
Adaptive Large Neighborhood Search Heuristics for Multi-tier Service Deployment
Problems in Clouds

Anders N. Gullhava,∗, Jean-François Cordeaub, Lars Magnus Hvattuma, Bjørn Nygreena

aDepartment of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NO-7491
Trondheim, Norway

bHEC Montréal, 3000 chemin de la Côte-Saint-Catherine, Montréal, Canada, H3T 2A7

Abstract

This paper proposes adaptive large neighborhood search (ALNS) heuristics for two service deployment problems in
a cloud computing context. The problems under study consider the deployment problem of a provider of software-
as-a-service applications, and include decisions related to the replication and placement of the provided services.
A novel feature of the proposed algorithms is a local search layer on top of the destroy and repair operators. In
addition, we use a mixed integer programming-based repair operator in conjunction with other faster heuristic
operators. Because of the different time consumption of the repair operators, we need to account for the time usage
in the scoring mechanism of the adaptive operator selection. The computational study investigates the benefits of
implementing a local search operator on top of the standard ALNS framework. Moreover, we also compare the
proposed algorithms with a branch and price (B&P) approach previously developed for the same problems. The
results of our experiments show that the benefits of the local search operators increase with the problem size. We
also observe that the ALNS with the local search operators outperforms the B&P on larger problems, but it is also
comparable with the B&P on smaller problems with a short run time.

Keywords: metaheuristics, cloud computing, replication, local search

1. Introduction

An increasing proportion of enterprise and business software, such as customer management systems, email
systems and time management applications, are run as web services in clouds through the software-as-a-service
(SaaS) model. However, Marston et al. (2011) identify the lack of quality of service and availability guarantees as
one of the major weaknesses of adopting cloud software services. Even though frameworks and software systems
offering fault tolerance management in clouds have been proposed (Cully et al., 2008; Distler et al., 2011; Jhawar
et al., 2013), there exist very few optimization models considering fault tolerance by introduction of redundancy
(Avižienis et al., 2004) in the literature. Distler et al. (2011) present a fault tolerance approach based on active-
passive replication, where passive backup replicas are run in a paused state, from which they can be activated
rapidly. The passive replicas do not serve demand while being paused, and the replicas consume considerably less
resources than corresponding demand-serving active replicas. We take these ideas into account when regarding
the service deployment problem of a SaaS provider (SP). In this problem we consider decisions related to the
replication of the SaaS services simultaneously with placement decisions. In previous work (Gullhav and Nygreen,
2015), we presented two mathematical models for the problem: one that considers service placement in a hybrid
cloud, and another one that only considers placement in the private cloud of the service provider. We refer to Mell
and Grance (2011) for definitions of the different types of clouds.

The SP offers a set of SaaS services, modeled as multi-tier services, to its clients. A multi-tier service is a service
composed of multiple tiers that collaborate to deliver a service to the clients, and a typical example of a multi-tier

∗Corresponding author
Email addresses: anders.gullhav@iot.ntnu.no (Anders N. Gullhav), jean-francois.cordeau@hec.ca (Jean-François

Cordeau), lars.m.hvattum@himolde.no (Lars Magnus Hvattum), bjorn.nygreen@iot.ntnu.no (Bjørn Nygreen)

Preprint submitted to Elsevier November 24, 2016

service is a three-tier web service composed of a web server, an application server and a database server. Figure 1
illustrates a three-tier service. When deployed in a cloud environment, each of the tiers, referred to as components
of the service run in separate virtual machines (VMs). In turn, the VMs are placed on physical machines, which
we refer to as nodes. In our work, we assume that the service provider owns and operates one or more data
centers forming a private cloud, and can lease additional VMs in a public cloud when needed. Furthermore, the
services of the SP are required to have a certain level of quality of service (QoS), as specified in service level
agreements (SLAs), i.e., contracts between the SP and its clients. The QoS might be specified in terms of bounds
on the performance, e.g., the response time, and bounds on the dependability, e.g., the availability or downtime.
To obtain a satisfactory performance, each service component can be replicated into a number of load-balanced
replicas (in separate VMs) that serve the clients in parallel. However, when one is to provide services run on a
failure-prone infrastructure, such as the underlying hardware of clouds, one should take actions to limit the effects
of the faults on the services. A key technique to make services fault-tolerant is standby redundancy. The concept
of standby redundancy can be explained by the following slightly simplified but illustrative example. Consider
a three-tier service with two load-balanced web server replicas, two load-balanced application logic replicas and
a single database server. If the database server fails due to a fault, the service would obviously be counted as
unavailable by the clients until the VM running the database server is restarted. Instead, if one of the two web
server replicas fails due to a fault, there would only be one web server replica serving the clients until the second
web server replica is restarted, and the clients would experience a lower performance (e.g., longer response times)
in this time window. In both of these cases, running passive backup replicas (also denoted standby replicas) that
could be activated faster than the time it takes to restart a replica would reduce the unavailability and improve the
performance. In the following, the load-balanced replicas are denoted active replicas while the backup replicas are
denoted passive replicas.

Figure 1: Illustration of a three-tier web service

The overall objective of the problem is to find the minimum cost deployment while respecting the QoS re-
quirements of the SLA and other technical requirements, such as node resource capacities. In general, there is
a non-linear relationship between the numbers of active and passive replicas of each component and the QoS of
a service. To maintain a linear (mixed-integer) optimization model, Gullhav and Nygreen (2015) introduced a
modeling structure called replication patterns that specifies a number of active and passive replicas of each com-
ponent of a service such that the QoS requirements are satisfied. The replication level decisions are handled by
selecting one replication pattern for each service, and hence, the details of the QoS requirements and models are
not explicit in the optimization model, but instead handled when specifying replication patterns. By the use of the
analytic queuing models of Gullhav et al. (2013) it is possible to evaluate the QoS of different replication patterns
for a given service, and thus, give several replication patterns for each service as input to the model. The reason
to specify several replication patterns for each service is that when a service provider offers multiple services and
these services are deployed on the same infrastructure, the cheapest way to replicate the components of a service is
dependent of how other services are replicated and deployed. This is because a cost-efficient packing of the nodes
is dependent on how well the VMs of the components of the different services fit together, and the number of VMs
of each component of each service is governed by the replication patterns. Therefore, the increased flexibility that
arise by specifying several replication patterns can result in more cost-efficient deployment. Note that all replica-
tion patterns for a given service are minimal, meaning that if one removes one active or passive replica from any

2

tier, the QoS will no longer be satisfactory.
The literature proposing related placement problems is discussed in our previous paper (Gullhav and Nygreen,

2015) and a recent survey on resource management in clouds is given by Jennings and Stadler (2015). Goudarzi and
Pedram (2011) and Ardagna et al. (2012) propose resource allocation models for deployment of QoS-constrained
multi-tier services. Their models do not concern backup replication and placement of backup replicas as very few
models in the service placement literature do. However, Bin et al. (2011) propose a solution method for a placement
problem of an infrastructure-as-a-service (IaaS) provider, where some VMs require one or more backup locations
to which they can be migrated in case of a failure. Another problem related to ours is the redundancy allocation
problem, where the goal is to find the minimum cost allocation of parallel components to different subsystems in
series, while maintaining a reliability higher than a given level (Kuo and Wan, 2007).

In Gullhav and Nygreen (2015), we modeled the problem as a direct mixed-integer program (MIP). In addition,
the problem was reformulated as a stronger pattern-based model. The latter formulation was solved by an a priori
column generation algorithm, also called pre-generation, where a subset of the feasible patterns were given to the
master problem in advance of the optimization. Furthermore, in Gullhav and Nygreen (2016), we proposed a branch
and price (B&P) algorithm, where patterns were generated dynamically instead of a priori. The B&P algorithm
outperformed the pre-generation algorithm.

The contribution of this paper is to introduce two novel adaptive large neighborhood search (ALNS) algorithms
for two variants of the service deployment problem. In addition to destroy and repair operators, which are part
of the standard ALNS framework, a novel feature of the algorithms is a local search layer on top of the repair
operators. A key question we seek to answer in the computational study of this paper is what benefits the local
search operators could bring to the ALNS. Another special feature of the proposed algorithms is a MIP-based repair
operator, in addition to other heuristic insertion operators. Since the repair operators vary with respect to their
time-performance trade-off, we score the operators according to both their performance and time consumption in
the adaptive operator selection. Furthermore, the computational study also compares the speed and solution quality
of the ALNS algorithms and the previously proposed B&P algorithm for the two versions of the service deployment
problem.

The outline of the paper is as follows. In the next section, we present a description of the service deployment
problem, and in Section 3, we repeat the direct MIP formulation of Gullhav and Nygreen (2015). In Section 4, we
give a description of the components of the proposed ALNS algorithms. The computational study is presented and
discussed in Section 5, before Section 6 concludes the paper. Appendix A gives a summary of the main mathemat-
ical symbols used in the mathematical formulations and the description of the ALNS, while some additional details
from the computational experiments are shown in Appendix B.

2. Problem Description

Let S be the set of multi-tier services, and let Qi denote the set of components of service i ∈ S. For brevity, we
will denote component q ∈ Qi of service i as the pair (i, q). The VMs running the service components might run in a
public cloud or on the set of nodes,N , in the private cloud of the service provider, and each node has a set of limited
resources, G, e.g, CPU, memory, and storage. The nodes are assumed to be identical, and have resource capacities
Bg for all resources g ∈ G. When placed on a node, an active replica of the pair (i, q) consumes GA

iqg resources
of type g. The public cloud IaaS providers offer different VM types of a fixed capacity and cost to run the service
components in the public cloud. As an example, Amazon Web Services (2015) offers several general purpose VM
types, ranging from micro to 10xlarge, with stepwise increases in capacity and cost. When placing an active
replica of the pair (i, q) in the public cloud, this replica is run in the VM type that offers at least GA

iqg resources for
all g, and the cost of this VM type is denoted by Ciq. However, while active replicas can be run in the public cloud,
we assume that support for passive replicas are only present on the nodes in the private cloud, and when run on the
nodes in a passive state, the passive replicas require GP

iqg (< GA
iqg) resources. To ensure that passive replicas can

be activated, each node that runs one or more passive replicas must maintain an unassigned pool of resources. One
has to make a trade-off between cost and fault tolerance when setting the size of this pool since a small pool might
make it impossible to activate a passive replica on the node, while a large pool will result in a large amount of

3

unused resources in a failure-free situation. Here, the size of the pool of shared backup resources is set to be larger
than the resources required to activate any of the passive replicas running on the node. In addition, the number of
passive replicas run on a node is limited to E. Moreover, the replicas of the same service component are required
to be run on different nodes. This policy is referred to as node-disjoint placement. Otherwise, a single node failure
could bring down several replicas of the same component. In the following, Bg is assumed to be normalized to 1
for all resources and, hence, GA

iqg and GP
iqg are fractions of the node resource capacities.

The replication of the service components is done to obtain a certain level of performance and make the service
fault tolerant. We do not consider a specific QoS measure, but instead use a method to check whether a given
replication pattern, as introduced in Section 1, of a given service results in a tolerable QoS according to the SLA.
Gullhav et al. (2013) propose a method that takes the number of active and passive replicas of each component of
a service and the component’s assigned resources as input, and outputs an approximate response time distribution.
The method also assumes that the VMs fail according to a Poisson process, and takes this into account when
computing the approximation. This method can be used here if the SLA specifies bounds on the mean or a percentile
of the response time distribution of a service. We let Ri be the set of replication patterns of service i, and let RA

iqr
and RP

iqr denote the number of active and passive replicas of the pair (i, q) in replication pattern r ∈ Ri.
In the QoS guarantees, we do not account for the network latency. When the VMs of a service are placed in

the same data center, or the private cloud, this latency can be neglected. When VMs placed in different data centers
or clouds communicate, the latency should ideally be accounted for. However, doing this simplification makes our
models much less complex. Nevertheless, we set an upper bound on the number of different services on a node to
D, which drives different components of the same service to be run on the same nodes. In turn, this will reduce the
amount of inter-node communication in the private cloud.

