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Abstract

Coronary artery disease has been reported the most common cause of death

worldwide and is an ever-growing problem for global health. Recently, diagnosis

of coronary artery disease from CT angiography (CTA) and computational fluid

dynamics (CFD), CTFFR, has emerged as a promising non-invasive alternative to

the conventional clinical procedure. The aim of this thesis is to quantify and

reduce the uncertainty ofCTFFR. In particular, we focus on uncertainties from the

interaction between CFD and the coronary physiology. First, we use a

lumped-element model to investigate the uncertainty and sensitivity of CTFFR to

physiological parameters. Second, we perform an in-depth investigation of the

governing physiological model for flow distribution in CTFFR simulations,

Murray’s law. Third, we propose a new model to reduce the inaccuracies from

CTA-invisible coronary arteries. Our results show that uncertainty in

physiological parameters has a significant effect on FFR estimates. Moreover, we

find that CTA-invisible coronary arteries greatly increase the uncertainty of FFR,

but that this effect can be reduced with improved mathematical modeling. Last,

we find that CTFFR is highly sensitive to post-stenotic flow outlets, which

highlights the clinical importance of post-stenotic CTA image quality.
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Veileder: Leif-Rune Hellevik Johannes K. Kjernlie/Hallvard M. Nydal

Forbedre numeriske strømningsberegninger for FFR ved
bruk av metoder for å kvantifisere og redusere usikkerheten i

prediksjoner

Sammendrag

Koronarsykdom er verdens farligste sykdom og et økende problem globalt. Den

mest anerkjente metoden for diagnostisering av koronarsykdom er invasiv FFR,

en metode som både er kostnadskrevende og har en liten men betydelig risiko for

komplikasjoner. Estimering av FFR fra ikke-invasiv CT angiografi (CTA) og

numerisk fluiddynamikk, CTFFR, har utviklet seg til et spennende alternativ til

den konvensjonelle fremgangsmåten. Målet med denne oppgaven er å

kvantifisere og redusere usikkerhet i CTFFR. Først undersøker vi usikkerhet og

sensitivitet av CTFFR til fysiologiske parametere. Deretter ser vi nærmere på den

viktigste modellen for fordeling av blodstrøm i arteriene, Murrays lov. I tillegg

undersøker vi effekten av arterier som er usynlige ved CTA og foreslår en ny

metode for å redusere effekten av disse arteriene på CTFFR. Resultatene våre viser

at usikkerhet i fysiologiske modellparametere har en signifikant effekt på CTFFR.

Vi finner også at estimert FFR over stenoser er spesielt sensitiv til poststenotiske

utløp i den fluiddynamiske modellen, noe som fremhever viktigheten av

poststenotisk bildekvalitet. Til slutt finner vi at arterier som er usynlige ved CTA

har en markant effekt på CTA, men at denne effekten kan reduseres ved

nytenkende matematisk modellering.

iii



iv



Preface

This master thesis is written as part of a Master of Science degree in Mechanical
Engineering at the Norwegian University of Science and Technology. The thesis
was conducted throughout Spring 2016 at the Department of Energy and Process
Engineering.

Here, we investigate how to close the gap between physiology and fluid
dynamics for simulations of CTFFR. The thesis builds on our project theses where
we investigated the feasibility of computational fluid dynamics for estimation of
FFR from CT angiography. During the project theses, we experienced that our
simulations seemed very sensitive to physiologically governed input parameters
and boundary conditions. Interestingly, to our knowledge, few studies have
investigated this effect. Thus, we decided to dedicate our thesis to the
cross-section between CFD and physiology, with an aim to quantify and reduce
uncertainties in CTFFR.

Johannes Kløve Kjernlie
Hallvard Moian Nydal

June 10, 2016
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Abbrevations

CAD Coronary artery disease
CDF Cumulative density function
CFD Computational fluid dynamics
CT Computed tomography
CTA Computed tomography angiography
CTFFR Computational fractional flow reserve
CVD Cardiovascular disease
CX Circumflex
EE Elementary effects
FFR Fractional flow reserve
ICA Invasive coronary angiography
iid Independent and identically distributed
LAD Left anterior descending
LVM Leaky vessel model
MAP Maximum a posteriori
MC Monte Carlo
MFF Myocardial flow fraction
PC Polynomial Chaos
PDF Probability density function
RCA Right coronary artery
RF Random forest
SA Sensitivity analysis
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TCRI Total coronary resistance index
UQ Uncertainty quantification
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Nomenclature

α Radius of inviscid core, Multi-indices
ε Noise term
Λ Split coefficient
μ Dynamic viscosity, Mean
μX∗ Absolute value of mean
ρ Density, Probability density function
σ Standard deviation
Φ Polynomial
Ω State space
c Murray’s coefficient
d Elementary effect
F Cumulative distribution function
f Black box functional
f Source term vector
G Conductance
L Length
p Probability
P Pressure
Q Flow rate
R Resistance
r Radius, Hastings ratio
S Sobol sensitivity indices
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T Rosenblatt transformation
u Velocity vector(n
k

)
Binomial coefficient indexed by n and k
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Prediction is very difficult, especially if it’s about the future.

Niels Bohr

1
Introduction

Cardiovascular diseases (CVDs) account for> 17million deaths globally each
year and is expected to grow to 23.6 million by 2030 [1]. Of this number,
coronary artery disease (CAD) is the largest contributor to CVDs. In 2013, CAD
was the most common cause of death globally, resulting in 8.14 million deaths
worldwide [2]. In addition to the adverse implications for health, the epidemic of
CVDs have a tremendous impact on the economy. In the US, direct medical costs
of CVDs are projected to triple, from $273 billion in 2010 to 818$ billion in 2030
[3].

Recent advances in computational fluid dynamics (CFD) shows a clear
potential to reduce costs and improve patient outcome for diagnosis of CAD [4].
Despite its tremendous potential, diagnosis of CAD from CFD requires an
accurate description of the complex relationship between CFD and coronary
physiology. In this thesis, we aim to quantify and reduce the uncertainties from
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this relationship using the most influential CFD-based diagnostic tool for CAD,
CTFFR.

1.1 Coronary Artery Disease (CAD)

Arteries that supply blood to the myocardium¹ are termed coronary arteries. The
coronary arteries consist of two main branches, the right coronary artery (RCA)
and the left coronary artery, which further divides into two branches, the left
anterior descending (LAD) and the left circumflex branch (CX), as seen in
Figure 1.1.1.

Figure 1.1.1: Anatomy of coronary arteries [5].

Common symptoms of CAD include chest pain, heartburn, and shortness of
breath. The most frequent reason for CAD is atherosclerosis, a build-up of plaque
in the arteries of the heart. The plaque, composed of calcium, fatty deposits, and
inflammatory cells has a hardening and narrowing effect on the coronary arteries.
This build-up of plaque in coronary arteries is critical for two reasons. First of all,

¹Myocardium: Muscle tissue of the heart.
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the narrowing effect on vessel walls is a direct cause of reduced transport of
oxygen-rich blood to the heart. Second, a build-up of plaque increases the chance
of the formation of blood clots. These blood clots dramatically enhance the
probability of a full or partial coronary block, introducing a major risk of
myocardial infarction and death.

Figure 1.1.2: Atherosclerosis in coronary arteries [6].

1.2 Diagnosis of Coronary Artery Disease

According to doctors at Trondheim University Hospital, the standard clinical
route for diagnosis of CAD is an initial screening with non-invasive CT
angiography (CTA), followed by invasive coronary angiography (ICA) [personal
communication, 9/23, 2015]. In this process, CTA serves as a gateway screening
to limit the number of patients that have to go through an ICA.

1.2.1 Coronary computed tomography angiography (CTA)

Coronary computed tomography angiography (CTA), is a noninvasive method
for visualization of CAD. The method is non-invasive, cheap and offers excellent
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negative predictive value ² for the absence of coronary artery disease [7]. Despite
this, CTA has a low positive predictive value ³ and therefore results in a high
number of false positives [8].

1.2.2 Fractional Flow Reserve (FFR)

FFR is defined as the maximum blood flow to the myocardium in the presence of
a stenosis in the supplying coronary artery, divided by the theoretical normal
maximum flow [9]. This ratio represents the hyperemic ⁴ flow with and without a
single stenosis and can be derived from the ratio of mean distal coronary pressure
(Pd) to mean aortic pressure (Pa) recorded simultaneously under conditions of
maximum hyperemia. FFR during hyperemic flow can be expressed as

FFR =
Pdistal − Pv
Pa − Pv

(1.1)

where Pa is the mean aortic pressure, Pv is the central venous pressure and Pdistal is
the hyperemic coronary pressure proximal to the stenosis. Assuming a proximal
lesion and negligible venous pressure, the equation simplifies to

FFR =
Pa − ΔP

Pa
(1.2)

where ΔP is the pressure gradient along the axis of vessel segment from proximal
to distal positions of the stenosis. The full derivation of FFR over a single stenosis
can be found in the work of Pijls et al. [10]

1.2.3 Invasive Coronary Angiography (ICA)

ICA is the gold standard for establishing the presence, location, and severity of
CAD [11]. During an ICA, the hemodynamic significance metric of coronary

²Negative predictive value: Proportion of negative results in statistics that are true negative
results.

³Positive predictive value: Proportion of positive results in statistics that are true positive re-
sults.

⁴Hyperemia: An excess of blood in the vessels supplying an organ or other parts of the body.

4



stenoses is FFR. To measure FFR, a pressure wire is used to determine the ratio
of maximal coronary blood flow through a stenotic artery to the blood flow in the
hypothetical case that the artery was normal. In the FAME (Fractional Flow
Reserve Versus Angiography for Multivessel Evaluation) trial of 1,005 patients
with multivessel coronary artery disease (CAD), FFR-guided revascularization⁵
(i.e., revascularization for lesions with FFR lower than 0.80) was associated with
a 28% lower rate of major adverse cardiac events compared with an
angiography-guided strategy [12]. While ICA provides an excellent data for
diagnosis and further interventions, the technique is invasive, costly and is
associated with a small but definite risk of morbidity and mortality [13].

1.3 Non-InvasiveComputationalEstimationofFFRfromCTA

(CTFFR)

Geometrical Model Physiological Model Physical Model

CTFFR

Figure 1.3.1: Computation of CTFFR is a result of a complex interplay be-
tween a geometrical model, a physiological model and a physical model.

In the past, CFD for biomedical applications has been limited due to the high
complexity of fluid flows in the human body. Today, the field is steadily growing
as researchers and clinicians understand its potential and high-performance
hardware and software is getting more available [14]. Recently, computational
fluid mechanics has enabled estimation of FFR from CTA. The introduction of
CFD-guided post-processing of CTA is called CTFFR, and has shown tremendous
potential in a number of larger clinical studies including PLATFORM

⁵Revascularization: restoration of the blood circulation of an organ or area.
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(Prospective Longitudinal Trial of FFRCT: Outcomes and Resource
Impacts)[15], DeFACTO (Determination of Fractional Flow Reserve by
Anatomic Computed Tomographic Angiography) [16] and DISCOVER-FLOW
(Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional
Flow Reserve) [17] studies.

Computation of CTFFR is a result of an interplay between a CT-derived
geometrical model of the coronary arteries, a physical model using a numerical
solution of the laws of physics governing fluid dynamics and a physiological
model for determination of pressure and flow boundary conditions.

1.3.1 Clinical Route

Symptoms

CTA

CTFFR

ICA

Treatment

Positive

Negative

Negative

Positive

Negative

Positive

Figure 1.3.2: Clinical path with CTFFR.

CTFFR introduces a new clinical route that can be seen in Figure 1.3.2. This
new clinical route has the potential to reduce the number of unnecessary ICA
treatments dramatically, hereby reducing costs and medical risks. Currently,
CTFFR is receiving major interest, both in academia and industry.

6



1.4 Thesis

1.4.1 Objective

The objective of this thesis is to quantify and reduce the uncertainty of CTFFR

with a particular focus on uncertainties from the interaction between CFD and
the coronary physiology. In practice, we quantify uncertainty and sensitivity of
CTFFR with respect to physiological input parameters. Further, we perform an
in-depth investigation of the governing physiological model for flow distribution
in CTFFR simulations, Murray’s law. Last, we propose a model to reduce the
inaccuracies from coronary vessels invisible to CTA.

1.4.2 Related Work

To our knowledge, little work has been done to quantify the uncertainty and
sensitivity of CTFFR with respect to physiological input parameters. While some
authors have investigated the effect of lumen segmentation on CTFFR including
the work by Sankaran et al. [18, 19], physiological parameters have received
considerably less interest. The most notable exception is another work by
Sankaran et al. [20] that quantified uncertainty and sensitivity of CTFFR with
respect to selected lumen segmentation and physiological parameters. Despite
this, their work only included a small number of input variables and was
restricted to a limited sensitivity analysis.

Numerous authors have investigated flow distribution in arterial networks
[12, 17, 21–25]. The most prominent flow distribution model for vascular
systems, Murray’s law, has received tremendous attention in practical applications
of CTFFR [12, 26, 27]. Surprisingly, there has been limited interest in the
uncertainty of Murray’s law. To our knowledge, no work has investigated the
effect of uncertainty in Murray’s law on CTFFR.

While the potential influence on invisible coronary arteries has been
mentioned in literature [26], there has been remarkably low interest for the effect
of CTA-invisible coronary arteries on CTFFR. To our knowledge, this is the first
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work that proposes a mathematical model aiming to reduce the effect of
CTA-invisible coronary arteries on CTFFR.

1.4.3 Outline

This thesis is organized as follows. In Chapter 2, we perform an in-depth
investigation of the theory of flow characteristics of coronary arteries and present
a simplified model for CTFFR. In Chapter 3, methods and governing theory for
uncertainty quantification and sensitivity analysis is presented.

Uncertainty quantification and sensitivity analysis of the CTFFR model is
performed in Chapter 4. Based on this analysis, we do an in-depth investigation
of the physiological parameters governing flow distribution in CTFFR models in
Chapter 5. Last, Chapter 6 introduces a new class of boundary conditions to
model the effect of fluid loss to CTA-invisible coronary arteries, before we sum
up our findings and direction for future work in Chapter 7.

1.4.4 Limitations

The aim of this thesis is to quantify and reduce the uncertainty of CTFFR.
Unfortunately, state-of-the-art algorithms for CTFFR are computationally
expensive and do not facilitate this type of analysis on a restricted computational
budget. Thus, the results in this thesis are based on a simplified model of CTFFR.
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All models are wrong, but some are useful.

George E. P. Box

2
CTFFRModel

Computation of CTFFR is derived from an interaction between a geometrical
model of the coronary arteries, a physical model for the fluid dynamics of
coronary arteries and a physiological model for model parameters. In this
chapter, we propose a simplified CTFFR model to quantify uncertainty and
investigate ways to reduce the uncertainty in CTFFR models. We build our
simplified model on principles from the most prominent works in the field of
CTFFR, including recently published work from the groups behind the two most
important commercial players, Heartflow, Inc. and Siemens Healthcare [28].

Also, we present the coronary geometry dataset used for the experiments in
this thesis. The dataset is based on published data from Kassab et al. [29] and is a
result of the construction and analysis of a polymer cast of pig coronary arteries.
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2.1 Background

First, we present the main building blocks for clinical estimation of CTFFR and
the characteristics of fluid dynamics in coronary arteries. Further, we present
how coronary blood flow can be modeled using simplified models of arterial
hemodynamics.

