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Figure 4.1.4: Quantitative sensitivity screening using the EE method and the
RF metamodel (horizontal axis) vs. the ground truth Sobol indices (vertical
axis). The comparison is performed with an increasing number of model eval-
uations.

Parameter U ok o

Flow rate —0.0018 0.028 0.037
Arterial pressure  —0.00012 0.024 0.033
Stenosis diameter —0.0012 0.036 0.049

Stenosis length 0.00066 0.022 0.034
Dynamic viscosity 0.0012 0.022 0.034
Density 0.00065 0.024 0.036

Table 4.1.3: Elementary effects of input parameters to the single stenosis
model (Huo model).
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The elementary effects obtained from the EE screening can be seen in Table
4.1.3. Wee see that the values of the elementary effects y* are in excellent
agreement with the parameter ranking obtained from the variance-based
sensitivity analysis. Moreover, we see that the stenosis diameter d; show the
strongest elementary effect y* and the strongest non-linear effect o compared to

the other input parameters.

4.2 EFFECT OF UNCERTAINTY IN PHYSIOLOGICAL PARAMETERS ON
CTrrr

For this experimental case, we use the CTrpr model and the published coronary
geometry by Kassab et al. [29] introduced in Chapter 2. To investigate the effect
of stenosed arteries, we induce a clinically relevant 75% area stenosis' in the
proximal LAD using the stenosis model by Huo et al. [44] as described in
Section 2.1.3.3. Using a combination of the CTrr model and the defined
coronary network, we perform several analyses to investigate the influence of
uncertainty in physiological parameters on CTpgg.

The uncertainty in physiological model parameters is based on published
literature discussed in Section 2.2.3. For this analysis, the physiological
parameters are assumed to be independently distributed random variables. For
comparison with experiments with geometric uncertainty, we assume an
independently normal-distributed noise with a standard deviation of 15% as
discussed in Section 2.1.4. A full description of the uncertain random variables

can be seen in Figure 4.2.1.

!Area stenosis: Fractional reduction in cross-sectional area of an artery due to the presence of
a stenosis.
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Variable Unit Distribution

Cardiac output L/min  U(4,8)

Mean arterial pressure mmHg N (93.0,7.6)
Myocardial Flow Fraction 1(0.04,0.05)
Murray’s coefficient U(2.4,3.0)
TCRI 1(0.15,0.30)
Hematocrit N(0.45,0.08)
Blood density kg/m®  U(1043,1057)

Table 4.2.1: Random variables for the uncertain physiological parameters in
the CTrrr model. Here, N(y, o) denotes a normal distribution with mean y
and standard deviation ¢ and U(Cy, C2) denotes a uniform distribution with a
lower value of C; and an upper value of Cs.

4.2.1 UNCERTAINTY QUANTIFICATION
4.2.1.1 EXPERIMENTAL SETUP

In this experiment, we quantify the effect of uncertainty in physiological input
parameters on CTrg. The uncertainty is quantified using Latin Hypercube MC

sampling with 5000 model evaluations as described in Section 3.2.1.

4.2.1.2 RESULTS

The prediction interval from the uncertainty quantification can be seen in Figure
4.2.1. We see that the input uncertainty from the physiological parameters results
in a wide prediction interval over the stenosis. For example, wee see that the 98%
central prediction interval spans from an FFR of 0.6 to 0.9. As expected, the
simulation shows a lower uncertainty in the healthy vessels segments, RCA, and
CX.

76



LAD

1.0

0.9

0.8

0.7

FFR

0.6

0.5

— — Median
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 —— Mean
1-99 % quantile
10 - 90 % quantile
25 - 75 % quantile

1.0
0.9
0.8
0.7
0.6
0.5

FFR

0.00 0.02 0.04 0.06 0.08 0.10

1.0
0.9
0.8
0.7
0.6
0.5

FFR

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Length (m)

Figure 4.2.1: CTggr quantile plot for the stenosed artery (LAD) and the
healthy arteries (RCA and CX) estimated from MC sampling with 5000 model
evaluations. We evaluated the post-stenotic CTrpg with a mean of 0.765 and
a 95% prediction interval of [0.619, 0.885].
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4.2.2 EFFECT OF UNCERTAINTY IN PHYSIOLOGICAL PARAMETERS AND SEG-

MENTATION UNCERTAINTY ON CTrpr
4.2.2.1 EXPERIMENTAL SETUP

In this experiment, we want to get a crude approximation of the uncertainty in
CTrgr due to physiological parameters vs. lumen segmentation from CTA. The
uncertainty in lumen segmentation is imposed by the introduction of an error
term that is proportional to the measured radii. Hence, the radius of a vessel
segment is given by the observed radius with the addition of a zero-mean

normally distributed noise term ¢ so that

R =ru(l+e¢), (4.1)

where r,, is the observed radius. With no further knowledge about the
uncertainty structure, we model ¢ as an iid random variable for each vessel. As
discussed in Section 2.1.4, we assume that the geometric noise has a standard
deviation of 15%. The uncertainty is quantified using Latin Hypercube MC

sampling with 5000 model evaluations.

4.2.2.2 RESULTS

The comparison of the uncertainty in CTggg due to uncertainty in physiological
parameters and lumen segmentation can be seen in Figure 4.2.2. We observe that
the relevant uncertainties are characterized by wide prediction intervals. More
precise, we see that the uncertainty in the lumen segmentation results in a slightly

wider prediction interval than the uncertainty due to physiological parameters.
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Figure 4.2.2: 95% FFR central prediction interval showing the uncertainty in
CTrrr due to uncertainty in physiological parameters and lumen segmentation.
The experiment is performed using MC sampling with 5000 model evaluations.

4.2.3 SENSITIVITY ANALYSIS
4.2.3.1 EXPERIMENTAL SETUP

In this experiment, we perform a global sensitivity analysis to quantify the
sensitivity of post-stenotic CTrpg with respect to the uncertainty in physiological
input parameters. The experiment is conducted to get a proper quantification of
the most influential physiological parameters for the estimation of CTgpg. The SA
is performed using stochastic collocation PC (Section 3.2.2.4) with a polynomial
order 3. Here, stochastic collocation PC is preferred over the pseudospectral PC
since it gives us the ability to reuse samples from the UQ in Section 4.2.1.
Additionally, SA is performed using the RF metamodel and the GMSA method
described in Section 3.2.3. The purpose of using two approaches for global SA is
to compare the highly scalable RF metamodel to the more acknowledged PC

method on a relevant CTggg problem.

