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ABSTRACT 

An integrated MFA (Material Flow Analyse) model was developed for Russia, based on the year 

2009. Integration was done between MFA, energy and greenhouse gas (GHG). 

Technologies in all production related processes of aluminium cycle were analyzed. Energy 

consumption and emissions were calculated throughout the aluminium cycle. This technology 

information and calculations were used in my scenarios for possible reduction of emissions. 

After the agreement with my supervisor the historical in-use stock was not done. Assumption here is 

that demand will increase. 

A sensitivity analyze was not conducted due the fact that that type of analyze can not be used for large 

changes in the system. 

If all scenarios are implemented then the decrease of total GHG emissions in aluminium production in 

Russia will equal to 22.3% and decrease in the total energy consumption will equal to 38,4%. 
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1 INTRODUCTION 

 

1.1 MATERIALS AND GLOBAL EMISSION 

 

The world has serious problem with global climate change. According to the IPCC, the extent of 

climate change effects on individual regions can change over time. Increases in global from 1 to 3 

degrees Celsius above 1990 levels can make serious change in different regions. Net annual costs will 

increase during time, as global temperatures increase. IPCC proved description of change in regions:  

 North America: decreasing snowpack in mountains. 

 Latin America: shifting of tropical forest by savannah, decreasing water availability for human 

consumption, agriculture.  

 Europe: more frequent coastal flooding and increased erosion from storms and sea level rise, 

glacial retreat in mountainous areas, reductions of crop productivity in southern Europe.  

 Africa: people are projected to be exposed to increased water stress, yields from rain-fed 

agriculture could be reduced by up to 50 present in some regions by 2020.  

 Asia: Fresh water availability projected to decrease in Central, South, East and Southeast Asia 

by the 2050s, coastal areas will be at risk due to increased flooding, death rate from disease 

associated with floods and droughts expected to rise in some  mountains regions (IPCC 2007) 

The IPCC report recommends cutting in total annual global emissions of 50-80 % from 2000 levels by 

2050 to stabilize the global mean temperature rise between 2.0 and 2.4 °C above present time. In 2006, 

the total carbon dioxide emissions were 28 giga tons of CO2 (GtCO2) (Allwood, Cullen, 2010).  
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Figure 1-1- Global emissions of carbon dioxide by major sector and broken down within industry (Allwood, Cullen  

2010) 

 

Figure above shows present overage of different sectors. The largest contributing sector is industry 

that has 36% of total emissions in 2006. The amount of industrial carbon emissions is 10 giga tons of 

CO2 emissions globally and from this number aluminium has 3%. This is a small amount, but we 

should take into the account that amount will triple from 2006 to 2050. (Bernstein, Roy, 2007). The 

problem of reducing emissions is that the demand for materials is increasing. Significant growth in 

global consumption of materials related to the fact that there is a growth in global economy, which 

leads to an increase in consumption of materials for the construction of new houses, an increase of the 

transport system, etc. In this scenario, emission reductions must occur by reducing energy 

consumption, improving production technology of the material; manufacturing process must occur in 

one region. Increased demand for various materials is shown in the Figure from 1960 to 2050. 
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  Figure 1-2- Demand for different materials from 1960 to 2050 (Allwood,  Cullen, 2006)  

 

Emissions are produced during the extraction/mining, production, manufacturing and use of the 

material. The life cycle is shown in Figure3. 

 

 

 

Figure 1-3- Life cycle of material 

Emissions occur during the use of energy for each process in life cycle of material. The main source of 

emissions is electricity consumption, except for process “Use”. The product is made from various 

materials which are extracted from ore or recycled from used materials. Further use leads to either 

product become unusable and go to landfill or product is recycled. Production of material is a major 

source of emissions. Mining, Production, Manufacturing and Use processes are most important in 

addressing greenhouse gas emissions. Figure 3 is simple linear chain that is is more complex scheme 

in real life. 

 

Mining Manufacturing Production Use Landfill 



   

 

 

 Page 11 av 93 

 

1.2 CONTEXT 

 

In this paper I had a focus to use available literature. In some cases I could not find figures available 

for Russia, and then I used figures calculated for the globe, Europe or USA.   

 

1.3 PROJECT AIM 

 

Aluminium is one of the most versatile materials in our modern societies and the second-most used 

metal worldwide. While its primary production is very energy and greenhouse gas (GHG) emissions 

intensive, recycling can significantly reduce the consequent environmental impacts. Due to the fast 

penetration of aluminium in transportation, building, and packaging sectors, global aluminium 

consumption has doubled in the past two decades, and the future demand is anticipated to keep 

growing. The International Energy Agency estimated that global primary aluminium demand will 

triple in 2050. That would have enormous implications on GHG emissions, since IPCC suggested total 

global emissions to be cut 50%-80% by 2050. 

 

Russia has second place of production of aluminium in the world (after China), and first place in 

export of aluminium. The formation process of the Russian industry, and in particular aluminium, after 

the reforms of the early 90-s is almost complete. Aluminum plants in Russia are currently under the 

control of the combined company RUSAL, which in 2007 was the world's largest producer of 

aluminium and alumina. Despite the cyclical recessions, in the long term, growth in world 

consumption will continue. That leads to increasing relevance for studies of the domestic aluminium 

industry and its environmental efficiency. 

Motivation 

 Russia’s GDP will grow due increase of aluminium demand. Total GHG emissions will grow 

also.  The problem of emission redaction to the atmosphere becomes urgent with the growth of 

aluminium production  

 Primary aluminum production in Russia is collected in the world's largest giant factories. Only 

one of all existing aluminum plants in Russia was built after the 1990s. The absence of market 
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mechanisms for increase of electricity cost  during the Soviet era, as well as low attention 

from the government to environmental issues, have led to use of old equipment in those giant 

factories. Aluminium production utilizes huge amounts of electricity. Rising costs of 

electricity for aluminium smelters affect the energy efficiency of aluminium production 

processes and drive equipment upgrades. Price increase of electricity should lead to the need 

of equipment modernization in aluminium plants in Russia. Equipment modernization can 

help to reduce energy consumption. 

 Russia is big exporter of aluminium that leads to increase of domestic GHG emissions 

 Russia has low recycling rate of aluminium from scrap and has a great potential to increase 

recycling rate. 

 Due to the large emission from aluminium industry the better understanding of mitigation 

options for entire system is necessary.  

Research questions  

 How can we characterize contemporary aluminium cycle in Russia? 

 What technologies are used for bauxite, alumina and aluminium production? What is 

energy average for those processes? 

 What are direct and indirect emissions (associated with energy production, energy 

use, process emissions)? 

 What are mitigation options (upgrade technology, increase recycling rate)? 

Tasks 

 System definition of aluminium cycle, including trade flows   

 Analyze technologies in all production related processes of aluminium cycle (parameters of 

energy and emissions layers) 

 Calculate energy consumption and emissions  

 Make scenarios for possible reduction of emissions (technology, recycling %, trade) 
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1.4 REPORT OUTLINE 

 

The paper is organized into four major parts. In Methodology chapter I described the theory behind 

material flow analysis and presented the definition of the global aluminium cycle. In System overview 

I enriched the global aluminium cycle with Russia specifics, integrated enriched cycle with energy and 

emissions, calculated and presented results for the model. Scenarios are another part, and together with 

discussion, they result into conclusion. 

 

2 METHODOLOGY 

 

Methodology chapter will provide en understanding for principles in analyses of global aluminium 

cycle. First, this chapter describes   Material Flow Analysis (MFA) theory. Foundation of material 

flow analysis shows system definition of any material cycle. Afterwards, this theory is used more 

specific to present production. In our case it’s global aluminium cycle. This cycle gives us general 

overview of processes and flows for aluminium. Sensitivity analysis shows how differences in flows 

have influence on system in general. And finally, I will discuss possibilities for reduction of 

greenhouse gas emissions. 

 

2.1 MATERIAL FLOW ANALYSIS 

 

2.1.1 FOUNDATION 

 

Definition of Material Flow Analysis (MFA) is: “the systematic assessment of the flows and stocks of 

materials within a system defined in space and time.” (Rechberger, 2004)  
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MFA is used to manage how materials are used and manufactured, to balance industrial input and 

output against natural ability of an ecosystem, to dematerialize industrial production, to create closed-

cycle production practices, to organize models of energy use and emissions. MFA outline system of 

material flows and stocks, reduce the complexity of the system, while maintaining the basis for 

decision-making, evaluation of the flows and stocks by quantitatively check the mass balance, 

sensitivity and uncertainty. MFA present reproducible, clear, transparent results. Those results are 

used as a basis for resource management, environmental protection and waste, monitoring the 

accumulation or depletion, the future of environmental loads, development of environmentally 

beneficial products, processes and systems (Matthews, 2000) 

MFA cycles describe the material flows over time. It is usually one year. Cycles also consider a 

specific geographic region. Cycles can be dedicated to the single production, as well for global 

overview. Each process in cycle must be balanced. 

Simple diagram presents visual description of cycles in the figure below. 

 

 

 Figure 2-1- Material flow diagram that present processes (blue boxes), markets (red box), stocks 

(white box), lithosphere (green box), material flows (black arrows), trade (red arrows) and 

geographical system boundary. (Dahlström & Ekins, 2004) 

Simple diagram table consists of: 

• Blue boxes represent transformation processes of commodities and goods with balanced 

inputs and outputs of material flows. 
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• Red box represents market processes that include trade, domestic production and 

consumption. 

• White box represents accumulated stock of products, providing services on the use of phase. 

Production processes increase the stock, while consumption processes decrease the stock. 

• Green box is lithosphere that can be also presented as landfill. 

• Black arrows represent domestic flows goods and products. 

• Red arrows represent trade flows of goods and products, where I stands for import and E for 

export. 

 

All processes must be balanced. That is, the sum of all incoming flows must be equal to the sum of all 

outgoing flows. If there is the stock of materials in the process, it must be also taken into the account, 

in order to achieve balance of process. This balance is represented by the following formula: 

 

Σ𝐼 = Δ𝑆 + ΣO                      (Formula 2-1) 

Where: 

 

𝐼 - inflow (t); 

𝑆 - stock (t); 

O - outflow (t); 

 

Mass balance in the system is written only for the substance. If it is product, it must use coefficient 

that convert the product flows in the flow of the substance. Also, this coefficient can be used to 

calculate the unknown fluxes based on the known relationships between threads. For example, 

industry can use any metal ore for the production, this metal ore contains a portion of the pure metal. 

Material flow should consider only pure content without any impurities. Therefore the following 

formula should be used: 
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Me equivalent = M * K%                             (Formula 2-2) 

Where: 

 

Me equivalent – substance, that present all inflows (I) and outflows (O) (t); 

M – total mass (t); 

K - transfer coefficient that represent percent of substance in total mass; 

 

Stock is calculated through input-output consideration with the mass balance principle over time and is 

represented in the following formula (Kristina Dahlström, March 2004): 

∫  𝑆    ∫  𝐼      
  

  

  

  
;                              (Formula 2-3) 

 

  Where: 

t1, t2 – time period from the end of one year to the end of the next year and the 

flows are thus given as flow rates per year (year); 

 

For the specific substance with already existing analysis, for example aluminium, formula shows 

interrelation between aluminium consumption per capita and gross domestic product per capita. 40 

populous countries’ aluminium was used for analysis. The formula is presented below  (OECD, 

Materials Case Study 2: Aluminium, 2010): 

 

Al/c = 29.41/ (1 + e(-0.00021 * (GDP/c -17000))           (Formula 2-4) 

Where: 

Al/c – aluminium consumption per capita (t/capita); 



   

 

 

 Page 17 av 93 

 

GDP/c -
 
gross domestic product per capita (GDP/capita); 

e - mathematical constant equal to 2.72; 

 

If the aim is to find out amount of aluminium that should be produced for the given year in the given 

country, formula (4) is used, where GDP and population of this country must be from the same year. 

 

Mass balance with the following formula is used for the transformation process: 

 

 

F1 = F2 + F3                                   (Formula 2-5) 

Where: 

F1, F2 and F3 – flows of substance (t); 

 

Formula (6) contains transfer coefficient that shows losses in the Process: 

 

F3   α * F1                                         (Formula 2-6) 

Where: 

α – transfer coefficient that present loses in the process; 

 

Market process contains import (I) and export (E) of product M from other countries. It is assumed 

that in this stage substance does not have any stocks during one year, all product goes for import or 

export to other countries.  
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F4 = F2 + I – E                                     (Formula 2-7) 

Where: 

F4 – direct consumption (t); 

 

In the process “USE”, substance is transformed into goods and products that human needs. Here we 

apply 2 methods: bottom-up and bottom-down. 

In top-down approach, the system is broken down into sub-systems.  Each sub-system is refined in 

details, until the entire specification is reduced to basic elements. Statistics of products and percent of 

substance those products contain are used in top-down approach. 