2.1.1 CTFFR in the Clinic

As specified earlier in this chapter, CTFFR is a result of an interaction between a
geometric model, a physical model, and a physiological model. For a more
in-depth presentation of CTFFR, we recommend the article Computational Fluid
Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification
of Fractional Flow Reserve by Taylor et al. [12].

2.1.1.1 Geometric Model

Computation of CTFFR requires a method to extract a geometric model from
CTA data. In clinical applications, segmentation algorithms extract the surface of
all major vessels down to the limit imposed by the resolution of CTA. Thus, the
segmentation algorithm defines the boundaries of our fluid domain.
Cardiovascular vessel segmentation in general, and coronary artery segmentation
in particular has been a major research topic over the last years. This effort has
resulted in a tremendous development of both manual, semi-automatic and
automatic methods for coronary segmentation [30].

2.1.1.2 Physical Model

From the geometric model obtained from CTA segmentation, coronary flow and
pressure can be solved using a physical model. In other words, coronary flow and
pressure can be solved using the governing theory of fluid dynamics. A more
in-depth presentation of this theory will be given later in this chapter. In
contempt of the high rheological ¹ and fluid dynamical complexity of blood flow,

¹Rheology: The study of the flow of matter.
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results from major studies of CTFFR (PLATFORM[15], DeFACTO[16],
DISCOVER-FLOW [17]) show that coronary flow and pressure can be solved
with relatively high accuracy using 3D-simulations and tools from modern CFD.

2.1.1.3 Physiological Model

The physical model of fluid dynamics is insufficient to solve pressure and flow of
the coronary system alone. An essential requirement for successful estimation of
CTFFR is accurate boundary conditions and parameters that describe the behavior
of blood. In general, these parameters are calculated using knowledge andmodels
of the coronary- and systemic physiology [12]. In practice, a major part of the
physiological model is based on data from CTA. Interestingly, anatomical data
from CTA contains a wealth of information on physiological parameters, because
”form follows function” in the cardiovascular system [12]. This means that local
cardiovascular dimensions are optimized for certain values of flow and pressure,
and that scaling laws can be used for specification of physiological parameters.

Also, clinical measurements of FFR is based on pressure measurements during
maximum hyperemia. Therefore, an essential requirement for the physiological
model is the ability to replicate the flow and pressure characteristics during
maximum hyperemia.

2.1.2 Fluid Dynamics of Coronary Arteries

The fluid dynamics of coronary arteries is characterized by a complex
relationship between the rheological properties of blood, the coronary geometry
and the interaction between blood, heart and artery walls. Here, we describe the
essential characteristics of coronary blood flow and how this knowledge can be
used to make accurate assumptions for computational modeling.
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2.1.2.1 Flow Characteristics

The cardiovascular system typically features low Reynolds number ² pulsatile
flow due to the pumping action of the heart. For human coronary arteries,
experimental results have shown Reynolds numbers on the order of 100 [31]
which is well within the laminar flow regime. Despite this, the presence of
stenotic areas tends to disturb the blood flow. Evidence from clinical findings,
laboratory experiments, and medical imaging methods shows that stenosed
coronary arteries feature turbulence in the post-stenotic area which significantly
modify the flow characteristics [32]. This means that stenotic flow may facilitate
flow separation, recirculation, and reattachment.

One of the reasons for the turbulent behavior of stenosed arteries is the
pulsatile nature of blood flow. Despite a relatively modest Womersley number³ in
the coronary arteries on the order of 10 [33], pulsatile flow is known to trigger
disturbances in flow characteristics. Results from Ferrari et al. [34] indicate that
the laminar-turbulent transition in stenosed coronary arteries occurs at a
Reynolds number of≈ 500which is observed in around 20% of the patients.
Giddens et al. [35] showed that the laminar-turbulence transition is dependent
on the degree of area reduction of the stenosis, and report laminar-turbulence
transition points between a Reynolds number of 500 and 1000 for different
stenoses geometries and flow conditions.

2.1.2.2 Blood Rheology

Blood is a heterogeneous multi-phase mixture of cells (red blood cells, white
blood cells, and platelets), suspended in a liquid plasma that is an aqueous
solution of proteins, organic molecules, and minerals. While the plasma is
essentially a Newtonian fluid, the cells show a clear non-Newtonian rheology
such as shear thinning, yield stress and viscoelasticity [36]. Moreover, blood is

²Reynolds number: Dimensionless number in fluid dynamics that quantifies the ratio of iner-
tial forces to viscous forces.

³Womersley number: Dimensionless number in biofluid dynamics that quantifies the ratio of
transient inertial effects to viscous effects.
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recognized as an incompressible fluid [37]. The complexity of blood flow is
challenging for mathematical modeling since no single model can capture the
whole nature of blood flow in physiological systems.

In general, blood experiences a transition from non-Newtonian to Newtonian
with increasing shear rate and fluid velocity. Johnston et al. [38] compared five
non-Newtonian models and one Newtonian model on flow characteristics and
shear stress in the right coronary arteries. They found that for mid-range
velocities of around 0.2m/s (Re ≈ 300), the models are virtually
indistinguishable, but that non-Newtonian effects becomes more critical at lower
velocities. While there is no sharply-defined critical limit for the transition from
non-Newtonian to Newtonian flow, there seems to be a general consensus that
the shear rate range for which non-Newtonian effects are considered significant is
< 100 s−1 [36]. When the narrowing artery approaches a diameter close to the
size of a red blood cell, blood tends to act as a two-phase liquid with a core of red
blood cells and a peripheral plasma flow. In this case, blood is more successfully
modeled as a power law- or Casson fluid [39].

The viscosity of blood is dependent on a number of factors, including the
concentration of red blood cells and temperature. Also, the viscosity of blood has
been shown to alter in multiple pathological conditions [40].

2.1.2.3 Fluid-Structure Interaction

The coronary blood system is made up of elastic arteries. However, the
magnitude of the dynamic effect of coronary arteries on pressure drop and FFR is
unclear. For example, the elasticity of coronary arteries has been shown to have a
significant effect on flow velocity and wall shear stress [41]. In contrast, Zeng et
al. reported that neglection of vessel compliance resulted in a minor error for
cardiovascular flow simulations of the proximal right coronary artery [42].
Similarly, Wellnhofer et al. reported that neglection of elasticity is an acceptable
assumption for clinical studies of atherosclerosis [43].
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2.1.2.4 Steady-state vs pulsatile flow

A commonly used assumption in simulations of coronary arteries is steady-state
flow. Intuitively, this assumption might seem questionable. It is reasonable to
assume that steady-state simulations are unable to capture the physiological
characteristics of pulsatile blood flow. Despite this, empirical data suggests the
assumption of steady-state flow have limited effect on the pressure drop and FFR
in coronary arteries. In fact, Huo et al. showed that the steady-state assumption
resulted in a pressure drop error of less than±5% in an in vitromodel [44].

2.1.2.5 Flow in Curved Arteries

The coronary arteries have a significant curvature which introduces complex flow
characteristics in the coronary system. Themost vital effects of curvature is a shift
of axial velocity to the outer wall and the presence of secondary flows [45].
Secondary flows are termed Dean’s vortices and are commonly observed in the
coronary system [46]. The magnitude of the effect of coronary curvature is
unclear. However, results from Wang and Xiaofei [47] indicate that the effect of
curvature on energy dissipation in tube flow is limited and that neglecting the
curvature is a valid assumption in hemodynamic simulations.

2.1.3 Computational Modeling of Coronary Blood Flow

State-of-the-art algorithms for CTFFR is based on rigorous three-dimensional
CFD analysis. In this thesis, methods for uncertainty quantification and
sensitivity analysis require a large number of model evaluations. Thus, the full
three-dimensional procedure would be infeasible with our current computational
resources. For this reason, we investigate methods to quantify and reduce the
uncertainty of CTFFR using simplified models.
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2.1.3.1 Simplified Models for Coronary Blood Flow

The fluid dynamics of coronary arteries is governed by the Navier-Stokes
equations for incompressible flow

ρ
Du
Dt

= ρf −∇p+ μ∇2u (2.1)

∇ · u = 0 (2.2)

where Equation 2.1 represents the conservation of momentum and Equation 2.2
represents the conservation of mass. Here, u is the velocity vector, f is a force
term, μ is the dynamics viscosity, ρ is the density of the fluid and the term

Du
Dt

=
∂u
∂t

+ u · ∇u (2.3)

is the material derivative of the velocity vector.

In a CFD analysis of the coronary arteries, the three-dimensional
incompressible Navier-Stokes equation are solved for the entire fluid domain.
The transient and turbulent nature of blood flow require that the Navier-Stokes
equations are solved with a resolution similar to the smallest scale of turbulence,
the Kolmogorov scale [48]. Unfortunately, this is an infeasible requirement in
most practical applications of CFD. In practice, CFD analysis relies on turbulence
models to model transitional and turbulent flow with reasonable accuracy.

In this work, the computational demand of three-dimensional uncertainty
quantification and sensitivity analysis is challenging with our current
computational resources. Therefore, we approximate the fluid-dynamical
behavior of coronary arteries by using a reduced-order model. The aim of this
approach is to construct a reduced-order model with low computational cost and
sufficient accuracy to give a good approximation of the behavior of full
three-dimensional CTFFR models.

The fluid dynamics of the reduced-orderCTFFR model in this thesis is based on
a zero-dimensional or lumped-parameter hemodynamical model.
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Lumped-parameter models assume a uniform distribution of the fundamental
variables within any particular compartment (vessel or part of a vessel) of the
model at any instant in time. In contrast, higher-dimensional models recognize
the variation of these parameters in space. For example, one-dimensional models
are based on the integration of fundamental variables along the centerlines of the
vessels.

Reduced-order models have a long history in the field of biomechanics.
Several authors report that 1D models offer excellent accuracy with considerably
less cost than the equivalent 3D models [49, 50]. However, 1D reduced-order
models have been shown to yield unrealistic results in pathological regions like
aneurysms and stenoses and are often connected to lumped-parameter stenosis
models or empirical corrections to improve performance in critical vessel
segments [51]. The reason for this behavior is that the derivation of
one-dimensional models is usually based on the assumption of small variations in
the cross-sectional vessel area, something that is not necessarily true in the
presence of stenosis [51]. Also, lumped-parameter models are frequently used for
boundary conditions in 1D-3D models of the arterial system. For example, the
Windkessel model ⁴ is a frequent choice for outflow boundary conditions in
hemodynamic simulations [52]. To construct a complete model, several
lumped-element models can be connected using electric circuit analogy. Electric
circuit analogy will be explained further in the next section.

2.1.3.2 Electric Analogy of Coronary System

One of the simplest ways to describe blood flow in the coronary arterial system
and connect lumped-parameter models of different vessel compartments is
through electric circuit analogy. For this reason, the electric circuit analogy will
be frequently used in this thesis.

Flow in human arteries is subject to resistive forces. In electrical analogy, the

⁴Windkessel model: a model that describes the hemodynamics of the arterial system in terms
of resistance and compliance.
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Pa
Poiseuille
Resistance
Stenosis

Veins (ground)

R2

R4

R1

R3

Figure 2.1.1: Example of electric circuit analogy of human coronary arterial
system where Pa is the arterial pressure, R1 is an non-linear stenosis resistance,
R2 is a linear Poiseuille resistance and R3/R4 are terminal resistances that
models the resitance of the microvascular and venous system. The ground
symbols represents the central venous pressure that is assumed to be 0mmHg.

resistance R of an artery is given by the following relation

QR = ΔP, (2.4)

where ΔP is the pressure drop over the vessel, andQ is the volumetric flow rate.
Note that the resistance R is not necessary a constant and can be a function of P
andQ.

For a healthy vessel, assuming that blood obeys Poiseuille’s law, the resistance
can be written as [53]

R =
8πμL
ν

= constant, (2.5)

where μ is the dynamic viscosity, ν is the kinematic viscosity and L is the vessel
length.

For a stenosed vessel, the linear relationship between flow rate and pressure in
Equation 2.5 breaks down. In contrast, stenosed vessels are shown to experience
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a quadratic relationship between flow rate and pressure [54, 55]

P = QR1 + Q2R2, (2.6)

where R1 and R2 are empirical resistance coefficients.

The electrical analogy simplifies the analysis of branching vascular systems. In
practice, the cardiovascular system can be modelled as a network of resistors in
series and parallel. For n resistors in series, the total resistance is given by

Rtot =
∑
n

Rn. (2.7)

For resistors in parallel, the total resistance is given by

Rtot =

(∑
n

R−1
n

)−1

. (2.8)

By introducing the conductanceG, defined as the reciprocal of the resistance

G =
1

R
, (2.9)

we get the following relation for vessels in parallel

Gtot =
∑
n

Gn. (2.10)

A commonly used assumption in cardiovascular simulations is that the central
venous pressure⁵ is equal to 0mmHg. With this assumption, we simplify the
relationship between arterial blood pressure Pa and total vascular resistance Rtot,
so that the cardiac outputQco is given by

Qco =
Pa
Rtot

(2.11)

⁵Central venous pressure: Blood pressure in the venae cavae, near the right atrium of the heart.
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An example of an electrical analogy of a simplified vascular system can be seen in
Figure 2.1.1.

2.1.3.3 Huo model

As previously seen in this chapter, the linear relationship between flow rate and
pressure drop according to Poiseuille’s law breaks down in the presence of
stenosis. To calculate this effect, Huo et al. [44] propose an analytical model for
the pressure drop over an axisymmetric stenosis. This model is derived from
conservation of energy, which considers convective and diffusive energy losses as
well as energy loss due to sudden constriction and expansion in lumen area.
Despite its simplicity, the model has shown to provide a good fit with in vitro and
in vivo experimental measurements for a single stenosis.

The Huo model is based on the Bernoulli equation. Since gravity is negligible
in the coronary circulation, the general Bernoulli equation can be written as

ΔP = ΔPconvective + ΔPconstriction + ΔPdiffusive + ΔPexpansion (2.12)

where the pressure drop over a stenosis is given by the superposition of pressure
drops from convection, constriction, diffusion and expansion.

The pressure drop due to convection, ΔPconvective is defined from the following
equation

ΔPconvective =
ρQ2

2

(
1

A2
outlet

− 1

A2
inlet

)
. (2.13)

If the flow transition from a proximal normal vessel to a stenosis is well-bound
and follows the streamlines, the energy loss due to a sudden constriction is
relatively small (loss coefficient<< 0.1 generally) and negligible so that
ΔPconstriction ≈ 0.