3. Direct MIP Formulation

The direct MIP formulation (Gullhav and Nygreen, 2015) uses binary variables wiqn and viqn to indicate the
placement of an active replica and a passive replica of component q ∈ Qi of service i ∈ S on node n ∈ N in the
private cloud, respectively. Furthermore, the integer variables tiq are used to keep track of the number of active
replicas placed in the public cloud. The binary variables yir indicate the selection of a replication pattern r ∈ Ri for
service i, and we use the variables mng to represent the amount of resource of type g that is reserved for activation
of passive replicas on node n. Lastly, the binary variables sin indicate whether a replica belonging to service i is
placed on node n, or not. With these definitions, the service deployment problem can be formulated as follows:

min z =
∑
i∈S

∑
q∈Qi

Ciqtiq (1)

subject to∑
r∈Ri

yir = 1 ∀i ∈ S (2)

∑
n∈N

wiqn + tiq −
∑
r∈Ri

RA
iqryir = 0 ∀i ∈ S,∀q ∈ Qi (3)

∑
n∈N

viqn −
∑
r∈Ri

RP
iqryir = 0 ∀i ∈ S,∀q ∈ Qi (4)

wiqn + viqn − sin ≤ 0 ∀i ∈ S,∀q ∈ Qi,∀n ∈ N (5)∑
i∈S

sin ≤ D ∀n ∈ N (6)

∑
i∈S

∑
q∈Qi

viqn ≤ E ∀n ∈ N (7)

4

mng − (GA
iqg −GP

iqg)viqn ≥ 0 ∀i ∈ S,∀q ∈ Qi,∀n ∈ N ,∀g ∈ G (8)∑
i∈S

∑
q∈Qi

GA
iqgwiqn +

∑
i∈S

∑
q∈Qi

GP
iqgviqn + mng ≤ 1 ∀n ∈ N ,∀g ∈ G (9)

mng ≥ 0 ∀n ∈ N ,∀g ∈ G (10)

wiqn ∈ {0, 1} ∀i ∈ S,∀q ∈ Qi,∀n ∈ N (11)

viqn ∈ {0, 1} ∀i ∈ S,∀q ∈ Qi,∀n ∈ N (12)

sin ∈ {0, 1} ∀i ∈ S,∀n ∈ N (13)

yir ∈ {0, 1} ∀i ∈ S,∀r ∈ Ri (14)

tiq ∈ Z+ ∀i ∈ S,∀q ∈ Qi (15)

The objective function (1) minimizes the total cost of placing replicas in the public cloud, and the equalities (2)
ensure that one replication pattern is selected for each service. The two sets of equalities (3) and (4) establish the
relation between the placement variables, wiqn, tiq and viqn, and the replication pattern variables yir. The constraints
(3) ensure that given a selection of a replication pattern r for a service i (i.e., yir = 1), RA

iqr active replicas of
component q are placed either in the private or in the public cloud. The constraints (4) ensure the same for passive
replicas, but confine the placement to the private cloud. The rest of the constraints model the technical requirements
related to the placement in the private cloud. Specifically, the inequalities (5) take care of the requirement specifying
that the replicas of the same pair (i, q) should be placed on different nodes, and at the same time force sin to take
value 1, as long as there is at least one replica from service i deployed on n. Moreover, constraints (6) and (7) put
upper bounds on the number of different services, and the number of passive replicas on each node, respectively.
The resource capacities of the nodes are handled by constraints (9), where the first and second terms account for
the resources assigned to the active and passive replicas deployed on the node, and the third term accounts for the
resources reserved for activation of passive replicas, which is set by the inequalities (8).

We now want to consider the special case where the number of nodes in the private cloud is large enough to run
all replicas privately. As opposed to the hybrid cloud model (1)-(15) above, we refer to this model as the private
cloud model. The objective function for this case might consist of several cost components, but we have chosen
to focus on the power consumption of the nodes in the private cloud. In data centers, the power consumption
of a node in an idle state is significant and can be as large as 70 % of the peak power consumption (Beloglazov
et al., 2011). Hence, a common strategy, also applied in VM placement models in the literature, is to minimize the
number of nodes used for placement. Herein, we also implement this objective, and introduce the binary variables
un indicating whether node n is turned on and used for placement, or not. The hybrid cloud model (1)-(15) is then
modified by replacing the objective function by (16). In addition, the active deployment equalities (3) are reduced
to the equalities (17). We also need to prevent nodes that are turned off from being used, which is achieved by
replacing constraints (9) by constraints (18). Finally, the variable definitions (19) are also added to the private
cloud model, such that the private cloud model is formulated as the problem of minimizing (16) subject to (2), (17),
(4)-(8), (18), (10)-(14), and (19).

min z =
∑
n∈N

un (16)

∑
n∈N

wiqn −
∑
r∈Ri

RA
iqryir = 0 ∀i ∈ S,∀q ∈ Qi (17)

∑
i∈S

∑
q∈Qi

GA
iqgwiqn +

∑
i∈S

∑
q∈Qi

GP
iqgviqn + mng − un ≤ 0 ∀n ∈ N ,∀g ∈ G (18)

un ∈ {0, 1} ∀n ∈ N (19)

5

4. The Adaptive Large Neighborhood Search

The Adaptive Large Neighborhood Search (ALNS) is an extension of the Large Neighborhood Search (LNS)
metaheuristic framework presented by Shaw (1997), and is also related to the ruin and recreate principle of
Schrimpf et al. (2000). The ALNS was first proposed by Ropke and Pisinger (2006), and has been used in many
applications since then. Pisinger and Ropke (2010) give an overview of the LNS and ALNS algorithms, and review
some of the literature on applications of the algorithms.

The basic principle of the ALNS and LNS is to iteratively destroy and repair a solution, and accept the new
solution as the incumbent if some criterion is met. A simple acceptance criterion is to only accept improving
solutions, while a criterion commonly used in the literature is the simulated annealing (SA) acceptance criterion.
The ALNS extends and deviates from the LNS by including several destroy operators and repair operators in the
search for improving solutions. That is, in each iteration one destroy operator and one repair operator are chosen
as the neighborhood operators. The classical destroy operators include random destroy, worst destroy and related
destroy (Pisinger and Ropke, 2010). Generally, the first type of operator consists of partly destroying a solution
or removing solution components at random, while the second operator type consists of removing the parts of the
solution that are considered bad or critical. The last type of operator tries to remove solution components that are
related in some way. The two last operators require, respectively, a way to measure which solution aspects that are
bad and related. These measures and the algorithmic identification of the types of solution components to destroy
are problem specific. All destroy operators used herein can be seen as problem specific implementations of one the
classical operators types. Moreover, typical repair operators include greedy or regret-based constructive heuristics
such as the ones by Ropke and Pisinger (2006), as well as exact algorithms as used by Shaw (1997).

The algorithms proposed in this paper also adopt the ideas of the Iterated Local Search (ILS) paradigm (Lourenço
et al., 2010). The search process of ILS is based on iteratively improving a solution by local search until a local
optimum is found, and then perturbing the solution before continuing with local search from the modified solu-
tion. The perturbation works as the diversification mechanism, and should be designed so that the search process
manages to escape local optima. The local search works as the intensification mechanism. To increase the intensi-
fication of the ALNS, we have implemented different local search operators that are called in every iteration after
the solution is repaired.

In addition to the inclusion of local search operators, one of the repair operators is based on solving a MIP,
and thus, the ALNS can be seen as a hybridization of different optimization algorithms. There are many examples
in the literature where ALNS or LNS, or more generally, metaheuristics, have been successfully hybridized with
exact solution methods, such as general-purpose MIP solvers. Some hybrid approaches are reviewed by Raidl and
Puchinger (2008). Conversely, there are few works applying simple local search operators in conjunction with
LNS or ALNS. Parragh and Schmid (2011) propose an LNS for a dial-a-ride problem that uses dual information
provided by solving a reduced version of the problem with column generation, and in addition at every 1000 LNS
iterations they generate new columns by performing swaps between existing columns. Since the local search is
used in only a few iterations, the local search has a less central role than in the algorithms proposed herein, where
it is used in every iteration. Moreover, in Parragh and Schmid (2013), the same authors propose another type of
hybridization for the same problem. Their hybridization is based on column generation, where the columns are
generated both by LNS and Variables Neighborhood Search (VNS) (Hansen and Mladenović, 2001). The LNS is
used in some iterations to search for new columns by destroying and repairing columns of a solution, while the
local search-based VNS is used to search for new columns based on inserting and removing elements, or swapping
elements between columns.

Algorithm 1 shows a pseudocode that gives an overview of the proposed ALNS metaheuristics. The sets of
destroy, repair and local search operators are denoted OD, OR, and OL, respectively. The initial feasible solution σ
is created based on an initial assignment of replication patterns and a placement of the replicas in the private and
public clouds. The construction of the initial solution is explained in detail in Section 4.6. While one attempts to
change the replica placement in every iteration of the ALNS, the replication pattern assignment is only changed
at some iterations. In Line 3, the destroy operator θ, repair operator ρ, and local search operator λ to be used in
the current iteration are biasedly selected using the vectors of weights ΨD, ΨR, and ΨL. In Line 5, the destroy,

6

repair and local search operators are called sequentially. In Line 12, the weights of the operators are updated based
on quality of the new solution, σ. Lines 3 and 12 are discussed in more detail in Section 4.5, while the different
destroy, repair and local search operators are described in Sections 4.2, 4.3, and 4.4, respectively.

Algorithm 1 Pseudocode of the proposed ALNS metaheuristics
Require: a feasible solution σ // σ̄ is the incumbent solution and σ̂ is the best found solution

1: η = 0; σ̄ = σ; σ̂ = σ; ΨD = [1, . . . , 1]ᵀ; ΨR = [1, . . . , 1]ᵀ; ΨL = [1, . . . , 1]ᵀ

2: repeat
3: select destroy, repair and local search operators θ ∈ OD, ρ ∈ OR and λ ∈ OL using scores ΨD, ΨR and ΨL

4: η = η + 1 //increment iteration counter
5: σ = λ(ρ(θ(σ̄))) //call the destroy, repair and local search operators sequentially
6: if accept(σ,σ̄) then
7: σ̄ = σ

8: if σ is better than σ̂ then
9: σ̂ = σ

10: end if
11: end if
12: update(ΨD,ΨR,ΨL)
13: until η = I //stop when reaching the maximum number of iterations, I
14: return σ̂

4.1. Cost Functions and Acceptance Criteria
The acceptance criterion used in Line 6 of Algorithm 1 is based on the classical SA criterion: with a temperature

τ and cost function c(σ), a new solution σ is accepted with probability min{1, e
−(c(σ̄)−c(σ))

τ }, where σ̄ is the current
solution. Starting from an initial temperature τ0, the temperature is gradually reduced every iteration by multiplying
τ by a factor α ∈ (0, 1). Thus, the probability of accepting a new solution that is worse than the incumbent is
gradually reduced.

In the ALNS for the hybrid cloud model, the objective function (1) is a natural choice as a cost function.
However, the objective function of the private cloud model (16) leads to a fitness landscape consisting of large
plateaus, and it would not be effective to use this function to drive the heuristic search. This problem is also
observed in vehicle routing problems that minimize the number of vehicles as the primary objective. Pisinger and
Ropke (2007) allow their ALNS for vehicle routing problems to work with infeasible solutions when minimizing
the number of vehicles. Specifically, they allow some requests not to be served and penalize the unserved requests
in the cost function. If a new solution with no unserved requests is found, the number of vehicles used in the future
solutions is reduced by one. Similarly, we allow the ALNS to examine infeasible solutions by relaxing the node
resource constraints (18), and penalize the surplus resource usage as the only term in the cost function. Thus, the
set of nodes that can be used for placement is gradually reduced, and we denote the set of nodes available for
placement for a solution σ asN(σ). Formally, with eng defined as the surplus usage of resource type g ∈ G on node
n ∈ N(σ), the cost function of the ALNS in the private cloud case is given by:

c(σ) =
∑

n∈N(σ)

∑
g∈G

eng (20)

If a solution with c(σ) = 0 is found, the number of nodes allowed in the next solution is reduced by one. We
denote solutions of the private cloud model that violate only the node resource constraints (18) as over-utilized, and
include them in the set of feasible solutions.