In bottom-up approach systems are joined to give the rise for bigger system, thus make original 

systems into sub-systems of the emerged system. Historical consumption data is used for this method. 

Outflow from process "USE" is calculated by formula (Prof. Dr. Daniel B. Mülle, Spring 2011):  

 

F5t1 = ∫    1  1       1    1 
  

  
                                (Formula 2-8) 

 

Where: 

   1  1   - lifetime for products (year); 

 

   1  1   
 

  √  
  

       

                                                (Formula 2-9) 

 

Where 
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  – average lifetime (year); 

  – standard deviation; 

 

Energy use is divided into two types: primary and secondary. Primary energy is defined as direct use 

of the energy source or energy supply to users with no change. This energy is not subjected to any 

process of transformation or conversion. (Statistics, 1997) 

Primary energy intensity from the literature is energy intensity of each process converted into input 

and output of this process. Primary energy use is calculated by multiplying mass flow and formula is: 

 

ep = Ep * F                                 (Formula 2-10) 

Where: 

ep - primary energy use (MJ); 

Ep - Primary energy intensity (MJ/t); 

F- mass flow (t); 

 

Secondary energy intensity is defined in the literature amount of energy that equals to production and 

transportation of one mega joule of energy necessarily for the process. Secondary energy requirement 

is the total energy for the process and calculated by formula: 

 

es = Es * ep                                                         (Formula 2-11) 

Where: 

es – secondary energy requirement (MJ); 

Es - secondary energy intensity (MJ/MJdelivered); 
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ep - primary energy use (MJ) 

 

Greenhouse gas (GHG) emissions are included in the system definition of material flow cycle. GHG 

are divided into primary, secondary and process emissions. Primary emissions rate is on-site global 

worming potential rate and is taken from source literature. Primary emissions are calculated by 

multiplying primary emissions intensity on primary energy use. Formula has view: 

 

ip = Ip * ep                                                        (Formula 2-12) 

Where 

ip - primary emissions (kg of common data elements (CDE)); 

Ip - primary emissions intensity (kg CDE/MJ); 

ep - primary energy use (MJ) 

 

Value for secondary emissions rate, or off-site global warming potential rate, is taken from source 

literature. Secondary emissions are calculated by multiplying secondary emissions intensity on 

primary energy use. Formula has view: 

 

is = Is * ep                                                        (Formula 2-13) 

Where: 

is - secondary emissions (kg CDE); 

Is - secondary emissions intensity (kg CDE/MJ); 

ep - primary energy use (MJ) 
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Process emissions are on-site non-fuel related GHG emissions for global warming potential. Process 

emissions rate is taken from source literature. Process emissions are calculating by multiplying process 

emissions intensity on mass flow: 

 

p = P * F                                    (Formula 2-14) 

Where: 

p – process emissions intensity (kg CDE/t of substance); 

P – process emissions (kg CDE); 

F – mass flow 

 

In the future, it is necessary to determine the material, under investigation. This is to ensure a more 

careful consideration of three levels: mass flow, energy and pollution. 

 

2.1.2 Curve Fitting 

 

Curve fitting is the process of building curve, and is suitable for a series of data points that might be 

subject to restrictions. Curve fitting may include any interpolation, which fits to the required data, or 

smoothing, that roughly corresponds to the data. In the regression analysis, more attention is paid to 

the statistical inference, such as the uncertainty present in the curve. This analysis is suitable for data 

with random errors (I.D., 1993). 

Curve fitting method is used in my study to analyze production processes of primary aluminium, to 

make historical analysis of technology improvements in energy use and to calculate future 

consumption of aluminium. 
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 Many scientific publications have used curve fitting process for analyze. For example, Organization 

for Economic Co-operation and Development (OECD, Materials Case Study 2: Aluminium, 2010) 

shows dependence in consumption of aluminium per capita in different countries versus GDP per 

capita. This dependence calculated for different years and is shown in the table below: 

 

Figure 2-2 Aluminium consumption per capita versus GDP per capita (OECD, 2010) 

In this chart, function curve fitting is used to show rate based on aluminium consumption per capita 

and GDP per capita. The figure provides an overview and allows finding out expected aluminium 

consumption for the country, provided that GDP is known. 
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2.1.3 Sensitivity Analysis 

 

Sensitivity analysis is based on prediction of the system results using variables that affect the outcome 

of the system. Sensitivity analysis is a method of assessing the impact of individual parameters or 

combinations of several parameters on the simulation results. MFA uses this method to determine the 

most important parameters of the system of material flows. This is necessary in order to determine, 

what are the most important parameters, which influence change in the system. It is important to 

remember that this analysis can’t be used for large changes in the parameters. Combination of 

parameters is necessary in order to see no-linear dependence of the material flows when parameters 

are changed.  

My assumption is that small changes in parameters used in my paper are not significant. As I already 

mentioned, sensitivity analyze can not be used for large changes in the system. Sensitivity analyze is 

not done in this paper. 

Lynette Cheah and etc. in his publication is using sensitivity analysis to present scenarios of future 

aluminium smelting energy requirements and the corresponding energy embodied in aluminium 

contained in vehicles (Lynette Cheah, 2009). Sensitivity analysis given in the paper describes the 

effectiveness of various changes, such as aluminium production and use in vehicles to reduce the 

projected energy demand (Figure 2-3). For this purpose, the sensitivity analysis is used to study the 

effect of various energy embodied in the following: 

 efficiency improvements in primary aluminium processing; 

 the extent of secondary/recycled aluminium use in vehicles; 

 the extent of sheet aluminium parts use in vehicles; 
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Figure 2-3 -   Scenarios of future aluminium smelting energy requirements (top) and the corresponding energy 

embodied in aluminium contained in vehicles (bottom) (relative fraction of 2035 projection compared to base scenario 

in parentheses) (Lynette Cheah, 2009). 

The results obtained on embodied energy are based on a baseline assumption that aluminium smelting 

energy requirements will decrease at a compounded rate of −1.06% per annum. At this rate of 

improvement, the smelting energy requirement would be expected to decrease from 15.1 kWh/kg 

aluminium in 2000 to 12.2 kWh/kg by 2020 and eventually reach 10.4 kWh/kg by 2035 (Lynette 

Cheah, 2009) The same analysis made for -1.55% and   -2% per annum.  

The analysis in this project was used to provide guidance on what parameters must be use and which 

have the biggest potential for system-wide impact of emissions and requires detailed study. 
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2.2 SYSTEM DEFINITION 

 

2.2.1 Global Aluminium Cycle 

 

Aluminium is the main element of a subgroup of the third group of the third period of the periodic 

table of chemical elements of Mendeleyev, with atomic number 13, denoted by Al (Lat. Aluminium). 

Aluminium refers to the group of light metals. Aluminium is the most common metal and the third 

most abundant chemical element in the earth's crust (after oxygen and silicon). Simple aluminium 

compounds can be characterized with lightweight, paramagnetic metal silver-white colour, easily 

amenable to melding, casting, and machining. Aluminium has high thermal and electrical 

conductivity, corrosion resistance due to the rapid formation of stable oxide film that protects the 

surface from further interaction. Aluminium metal is too reactive chemically to occur natively. 

Instead, it is found combined in over 270 different minerals (Services, May 2009). The percentage of 

aluminium content in the Earth's crust according to various researchers ranges from 7.45 to 8.14% by 

weight of the Earth's crust (N.V. Koronovski, 2004). In nature, aluminium due to the high chemical 

activity occurs almost exclusively in the form of compounds. Some of them are: Bauxite - Al2O3 · 

H2O, nephelines - KNa3 [AlSiO4] 4, alunite, aluminas (mixture of kaolin and sand), limestone, 

magnetite, corundum (sapphire, ruby, emery, feldspars, kaolinite, beryl (emerald, aquamarine), 

chrysobery. However, native aluminium makes formation in certain specific reducing conditions 

(Oleinikov B.V.. Okrugin A.V., 1984) 

Aluminium has a lot of more exceptional properties, including:  

 resistance to rust by coating the metal in the air to thin, solid, colorless oxide film; 

  the ability to "pull" the oxygen from the oxides of other metals;  

 high solubility in dilute mineral acids to form salts, but the absence of any interaction with 

organic and nitric acid; 

  the ability to create on the surface a solid and a thick aluminium oxide film with concentrated 

nitric acid, so the metal does not react with acids;  

 slight solubility of aluminium compounds in alkalis; 

  high stability of the crystalline aluminium oxide - corundum - to acids and alkalis; 

  high plasticity; 
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 capacity for machining - forging, rolling, stamping, polishing, pressing and drawing, and 

welding - gas, and other contact; resistance to the marine and fresh water . 

 

The following can be made from aluminium and its compounds: electric cables, various elements 

of building structures, aluminium foil for food products and technological needs, kitchen utensils, 

paint "silver", aluminium tape for pipelines of oil and gasoline, aluminium alloy with copper and 

magnesium (duralumin) is used for the production of aircraft and automobile parts, frost- and 

heat-resistant high-strength aluminium alloys are used for a variety of protective and decorative 

coatings, packaging materials, aluminium tape for blinds and ceiling construction, cans, 

flammable and explosive mixtures, ammonal, pyrotechnic compositions, powder with the oxides 

of metals for welding of rails, use incendiary munitions, rocket fuel, raw materials for ceramics, 

laser materials, synthetic rubies, adsorbent for the purification of gases and liquids, catalyst for 

certain organic reactions, water purifiers, mordant for dyeing fabrics, leather tanning, paper 

sizing, wood preservation, catalyst for the synthesis of polymers and rubber and much more 

(MFRM, 2007).  

Aluminium products, including tape and aluminium, have one distinct advantage over products of 

a similar nature and purpose. It has a low cost with high performance characteristics such as: 

 good performance in all climates, under different temperature drops; 

  durability; 

  resistance to corrosion;  

 ease;  

 strength;  

 visual appeal; 

  acoustic and thermal insulation;  

 ability to stain; 

 plasticity, the ability to easily take any form (MFRM, 2007).  

Aluminium can be a part of the solution for a Sustainable Future. Aluminium is a unique metal that is 

strong, durable, flexible, impermeable and light-weight; it does not rust and is 100 percent recyclable.  

It comes in a variety of surface finishes and can take many forms, allowing its use in a vast array of 

products (IAI, Story of Aluminium, 2011). 
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Global aluminium cycle has 5 main stages: primary production of aluminium, semi-manufacturing, 

manufacturing, use, recycling and waste management (Table 2-1). Primary production of aluminium 

has several consecutive stages.  First one is bauxite mining, where ore is extracted from lithosphere. 

Next stage is refining, where alumna is extracted from ore by use of Bayer process. Ingot is a product 

of smelting process (Hall–Héroult process) of aluminium scrap from refining and remitting. All of 

those primary production stages have losses in the form of mining residue, red mud, spent potline and 

dross, that primary has aluminium from ingot casting process. Aluminium ingot is produced from the 

primary route (ore) and from secondary route (scrap).Semi-manufacturing, manufacturing; use and 

waste management processes are enlarged in the figure below to demonstrate that they are broken 

down in several models of parallel processes/stages.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2-1 System definition of aluminium mass flow cycle 
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2.2.2 Primary production of aluminium 

 

Materials flows presented below in the table cover the primary production of aluminium, including 

bauxite mining (open pit), alumina production (Bayer process), electrolytic smelting (Hall-Heroult 

process) and the production of secondary aluminium. Materials flow data used in my report, are  from 

the year 2008. The Russian model was developed for various process stages in aluminium production 

from bauxite. The main starting point of cycle is aluminium ore bauxite, which holds 26% of raw 

aluminium. Ingot holds 99%, or 7% of raw aluminium. Smelting is the most energy consuming stage 

in primary production of aluminium. This energy is used in electrolysis. Smelting process has 

additional 2 stages: electrolysis and primary ingot casting processes.  

Greenhouse gases are a major pollutant from aluminum production. Those gases are result of fossil 

fuel combustion, carbon anode consumption and perfluorocarbons from anode effects. In addition to 

greenhouse gases, aluminum smelters also discharge other atmospheric emissions, as well as some 

solid wastes (spent potline) and liquid effluents. 