ΔPdiffusive is result of the entrance effect and the viscosity in the fully developed
region. For the entrance region of a stenosis, we define a dimensionless radius of
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the inviscid core ⁶, α, that can be calculated from

πμLstenosis

4ρQ
=

1

4

∫ 1

α

(1− α)(6 + α)(1 + 4α + 9α2 + 4α3)
5α(3 + 2α)(3 + 2α + α2)2

, (2.14)

where Lstenosis is the length of the stenosis.
If α ≥ 0.05, which is the case for most clinical stenoses, ΔPdiffusive can be

expressed as

ΔPα≥0.05
diffusive =

ρQ2

2A2
stenosis

96

5

∫ 1

α

(1 + 4α + 9α2 + 4α3)
α(3 + 2α)(3 + 2α + α2)2

dα

+

∫ L−Lstenosis

0

8πμ
A2

Qdx, (2.15)

and ΔPexpansion as

ΔPα≥0.05
expansion =

ρQ2

2

{(
1

Astenosis
− 1

Adistal

)2

+

[
2

(
1

Astenosis
− 1

Adistal

)
·
(

1

Astenosis
− 1

3

1

Adistal

)
−
(

1

Astenosis
− 1

Adistal

)2
]
(1− α)2

}
. (2.16)

If α < 0.05, the entrance length can be found from the following equation,

πμLentrance

4ρQ
=

1

4

∫ 1

0.05

(1− α)(6 + α)(1 + 4α + 9α2 + 4α3)
5α(3 + 2α)(3 + 2α + α2)2

. (2.17)

⁶Inviscid core: Region of a fluid flow that is assumed to have no viscosity.
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Consequently, ΔPdiffusive can be expressed as

ΔPα<0.05
diffusive =

ρQ2

2A2
stenosis

96

5

∫ 1

0.05

(1 + 4α + 9α2 + 4α3)
α(3 + 2α)(3 + 2α + α2)2

dα

+

∫ L−Lentrance

0

8πμ
A2

Qdx, (2.18)

and ΔPexpansion as

ΔPα<0.05
expansion =ρQ2

(
1

Astenosis
− 1

Adistal

)
·
(

1

Astenosis
− 1

3

1

Adistal

)
. (2.19)

2.1.4 Geometric Data

To investigate morphometrical relationships and simulate CTFFR in
physiologically relevant coronary geometry, we use a dataset of pig coronary
morphometry from Kassab et al. [29]. In this work, the order, length, diameter
and connectivity were measured for the RCA, LAD, and CX. Measurements of
the coronary morphometry were done by constructing and analyzing a polymer
cast of the coronary arteries. To our knowledge, this is the only published dataset
that does a complete mapping of the main branches of the coronary system down
to a diameter of≈ 0.1mm. In contrast, the resolution of CTA does only facilitate
reconstruction of coronary arteries down to a diameter of≈ 1mm [personal
communication, 9/23, 2015]. Therefore, the dataset opens up the opportunity to
investigate the effect of coronary arteries both visible and invisible to CTA.

An investigation from Sahni et al. found that the coronary circulation show
minor differences between pigs and humans [56]. Thus, it should be fair to
assume that the morphometrical characteristics in branching patterns of pig
coronary arteries should be relevant for the human coronary circulation.
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2.1.4.1 Geometric Uncertainty

The main objective of this thesis is to investigate methods to quantify and reduce
the uncertainty of CTFRR. Thus, for most simulations, we are not interested in the
geometric uncertainty of the morphological dataset.

In simulations which consider the geometric uncertainty, we base the
uncertainty on reported values from CTA segmentation. Results from Mazinani
et al. [57] report uncertainties of up to±30% in predictions of coronary artery
diameters. However, this work was published in 2011 and is expected to show a
higher uncertainty than today’s state-of-the-art algorithms. For example,
Sankaran and Taylor [? ] reports a diameter uncertainty of±0.3mm and a length
uncertainty of±1mm in a recent study. In our thesis, we assume a normally
distributed diameter uncertainty with a standard deviation σ = 15%, which is
more consistent with the work done by Sankaran and Taylor. It is important to
note that this number is highly uncertain, and is only meant to give an impression
of the influence of geometric uncertainty for CTFFR.

2.2 CTFFRModel

In this section, we propose a lumped-parameter network model of the coronary
system. First, we describe the building blocks of our model, before we describe
the procedure to obtain an estimate of flow, pressure and FFR in the coronary
system. Also, we describe the relevant uncertainty in the physiological
parameters used in this model.

2.2.1 Lumped-Parameter Network Model

Here, we describe how our lumped-parameter network model is constructed. A
schematic representation of our lumped-parameter network model can be seen in
Figure 2.2.1.
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Poiseuille
Resistance
Stenosis

Veins (ground)

Coronary system

RcRs

Figure 2.2.1: Figure showing the CTFFR model where Pa is arterial blood
pressure, Rs is the systemic resistance and Rc is the total resistance of the
coronary system. Further, the coronary system is divided into three branches
that represents the RCA, LAD and CX. A non-linear stenosis resistance can be
seen in the LAD.
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2.2.1.1 Lumped-Parameter Elements

In this work, we model the pressure over stenosed vessel segments using the
validated lumped-parameter stenosis model by Huo et al. [44]. For healthy
vessels segments, we model the pressure drop using Poiseuille’s law [53], a model
that have been shown to yield acceptable results in several studies [58, 59]. These
models are based on the assumptions of solid walls, steady-state flow, Newtonian
fluid, incompressible flow and straight arteries. Furthermore, the healthy vessel
segments are based on the assumption of laminar flow. The validity of these
assumptions was described in Section 2.1.3.1. The lumped-parameter models are
connected using electric circuit analogy, which was introduced in Section 2.1.3.2.

2.2.1.2 Boundary conditions

The pressure and flow in our fluid domain are governed by the network of
Poiseuille- and Huo elements. Also, our CTFFR model requires specification of a
relationship between flow and pressure at the boundaries of our fluid domain.
This can be specified by a fixed value for pressure and flow at the outlets or inlets,
or by using a mathematical relationship between pressure and flow.

For the inflow to our arterial system, we use fixed values for flow and/or
pressure, in a procedure that will be explained in-depth in Section 2.2.2. For
terminal vessels, we model the micro-vascular and venous system using linear
resistances which is equivalent to a steady-state solution of theWindkessel model.

The most promising way to establish vascular resistances in terminal vessels for
estimation of CTFFR is optimal design principles. There seems to be a widespread
consensus that branching morphology in biological systems is subject to
optimization principles justified by evolutionary morphogenetic arguments
based on natural selection [21–23]. The most prominent and influential
branching model based on optimization principles is Murray’s law. Murray’s law
is derived from the minimization of energy consumption of flow systems in living
organisms [22, 23].
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Formally, Murray’s law is given by

qi ∝ rci , (2.20)

where c is a constant, qi is the flow rate and ri is the vessel radius. According to
Murray’s original work, the metabolic energy consumption is proportional to r2,
while the mechanical energy consumption for laminar flow is proportional to r4,
giving an optimization constant c = 3 [22, 23]. The resistance of a terminal
vessel is given by

Ri ∝ r−c
i , (2.21)

and is used to specify the relative values of terminal resistances. The absolute
values are then determined such that the overall pressure drop corresponds to the
specified boundary conditions for flow and pressure as described in Section 2.2.2.

2.2.2 Solution Procedure

Similar to Itu et al.[27] and Taylor et al. [12], the computation of CTFFR in this
work is based on a two-step algorithm. First, the boundary conditions are
determined in the resting state. Second, we determine the boundary conditions
in the hyperemic state. Once the hyperemic boundary conditions have been
established, an estimate of pressure, flow and FFR can be obtained for different
positions in the coronary system.

2.2.2.1 Resting Conditions

The first step of the solution procedure is to calculate proper boundary
conditions in the resting state. We assume that the values of cardiac outputQco

and myocardial flow fraction (MFF) Λmyo is known in the resting state. MFF
represents the fraction of total aortic flow to the coronary system. Therefore,
myocardial flow is given byQmyo = ΛmyoQco. Further, we assume that the arterial
blood pressure Pa is known in the resting state. Assuming a central venous
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pressure of 0mmHg, calculation of total cardiovascular resistance Rtot, total
coronary vascular resistance Rcor and systemic vascular resistance Rsys is
straightforward and results in

Rtot =
Pa
Qco

, (2.22)

Rcor =
Pa
Qmyo

, (2.23)

Rsys =
Pa

Qco − Qmyo
. (2.24)

As described in Section 2.2.1.2, the relative resistances are given by Murray’s
law. Thus, the resistance of outlet i is given by

Ri =

(
Gmicro

rci∑
k r

c
k

)−1

, (2.25)

where k are the number of vascular outlets andGmicro =
1

Rmicro
is the total

microvascular conductance.

For a linear system of healthy vessel segments, the calculation of the total
microvascular conductanceGmicro is a straightforward procedure that can be done
using basic circuit theory. In contrast, stenosed vessel segments introduce
non-linearities that significantly complicates our solution procedure. In this
work, we introduce a flow split variable so that for each branching junction the
flow in the daughter vesselsQd1 andQd2 is given by the flow in the mother vessel
Qm and the flow split variable Λ

Qd1 = ΛQm, (2.26)

Qd2 = (1− Λ)Qm, (2.27)

where 0 ≤ Λ ≤ 1.

Thus, the system is solved by finding the total microvascular conductance
Gmicro and the split coefficients Λk where k is the number of branching junctions.
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The problem is similar to finding the roots of

g(Λ,Gmicro) = 0, (2.28)

where Λ = [Λ1, . . . , Λk] and the function g is defined as

g(Λ,Gmicro) = Po(Λ,Gmicro)− Qo(Λ,Gmicro) · Ro(Gmicro) (2.29)

where Po, Qo and Ro are the vectors of outlet pressures, outlet flows and outlet
resistances, respectively. Once the total microvascular condutance is calculated,
the calculation of the absolute value of terminal resistances are trivial.

2.2.2.2 Hyperemic Conditions

The next step is to model the hyperemic response. In the clinic, a hyperemic
response is triggered by intravenous or intracoronary injection of the
vasodilatory drug adenosine and leads to an increase in coronary flow velocity by
a factor of 4.5 in normal, healthy subjects [60]. Similarly to the work of Taylor et
al. [12] and Ito et al. [27], we model the effect of adenosine by reducing the
resting terminal resistances by a factor commonly referred to as the Total
Coronary Resistance Index (TCRI). TCRI is defined as the ratio of hyperemic to
normal coronary resistance. Thus, the hyperemic outlet resistance Rh,i for a
terminal outlet i is given by

Rh,i = Ri · TCRI. (2.30)

We model the effect of adenosine by an approach similar to the work of Itu et
al. [27]. This involves holding the total cardiac output constant and using the
arterial pressure Pa as a free variable. Thus, we want to find the roots of

h(Λ, Pa) = 0, (2.31)
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where the function h is defined as

h(Λ, Pa) = Po(Λ, Pa)− Qo(Λ, Pa) · Rh. (2.32)

and Rh is a vector of the hyperemic terminal resistances.
The presented hyperemic model is equivalent to model coronary inflowQcor

during hyperemia as a function of the coronary resistance Rcor. Using this
method, the model is in good agreement with empirical results that finds a strong
correlation between coronary flow reserve⁷ and FFR [61].

2.2.2.3 Non-Linear Multidimensional Root Finding

Finding the roots of Equation 2.28 and Equation 2.31 for diseased coronary
arteries involves a complex non-linear multidimensional root finding problem.
The problem is complicated by the fact that non-linear lumped elements prohibit
an analytical solution of the Jacobian⁸.

To solve this problem, we use the HYBRD algorithm from Scipy [62] and
MINPACK [63]. The HYBRD algorithm is based on a modified version of
Powell’s hybrid method. This method is based on a sophisticated hybrid of
Newton’s method and the gradient descent method. Here, the Jacobian is
calculated by a forward-difference approximation. To lower the number of
required function evaluations, HYBRD uses a relaxation technique to update the
Jacobian and do not require a complete recalculation of the finite difference
approximation at every solution step [63].

2.2.3 Uncertainty of Physiological Parameters

Physiological parameters for CTFFR can be derived with different methods where
the most straight-forward way is by using population-based statistics. Another
method to establish physiological parameters for CTFFR is by using information
from CTA. Anatomical data from CTA contains a wealth of information since

⁷Coronary flow reserve: ratio of hyperemic to resting flow rate
⁸Jacobian: Matrix of first-order partial derivatives of a vector-valued function.
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”form follows function” in physiological systems [64]. In the vascular system,
allometric⁹ scaling laws are critical for enabling the physiological system to
deliver blood at an appropriate flow rate and pressure [12]. Last, physiological
parameters for CTFFR can be estimated by supplementary clinical data.

Here we present relevant data to establish the uncertainty in physiological
parameters forCTFFR. The relevant physiological parameters for ourCTFFR model
are cardiac output, mean arterial pressure, MFF, flow distribution parameters,
microvascular vasodilatory response, blood viscosity and blood density.

2.2.3.1 Cardiac Output

Experimental results have found a cardiac output of between 4− 8 L/min in
healthy adults [65]. Here, we model the uncertainty in cardiac output as a
uniform random variable with a lower value of 4 L/min and an upper value of
8 L/min.

2.2.3.2 Mean Arterial Pressure

In a study by Sesso et al. of 11 150 male physicians with no history of
cardiovascular disease, the mean arterial pressure (MAP) was found to be
93.0± 7.6(mean± SD)mmHg [66]. Thus, we model mean arterial pressure as a
normal distributed random variable with mean μ = 93.0mmHg and a standard
deviation σ = 7.6mmHg.

2.2.3.3 Myocardical Flow Fraction (MFF)

The heart consumes over 75% of the oxygen delivered to it at rest, and thus no
significant oxygen reserve exists [67]. Therefore, the heart has limited ability to
increase oxygen extraction during conditions of decreased inflow. There is
limited evidence of altered MFF in coronary artery disease [67]. Results from
Pijls et al. show a myocardial blood flow between 4− 5% of total cardiac output

⁹Allometry: Allometry describes how the characteristics of living organisms change with size.
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[68]. Therefore, we model the uncertainty in the MFF as a uniformly distributed
random variable with a lower value of 4% and an upper value of 5%.

2.2.3.4 Flow Distribution

As discussed earlier in this chapter, the flow distribution to terminal vessels is
governed by Murray’s law. Despite the solid scientific evidence, there is a wide
discrepancy in the reported values of Murray’s coefficient. In this thesis, we
model Murray’s coefficient c as a uniform random variable with a lower value of
2.4 and an upper value of 3. An in-depth discussion of Murray’s law and relevant
values of Murray’s coefficient is presented in Chapter 5.

2.2.3.5 Microvascular Vasodilatory Response

The most widely used metric for microvascular vasodilatory response is TCRI,
which is defined as the ratio of hyperemic to normal coronary resistance. A mean
value of TCRI = 0.22 has been obtained during various studies. It is reported to
increases from 0.22, for a heart rate less than 75bpm, to 0.26, for a heart rate of
100bpm, and to 0.28 for a heart rate of 120bpm in healthy subjects or subjects
with mild coronary artery disease [69]. In this thesis, we assume a physiological
range of 0.15− 0.3. This is in good agreement with Sankaran and Taylor [20]
who inferred a lower and upper 95% confidence bound of TCRI that
corresponds to 65% and 130% of the mean (TCRI = 0.22) in patients without
microvascular disease¹⁰.

2.2.3.6 Blood Viscosity

Similarily to Sankaran and Taylor [? ], we model the blood visosity as a function
of hematocrit¹¹ (Hct) and the viscosity of plasma μp (0.0011 Pa · s)

μ =
μp

(1− Hct)2.5
. (2.33)

¹⁰Microvascular disease: Disease that affects the tiny arteries of the arterial system.
¹¹Hematocrit: Volume percentage of red blood cells in blood.
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Values of hematocrit have been reported as 0.45± 0.08 (mean± SD) [70].
Thus, wemodel the uncertainty of blood viscosity through a normally distributed
random variable for hematocrit.

2.2.3.7 Blood Density

Hinghofer-Szalkay and Greenleaf found the blood density to be in the range of
1043− 1057 kg/m3 [71]. Here, we model the uncertainty of the blood density
as a uniformly distributed random variable with a lower value of 1043 kg/m3 and
an upper value of 1057 kg/m3.

2.3 Summary

In this chapter, we propose a lumped-parameter CTFFR model to investigate
methods to quantify and reduce uncertainty in CTFFR models. The simplified
model is based on principles from the most prominent work in the field of CTFFR.
First, we present the governing theory for zero-dimensional fluid-dynamical
models, also called lumped-parameter models. Second, the lumped-parameter
models are used as building blocks to construct a complete model of the
coronary vasculature using principles from electric circuit analogy. Finally, the
model is completed using a physiological model to calculate boundary
conditions and simulate the effect of maximal hyperemia.