4.2.3.2 RESULTS

The results of the sensitivity analysis are shown in Figure 4.2.3. We see that the

two most important parameters for CTpgg is the cardiac output and the
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microvascular vasodilatory response, represented by TCRI (Section 2.2.3.5).
Interestingly, the flow distribution model and the Murray’s coefficient have
limited effect on the CTgpg uncertainty. The figure also shows that the
uncertainty in arterial pressure P,, myocardial flow fraction (MFF), hematocrit

and blood density is of less relevance to CTggg.
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Figure 4.2.3: Sobol sensitivity indices for CTrrr with respect to uncertainty
in physiological input parameters using PC and the RF metamodel. Here, the
sensitivity indices are estimated using 5000 model evaluations for both the RF
metamodel and the stochastic collocation PC method.

4.2.4 EFFECT OF ADDITIONAL CLINICAL MEASUREMENTS ON CTrpr
4.2.4.1 EXPERIMENTAL SETUP

A promising idea for future clinical applications of CT'ggp is to reduce the
uncertainty in physiological parameters by additional clinical measurements. In
theory, some the physiological parameters could be measured with non-invasive
or minimally-invasive clinical methods. In particular, cardiac output and

myocardial flow fraction can be derived through non-invasive methods e.g.
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partial gas rebreathing, thoracic bioimpedance, photoelectric plethysmography,
and transthoracic Doppler echocardiography [ 123, 124]. Moreover,
measurements of hematocrit and dynamic blood viscosity can be done using
basic clinical procedures [ 125]. Additionally, arterial blood pressure can be
measured in a variety of different ways, most frequently using the standard upper
arm blood pressure monitor [ 126]. Consequently, we are interested in how
additional clinical measurements can be used to reduce the uncertainty in CTggg.
In this experiment, we examine the reduction of uncertainty in CTgggr when
cardiac output, myocardial flow fraction, and hematocrit are seen as measured
parameters with negligible uncertainty. The uncertainty is quantified using Latin

Hypercube MC sampling with 5000 model evaluations.

4.2.4.2 RESULTS

The effect of additional measurements of flow rate, arterial blood pressure and
hematocrit is seen Figure 4.2.4. Here, we see that the additional measurements
give a substantial reduction in CTgpg uncertainty. This is shown by a significant

narrowing of the 95% central prediction interval over the length of the LAD.
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Figure 4.2.4: 95% central prediction interval using population-based physio-
logical parameter (conventional) vs. additional clinical measurements of flow
rate, arterial blood pressure, and hematocrit. The uncertainty is estimated
using MC sampling with 5000 model evaluations.
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4.2.5 THEEFFECT OF FLOW DISTRIBUTION MODEL ON CTrpr
4.2.5.1 EXPERIMENTAL SETUP

An intriguing aspect of our CTrrr model is the calculation of flow distribution
and terminal vessel resistances using Murray’s law. In our previous experiments,
we assumed a global Murray’s coefficient. As we will discuss more thoroughly in
Chapter s, this could be a questionable assumption from a physiological
standpoint. Here, we argue that it is more likely that Murray’s coefficient have a
local nature that depends on the hydrodynamic conditions of the vessel.
Furthermore, we have assumed that the uncertainty in flow distribution is
unaffected by segmentation error. In practical applications of CT'gpg, Murray’s
law will result in a combined uncertainty from segmented vessel radii and local

Murray’s coeflicients. For this system, the terminal resistance of vessel i is given

by
Ri ~ (robs,i(l + 5i)>_Ci 5 (4'2)

where ¢; is a zero-mean normally distributed variable with a standard deviation of
15%. In the absence of further knowledge about the uncertainty structure, we
model ¢; and C; as iid for all terminal vessels of our system. The governing theory
for specification of terminal resistances in the CTrpr model is presented in
Section 2.2.1.2.

In this experiment, we compare the resulting uncertainty in CTgpg of a system
where the uncertainty in terminal resistances is governed by Equation 4.2, to a
system where the uncertainty in terminal resistances is determined by a global
uncertain Murray’s coeflicient. The uncertainty is quantified using Latin

Hypercube MC sampling with 5000 model evaluations.

4.2.5.2 RESULTS

In Figure 4.2.5, we compare a model with global Murray’s coefficient (model 1),

to a model with alocal iid Murray’s coeflicient for each vessel and geometric

82



uncertainty with standard deviation ¢ = 15% (model 2). As expected, we see
that the result from model 2 shows a significantly broader prediction interval and
variance than model 1. Thus, the assumption of local Murray’s coefhicient and
geometric uncertainty is a significant source of uncertainty for flow distribution

in CTgpg models.
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Figure 4.2.5: 95% central prediction interval for the simulation with global
Murray's coefficient (Model 1) and the simulation with a local Murray's co-
efficients for each vessel and geometric uncertainty with standard deviation
o = 15% (model 2). The prediction interval is estimated using MC sampling
with 5000 model evaluations.

4.3 DiscussioN

In this chapter, we have investigated the effect of uncertainty of input parameters
on FER for a single stenosis model and the effect of uncertainty in physiological
parameters on FFR in a CTger model. Our results show that moderate
uncertainty in input parameters can result in a rather dramatic uncertainty on
estimated FFR and could have a significant impact on clinical decisions.

For the single stenosis model, we find that the most influential parameter is the
stenosis diameter. This is in agreement with findings from Eck et al. [74] which
investigated sensitivity to input parameters in a similar stenosis model.

Furthermore, the results are in agreement with Sankaran et al. [20] who studied
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the sensitively of FFR to model parameters in several 3D CFD simulations. For
the CTrpr model, the most influential physiological parameters are found to be
cardiac output and myocardial vasodilatory response, TCRI.

The importance of geometric uncertainty is confirmed by a comparison of the
uncertainty in CTgg due to uncertainty in physiological parameters and lumen
segmentation. Here, we find that the uncertainty in lumen segmentation results
in a slightly higher uncertainty in CTgpg compared to uncertainty in physiological
parameters. However, it must be noted that the quantification of uncertainty
from lumen segmentation is based on rough assumptions that could have
questionable accuracy. For example, the assumption of iid segmentation errors is
likely to be unrealistic for a segmentation process with continuous vessel walls.

Surprisingly, the sensitivity analysis shows that the flow distribution model
and Murray’s coefficient have a very low influence on the estimated FFR.
Nonetheless, we find that the flow distribution model becomes significantly more
important by taking into account the effect of geometric uncertainty and by
treating Murray’s coefficient as a local parameter.