Process Air emissions Effluents By-products and 

solid wastes 

Alumina refining Particulate Waste water containing 

starch, sand, and caustic  

Red mud, sodium 

oxalate 

Anode production Particulates, fluorides, polycyclic 

aromatic hydrocarbons, SO2, 

PCDD/PCDF 

Waste water containing 

suspended solids, 

fluorides, and organics 

Carbon dust, tar, 

refractory waste 

Aluminium 

smelting 

CO, CO2, SO2, fluorides 

(gaseous and particulate), 

perfluorocarbons (CF4, C2F6), 

polycyclic aromatic 

hydrocarbons, PCDD/PCDF 

Wet air pollution control 

effluents (wet 

electrostatic precipitator) 

Spent potliners, 

wet air pollution 

control wastes, 

sludges 

Table 2-2 Air Emissions and Effluents in the aluminium processes  

Based on the Krasnoyarsk study (Kucherenko et al. 2001) 
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There are two main greenhouse gases produced during the primary production of aluminium. Carbon 

dioxide (CO2) is a product of electrolytic reaction and perfluorocarbons (PFCs) is a product of brief 

process upset periods known as anode effects. (The Aluminium sector Greenhouse Gas Protocol, 

2006)  

 

2.2.2.1 Bauxite mining 

 

Over 90% of the world's total bauxite reserves are concentrated in 18 countries with tropical or 

subtropical climates. It is no coincidence, since the best bauxite deposits are confined to the so-called 

lateritic Coram, formed as a result of prolonged weathering of aluminosilicate rocks in the hot humid 

climate. About nine tenths of the world's bauxite (in kilos) is in the laterite deposits. The largest total 

reserves have Guinea (20 billion tons), Australia (7 billion tons), Brazil (6 billion tons), Vietnam (3 

billion tons), India (2.5 billion tones) and Indonesia (2 billion tons). Russia does not have sufficient 

reserves for domestic consumption of bauxite, and has   less than 1% of the world reserves. North Ural 

district does hove most of the high quality bauxite in Russia. There are some bauxite deposits in 

Boksitogorsky district of Leningrad region. The most promising deposits of bauxite is the Middle 

Timan group of fields in the north-west of the Republic of Komi (Board, 2006)  Russia compensates 

the lack of bauxite with nepheline ore. 

Primary production of aluminium starts with extraction of bauxite ore. The aluminium industry 

consumes near 90% of mined bauxite, the rest is used in abrasives, cement, ceramics, chemical, 

metallurgical flux, refractories, and other products (Bray, 2010b). There are three main types of 

bauxite: 

 Trihydrate that mainly consists of gibbsite, Al2O3 • 3H2O 

 Monohydrate, that mostly consists of boehmite, Al2O3 • H2O 

 Mixed bauxite, which is composed of gibbsite and boehmite (OECD, 2010).  

Bauxite ore contains from 31 to 52 percent of Alumina. The middle average is about 41% (IAI, 

2009b). My study examines the flow of metallurgical grade bauxite ore used to produce aluminium. 

That type of ore contains from 50 to 55% of Al2O3 (OECD, 2010).   
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2.2.2.2 Bauxite mining 

The vast majority of the bauxite ore in the world is extracted by open cut methods. Before mining 

start, it is necessary to remove topsoil. That helps to topsoil preservation and subsequent rehabilitation 

of mines. Bauxite ore bodies range from 2 to 20 meters in thickness (IAI, 2009b).  

Table 2-3, shows the flow for bauxite mining process. This figure is based on a description of bauxite 

mining at the Alcoa-owned Juruti Mine in Brazil  

 

Table 2-3 – Material flow of bauxite mining (OECD, 2010) 

From this table we see that use of energy in bauxite mining has consequences in form of air emissions, 

water emissions and tails. But according to International Aluminium Institute, bauxite mining has only 

0,2% of greenhouse gases emissions from primary production of aluminium. (IAI, 2009b) 

The greatest difference between pre- and post-mining land use is a trade of farming (11 to 20 percent) 

for native forest (49 to 60 percent) (IAI, 2009b). 
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2.2.2.3 Nepheline mining 

 

After World War II Russia has become world leader in  use of nepheline . For the first time the 

method of complex processing of nepheline (nepheline concentrate) was made in 1949 at aluminium 

factory Volkhov. Russia and other countries, that do not have reliable reserves of bauxite, become 

very interested in this technology. Outside the Russia, Iran is another country that had built its first 

plant pilot (one thousand tons of alumina per day) with the help of VAMI (Russia) to learn the process 

(Azarshahr pilot plant).  

Nepheline ores ((Na,K)AlSiO4) are used as the primary aluminium in Russia. Kia-developed 

Shaltyrskoe mine in the Kemerovo region and deposits Kukisvumchor, Yukspor, Rasvumchor on the 

Kola Peninsula are the main regions. The total reserves of nepheline ores in Russia is about 7 billion 

tons of proven and 5 million tons in the current economic exploitation. The profitability of those 

developments is in question (Board, 2006).  

In addition to bauxite I also study the flow of nepheline ore used to produce aluminium. 
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Figure 2-4 - Flow chart of process for production of nepheline, nepheline coagulant alum and silica 

(Velyaev, 2012) 

 

Nepheline has more than 20% of Al2O3, Na2O and K2O, less than 10% SiO2. Less than 55% nepheline 

can be processed in production of alumina, cement and other chemical products. These production 

methods remove the nepheline syenite from the apatite tailings. First nepheline syenite is calcined with 

limestone, and the product is a mixture of CaSiO3 and Na2O*Al2O3. Than leaching by caustic soda 

and treatment with CO2 results in alumina and by-products. 

The content of substances in the nepheline ore are presented in the table below.  

SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O H2O P2O5 

54.99 0.6 20.96 2.25 2.05 0.15 0.77 2.31 8.23 5.58 1.47 0.13 

Table 2-4 Substances in the nepheline ore in % (Barker, 1983) 
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Comparison of bauxite and nepheline ores shows that the percentage content of alumina is 2 times 

higher in bauxite ores than in nepheline. Therefore, nepheline process has a much higher cost than the 

Bayer process for bauxite, and becomes economically justifiable only when all the by-products can be 

sold. Russia is using nepheline ores in production due to the fact that there is a shortage of raw 

materials for production of alumina. 

 

2.2.2.4 Alumina refining 

 

Four different processes are identified in the current production of alumina: the Bayer process, the 

Сinter process, Bayer-Sinter (combined) process and the Nepheline-based process (Zheng Luo, 2007). 

In this chapter I described only two processes, the Bayer process and the Nepheline-based process. 

This is due the following: 

 The Bayer process is the most widely used form of alumina extraction. Most of the world's 

bauxite production (approximately 85%) is used as feedstock for the production of alumina by 

the wet chemical method of caustic leach process known as Bayer (USGS, 2011);  

 High energy consumption has been the drawback of the Sinter process, which requires 30-40 

GJ/tones alumina in comparison to 11GJ/tone for the Bayer process (Zheng Luo, 2007); 

 Bayer-Sinter process consumes from 34.15 to 52.17 GJ/tone for production of alumina that 

makes this method even more power-consuming than the Sinter process (Smith, 2008). 

 Lower alumina content of nepheline ore, requires the handling of a greater volume of material 

(4.8 tones to one tone of alumina) in the Nepheline-based process. But production of alumina 

from nepheline ore exists and wildly used in Russia (Zheng Luo, 2007). Russia is the main 

country of my study. 

The Bayer process is presented in the following figure: 
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Figure 2-5 – Visualization of the Bayer process (Zheng Luo, 2007) 

In the Bayer process, bauxite is worked out by washing with a hot solution of sodium hydroxide. This 

converts the aluminium oxide in the ore to sodium aluminate. The other components of bauxite do not 

dissolve. The solution is clarified by filtering off the solid impurities. The mixture of solid impurities 

is called red mud, and presents a disposal problem. After that, the alkaline solution is cooled, and 

aluminium hydroxide precipitates as a white, fluffy solid (Harris D. C., 1998). 

In the Bayer process bauxite is refined to produce alumina. Bauxite contains 30–54% aluminium oxide 

(Al2O3), the rest is a mixture of silica, various iron oxides, and titanium dioxide (Harris, McLachlan, & 

Clark, 1998). 

In total other alumina production processes stands for only 17% of the world’s alumina, and most of 

them is used in China and Russia.  

Process framework for alumina production in Russia by nepheline ore is shown in the figure below. 
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Figure 2-6 – Visualization of the Nepheline-based process at Volkhov aluminium smelter in Russia (Smirnov, 1996) 

Concentrate used in production contains 27-28% Al2O3, 44% SiO2, and approximately 20% R2O 

(Na2O + K2O). Russian scientists improved technology for treatment of the nepheline concentrates by 

sintering concentrate with limestone. The method enabled complete re-use for production of by-

products like cement, soda, potash, and alumina. 

The high temperature reaction of sintering requires a significant amount of fuel. This is the main 

course for why Nepheline-based process significantly contributes to greenhouse gas emissions in the 

aluminium cycle. The number is about 11% of the total emissions in the cycle (IAI, 2009) 

 

2.2.2.5 Electrolysis 

 

Alumina is purified to the liquid metal aluminium through a process of electrolysis, the so-called Hall-

Héroult process. Typical Hall-Héroult cell is presented in the figure below: 

 



   

 

 

 Page 37 av 93 

 

 

Figure 2-7– Visualization of the Hall-Héroult aluminium electrolytic cell (U.S., 2007) 

In the Hall-Héroult process alumina is dissolved in molten cryolite bath at a temperature of 960
o
 C is 

electrolyzed. The cells are connected in series so electrical current can pass through a bath from a 

carbon anode to the cathode. Alumina is in the molten bath. When alumina concentration in the 

electrolyte bath is too low, the bath itself would start the electrolytic reaction with the carbon in the 

anode, the so-called anode effect. This effect generates two types of PFC gases: CF4 and C2F6. Liquid 

aluminium is collected at the cathode in the bottom of the cell and oxygen reaction with carbon anode 

results in carbon dioxide. The carbon anodes are therefore continuously consumed during the process. 

The molten aluminium is periodically withdrawn from the cells into crucibles by vacuum siphon. The 

crucibles are transported to the casting plant and the aluminium is emptied into heated holding 

furnaces. Alloying additives are added into these furnaces under controlled temperature. Various 

aluminium technologies differ in the type of used anode, method by which the pot is worked or the 

anode is introduced into the cell  (Zheng Luo, 2007). The main technologies are Prebake and 

Soderberg.  
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In the Prebake, cells have several pots of anodes that are formed and baked prior to consumption in the 

pots. Technology has two options: Centre Worked Prebake (CWPB) and Side Worked Prebake 

(SWPB). These options depend on how alumina is introduced into the cell, where the pot work takes 

place. In CWPB cells, alumina goes into center of the cell by longitude. While in the SWPB, alumina 

is added along the longitudinal sides of the cell. Prebake version is defined as the Point of the Feed 

Prebake (PFPB, see Figure 2-8 ) and represents the state of technology in primary production. 

Compared with CWPB, PFPB is a better way of alumina supply into the cell, provides more precise 

control for alumina concentration in the bath, and produces less precipitation and easier in temperature 

stabilization. These advantages give higher current, low power consumption and low emissions. All 

new plants use the PFPB. 

Baked anodes are made in a separate anode plant, from a mixture of calcined petroleum coke and coal 

tar pitch. These anode plants are often an integral part of the aluminium production plant (Zheng Luo, 

2007). 

 

Figure 2-8 – Visualization of Prebake cell (Zheng Luo, 2007) 
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Soderberg cells use a single, monolithic carbon anode, which is added to the paste and baked in the 

cell itself through the heat emanating from the molten bath. There are two variants of Soderberg 

technology: Vertical Stud Soderberg (VSS) and Horizontal Stud Soderberg (HSS). Variation is in 

whether electricity is introduced into a cell. In VSS cells, electrical connectors or pins are arranged 

vertically at the top of the anode, but in the HSS cell, it is in the horizontal plate along the longitudinal 

length on both sides of the cell. Soderberg cells were popular from 1940 to 1960 period and generally 

are less effective than the burned cells in way of capturing and collecting fluorine and hydrocarbons 

produced in the process.  With this technology it is more expensive to comply with environmental and 

health regulations. This is the main reason why Soderberg technology was gradually replaced by 

Prebake technology. 

 

Figure 2-9 – Visualization of Soderberg cell (Zheng Luo, 2007) 

Ecological analyze of various types of smelting technologies is presented in Table 2-5, where PFPB is 

Centre Worked Prebake with a Point Feed System; CWPB is Centre Worked Prebake with a Bar 

Break Feed System; SWPB is Side Worked Prebake; HSS is Horizontal Stud Soderberg; VSS is 

Vertical Stud Soderberg. 
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Table 2-5 - Perfluorocarbon emission results (IAI, 2010) 

The IAI has employed this methodology, of using median PFC emissions performance (as CO2e) per 

technology. This is the basis for calculation of the global PFC emissions inventory from aluminium 

production. 

The IPCC report recommends cutting annual global emissions by 2050 in total of 50-85 % of2000 

levels. GHG emissions from electricity production for electrolysis account for 55% of total cycle 

emissions (IAI, 2009). For primary aluminium production it is necessary to do a shift from smelting 

technology to PFPB.   