4.2. Destroy Operators
We describe seven methods to destroy a solution. The first five consider only destruction of parts of the private

cloud, the sixth method considers destruction of parts of both the private and public cloud, while the last method

7

only removes replicas from the public cloud. The destruction of the private cloud is done in several ways, either by
removal of all replicas on a subset of the nodes, removal of all active replicas on a subset of the nodes, removal of
all passive replicas on a subset of the nodes, or removal of all replicas of a subset of the services. All methods take
the current solution σ and a parameter δ ∈ (0, 1], the degree of destruction, as input. In each iteration, the number
of replicas to remove is chosen randomly based on the value of δ. In addition, all but the first method (Random
Node Removal) have a parameter γ ∈ R+ that controls the degree of randomization in the destruction. For brevity,
we define QA(n), respectively QP(n), as the set of pairs (i, q) which have an active replica, respectively a passive
replica, placed on node n ∈ N(σ) in the current solution σ.

To ease the exposition, we use the terms displace and displacement with the meaning of moving a replica either
from a node in the private cloud or the public cloud to a set of unplaced active replicas or unplaced passive replicas.

4.2.1. Random Node Removal
This method randomly selects h nodes for removal, that is, all active and passive replicas at these h nodes are

displaced. The number of nodes h to destroy is randomly drawn according to a uniform distribution among the
integers in the interval [2, bδ|N(σ)|c].

4.2.2. Active Replica Removal
The idea of this operator is to select h nodes and displace all active replicas on these nodes, while preserving the

passive replicas. Instead of selecting the h nodes randomly, we want to bias the selection towards nodes having a
specific feature, denoted by φ. The feature can either be low resource utilization as defined in equation (21) below,
or low average public cloud cost of the active replicas running on the node as defined in equation (22). Only the
first of these features is used in the ALNS for the private cloud model. Feature φA only considers the active part
of the resource utilization of the nodes, that is, keeping all else fixed, it measures how well the node is utilized by
active replicas.

φA(n) = |G|−1
∑
g∈G

∑
(i,q)∈QA(n) GA

iqg

1 −
∑

(i,q)∈QP(n) GP
iqg − mng

(21)

φC(n) = |QA(n)|−1
∑

(i,q)∈QA(n)

Ciq (22)

The pseudocode of the Active Replica Removal, where the node selection is biased towards nodes with feature φ,
is shown in Algorithm 2. The randomness of the algorithm is controlled by γ, and setting γ = 1 makes the node
selection in Line 4 completely random. The parameter h is randomly and uniformly drawn among the integers in
[2, b2δ|N(σ)|c].

Algorithm 2 Pseudocode of the Active Replica Removal operator
Require: a solution σ, h ∈ N, γ ∈ R+

1: let N be a vector of the nodes in solution σ, sorted in ascending order of feature φ
2: while h > 0 do
3: π = random number ∈ [0, 1)
4: select an element n at position bπγ|N|c of N
5: displace all active replicas of node n, and remove n from N
6: h = h − 1
7: end while
8: return σ

4.2.3. Passive Replica Removal
The Passive Replica Removal operator only differs from the Active Replica Removal in Algorithm 2 at Line

5 where it displaces all passive replicas of node n, instead of all active replicas. In addition, the node vector is

8

sorted in ascending order of the feature represented by φP, as defined in equation (23) below. Nodes running
passive replicas with diverging requirements for the amount of the shared backup resource mng, and nodes running
few passive replicas get a low value on φP. The rationale of this destroy operator is that it is beneficial that as
many passive replicas as possible (bounded by E) share the reserved backup resources, and that the passive replicas
running on the same node have quite similar resource requirements when being activated. The number of nodes, h,
is drawn in the same way as in the active replica removal method.

φP(n) = |G|−1
∑
g∈G

∑
(i,q)∈QP(n)(GA

iqg −GP
iqg)

mngE
(23)

4.2.4. Worst Node Removal
Like Random Node Removal, the Worst Node Removal operator selects h nodes and displaces all replicas

running on the nodes. Thus, Algorithm 2 is adapted by changing Line 5 such that all replicas on the selected
node are displaced. In this operator, the vector of nodes is ordered according to the feature φW as defined in (24)
below. As long as there are passive replicas on the node, φW is a weighted combination of φA and φP, using weight
parameter βW ∈ (0, 1). In the private cloud model, for a node n with over-utilized resources, i.e., eng > 0 for at least
one g, φA takes a value larger than 1. In order not to favor this, we put an upper bound of 1 on φA.

φW(n) =

(1 − βW) min{1, φA(n)} + βWφP(n) if QP(n) , ∅
φA(n) otherwise

(24)

4.2.5. Over-utilized Node Removal
This operator is quite similar to Worst Node Removal, but is specifically designed for use in the private cloud

model. It biases the node selection primarily towards nodes with large over-utilization, and secondarily towards
nodes with large under-utilization. This is achieved by sorting the node vector according to feature φO, given
in (25), where we define Gg(n) according to equation (26), that is, as the current usage of resource g at node n.
Observe that the expression in (25) is negated, and that the first term, the over-utilization, is given a large weight
ΩO, such that a node, say n1, with the smallest possible over-utilization is ordered before a node, say n2, with the
largest possible under-utilization, i.e., φO(n1) < φO(n2).

φO(n) = −
∑
g∈G

(
ΩO max{0,Gg(n) − 1} + max{0, 1 −Gg(n)}

)
(25)

Gg(n) =
∑

(i,q)∈QA(n)

GA
iqg +

∑
(i,q)∈QP(n)

GP
iqg + mng (26)

4.2.6. Related Service Removal
All the destroy operators considered so far select nodes, randomly or according to some feature, and displace

all or some of the replicas on the selected nodes. The idea of the related service removal is to look for similarities
among the worst nodes, specifically by considering the services that are present on the worst nodes. The operator
is illustrated in Algorithm 3. Similar to the worst node removal, the vector of nodes is sorted according to feature
φW , and hN nodes are selected and added to a set of the worst nodes. However, instead of displacing the replicas of
these nodes, the operator finds the hS services that are represented with the most replicas at the worst nodes. Then
all replicas of the hS services are displaced. The parameters hN and hS are randomly and uniformly drawn among
the integers in the intervals [2, bδ|N(σ)|c] and [1, bδ|S|c], respectively.

Since this operator displaces complete services, it is simple for the subsequent repair operator to change the
replication pattern of the services involved. While this might be possible for repair operators following other
destroy operators as well, we have not considered this. Therefore, the replication patterns can only change after
calling the Related Service Removal.

9

Algorithm 3 Pseudocode of the Related Service Removal operator
Require: a solution σ, hN ∈ N, hS ∈ N, γ ∈ R+

1: let N be a vector of the nodes in solution σ, sorted in ascending order of feature φW

2: let NW = ∅ be the set of the worst nodes
3: while hN > 0 do
4: π = random number ∈ [0, 1)
5: select an element n at position bπγ|N|c of N
6: remove n from N, and add n to NW

7: hN = hN − 1
8: end while
9: let SW be the set of services with cardinality hS that are represented with most active and passive replicas on

the nodes in NW

10: displace all replicas of the services in SW , from both the private cloud and the public cloud
11: return σ

4.2.7. Public Cloud Destruction
This operator, outlined in Algorithm 4, is the sole operator that only considers destruction of the public cloud

placement. The parameter h, the number of active replicas to displace, is uniformly drawn among the integers in
the interval [5, bδC |QC(σ)|c], where δC is the degree of destruction, and QC(σ) is a vector of the active replicas
currently placed in the public cloud. The displacement of replicas is biased towards replicas with high cost, Ciq,
and the bias is still controlled by the parameter γ.

Algorithm 4 Pseudocode of the Public Cloud Destruction operator
Require: a solution σ, h ∈ N, γ ∈ R+

1: let QC be a vector of the active replicas (i, q) currently placed in the public cloud in solution σ, sorted in
descending order of public cloud cost Ciq

2: while h > 0 do
3: π = random number ∈ [0, 1)
4: select an element (i, q) at position bπγ|QC |c of QC
5: displace active replica (i, q) from the public cloud
6: h = h − 1
7: end while
8: return σ

This operator is only used in the ALNS for the hybrid cloud model, and it is used in combination with one of
the other operators that consider destruction of the private cloud, except from the Related Service Removal. When
this operator is called in combination with the Random Node Removal, γ = 1, that is, the displacement of replicas
from the public cloud is completely random; otherwise γ takes the same value as the other destroy operators.

4.3. Repair Operators

We use three types of repair operators. The first two are fast and insert unplaced replicas one at a time, based on
simple measures. They do not concentrate on rebuilding the nodes individually, like a strategy that solves several
knapsack problems in sequence, but consider every node as a potential point of placement, as long as the insertion
of a replica at the node is feasible. The last repair operator is based on solving a reduced version of the direct MIP
models, where a large number of the variables is fixed to integer values. Even though the MIP is greatly reduced,
the operator is more time-consuming than the insertion operators. However, if one gives the operator enough time,
it will find the optimal way to repair the destroyed solution.

10

4.3.1. Greedy Insertion
The Greedy Insertion operator is a fast and simple constructive heuristic, which iteratively places the unplaced

replicas on the nodes guided by a cost measure. Specifically, for the ALNS of the hybrid cloud model, if no more
active replicas can be placed on the nodes, the rest of the unplaced active replicas are placed in the public cloud.
However, if there are remaining unplaced passive replicas, the operator returns without any feasible solution. Even
though the ALNS of the private cloud model allows over-utilized nodes in the solutions, it is possible that the greedy
insertion cannot find a feasible placement for all unplaced active or passive replicas, and thus, returns without any
feasible solution.

The cost measures used to guide the greedy insertion heuristic in the ALNS for the hybrid cloud model and
the private cloud model differ. This is natural since the objective functions in the mathematical formulations also
differ. Furthermore, the cost measures used to guide the insertion of active replicas and passive replicas differ, and
they are not directly comparable. Therefore, the Greedy Insertion heuristic first tries to insert all passive replicas,
and then focuses on inserting all active replicas.

In the hybrid cloud model, we let ξP(i, q, n), defined in (27), denote the cost of inserting a passive replica of
service component pair (i, q) at node n. The cost accounts for the absolute deviation between the current reserved
backup resources, mng, at the node and the replica’s requirement for backup resources. However, if the insertion
is infeasible, we set ξP(i, q, n) = ∞. Analogously, we define ξA(i, q, n), according to (28), as the cost of inserting
an active replica of pair (i, q) at node n. The first term of (28), which is given a large weight ΩC , accounts for the
public cloud cost that would incur if the replica is not placed in the public cloud, while the second term accounts
for the residual resource slack at the node after insertion (less is better). Since active replicas with large public
cloud cost should have a smaller insertion cost ξA(i, q, n), we subtract Ciq from a constant C̄ which is greater than
max(i,q) Ciq. Recall that Gg(n) denotes the current resource usage at node n, as defined in (26).

ξP(i, q, n) =
∑
g∈G

|mng − (GA
iqg −GP

iqg)| (27)

ξA(i, q, n) = ΩC(C̄ −Ciq) +
∑
g∈G

(
1 −Gg(n) −GA

iqg

)
(28)

The cost measures are adapted to (29) and (30) in the ALNS for the private cloud model. Since the overall
cost function used by the acceptance criteria (see Section 4.1) concerns the amount of over-utilized resources, both
cost measures below take this into account. We let ∆eP

g (i, q, n), respectively ∆eA
g (i, q, n), denote the increase in

over-utilization (of resource type g) when a passive, respectively an active, replica of pair (i, q) is inserted on node
n; this increase in over-utilization is given a large weight ΩI in the cost measures.

