel flow have 

been presented. The results were obtained by tracing inertia-free ellipsoids in numerically simulated channel flow turbulence. 

The particle aspect ratios λ1 and λ2 were varied independently from 0.1 to 10 to cover the two-dimensional parameter space. 

The tumbling rates observed in the channel center closely resembled tumbling of triaxial ellipsoids in homogeneous isotropic 

turbulence reported by Chevillard and  Meneveau9. The particle enstrophy turned out to be almost independent of particle 

shape. In the near-wall region, however, the particle enstrophy was highest for spherical particles and diminished with 

increasing asphericity. The reduction of the enstrophy was by far more pronounced for triaxial ellipsoids than for 
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axisymmetric particles. We also inferred that triaxial ellipsoids exhibited a dual nature, namely tumbling like a disk about one 

axis and as a rod about another axis. 

 The orientation of triaxial ellipsoids with λ2 = λ2
-1 > 1 varied substantially from the channel center to the wall. The 

tendency of these triaxial particles to align their major axis in the mean flow direction and their minor axis in the wall-normal 

direction is another manifestation of the hybrid nature of the dynamics of triaxial particles: their major axis orients as a rod-

like particle and their minor axis as a disk-like particle. The strong alignment of the major axis in the streamwise direction 

and of the minor axis in the wall-normal direction in the near-wall region gave rise to a substantial reduction of the mean 

angular rotation rate.  Similar to axisymmetric tracers we observed that triaxial particles exhibited stronger fluctuations of the 

streamwise angular velocity than tracer spheres. This finding can also be caused by the preferentially alignment of particle’s 

major axis in the streamwise x-direction.  

 Shape has been observed to have stronger influence on the rotational behaviour of triaxial ellipsoids than for 

axisymmetric ellipsoids (i.e. spheroids) considered by Challabotla, et al.11. The observed trends are believed to result from 

the preferential orientation of the triaxial particles in the anisotropic wall turbulence. Particle inertia is known to dramatically 

alter the orientational and rotational behaviour of spheroidal particles, see e.g.14. A worthwhile extension of the present work 

would be to solve Euler’s equations of rotational motion rather than equation (2) in order to explore how inertia affects the  

motion of triaxial ellipsoids.   
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In the present appendix, we reported the rotational behaviour of inertial triaxial ellipsoidal particles 

suspended in turbulent channel flow. A triaxial ellipsoidal particle with semi-axes a, b and c is 

characterized by means of the two aspect ratio parameters λ1=b/a and λ2=c/a. Particle orientation is 

represented using Euler parameters and Euler angles as described for spheroidal particles in chapter 2. 

The methodology adopted to investigate translational and rotational motion of inertial triaxial particles is 

described briefly below: 

  

The translational motion of the particle is governed by Newton’s 2nd law as: 
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The shape parameters χ0, α0, β0, and γ0 are given by the following semi-integrals (Brenner, 1964): 
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These shape parameters for triaxial ellipsoidal particles are computed by using numerical integration. In 

the case of spheroidal particles, there exist analytical expression for shape parameters as shown in Table 

2.1 in chapter 2. 

 

 

Rotational motion of particle is governed in particle reference frame by Euler’s equations as, 
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Moment of inertia tensor Iʹij for an ellipsoidal particle along the principal axes is given as, 
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The torque components N´
i for a triaxial ellipsoidal particle in creeping shear flow derived by Jeffery 

(1922): 

 
    

 
    

 
    

 


 
     
 
 

 
 

 


    
  

 
 

       
 

 
 

' ' '

y

0 0'

'

z x x

x

z

2 2 2 2

2 2

' 2 2 ' 2 2 ' '

2 2

0 0

y

2 2 ' 2 2 ' '

2 2

xz y y

xz z z

0 0

16 µabc
b S b

3 b
N

N

c c
c

16 µabc
N c a S c a

3 c a

16 µabc
a b S a b

3 a b


 

 


 

 


 

 

 (6) 

The ability of an inertial particle to adjust to the ambient flow field can be estimated in terms of a 

particle response time τp. Shapiro and Goldenberg (1993) introduced a translational relaxation time based 

on the orientation-averaged resistance tensor 1 1 1
x'x ' y' ' z 'z 'yK 3(k k k )     . This is believed to be a relevant time 

scale for isotropically oriented particles and has been used by Mortensen et al. (2008); Challabotla et al. 

(2015) and others in their studies of axisymmetric spheroids. We now adopt the same definition of an 

equivalent response time for the triaxial ellipsoidal particles. By means of the elements of the translational 

resistance tensor in equation (2) , we can compute τp as, 

p

4D abc 1

3 K


 


 (7) 

where D is the ratio between the particle and fluid density. A Stokes number St is then be defined as the 

ratio between τp and the viscous timescale 2
v / u    based on the friction velocity u and thus 

representative of the near-wall turbulence.  

 

Simulation parameters used in the current DNS solver are same as adopted in article 7. Simulations are 

performed for a total of 25 different particle shapes by varying both particle aspect ratios λ1 and λ2 in the 

range from 0.1 to 10., all for Stokes number St = 30. Rotational particle statistics are computed by 

averaging instantaneous data in time between 5400ν/𝑢𝜏
2 and 7920ν/𝑢𝜏

2 and also in the homogeneous 

streamwise and spanwise directions. The rate of rotation or tumbling of a particle’s orientation vectors 

and particle enstrophy are defined same as in article 7. 
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Figure 2 shows the variance of the rate of rotation of the three particle orientation vectors together 

with the particle enstrophy in the channel center as a function of the two particle aspect ratios. The results 

for axisymmetric particles along the line λ1 = λ2 are consistent with recent results for inertial spheroids in 

the center of a channel flow reported by Zhao et al. (2015). The rotation rates of inertial particles are 

damped along all three principal axes as compared to the tracer particles shown in article 7. This has been 

reported for spheroidal particles by attributing to the different preferential alignment of inertial particles 

compared to tracer particles. Inertial triaxial ellipsoidal particle enstrophy shown in Figure 2(d) is 

dependent on the particle aspect ratios, which is different from the constant particle enstrophy observed 

for tracer particles. 

 

Figure 3 shows the rate of rotation of the particle orientation vectors (tumbling rates) and the particle 

enstrophy at z+ = 10. The particle enstrophy in Figure 3(d) is strongly damped as the particles become 

increasingly aspherical. Such damping effect of particle rotation can be ascribed to the well-known 

preferential particle orientation observed in the near-wall turbulence. The tumbling rates about the three 

particle axes in Figures 3(a, b, c) are distinctly different from those at the channel center in Figure 2(a, b, 

c). 

 

FIG. 2. Variance of tumbling and rotation rates at the channel center z+ = 180 normalized by the local Kolmogorov 

time scale (𝜈/𝜀)1/2. Rate of rotation of particle orientation vectors (a) 
xn̂ , b) 

yn̂ , (c) 
zn̂  and (d) particle 

enstrophy 
' '

i i  . 

(b) (a) 

(d) (c) 
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FIG. 3. Variance of tumbling and rotation rates in the near-wall region at z+ ≈ 10 normalized by the viscous time 

scale time (ν/𝑢𝜏
2 ). Rate of rotation of particle orientation vectors (a) 

xn̂ , b) 
yn̂ , (c) 

zn̂  and (d) particle 

enstrophy 
' '

i i  . 

 

(a) (b) 

(c) (d) 