IAI made a presentation of aluminium smelting technology categories from 1990 to 2009. A shift in 

technology types has had an impact on PFC emissions, with modern and low PFC‐emitting Point Fed 

Prebake (PFPB) technology now dominating the global technology mix. PFPB have had relative 

increase in production share from 32% in 1990 to 83% in 2009 (IAI, 2010). Future scenario for 

technologies use in primary production of aluminium is done until 2030 (Zheng Luo, 2007). By 

compare these two figures below it is possible to make analyze of technology mix until 2050. 
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Figure 2-10- Share of technology (IAI, 2010 and Zheng Luo, 2007) 

Analyze from the figure above shows that by 2030 more than 95% of aluminium smelting will be done 

using PFPB technology. Today there are a number of research initiatives within production of primary 

aluminium. One of the most important aims is to reduce energy consumption and emissions 

(Commission, 2001). These initiatives include: 

• Inert anodes. Carbon free anodes is dimensionally stable, they are slowly consumed, and release 

oxygen, not CO2. The use of inert anodes eliminates the need for a carbon anode plant (and the 

emissions of polycyclic aromatic hydrocarbons from the process). 

• Wetted cathodes. It is a new cathode materials or coatings instead of existing cathode materials. 

Wetted cathodes enable energy efficiency. 

• Vertical electrodes. These electrodes allow for low-temperature electrolysis. This process involves a 

consumable metal alloy anode, a cathode of the electrolytic bath and hydrated, which is kept saturated 

with alumina at relatively low temperature of 750 ° C with the help of free alumina particles 

suspended in the bath. This technology can produce primary aluminium metal with lower power 

consumption, lower cost and reduced environmental degradation than conventional Hall-Héroult. 

• Dry Cell Technology. This technology is characterized by used of coating aluminium cathode cell 

with titanium dibromide and removal of the metal pad, that reduces the distance between the anode 

and the cathode. By distance reduction, the required voltage of cells and heat loss are also reduces. 

• Carbothermic technology. Technology looks at aluminum production through a chemical reaction 

that occurs inside the reactor. That requires much less physical space than the Hall-Héroult reaction. 

This process will significantly reduce energy consumption and the elimination of PFC emissions from 

carbon anode effects, hazardous spent pot liners, and hydrocarbon emissions associated with the 

baking supplies carbon anodes. 
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Inert anodes in combination with wetted cathode and compared to the traditional Hall-Héroult cells, 

are expected to provide the following: 

– 10 percent reduction in operational costs (elimination of carbon anode plant and labor costs 

associated with replacing anodes) 

– 5 percent increase in cell productivity 

– 41 percent reduction in greenhouse gas emissions (USDOE, 2007) 

The environmental benefit of wetted cathode technology is related to the emissions associated with the 

electricity production. The electricity production (14.4 kWh/kg of aluminium) for a modern Hall-

Héroult cell emits 5.04 kg of carbon dioxide equivalents (CDE) for each kilogram of aluminium 

produced. A wetted-sloped cathode cell with a 2.0 cm ACD will lower the CDE emission associated 

with electricity generation and transmission by nearly 21 percent to 3.98 kg CDE/kg of aluminium 

produced (USDOE, 2007). 

Two innovative technological changes the Hall-Héroult are soaked drained cathode and an inert anode. 

They are located on the near horizon for energy efficiency. These technologies can modify the existing 

series of electrolysis and supporting infrastructure. A wetted cathode is expected to lower the energy 

consumption of the Hall-Héroult cells by 18 percent compared with the modern Hall-Héroult cells. 

This report defines the current cell as one that operates at 4.6 V and 95 percent from the current 

distribution voltage. The combination of an inert anode with a wetted cathode could provide a 22-

percent reduction in energy consumption and eliminate cells emissions of CO2 (USDOE, 2007). 

The theoretical minimum energy consumption in carbothermic reduction of alumina is 7.32 kWh/kg. 

Compared to the 14.4 kWh/kg from a modern Hall-Héroult Cell this represents a 37 percent reduction 

in energy use.  

The theoretical minimum energy consumption in aluminium production from kaolinite is 5.76 kWh/kg 

and is 8 percent lower than CDE emissions than Hall-Héroult facilities (USDOE, 2007). 

Sum of anode energy consumption and anode emissions effect gives 17% of total industry GHG 

emissions (IAI, 2009) 
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2.2.2.6 Primary Ingot Casting 

 

This process starts with the unload of materials in a storage place. Operations associated with this 

ingot proses include: 

• pre-treatment of hot metal (cleaning and auxiliary heating); 

• scrap recovery and processing of internal processes; 

• dosing, metal processing and casting operations; 

• homogenization, cutting and packaging operations; 

• maintenance and repair of machinery and equipment; 

• treatment of process air, liquids and solids. 

The primary ingot molten metal is syphoned from the pots and is sent to a resident of the complex 

castings, which is found in every smelter. In some cases, due to the proximity of the molten, metal is 

transported directly into the form of casting foundry. The molten metal is transferred to the mixer and 

brought to the specific composition of the alloy. In some cases, depending on application and 

composition of the bath in pots, some impurities can be removed.  

When the alloying is complete, the melt is fluxed to remove impurities and reduce gas content. The 

fluxing consists of a combination of slow bubbling of nitrogen and chlorine, and carbon monoxide, 

argon and chlorine through the metal. Flux can also be accomplished with the built-in drainage, which 

performs some functions of specialized unit decontamination. 

Fluxing removes trapped gases and inorganic particles by floatation on the metal surface. This dross 

(impurity) is skimmed off. The skimming process also takes some aluminium together with dross, and 

as a rule, the further processing for this mass is to recover the aluminium content and to make products 

used in the abrasives industry, and insulation. 

Depending on the application, the metal is handled through the built-in filter for removal of oxides that 

may have formed. Then this metal is thrown into ingots by different methods: the open molds, through 

direct chill molds for various production forms, electromagnetic molds for some sheet ingot, and 

through continuous casters of aluminium coils (AAS, 2000). 
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Ingot casting stands for 1% of the aluminium industry GHG emissions (IAI, 2009).Semi- 

Manufacturing 

 

Semi-manufacturing industry produce a wide range of products from 0.005-mm thin foil to the 

massive blocks of the motor vehicle. Aluminium is delivered to the manufacturing industry in nine 

main categories of shapes: 

 Sheet rolling. Thickness comprised between 0.2 and 6 mm, sheet is the most common 

aluminium rolled product.  

 

 

Figure 2-11 - Main process steps in aluminium sheet production (EAA, 2008) 

As it is illustrated in the Figure 2-11 - Main process steps in aluminium sheet production, ingot is 

preheated to about 500 ° C for successive pass through a hot rolling mill. Here ingot is reduced to a 

thickness of about 4 - 6 mm. The band of the hot rolling mill continues to cold rolling mill, that is 

usually stands in the same place. The final thickness of cold rolled sheet is ranging from 0.2 to 2 mm. 

The sheet production from sawn ingot up to finished sheet generates about 380 kg of scrap for each 

ton of sheet. This scrap is recycled into new ingot through remelting which is usually performed on-

site in integrated cast houses (EAA, 2008). 

 Foil rolling. Aluminium foil is used in a variety of sensors, and in some alloys for various 

applications. It is available in thicknesses from 5 microns to 200 microns. The foil production 

from as-cast ingot up to finished sheet generates about 600 kg of scrap by ton of foil. These 

scrap are recycled into new ingot through remelting (EAA, 2008). 

 Shape castings. Shape casting or the casting of engineered designs enables the production of 

simple and complex parts that meet a wide variety of needs. The process produces parts 

weighing ounces to parts weighing several tons. Figure 2-12 – Typical aluminium product 

shape casting operations shows operations of a typical aluminium shape casting foundry (U.S., 

2007). 
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Figure 2-12 – Typical aluminium product shape casting operations (U.S., 2007) 

Shape casting has typical yield of only 45 percent and requires about 2.56 kWh/kg of cast product. 

 Wire drawing. This process is simple in concept. The wire is prepared at the beginning of its 

decline, strikes, filing, rolling or pressing, so that it will pass through the matrix, then pulled 

the wire through the mouthpiece. As the wire is pulled through the crystal, its volume remains 

the same as the diameter decreases, the length increases. 

 

 

 

Figure 2-13 – Wire drawing concept (Degarmo, 2003) 

 

 Can production. Production of aluminium beverage cans begins with conversion of ingots in 

the canned and cover stock coil, which can then be transformed into bodies and cover the jar factory. 

In the hot rolling of aluminium, ingots are preheated and fed through a hot reversing mill. In reversing 

mill, coil passes back and forth between the rollers and the thickness is reduced from the original 

thickness with a corresponding increase in length. After the return, plates are served on a continuous 

hot rolling mill, where the thickness is further reduced. Loss, in the form of aluminium scrap, is 299.7 

kg 1000 kg of final product production and energy consumption are 4102 MJ (Americas, 2010).  

 Extrusion. The starting material for the production of extruded aluminium is extrusion ingot 

that is a few meters long cylinder with a diameter range typically from 20 to 50 cm. The ends (top and 

tails), blanks, usually cut to bring the house into a direct smelting. Before the extrusion, billet usually 

is preheated to around 450 ° C - 500 ° C. At these temperatures the flow stress of aluminium alloys is 

very low and by applying pressure with the ram at one end, a piece of metal passes through the steel 

die, located at the other end of the container for the production of profiles, cross-sectional shape of 

which is determined by the shape of the die. 
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Figure 2-14 - Extrusion process principle (EAA, 2008) 

The extrusion from cast billet up to finished profile generates about 320 kg of scrap by tone of 

extrusion. These scrap are recycled into new ingot through re-melting (EAA, 2008). 

 Powder and paste. Aluminium powder is produced by use of pure molten metal, aluminium, 

compressed gas stream and turning it into fine droplets, which are then consolidated and collected. 

These powders are estimated based on the size, composition and application. The range of particle 

sizes of the product are made so you can control to some extent, different nozzle opening, air pressure 

and other factors. A wide range of particle sizes is available from 5 microns to 1000 microns 

(Industry, 2010).  

 Other metallurgy: 

– Deoxidizer steel processing 

– Alloying in steels 

– Aluminothermy reduction processes 

– Corrosion-resistant coatings for steel products 

Those processes are using low percent of aluminium and are described in the ”Other” group. 

 Other 

Those 9 other groups can be divided into smaller under groups. For example: Russia is using Russian 

Standard of aluminium products. Semi-manufacturing products and products made of aluminium and 

aluminium alloys from the Russia production companies are divided into the following: 

1 Castings (blanks have forms: planar, cylindrical solid, hollow cylindrical, T-shaped. Variation of 

mass is from 20 to 15000 kilograms.)  

2 Flat-rolled products 

2.1 Plates, sheets, strip (blanks have thickness from 0.2-mm to 150-mm, width from 100-mm to 

3000-mm and length from 1200-mm to27500-mm) 



   

 

 

 Page 47 av 93 

 

2.2 Heat exchangers (Maximum size that is producing: 1000x3600x1.5 mm) 

2.3 Foil (thickness from 0.005-mm to 0.25-mm) 

3 Extrusions 

3.1 Rods (blanks have form of round, square, hexagonal, wires and Ø4-500) 

3.2 Strips (3-200x40-700) 

3.3 Profiles (Ø 20-600) 

3.4 Panels (370-2100x3-17x75-80) 

3.5 Pipes (8-12060) 

3.6 Lightweight drill pipe (73x172) 

4 Forging stamping products manufacturing 

4.1 Forgings (under 3000 kg) 

4.2 Stampings (under 2000 kg) 

4.3 Wheels (R13-R16, 22.5 x 8.25;   22.5 х 9;   22.5 x 11.75) 

5 Aluminium cans (0.33 l; 0.5l) (Alfa-Metal, 2011) 

There are a big amount of sizes within these under groups. Russia has a big potential for export of 

aluminium semi-products.  

Russian manufacturers of aluminium-containing products are operating below capacity. This indicates 

significant growth potential in the Russian aluminium market. This reduced capacity utilization rate is 

a result of a great share of imported products containing aluminium. This is mostly explained by a lack 

of protection for Russian producers of aluminium-based products, as well as an insufficient control for 

law execution. The restrictions on the import of finished and semi-finished aluminium-based products 

to Russia would help local producers to increase the capacity utilization rate, thus triggering the 

demand for aluminium in Russia (RUSSAL, 2011). 
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2.2.3 Manufacturing 

 

In the manufacturing of aluminium, metal is used to create the final products for consumption. Figure 

2-15 – Breakdown of aluminium shares in other industries in Russia, 2008 numbers  shows shares of 

the aluminium in other industries in Russia. 

 

Figure 2-15 – Breakdown of aluminium shares in other industries in Russia, 2008 numbers (Finmarket, 2009) 

The most intensive used are in transportation (23%), construction (20%), electrical products (16%), 

packaging (14%), engineering (8%), consumer goods (9%). Their total share of aluminium in the 

structure of consumption is 90%. According to marked analyzers, the domestic demand for high-tech 

aluminium products will significantly increase in the future (Finmarket, 2009). 

The main industries that are using aluminium in their products are listed along with specific product 

applications in the table below. 