Additionally, we propose methods to decrease the influence of uncertainty in
physiological parameters on CTgpg. Interestingly, we show that the uncertainty in
CTrgr can be significantly reduced by additional clinical measurements. For
example, cardiac output, myocardial flow fraction, and hematocrit could be
measured non-invasivly with current clinical tools. However, methods to reduce
the effect of uncertainty from other critical physiological parameters, e.g. the
microvascular vasodilatory response and flow distribution model, are less clear. A
discussion of possible methods to reduce the uncertainty from these sources is
given in Chapter 7.

Also, our analysis shows promising results for the application of GMSA and
the RF metamodel for Sobol sensitivity analysis. Despite lower performance than
PC, the RF metamodel shows accurate sensitivity indices for the investigated
cases. Furthermore, results from the screening analysis indicate that the RF
metamodel exhibit superior performance when compared to the more

established EE method on the single stenosis case.
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Simplicity is the ultimate sophistication.

Leonardo da Vinci

Uncertainty in CT'rpR Flow Distribution
Model

In this chapter, we perform an in-depth investigation of the flow distribution
model used to estimate CTggg. For this reason, we examine the most commonly
applied model for flow distribution in CT g models, Murray’s law. In particular,
we want to investigate the uncertainty in Murray’s law using empirical data from
Kassab etal. [29] (Section 2.1.4). As described in Section 2.2.1.2, the practical
implementation of the flow distribution model is done by a specification of
relative terminal resistances.

Using backward uncertainty analysis as outlined in Section 3.3, we aim to
establish a model that efficiently captures the uncertainty in Murray’s law. Here,
we investigate the effect of the uncertainty of Murray’s law on CT'gpg.

Furthermore, we study the sensitivity of CTggg to individual terminal resistances.
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The goal of this procedure is to obtain valuable knowledge that can improve

decision-making in practical applications of CTgg.

5.1 BACKGROUND

5.1.1  OPTIMIAL DESIGN PRINCIPLES

The most promising way to specify terminal resistances in CTgpg models is
through optimal design principles. There seems to be a widespread consensus
that branching morphology of biological systems is subject to optimization
principles. This is justified by evolutionary morphogenetic arguments based on
natural selection [21-23]. Thus, optimal design patterns play a crucial role in
determining radii and branching angles of vessels in the vascular system. Research
has shown that blood vessels optimize their size based on flow rate and the wall
shear stress sensed by the endothelial cells [ 127]. Importantly, the optimization

of vessel radii continues even in the presence of atherosclerosis [ 128].

5.1.2 MURRAY’S LAW

As introduced in Section 2.2.1.2, the most prominent and influential branching
model based on optimization principles is Murray’s law [ 12, 17, 24, 25 ], which is
derived from assuming minimization of energy consumption of flow systems in
living organisms [22, 23 ]. The essence of Murray’s law is that the organism
balances the influence of metabolic- and mechanical energy consumption. First,
the metabolic energy consumption of the vascular system increases with
increasing vessel radius. Second, the mechanical energy required to pump blood
through the vascular system is a function of friction and decrease with increasing
radius. According to Murray’s hypothesis, vessel radius in the vascular system is
determined to minimize the energy requirement from these two factors.

Formally, Murray’s law is given by
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2

Figure 5.1.1: Arterial bifurcation with mother vessel (0) and the daughter
vessels (1 and 2).

where ¢ represents the Murray’s coeflicient, g is the flow rate, and r is the vessel
radius. According to Murray’s original work, the metabolic energy consumption
is proportional to r%, while the mechanical energy consumption for laminar flow
is proportional to r*, giving an optimization constant of ¢ = 3. A full derivation
of this argument can be found in Murray’s original paper [129].

Assuming the existence of a universal constant of proportionality, Murray’s law

gives the following power-law relationship for a bifurcation
ro =11 +713, (s-2)

where O represents the mother vessel and 1 and 2 represents daughter vessels as
shown Figure 5.1.1.

The relative outflows obtained from Murray’s law can directly specify terminal
resistances in CT'gpg simulations. The resistance of a terminal vessel i according to
Murray’s law is given by

R, x r " (5.3)

1

5.1.3 EMPIRICAL VARIATION AND UNCERTAINTY IN MURRAY’S LAW

An important question in practical work is how to deal with empirical variation
and uncertainty when establishing terminal resistances from Murray’s law.
Research has shown a significant variation in the reported value of Murray’s

coefhicient c. To date, most researchers have reported a value of Murray’s
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Author Year  Specification c

Murray [22, 23] 1926 Theoretical/empirical 3.0

Miller [130] 1893 Doglung arteries 2.61
Fukasawa and Hitoshi [131] 1969 Human coronary arteries 2.66 — 2.82
Hutchins et al. [132] 1976 Human coronary arteries 2.7 — 3.2
Artsetal. [133] 1979  Canine coronary arteries  2.55
Sherman [134] 1981 Dog arteries ~ 2.9
Changizi and Cherniak [135] 2000 Human coronary arteries 2.60

Wang et al. [136] 2012 Human arteries 2.75
Revellin et al. [138] 2009 Theoretical 242 -3

Table 5.1.1: Theoretical and empirical estimations of Murray's coefficient
from the literature.

coefficient between 2.3 — 3.0 [22, 23, 130-136]. Interestingly, this interval
coincides with the optimal values for laminar and turbulent flow, ¢ = 3 and

¢ = 7/3, respectively [ 137]. An overview of empirically determined Murray’s
coeflicients from the literature can be found in Table 5.1.1.

Furthermore, the extraction of geometry from CTA is likely to be a significant
source of uncertainty in practical applications of Murray’s law. Moreover, it is
reasonable to assume that the cardiovascular system could show biological
deviation from Murray’s law, for example in areas of bifurcations, stenosis, and

irregularities.

5.2 REGRESSION ANALYSIS

In this section, regression analysis is used to estimate the unknown parameter of
Murray’s law, Murray’s coefficient. In basic regression analysis, a suitable model is
used to find relationships among variables of interest. The regression model is
fitted by minimization of an appropriate loss function, e.g. using the least squares
approach. Here, the minimization is done using the Nelder-Mead algorithm from
the Scipy library [62 ], which is a beneficial method for nonlinear optimization

problems where the derivatives of the loss function may be unknown [139].
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5.2.1 BIFURCATIONS
5.2.1.1 EXPERIMENTAL SETUP

In the first experiment, we want to find the Murray’s coefficient that satisfies the

equation
ro =1ty (5-4)

where the mother vessel is represented by subscript 0 and the daughter vessels
are represented by subscript 1 and 2. Thus, we want to find the value of ¢ that

minimizes the squared error
min (r] + 15 —r6)2. (5.5)
Cc

for each bifurcation in our dataset. For this analysis, a total of 78 bifurcations is

evaluated.