ξP(i, q, n) = ΩI

∑
g∈G

∆eP
g (i, q, n) +

∑
g∈G

|mng − (GA
iqg −GP

iqg)| (29)

ξA(i, q, n) = ΩI

∑
g∈G

∆eA
g (i, q, n) +

∑
g∈G

(
1 −Gg(n) −GA

iqg

)
(30)

In a greedy fashion, the operator first selects the passive replica among all unplaced replicas with minimum
cost, and inserts this replica on its minimum cost node. This insertion process repeats until all passive replicas
are inserted, or there are no more feasible insertions to do. In the latter case, the operator would return without
a feasible solution. Assuming that all passive replicas were placed, the operator considers the unplaced active
replicas in the same way. In the ALNS for the hybrid cloud model, if there are unplaced active replicas left after
the insertion process, these replicas are placed in the public cloud. On the other hand, in the private cloud model
the operator would return without a feasible solution unless all active replicas are inserted.

4.3.2. Regret Insertion
The Regret Insertion is designed to be less myopic than the Greedy Insertion in the insertion strategy. The

operator extends the Greedy Insertion by being guided by a regret value, or look-ahead value, instead of the cost

11

measure directly. For a passive (active) replica of pair (i, q), let niqk be the node with kth lowest cost according to
cost measure ξP(i, q, n) (ξA(i, q, n)). Moreover, the regret-k value ζiq(k) for a passive replica is defined as in (31).
The regret-k value for active replicas is defined analogously using the cost measures ξA(i, q, n) instead.

ζiq(k) =

k∑
j=2

(
ξP(i, q, niq j) − ξP(i, q, niq1)

)
(31)

The insertion procedure of the Regret Insertion is similar to that of the Greedy Insertion, except that instead
of selecting the replica with lowest cost of insertion in each iteration, the replica with the maximum regret value is
selected. If a replica has fewer than k nodes where an insertion is feasible, the regret value of the replica will be
∞. Hence, the replica is selected for insertion early in the process. This means that regret insertion operators with
high k have greater probability of finding a feasible solution than both regret insertion operators with low k and the
Greedy Insertion.

4.3.3. MIP Insertion
The MIP Insertion is based on the idea of calling a general-purpose solver on the MIP models presented in

Section 2, where a part of the variables is fixed. In a given iteration of the ALNS, the fixed variables correspond to
the non-destroyed part of the solution. Thus, when the MIP Insertion is used to repair the solution, one optimizes
the MIP model over the variables of the replicas in the sets of unplaced active and passive replicas. If the Related
Service Removal is used for destroying the solution prior to calling the MIP Insertion, the latter also optimizes over
the replication pattern variables, yir, of the displaced services.

For the hybrid cloud MIP model of Section 2, the objective function of the MIP Insertion is changed to (32)
by adding a second term considering the shared resources reserved for activation of passive replicas, mng. This is
done to ensure that the repair operator inserts passive replicas wisely, even if the insertion does not affect the public
cloud cost. However, the public cloud cost term is given a large weight, ΩC , such that it dominates the expression.

min z = ΩC

∑
i∈S

∑
q∈Qi

Ciqtiq +
∑

n∈N(σ)

∑
g∈G

mng (32)

The MIP Insertion used in the ALNS for the private cloud model has to consider that the resource constraints
of the nodes are relaxed. Therefore, the original node resource constraints (18) are rewritten as (34), where eng

accounts for the resource usage surplus at the nodes, and defined in (35). Similar to the overall objective of the
ALNS, the MIP model seeks to minimize the total resource usage surplus of the nodes, hence the objective of the
MIP Insertion is written as (33).

min z =
∑

n∈N(σ)

∑
g∈G

eng (33)

∑
i∈S

∑
q∈Qi

GA
iqgwiqn +

∑
i∈S

∑
q∈Qi

GP
iqgviqn + mng − eng ≤ 1 ∀n ∈ N(σ),∀g ∈ G (34)

eng ≥ 0 ∀n ∈ N(σ),∀g ∈ G (35)

4.4. Local Search Operators

Two classes of local search operators are used in the ALNS: a swap of H1 replicas from node n1 with H2
replicas from node n2, denoted as the inter-node swap; and a swap of H1 replicas from node n with H2 replicas
currently placed in the public cloud, denoted as the inter-cloud swap. By using different values for the operator
parameters H1 and H2, several different swap operators are considered by the ALNS.

12

4.4.1. Inter-node Swap
The Inter-node Swap operator either swaps H1 active replicas and H2 active replicas between two nodes, or

swaps two sets of H passive replicas between two nodes. An inter-node swap is defined by the tuple (Q̄1, Q̄2, n1, n2),
where Q̄1 and Q̄2 are sets of replicas and n1 and n2 are the nodes where the replicas Q̄1 and Q̄2, respectively,
currently are placed. After performing the swap, the replicas in Q̄2 run on n1, while the replicas in Q̄1 run on n2.

The operator iteratively searches for swaps that directly or indirectly improve the solution quality. In each
iteration, the operator performs an improving swap, and then continues the search. The improvement of a swap is
measured by a cost function, ψ. Searching through all feasible swaps in each iteration would make the operator
computationally expensive. Therefore, in each iteration, the operator stops the search if an improving swap is
found after having searched through all feasible swaps between a given node and any other node. At the end of
each iteration, the operator performs the most improving swap found in this iteration. Algorithm 5 outlines the
operation of the inter-node swap operator. In Line 8, all swaps between nodes n1 and n2 that lead to a feasible
solution are evaluated by a cost function, and in Line 10, the most improving swap is saved. When H1 = H2, we
exploit the symmetry by letting n2 iterate over the nodes that are ordered after n1 in a fixed ordering (see Line 7).
However, when H1 , H2, we also need to consider swaps of H2 replicas from lower-ordered nodes with H1 from
higher-ordered nodes.

Algorithm 5 Pseudocode of the inter-node swap operator
Require: a solution σ, H1 ∈ N, H2 ∈ N

1: //let (Q̂1, Q̂2, n1, n2) denote the most improving swap in an iteration, and let ψ̂ denote the minimum cost
2: let the set Ñ contain all nodes in the solution σ, N(σ)
3: while true do
4: ψ̂ = 0 // set the minimum cost to zero
5: while Ñ , ∅ do
6: remove a random element n1 from Ñ
7: for all n2 ∈ N(σ) : n2 ordered higher than n1 do
8: find the most improving swap (Q̄1, Q̄2, n1, n2) of H1 replicas from n1 with H2 replicas from n2
9: if ψ(Q̄1, Q̄2, n1, n2) < ψ̂ then

10: ψ̂ = ψ(Q̄1, Q̄2, n1, n2) and (Q̂1, Q̂2, n1, n2) = (Q̄1, Q̄2, n1, n2)
11: end if
12: end for
13: if ψ̂ < 0 then break //improving swap found
14: end while
15: if ψ̂ = 0 then break //no improving swap found
16: perform swap (Q̂1, Q̂2, n1, n2) //update n1, n2 ∈ N(σ)
17: add nodes n1 and n2 to Ñ //update n2 if n2 already exists in Ñ
18: end while
19: return σ

We use different cost functions based on whether the operator swaps active or passive replicas, and on whether
the ALNS considers the hybrid or the private cloud model. In the ALNS for the hybrid cloud model, we only con-
sider inter-node swaps of passive replicas, and use the cost function ψP defined in (36). The functions ∆mg(Q̄1, Q̄2, n1)
account for the increase or decrease in the shared backup resources reserved for passive replicas (of resource type
g) at node n1, when the set Q̄1 of passive replicas are removed from the node and the set Q̄2 are placed on the
node. Thus, ψP in (36) computes the total change in the resources reserved for passive replicas. In the ALNS for
the private cloud model, it is more natural to look at the increase or decrease in over-utilization of the resources
incurred by the swap. Thus, the cost functions measuring the improvement of a swap is simply the difference in the
cost function of the ALNS, given in (20), before and after the swap.

ψP(Q̄1, Q̄2, n1, n2) =
∑
g∈G

(
∆mg(Q̄1, Q̄2, n1) + ∆mg(Q̄2, Q̄1, n2)

)
(36)

13

4.4.2. Inter-cloud Swap
The behavior of the Inter-cloud Swap operator is similar to the Inter-node Swap operator, but it considers swaps

of replicas between a node in the private and the public cloud, instead of swaps between two nodes. Therefore,
this operator is solely used in the ALNS for the hybrid cloud model. Moreover, since only active replicas run in
the public cloud, this operator considers exclusively swaps of H1 active replicas with H2 active replicas. Like the
Inter-node Swap, the Inter-cloud Swap tries to limit the search in each iteration by stopping after all feasible swaps
between a given node n and the public cloud have been evaluated, as long as one or more improving swaps are
found, and then performs the most improving swap. The cost function ψA for evaluating the quality of a swap is
defined in (37). The function computes the change in public cloud cost when a set Q̄1 of active replicas at a node
n is swapped with a set Q̄2 of active replicas currently placed in the public cloud. An improving swap is identified
by a negative cost.

ψA(Q̄1, Q̄2) =
∑

(i,q)∈Q̄1

Ciq −
∑

(i,q)∈Q̄2

Ciq (37)

4.5. Adaptive Operator Selection

In the previous sections, we have defined several destroy operators, repair operators and local search operators.
In a given iteration of the ALNS, we only use one operator of each type, and we need a way to decide which
operators to use in each iteration (see Line 3 of Algorithm 1). The traditional way of selecting the operators in an
ALNS is to select the destroy and repair operators independently by using a roulette wheel selection strategy where
each of the operators is assigned weights.

In applications where the repair operators are similar in complexity and time consumption, independent se-
lection of the operators seems to be unproblematic. However, in our ALNS where a relatively expensive repair
operator, i.e., the MIP insertion, and other less accurate, but faster, repair operators are used side by side, there
might be something to gain by coupling the selection of destroy and repair operators. We first select the destroy
operator based on the traditional method in ALNS, i.e., a destroy operator θ̂ is selected with a probability according
to (38), where ΨD

θ represents the weight of the destroy operator θ ∈ OD. Moreover, each destroy operator, θ, is
associated with a set of repair operators that may be called successively; we denote this set by OR

θ ⊆ O
R. The idea

is to couple the selection of destroy and repair operators, so that some destroy operators have to be followed by
a call to the MIP insertion operator, while other operators have to be followed by a less accurate greedy or regret
insertion operator. The probability of selecting a repair operator ρ̂ ∈ OR

θ̂
to follow the destroy operator θ̂ is given

in (39). At last, the local search operator is chosen in the same way as the destroy operator, that is, operator λ̂ is
selected with a probability according to (40).

ΨD
θ̂∑

θ∈OD ΨD
θ

(38)

ΨR
ρ̂∑

ρ∈OR
θ̂

ΨR
ρ

(39)

ΨL
λ̂∑

λ∈OL ΨL
λ

(40)

Generally, the underlying adaptiveness of the ALNS is provided by the adaptive weight adjustment principle
(Ropke and Pisinger, 2006). The intent is that one could include several destroy and repair operators that function
well for different problem instances and different problem structures in the sets of operators, and adjust their weights
dynamically based on their past performance. In each iteration of the ALNS, the quality of the solution found and
the time spent in the iteration, that is essentially the time spent in Line 5 of Algorithm 1, are used to score the
operators used in that iteration. The new solution is classified according to whether it is a new best solution, better
than the incumbent solution, accepted as a new incumbent, or not accepted; based on this, the operators get a basic

14

score ν1, ν2, ν3, or ν4, where ν1 > ν2 > ν3 > ν4. The lowest score, ν4, is defined as 1. Since the different repair
operators might use a significantly different amount of time to repair the destroyed solution, we have chosen to
consider the time spent in each iteration in the scoring of the operators. Especially, we are interested in reducing
the scores in iterations which are time-consuming. Therefore, we compute a time-normalized score shown in (41),
where j ∈ {1, 2, 3, 4} according to the classification of the new solution, Tη denotes the time spent in the iteration,
and T̄ refers to the average time spent in an iteration since the beginning of the search. Moreover, the normalization
can be controlled by the parameter ω. The outer max-term in the normalization ensures that no operators are given
a score worse than ν4, while the inner min-term makes the scoring only penalize long iterations, and not iterations
that are shorter than the average. Moreover, if the repair operator is not capable of finding a feasible solution, the
operator gets score ν4.

max{ν4, ν j min{1, T̄/(ωTη})} (41)

The search is divided into segments that correspond to 100 iterations. At the beginning of each segment, the
scores of all operators are set to one, and throughout the segment, the operators accumulate the time-normalized
scores from the iterations where they were used. At the end of a segment, the weights of all operators are updated
based on their accumulated scores (Line 12 of Algorithm 1). The destroy operator’s weights are updated as shown
in (42), where ςD

θ represents the accumulated scores of destroy operator θ, and ΦD
θ is a count of the number of times

operator θ was called in the last segment. The parameter βR determines how quickly the past performance is reset
in the adaptive weight adjustment method. The repair and local search operators are updated in the same manner.