Industry Products 

Transportation Engine, transmission, chassis, suspension and steering, wheels, heat 

exchanger, brakes, closures, body and IP beams, heat shields, bumper 

beams, automotive frame and body panel, radiators, road signs, wheels, 

railway wagons and ships, aerospace 

Construction Roofing, cladding, windows and door frames, curtain walling, facades, 

conservatories and partitioning 

Electrical Wires, conductors, transformers and capacitors, lighting appliances 

Packaging Food containers, beverage cans, bottles, foil 

Engineering Pipes, ladders, scaffolding, fasteners, hardware, office and 

Transportation

Construction

Electrical

Packaging

Engineering

Consumer goods

Other
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medical equipment, heat transfer equipment 

Consumer goods Refrigerators, freezers, washing machines, stoves, dishwashers, dishes, 

TV antennas, bicycle  

Other Welding wire, paint, explosives, chemical powders 

 

Table 2-6 – Aluminium industries and their products containing aluminium (Inline-P, 2011), (Alfa-Metal, 2011), 

(Americas, 2010), (Industry, 2010), (Cooper, 2010) 

Aluminium is found in many other products, so it's hard to say about the amount of energy used and 

pollution spent and received in the manufacture of the final product. Therefore, the calculation used 

here is a very rough estimation.  It is difficult to get information about the data from many 

manufacturers in Russia. 

 

2.2.3.1 Use 

 

The main global end use of aluminium is in construction, packaging, electrical equipment, transport, 

machinery, consumer durables, powder metallurgy and deoxidation of steel. The share rates are 

visualized in the figure below.  

 

Figure 2-16 – Aluminium end product use (Cambridge, 2010) 
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Construction has 22% of the total use, where window frames stands for 7% and curtain walling for 

4%, roofing and exterior cladding stands for 5%. Decorative and protective profiled cladding is often 

made from rolled aluminium sheet.  Aluminium is an attractive, light-weight, and increasingly used 

material in construction. Transport industry stands for 27% of the total use, where automobiles have 

17%. Aluminium is increasingly used in transport industry as its lightweight properties allow better 

fuel economy, and reduced carbon dioxide emissions over the product lifetime. Packaging industry 

stands for 15%, where cans stands for 8%, Foil and other for 7%. 75% of beverage cans are made from 

aluminium. Electrical equipment accounts for 13%, where electrical cables for 8%. Aluminium is 

more favorable than copper due to a lower total cost. This is despite that fact that aluminium 

conductors have to be larger due increased electrical resistivity. Cables for industrial, commercial and 

residential buildings may contain a number of insulated conductors in a common jacket, consisting of 

aluminium armour. Machinery and other equipment stands for 8%, where heating and ventilation 

systems for 4%. Combined with high strength and durability, aluminium is a favorable choice in 

heating and ventilation systems. Consumer durable use is 7%, where white goods consume 4%. 50% 

of all aluminium used in the household is used in refrigerators, freezers and washing machines. 

Refrigerators and freezers contain refrigeration units, and therefore use significant amount of 

aluminium. In addition, aluminium is used in the cooling system, panels and accessories. Powder 

metallurgy stands for 4%. Powder metallurgy is a process that allows production of both complex and 

simple form to have ready-made sizes, reducing the subsequent stages of processing. A mixture of 

elemental and pre-alloyed powders compacted in the crystal. Powders were then sintered to form a 

pure form of the final product. Deoxidation of steel accounts for 4%. Deoxidizing reagents are added 

to the melt in order to remove oxygen from the molten steel. About 1 kg of aluminium is required to 

restore each ton of steel (Cambridge, 2010). 

In-use stock of aluminium is growing when GDP is growing for a specific country. These analyses 

was made by (OECD, 2010) in European countries and described in this document section for Curve 

Fitting. Global analyze was made by (Martchek, 2006) and is shown on the figure below. 
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Figure 2-17 – Projects future product inventories volumes by market segment (Martchek, 2006) 

 

2.2.3.2 Waste Management and Recycling 

 

Compared to the production of primary aluminium, recycling of aluminium products consumes as 

little as 5% of the energy and emits only 5% of the greenhouse gas. Recycling is a major aspect of 

continued aluminium use, as more than a third of all the aluminium currently produced globally 

originates from the old, traded and new scrap.  The high value of aluminium scrap has always been a 

major incentive for re-use, independently of the legislative and political initiatives. For some products, 

the growth of environmental problems and increased social responsibility helped to increase recycling 

activities, in orders to save resources and to avoid clog. The recycling performance of the aluminium 

industry can be described by different indicators, namely the overall and the end-of-life recycling 

efficiency rate. These indicators are splited into the end of-life collection rate and the processing rate 

(IAI, 2009). Estimated recycling rates for aluminium used in the transport and building sectors are 

very high (85% to 95%). Between 30% and close to 100% of aluminium cans are found to be collected 

and recycled, depending on the region.  

The recycled product may be the same as the original product (window frame recycled back into a 

window frame) but is more often a completely different product (cylinder head recycled into a 

gearbox). Global end-use markets for finished aluminium products is presented in the  figure below. 
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Figure 2-18 – Global end-use markets for finished aluminium (IAI, 2009) 

Transportation is the most important field of application for aluminium worldwide. In 2009 the 

average passenger car contained between 120 and 150 kg of aluminium. In case of building and 

construction, typically building will have four major stages in life cycle: construction, exploitation 

(mainly heating, lighting and air conditioning), maintenance and end-of-life management. In Europe 

the collection rate of all aluminium packaging is about 50%. The collection rates of used beverage 

cans vary from country to country from 30% to close to 100% (75% in Russia) (IAI, 2009).  

Climate change is the paramount environmental issue for the global industry.  The full process for 

manufacturing of new stocks of aluminium is responsible for 1% of the global human-induced 

greenhouse gas emissions, which scientists with the United Nations’ Intergovernmental Panel on 

Climate Change (IPCC) identify as a cause of unnaturally accelerated rates of global warming (IAI, 

2009).  

Waste management is divided into 3 main processes: 

 Disposal – where old scrap instead of going into recycle chain goes to landfill directly; 

 Collection – is an important process because old scrap after exploitation process is going to 

recycling. World average is shown in the Table 2-7 and represents very high recyclable rates 

for some industry sectors, while some other categories have a big potential in increase.   
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Table 2-7 – Example of global average worldwide collection (recycle) rates and melting recoveries by market 

(Martchek, 2006) 

 Sorting – is a process after collection. Here old scrap is inspected and sorted for remelting, 

refining or landfill.   

2.2.3.3 Remelting and refining of scrap 

Several melting processes are used. The choice of process depends upon a number of variables. These 

include the composition of the waste, the processes that are available in a given plant and the 

economic planning and scheduling priorities. A breakdown of the most common melting technologies 

is given in the Table 2-8. Molten metal fluxing (to treat the molten metal: chemical adjustment, 

cleaning, yield maximization, degassing) and filtration technology has been developed to produce 

aluminium alloys of the correct quality. Remelters mainly use reverberators furnaces, so “scrap 

remelting” model is based on this furnace technology only. Refiners use a combination of rotary and 

reverberators furnaces which represent about 90% of their furnace technology, while induction 

technology is quite marginal. As a result, the “scrap recycling” model is based on a mix of rotary and 

reverberators furnace technologies (EAA, 2008).   
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Table 2-8 - Furnace types and specificities for aluminium recycling (EAA E. a., 2008). 

Usually, refiners and remelters report their (gross) metal yield by comparing their outputs of metal 

ingots with their scrap inputs, as values between 70% and 95%.  
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3 MODEL DESCRIPTION 

 

This Chapter is divided into 3 main parts: mass, energy and emissions layers. I will provide a 

description of material flows, types of energy and emissions. In the material flow part I give an 

analyze of Russian aluminium cycle. Than this analyze model is integrated with energy use and GHG 

emissions. The final analyze is based on present and future situation in aluminium production in 

Russia.  I have been using different types of   literature and other sources. I also was forced to do some 

assumptions due lack of available information specifically for Russia. These assumptions are written 

in the chapter text. 

 

3.1 SYSTEM OVERVIEW 

 

An integrated model of MFA (Mass Flow Analyse) covers all significant emissions of greenhouse 

gases created in the aluminium industry as a result of consumption of aluminium in the community. 

Integration occurs at three levels, as shown in figure below.  

 

 

 

 

 

 

 

Figure 3-1 – Schematic model for illustrating of layers in the model  
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Colors in the schematic model represent the following: 

 green colour is consumption 

 grey is mass flow layer 

 blue is energy use 

 red is GHG emissions 

 orange is climate change impact 

 

Chain starts with the consumption generated by community in the form of demand for services. The 

material flow is the first layer in the model and is shown in grey. A material flow requires the 

transformation of aluminium through various processes within the cycle. This transformation requires 

use of energy and results in the emission. Primary energy consumption results into direct emissions 

from this energy. That happens on site in aluminium processes. Primary energy consumption also 

requires a secondary energy, which is defined as the energy needed for production and transportation 

of primary energy to the site. Indirect emissions are generated off-site, as a result of secondary energy 

use. The energy layer is shown in blue and GHG emissions in the red colour. Greenhouse gas emission 

layer directly affects the environment through global warming based on properties to specific gases. 

The model takes into account a number of aluminium-containing products, but also considers these 

products by their content of clear aluminium in the mass balances. Classification of greenhouse gas 

emissions is based on classification of energy use (primary and secondary) and material flow (proses). 

That results into three greenhouse emissions: process, direct energy and indirect energy emissions.  

(Colton, 2011).  
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The integration of all three layers (mass flow, energy use and GHG emissions) is present in the Figure 

3-2.  Mass flow coincides with the system depicted in the Figure 3-2, but with a clearly defined 

internal melting outside a semi-production. This is done to separate the energy and emission results 

between the two processes, but also explicitly examine the inner semi-industrial processing streams. 

The integration of energy and emission layers is achieved by the addition of three other processes to a 

global aluminium cycle (coke, pitch and anode production) energy market and energy production. 

These processes are outside the global aluminium cycle, but products from these processes in the 

cycle, they consume energy and produce. Coke, pitch and the production of anode feed electrolysis 

with black arrows and gets used anode butts in return. Figure 3-2 presents not only the aluminium 

mass flows in the system. Energy flows are shown in blue. The energy from the “Energy market” is 

flowing back into the “Energy production” in form of secondary energy. This represents the energy 

required for production and transportation of final energy. Emissions are shown by red arrows 

extending from the upper part of the box. The primary emissions from on-site fuel combustion are 

given in the upper part of each process, except of manufacturing and use processes. The process 

emissions are present at the top of electrolysis and anode production.  (Colton, 2011) 

Figure 3-2 System definition for the integrated global aluminium mass flow 
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3.1.1 Layer One: Mass 

 

System definition for the integrated Russian aluminium mass flow model is very big in size, which 

makes it difficult to present in one figure. That is why, for better visualization, I divided the Russian 

aluminum mass flow model into several parts: primary and secondary production of aluminium, semi-

manufacturing, manufacturing, use and waste management.  

Based on the method described in the chapter 2 I start with calculation of primary aluminium 

production in Russia. Also, it is necessary to add market process for mining, refining and smelting 

processes. That gives a full picture of situation in Russian aluminium mass flow model for primary 

aluminium production. Finally, the primary production chain also requires calculations of the ratios for 

non-aluminium flows from anode production, which manufactures carbon anodes for electrolysis. 

Process mining is divided in two processes, this is due the fact that alumina in Russia is produced from 

both bauxite and nepheline ore. Semi-manufacturing is divided into eight groups of semi-finished 

products. Manufacturing is divided into seven industries. The connection between semi-manufacturing 

and manufacturing is not presented in the paper due possible 56 material flows between them.  

Analyze of “Use” process is based on economical factor that presents aluminium consumption per 

capita versus gross domestic product.  

Recycling of aluminium is divided on two parts: recycling from new aluminium scrap and old 

aluminium scrap. 
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3.1.2 Primary production part 

 

The aluminium flow in the primary production chain is calculated backwards based on the figures for 

the required primary ingot casting production. Figure 3-3 – Material flow of primary production of 1 

unit of aluminium shows ratios, normalized to one unit of aluminium in primary ingot. The chain 

consists of four processes that have input, output and waste flow. For calculations in this part I used 

two coefficients: mass transfer coefficient (blue colour) and metal content transfer coefficient (black). 

Those coefficients present metal concentrations of goods and historical proportionality between flows 

based on industry production data. 

 

Figure 3-3 – Material flow of primary production of 1 unit of aluminium  

The table above presents material flows of metal (number are presented in the flow), the aluminium 

content in the mass (numbers are below the flow, in %), mass flow (numbers are below the percent 

rate) and percent of process losses (percent is above of the process). For production of 1 unit of 

aluminium it is required 5.734 units of bauxite ore and 0.714 of nepheline ore. Table 3-1 – Ratios that 

are used for calculations of aluminium flows in the primary aluminium production presents tree types 

of calculation methods that are specified for each flow and flow components. C- presents content of 

aluminium in the goods, T-stands for transfer coefficient, MB- is mass balance. 