Also, we present the coronary geometry dataset used for the experiments in
this thesis. The dataset is based on published data from Kassab et al. [29] and is a
result of the construction and analysis of a polymer cast of pig coronary arteries.
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If you can’t explain it simply, you don’t understand it well
enough.

Albert Einstein

3
UncertaintyQuantification and

Sensitivity Analysis

In this chapter, the governing theory of uncertainty quantification (UQ) and
sensitivity analysis (SA) is presented. For a more in-depth investigation of
uncertainty quantification and sensitivity analysis, we refer to the work of R.C
Smith,Uncertainty Quantification: Theory, Implementation, and Applications [72].

3.0.1 Uncertainty Quantification (UQ)

Uncertainty quantification is the science of quantitative characterization of
uncertainty and is used to characterize uncertainties and give reliable predictions
for practical problems. UQ tries to find how likely some outcomes are in a system
where some aspects of the system are not exactly known.

In this thesis, we distinguish between two broad types of uncertainty
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quantification problems. The first type is forward propagation of uncertainty,
where the uncertainty of input parameters is propagated to determine the overall
uncertainty of our model. The second is backward propagation of uncertainty
where the uncertainty of input parameters are inferred from the observed model
output.

3.0.1.1 Forward Propagation of Uncertainty

In forward propagation uncertainty, we want to quantify a response Y (e. g. FFR)
of a computational science problem. We take in uncertain input parameters Z
and compute the problem by a functional black box f (forward model)

Y = f(Z), (3.1)

where random variables are represented by upper case letters. Here, Z is a vector
of model parameters and may include material or geometric model parameters
like blood density or aortic diameters. Note that Y is represented as a single
variable, but can also be a vector of outputs [73, 74].

The literature contains a wide variety of methods for forward propagation of
uncertainty [75]. In general, the choice method depends on the computational
effort, accuracy and the characteristics of the problem. For example, approximate
models, often called metamodels, have been shown to drastically reduce the
computational effort in computer-aided engineering applications [76]. In this
work, we utilize a combination of Monte Carlo (MC) simulations and
metamodelling techniques, e.g. generalized polynomial chaos (PC) and random
forest (RF) for forward propagation of uncertainty.

3.0.1.2 Backward Propagation of Uncertainty

In backward propagation uncertainty, we want to infer probability distributions
of uncertain input parameters Z, from an observed model output yobs subject to
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noise ε

yobs + ε = f(Z). (3.2)

where the uncertain input parameters could be both unobserved and observed.
The general problem of determining input parameters from the observed model
output is called an inverse problem and could be of both deterministic and
probabilistic nature [77].

In general, backward propagation is a more difficult problem than forward
propagation and several ways to approach this problem exists. In this thesis, we
rely on the Bayesian approach for backward propagation of uncertainty that
establishes a convenient probabilistic framework for inverse problems. In
particular, modern Bayesian inference offers convenient tools to infer
distributions of unobserved model parameters, often called hidden or latent
variables [78].

3.0.2 Sensitivity Analysis (SA)

Sensitivity Analysis (SA) is used to quantify how the uncertainty in the output of
a model can be apportioned to different sources of uncertainty in the model
input [79]. In practice, SA is used to determine which input parameters are
important and which input parameters are less important to the overall response
of our system.

SA methods are divided into local and global methods, depending on the
range of input values considered. Local SA aims to quantify the local impact of
input parameters and is based on the computation of the gradient of the output
with respect to its input parameters around a nominal input value [80]. Typically,
local SA is performed by perturbing one input variable at a time, while holding
the other input variables constant, a procedure that is analogous to the partial
derivative.

Global SA aims to quantify the sensitivity of model output with respect to
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Local sensitivity analysis
Global sensitivity analysis

Figure 3.0.1: Schematic figure showing the difference between local and
global sensitivity analysis for a function of two input variables (represented
by the horizontal axes) . In local sensitivity analysis, the sensitivity of the out-
put to one input variable is quantified while holding the other input variable
constant. In contrast, global sensitivity analysis quantifies the sensitivity of the
output with respect to the input variables over the whole input space.

model inputs over the whole input space. Global SA methods were developed to
overcome the limitations of local methods (locality, linearity, and normality
assumptions) and has attracted major interest among numerical modelers [81].
A particularly important class of global SA methods is called variance-based SA.
Variance-based SA decomposes the variance of the model output into fractions
that can be attributed to a specific input variable or sets of inputs [81].

3.1 Background

Consider the model described earlier in this chapter where we want to quantify
the response Y

Y = f(Z), (3.3)

which is determined by the functional black box f and the input parameters Z,
where Z and Y are random variables. In this section, we define the basic statistical
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tools and notation used to describe and model random variables throughout this
thesis.

3.1.1 Probability distribution functions

A probability distribution function is a function which is used to describe a
particular probability distribution. In this thesis, the term probability
distribution function might refer to a probability density function (PDF) or a
cumulative distribution function (CDF)

The PDF ρY for a random variable Y is given by

p[a ≤ Y ≤ b] =
∫ b

a
ρY(y) dy, (3.4)

where p[a ≤ Y ≤ b] is the probability of Y being in [a, b] and ρY is a non-negative
Lebesgue-integrable function [82]. Further, the CDF FY is given by

FY(y) = p(Y ≤ y) = β, (3.5)

where Y is a real-valued random variable. In addition to the PDF and CDF, the
inverse CDF

F−1
Y (β) = y, (3.6)

is frequently used through this thesis. The inverse CDF is also referred to as the
percent point function or the quantile function in the literature [83].

3.1.2 Moments

Some important characteristics of the random variable Y are the expected value
and variance, also known as the first and second moment. The expected value is
given as

μY = E[Y] =
∫
ΩY

yρY(y) dy, (3.7)
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and the variance is

σ2Y = V[Y] =
∫
ΩY

(y− E[Y])2ρY dy, (3.8)

whereΩY is the output space and ρY is the PDF associated with the output Y. The
expected value or mean μY can be regarded as the most likely value of the random
variable Y or the ”center” of Y. The standard deviation σY, is the square root of the
variance and it is a measure of the spread or dispersion of Y around μY [84].

3.1.3 Prediction intervals

A prediction interval is an estimate of an interval, in which future observations
will fall in with a certain probability, given what has already been observed. The
prediction interval is given by

I =
[
F−1
Y (α), F−1

Y (ᾱ)
]
, (3.9)

where the value of α and ᾱ depends on the choice of interval. The most common
choice is to center the interval on the median, such that the probability of a future
observation to lie below or above the integral is the same. This gives that α = β/2
and ᾱ = 1− β/2, and is called a central prediction interval. Examples of other
intervals are shortest-length intervals and highest-density regions [85].
Prediction intervals are often confused with confidence intervals, which are
intervals associated with a population parameter instead of future observations.

3.1.4 Sensitivity indices

In SA, we want to identify the effect of uncertain inputs Zi, i = 1, 2, ...,D on the
model response Y, either by itself or through interaction with other inputs and
find the expected reduction in the uncertainty of Y if an uncertain input
parameter Zi were to be known. To quantify this, we use the global,
variance-based sensitivity indices introduced by Sobol [86].

The first-order Sobol sensitivity index, also called the main sensitivity index,
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gives the direct effect of an uncertain input Zi on the output Y. It shows the
expected reduction inV[Y] that would happen if Zi would be its unknown true
value and is defined by

Si =
V[E[Y | Zi]]

V[Y]
, (3.10)

whereE[Y | Zi] is the estimated value of Y conditioned on Zi. The main
sensitivity index is useful for determining the effect of the various inputs on the
output, and also for deciding which input parameters should be assessed more
carefully. The second-order sensitivity indices shows the part ofV[Y] that results
from the interaction between two uncertain input parameters, Zi and Zj and is
given by

Sij =
V[E[Y | Zi,Zj]]

V[Y]
. (3.11)

The total sensitivity index was introduced by Homma and Saltelli [87] to be able
to consider all interaction effects without having to estimate all higher-order
sensitivity indices. The total sensitivity index is the sum of all first and higher
order effects where Zi is involved [87]. It is defined by

ST,i =
V[Y]− V[E[Y | Z−i]]

V[Y]
= 1− V[E[Y | Z−i]]

V[Y]
, (3.12)

where Z−i is the set of all uncertain inputs except Zi. The total sensitivity index is
a metric measure of the part ofV[Y] caused by both the direct effect of Zi and all
interaction effects of input Zi. The accumulation of all higher order interactions is
given by ST,i − Si, where a difference of zero indicates that no interactions is
present. Since the uncertainty in the input values are not important when ST,i has
a value close to zero, ST,i is useful to determine which input parameters can be
given a fixed value within their uncertainty domain [74].
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3.1.5 Modelling Random Variables: Rosenblatt transformation

When doing numerical methods for UQ, it is necessary to createN
pseudo-random realizations {z(s)}Ns=1 from the probability density function ρZ.
Each z(s) ∈ {z(s)}Ns=1 is multivariate with the number of dimensionsD > 1,
where the number of dimensions signify the number of input variables. Finding
realizations from ρZ can be difficult, especially for largeDs. In UQ, it is common
to make the assumption that each dimension in Z consists of stochastically
independent components, which allows for a joint sampling scheme to be
reduced to a series of univariate samplings. This assumption significantly
simplifies the generation of samples z(s) [73].

Alas, the assumption of independence is not always valid in practice, and
modeling of stochastically dependent variables are often necessary for proper
UQ. In this thesis, we use the open-source toolbox Chaospy, which has strong
support for stochastic dependence [73].

All random samples in Chaospy are created using Rosenblatt transformations
TZ. A random variable U that is generated uniformly on a unit hypercube [0, 1]D,
can then be transformed into Z = T−1

Z (U), which behaves as if it was drawn from
the density ρZ. It is not difficult to generate pseudo-random samples from a
uniform distribution, and the Rosenblatt transformation can then be used to
generate samples from arbitrary densities [73].

The Rosenblatt transformation can be derived by considering the density
decomposition of a multivariate random variable Z

ρZ(z) =
D−1∏
d=0

ρZ′d(z
′
d), (3.13)

where

Z′
d = Zd | Z0, . . . ,Zd−1 and z′d = zd | z0, . . . , zd−1, (3.14)

which means that Zd and zd is dependent on every component with a lower
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index. The forward Rosenblatt transformation can now be defined as

TZ(z) = (FZ′0(z
′
0), . . . , FZ′d−1

(z′d−1)), (3.15)

where FZ′d is the cumulative distribution function:

FZ′d(z
′
d) =

∫ zd

−∞
ρZ′d(r|z0, . . . , zd−1) dr. (3.16)

The inverse Rosenblatt transformation can be found in a similar way since the
transformation is bijective¹ [73].

Practical use of the Rosenblatt transformation requires identification of the
inverse Rosenblatt transformation T−1

Z . Since TZ is often a non-linear function
without a closed-form formula, analytical calculation of T−1

Z could be intractable.
Thus, we apply numerical methods to find T−1

Z . For further interest, we
recommend the Chaospy article by Feinberg et al. [73].

3.1.6 Approximate Models

An option to reduce the computational cost of uncertainty quantification and
sensitivity analysis is to use approximate models or metamodels. Consider the
model described earlier in this chapter where we want to quantify the response Y

Y = f(Z). (3.17)

and we define an approximate model fa so that fa ≈ f. The model error Em of this
approximation is given by

Em =
1

N

N∑
s=1

(
ŷ(s) − y(s)

)2
(3.18)

where ŷ is the output of the approximate model fa, y is the output of the native
model f andN is the number of samples evaluated.

¹Bijective function (y = f(x)): one-to-one correspondence between x and y.
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Similarly, the sensitivity error Es is given by

Ep =
1

J

D∑
j=1

((
Ŝj − Sj

)2
+
(
ŜT,j − ST,j

)2)
(3.19)

where Ŝ is the Sobol indices from the approximate model fa, S is the Sobol indices
from the native model f andD is number of uncertain input parameters.

3.2 ForwardUncertainty Analysis

As described earlier in this chapter, forward uncertainty analysis is the analysis of
the uncertainty in our model output, given uncertain input parameters. Here, we
outline the methods for forward uncertainty analysis used in this thesis. These
methods include the MC method, two metamodels for UQ and SA, generalized
PC and RF, and a method for local qualitative SA, the elementary effects (EE)
method.

3.2.1 Monte Carlo (MC) Method

The MC method is the most common way to find the mentioned uncertainty and
sensitivity measures due to its simplicity and applicability to a broad range of
problems. The MC method starts by using a sample method to draw a set of
samples for the inputs, {z(s)}Ns=1. The samples are drawn from an input spaceΩZ

defined by the joint probability density function of the inputs, ρZ. A set of
outputs {y(s)}Ns=1 is found by evaluating the deterministic model f(z) for each
sample in {z(s)}Ns=1. All of the uncertainty measures and sensitivity indices
mentioned can then be found directly from {y(s)}Ns=1.
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Sampling schemes

Pseudo-random sampling
Pseudo-random sampling is based
on sequences of pseudo-random
numbers. These sequences are
widely available in modern packages
for data analysis.

LatinHypercube sampling
A Latin square is a square grid
containing sample positions, where
there is only one sample in each row
and each column. Latin hypercube is
the generalization of this for an arbi-
trary number of dimensions [88].

Sobol sampling
Sobol sequences use a base of two to
form successively finer uniform par-
titions of the unit interval, before the
coordinates are reordered in each di-
mension [89].

Halton sampling
The Halton sequence is constructed
in accordance with a deterministic
method which has bases consisting
of coprime numbers [90].
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Random sampling with the Monte Carlo method gives an asymptotic
approximation error of σY/

√
N [91]. This shows that the convergence rate is

independent of the number of dimensionsD, but might require very largeNs for
the asymptotic error estimate to be valid. Thus, it could be challenging or
infeasible to find accurate estimates for computationally expensive models. It is
possible to improve the convergence rate by using alternative sampling schemes.
Examples of alternative sampling schemes are displayed in the text box above,
and include Latin hypercube sampling [88] and quasi-random sampling methods
[92]. These schemes improve sampling by preventing clustering of samples and
ensure that the samples cover the entire input space [92].

Quasi-random sampling, also known as quasi-MC schemes, include methods
such as Sobol and Halton sequences. The quasi-MC method consists of choosing
samples {z(s)}Ns=1 from a low-discrepancy sequence instead of a pseudo-random
sequence. This is done to improve the coverage over the sample space, which
makes it possible to reach a given accuracy with fewer samples [73].

3.2.1.1 Monte Carlo: Uncertainty Quantification

From the evaluations of Y the expected value and variance can be estimated as

E[Y] ≈ EMC[Y] =
1

N

N∑
s=1

y(s), (3.20)

and

V[Y] ≈ VMC[Y] =
1

N− 1

N∑
s=1

(
y(s) − EMC[Y]

)2
. (3.21)

3.2.1.2 Monte Carlo: Sensitivity Analysis

Using the MC method for estimating the main and total sensitivity indices
requires a total number of 2DN2 evaluations. To reduce this number, Saltelli
devised an alternative MC method that reduces the total number of evaluations
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toN(D+ 2) [74, 93].