ΨD
θ = (1 − βR)ΨD

θ + βR
ςD
θ

ΦD
θ

(42)

4.6. Initial Solution

The construction of the initial solution is done in two steps. First, a replication pattern is selected for each ser-
vice. Then, the Regret Insertion with k = 3 is called to insert all active and passive replicas. Several heuristic rules
can potentially be used to select the replication patterns. In the implementation, we have selected the replication
patterns that minimize the total resource assigned to all the active replicas in each service. Moreover, for the private
cloud model, unless a strict natural upper bound on the number of nodes exists, one has to set a bound. Setting this
bound too low might result in a situation where the regret insertion cannot find a feasible solution. If this is the
case, one can increase the number of nodes and call the regret insertion until a feasible solution is found.

4.7. Summary of the Operators

Several destroy and repair operators were presented in Sections 4.2 and 4.3, respectively. However, not all of
them can be or are used in both the ALNS for the hybrid cloud model and the ALNS for the private cloud model.
Moreover, the selection of a repair operator is presented as coupled to the selected destroy method. To achieve
the coupled selection, we have grouped destroy and repair operators together, in two groups. The groups for both
the hybrid cloud and private cloud cases are shown in Table 1. Keep in mind that the ALNS for the hybrid cloud
model also calls the Public Cloud Destruction operator in each iteration, except when the Related Service Removal
is used. These groups imply that if Related Service Removal is selected as the destroy operator, the MIP Insertion
will be selected as the repair operator. In method group (ii), there is the Greedy Insertion operator and one or
more Regret Insertion operators with different k. The different values of k used are decided in the tuning of the
algorithm, which is discussed in Section 5.1. Moreover, in the private cloud case, we use two instances of the
Over-utilized Node Removal, one for the MIP Insertion and one for the other methods. The two instances might
consider different degrees of destruction δ. The choice of grouping is partly based on the results of preliminary
tests during the development phase and partly based on the design and functioning of the operators. For instance,
calling the MIP Insertion after the random node removal one seems to be more likely to end up in the same solution
as before the destruction. Also, the Greedy Insertion and Regret Insertion seem to be more efficient when nodes
are only partly destroyed.

15

Table 1: Grouping of destroy and repair operators
Method
Group

Hybrid Cloud Private Cloud
Repair Operators Destroy Operators Repair Operators Destroy Operators

(i) MIP Insertion Related Service Removal MIP Insertion Related Service Removal
Worst Node Removal Over-utilized Node Removal

(ii)
Greedy Insertion Random Node Removal Greedy Insertion Random Node Removal

Passive Replica Removal Passive Replica Removal

Regret Insertion Active Replica Removal-φA Regret Insertion Active Replica Removal-φA
Active Replica Removal-φC Over-utilized Node Removal

Regarding the local search operators, the ALNS for the hybrid cloud model uses one or more Inter-node Swap
operators for passive replicas, and one or more Inter-cloud Swap operators for active replicas, where the values of
H1 and H2 vary. The ALNS for the private cloud model uses Inter-node Swap operators for both active and passive
replicas with different values of H1 and H2. The combinations of H1 and H2 used in the swaps are decided in the
tuning process, which is described in Section 5.1.

5. Computational Study

The purpose of the computational study is twofold. We present the results of an evaluation of the ALNS with
and without local search (LS) operators. In addition, we perform a comparison of the ALNS with the branch and
price (B&P) algorithm proposed by Gullhav and Nygreen (2016). Before presenting the results, we give some
details on the setup of the experiments.

5.1. Setup of the Experiments and Tuning
The ALNS was implemented in C++, and compiled with GCC 4.8.2 with optimization option -O3. We have

run all our experiments on a CentOS 5.8 machine with a dual core 3.0 Ghz Intel E5472 Xeon processor and 16
GB of memory. The MIP Insertion operator calls the Xpress-Optimizer version 27.01.02 of the FICO Xpress
Optimization Suite 7.8. The MIP solver of Xpress has utilized up to eight threads in the tree search.

We have designed an instance generator which constructs test cases that aim to be as realistic as possible.
The test cases used range from 20 to 70 services, and each service is composed of four components on average,
which implies that the largest cases contain a total of 280 components. The instance generator is based on ten
different dummy services composed of between three and five components each. The different services have a
structure reflecting real-world services with different resource requirements for the different components. In short,
each component of the ten services is given a resource requirement distribution, and the case generation is based
on drawing resource requirements from these distributions using different seeds. For each instance size, we have
generated five cases for testing, and for the instances with 40 and 50 services, we have generated another five for
tuning purposes. In all cases, D = 3 and E = 4, and we consider CPU resources only. The minimum, average, and
maximum values on the GA

iqg parameters are 8.0%, 23.0%, and 45.0%, respectively, while the same values for the
GP

iqg parameters are 0.33%, 1.6%, and 3.0%. Over all cases, the average number of replication patterns per service
is 7.5.

A difference between the test cases for the private cloud model and hybrid cloud model is that the latter have
an (effective) upper bound on the number of nodes in the private cloud, N. This upper bound is based on a lower
bound (LB) on the number of nodes needed to place all services in the private cloud. This lower bound is computed
as the best bound provided by the B&P algorithm (Gullhav and Nygreen, 2016). Using this LB, we constructed
two types of test cases for the hybrid cloud: one with N = d0.75LBe, and one with N = d0.9LBe. We say that these
two types of test cases have 75% and 90% private cloud coverage. Furthermore, the placement of active replicas in
the public cloud is done at a cost, and the offered VM types used are presented in Table 2. In the table, we list two
providers. Since we model the public cloud as a generic pool of resources, we select the VM types for the different
components as the cheapest one with enough capacity. The costs are synthetic and not given units. However, the
relative cost and size between the VM types reflect the real world.

16

Table 2: Data of the public cloud VM types used in the hybrid cloud experiments. The capacity is given in percentage of the private cloud
node capacity.

Provider 1 Provider 2
Cost Capacity Cost Capacity

10 10% 15 15%
20 20% 30 30%
40 40% 60 60%

The test cases are named based on the number of services they contain. The hybrid cloud test cases with 20
services are referred to as H20, while the corresponding test cases with no restriction on the number of nodes are
labeled P20 and, hence, used for testing the private cloud model. Whenever it is necessary to identify the five
different test cases with a given number of services, the cases are appended a letter from ’a’ to ’e’, i.e., H20-a to
H20-e.

The ALNS has several parameters that can be tuned for the problem structure. We used SMAC (Hutter et al.,
2011) to tune the parameters listed in Table 3. The tuning was done on separate test cases with 40 and 50 services,
and we set the parameters of the ALNS for the hybrid cloud model and the ALNS for the private cloud model
independently. Thus, for the hybrid cloud model we tuned the parameters over 20 cases: ten with 40 services and
ten with 50 services. For each size, five of the cases had a private cloud coverage of 75%, while the other five had a
private cloud coverage of 90%. The tuning was set up to evaluate the relative gap between the best LB produced by
the B&P on the respective test case and the objective value of ALNS after 900 seconds. Moreover, SMAC was run
with eight processes in parallel. The processes shared data during the run, but outputted eight different parameter
combinations.

Most of the parameters in Table 3 are defined in Section 4. However, the parameters of the acceptance criteria,
τ0 and α, are not tuned directly. These two parameters are set based on the tuned parameters τC and PE , in addition
to the maximum number of iterations I and the initial solution σ0 of a given run. In the ALNS for the hybrid cloud
model, the initial temperature τ0 is set so that a solution with τC% higher cost than σ0 would be accepted with
50% probability. The cooling rate α is set so that after cooling the temperature I times, a solution with τC% higher
cost than σ0 would be accepted with probability PE . For the private cloud model, the temperature and cooling
rate is reset in every iteration following a new best solution, since a new best solution has zero cost, i.e., no over-
utilization. The reset procedure is similar to the procedure setting the initial temperature and cooling rate for the
hybrid cloud model, but when called, it uses the cost of the current solution and the remaining number of iterations.

Table 3: Overview of the tuned parameters and their respective values in the algorithm for the private cloud model (PCM) and hybrid cloud
model (HCM).

Value in
Parameter Description Parameter domain PCM HCM

δM Deg. of destruction before calling MIP Insertion {0.05, 0.10, 0.15, . . . , 0.5} 0.05 0.05
δ Deg. of destruction before calling other repair operators {0.05, 0.10, 0.15, . . . , 0.5} 0.05 0.1
δM

C Deg. of destr. (public cloud) before calling MIP Insertion {0.1, 0.2, . . . , 1} N/A 0.5
δC Deg. of destr. (public cloud) before calling other repair ops. {0.1, 0.2, . . . , 1} N/A 1.0
γ Randomness in destroy operators {2, 3, . . . , 8} 3 4
βW Weight parameter in the Worst Node Removal {0.1, 0.2, . . . , 0.9} 0.4 0.1
K Maximum value of k in the Regret Insertion operators {2, 3, 4, 5} 4 4

(ν1, ν2, ν3) Basic scores in the adaptive operator selection {1, 2, . . . , 50} (37,32,9) (42,31,22)
ω Time normalization parameter in the adaptive op. selection {0.5, 0.6, . . . , 1.5} 0.6 1.1
βR Weight put on the past performance in the scoring {0.05, 0.10, 0.15, . . . , 0.5} 0.15 0.5
τC Parameter controlling the temperature initialization {0.1, 0.5, 1, 2.5, 5, 10, 20} 1 0.1
PE Prob. (in %) of accepting a sol. τC% worse than the initial sol. {0.01, 0.05, 0.1, 0.25, 0.5} 0.1 0.1

Regarding the tuning of the Regret Insertion operators, Table 3 shows that the maximum k of the operators is 4.
This means that we use three Regret Insertion operators with k equal to 2, 3 and 4. The tuning of the swap operators
is not shown in the table. However, for both the hybrid cloud and private cloud model, the best combination of
Inter-node Swaps of passive replicas were (H1,H2) ∈ {(1, 1), (2, 2)}, i.e., swap of one replica with another and swap

17

of two replicas with two other replicas. For the Inter-cloud Swap of active replicas in the hybrid cloud case, the
best swap types were (H1,H2) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}. In the private cloud case, the best Inter-node Swaps of
active replicas were (H1,H2) ∈ {(1, 1), (1, 2), (2, 2)}. In this case, the swaps (1, 2) and (2, 1) are identical.

All results presented below are obtained by a single run of each test case. When average values for an instance
size are presented, the averages are computed based on a single run of each of the five cases of the instance size.