Process Flow 

Metal content 

or total mass 

Calculatio

n method 
Notes Source 
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Primary 

ingot 

casting 

Input 

Metal MB 

Mass balance on metal 

content for primary ingot 

casting 
 

Mass C 
Molten aluminium assumed 

to be 100% aluminium  

Output 

Metal 
 

set to 1 
 

Mass C 

It is gradation of types of 

aluminium from A0 to A999 

where aluminium content 

ranges from 99.5% to 

99.999%. Average is 99.7% 

(InfoMine, 

2008) 

Loss Metal T Dross generation (GARC, 2010) 

Electrolysi

s 

Input 

Metal MB 
Mass balance on metal 

content for electrolysis  

Mass T % is given for Australia 
(Council, 

2006) 

Мass C 
Research made by 

UralAluminium 

(T.S. 

LYAPTSEVA

, 2010) 

Loss 

Metal C % is given for India 
(Agrawal 

2004) 

Mass T 
Assumed, that losses are the 

same as in Europe 
(EAA, 2008) 

Refining 

Input 

Metal MB 
Mass balance on metal 

content for refining  

Mass T 
 

(EAA, 2008) 

Mass C 

For bauxite ore is 24.5%, for 

nepheline ore is 26.3%. 

Share of nepheline mining is 

40%. 

(Shepelev I.I., 

2011) 

Loss Metal C 

This information is from 

USSR time. Most of the 

aluminium refineries are not 

changed since. I made an 

assumption that middle 

(Shandra, 

1997) 
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average is the same how it 

was in USSR.  

Mass T 
Loss ratio is derived from 

the red mud generation rate 
(IAI, 2007) 

Bauxite 

mining 

Input 

Metal MB 
Mass balance on metal 

content for bauxite mining  

Mass MB 
Mass balance on total mass 

for bauxite mining  

Loss 

Metal C 

The process of bauxite 

mining has not been 

changed since the USSR 

time in Russia. Therefore, 

the data used is from 1961. 

(Encyclopedia

, 1961) 

Mass T 

bauxite loss to mining 

residue equals to 17% in 

Russia 

(Elia, 2009) 

Nepheline 

mining 

Input 

Metal MB 
Mass balance on metal 

content for nepheline mining  

Mass MB 
Mass balance on total mass 

for nepheline mining  

Loss 

Metal C 
Data is taken from chapter: 

“Nepheline mining”  

Mass T 

Variations of loss of mass 

are 11.8%-14.7% (depend of 

concentration of H2SO4). 

Average is 13.3% 

(Valyaev, 

2012) 

Table 3-1 – Ratios that are used for calculations of aluminium flows in the primary aluminium production 

The primary ingot casting process flows are built around the 1% dross generation rate of primary ingot 

production. The electrolysis process is calculated based on the spent potline generation rate available 

for European countries. I made an assumption, that this rate is the same in Russia. There are no 

available rates for Russia in the free source market. The refining process is calculated using red mud 

generation rate and its aluminium concentration. Bauxite mining and nepheline mining are calculated 

through the mining waste generation rate. Those rates are presented in the Table 2-3 – Material flow of 

bauxite mining (OECD, 2010) 
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In order to complete the primary aluminium production chain it is required to calculate ratios of the 

non-aluminium flows from anode production that produces carbon anodes for electrolysis. World 

average anode requirement per ton of molten aluminium is 0.435 t / t (IAI, 2007). Carbon anode 

consists of 50-70% of coke (average is 60%), 15-30% of pitch (average is 20%) and 10-25% of 

recycled butts (average is 20%) (Karvalio, 2001). The combination of this information gives a result 

presented in figure below. 

 

 

 

 

 

 

 

Figure 3-4 – Material flows of anode, coke, pitch production processes based on electrolysis output of molten 

aluminium 

Primary production of aluminium in Russia in 2008 is presented in the Figure 3-5. Information that is 

already presented and rations that are calculated in the current chapter are used in further calculations. 

Figure 3-5 illustrates markets flow as a result of trade between Russia and other countries.  Inflow 

from remelting and refining processes to primary ingot casting process is included with loss. 
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Figure 3-5 – System definition of the primary and secondary production of aluminium in Russia in 2009 

In the figure above, grey arrows represent material flows, green arrows – aluminium trade, black 

arrows – non-aluminium flows. Blue boxes represent transformation processes, white boxes – market 

of aluminium between Russia and other countries, for ingot and dross – market processes, orange 

boxes – recycling processes, light violet – loss of aluminium, xn – value of material flow. Each process 

is mass balanced. 

Primary production of aluminium starts from mining of bauxite and nepheline ore (flows x1, x2) from 

lithosphere. Processes bauxite mining and nepheline mining have losses in the form of mining residue 

(flows x3, x4). Flows x11 and x12 show amount of material that goes to refining process after market of 

bauxite and nepheline (flows x7, x8, x9, x10) with other countries. Loss from refining process is red mud 

for bauxite mining and soda, potash, silica for nepheline mining(x14). Alumina (flow13) together with 

alumina market (flows x15, x16) comes to electrolysis process.  The production of carbon anodes (flow 

x37) from coke (flow x38), pitch (flow x39) and recycled anode butts (flow x36) is the most important 

non-aluminium raw material production process in the aluminium cycle. Aluminium (flow x24) 

together with aluminium market (flows x22, x23) goes to ingot market, which adds recycled aluminium 

from remelting (flow x25), and refining processes (flow26) that have dross (flow x35) and salt slag (flow 

x32) loss . Electrolysis and primary ingot casting processes have losses in form of spent potline (flow 

x19) and dross (flow x21) respectively.  Inflows for remelting (flow x33) and refining (flow x31) 

processes are flows from new scrap and old scrap, that is located outside of this system definition. 

Finally, total amount of aluminium (flow27) is sum of primary production of aluminium (flow x24) and 

inflows from remelting and refining processes (flows x25, x26). 
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Nº Name of flow Value, Mt Comments Source 

X1 Bauxite mining 2206  (METALResearch, 2010) 

X2 Nepheline mining 1099  (Federation, 2010) 

X3 
Loss from nepheline mining 

process 
177 

Mass balance of nepheline 

mining process 
 

X4 
Loss from bauxite mining 

process 
321 

Mass balance of bauxite 

mining process 
 

X5 Bauxite 1885 
Mass balance of bauxite 

market process 
 

X6 Nepheline 922 Equal to “Total nepheline”  

X7 Export of nepheline 

 

Numbers are unknown. I 

assumed, that Russia has no 

export/import market for 

nepheline ore. “Alumina 

production from the nepheline 

ore exists only in Russia and 

Iran, and both countries are 

self-supporting.” 

(Zheng Luo, 2007) 

X8 Import of nepheline 

X9 Export of bauxite 1  (METALResearch, 2010) 

X10 Import of bauxite 14  (METALResearch, 2010) 

X11 Total nepheline 922 Value present in Table  

X12 Total bauxite 1872 Value present in Table  

X13 Alumina 1816  (Federation, 2010) 

x14 Losses from mining 978 
Mass balance of refining 

process 
 

X15 Export of alumina 2299  (Federation, 2010) 

X16 Import of alumina 4608 
Value presented in the Table 

3-3 
 

X17 Total alumina 4125 
Mass balance of alumina 

market process 
 

X18 Molten aluminium 4040 

Calculated with the help of 

mass transfer coefficient from 

the Table 3-3 

 

X19 Spent potline 85 
Mass balance of electrolysis 

process 
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X20 Aluminium ingot 4000  (METALResearch, 2010) 

X21 Dross 40 
Mass balance of primary 

ingot casting process 
 

X22 Export of ingot 3312 
Unwrought,  unalloyed 

aluminium 
(METALResearch, 2010) 

X23 Import of ingot 44 
Unwrought,  unalloyed 

aluminium 
(METALResearch, 2010) 

X24 Total ingot 732 
Mass balance of aluminium 

market process 
 

X25 
Recycled aluminium from 

remelting process 
320 

Mass balance of remelting 

process 
 

X26 
Recycled aluminium from 

refining process 
297 

Mass balance of refining 

process 
 

X27 Total aluminium 1349 Mass balance of ingot market  

X31 
Input from scrap to refining  

process 
255 

 
(Grishayev S.I., 2009) 

X32 Salt slag 33 

Assumption from the source 

materials is that loss of 

material from alumina 

refining is 10% 

(Grishayev S.I., 2009) 

X33 
Input from scrap to remelting 

process 
355 

 
(Grishayev S.I., 2009) 

X34 Dross for refining 75 Mass balance of dross market  

X35 Loss from remelting 35 

Assumption from the source 

materials is that loss from 

remelting   is 10%  

(Grishayev S.I., 2009) 

X36 Recycled butts 351 

Calculated from the Figure 

3-4 – Material flows of 

anode, coke, pitch production 

processes based on 

electrolysis output of molten 

aluminium 

 

X37 Carbon anode 1756 
Calculated from the Figure 

3-4 
 

X38 Coke 1054 Calculated from the Figure  
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3-4 

X39 Pitch 351 
Calculated from the Figure 

3-4 
 

Table 3-2Flow values integrated model 

 

Table 3-3 – Dynamic of production and import of alumina in 2001-2009 in Russia, Mt (Federation, 2010) 

The table above presents amount of bauxite and nepheline ore, which were used for production of 

alumina. Numbers are represented by aluminium content in ore. There is some decrease in numbers 

for 2009 due economic creases in the Western word and lower demand for products. 

Visualization of primary and secondary production of aluminium in Russia with values of the material 

flows is presented in the figure below. 
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Figure 3-6 - System definition for the primary and secondary production of aluminium in Russia in 2009.Values are in 

thousand tons. 

Even in Russia bauxites are the main source for the alumina production. Russia does not have big 

bauxite reserves comparing to major bauxite producing countries. Bauxite reserves in Russia are 

concentrated in over 50 smaller deposits. Russian bauxite production is only 2.2 million tons. The 

share of crude bauxite in alumina production is closed to 67 % and the rest is nepheline ore. It is found 

15 deposits of nepheline ores in Russia and some of them are huge. External market of nepheline ore 

is small. Alumina production from the nepheline ore exists only in Russia and Iran, and both countries 

are self-supporting (Zheng Luo, 2007).  

There is an acute shortage of primary aluminium, due to the lack of large deposits of high quality 

bauxite. Therefore, raw materials for aluminium production should not be considered without the 

imports of alumina. RUSAL has acquired in recent years a number of assets abroad - alumina 

refineries in Guinea, Jamaica, Guyana, Ireland, Italy, and Australia. Company owns Nikolaev Alumina 

Plant in Ukraine. 

Alumina market has a tendency for frequent export and import activities. This happens due lack of raw 

material and better prices for some big buying countries. Russia has a second place in the world (after 

China) in production of aluminium, and first place in exports of aluminium-. 

The rate of primary / secondary aluminium was up to 5,5:1 (in 2000). In 2009, due increasing volume 

of primary aluminium and deceasing demand, that rate was 7:1.  



   

 

 

 Page 69 av 93 

 

 

3.1.3 Semi-manufacturing part 

 

Flows of eight different semi-manufacturing processes are connected to the seven manufacturing 

industries in my theses. 

Semi-manufacturing processes Manufacturing industries 

Shape casting 

Flat-rolled products 

Aluminium cans 

Powder and paste  

Foil rolling  

Extrusions  

Wire and cables 

Other products  

Transportation 

Construction  

Electrical  

Packaging  

Engineering  

Consumer goods  

Other 

Table 3-4 – Semi-manufacturing and manufacturing industries that connect in the model 

First, I consider the semi-manufacturing from aluminium with addition of market of semi-products. 
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Table 3-5 – Semi-finished aluminium products.  

White boxes represent market, red boxes – semi-finished product, grey arrows- flows of material, 

green arrows –trade of semi-finished products. 

Export of semi-finished products in Russia is 115 thousand tons in 2009 (RUSAL, 2010). Please, see 

Appendix A for more information. 

Aluminium and aluminium products stands for half of all export of non-ferrous metals. Most of this 

export is pure aluminium, but export of aluminium alloys have been increasing for the last years. The 

export share of semi-finished products and aluminium-contained products is insignificant (RUSAL, 

2009).  
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3.1.4 Manufacturing part 

 

The most significant areas of aluminium consumption are: transportation, construction, electrical 

engineering, packaging, engineering and consumer goods. Share of manufacturing industries present 

in Appendix A. Flows from aluminium semi-finished products to manufacturing processes have two 

output flows: scrap and final products. I assume that scrap which is not collected back into recycling is 

2%  (GARC, 2010). This number is for the world, but also representative for Russia. It is not a subject 

for my paper to specify where this type of scrap goes 

Unified Interdepartmental statistical Information System performs import and export of manufacturing 

industries in Russia (System, 2012). 

 

Table 3-6 – Material flows of manufacturing process.  