In Saltelli’s efficient numerical procedure for estimating the main and total
sensitivity indices, the first step is to create two independent sampling matrices,
A and B. A consist of N samples z(s) = [z(s)1 , z(s)2 , . . . , z(s)D ], and B consist of
z′(s) = [z′(s)1 , z′(s)2 , . . . , z′(s)D ]. The second step is to use A and B to create a
number ofDmatrices Ci, i = 1, 2, . . . ,D. In Ci, all columns are taken from B
except the i-th column, which comes from A. The third step involves calculating
the model evaluations for each row in all of the sample matrices

y(s)A = f(A(s)), y(s)B = f(B(s)), y(s)Ci
= f(C(s)

i ) (3.22)

where s denotes the sth row in the matrices. The main sensitivity indices from Eq.
3.10 are then estimated as

Si ≈
Ui − EMC[Y]2

VMC[Y]
, (3.23)

where

Ui =
1

N− 1

N∑
s=1

y(s)A y(s)Ci
, (3.24)

and the expected value and variance is estimated as

EMC[Y]2 =
1

N

N∑
s=1

y(s)A y(s)B (3.25)

VMC[Y] =
1

N− 1

N∑
s=1

(y(s)B )2 − EMC[Y]2. (3.26)

For the total sensitivity indices in Eq. 3.12 we get

ST,i ≈
U′

i − EMC[Y]2

VMC[Y]
, (3.27)
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where

U′
i =

1

N− 1

N∑
s=1

y(s)B y(s)Ci
, (3.28)

and

EMC[Y]2 =

(
1

N

N∑
s=1

y(s)A

)2

, (3.29)

VMC[Y] =
1

N− 1

N∑
s=1

(y(s)A )2 − EMC[Y]2. (3.30)

3.2.2 Polynomial Chaos Method

The PC method is a metamodel method that can be used to approximate
uncertainty and sensitivity measures. The PC method is based on Wiener’s
theory of homogeneous chaos [94], which gives optimal convergence for
Gaussian stochastic processes. A generalized PC method has been developed
later, which gives optimal convergence for more general stochastic processes as
well. For simplicity, we will refer to the generalized PC method as the PC
method throughout this thesis [95].

In the PC method, the model response Y is expanded into a series of
orthogonal polynomials that are functions of the inputs Z [96], where the
orthogonal polynomials are basis functions which cover the output space. The
method results in a polynomial chaos expansion that is an analytic expression
which can be used to obtain the uncertainty and sensitivity measures with great
simplicity [74].

The PC expansion is expressed in terms of the orthogonal polynomials and
expansion coefficients. For functions with a small or moderate number of input
parameters, the expansion coefficients can be calculated with a much lower
number of samples compared with the MC method [80, 97]. This makes the PC
method an excellent alternative to the MC method for many cases. In this thesis,
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we use the PC implementation in the Chaospy toolkit [73].

3.2.2.1 Polynomial chaos expansions

In the original PC method, Wiener represented a stochastic process through a
spectral expansion using orthogonal polynomials as

Y =
∞∑
j=0

cjHej(Z), (3.31)

whereHej is the Hermite polynomial of order j and cj is the corresponding
deterministic coefficient, which is calculated from a limited number of model
simulations [95].

In the PC method, the polynomial of choice is based on the corresponding
random variable, which builds on the principle that random processes can be
approximated fairly good using orthogonal basis functions given by the Askey
scheme (Table 3.2.1) in terms of the corresponding random variable. Inputs and
outputs of the system under consideration are represented with series
approximations using standard random variables. This results in computationally
efficient methods for measuring uncertainty propagation in complex numerical
models. The representation of the output is made up of the same random
variables that are used to represent the input, which makes it possible to express
the output in the form of a series expansion consisting of orthogonal polynomials
in terms of the corresponding multi-dimensional stochastic variable. Thus, the
expression of the output Y is given as

Y ≈ fPC(Z) =
∞∑
j=0

cjΦj(Z), (3.32)

where Z is the multi-dimensional stochastic variable. Each dimension in Z
consist of components that are independent and identically distributed (iid) and
Φj(Z) is the generalized Askey-Wiener polynomial chaos of order j [95, 96].

For simplicity, it is common to truncate the series to a finite number of terms.
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The expression of the output Y can then be rewritten to

Y ≈ fPC(Z) =
Np−1∑
j=0

cjΦj(Z), (3.33)

whereNp =
(D+p

p

)
. HereD is the number of random variables and p is the

maximum order of the polynomial basis functions [95].
The idea behind the pairing of the polynomial basis functions and the random

variables is that the orthogonal polynomials of the Askey scheme have the
weighting function in their orthogonality relation identical to the probability
density function of the distribution of the corresponding stochastic variable
[95, 96]. The correspondence between the random variables and polynomial
basis functions is given in Table 3.2.1.

Askey scheme
Distribution of Z gPC basis polynomials Support

Continuous Gaussian Hermite (−∞,∞)
Gamma Laguerre [0,∞)
Beta Jacobi [a, b]
Uniform Legendre [a, b]

Discrete Poisson Charlier 0, 1, 2, ...
Binomial Krawtchouk 0, 1, ...,N
Negative binomial Meixner 0, 1, 2, ...
Hypergeometric Hahn 0, 1, ...,N

Table 3.2.1: Correspondence between random variables and polynomial basis
functions [84]

3.2.2.2 Calculation of expansion coefficients

The PC expansion coefficients can be calculated either intrusively or
non-intrusively. For calculations using intrusive methods, it is necessary to
incorporate information about the underlying forward model f in the estimation
of the expansion coefficients while non-intrusive methods only require the
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information of f for the computational procedures [73].

Intrusive calculation of the coefficients can be performed using the Galerkin
projection method, where each state variable is projected onto the polynomial
chaos basis. Finding the coefficients with an intrusive method can be nontrivial
or even impossible for complex and nonlinear problem statements. However, it is
important to keep in mind the accuracy of the different methods and that the
Galerkin projection method ensures optimal accuracy. Nevertheless, for a
complex system for which well-established deterministic codes exist,
non-intrusive methods are most common [84, 95]. In this thesis, we use the
Chaospy toolbox [73] which is well-supported for non-intrusive methods.
Hence, we focus on non-intrusive methods for the rest of this thesis. For readers
with a further interest in the Galerkin projection method, we recommend Xio’s
bookNumerical Methods for Stochastic Computations: A Spectral Method Approach
[84].

There are two commonly used approaches to estimate the PC expansion
coefficients non-intrusively: pseudospectral projection and stochastic
collocation. The former method uses the orthogonality of the polynomials and
requires a numerical integration scheme where specific input samples have to be
used while the latter solves a linear system that comes from a statistical regression
formulation [73, 74]. A more thorough review of both methods will be given in
the next paragraphs.

3.2.2.3 Pseudospectral projection

In the pseudospectral projection approach, also called spectral or discrete
projection, each expansion coefficient cj is found by projecting the solution onto
the space spanned by the orthogonal polynomials with the inner product. With
use of the orthogonality property∫

Ωz

ΦiΦjρZ dz = δijHi, (3.34)
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where δij is the Kronecker delta andHi is the normalization factor for the
polynomial Φi, we can set up an expression for the expansion coefficients

cj =
1

Hj

∫
ΩZ

f(z)Φj(z)ρZ(z) dz. (3.35)

A numerical integration scheme can know be used to approximate the integral.
Since the integrands are smooth polynomials, they can be approximated fairly
accurately with tensor or sparse grid quadrature [74]. The approximated
expression for cj is then

cj ≈
1

Hj

N∑
j=1

f(z(s))Φj(z(s))ws, (3.36)

where ws are weights and z(s) are nodes in a quadrature scheme. In tensored
quadrature methods, the number of samples isN = (N1D)

D, whereN1D is the
number of nodes in the one-dimensional quadrature rule. Thus, the number of
samples,N, will become very large for largeDs, and it can therefore be
problematic to use this method for higher-dimensional problems. Luckily, this
problem can be solved with sparse grid quadrature. Sparse grid quadratures are
constructed from one-dimensional quadrature rule using Smolyak’s algorithm
[98]. When using the same one-dimensional quadrature rule,N for the sparse
quadrature is less than for the tensored quadrature. Unfortunately, an additional
approximation error is also introduced [73, 74].

3.2.2.4 Stochastic collocation method

The stochastic collocation method, also referred to as the point collocation- or
regression method, minimizes a normed difference between the polynomial
chaos expansion and the model evaluations at a set of collocation nodes. This can
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be expressed as the solution of

argmin
c

∥∥∥∥∥∥f(Z)−
Np−1∑
j=0

cjΦj(Z)

∥∥∥∥∥∥ , (3.37)

where any norm Lq given by ||(·)||q = (
∑

(·)q)
1
q can be used. For a L2-norm we

will get the following linear least squared problem

Ac = y, (3.38)

where

A =Φj(z(s)), 0 ≤ j ≤ Np − 1, 1 ≤ s ≤ N (3.39)

c =cj, 0 ≤ j ≤ Np − 1 (3.40)

y =f(z(s)), 1 ≤ s ≤ N. (3.41)

It is necessary that the number of samples,N, is equal or greater than the number
of expansion coefficientsNp. To obtain a good least squares optimazation it is
recommended to use at leastN = 2Np [74], which will give you an
overdetermined system where the best approximation for c is given by

c = (ATA)−1ATy. (3.42)

Any sampling scheme that covers the entire input domain can be used to obtain
the samples. This leads to a required number of samples that is less than what
would be needed for the pseudospectral approach, especially for
higher-dimensional problems [74].

3.2.2.5 Polynomial Chaos: Uncertainty Quantification

From a polynomial chaos expansion, the statistical moments can be found
directly by use of the orthogonality property in Eq. 3.34 and the zero-mean
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property

E[Φj] =

∫
Ωz

Φj(z)ρZ(z) dZi =

0, j ̸= 0

1, j = 0
(3.43)

From the definitions of the statistical moments in section 3.1.2 we get that the
expected value is given by

E[Y] ≈ EPC[Y] =
∫
Ωz

Np−1∑
j=0

cjΦj(z)ρZ dz = c0, (3.44)

and the variance is given by

V[Y] ≈ VPC[Y] = E
[
(fPC(Z)− EPC[Y])2

]
=

∫
Ωz

(fPC(z)− c0)2ρZ(z) dz

=

∫
Ωz

Np−1∑
j=0

cjΦj(z)

2

ρZ(z) dz − c20

=

Np−1∑
j=0

c2j

∫
Ωz

Φ2
j (z)ρZ(z) dz − c20

=

Np−1∑
j=0

c2j Hj − c20 =
Np−1∑
j=1

c2j Hj. (3.45)

3.2.2.6 Polynomial Chaos: Sensitivity Analysis

The main and total sensitivity indices can be found directly using the PC
expansion. For this purpose, it is beneficial to introduce the multi-indices
α = (α1, . . . , αD), which can be used to constructΦ from univariate polynomials
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Φ(Zi)with tensor products

Φα(Z) =
D∏
i=1

Φαi(Zi), (3.46)

whereΦαi is the univariate polynomial of order αi. This relation can be used to
express the truncated polynomial chaos expansion of an output as

Y ≈ fPC(Z)
∑
α∈A

cαΦα(Z), (3.47)

whereA is the set ofNp =
(D+p

p

)
multi-indices α for all polynomials with a

maximal order p [74, 80].

Using α, the variance expressed in section 3.2.2.5, be expressed as

V[Y] ≈ VPC[Y] =
∑
α∈A

V [cαΦα(Z)] =
∑
α∈A

c2αHα. (3.48)

By usingV[Y], the main sensitivity index can be approximated by

Si ≈
1

VPC[Y]

∑
α∈Ai

V [cαΦα] , (3.49)

where

Ai =
{
α | αi > 0 ∧ αj = 0 ∀j ̸= i

}
, (3.50)

and the total sensitivity index can be approximated as

ST,i ≈
1

VPC[Y]

∑
α∈AT,i

V [cαΦα] , (3.51)

where

AT,i = {α | αi > 0} . (3.52)
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3.2.3 Random Forest (RF) Metamodel

As described earlier in this chapter, UQ and SA can be performed using
metamodels. The main reason for using metamodels, also referred to as
emulators or surrogate models, is to speed up the computational procedure.
Despite this, several of the most popular metamodels for UQ and SA show poor
scalability to high-dimensional problems [99].

With a steady-growing complexity of computational models, an interesting
question for future research is the investigation of methods for SA with sufficient
accuracy and computational efficiency in high-dimensional input spaces. One
way to achieve this is to utilize metamodels with good predictive capabilities in
high-dimensional spaces. Provided that the computational performance of the
metamodel is much higher than the original model, variance-based sensitivity
analysis can be performed on the metamodel using the method described by
Saltelli et al. [93]. Thus, Sobol indices in high-dimensional spaces can be
obtained using a three-step method

1. Sample from the original model.

2. Train the metamodel using the obtained samples.

3. Calculate the Sobol indices using Monte Carlo sampling from the trained
metamodel.

In this thesis, we use the term Generalized Metamodel Sensitivity Analysis
(GMSA) to describe the three-step method for SA outlined in this paragraph.

An interesting class of metamodels for GMSA is machine learning algorithms.
Machine learning is a subfield of computer science, which aims to construct
algorithms that can learn from and make predictions on data. Several authors
have investigated the feasibility of machine learning metamodels for GMSA. For
example, results from Li et al. show that an artificial neural network² metamodel
can give a good approximation of parameter sensitivity [100]. Further,

²Neural network: Neural networks are a family ofmachine learningmodels inspired by biolog-
ical neural networks.

54



Sathyanarayanamurth et al. [101] investigated several machine learning
metamodels and found that the metamodels gave accurate approximations of
parameter sensitivity, provided that proper care is taken to avoid issues like
overfitting³. In this work, we use GMSA based on the random forest algorithm to
approximate Sobol indices. This is similar to the approach by Storlie et al. [102]
that utilized GMSA to estimate variance-based sensitivity for a broad range of
nonparametric regression procedures, including RF. Their result showed that a
RF metamodel was able to give good qualitative sensitivity indices, but with
some inaccuracies in their absolute values.

3.2.3.1 Random Forest (RF)

RF is a notion of the general method of random decision forests, which are an
ensemble learning method for classification and regression [103, 104]. An
ensemble method is a method that uses several learning algorithms to obtain
better predictive performance than a constituent learning algorithm [105]. The
random decision forest method has its name from the fact that it constructs
multiple decision trees. For regression, the decision trees are built at training
time, and prediction is given by an ensemble average of the trees. A more detailed
description of the RF algorithm is provided in Random forests by Breiman [106].
An advantage of the random decision forests is that it corrects for decision trees
habit of overfitting to their training set. It is also known to give accurate
prediction with a minimum of required tuning [107]. The main steps in the RF
algorithm are outlined in the text box below.

³Overfitting: A statistical model is overfitted when it describes random noise instead of the
underlying relationship.
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RandomForest Algorithm

• A training set is created by taking a subset of the entire dataset.

• Several decision trees are created by clustering of data into groups and
subgroups.

• At each split of a decision tree, variables are chosen at random to deter-
mine the relationship between data points (Note that due to the ran-
dom choice of variables, all decision trees will be different).

• A cross-validation procedure is used to find which decision trees gives
the highest predictive performance.

• The output of the algorithmwill be an ensemble average of the chosen
decision trees.