5.2. Added Value of Local Search

First, we are interested in evaluating the effect of using an LS operator on top of the repair operators in the
ALNS. In the evaluation, we use the best LB obtained by the B&P algorithm to compute relative gaps between the
LB and the objective value of the best solution obtained by the ALNS with and without LS operators. The LBs for
the private cloud cases have been shown to be very tight in the cases that are solved to optimality. The private cloud
model has structural similarities with the cutting stock problem, for which column generation provides very tight
bounds (Vanderbeck, 1999). However, we cannot be certain about the quality of the LBs in the hybrid cloud cases.
Table 4 gives the average relative gaps at different points in time, after 5, 10 and 15 minutes, for the hybrid cloud
cases with 75% and 90% private cloud coverage. Since the stopping criterion of the ALNS is given by a maximum
number of iterations, we have set the maximum number of iterations so that each test case is run slightly longer
than 15 minutes. This is done to allow the same computational time independent of the instance size. The average
gaps are then computed based on the objective function values at the different points in time. We see that on the
smaller cases, the performance of the two versions of the ALNS is quite similar. However, when the problem size
grows, there seems to be a benefit in using the LS on top of the repair operators. In addition, the benefit is more
pronounced for the cases with 90% private cloud coverage, than for the cases with 75% private cloud coverage. As
previous studies have shown, the cases with higher private cloud coverage are more difficult to solve and have larger
gaps (Gullhav and Nygreen, 2015, 2016). This might imply that the LS becomes more valuable as the difficulty of
the problem increases. Table 5 displays the gaps for the private cloud cases at 5, 10 and 15 minutes of run time. We
can see that the relative gaps are smaller than in the hybrid cloud cases, but the ALNS with the LS operators still
gives the best results. Furthermore, we also see that when the problem size grows, the LS becomes more beneficial.

Table 4: Average relative gap (in %) between best solution found and best bound at different points in time (seconds): comparison of the
ALNS with and without local search (LS) operators on the hybrid cloud cases.

Case
75% private cloud coverage 90% private cloud coverage

ALNS w/o LS ALNS with LS ALNS w/o LS ALNS with LS

300 600 900 300 600 900 300 600 900 300 600 900

H20 7.940 6.672 5.938 8.001 6.448 5.639 20.62 18.03 16.42 20.47 17.53 16.41
H30 10.79 8.998 8.013 10.02 8.632 7.859 28.35 24.69 22.41 26.32 22.24 21.07
H40 12.75 11.11 9.781 11.75 10.26 9.397 36.23 29.58 26.92 27.97 24.24 22.49
H50 17.33 14.59 13.27 15.82 12.95 12.17 45.09 36.99 33.53 38.05 31.73 29.20
H60 19.12 15.91 14.63 17.63 14.56 13.52 55.93 43.37 38.11 47.62 37.40 32.86
H70 22.68 19.64 17.29 21.47 17.93 15.66 60.51 49.82 44.31 55.53 42.92 37.26

While Tables 4 and 5 present average values for each instance size, Table 6 presents the p-values of the
Wilcoxon signed-rank test (Hollander et al., 2013). This non-parametric statistical hypothesis test is used to com-
pare the relative gaps of the ALNS with and without the LS operators, with the aim to reject the null hypothesis.
The null hypothesis states that the difference between the algorithms follows a symmetric distribution around zero,
and we test this against the two-sided alternative hypothesis. Moreover, when performing the test, we have grouped
the H20 and H30 cases, the H40 and H50 cases, and the H60 and H70 cases together (analogously for the private
cloud cases) to obtain 10 observations in each comparison. With a significance level of 5%, we can reject the null
hypothesis in all cases in Table 6 where the p-value is less than 0.05. The table show that we cannot reject the null
hypothesis with a significance level of 5% for the H20 and H30 cases, except after 300 s with 90% private cloud
coverage. However, when the instance size increases, the differences between the two algorithms are significant and
in favor of the ALNS with the LS operators. For the private cloud cases, we can see that the difference between the

18

Table 5: Average relative gap (in %) between best solution found and best bound at different points in time (seconds): comparison of the
ALNS with and without local search (LS) operators on the private cloud cases.

Case
ALNS w/o LS ALNS with LS

300 600 900 300 600 900

P20 2.102 2.102 2.102 2.111 1.798 1.528
P30 3.113 2.339 2.339 2.339 1.953 1.953
P40 4.395 3.662 3.074 2.784 2.341 2.341
P50 5.913 5.085 4.260 3.551 3.197 2.959
P60 6.932 5.841 5.349 4.260 3.468 3.266
P70 8.142 6.954 6.277 5.092 4.243 3.987

algorithms is significant at a level of 1%, also for the smaller cases. These results are consistent with the averages
presented in Table 4 and 5.

Table 6: P-values of Wilcoxon signed-rank test: comparison of the relative gaps of the ALNS with and without local search operators at
different points in time (seconds).

Case Private cloud
coverage

300 600 900

H20-H30

75%
0.813 0.234 0.624

H40-H50 0.049 0.004 0.004
H60-H70 0.064 0.010 0.013

H20-H30

90%
0.014 0.084 0.234

H40-H50 0.006 0.002 0.002
H60-H70 0.002 0.002 0.002

P20-P30

N/A
0.002 0.009 0.002

P40-P50 0.002 0.002 0.002
P60-P70 0.002 0.006 0.002

5.3. Comparison with Exact Approach
When comparing the ALNS with the previously developed B&P algorithm, we need to perform the comparison

on a different time scale. Except for the small cases, the B&P use more than 15 minutes to obtain a first feasible
integer solution. However, in situations where the service demand has sufficiently long periods of stationarity,
one can spend more than 15 minutes optimizing the service deployment, and therefore it is interesting to see the
performance of the ALNS heuristic in comparison with the exact B&P on a longer time scale. We are now only
presenting a comparison between the B&P and the ALNS with the LS operators, but the results of our experiments
show that the ALNS with the LS operators still produces better solutions than the ALNS without the LS. In the
following comparisons, we need to underline that the B&P algorithm is designed with the main focus on finding
solutions of high quality, not on finding solutions quickly. Therefore, the root node is solved to LP optimality,
before a MIP solver is called to optimize over the columns found up to this point, and then branching is performed.
To reduce the time to obtain the first integer solution, it would be possible to call a MIP solver before the root node
is finished. Nevertheless, this was not considered in the design of the B&P.

Table 7 presents the comparison on the hybrid cloud cases with 75% and 90% private cloud coverage for run
times up to three hours. Like the experiments with a shorter run time, the maximum number of iterations for each
instance size is set such that each test case is run slightly more than three hours. For the cases with 50 services or
less and with 75% private cloud coverage, the B&P algorithm performs better than the ALNS on a long time scale.
However, in all of the cases with 50 services or more, the B&P spends longer than an hour to solve the root node
of the B&B tree. For all H70 cases, the B&P spends over three hours solving the root node, and does not find a
solution within the maximum run time. Moreover, it manages to find a solution in only two of the five H60 cases
within three hours. With a private cloud coverage of 90%, the right part of Table 7 shows that the ALNS performs

19

better than the B&P in all cases with 30 services or more. Still, the B&P spends longer than three hours to solve
the root node in all of the H70 cases. Nevertheless, it finds a solution in one of the H50 cases within one hour, in
two of the H60 cases within two hours, and another two of the H60 cases within three hours.

Table 7: Average relative gap (in %) between best solution found and best bound at different points in time (seconds): comparison of the
B&P and the ALNS with local search (LS) operators on the hybrid cloud cases.

Case
75% private cloud coverage 90% private cloud coverage

B&P ALNS with LS B&P ALNS with LS

1800 3600 7200 10800 1800 3600 7200 10800 1800 3600 7200 10800 1800 3600 7200 10800

H20 2.875 2.007 1.769 1.709 5.066 4.579 3.765 3.380 11.16 8.044 6.775 5.607 14.02 11.93 10.81 10.01
H30 5.349 4.508 3.933 3.854 6.933 5.718 5.030 4.385 20.09 17.74 14.85 12.08 18.28 16.04 13.42 11.63
H40 N/A 6.733 5.902 5.489 7.942 6.832 6.246 5.270 24.24* 23.44 18.39 17.64 20.28 17.85 14.87 13.36
H50 N/A N/A 7.663 6.738 10.33 9.247 8.444 7.588 N/A 25.74* 22.45 22.39 25.12 21.90 18.79 17.05
H60 N/A N/A N/A 8.151* 11.78 10.53 9.156 8.379 N/A N/A 32.53* 28.04* 27.41 24.17 20.51 18.58
H70 N/A N/A N/A N/A 13.85 12.14 10.96 10.28 N/A N/A N/A N/A 30.33 26.26 22.73 20.87

* The algorithm has found the first integer solution in only some of cases within the specified amount of time

Table 8 presents a comparison between the B&P and the ALNS with the LS operators on the private cloud cases.
Except for the P20 cases, the ALNS produces the best solutions after one, two and three hours of run time. For the
P20 cases, the B&P beats the ALNS when given three hours. While none of the solution approaches managed to
solve any of the hybrid cloud cases to optimality, the B&P finds and proves the optimal solution in three of the P20
cases and two of the P30 cases. In comparison, the ALNS manages to find the optimal solution in two of the P20
cases. Even though the private cloud cases are easier, in terms of lower gaps and more cases solved to optimality,
the B&P uses more than an hour to find its first solution in all of the P70 cases. If one compares the results in
Table 8 with Table 5 for the test cases with 40 services or more, one can observe that the ALNS with LS operators
produces, on average, solutions with smaller gaps within five minutes than the B&P within three hours. Thus, the
ALNS can be said to be much more scalable than the B&P algorithm.

Table 8: Average relative gap (in %) between best solution found and best bound at different points in time (seconds): comparison of the
B&P and the ALNS with local search (LS) operators on the private cloud cases.

Case
B&P ALNS with LS

1800 3600 7200 10800 1800 3600 7200 10800

P20 1.831 1.553 0.924 0.620 0.933 0.933 0.933 0.933
P30 3.113 2.522 1.916 1.343 1.362 1.160 1.160 0.977
P40 4.377* 3.958 3.081 2.938 2.054 1.760 1.465 1.465
P50 N/A 5.144* 4.494 4.137 2.482 2.130 1.777 1.653
P60 N/A 5.335 4.546 4.352 2.772 2.479 2.081 1.782
P70 N/A N/A 5.183 5.183 3.395 2.799 2.546 2.204

* The algorithm has found the first integer solution in only some of cases within the
specified amount of time

Similar to the statistical tests performed for the ALNS with and without LS operators, we have performed the
Wilcoxon signed-rank test in order to compare the B&P and the ALNS with LS operators on a longer time scale.
The null hypothesis is still that the differences between the algorithms are symmetrically distributed around zero.
The most interesting comparisons are on the cases where the B&P is able to find an integer solution within a given
time limit. However, to make the comparison complete, we have assigned a high cost to the cases where the B&P
did not manage to find the first integer solution within the specified time. The tests are performed with the same
grouping of the test cases as before, and the results are shown in Table 9. With a significance level of 5%, we
cannot reject the null hypothesis for the H20 and H30 with 90% private cloud coverage at any of the points in time.
However, with 75% private cloud coverage, there is a significant difference in favor of the B&P algorithm when the
algorithms are run 3600 s or more. For the group H40-H50, the difference is significant at 5% and in favor of the

20

ALNS for all run times, except for after 2 hours when the private cloud coverage is 75%. Considering the private
cloud cases, the difference is significant in most cases, even at a level of 1% for the larger cases. However, after
two and three hours of run time for the group P20-P30, the difference is not significant.

Table 9: P-values of Wilcoxon signed-rank test: comparison of the relative gaps of the B&P and the ALNS with local search operators at
different points in time (seconds).