Green boxes represent industries, white boxes represent market, red boxes – semi-finished product, 

grey arrows - flows of material, green arrows –trade of semi-finished products and light violet – loss 

from semi-manufacturing process. 
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Simple assumption here is that loss from manufacturing process to market of new scrap and scrap loss  

equals to 20% (273.7 Mt) (G.T. Armisheva, 2010) 

 

3.1.5 Use part 

 

Analyze here is based on the economical rate that represents aluminium consumption per capita versus 

gross domestic product (GDP) per capita in present year and 2050.  Formula that presents dependence 

between those two factors is used. Please, see chapter 2.1.2.  

GDP refers to the market value of all final goods and services produced within a country in a given 

period. (Guardian, 2009) Economic growth is enabled by increased productivity, which minimizes 

inputs (labour, capital, material, energy, etc.) for a given amount of output.  Lowered cost makes 

products and services more attractive and lead to increased demand. Economic growth is also the 

result of population growth and the introduction of new products and services (Kendrick, 1979).  

My assumption here is that increase in economy leads to increasing in aluminium consumption per 

capita. Table 8-1 – Economics’ grow of gross domestic product by countries from 2010 to 2050  

(Appendix B) represents’ growth of gross domestic product from 2010 to 2050.  This growth will lead 

to increase in consumption of aluminium per capita. Formula is used for calculation of aluminium 

consumption per capita that presented in Appendix B. Parameters are presented in the Table 8-2.  

Material flow of aluminium equals 1686 Mt in 2009. This number has possible inconsistency due to 

the fact that the average consumption of aluminium is for Europe. 

 

3.1.6 Recycling part 
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Recycling of aluminium is divided into two parts: recycling from new aluminium scrap and old 

aluminium scrap. There are two inflows of new aluminium scrap. First one is coming from 

manufacturing industries. New scrap market split this material flow into two: where 57% goes to 

refining process, 43% goes to remelting process. Second is received from semi-manufacturing process, 

where 48% goes to refining process, 52% goes to remelting process after new scrap market process. 

Old scrap market receives aluminium waste from use process through waste management process. In 

the same time, waste management is divided into disposal, collection and sorting processes. 

 

Table 3-7 – System definition for recycling of aluminium in Russia.  

Values of mentioned above material flows are presented in the table below. 

Nº Name of flow Value, Mt Comments Source 

X1 
Loss from 

manufacturing process 
68.4 Assumed 5%.  

See chapter 

“Manufacturing 

part”  

X2 
New scrap from 

manufacturing process 
205.3 

Assumed 15%. 57% goes to refining 

process, 43% goes to remelting 

process 

See chapter 

“Manufacturing 

part”, Appendix C 

X3 
Output from 

manufacturing process 
1139.8 

Mass balance of manufacturing 

process 
 

X4 Losses of old scrap to 183.3  (Finnimore, 2006) 
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disposal  

X5 Old scrap for collection 550 Mass balance of collection process  

X6 
Losses of old scrap to 

landfill 
183.3 Mass balance of disposal process  

X7 
Collected aluminium 

scrap 
550  

(EnergyResearch, 

2005) 

X8 
Loss of old aluminium 

scrap from sorting 
173.2 Mass balance of sorting process  

X9 
Old aluminium scrap for 

recycling 
376.8 Mass balance of old scrap market  

X10 
Old aluminium scrap for 

refining process 
124.6 Mass balance of refining process  

X11 
Old aluminium scrap for 

remelting process 
252.2 Mass balance of remelting process  

X12 
New aluminium scrap to 

refining process 
130.4 

117 Mt from manufacturing process 

and 13.4 Mt from semi-

manufacturing process 

Appendix C 

X13 
New aluminium scrap to 

remelting process 
102.8 

88.3 Mt from manufacturing process 

and 14.5 Mt from semi-

manufacturing process 

Appendix C 

x14 
Recycled aluminium 

from refining process 
255  Table 3-2 

X15 
Recycled aluminium 

from remelting process 
355  Table 3-2 

X16 
New scrap from semi-

manufacturing process 
27.9 

48% goes to refining process, 52% 

goes to remelting process 

See chapter 2.2.3, 

and Appendix C 

X17 Inflow to manufacturing 1413.5  Table 3-6 

ΔS 
Change of stock of 

products 
406.5 Mass balance of process of use  

Table 3-8 – Description of material flows with values 

Market of new scrap has two outputs: material flows to refining and remelting processes. Calculation 

of values for these material flows is based on a percentage rate of new scrap of manufacturing 

industries and semi-manufacturing categories. 
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Figure 3-7 – Percent rate of new scrap for refining and remelting processes from manufacturing industries (Appendix C)  

Similar method is used for calculation of output from new scrap market process for semi-

manufacturing categories. Table below represents rate in percent, new scrap for refining and remelting 

processes. 

 

Figure 3-8 – Percent rate of old scrap for refining and remelting processes (Appendix C)  

Flat-rolled products, aluminium cans and foil rollings are recycled internally. Assumption here is, that 

other products have percent rate 50/50.  
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Flows X12, X13 are calculated by multiplying output from manufacturing industries and semi-

manufacturing categories on percent rate that is present in the table above. 

 

3.2 LAYER 2: ENERGY  

 

IPCC report recommends cutting emissions by 50-80% within year 2050. Energy is important factor 

for my analyze. Russian industry consumes around 125 Mtoe of energy per year where 5% goes to 

primary aluminium production (Agency I. E., 2011). 

 

3.2.1 Primary Energy 

 

Primary energy coefficient is taken from different literature sources (Appendix D). Due the small 

amount of energy consumption I did not took into account powder and paste, foil rolling, wire and 

cables, and semi-finished products. Those products are not playing big role in aluminium cycle of 

aluminium. Assumed, that recycled aluminium ingot is refinery of aluminium scrap. Collection and 

sorting processes were integrated in one process. Coke production, pitch production and collection 

together with sorting processes have only value of total output without share of energy. Transfer 

coefficient between MJ and kWh is 1 MJ=0.28 kWh.  
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Figure 3-9 – Primary energy intensity of processes, units: MJ/t 

Total amount of energy consumption of aluminium cycle in Russia is calculated by using ep = Ep * F                                 

(Formula 2-10), where primary energy use (MJ) equals to primary energy intensity (MJ/t) multiplied 

with material flow (t). 

  

3.2.2 Secondary energy 

 

Secondary energy is energy that is used for production of energy that requires for process energy and 

for transport of this energy. Different types of energy are compared in the table below. 
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Table 3-9 – Carbon dioxide emissions versus MJ of energy (Appendix D) 

Production of energy from the coal has the biggest amount of CO2 emission. Energy from the natural 

gas is 2.1 times lower, than energy from the coal.  The same number for energy from oil is 1.6 time 

less. Hydropower stations produce 0.6% of CO2 emission compare to energy production from coal. 

Nuclear energy is a little higher than hydro. 

 

3.3 LAYER 3: EMISSION 

 

Emissions in the aluminium chain are divided into process, electricity, fossil fuel, transport, ancillary 

and PFC eq. emissions. Numbers for those emissions are presented in Appendix E. 
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Table 3-10 – CO2-eq emissions by process of aluminium cycle. Values are shown in kg of CO2 

equivalents per 1000 kg of process output. 

 

Result of analyze is quantified greenhouse gas emissions that is generated by different processes, from 

electricity or fossil fuel consumption, by transportation, ancillaries or perfluorocarbons. 

 

Process emissions (kg CO2-eq) are calculated by multiplying process emission intensity (kg CO2-eq/t) 

on material flow (t). ip = Ip * ep                                                        (Formula 2-12) is described in the chapter  of 

this paper. 

Secondary emissions (kg CO2-eq) are calculated by multiplying secondary emissions intensity (kg 

CO2-eq/MJ) on primary energy use (MJ). Formula is described in the chapter 2.1.1of this paper. 
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4 SCENARIOS 

 

Calculations in this paper are based on percent rate of total greenhouse gas emissions and total energy 

use. 

Process Share of total GHG emissions, % Share of total energy use, % 

Bauxite mining 0.3 0.3 

Nepheline mining 0.6 1.6 

Alumina refining 6.0 13.1 

Anode production 5.1 7.9 

Coke production 3.4 2.9 

Pitch production 6.4 0.6 

Aluminium smelting 59.1 40.2 

Primary ingot casting 2.2 3.0 

Remelting 0.8 1.7 

Recycled aluminium ingot 1.9 6.2 

Aluminium extrusion 4.5 6.3 

Aluminium rolling 4.5 5.8 

Aluminium shape casting 3.8 7.5 

Aluminium cans 0.7 2.6 

Collection and sorting 0.7 0.3 

 
Table 4-1 - % rate of total greenhouse gas emissions and total energy consumption 

The highest share rate of gas emission and total energy consumption has aluminium smelting, anode 

production (with addition of coke and pitch productions) and alumina refining. Those 3 processes are 

taken into account in order to meet the level that IPCC has set to industries for emissions reduction 

within year 2050. 

The following scenarios are relevant: 

1. GHG emissions for inert anodes within “Anode, coke and pith production” are reduced by 41% (See 

chapter “Electrolysis” 2.2.2.5). That will result in total GHG emissions for aluminium production in 

Russia by 6.1%. 
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2. Wetted cathode technology is responsible for nearly 21% of GHG emissions from electrolysis 

process (See chapter “Electrolysis” 2.2.2.5). That will result in total GHG emissions for aluminium 

production in Russia by 12.4%. 

3. Inert anode and wetted cathode technology in combination will stand for 22% reduction of total 

energy consumption within aluminium production in Russia (See chapter “Electrolysis” 2.2.2.5). 

4. Production change to the best available smelting technology (PFPB) will result to 3.8% reduction of 

total GHG emissions for aluminium production in Russia (See chapter “Electrolysis”). 

5. Electrolysis process has minimum energy consumption (7.32 kWh/kg (26.1 MJ/kg)). Total energy 

consumption in aluminium production in Russia is decreased by 16.4%. 

6.  It is possible to reduce emissions by substitution of energy sources. Most environmentally friendly 

energy is hydro and nuclear (Appendix D). If we substitute 10% energy not clear energy to nuclear 

power, then the total emissions within aluminium production process in Russia will decrease by 23.9 

gCO2/MJ. 
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5 CONCLUSION 

If all scenarios are implemented then the decrease of total GHG emissions in aluminium production in 

Russia will equal to 22.3% and decrease in the total energy consumption will equal to 38,4%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

 

 Page 83 av 93 

 

6 WORK CITED 

AAS, A. A. (2000). LIFE CYCLE INVENTORY OF THE WORLDWIDE ALUMINIUM INDUSTRY 

WITH REGARD TO ENERGY CONSUMPTION AND EMISSIONS OF GREENHOUSE 

GASES.  

Agency, C. I. (2012). The World Factbook. https://www.cia.gov/library/publications/the-world-

factbook/geos/rs.html. 

Agency, I. E. (2011). WORLD ENERGY OUTLOOK 2011.  

Alfa-Metal. (2011). Reference materials, GOST. Moscow. 

Americas, P. (2010). Life Cycle Impact Assessment of Aluminum Beverage Cans. Boston. 

Americas, P. (2010). Life Cycle Impact Assessment of Aluminum Beverage Cans. Boston: 

http://www.container-recycling.org/assets/pdfs/aluminum/LCA-2010-AluminumAssoc.pdf. 

ArrowEcology. (2010). Sorting and Recycling of Solid Waste.  

Barker, D. S. (1983). Igneous Rocks. Igneous Rocks. 

Beerten, J. L. (2009). Greenhouse gas emissions in the nuclear life cycle: A balanced appraisal. 

Energy Policy. 

Bertram, U. M. (2005). Melting standardized aluminum scrap: A mass balance model for Europe. 

Journal of the Minerals, Metals and Materials Society. 

Board, E. (2006). Mountain Encyclopedia. "Soviet Encyclopedia". 

BOURDIER. (2000). La Jaune et La Rouge de Mai.  

Bray, E. (2010b). Bauxite and alumina: in Metals and Minerals. U.S. Geological Survey Minerals . 

Cambridge, U. o. (2010). Steel and Aluminium Intensive Products: Their Metallic Components and 

Design Requirements.  

Colton. (2011). Rollin out aluminium to meet IPCCC 2050. Norwegian University of Science and 

Technology. 

Commission, E. (2001). Reference Document on Best Available Techniques in the Non-Ferrous 

Metals Industries. BAT Reference Document (BREF). . Seville, Spain: European IPPC Bureau. 

Cooper, D. (2010). Universal Steel and Aluminium Intensive Products: Their Metallic. University of 

Cambridge. 

Council, A. (2006). Sustainability report.  

Dahlström, K., & Ekins, P. (2004). Steel and Aluminium in the UK: Material Flows and their 

Economic Dimensions. London: Centre for Environmental Strategy, University of Surrey. 

EAA. (2008). Environmental Profile Report for the European Aluminium Industry: Life Cycle 

Inventory data for aluminium production and transformation processes in Europe. Brussels: 

European Aluminium Association. 