5.2.1.2 RESULTS

The result from the regression analysis on single bifurcations can be seen in
Figure 5.2.1. We see that the fitted Murray’s coefficient shows large variance with
amean value y = 2.24 and a standard deviation o = 1.09. Furthermore, we see
that the best-fitted Murray’s coefficient tends towards an asymmetric long-tail

distribution.
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Figure 5.2.1: Branching ratio and best-fitted Murray coefficient for individual
branches of the coronary dataset. The results estimate a Murray's coefficient
of 2.24 £1.09 (mean £ SD).

5.2.2 CONTROL VOLUMES
5.2.2.1 EXPERIMENTAL SETUP

To take full advantage of the data in the coronary tree, we use a technique we call
control volume sampling. In this approach, we analyze Murray’s law over all
unique control volumes in our system. In Figure 5.2.2, we see an example of

control volume sampling over a double bifurcation.

Figure 5.2.2: Control volume sampling over all possible control volumes of a
double bifurcation.

Using control volume sampling, we find the Murray’s coefficient that satisfies
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the equation
= " (5:6)

where Nj is the number of flow outlets of the control volume. Thus, we want to

find the value of ¢ that minimizes the squared error

N;

min (Z e — 152 (57)

i=1

over all possible control volumes in our coronary dataset. In this experiment, we

analyze a total of 1489 control volumes.

5.2.2.2 RESULTS

.lo
:
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Figure 5.2.3: The distribution of best-fitted Murray's coefficient as a func-
tion of control volume outlets (left) and presented as a histogram (right).
The Murray's coefficient for control volumes is characterized by a mean value
u = 2.49 and a standard deviation o = 0.67.

The result from the control volume analysis can be seen in Figure 5.2.3. The

fitted Murray’s coefficient shows lower variance compared to the analysis
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performed on single bifurcations in Section 5.2.1. The Murray’s coefhicient for
control volumes can be quantified with a mean value ¢ = 2.49 and standard
deviation ¢ = 0.67. We see that the variation in the fitted value of ¢ is rapidly

decreasing with an increasing number of control volume outlets.

5.3 BACKWARD UNCERTAINTY ANALYSIS

As discussed in Section 5.1.3, there is reason to believe that the total uncertainty
of Murray’s law is a result of combined contributions of geometric uncertainty
and uncertainty in Murray’s coefficient. To better capture the structure of the
uncertainty of the problem, we introduce a geometric uncertainty term so that
the true radius r,, is given by the observed radius r,,, subject to a proportional

noise term ¢

Ytrue = Vobs (1 + E) ) (58)

where ¢ is a zero-mean normally distributed random variable with standard
deviation ¢. Using this model assumption, Murray’s law for a control volume is

given by

N;

(ro(1 + ¢0)) " = Z (r(1+2)°, (5:9)

i=1

where ¢; are iid variables.

Using Equation .9, we can infer the uncertainty of ¢; and C using Bayesian
inference. The distributions of ¢; and C give us the ability to model the
uncertainty in individual outlets. For example, the uncertain resistance of a

terminal vessel i can be modeled as
—c
R~ (ri(l+g)) -, (5.10)
and gives us the ability to estimate the sensitivity of CTggg with respect to the
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individual uncertainty of terminal resistances.

5.3.1 BAYESIAN INFERENCE
5.3.1.1 EXPERIMENTAL SETUP

In this experiment, we analyze the uncertainty structure of Murray’s law using
Bayesian inference. Thus, we rephrase Equation 22 to a relation where the mother

radius is given as a function of the daughter radii

1/C
ro(1+ &) = (Z (r, (1 —f-si))c) . (5.11)

i

In the Bayesian framework, we want to find the probability distributions p(c/|r)
and p(C|r), where r are the measured radii of the dataset. To do this, we use the

following priors and hyperprior

P(C) = U(O, 100)7 (5.12)
P(J) = Z/{(O, 100)’ (5.13)
ple) = N(0,0). (5-14)

o ~ U(0,100) _ Ml 74(0,100)

Figure 5.3.1: Graphical representation of hierarchical Bayesian model.

The wide uniformly distributed priors are chosen to cover the entire parameter

space and minimize the influence on the posteriors. To test the objectivity of
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these priors, we measure the Kullback-Leibler divergence between the priors and
the resulting posteriors. A more thorough explanation of priors in Bayesian
analysis is presented in Section 3.3.1. A graphical description of our Bayesian
hierarchical model can be seen in Figure s.3.1.

To validate our proposed model, we perform a residual analysis over the
control volumes using the maximum a posteriori probability (MAP) ! estimates.
Since ¢; is a zero-mean symmetrical distribution, the MAP estimate of ¢; is equal

to zero. Thus, the residual e for a control volume is given by

e:ZriC—rg. (5.15)

Further, the error of the residual ex is defined as the absolute value of the residual
ex = ]e|. (5.16)

5.3.1.2  RESULTS

The resulting posterior distributions for C and ¢ from the Bayesian inference can
be seen in Figure 5.3.2. The posterior of Cis characterized by a mean of 2.56 and
standard deviation of 0.028, whereas the posterior of ¢ is characterized by a mean
of 0.151 and standard deviation of 0.0028. We see that the posteriors show
excellent convergence, which is quantified by a reciprocal of the Kullback-Leibler
divergence between the priors and posteriors approximately equal to zero. Thus,
we conclude that the priors have limited influence on the posteriors.

To validate our modeling approach, we use the MAP estimate for the posterior
of C to plot the residuals for different control volumes. The result from this
analysis can be seen in Figure 5.3.3. Here, we visualize the relationship between
mother vessel diameter and the calculated residuals as defined in Equation 5.15.

Based on these results, we observe a trend of increasing error e* as a function of

'Maximum a posteriori probability (MAP): Mode of the posterior distribution.
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Figure 5.3.2: Posterior distributions of Murray's coefficient p(C|r) and geo-
metric uncertainty p(c|r) inferred using Bayesian analysis. The convergence
of the procedure is validated through the Kullback-Leibler divergence between
the priors and posteriors.
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Figure 5.3.3: Residuals for the MAP estimates as a function of observed
mother diameter. Note that the residual analysis is done over 1489 control
volumes and that the fraction of observations in the region around a residual
of 0 — 0.25 mm is very high.
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mother diameter. We observe that the MAP estimate leads to an
under-estimation of radius for the largest mother diameters, but are unable to

find other meaningful structures in the residuals.