Case Private cloud
coverage

1800 3600 7200 10800

H20-H30

75%
0.084 0.006 0.002 0.004

H40-H50 0.002 0.044 0.193 0.432
H60-H70 0.002 0.002 0.002 0.006

H20-H30

90%
0.322 0.557 0.322 0.160

H40-H50 0.002 0.002 0.006 0.002
H60-H70 0.002 0.002 0.002 0.002

P20-P30

N/A
0.014 0.023 0.419 1

P40-P50 0.002 0.002 0.006 0.002
P60-P70 0.002 0.002 0.006 0.002

To illustrate the evolution of the objective function values in the search process, Figure 2 compares the progress
of these values of the B&P and the two ALNS versions on the H40-a case with 75% private cloud coverage. We
can see that the objective function value of the ALNS with LS operators drops quicker than the ALNS without LS
operators. This effect is observed in almost all cases, and can be explained by the intensifying effect of the LS
operators. Moreover, the figure shows that B&P finds a solution after about 40 minutes, and this solution is, in this
case, better than the best solution found by the ALNS. While the objective function value of the ALNS algorithm
drops gradually, and in small steps, this value drops only two times for the B&P. The B&P finds its best solutions
by regularly solving an IP over all columns found up to certain points in time, and this explains the few and distinct
drops in the objective function value. Similarly, Figure 3 shows the progress of the cost on the P50-d case. We still
see that the ALNS with LS operators drops faster in the beginning of the search, compared to the ALNS without
LS operators. The ALNS algorithm produces solutions of higher quality than the B&P in this case, even after three
hours. Furthermore, we also observe that the objective function value of the ALNS algorithm now drops fewer
times compared to the values in Figure 2. Since the objective function corresponds to the number of nodes required
in the solution, one should expect to obtain larger plateaus in the evolution of the cost and, typically, the time spent
on a given level increases as the objective function value approaches the optimal solution.

0 1800 3600 5400 7200 9000 10800

36
00

38
00

40
00

42
00

44
00 B&P

ALNS with LS
ALNS w/o LS

Time (sec)

C
os

t

Figure 2: Evolution of objective function value: comparison of the B&P algorithm and the ALNS with and without local search (LS)
operators on the H40-a case with 75% private cloud coverage

21

0 1800 3600 5400 7200 9000 10800

17
0

17
2

17
4

17
6

17
8

18
0

18
2

18
4 B&P

ALNS with LS
ALNS w/o LS

Time (sec)

N
um

be
r

of
 n

od
es

Figure 3: Evolution of objective function value: comparison of the B&P algorithm and the ALNS with and without local search (LS)
operators on the P50-d case

5.4. Operator Selection Details
In Appendix B, we present detailed results showing the call frequency and average run time of each operator.

Since the adaptive operator selection biases the selection based on the operator performance and time consumption
(cf. Section 4.5), these results should give some insights into the relative performance of the operators. Here, we
extract and discuss some of these results.

Regarding the call frequency of the operators for the hybrid cloud cases, most of the operators have a fairly
equal call frequency on all test cases, and are unaffected by the instance size. Two clear exceptions from this are the
Passive Replica Removal and the MIP Insertion operators. The Passive Replica Removal is called in about 25% of
the iterations in the test cases with 20 and 30 services and 75% private cloud coverage. However, its call frequency
is gradually reduced as the instance size increases, and it is called in only about 5% of the iterations in the test
cases with 70 services and 75% private cloud coverage. This must mean that the operator in cooperation with a
repair and local search operator produces fewer high-quality solutions, such as new best solution, when the instance
size grows. In the cases with 90% private cloud coverage, we see the same trend, but the operator is a bit more
popular for all instance sizes. A possible explanation of this might be that efficient packing of the passive replicas
is less important when the private cloud coverage is smaller and relatively more active replicas have to be placed
in the public cloud. Moreover, this effect might be strengthened when the instance size grows. Conversely, the
call frequency of the MIP Insertion increases with the instance size, despite that its run time sees a greater relative
increase compared to the other repair operators. In the smallest cases, it is called in 25% - 35% of the iterations,
while on the largest cases it is called in 50% of the iterations. This must mean that the performance of the MIP
operator is very important for the performance of the ALNS, especially on the larger cases. While all operators see
an increase in run time per call, the MIP Insertion, which is the most time consuming repair operator in any case,
sees the greatest increase, from about 70 milliseconds per call in the smallest cases to almost 2 seconds per call in
the largest cases.

For the private cloud cases, the call frequency of Private Replica Removal and MIP Insertion seems to be less
affected by the instance size. However, we still see an increase in the average run time per call to the operators as
the instance size grows.

To assess the value of the adaptive operator selection, we have run additional experiments without adaptiveness,
i.e., where each repair and local search operator are given equal probability of being chosen and these probabilities
are not updated during the runs. It turns out that the quality of the best found solutions of the algorithm with
adaptiveness in the operator selection is not that much better than the quality of the best found solutions of the
algorithm without adaptiveness. However, the average performance of the repair and local search operators seems
to be better when using adaptive operator selection, and the average run time of the MIP Insertion is higher without
adaptive operator selection. These results, in addition to the benefit of not having to predetermine the weights of

22

the operators, make us believe that the adaptiveness in the operator selection is valuable to the ALNS. Moreover,
the adaptiveness should make the ALNS more robust and stable on different families of problem instances. In
Appendix B, we show a couple of examples on how the probabilities of selecting the different repair operators
evolve during a run of the ALNS.

6. Conclusions

In this paper, we have presented a novel ALNS for the service deployment problem proposed by Gullhav and
Nygreen (2015). The ALNS implements a LS layer on top of the repair operators, and the different LS operators
are selected dynamically based on their past performance. Furthermore, the ALNS includes a MIP-based repair
operator, in addition to faster heuristic insertion operators. Since the MIP Insertion is slow, but produces solutions
of better quality compared to the fast heuristic insertion operators, it is necessary to take the time consumption into
account in the operator scoring mechanism.

The results of our experiments show that the ALNS benefits from the LS operators on the larger hybrid cloud
cases and on all private cloud cases. The results also show that the impact of the LS operators are especially
prominent in the first minutes of the search, which can be explained by the operators’ intensifying effect.

On a longer time scale, we see that the ALNS with LS operators performs significantly better than a previously
proposed B&P algorithm on the larger test cases. However, on the smaller cases, the differences between the
algorithms are not significant or in favor of the B&P. On the larger private cloud cases, the ALNS with LS operators
produces after five minutes of run time as good solutions as the B&P manages to produce after three hours.

Acknowledgments

We are grateful to the reviewers for their comments which have helped us to improve the quality of this paper.

Appendix A. Mathematical Symbols

Table A.1 summarizes the main mathematical symbols used in the formulations of Section 3 and the description
of the ALNS in Section 4. The symbols are ordered alphabetically with latin letters ordered before greek letters.

Appendix B. Detailed Results of the Operator Selection

Tables B.2 - B.5 give some details on the operator selection frequencies and the average run time of each repair
and local search operators for the different cases. Each result is an average over the results of the five cases of the
same instance size. Due to space issues, the names of the operators are abbreviated according to Table B.1.

As discussed in Section 5.4, running the ALNS without adaptive operator selection, does not give a significant
increase in the quality of the best found solution. However, the average performance of the repair and local search
operators is reduced, and the run time of the MIP Insertion operator is increased. Figures B.1 and B.2 show the
evolution of the probabilities of selecting the different repair operators, which are due to the adaptive operator
selection. Note that these probabilities are updated every 100th iteration. From the figures, one can see the proba-
bilities seem to be constantly fluctuating, and the probability for selecting a given repair operator is quite different
at different phases of the search. We interpret this as meaning that the performance of the operators and the run
time of the MIP Insertion vary throughout the search, and hence, there is a benefit of using the adaptive operator
selection strategy discussed in Section 4.5.

23

Table A.1: Overview of the main mathematical symbols in the paper in alphabetical order (latin before greek letters)

Bg Capacity of resource type g at each node
Ciq Cost of deploying an active or passive replica of component q of service i in the public cloud
c(σ) Cost of solution σ

D Upper bound on the number of different services deployed on a node
E Upper bound on the number of passive replicas deployed on a node

eng Variable in the optimization model equaling resource usage surplus of resource g at node n
G Set of resource types

Gg(n) Total amount of resources of type g assigned to replicas placed on node n, including resources reserved to activation of passive replicas
GA

iqg The amount of resources of type g guaranteed to an active replica of component q of service i
GP

iqg The amount of resources of type g guaranteed to a passive replica of component q of service i
HX Number of replicas to swap from node 1 to node 2 (X = 1) and from node 2 to node 1 (X = 2) in the local search operators
h Number of nodes to be destroyed (Related Service Removal uses hN and hS as the numbers of nodes and services to be destroyed)
I Maximum number of iterations
k Parameter of the Regret Insertion operator specifying the shortsightedness

mng Variable in the optimization model equaling the amount of resources of type g reserved on node n to allow for activation of a passive
replica

N Set of nodes
N(σ) Set of nodes available for placement for solution σ
OX Set of destroy (X = D), repair (X = R) and local search (X = L) operators
Qi Set of components of service i

QC(σ) Vector of active replicas placed in the public cloud in solution σ
QX(n) Set of active replicas (X = A) and passive replicas (X = P) placed on node n ∈ N(σ) of a solution σ
Ri Set of replication patterns for service i

RA
iqr The number of active replicas of component q of service i in replication pattern r

RP
iqr The number of passive replicas of component q of service i in replication pattern r
S Set of services
sin Variable in the optimization model equaling 1 if at least one replica of service i is deployed on node n, and 0 otherwise
Tη The CPU time spent in the iteration η
T̄ The average CPU time of an iteration
tiq Variable in the optimization model equaling the number of active replicas of component q of service i deployed in the public cloud
un Variable in the optimization model equaling 1 if node n is turned on, and 0 otherwise

viqn Variable in the optimization model equaling 1 if a passive replica of component q of service i is deployed on node n, and 0 otherwise
wiqn Variable in the optimization model equaling 1 if an active replica of component q of service i is deployed on node n, and 0 otherwise
yir Variable in the optimization model equaling 1 if replication pattern r is chosen for service i, and 0 otherwise
α Cooling factor of the simulated annealing criterion
βR Parameter used to weight the historic operator performance in the adaptive operator selection
βW Parameter used to weight low resource utilization by active replicas and low resource utilization by passive replicas in the φW (n) feature
γ Degree of randomization of the destroy operators

∆eX
g (i, q, n) The increase in over-utilization of resource g when an active replica (X = A) or a passive replica (X = P) of component q of service i is

inserted on node n
δ Degree of destruction of the destroy operators

∆mg(Q̄1, Q̄2, n1) Increase of decrease in the shared backup resources for passive replicas (of resource type g) at node n1, when the set Q̄1 of passive
replicas are removed from the node and the set Q̄2 are placed on the node.

ζiq(k) The value of inserting an active of passive replicas at its best node in Regret Insertion with parameter k
η Iteration counter
θ destroy operator
λ local search operator
νX Basic score of classification X (X = 1, 2, 3, 4)

ξX(i, q, n) Cost of inserting an active replica (X = A) or a passive replica (X = P) of component q of service i on node n
π Random number
ρ repair operator
σ Solution (σ̄ - incumbent; σ̂ - best found)
ςX
χ The accumulated score of destroy (X = D), repair (X = R) or local search (X = L) operator χ in the last segment
τ Temperature of the simulated annealing criterion in the current iteration (τ0 - initial temperature)

ΦX
χ The number of times destroy (X = D), repair (X = R) or local search (X = L) operator χ was called in the last segment

φX(n) Function used to bias the node destruction towards a specific feature, such as low resource utilization by active replicas (X = A), low
resource utilization by passive replicas (X = P), low weighted resource utilization by active and passive replicas (X = W), low average
public cloud cost of active replicas (X = C), and large over-utilization (X = O)

ΨX Vector of weights of the destroy (X = D), repair (X = R) and local search (X = L) operators
ψX(·) Cost of performing a swap of active replicas (X = A) and passive replicas (X = P)
ΩX Large weight put on specific terms in weighted expressions (X = O,C, I)
ω Parameter used to control the penalization of operators due to high CPU time usage

24

Table B.1: Abbreviations of the ALNS operators

Operator type Abbreviation Description

Destroy operators

ARR-φA Active Replica Removal with feature φA

ARR-φC Active Replica Removal with feature φC

ONR-M Over-utilized Node Removal coupled with MIP Insertion
ONR Over-utilized Node Removal not coupled with MIP Insertion
PRR Passive Replica Removal
RNR Random Node Removal
RSR Related Service Removal Insertion
WNR Worst Node Removal

Repair operators
GI Greedy Insertion
MIP MIP Insertion
RI-k Regret Insertion with parameter k

Local Search Operators
CA-H1-H2 Inter-cloud Swap of H1 active replicas from the private cloud with H2 active replicas from the public cloud
NA-H1-H2 Inter-node Swap of H1 active replicas from one node with H2 active replicas from another node
NP-H1-H2 Inter-node Swap of H1 passive replicas from one node with H2 passive replicas from another node

Table B.2: Call frequency of the destroy, repair and local search operators for the hybrid cloud cases with different private cloud coverage
(PCC).