   

 

 

 Page 84 av 93 

 

EAA. (2008). Environmental Profile Report for the European Aluminium Industry: Life Cycle 

Inventory data for aluminium production and transformation processes in Europe. Brussels: 

European Aluminium Association. 

EAA, E. a. (2008). Life Cycle Inventory data for aluminium production and transformation processes 

in Europe . Environmental Profile Report for the European Aluminium Industry. 

Elia. (2009). Production and technology of aluminium. AllBest. 

Encyclopedia, S. (1961). Short Chemical Encyclopedia.  

EnergyResearch. (2005). RECYCLING of SOLID WASTE. moscow. 

Federation, M. o. (2010). SITUATION AND USE OF MINERAL RESOURCES in THE RUSSIAN 

FEDERATION. http://www.mineral.ru/Facts/russia/147/402/08_al.pdf: p. 141-150. 

Finmarket, I. A. (2009). Production of aluminium in Russia.  

Finnimore, P. (2006). RUSSIAN ALUMINIUM IN THE 21 CENTURY.  

G.T. Armisheva, V. K. (2010). WASTE MANAGEMENT. PRODUCTION AND CONSUMPTION. 

Scientific Journal of Research and Innovation. 

GARC. (2010). Global Aluminium Recycling Model. London: Global Aluminium Recycling 

Committee, International Aluminium Institute. 

Goldman. (2007). Study of BRIC and N11 nations.  

Grishayev S.I., P. I. (2009). The ratio of primary and secondary raw material in non-ferrous metal 

production in Russia . Mineral Resources of Russia. 

Harris, C., McLachlan, R. (., & Clark, C. (1998). Micro reform – impacts on firms: aluminium case 

study. Melbourne: Industry Commission. 

Harris, D. C. (1998). Nonlinear Least-Squares Curve Fitting with Microsoft Excel. Journal of 

Chemical Education. 

I.D., C. (1993). Circle fitting by linear and nonlinear least squares. New York: Journal of 

Optimization Theory and Applications Volume 76, Issue 2. 

IAI, I. A. (2007). Life Cycle Assessment of Aluminium: Inventory Data for the Primary Aluminium 

Industry. London. 

IAI, I. A. (2011). Story of Aluminium.  

Industry, U. A. (2010). Aluminium Powder and Paste.  

InfoMine. (2008). Aluminium Alloy Sections Market Research in Russia. 

http://www.infomine.ru/otchets/en_Alsec.pdf. 

Inline-P. (2011). Packaging from aluminium.  

Karnachev, Z. Z. (2011). Ecological and hygienic assessment of of the environment. Vestnik MGTU. 



   

 

 

 Page 85 av 93 

 

Kendrick, J. W. (1979). Expanding Imputed Values in the National Income and Product Accounts. The 

Review of Income and Wealth . 

Kristina Dahlström, P. E. (March 2004). IRON, STEEL AND ALUMINIUM IN THE UK: MATERIAL 

FLOWS AND THEIR ECONOMIC DIMENSIONS. London. 

Kupikaeto. (2009). The first installation of continuous casting. 

http://www.kupikaeto.com/index.php?p=48. 

Lynette Cheah, J. H. (2009). Aluminum Stock and Flows in U.S. Passenger Vehicles and Implications 

for Energy Use. Journal of Industrial Ecology. 

Martchek, K. J. (2006). Sustainable Management of Natural Resources: Modelling More. International 

Journal of LCA. 

Matthews, E. e. (2000). The Weight of Nations. 

METALResearch. (2010). Non-Ferrous Metals Market: Aluminium.  

MFRM, M. F. (2007). Aluminum - Metal at all times. Mihailovsk. 

N.V. Koronovski, A. Y. (2004). Tthe basis of geology. Moscow: Moscow State University. 

OECD. (2010). Materials Case Study 2: Aluminium. Mechelen, Belgium: 

http://www.oecd.org/dataoecd/52/42/46194971.pdf. 

Oleinikov B.V.. Okrugin A.V., N. N. (1984). Aluminium - a new mineral-class native elements. OTES 

ALL-UNION Mineralogical Society. 

People, F. a. (2012). Population Growth. http://www.os-connect.com/pop/p2ai.htm. 

Prof. Dr. Daniel B. Mülle, G. L. (Spring 2011). Lecture B11: Activity T&K – aluminium. Trondheim. 

Quinkertz, R. L. (2001). A scenario to optimise the energy demand of aluminium production 

depending on the recycling quota. Resources,Conservation and Recycling. 

Rechberger, P. H. (2004). Practical Handbook of MATERIAL FLOW ANALYSIS. London, New York, 

Washington, D.C: A CRC Press Company. 

RUSAL. (2010). Prospects for growth in consumption of primary aluminum in Russia and CIS 

countries in 2010 - 2011 years. http://rusal.ru/upload/uf/7ee/26.05.2010_Belsky_MS.pdf. 

RUSSAL. (2011). Key markets. Moscow. 

Services, R. I. (May 2009). The Economics of Aluminium. 9th edition.  

Shandra, S. (1997). Waste MAterials Used in Concrete Manufacturing.  

Shepelev I.I., D. P. (2011). Alumina production.  

Smirnov, V. (1996). Alumina Production in Russia Part I: Historical Background. Moscow. 

Smith, P. (2008). Economic Processing of High Silica Bauxites – Existing and Potential Processes. 

Parker Centre, CSIRO Light Metals Flagship. 



   

 

 

 Page 86 av 93 

 

Statistics, G. o. (1997). Studies in Methods, Series F, No. 67. New York. 

System, U. I. (2012). Bureau of Statistics. http://www.fedstat.ru/indicators/start.do. 

T.S. LYAPTSEVA, V. A. (2010). STUDYING PROCESSES OF HIGH-TEMPERATURE 

DIGESTION OF SUBR AND TIMAN BAUXITES. RUSAL Technical & Economic. 

ToolBox, T. e. (n.d.). http://www.engineeringtoolbox.com/co2-emission-fuels-d_1085.html. 

U.S., U. (2007). Energy Requirements for Aluminum Production: Historical Perspective, Theoretical 

Limits and Current Practices. Washington: U.S. Department of. 

USDOE. (2007). U.S. Energy Requirements for Aluminum Production, Historical Perspective, 

Theoretical Limits and Current Practices.  

USGS. (2011). Bauxite and Alumina; Statistics and Information.  

Valyaev. (2012). CHEMICAL-TECHNOLOGICAL BACKGROUND AND DEVELOPMENT OF 

TECHNOLOGIES FOR PROCESSING Sulfuric acid nepheline RECEPTION coagulants, 

potassium alum and silica PRODUCTS.  

Velyaev. (2012). CHEMICAL-TECHNOLOGICAL BACKGROUND AND DEVELOPMENT OF 

TECHNOLOGIES Sulfuric acid nepheline processing.  

Zheng Luo, A. S. (2007). Prospective Study of the World Aluminium Industry .  

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

 

 Page 87 av 93 

 

7 APPENDIX A 

 

 

Table 7-1- Share of semi-finished products from aluminium (RUSAL, 2010) (Kupikaeto, 2009) 
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Table 7-2– Import of semi-products by categories (RUSAL, 2010) 

 

Table 7-3 – Share of manufacturing industries in Russia (Ministry, 2011). 

 

8 APPENDIX B 

 

 

Table 8-1 – Economics’ grow of gross domestic product by countries from 2010 to 2050 (Goldman, 2007) 
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where 

Al/c – aluminium consumption per capita; 

GDP/c- gross domestic product for a present year per capita;  

Parameter Value Unit Source 

GDP/c in 2009 15300 $  (Agency, 2012) 

GDP/c in 2050 72569 $ (Goldman, 2007) 

Population in 2009 139,390 Thousand people (People, 2012) 

Population in 2050 118,233 Thousand people (People, 2012) 

Aluminium 

consumption in 2009 
12.1 Kg per capita Calculated from Formula 

Aluminium 

consumption per 

capita in 2050 

29.4 Kg per capita Calculated from Formula 

Amount of aluminium 

in 2009 
1686 Mt 

Calculated by multiplying aluminium 

consumption by population 

Amount of aluminium 

in 2050 
3476 Mt 

Calculated by multiplying aluminium 

consumption by population 

Table 8-2 – Parameters that used for calculation of aluminium amount in 2009 and 2050. 
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9 APPENDIX C 

 

 

Table 9-1 - Scrap recycling model data for remelting and refining destination (Bertram, 2005) 

Manufacturing industries Refine, kt/y Remelt, kt/y % to refine % to remelt 

Transportation 196 280 41.2 58.8 

Construction 86 134 39.1 60.9 

Electrical 45 0 100.0 0.0 

Packaging 0 156 0.0 100.0 

Engineering 80 139 36.5 63.5 

Consumer goods 35 40 46.7 53.3 

Other 35 40 46.7 53.3 

Table 9-2 – Data of percent rate of old scrap for remelting and refining processes 
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Semi-manufacturing categories Refine, kt/y Remelt, kt/y % to refine % to remelt 

Shape casting 195 0 100 0 

Flat-rolled products 0 0 0 0 

Aluminium cans 0 0 0 0 

Powder and paste  77 0 100 0 

Foil rolling  0 0 0 0 

Extrusions  0 489 0 100 

Wire and cables 0 39 0 100 

Other products  50 50 50 50 

Table 9-3 – Data of percent rate of new scrap for remelting and refining processes. Zeros for refining and remelting 

processes mean internal recycling of new scrap.  

10 APPENDIX D 

 

Coal Petroleum Natural Gas Nuclear Other 

Bauxite mining 2 478 0 0 0 

Nepheline mining 1368 1212 0 0 0 

Alumina refining 4,342 6,626 9,279 496 0 

Anode production 779 6489 5079 194 0 

Coke production 0 0 0 0 4568 

Pitch production 0 0 0 0 980 

Aluminium smelting 41,515 1,543 13,618 7,143 0 

Primary ingot casting 549 1,620 2,552 95 0 

Remelting 378 294 1,799 169 18 

Recycled aluminium ingot 937 1,319 7,151 419 44 

Aluminium extrusion 2,977 1,464 4,219 1,139 118 

Aluminium rolling 2,549 1,654 3,928 975 101 

Aluminium shape casting 59 669 11,147 26 1 

Aluminium cans 0 0 3,077 0 1025 

Collection and sorting 0 0 0 0 450 

Primary aluminium ingot 50,807 21,268 36,335 8,282 0 

Table 10-1 – Values of energy use for aluminium processes.  
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Values are in MJ. Values for bauxite mining, alumina refining, anode production, coke production, 

pitch production, aluminium smelting, primary ingot casting, remelting, recycled aluminium ingot, 

aluminium extrusion, aluminium rolling and aluminium shape casting is taken from (GARC, 2010); 

nepheline mining from (Dvoinikov, 2011); aluminium cans from (Americas, 2010); collection and 

sorting from (Quinkertz, 2001) 

 

  grCO2/MJ 

Coal 252.1 

Natural gas 120.4 

Hydroelectric 1.7 

Oil 156.9 

Petrolium 67.2 

Nuclear 18.5 

Table 10-2 –Carbon dioxide emissions per MJ of energy from different types of fuel (BOURDIER, 2000), (ToolBox), 

(Beerten, 2009) 

 

11 APPENDIX E 

 

  Process Electricity Fossil Fuel Transport Ancillary PFC Total 

Bauxite mining 0 0 16 32 0 0 48 

Nepheline mining 0 0 32 64 0 0 96 

Alumina refining 0 58 789 61 84 0 991 

Anode production 388 63 135 8 255 0 849 

Coke production 0 0 0 0 0 0 560 

Pitch production 0 0 0 0 0 0 1057 

Aluminium smelting 1,626 5,801 133 4 0 2,226 9,789 

Primary ingot casting 0 77 155 136 0 0 368 

Remelting 0 57 81 2 0 0 140 

Recycled aluminium 

ingot 0 70 222 28 0 0 320 
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Aluminium extrusion 0 471 128 141 0 0 740 

Aluminium rolling 0 403 114 235 0 0 752 

Aluminium shape 

casting 0 3 461 157 3 0 624 

Aluminium cans 0 0 0 0 0 0 122 

Collection and 

sorting 0 0 0 0 0 0 113 

Table 11-1 – Values of GHG emissions for processes of aluminium cycle. 

 Values are shown in kg of CO2 equivalents per 1000 kg of process output.  

Values for bauxite mining, alumina refining, anode production, aluminium smelting, primary ingot 

casting, remelting, recycled aluminium ingot, aluminium extrusion, aluminium rolling and aluminium 

shape casting is taken from (GARC, 2010); nepheline mining from (Karnachev, 2011); coke 

production from (Inventories, 2006); pitch production from (IAI, 2003); aluminium cans from 

(Americas, 2010); collection and sorting from (ArrowEcology, 2010) 

 