5.3.2  UNCERTAINTY QUANTIFICATION
5.3.2.1 EXPERIMENTAL SETUP

Once the posterior distributions are inferred, the relative resistance R, ; is given

by
R = (ri (1 + gr)) <" (5.17)

where ¢;|r and C|r are the posterior distributions of ¢; and C, respectively.

In this experiment, we investigate the effect of uncertainty in Murray’s law on
CTrrr by sampling from the distributions of relative outlet resistances. In
practice, we quantify the uncertainty of CTggg in the coronary network
introduced in Section 4.2 using Latin Hypercube MC sampling with 5000 model

evaluations.

5.3.2.2 RESULTS

Figure 5.3.4 shows that the uncertainty in Murray’s law gives a significant
post-stenotic uncertainty of CTgrz. Quantitatively, the 95% central prediction
interval gives a post-stenotic interval of [0.728, 0.814], where the CTyzg values

are measured right after the stenosis.
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Figure 5.3.4: 95% central prediction interval showing the uncertainty in
CTrrr as a result of uncertainty in Murray's law estimated from MC sampling
with 5000 model evaluations.

5.3.3 SENSITIVITY ANALYSIS

5.3.3.1 EXPERIMENTAL SETUP

In this experiment, we want to investigate the sensitivity of CTgpg with respect to
the uncertainty in individual terminal resistances. First, we examine the
sensitivity of R, defined in Equation 5.17, with respect to ¢|r and C|r using PC.
Thus, we analyze the relative effects of Murray’s coefficient and geometric
uncertainty on the total uncertainty associated with Murray’s law. For efficient
evaluation, we approximate the PDFs/CFDs of the posterior distributions using

parametric approximations from the Scipy library [62].

Second, we evaluate the sensitivity of CT'ggg to terminal resistances using the
coronary network introduced in Section 4.2. Due to the high number of outlets
(N; = 114), the sensitivity analysis is performed using the RF metamodel. A

thorough explanation of the RF metamodel is given in Section 3.2.3.
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5.3.3.2 RESULTS

The sensitivity of a relative terminal resistance with respect to the geometric
uncertainty ¢; and the uncertainty in Murray’s coefficient C can be seen in Table
5.3.1. The results show that the uncertainty in the relative terminal resistances is

determined almost solely by the geometrical uncertainty term ¢;.

Parameter S;; Sy,
C 0.01 0.01
& 0.99 0.99

Table 5.3.1: Main and total Sobol sensitivity indices expressing the sensitiv-
ity of a relative terminal resistance with respect to the geometric uncertainty
term ¢; and the uncertainty in Murray's coefficient C. The sensitivity analysis
is performed using PC and the parametrized posterior distributions for ¢; and
C.

Based on the findings from the sensitivity analysis of a relative terminal
resistance R, ;, we neglect the effect of uncertainty in Murray’s coefficient on
terminal resistance uncertainty. Thus, we quantify the sensitivity of CT g with
respect to the geometric uncertainty of the terminal resistances. The result from
the sensitivity analysis is shown in Figure 5.3.6 and Figure 5.3.5. We observe that
the sensitivity of CTgpr with respect to terminal resistance uncertainty increases
with increasing outlet diameter. Relative to outlet diameter, we observe that
CTrpr is particularly sensitive to the post-stenotic outlets. No clear differences

are observed for vessel outlets in the RCA, pre-stenotic LAD, or CX region.
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Figure 5.3.5: Coronary tree with a stenosis in the upper LAD and outlets
grouped after the relative importance of terminal resistances according to the
total Sobol sensitivity indices.
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Figure 5.3.6: Total Sobol sensitivity of CTggr to terminal resistance uncer-

tainty in the coronary tree with a stenosis in the upper LAD. The Sobol sen-
sitivity indices are plotted according to reported vessel diameters of the coro-
nary dataset.

5.4 DiscussioN

Terminal outlet resistances for CTggy are typically determined using Murray’s
law. Here, we analyze Murray’s law using the published dataset of coronary artery
geometry from Kassab et al. [29]. Our regression analysis shows that Murray’s
coeflicient has high variability when fitted for single bifurcations, but that the
variability reduces when Murray’s law is evaluated over larger control volumes.
The mean fitted value of Murray’s coeflicient using control volume sampling
shows good agreement with the MAP estimate from Bayesian inference,

¢ = 2.49vs. ¢ = 2.56, respectively. In contrast, the mean fitted value of Murray’s
coefficient for bifurcations is ¢ = 2.24, which shows that estimates for Murray’s
coefficient are sensitive to the modeling approach. The residual analysis indicates
that the absolute deviation from Murray’s law increase with increasing vessel
radius. Further, the residuals show a systematic deviating trend for higher vessel
radii. It is unclear whether this deviation is a result of noise or uncaptured

structures in the dataset.
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The results from the Bayesian analysis show that the relationship between
vessel radii in the coronary system can be successfully modeled by a power law
relationship. Although, with the current modeling approach, we see that relative
resistances determined from Murray’s law are heavily influenced by geometric
uncertainty. In contrast, the uncertainty in Murray’s coeflicient has a lower

influence on the terminal resistance uncertainty.

Further, we evaluate the effect of uncertainty in terminal resistances on CT g,
and find that larger vessels and vessels downstream from the stenosis are of
greater importance to the resulting estimate (see Figure 5.3.6 and 5.3.5). This
finding could prove valuable for clinical applications of CTgr. CTA image data
has variable quality depending on factors like angle, slice thickness, patient
movement and more. The take-home message from this work is that a proper
description of post-stenotic outlets is necessary for an accurate CTgpg estimate.
On the other hand, uncertainties in pre-stenotic regions and parallel vessels are of
less importance to the CTgpg estimate.

It must be noted that the inferred uncertainty of Murray’s law was derived
from the coronary dataset of Kassab et al. [29]. In contrast to the geometry in a
conventional CT'gpg simulation, this geometry was quantified using an
elastomer-casting method. Based on the high uncertainty of coronary lumen
segmentation, it is reasonable to believe that the uncertainty in CT g as a result
of uncertainty in Murray’s law could be even higher than estimated in this chapter.