Case PCC
Destroy operators Repair operators Local search operators

RSR WNR RNR PRR ARR-φA ARR-φC MIP GI RI-2 RI-3 RI-4 NP-1-1 NP-2-2 CA-1-1 CA-1-2 CA-2-1 CA-2-2

H20 75% 0.247 0.128 0.122 0.253 0.131 0.120 0.374 0.118 0.169 0.169 0.169 0.200 0.161 0.160 0.164 0.157 0.157
H30 75% 0.259 0.130 0.122 0.235 0.133 0.121 0.388 0.111 0.166 0.167 0.167 0.202 0.161 0.161 0.163 0.156 0.157
H40 75% 0.336 0.136 0.116 0.150 0.136 0.126 0.471 0.101 0.140 0.143 0.145 0.230 0.165 0.152 0.157 0.149 0.147
H50 75% 0.292 0.147 0.128 0.120 0.161 0.151 0.439 0.112 0.151 0.152 0.146 0.188 0.171 0.163 0.164 0.157 0.157
H60 75% 0.339 0.153 0.124 0.082 0.156 0.146 0.492 0.105 0.135 0.134 0.133 0.231 0.183 0.152 0.150 0.145 0.139
H70 75% 0.364 0.151 0.122 0.056 0.162 0.143 0.515 0.105 0.129 0.127 0.124 0.241 0.192 0.146 0.146 0.140 0.136

H20 90% 0.130 0.104 0.149 0.388 0.130 0.099 0.234 0.152 0.205 0.205 0.204 0.176 0.161 0.166 0.177 0.159 0.161
H30 90% 0.196 0.128 0.138 0.280 0.140 0.118 0.324 0.138 0.180 0.178 0.180 0.187 0.163 0.163 0.170 0.157 0.160
H40 90% 0.235 0.130 0.136 0.240 0.140 0.119 0.365 0.126 0.170 0.171 0.168 0.218 0.165 0.155 0.161 0.148 0.153
H50 90% 0.258 0.139 0.146 0.185 0.147 0.126 0.397 0.119 0.162 0.161 0.161 0.186 0.164 0.162 0.167 0.159 0.162
H60 90% 0.295 0.149 0.141 0.144 0.144 0.127 0.444 0.112 0.147 0.149 0.148 0.207 0.170 0.155 0.164 0.149 0.156
H70 90% 0.348 0.153 0.135 0.106 0.137 0.120 0.501 0.099 0.132 0.133 0.134 0.217 0.179 0.148 0.166 0.141 0.149

Table B.3: Average run time (in seconds) per call of the repair and local search operators for the hybrid cloud cases with different private
cloud coverage (PCC).

Case PCC
Repair operators Local search operators

MIP GI RI-2 RI-3 RI-4 NP-1-1 NP-2-2 CA-1-1 CA-1-2 CA-2-1 CA-2-2

H20 75% 0.074 0.002 0.002 0.002 0.002 0.003 0.007 0.002 0.019 0.005 0.027
H30 75% 0.152 0.007 0.007 0.007 0.007 0.006 0.016 0.004 0.064 0.011 0.081
H40 75% 0.352 0.016 0.015 0.015 0.015 0.011 0.029 0.007 0.182 0.019 0.261
H50 75% 0.739 0.026 0.026 0.026 0.026 0.018 0.045 0.010 0.387 0.030 0.744
H60 75% 1.162 0.039 0.040 0.040 0.040 0.028 0.069 0.015 0.632 0.040 0.974
H70 75% 1.720 0.057 0.060 0.060 0.060 0.039 0.097 0.020 1.006 0.056 1.575

H20 90% 0.071 0.003 0.002 0.002 0.002 0.003 0.007 0.001 0.007 0.005 0.012
H30 90% 0.176 0.007 0.007 0.007 0.007 0.006 0.016 0.003 0.020 0.010 0.029
H40 90% 0.448 0.015 0.014 0.014 0.014 0.011 0.029 0.005 0.054 0.018 0.073
H50 90% 0.778 0.029 0.028 0.028 0.027 0.018 0.045 0.008 0.111 0.027 0.170
H60 90% 1.474 0.048 0.047 0.047 0.046 0.027 0.070 0.011 0.149 0.034 0.178
H70 90% 1.944 0.076 0.077 0.076 0.075 0.038 0.096 0.015 0.262 0.045 0.304

25

Table B.4: Call frequency of the destroy, repair and local search operators for the private cloud cases.

Case
Destroy operators Repair operators Local search operators

RSR ONR-M RNR ONR PRR ARR-φA MIP GI RI-2 RI-3 RI-4 NP-1-1 NP-2-2 NA-1-1NA-1-2NA-2-2

P20 0.109 0.111 0.185 0.166 0.266 0.162 0.220 0.182 0.208 0.197 0.192 0.203 0.195 0.208 0.198 0.195
P30 0.126 0.127 0.159 0.152 0.285 0.152 0.252 0.161 0.203 0.195 0.188 0.205 0.196 0.206 0.198 0.195
P40 0.130 0.130 0.145 0.138 0.307 0.151 0.259 0.149 0.203 0.197 0.191 0.207 0.198 0.203 0.197 0.194
P50 0.131 0.133 0.146 0.136 0.299 0.156 0.264 0.140 0.206 0.199 0.191 0.211 0.197 0.205 0.196 0.190
P60 0.125 0.125 0.142 0.133 0.326 0.150 0.250 0.138 0.213 0.204 0.196 0.208 0.197 0.211 0.196 0.189
P70 0.127 0.126 0.144 0.131 0.319 0.154 0.252 0.130 0.214 0.205 0.199 0.209 0.199 0.208 0.194 0.189

Table B.5: Average run time (in seconds) of the repair and local search operators for the private cloud cases.

Case
Repair operators Local search operators

MIP GI RI-2 RI-3 RI-4 SP-1-1 SP-2-2 SA-1-1 SA-1-2 SA-2-2

P20 0.075 0.001 0.001 0.001 0.001 0.003 0.006 0.007 0.012 0.020
P30 0.221 0.002 0.003 0.003 0.003 0.007 0.015 0.014 0.027 0.043
P40 0.526 0.004 0.005 0.005 0.005 0.010 0.023 0.023 0.045 0.073
P50 0.950 0.006 0.008 0.008 0.008 0.015 0.035 0.032 0.067 0.111
P60 1.654 0.010 0.012 0.012 0.012 0.017 0.036 0.036 0.082 0.127
P70 2.104 0.012 0.016 0.016 0.016 0.020 0.041 0.045 0.103 0.157

Figure B.1: Evolution of the probabilities of selecting the different repair operators in the H30-e case with 75% private cloud coverage.

26

Figure B.2: Evolution of the probabilities of selecting the different repair operators in the H40-c case with 90% private cloud coverage.

27

References

Amazon Web Services. Amazon Web Services (AWS) - Cloud Computing Services, 2015. URL
http://aws.amazon.com/. Last visited 2015/03/04.

D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang. Energy-aware autonomic resource allocation in multitier
virtualized environments. IEEE Transactions on Services Computing, 5(1):2–19, 2012.

A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and Secure Computing, 1(1):11–33, 2004.

A. Beloglazov, R. Buyya, Y. C. Lee, and A. Y. Zomaya. A taxonomy and survey of energy-efficient data centers
and cloud computing systems. Advances in Computers, 82(2):47–111, 2011.

E. Bin, O. Biran, O. Boni, E. Hadad, E. Kolodner, Y. Moatti, and D. Lorenz. Guaranteeing high availability goals
for virtual machine placement. In 2011 31st International Conference on Distributed Computing Systems, pages
700–709, 2011.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield. Remus: High availability via
asynchronous virtual machine replication. In Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, pages 161–174, Berkeley, CA, USA, 2008. USENIX.

T. Distler, R. Kapitza, I. Popov, H. P. Reiser, and W. Schröder-Preikschat. SPARE: Replicas on hold. In Proceed-
ings of the 18th Network and Distributed System Security Symposium, Geneva, Switzerland, 2011. The Internet
Society.

H. Goudarzi and M. Pedram. Multi-dimensional SLA-based resource allocation for multi-tier cloud computing
systems. In 2011 IEEE 4th International Conference on Cloud Computing, pages 324–331, Los Alamitos, CA,
USA, 2011. IEEE Computer Society.

A. N. Gullhav and B. Nygreen. Deployment of replicated multi–tier services in cloud data centres. International
Journal of Cloud Computing, 4(2):130–149, 2015.

A. N. Gullhav and B. Nygreen. A branch and price approach for deployment of multi-tier software services in
clouds. Computers & Operations Research, 75:12 – 27, 2016.

A. N. Gullhav, B. Nygreen, and P. E. Heegaard. Approximating the response time distribution of fault-tolerant
multi-tier cloud services. In 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing,
pages 287–291, Los Alamitos, CA, USA, 2013. IEEE Computer Society.

P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applications. European Journal of
Operational Research, 130(3):449 – 467, 2001.

M. Hollander, D. A. Wolfe, and E. Chicken. Nonparametric statistical methods. John Wiley & Sons, Somerset,
NJ, USA, 3rd edition, 2013.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm config-
uration. In C. A. C. Coello, editor, Learning and Intelligent Optimization, volume 6683 of Lecture Notes in
Computer Science, pages 507–523. Springer Berlin Heidelberg, 2011.

B. Jennings and R. Stadler. Resource management in clouds: Survey and research challenges. Journal of Network
and Systems Management, 23(3):567–619, 2015.

R. Jhawar, V. Piuri, and M. Santambrogio. Fault tolerance management in cloud computing: A system-level
perspective. IEEE Systems Journal, 7(2):288–297, 2013.

28

W. Kuo and R. Wan. Recent advances in optimal reliability allocation. In G. Levitin, editor, Computational In-
telligence in Reliability Engineering, volume 39 of Studies in Computational Intelligence, pages 1–36. Springer
Berlin Heidelberg, 2007.

H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search: Framework and applications. In M. Gendreau
and J.-Y. Potvin, editors, Handbook of Metaheuristics, pages 363–397. Springer, Boston, 2010.

S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi. Cloud computing — the business perspective.
Decision Support Systems, 51(1):176 – 189, 2011.

P. Mell and T. Grance. The NIST definition of cloud computing, 2011. NIST SP 800-145.

S. N. Parragh and V. Schmid. Hybrid large neighborhood search for the dial-a-ride problem. In Proceeding of the
VII ALIO/EURO—workshop on applied combinatorial optimization. ALIO-EURO, 2011.

S. N. Parragh and V. Schmid. Hybrid column generation and large neighborhood search for the dial-a-ride problem.
Computers & Operations Research, 40(1):490 – 497, 2013.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers & Operations Research,
34(8):2403 – 2435, 2007.

D. Pisinger and S. Ropke. Large neighborhood search. In M. Gendreau and J.-Y. Potvin, editors, Handbook of
Metaheuristics, pages 399–419. Springer, Boston, 2010.

G. R. Raidl and J. Puchinger. Combining (integer) linear programming techniques and metaheuristics for combi-
natorial optimization. In C. Blum, M. J. B. Aguilera, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics:
An Emerging Approach to Optimization, pages 31–62. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and delivery problem
with time windows. Transportation Science, 40(4):455–472, 2006.

G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record breaking optimization results using the
ruin and recreate principle. Journal of Computational Physics, 159(2):139–171, 2000.

P. Shaw. A new local search algorithm providing high quality solutions to vehicle routing problems. Technical
report, Department of Computer Science, University of Strathclyde, Glasgow, Scotland, UK, 1997.

F. Vanderbeck. Computational study of a column generation algorithm for bin packing and cutting stock problems.
Mathematical Programming, 86(3):565–594, 1999.

29