3.2.3.2 RandomForest: UncertaintyQuantificationandSensitivity
Analysis

In this work, we use GMSA to approximate the Sobol indices from the RF
metamodel. The choice of a RF metamodel is based on two important
characteristics. First, the RF algorithm is recognized by its ability to yield
accurate prediction with small sample sizes and high-dimensional feature spaces
[108]. Second, a recognized feature of the RF algorithm is the high
computational efficiency during prediction [109]. Despite this, limited research
exists on the connection between metamodel predictive accuracy and accuracy
of the estimated Sobol indices. Therefore, the RF-based GMSA method is
benchmarked against conventional methods on lower-dimensional problems in
Chapter 4.
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3.2.4 Elementary Effect (EE) Screening

Screening methods provide an alternative to variance-based methods for
sensitivity analysis for models with high-dimensional input spaces or models
whose computational expense prohibits construction of Sobol indices. The goal
of screening methods is to rank input parameters according to their importance,
but unlike variance-based methods, they are typically unable to provide a
quantitative measure of the relative input sensitivities. An in-depth presentation
of screening methods and EE screening can be found inUncertainty
Quantification: Theory, Implementation, and Applications by R. Smith [72].

Screening methods are in the class of One Factor at a Time (OAT) methods.
OAT methods quantify the variation in output as inputs are varied individually.
While OAT methods provide a local measure of the input sensitivity, EE
screening averages over local derivative approximations to provide a
pseudo-global sensitivity measure.

3.2.4.1 The Original EE Method

The philosophy of the original EE method by Morris et al. [110] was to
determine which input factors may be considered to be (a) negligible, (b) linear
and additive, or (c) non-linear. Consider a mathematical model fwith p input
factors

y = f(z), (3.53)

where z = [z1, z2, . . . , zp] and each input parameters are uniformly distributed
and scaled to the interval [0, 1]. The concept of Morris screening is to average
local sensitivity approximations called elementary effects di

di(z) =
f(z1, . . . , zi−1, zi + Δ, zi+1, . . . , zp)− f(z)

Δ

=
f(z+ Δei)− f(z)

Δ
, (3.54)

57



where Δ is the step size. Thus, the computation of elementary effects are based
on a linearization of the model. The elementary effects di(z) quantifies the
approximate sensitivity behavior at the point z. To provide a pseudo-global
sensitivity measure, one approximate the mean and variance of r sampled
elementary effects for each input variable

μi∗ =
1

r

r∑
j=1

|dji (z) | (3.55)

σ2i =
1

r− 1

r∑
j=1

(
dji (z)− μi

)
(3.56)

μi =
1

r

r∑
j=1

dji (z) (3.57)

For distributions with elementary effects of both positive and negative values, μi∗
is a preferred metric over μi. μi∗ quantifies the individual effect of the input on
the output while σ i quantifies the combined effects of non-linearities and
interactions with other inputs [72].

For efficient computation of the elementary effects, the input space is
partitioned into l-levels, which restricts the input to aD-dimensional grid and a
total of lD grid values. The step size is chosen from the set

Δ ∈
{

1

l− 1
,

2

l− 1
, . . . , 1− 1

l− 1

}
, (3.58)

where the number of l levels is assumed to be greater than 3. An example of a
partitioned input space with 5 l-levels and two trajectories are seen in Figure
3.2.1.

The goal for the choice of the parameters l and Δ is to get the best possible
coverage over the input space. Campolongo et al. [111] suggested the following
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z2

1

1

Figure 3.2.1: Five-level grid (l = 5) for z = [z1, z2] with Δ = 1
2 and two

trajectories (blue and red).

relationship

Δ =
l

2(l− 1)
, (3.59)

where a certain symmetric coverage of the input space is ensured.

3.2.4.2 The Extended EE Method

The original EE method is based on random sampling of trajectories in the input
space. To keep the computational cost at a minimum, we want to minimize the
number of trajectories. Using random sampling, this could lead to non-optimal
coverage of the input space. Several improved sampling strategies have been
proposed in the literature. For example, Campolongo et al. [111] proposed an
improved sampling strategy which aims at improving the coverage of the input
space without increasing the number of necessary function evaluations. For
convenience, we sample the trajectories using the original version of the EE
method. Thus, it is reasonable to believe that improved sampling strategies for
the EE method will give a faster convergence than seen in this work.

Also, the original EE method was proposed for uniformly distributed random
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variables on a normalized interval between 0 and 1. To extend the method to
non-uniformly distributed random variables, we map the EE trajectories from the
unit-cube to the sample space using the inverse cumulative distribution function
and the inverse Rosenblatt-transform described in Section 3.1.5

3.3 BackwardUncertainty Analysis: Bayesian inference

As described earlier in this chapter, backward propagation of uncertainty is used
to infer probability distributions of uncertain input parameters given observed
model output. For backward uncertainty problems, Bayesian inference offers a
convenient probabilistic framework to infer the probability distributions of
uncertain input variables.

Bayesian inference is a method in statistics where uncertainty is expressed in
terms of probability. In a Bayesian inference problem, we start by formulating an
appropriate model for the situation of interest with some unknown parameters θ.
For each of the unknown parameters, a prior probability distribution p(θ)which
expresses our initial beliefs is formulated. Given some data X, Bayes’ theorem is
used to update the probability of our hypothesis and is expressed by

p(θ|X) = p(X|θ)p(θ)
p(X)

. (3.60)

Bayes’ theorem enables us to evaluate the posterior distribution p(θ|X)which is
the uncertainty of θ after we have observed X. Thus, the posterior distribution
takes into account both the data and our prior distribution [112].

The quantity p(X|θ) on the right side of Bayes’ theorem is called the likelihood
function. The likelihood function expresses how probable the observed data is for
a given setting of the function parameters θ. Thus, Bayes’ theorem states that

posterior ∝ likelihood · prior, (3.61)

where the posterior is a function of X and θ. The denominator p(X) in Equation
3.60 is called the normalization constant and ensures that the posterior
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distribution is a valid probability distribution and integrates to one. The
normalization constant can be expressed in terms of the prior distribution and
the likelihood function, and is given by the integral

p(X) =
∫

p(X|θ)p(θ) dθ. (3.62)

Bayesian analysis has an advantage over classical frequency analysis when it
comes to small sets of data. This is because Bayesian inference preserves the
uncertainty that reflects the instability of statistical inference, which happens
when we introduce a prior distribution and return probabilities as we require
more data [112]. Also, Bayesian analysis offers convenient tools to infer
distributions of unobserved model parameters, often called hidden or latent
variables [78].

3.3.1 Prior distributions

The outcome in Bayesian regression is strongly influenced by the choice of the
prior distribution. Accordingly, an appropriate prior function is critical, and it is
the most debated and discussed aspect of Bayesian methods [113].

Prior distributions can be divided into two classes: subjective- and objective
priors. Subjective priors allow the prior distribution to influence the posterior
distribution and might be used when the assessor has prior knowledge about the
shape and/or location of the posterior distribution. On the other hand, an
objective prior ensure that the posterior distributions are only influenced by the
data. Thus, an objective prior is often the preferred choice for science and
research applications.

According to Gelman et al. [114], a uniform distribution with large bounds is
often a good choice for an objective prior. Unfortunately, these priors should be
applied with caution since uniform objective priors with large bounds can give
unrealistic prior probabilities to non-intuitive points. Thus, some authors suggest
that a normal random variable with large variance or an exponential with a tail in
the positive or negative direction might be a better choice in many cases [112].
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Nonetheless, a uniform prior with large bounds might seem like a reasonable
objective prior since it assigns equal probability to all values. However, a uniform
prior is not a perfect objective prior. The reason for this is that a uniform prior is
not necessarily transformational invariant [112]. Common choices to get around
this problem is to use Jeffreys [115] or reference priors [116], which are
transformation invariant objective priors. For multidimensional parameters,
reference priors are the preferred choice in literature. The idea behind reference
priors is to formalize what we mean by objective priors. We say that as we create
data observations, a reference prior is a distribution that maximizes a measure of
distance or divergence between the prior and the posterior. Reference priors
allow the data to have maximum effect on the posterior estimates. Any
divergence measures can be chosen. In this thesis, we use the Kullback-Liebler
divergence [117] to calculate the divergence between the prior and posterior of
our parameters θ. It should also be mentioned that even significantly wrong prior
distributions will eventually give correct posteriors as the sample size increases,
as long as the areas of non-zero probabilities are the same [112].

3.3.2 Bayesian hierarchical modeling

A Bayesian hierarchical model is a statistical multi-level model which is used to
infer parameters of the posterior distributions using Bayesian inference. The
hierarchical model has observable outcomes modeled conditionally on certain
parameters, where the parameters themselves are given a probabilistic
specification in terms of other parameters, called hyperparameters. A
hyperparameter is given by a probability distribution, normally referred to as a
hyperprior. To find the posterior distribution, the hierarchical model is
constructed of all sub-levels and Bayes rule is used to account for the present
uncertainty and integrate the sub-levels with the observed data. For more
information about hierarchical models we recommend reading chapter 5 in
Gelman’s book Bayesian Data Analysis [118].
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3.3.3 Markov Chain Monte Carlo (MCMC)

The key difficulty with Bayes’ formula is that in general, no closed-form solution
of the posterior is available, except in particularly trivial cases. Thus, to infer the
probability distribution of uncertain input parameters, we have to rely on
approximate solutions of the posteriors. For Bayesian inference with intractable
posteriors, the MCMC method is extremely valuable. The reason for this is that
we can construct a reversible Markov chain with an equilibrium distribution
equal to the target posterior distribution [119]. We explain the practical meaning
of this statement in the following paragraphs. MCMC is a large field of research,
and we will only give a short introduction in this chapter. For further interest, we
recommend the work by Geyer, Introduction to Markov Chain Monte Carlo [119].

3.3.3.1 Markov Chains

A Markov chain is a specific type of stochastic process, which is an ordered
collection of random variables. A stochastic process is given by

{
Zk : k ∈ K

}
, (3.63)

where K is the state space. The Markov chain is a sequence of random quantities
Zk, each obtaining values in the state space K, with the following dependence
condition on each state Zk

p(Zk+1 = zk+1|Zk = zk,Zk−1 = zk−1, ...,Z0 = z0)

= p(Zk+1 = zk+1|Zk = zk). (3.64)

This condition says that the future state only depends on the current state, such
that all past states are irrelevant. The ”memorylessness” of a Markov chain is
called the Markov property.

The joint distribution of a Markov chain is determined by the initial
distribution which is the marginal distribution of Z1 and the transition
probability distribution which is the conditional distribution of Zk+1 given Zk.
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Under certain requirements, the Markov chain will converge to an equilibrium
distribution. The essence of Bayesian MCMC is to construct a Markov chain
which fulfills these requirements and converges to the target posterior
distribution. These requirements will be explained in the section below.

3.3.3.2 Requirements

The first requirement for the Markov chain is stationarity. A Markov chain is
stationary if it is a stationary stochastic process, where a stochastic process is
stationary if for any positive integerm the distribution of them-tuple
(Zk+1, . . . ,Zk+m) is independent of k. In a Markov chain we know that the
conditional distribution of (Zk+2, . . . ,Zk+m) given Zk+1 is independent of k.
Thus, the Markov chain is stationary if and only if the marginal distribution of Zk

is independent of k. If the Markov chain specified by an initial distribution and a
transition probability is stationary, we say that the initial distribution is stationary,
invariant or the equilibrium distribution. This is also indicated by saying that the
initial distribution is preserved by the transition probability distribution [119].

Another important requirement is reversibility. A Markov chain is reversible if
its transition probability is reversible with respect to its initial distribution. This is
the case if the Markov chain Z1,Z2, . . . specified by the initial distribution and
transition probability distribution has an exchangeable distribution of pairs
(Zi,Zi+1). Hence, for any i andm the distributions of (Zi+1, . . . ,Zi+m) and
(Zi+m, . . . ,Zi+1) are the same for a reversible Markov chain. Reversibility is
important because all known methods for constructing transition probability
mechanisms that preserve a specified equilibrium distribution are reversible
[119].

3.3.3.3 MCMC methods

The two most common methods for MCMC are the Metropolis-Hastings
algorithm and Gibbs sampling. In this thesis, the MCMC method will be
performed using the Metropolis-Hastings algorithm.
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3.3.3.4 Metropolis-Hastings Update Algorithm

Metropolis-Hastings update algorithm is the original MCMC method and was
first applied Metropolis et al. [120] in 1953 to a statistical physics problem.
Despite a large variety of newMCMCmethods, the original Metropolis-Hastings
is still a widely used update algorithm today. In this thesis, the
Metropolis-Hastings algorithm is implemented using the Pymc library [121].

Metropolis-Hastings update

• For a current state z, propose amove to ywhich has a conditional prob-
ability density denoted q(y|z).

• Calculate the Hastings ratio

r(z, y) =
h(y)q(y|z)
h(z)q(z|y)

. (3.65)

• Accept the proposed move ywith probability

a(z, y) = min(1, r(z, y)), (3.66)

such that the value of the state after the update zk+1, for a current state
zk with a proposed state yk, is given by

zk+1 =

yk, min(1, r(zk, yk))

zk, 1− min(1, r(zk, yk)).
(3.67)

Suppose that the wanted stationary distribution of the constructed MCMC
sampler has an unnormalized density h, such that h is a positive constant times a
probability density. Thus, h is a nonnegative-valued function that integrates or
sums to a finite, nonzero value for a continuous or discrete state, respectively.
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Here, h gives the probability of some data and is given by Bayes’ rule (Eq. 3.60).
It will only be necessary to calculate the nominator, here for the proposed state

h(y) = p(x|y)p(y) (3.68)

where p(x|y) is the likelihood function for x given y and p(y) is the prior
distribution of the proposed state. The denominator will be equal for all states
and cancel out in the Hastings ratio. Further, an arbitrarily chosen proposal
distribution q is used to propose the next state in the update mechanism [119]. A
further description of the Metropolis-Hastings update algorithm is given in the
text box above.

Note that the Hasting ratio r is undefined if h(z) = 0. Thus, it is essential to
arrange that h(z) > 0 in the initial state. Also, a more justified choice of the
proposal distribution qmight be beneficial, since it determines how fast the chain
converges [119, 122].

3.4 Summary

In this thesis, UQ and SA are used to analyze uncertainty in CTFFR models. In
this chapter, the governing theory of UQ and SA is presented. First, we outline
the two principal types of uncertainty problems, forward propagation of
uncertainty and backward propagation of uncertainty. In forward propagation of
uncertainty, we want to quantify the uncertain response of our model given
uncertain input parameters. Hence, we introduce relevant tools for UQ and SA.
These tools include MC, PC, the RF metamodel, and the EE method. The choice
of method for forward propagation of uncertainty depends on the required
accuracy, computational complexity and the number of model input parameters.

In backward propagation of uncertainty, the uncertainty of input parameters is
inferred using the measured model output. Here, we present the Bayesian
framework for backward uncertainty analysis. In particular, we describe the
MCMC Metropolis-Hastings algorithm used to infer the posterior distributions
of uncertain parameters.
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Probability theory is nothing but common sense reduced to cal-
culation.

Pierre-Simon Laplace

4
Application of UncertaintyQuantification

and Sensitivity Analysis toCTFFR

In this chapter, we perform uncertainty quantification (UQ) and sensitivity
analysis (SA) of CTFFR with respect to physiological parameters. This analysis
includes UQ and global variance-based SA of all parameters of interest. Also, we
investigate methods for quantitative and qualitative SA inCTFFR models. A major
challenge for applications of sensitivity analysis in CTFFR models is the
combination of a vast number of input parameters and high computational costs.
Thus, we evaluate methods for sensitivity analysis based on criteria for accuracy
and computational efficiency. An in-depth presentation of these methods is given
in Chapter 3.
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4.1 Parameter Uncertainty in Single Stenosis

In the first experimental case, the effect of parameter uncertainty on FFR over a
single stenosis is investigated. The estimation of FFR is based on the single
stenosis model proposed by Huo et al. [44] as described in Section 2.1.3.3.