Also, the accuracy of the variance-based sensitivity analysis with the RF
metamodel is unclear. Results from experiments in previous chapters (Section
4.1.2, 4.2.3 and 4.1.3) show promising results for problems with fewer input
parameters. However, the exact accuracy for problems with high-dimensional
input spaces is unclear. The main challenge is that a proper validation of the RF
metamodel would require a high-dimensional MC analysis, an extremely
computationally expensive procedure. Using the current run time, our
computational resources and the necessary number of samples based on
published literature by Sarrazin et al. [ 140], our estimates indicate that a full MC

validation would require a computational time of between 10 and 45 days.
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However, the validation would be feasible using the latest tools in

high-performance computing and is an interesting area for future research.
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Errors are not in the art but in the artificers.

Sir Isaac Newton

Invisible Arteries

Capturing the fluid dynamics of the coronary arteries requires a complete
mapping of all branches in the coronary system. However, the current resolution
of CTA only enables a mapping of coronary arteries down a vessel diameter of

~ 1 mm [personal communication, 9/23, 2015]. General practice in applications
of CT'gpp is to model major arteries and neglect the effect of small branching

vessels on pressure and flow characteristics [26].

There is reason to believe that neglecting minor arteries could have a significant
impact on estimated pressure and flow in a coronary simulation. In segmented
vessel data from CTA, it is common to observe vessel tapering in the absence of
branching. However, research in both healthy and atherosclerotic patients have
found no significant tapering in vessel segments without arterial branches [141].

Thus, observed vessel tapering on CTA indicates that the flow loss to invisible
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Figure 6.0.1: A cast of coronary arteries with the right coronary arteries in
yellow and the left coronary arteries in red. The figure shows the high density
of arteries and branches in the coronary system [142].

branches is of a magnitude that could imply a possible effect on CTpzg estimates.
In this chapter, we estimate the effect of invisible branches on volumetric flow
loss and CT'ggg using the model presented in Chapter 2. For this purpose, we use
the coronary geometry dataset from Kassab et al. [29] where coronary arteries
are mapped down to an arterial diameter of =~ 0.1 mm. A more thorough
description of this dataset can be found in Section 2.1.4. Also, we propose a
mathematical model to reduce the effect of blood loss due to unaccounted

branching to invisible arteries on CTgg.

6.1 LEAKY VESSEL MODEL (LVM)

Here, we propose a mathematical model to investigate the effect of invisible
branches on CTrgr which we refer to as the Leaky Vessel Model (LVM). The

essence behind the LVM is that we attempt to model the flow to invisible arteries
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by introducing a leakage term. In practice, this is done by adding an additional
flow outlet and a corresponding resistance for every vessel segment in our CT'ggg
model.

To estimate the resistance values, we minimize the difference between the
model flow and the theoretical flow according to Murray’s law. The model flow g;
for a vessel segment i is a function of the microvascular resistance R,,,;.,, (Section

2.2) and the additional leakage resistances R, so that

qi :f(Rmicrle)? (6'1)

where fis the CTgggr model. The theoretical flow for the vessel segment i

according to Murray’s law is given by

qi = ar;, (6.2)

where a is the proportionality constant of Murray’s law. Thus, the leakage

resistances R; are found by solving the optimization problem

(6.3)

2
i Rmicrm - rf
(R17 Rmicrm a) = argmin Z (q ( l}]) “ ) .

ar;

where the minimization is performed with respect to the leakage resistances R;,

the microvascular resistance R, and the proportionality constant a.

6.2 QUANTIFICATION OF FLOW TO INVISIBLE BRANCHES

6.2.1 EXPERIMENTAL SETUP

In this experiment, we estimate the flow to CTA-invisible coronary arteries based
on the coronary geometry dataset. First, we identify invisible and visible outlets
for the coronary system with different CTA-visibility thresholds. Second, we
estimate the expected flow fraction to invisible arteries using the CT g model.

The expected flow fractions are based on Murray’s law with the empirically
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determined value of the Murray’s coefficient, ¢ = 2.56 as found in Chapter s.
Also, we investigate the flow fraction to invisible arteries for different values of

Murray’s coefficient.

6.2.2 RESULTS

Figure 6.2.1 shows the number of visible- and invisible flow outlets for three
different visibility thresholds, 0.5 mm, 1.0 mm and 1.5 mm. The ratios of visible
to total flow outlets are 54 /114, 16/114 and 4/114 for the visibility thresholds
0.5 mm, 1.0 mm and 1.5 mm, respectively. This means that only 14.0 % of the
total flow outlets are visible at the clinically relevant visibility threshold of 1 mm.
Figure 6.2.2 shows the flow fraction to invisible branches as a function of
distance from the inlet of the coronary artery tree for three different visibility
thresholds, 0.5 mm, 1.0 mm and 1.5 mm. The result suggests that a significant
fraction of the coronary flow disappears to invisible branches for all visibility
thresholds considered. In particular, the results indicate that up to ~ 50 % of the
coronary flow is through invisible branches for the clinically relevant visibility
threshold of 1 mm. Importantly, this finding is not heavily influenced by different
assumptions of Murray’s coefficient, c. Also, we observe that the visibility
threshold has a significant effect on the flow fraction to invisible branches, e.g. a
visibility threshold of 0.5 mm reduces the maximum flow fraction to invisible

branches down to ~ 10 %.
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Figure 6.2.1: Figure showing visible and invisible flow outlets of the coronary
tree for three different visibility thresholds, 0.5mm (left), 1.0 mm (middle) and
1.5mm (right).
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Figure 6.2.2: Fractional flow to invisible branches as a function of length
from the inlet of the coronary arteries for a visibility threshold of 1 mm (up-
per), visibility thresholds of 0.5 mm, 1.0 mm and 1.5 mm (middle) and for
three different values of Murray's coefficient (lower).

6.3 EFrFECT OF INVISIBLE BRANCHES ON CTrrr

6.3.1 EXPERIMENTAL SETUP

In this experiment, we investigate the expected error in CTzg due to the
presence of invisible branches. The analysis is based on the coronary network
from Kassab et al. [29] with clinically relevant a 75% area stenosis in varying
positions. Barring the stenoses, the parameters of the CTrpr model are the same
as the mean values used in Chapter 4 and Chapter 5. The effect of invisible
outlets on CTpp is quantified by comparing the estimated CT'ggg for a model
with full visibility to a model with a clinically relevant visibility threshold of

1 mm. This analysis is performed for nine different coronary networks, which

each has a uniquely positioned stenosis. Three of the networks have a stenosis in
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the RCA, three have a stenosis in the LAD, and three have a stenosis in the CX.
For each main coronary artery, the stenoses are allocated in the proximal-,

medial- and distal regions.

6.3.2 RESULTS

The effect of invisible branches on CTggg for three different coronary networks is
shown in Figure 6.3.1. The results suggest that invisible branches could have a
significant effect on CT'ggg. Further, the effect of invisible branches could both
increase or decrease the CT gy value, depending on the position of the stenosis

and nature of the invisible flow outlets.
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Figure 6.3.1: CTgpr for a 75% area stenosis in one of the following locations:
RCA (upper), LAD (middle) and CX (lower). The experiment is performed
with full visibility and a visibility threshold of 1 mm.

Quantitative results for the effect of invisible branches on CTggy is shown in
Table 6.3.1. We see that the expected error in CTgg due to invisible branches is
rapidly increasing for increasing visibility thresholds. In particular, the error for

the clinically relevant visibility threshold of 1 mm is a mean absolute error of
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0.0507 and a mean-squared error of 0.003893.

Visibility threshold MAE MSE

0.5 mm 0.0134 0.000553
1 mm 0.0507 0.003893
1.5 mm 0.1207 0.018116

Table 6.3.1: Effect of visibility threshold on Mean Absolute Error (MAE) and
Mean Squared Error (MSE) of CTggr. In this analysis, the expected error from
invisible outlets are investigated for nine different coronary networks, each
with a uniquely positioned stenosis. The error is calculated from the CTggr
values immediately downstream of the stenosis.

6.4 EFFECT OF LEAKY VESSEL MODEL ON CTgpr

6.4.1 EXPERIMENTAL SETUP

In this experiment, we investigate the performance of the LVM. For this purpose,
we compare the expected error in CTgpg using the LVM and the conventional
method without correction for flow loss to invisible arteries. The models are
compared using the same coronary networks as in Section 6.3. In other words,
we compare the methods for nine coronary networks, each with a stenosis in a
unique position. The comparison of the models is made for the clinically relevant

visibility threshold of 1.0 mm.

6.4.2 RESULTS

Figure 6.4.1 shows the estimated CT g for a model with full visibility, a
conventional model with limited visibility, and the LVM for three different
coronary networks. Here, we see that the newly introduced LVM improves the
estimates of CT g and closely resembles the CT gy estimates obtained under full

visibility. In contrast, the conventional method with limited visibility results in a
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Figure 6.4.1: CTggpr for a 75% area stenosis in one of the following locations:
RCA (upper), LAD (middle) and CX (lower). The figure shows the model
with full visibility (blue) and the two models with limited visibility: the con-
ventional method (green) and the LVM (red).



Method MAE MSE

Conventional Method 0.0507 0.003894
Leaky Vessel Model 0.0208 0.000702

Table 6.4.1: Mean Absolute Error (MAE) and Mean Squared Error (MSE)
of CTgrg for the conventional method and the LVM. In this analysis, the ex-
pected error from invisible outlets is investigated for nine different coronary
networks, each with a uniquely positioned stenosis.

significant discrepancy between the estimated CT gy for different visibility
thresholds.

The results from the quantitative investigation of the performance of the
conventional method and the LVM is shown in Table 6.4.1. The table indicates
that the LVM significantly reduces the CT gy error due to invisible branches. In
fact, MAE shows a reduction from 0.0507 with the conventional model to

0.0208, corresponding to an error reduction of ~ 60%.

6.5 DiscussioN

In this chapter, we investigate the influence of CTA-invisible coronary arteries on
CTrgr. The problem is investigated using the CTgpgr model introduced in Chapter
2. In this work, we find that only a small number of coronary arteries are
expected to be visible on CTA. As a result, our analysis shows that a substantial
amount of the coronary blood flow is lost to invisible arteries. In fact, we estimate
that up to 50% of the blood flow is lost to invisible arteries with a visibility
threshold of 1 mm. Further, we compare CT'gpg estimates for coronary networks
with full visibility to coronary networks with clinically relevant visibility
thresholds. The results show that invisible arteries may have a significant effect on
CTrppg. In fact, the quantitative investigation shows an expected mean absolute
error of CTgpr, MAE = 0.0507 for a visibility threshold of 1 mm. This
corresponds to a mean error of £6.3% (£0.0507/0.8) for a stenosis at the
clinical threshold (FFR = 0.8). In other words, the expected error is highly



relevant for clinical applications of CT'gg.

To reduce the error from invisible arteries, we propose a new mathematical
model, referred to as the LVM. To our knowledge, this is the first model that
incorporates the effect of invisible arteries on CTggr. The LVM is based on
principles of Murray’s law and incorporates a leakage term that is shown to
significantly reduce the error due to invisible arteries. For a visibility threshold of
1 mm, our quantitative analysis indicates that the LVM reduced the expected
model error by ~ 60%.

Note that the coronary geometry from Kassab et al. [29] only incorporates
vessels with a diameter above approximately 0.1 mm. It is reasonable to assume
that a significant number of smaller coronary arteries exists so that the effect of
invisible arteries on CTgpr may be even larger than what we have exhibited in our
investigations. Therefore, we believe that better understanding of the effect of
invisible vessels is paramount for the future of CTggg. Also, our analysis shows
that the expected flow fraction to invisible branches may be significantly reduced
with a decreasing visibility threshold. Accordingly, increasing the resolution of
CTA is another direction one might take to improve the accuracy of CTgg,
preferably in combination with a model to account for the effect of invisible

arteries.
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I'm never going to be in danger of getting the Nobel Prize for

literature.

David Eddings

Discussion

7.1  SUMMARY

The aim of this thesis is to quantify and reduce the uncertainty of CTggg. In
particular, we focus on uncertainties from the interaction between CFD and the
coronary physiology. Our findings suggest several ways to improve the
interaction between physiology and fluid dynamics to reduce the uncertainty in
CT'rpr estimates.

First, we investigate the effect of uncertainty of physiological input parameters
on CTggg. Our results show that moderate uncertainty in physiological input
parameters can lead to rather dramatic uncertainties in estimated FFR, which
could have a significant impact on clinical decisions. For the CT g model, the
most influential physiological parameters were found to be cardiac output and

myocardial vasodilatory response, TCRI. Also, we compare the expected
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uncertainty in CTgg due to uncertainty in physiological parameters to the
uncertainty from lumen segmentation. Despite the approximate nature of this
comparison, we find that the uncertainty of lumen segmentation has the greatest
effect on CTrer. However, the uncertainty from lumen segmentation is only

slightly higher than the uncertainty from physiological input parameters.