In the Huo model, flow rate, arterial pressure, stenosis diameter, dynamic
viscosity, and density are considered uncertain parameters. These parameters are
set to clinically relevant values as specified in Section 2.2.3 and modeled with an
uncertainty of±5% (uniformly distributed random variables U(0.95μ, 1.05μ),
where μ is the mean value of the uncertain parameter). The aim of the
experiment is to investigate relative effects of input uncertainties and compare
the performance of different methods for quantitative and qualitative sensitivity
analysis, hence, we use the arbitrarily chosen uncertainty of±5%. A full
description of model parameters and parameter uncertainty is given in Table
4.1.1.

Variables Symbol Unit Value Uncertainty

Flow rate Q mL/min 350 ±5
Arterial Pressure Pa mmHg 90 ±5
Dynamic viscosity, blood μ Pa · s 3.5 · 10−3 ±5
Density, blood ρ kg/m3 1050 ±5
Stenosis diameter ds mm 2 ±5
Stenosis length ls mm 3 ±5
Vessel diameter dv mm 4 0
Vessel length lv mm 10 0

Table 4.1.1: Absolute values and relative uncertainty for parameters in simu-
lations using the single stenosis model.
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4.1.1 Uncertainty Quantification

4.1.1.1 Experimental Setup

In this experiment, we performUQof FFRwith respect to the input uncertainties
presented in Table 4.1.1. The uncertainty is quantified using MC sampling. To
improve convergence and minimize the number of function evaluations, the MC
sampling is performed using Latin Hypercube sampling as described in Section
3.2.1. The MC sampling is done using 5000 model evaluations.

4.1.1.2 Results

The result from the UQ shows that the uncertainty in the input parameters
results in an FFR with a mean μ = 0.818 and standard deviation σ = 0.0267.
From Figure 4.1.1, we see that the uncertainty has a notable impact on the
resulting FFR and that the resulting non-symmetric distribution shows a clear
long-tail behavior in the direction of decreasing FFR values.

0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88

FFR

Figure 4.1.1: Histogram showing the distribution of FFR from MC sampling
with 5000 model evaluations. The distribution of FFR is a result of uncer-
tainty of input parameters and is characterized by a mean μ = 0.818 and a
standard deviation σ = 0.0267.
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4.1.2 Variance-Based Sensitivity Analysis

4.1.2.1 Experimental Setup

In this experiment, we quantify the sensitivity of FFR with respect to the input
parameters using MC, PC, sparse PC and the RF metamodel. The goal of this
procedure is to investigate the sensitivity of FFR with respect to input parameters
and compare the accuracy of methods for variance-based sensitivity analysis.
Also, we do a visual presentation of the relationship between input parameters
and FFR using MC sampling.

The MC method for variance-based sensitivity analysis is presented in Section
3.2.1.2. In this experiment, MC with a high number of samples (N = 106) serves
as a ground truth for the Sobol sensitivity indices. We compare the sensitivity
indices obtained from MC to the sensitivity indices obtained from PC and the
RF metamodel using GMSA, which is described in Section 3.2.2 and Section
3.2.3, respectively. Pseudospectral PC (Section 3.2.2.3) is performed with a
Gaussian quadrature- and polynomial order 3. For a fair comparison, the number
of samples used to train the RF metamodel is set equal to the number of model
evaluations used for PC. As described in Section 3.2.2.3, the number of necessary
model evaluations for PC is determined by the order of the Gaussian quadrature.
Furthermore, the sensitivity indices obtained from MC are compared to the
sensitivity indices obtained from sparse PC as described in Section 3.2.2.3. As
PC, sparse PC is performed with a quadrature- and polynomial order 3. The
sensitivity indices from the sparse PC analysis are compared to the sensitivity
indices obtained from the random forest metamodel using an equivalent number
of model evaluations.

4.1.2.2 Results

Figure 4.1.2 shows a scatter plot of the relationship between the input parameters
and the resulting FFR. Visually, we see that the stenosis diameter ds shows a
strong correlation with FFR. Moreover, we identify a weak correlation between
FFR and the flow rateQ and arterial pressure Pa. Stenosis length, dynamic
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viscosity, and density show no clear relationship to the resulting FFR.
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Figure 4.1.2: The relationship between input parameters and FFR from 104

MC samples. The graphical presentation of the input variables is normalized
with a mean 0 and standard deviation σ.

The result from the variance-based sensitivity analysis can be seen in Figure
4.1.3. The figure shows the Sobol indices for MC, PC, sparse PC and the RF
metamodel. In Figure 4.1.3a, the ground truth sensitivity indices are compared to
sensitivity indices from PC and the RF metamodel using an equivalent number
of model evaluations (N = 4096). In Figure 4.1.3b, the ground truth sensitivity
indices are compared to the sensitivity indices from sparse PC and the RF
metamodel using a lower number of model evaluations,N = 389 vs. N = 4096

(sparse vs. conventional). The figures show that the diameter of the stenosis ds is
the most vital input parameter. Also, we see that the sensitivity indices from the
PC methods, both conventional and sparse, are similar to the ground truth
sensitivity indices. The RF metamodel tends to over-estimate the sensitivity
indices for the most significant parameters and under-estimate the sensitivity
indices for the less critical parameters. Despite this, the RF metamodel gives a
good quantitative approximation of the Sobol sensitivity indices.

A quantitative comparison between PC and the RF metamodel is seen in
Table 4.1.2. We see that there is an excellent agreement between the methods and
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Figure 4.1.3: First order Sobol sensitivity indices S and total Sobol sensi-
tivity indices ST for the RF metamodel and conventional PC (a) and the RF
metamodel and sparse PC (b). In both cases, the Sobol sensitivity indices are
calculated using the same number of model evaluations, 4096 and 389 for the
conventional and sparse PC method, respectively.
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observe a strong correlation between model errors and sensitivity errors. Overall,
we see that the PC methods show lower errors compared to the RF metamodel,
both regarding the model error and sensitivity error.

Method N Em Es

Random Forest Metamodel 4096 2.31 · 10−5 7.55 · 10−4

Polynomial Chaos 4096 9.35 · 10−8 2.14 · 10−5

Random Forest Metamodel 389 2.49 · 10−5 8.52 · 10−4

Sparse Polynomial Chaos 389 9.77 · 10−8 2.14 · 10−5

Table 4.1.2: Model error Em and Sobol sensitivity error Es for conventional
PC, sparse PC and the RF metamodel with 4096 and 389 model evaluations
(N).

4.1.3 Qualitative Sensitivity Screening

4.1.3.1 Experimental Setup

In this experiment, we compare the RF metamodel and the EE method for
qualitative sensitivity screening with a low number of model evaluations. An
in-depth description of the EE method can be found in Section 3.2.4. The EE
method was performed using 25 l-levels and a step size Δ according to the
suggestion by Campolongo et al. [111], Δ = l

2(l−1)
. The result of this qualitative

sensitivity analysis gives a foundation for high-dimensional sensitivity analysis
that will be relevant in subsequent chapters.

4.1.3.2 Results

The results of the comparison of the RF metamodel and the EE method can be
seen in Figure 4.1.4. Interestingly, the result shows that the sensitivity screening
using the RF metamodel shows superior performance compared to the more
commonly used EE method. The RF metamodel shows a higher ability to rank
input parameters in accordance to their relative influence on FFR.
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Figure 4.1.4: Quantitative sensitivity screening using the EE method and the
RF metamodel (horizontal axis) vs. the ground truth Sobol indices (vertical
axis). The comparison is performed with an increasing number of model eval-
uations.

Parameter μ μ∗ σ

Flow rate −0.0018 0.028 0.037
Arterial pressure −0.00012 0.024 0.033
Stenosis diameter −0.0012 0.036 0.049
Stenosis length 0.00066 0.022 0.034
Dynamic viscosity 0.0012 0.022 0.034
Density 0.00065 0.024 0.036

Table 4.1.3: Elementary effects of input parameters to the single stenosis
model (Huo model).
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The elementary effects obtained from the EE screening can be seen in Table
4.1.3. Wee see that the values of the elementary effects μ∗ are in excellent
agreement with the parameter ranking obtained from the variance-based
sensitivity analysis. Moreover, we see that the stenosis diameter ds show the
strongest elementary effect μ∗ and the strongest non-linear effect σ compared to
the other input parameters.

4.2 Effect of Uncertainty in Physiological Parameters on

CTFFR

For this experimental case, we use the CTFFR model and the published coronary
geometry by Kassab et al. [29] introduced in Chapter 2. To investigate the effect
of stenosed arteries, we induce a clinically relevant 75% area stenosis¹ in the
proximal LAD using the stenosis model by Huo et al. [44] as described in
Section 2.1.3.3. Using a combination of the CTFFR model and the defined
coronary network, we perform several analyses to investigate the influence of
uncertainty in physiological parameters on CTFFR.

The uncertainty in physiological model parameters is based on published
literature discussed in Section 2.2.3. For this analysis, the physiological
parameters are assumed to be independently distributed random variables. For
comparison with experiments with geometric uncertainty, we assume an
independently normal-distributed noise with a standard deviation of 15% as
discussed in Section 2.1.4. A full description of the uncertain random variables
can be seen in Figure 4.2.1.

¹Area stenosis: Fractional reduction in cross-sectional area of an artery due to the presence of
a stenosis.
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Variable Unit Distribution

Cardiac output L/min U(4, 8)
Mean arterial pressure mmHg N (93.0, 7.6)
Myocardial Flow Fraction U(0.04, 0.05)
Murray’s coefficient U(2.4, 3.0)
TCRI U(0.15, 0.30)
Hematocrit N (0.45, 0.08)
Blood density kg/m3 U(1043, 1057)

Table 4.2.1: Random variables for the uncertain physiological parameters in
the CTFFR model. Here, N (μ, σ) denotes a normal distribution with mean μ
and standard deviation σ and U(C1,C2) denotes a uniform distribution with a
lower value of C1 and an upper value of C2.

4.2.1 Uncertainty Quantification

4.2.1.1 Experimental Setup

In this experiment, we quantify the effect of uncertainty in physiological input
parameters on CTFFR. The uncertainty is quantified using Latin Hypercube MC
sampling with 5000 model evaluations as described in Section 3.2.1.

4.2.1.2 Results

The prediction interval from the uncertainty quantification can be seen in Figure
4.2.1. We see that the input uncertainty from the physiological parameters results
in a wide prediction interval over the stenosis. For example, wee see that the 98%
central prediction interval spans from an FFR of 0.6 to 0.9. As expected, the
simulation shows a lower uncertainty in the healthy vessels segments, RCA, and
CX.
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Figure 4.2.1: CTFFR quantile plot for the stenosed artery (LAD) and the
healthy arteries (RCA and CX) estimated from MC sampling with 5000 model
evaluations. We evaluated the post-stenotic CTFFR with a mean of 0.765 and
a 95% prediction interval of [0.619, 0.885].
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4.2.2 Effect of Uncertainty in Physiological Parameters and Seg-
mentation Uncertainty on CTFFR

4.2.2.1 Experimental Setup

In this experiment, we want to get a crude approximation of the uncertainty in
CTFFR due to physiological parameters vs. lumen segmentation from CTA. The
uncertainty in lumen segmentation is imposed by the introduction of an error
term that is proportional to the measured radii. Hence, the radius of a vessel
segment is given by the observed radius with the addition of a zero-mean
normally distributed noise term ε so that

R = robs(1 + ε), (4.1)

where robs is the observed radius. With no further knowledge about the
uncertainty structure, we model ε as an iid random variable for each vessel. As
discussed in Section 2.1.4, we assume that the geometric noise has a standard
deviation of 15%. The uncertainty is quantified using Latin Hypercube MC
sampling with 5000model evaluations.

4.2.2.2 Results

The comparison of the uncertainty in CTFFR due to uncertainty in physiological
parameters and lumen segmentation can be seen in Figure 4.2.2. We observe that
the relevant uncertainties are characterized by wide prediction intervals. More
precise, we see that the uncertainty in the lumen segmentation results in a slightly
wider prediction interval than the uncertainty due to physiological parameters.
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Figure 4.2.2: 95% FFR central prediction interval showing the uncertainty in
CTFFR due to uncertainty in physiological parameters and lumen segmentation.
The experiment is performed using MC sampling with 5000 model evaluations.

4.2.3 Sensitivity Analysis

4.2.3.1 Experimental Setup

In this experiment, we perform a global sensitivity analysis to quantify the
sensitivity of post-stenotic CTFFR with respect to the uncertainty in physiological
input parameters. The experiment is conducted to get a proper quantification of
the most influential physiological parameters for the estimation ofCTFFR. The SA
is performed using stochastic collocation PC (Section 3.2.2.4) with a polynomial
order 3. Here, stochastic collocation PC is preferred over the pseudospectral PC
since it gives us the ability to reuse samples from the UQ in Section 4.2.1.
Additionally, SA is performed using the RF metamodel and the GMSA method
described in Section 3.2.3. The purpose of using two approaches for global SA is
to compare the highly scalable RF metamodel to the more acknowledged PC
method on a relevant CTFFR problem.

4.2.3.2 Results

The results of the sensitivity analysis are shown in Figure 4.2.3. We see that the
two most important parameters for CTFFR is the cardiac output and the
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microvascular vasodilatory response, represented by TCRI (Section 2.2.3.5).
Interestingly, the flow distribution model and the Murray’s coefficient have
limited effect on the CTFFR uncertainty. The figure also shows that the
uncertainty in arterial pressure Pa, myocardial flow fraction (MFF), hematocrit
and blood density is of less relevance to CTFFR.
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Figure 4.2.3: Sobol sensitivity indices for CTFFR with respect to uncertainty
in physiological input parameters using PC and the RF metamodel. Here, the
sensitivity indices are estimated using 5000 model evaluations for both the RF
metamodel and the stochastic collocation PC method.

4.2.4 Effect of Additional Clinical Measurements on CTFFR

4.2.4.1 Experimental Setup

A promising idea for future clinical applications of CTFFR is to reduce the
uncertainty in physiological parameters by additional clinical measurements. In
theory, some the physiological parameters could be measured with non-invasive
or minimally-invasive clinical methods. In particular, cardiac output and
myocardial flow fraction can be derived through non-invasive methods e.g.
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partial gas rebreathing, thoracic bioimpedance, photoelectric plethysmography,
and transthoracic Doppler echocardiography [123, 124]. Moreover,
measurements of hematocrit and dynamic blood viscosity can be done using
basic clinical procedures [125]. Additionally, arterial blood pressure can be
measured in a variety of different ways, most frequently using the standard upper
arm blood pressure monitor [126]. Consequently, we are interested in how
additional clinical measurements can be used to reduce the uncertainty in CTFFR.
In this experiment, we examine the reduction of uncertainty in CTFFR when
cardiac output, myocardial flow fraction, and hematocrit are seen as measured
parameters with negligible uncertainty. The uncertainty is quantified using Latin
Hypercube MC sampling with 5000model evaluations.