Based on the results of the uncertainty analysis, we propose methods to
decrease the uncertainty of CTgpr. One way to approach this is by using
additional clinical measurements. For example, cardiac output, myocardial flow
fraction, and hematocrit could be measured non-invasivly with current clinical
tools. Our analysis shows that reducing the uncertainty of the measurable
physiological parameters can have a significant effect on CT'gpg uncertainty. Also,
the uncertainty in these parameters could potentially be reduced by other means,
for example with higher accuracy of population-based statistics or by better

mathematical modeling.

Terminal outlet resistances and flow distribution in CTrrr models are typically
determined using Murray’s law. In this thesis, we analyze Murray’s law using the
published dataset of coronary artery geometry from Kassab et al. [29]. We find
that the relationship between vessel radii in the coronary system can be
successfully modeled by a power law relationship like Murray’s law. Also, we find
that relative resistances determined from Murray’s law are heavily influenced by
geometric uncertainty. In contrast, the uncertainty in Murray’s coefficient has a
lower influence on the terminal resistance uncertainty. Further, we evaluate the
effect of uncertainty in terminal resistances on CTrgg, and find that larger vessels
and vessels downstream from the stenosis are of greater importance to the
resulting estimate. This finding could prove valuable for clinical applications of
CTrrr where CTA image data has variable quality. Thus, a proper description of
post-stenotic outlets is necessary for an accurate CT g estimate. On the other
hand, uncertainties in pre-stenotic regions and parallel vessels are of less
importance to CTggp.

Also, we investigate the influence of CTA-invisible coronary arteries on CTpgg.

Here, we find that only a small number of coronary arteries are expected to be
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visible on CTA and that the invisible arteries may have a significant effect on
CTggr. To reduce the error from invisible arteries, we propose a new
mathematical model, referred to as the LVM. The LVM is based on principles of
Murray’s law and incorporates a leakage term that is shown to significantly reduce

the error due to invisible arteries.

7.2 SUGGESTIONS FOR FUTURE WORK

In this thesis, we have highlighted several challenges in current applications of
CTrpr. In particular, we have highlighted challenges in the cross-section between
physiology and CFD. In this section, we will present suggestions for future work
and areas which we believe have a promising potential for future development of
CTrrr.

7.2.1 IMPROVED ANALYSIS USING 3D-CFD MODELS

Even though lumped-parameter models for solving fluid dynamics are well
supported, they are not always able to accurately capture the complex
characteristics of coronary flow. For this reason, 3D-CFD solvers or hybrid
models' remain the gold-standard for clinical applications of CTgpg. Therefore, a
major assumption in this thesis is that methods to quantify and reduce the
uncertainty in lumped-parameter models are relevant for clinical CTggg
algorithms.

Thus, an important task for future work is to test the validity of this
assumption. This could be done by performing similar experiments on full
3D-CFD models of CTggg. Due to the high computational demand of QA and
SA, this would require significant computational resources, but could be feasible
with a combination of clever algorithms for UQ and SA and the latest technology

in high-performance computing.

"Hybrid model: A combination of CFD solvers of different dimensions, e.g. oD (lumped) and
3D
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7.2.2 MACHINE LEARNING AND B1G DaTa

In this work, we present promising results for the use of machine-learning
methods for variance-based SA. As pointed out in the thesis, this is an
experimental approach that could have tremendous potential for future
applications. The substantial increase in computational power over the last years
opens up new and exciting possibilities and enables computers to tackle
computational problems in higher and higher dimensions. A challenge for
classical SA is that many of the most developed and influential methods have poor
dimensional scaling and therefore have limited applicability for this new class of
SA problems. Thus, efforts to improve current methods and introduce new
approaches for SA is paramount to future high-dimensional applications of SA.

Also, machine learning and big data could play a promising role in the
development of more accurate physiological input parameters and physiological
models for CTgpg applications. The growing commercial and academic interest in
the field of CTpgg increases the available datasets and opens up new and

promising applications for machine learning and big data.

7.2.3 MYOCARDIAL VIABILITY

A promising area for future research is the concept of myocardial viability. It is
likely that the degree of myocardial viability has a significant effect on boundary
conditions for CTgg. It is already well known that only patients with confirmed
myocardial viability will benefit from revascularization procedures, and that the
amount of viable myocardium evaluated before the procedure is the best
indicator of long-term cardiac event-free survival after a cardiac intervention
[143-147].

There exist several well-supported clinical imaging techniques for assessment
of myocardial viability. Traditional imaging techniques include nuclear imaging
by 18F-fluorodeoxyglucose positron emission tomography (PET), nuclear
imaging by single-photon emission computed tomography (SPECT),

echocardiography with dobutamine, echocardiography with intravenous contrast
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agents, magnetic resonance imaging (MRI) with dobutamine or intravenous
contrast agents, and CT with intravenous contrast agents [143— 15 5]. Fora
further description of these methods, we recommend the article Multimodality
Imaging for Assessment of Myocardial Viability: Nuclear, Echocardiography, MR,
and CT by Arrighi and Dilsizian [150].

The assessment of viable myocardium from cardiac CT is particularly
interesting to CT'gpg and a combined assessment of viable myocardium and
CTrgg has a great potential in clinical applications. Currently, assessment of
myocardial viability with cardiac CT is mostly investigational, but the results
from initial studies are promising [ 143, 150, 151]. Further work could include
investigations of the use of cardiac CT to assess myocardial viability and how to

use the measured myocardial viability to increase the accuracy of CTgg.

7.2.4 IMPROVE LEAKY VESSEL MODELS

To our knowledge, the LVM proposed in this thesis is the first mathematical
model that aims to model the effect of CTA-invisible coronary arteries on CTggg.
Thus, it is important to stress that this model is based on simple principles and
that there exists a significant potential to increase the accuracy of this model
further. Important factors in this development could be more available data and
an improved understanding of the presence of invisible arteries in the

myocardium.

7.2.5 OTHER METHODS

In the future work presented in this section, we have focused on methods and
areas related to the physiological model and physiological input parameters for
CTggr. Thus, other areas for future development of CT gy exists. Based on our
findings, the most critical of these areas is vessel segmentation from CTA. As a
result, a continued effort to increase the accuracy of segmentation algorithms
should be of utmost importance. On another note, it is likely that improvements
in specific fluid-dynamical modeling of the coronary system could have a

significant potential to improve the accuracy of CTggg, e.g. multi-phase flow in
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stenosed areas.
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