4.2.4.2 Results

The effect of additional measurements of flow rate, arterial blood pressure and
hematocrit is seen Figure 4.2.4. Here, we see that the additional measurements
give a substantial reduction in CTFFR uncertainty. This is shown by a significant
narrowing of the 95% central prediction interval over the length of the LAD.
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Figure 4.2.4: 95% central prediction interval using population-based physio-
logical parameter (conventional) vs. additional clinical measurements of flow
rate, arterial blood pressure, and hematocrit. The uncertainty is estimated
using MC sampling with 5000 model evaluations.
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4.2.5 The Effect of Flow Distribution Model on CTFFR

4.2.5.1 Experimental Setup

An intriguing aspect of our CTFFR model is the calculation of flow distribution
and terminal vessel resistances using Murray’s law. In our previous experiments,
we assumed a global Murray’s coefficient. As we will discuss more thoroughly in
Chapter 5, this could be a questionable assumption from a physiological
standpoint. Here, we argue that it is more likely that Murray’s coefficient have a
local nature that depends on the hydrodynamic conditions of the vessel.
Furthermore, we have assumed that the uncertainty in flow distribution is
unaffected by segmentation error. In practical applications of CTFFR, Murray’s
law will result in a combined uncertainty from segmented vessel radii and local
Murray’s coefficients. For this system, the terminal resistance of vessel i is given
by

Ri ∼ (robs,i(1 + εi))
−Ci , (4.2)

where εi is a zero-mean normally distributed variable with a standard deviation of
15%. In the absence of further knowledge about the uncertainty structure, we
model εi and Ci as iid for all terminal vessels of our system. The governing theory
for specification of terminal resistances in the CTFFR model is presented in
Section 2.2.1.2.

In this experiment, we compare the resulting uncertainty in CTFFR of a system
where the uncertainty in terminal resistances is governed by Equation 4.2, to a
system where the uncertainty in terminal resistances is determined by a global
uncertain Murray’s coefficient. The uncertainty is quantified using Latin
Hypercube MC sampling with 5000model evaluations.

4.2.5.2 Results

In Figure 4.2.5, we compare a model with global Murray’s coefficient (model 1),
to a model with a local iid Murray’s coefficient for each vessel and geometric
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uncertainty with standard deviation σ = 15% (model 2). As expected, we see
that the result from model 2 shows a significantly broader prediction interval and
variance than model 1. Thus, the assumption of local Murray’s coefficient and
geometric uncertainty is a significant source of uncertainty for flow distribution
in CTFFR models.

Figure 4.2.5: 95% central prediction interval for the simulation with global
Murray’s coefficient (Model 1) and the simulation with a local Murray’s co-
efficients for each vessel and geometric uncertainty with standard deviation
σ = 15% (model 2). The prediction interval is estimated using MC sampling
with 5000 model evaluations.

4.3 Discussion

In this chapter, we have investigated the effect of uncertainty of input parameters
on FFR for a single stenosis model and the effect of uncertainty in physiological
parameters on FFR in a CTFFR model. Our results show that moderate
uncertainty in input parameters can result in a rather dramatic uncertainty on
estimated FFR and could have a significant impact on clinical decisions.

For the single stenosis model, we find that the most influential parameter is the
stenosis diameter. This is in agreement with findings from Eck et al. [74] which
investigated sensitivity to input parameters in a similar stenosis model.
Furthermore, the results are in agreement with Sankaran et al. [20] who studied
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the sensitively of FFR to model parameters in several 3D CFD simulations. For
the CTFFR model, the most influential physiological parameters are found to be
cardiac output and myocardial vasodilatory response, TCRI.

The importance of geometric uncertainty is confirmed by a comparison of the
uncertainty in CTFFR due to uncertainty in physiological parameters and lumen
segmentation. Here, we find that the uncertainty in lumen segmentation results
in a slightly higher uncertainty inCTFFR compared to uncertainty in physiological
parameters. However, it must be noted that the quantification of uncertainty
from lumen segmentation is based on rough assumptions that could have
questionable accuracy. For example, the assumption of iid segmentation errors is
likely to be unrealistic for a segmentation process with continuous vessel walls.

Surprisingly, the sensitivity analysis shows that the flow distribution model
and Murray’s coefficient have a very low influence on the estimated FFR.
Nonetheless, we find that the flow distributionmodel becomes significantly more
important by taking into account the effect of geometric uncertainty and by
treating Murray’s coefficient as a local parameter.

Additionally, we propose methods to decrease the influence of uncertainty in
physiological parameters on CTFFR. Interestingly, we show that the uncertainty in
CTFFR can be significantly reduced by additional clinical measurements. For
example, cardiac output, myocardial flow fraction, and hematocrit could be
measured non-invasivly with current clinical tools. However, methods to reduce
the effect of uncertainty from other critical physiological parameters, e.g. the
microvascular vasodilatory response and flow distribution model, are less clear. A
discussion of possible methods to reduce the uncertainty from these sources is
given in Chapter 7.

Also, our analysis shows promising results for the application of GMSA and
the RF metamodel for Sobol sensitivity analysis. Despite lower performance than
PC, the RF metamodel shows accurate sensitivity indices for the investigated
cases. Furthermore, results from the screening analysis indicate that the RF
metamodel exhibit superior performance when compared to the more
established EE method on the single stenosis case.
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Simplicity is the ultimate sophistication.

Leonardo da Vinci

5
Uncertainty inCTFFR FlowDistribution

Model

In this chapter, we perform an in-depth investigation of the flow distribution
model used to estimate CTFFR. For this reason, we examine the most commonly
applied model for flow distribution in CTFFR models, Murray’s law. In particular,
we want to investigate the uncertainty in Murray’s law using empirical data from
Kassab et al. [29] (Section 2.1.4). As described in Section 2.2.1.2, the practical
implementation of the flow distribution model is done by a specification of
relative terminal resistances.

Using backward uncertainty analysis as outlined in Section 3.3, we aim to
establish a model that efficiently captures the uncertainty in Murray’s law. Here,
we investigate the effect of the uncertainty of Murray’s law on CTFFR.
Furthermore, we study the sensitivity of CTFFR to individual terminal resistances.
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The goal of this procedure is to obtain valuable knowledge that can improve
decision-making in practical applications of CTFFR.

5.1 Background

5.1.1 Optimial Design Principles

The most promising way to specify terminal resistances in CTFFR models is
through optimal design principles. There seems to be a widespread consensus
that branching morphology of biological systems is subject to optimization
principles. This is justified by evolutionary morphogenetic arguments based on
natural selection [21–23]. Thus, optimal design patterns play a crucial role in
determining radii and branching angles of vessels in the vascular system. Research
has shown that blood vessels optimize their size based on flow rate and the wall
shear stress sensed by the endothelial cells [127]. Importantly, the optimization
of vessel radii continues even in the presence of atherosclerosis [128].

5.1.2 Murray’s Law

As introduced in Section 2.2.1.2, the most prominent and influential branching
model based on optimization principles is Murray’s law [12, 17, 24, 25], which is
derived from assuming minimization of energy consumption of flow systems in
living organisms [22, 23]. The essence of Murray’s law is that the organism
balances the influence of metabolic- and mechanical energy consumption. First,
the metabolic energy consumption of the vascular system increases with
increasing vessel radius. Second, the mechanical energy required to pump blood
through the vascular system is a function of friction and decrease with increasing
radius. According to Murray’s hypothesis, vessel radius in the vascular system is
determined to minimize the energy requirement from these two factors.
Formally, Murray’s law is given by

q ∝ rc, (5.1)
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Figure 5.1.1: Arterial bifurcation with mother vessel (0) and the daughter
vessels (1 and 2).

where c represents the Murray’s coefficient, q is the flow rate, and r is the vessel
radius. According to Murray’s original work, the metabolic energy consumption
is proportional to r2, while the mechanical energy consumption for laminar flow
is proportional to r4, giving an optimization constant of c = 3. A full derivation
of this argument can be found in Murray’s original paper [129].

Assuming the existence of a universal constant of proportionality, Murray’s law
gives the following power-law relationship for a bifurcation

rc0 = rc1 + rc2, (5.2)

where 0 represents the mother vessel and 1 and 2 represents daughter vessels as
shown Figure 5.1.1.

The relative outflows obtained from Murray’s law can directly specify terminal
resistances inCTFFR simulations. The resistance of a terminal vessel i according to
Murray’s law is given by

Ri ∝ r−c
i . (5.3)

5.1.3 Empirical Variation and Uncertainty in Murray’s Law

An important question in practical work is how to deal with empirical variation
and uncertainty when establishing terminal resistances from Murray’s law.
Research has shown a significant variation in the reported value of Murray’s
coefficient c. To date, most researchers have reported a value of Murray’s
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Author Year Specification c

Murray [22, 23] 1926 Theoretical/empirical 3.0
Miller [130] 1893 Dog lung arteries 2.61
Fukasawa and Hitoshi [131] 1969 Human coronary arteries 2.66− 2.82
Hutchins et al. [132] 1976 Human coronary arteries 2.7− 3.2
Arts et al. [133] 1979 Canine coronary arteries 2.55
Sherman [134] 1981 Dog arteries ≈ 2.9
Changizi and Cherniak [135] 2000 Human coronary arteries 2.60
Wang et al. [136] 2012 Human arteries 2.75
Revellin et al. [138] 2009 Theoretical 2.42− 3

Table 5.1.1: Theoretical and empirical estimations of Murray’s coefficient
from the literature.

coefficient between 2.3− 3.0 [22, 23, 130–136]. Interestingly, this interval
coincides with the optimal values for laminar and turbulent flow, c = 3 and
c = 7/3, respectively [137]. An overview of empirically determined Murray’s
coefficients from the literature can be found in Table 5.1.1.

Furthermore, the extraction of geometry from CTA is likely to be a significant
source of uncertainty in practical applications of Murray’s law. Moreover, it is
reasonable to assume that the cardiovascular system could show biological
deviation from Murray’s law, for example in areas of bifurcations, stenosis, and
irregularities.

5.2 Regression Analysis

In this section, regression analysis is used to estimate the unknown parameter of
Murray’s law, Murray’s coefficient. In basic regression analysis, a suitable model is
used to find relationships among variables of interest. The regression model is
fitted by minimization of an appropriate loss function, e.g. using the least squares
approach. Here, the minimization is done using the Nelder-Mead algorithm from
the Scipy library [62], which is a beneficial method for nonlinear optimization
problems where the derivatives of the loss function may be unknown [139].
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5.2.1 Bifurcations

5.2.1.1 Experimental Setup

In the first experiment, we want to find the Murray’s coefficient that satisfies the
equation

rc0 = rc1 + rc2, (5.4)

where the mother vessel is represented by subscript 0 and the daughter vessels
are represented by subscript 1 and 2. Thus, we want to find the value of c that
minimizes the squared error

min
c

(rc1 + rc2 − rc0)
2. (5.5)

for each bifurcation in our dataset. For this analysis, a total of 78 bifurcations is
evaluated.

5.2.1.2 Results

The result from the regression analysis on single bifurcations can be seen in
Figure 5.2.1. We see that the fitted Murray’s coefficient shows large variance with
a mean value μ = 2.24 and a standard deviation σ = 1.09. Furthermore, we see
that the best-fitted Murray’s coefficient tends towards an asymmetric long-tail
distribution.
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Figure 5.2.1: Branching ratio and best-fitted Murray coefficient for individual
branches of the coronary dataset. The results estimate a Murray’s coefficient
of 2.24± 1.09 (mean ± SD).

5.2.2 Control Volumes

5.2.2.1 Experimental Setup

To take full advantage of the data in the coronary tree, we use a technique we call
control volume sampling. In this approach, we analyze Murray’s law over all
unique control volumes in our system. In Figure 5.2.2, we see an example of
control volume sampling over a double bifurcation.

CV 1

CV 2 CV 3

Figure 5.2.2: Control volume sampling over all possible control volumes of a
double bifurcation.

Using control volume sampling, we find the Murray’s coefficient that satisfies
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the equation

rc0 =
Ni∑
i=1

rci , (5.6)

whereNi is the number of flow outlets of the control volume. Thus, we want to
find the value of c that minimizes the squared error

min
c

(

Ni∑
i=1

rci − rc0)
2. (5.7)

over all possible control volumes in our coronary dataset. In this experiment, we
analyze a total of 1489 control volumes.

5.2.2.2 Results
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Figure 5.2.3: The distribution of best-fitted Murray’s coefficient as a func-
tion of control volume outlets (left) and presented as a histogram (right).
The Murray’s coefficient for control volumes is characterized by a mean value
μ = 2.49 and a standard deviation σ = 0.67.

The result from the control volume analysis can be seen in Figure 5.2.3. The
fitted Murray’s coefficient shows lower variance compared to the analysis
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performed on single bifurcations in Section 5.2.1. The Murray’s coefficient for
control volumes can be quantified with a mean value μ = 2.49 and standard
deviation σ = 0.67. We see that the variation in the fitted value of c is rapidly
decreasing with an increasing number of control volume outlets.

5.3 BackwardUncertainty Analysis

As discussed in Section 5.1.3, there is reason to believe that the total uncertainty
of Murray’s law is a result of combined contributions of geometric uncertainty
and uncertainty in Murray’s coefficient. To better capture the structure of the
uncertainty of the problem, we introduce a geometric uncertainty term so that
the true radius rtrue is given by the observed radius robs subject to a proportional
noise term ε

rtrue = robs (1 + ε) , (5.8)

where ε is a zero-mean normally distributed random variable with standard
deviation σ. Using this model assumption, Murray’s law for a control volume is
given by

(r0(1 + ε0))
C =

Ni∑
i=1

(ri (1 + εi))
C , (5.9)

where εi are iid variables.

Using Equation 5.9, we can infer the uncertainty of εi and C using Bayesian
inference. The distributions of εi and C give us the ability to model the
uncertainty in individual outlets. For example, the uncertain resistance of a
terminal vessel i can be modeled as

Ri ∼ (ri(1 + εi))
−C , (5.10)

and gives us the ability to estimate the sensitivity of CTFFR with respect to the
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individual uncertainty of terminal resistances.

5.3.1 Bayesian Inference

5.3.1.1 Experimental Setup

In this experiment, we analyze the uncertainty structure of Murray’s law using
Bayesian inference. Thus, we rephrase Equation ?? to a relation where the mother
radius is given as a function of the daughter radii

r0(1 + ε0) =

(∑
i

(ri (1 + εi))
C

)1/C

. (5.11)

In the Bayesian framework, we want to find the probability distributions p(σ|r)
and p(C|r), where r are the measured radii of the dataset. To do this, we use the
following priors and hyperprior

p(C) = U(0, 100), (5.12)

p(σ) = U(0, 100), (5.13)

p(εi) = N (0, σ). (5.14)

εi ∼ N (0, σ)

μ0 =
(∑Ni

i=1 (ti (1 + εi))
C)1/Cσ ∼ U(0, 100)

r0 ∼ N (μ0, μ0σ)

C ∼ U(0, 100)

Figure 5.3.1: Graphical representation of hierarchical Bayesian model.

Thewide uniformly distributed priors are chosen to cover the entire parameter
space and minimize the influence on the posteriors. To test the objectivity of
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these priors, we measure the Kullback-Leibler divergence between the priors and
the resulting posteriors. A more thorough explanation of priors in Bayesian
analysis is presented in Section 3.3.1. A graphical description of our Bayesian
hierarchical model can be seen in Figure 5.3.1.

To validate our proposed model, we perform a residual analysis over the
control volumes using the maximum a posteriori probability (MAP) ¹ estimates.
Since εi is a zero-mean symmetrical distribution, the MAP estimate of εi is equal
to zero. Thus, the residual e for a control volume is given by

e =
Ni∑
i=1

rĈi − rĈ0 . (5.15)

Further, the error of the residual e∗ is defined as the absolute value of the residual

e∗ = |e|. (5.16)

5.3.1.2 Results

The resulting posterior distributions for C and σ from the Bayesian inference can
be seen in Figure 5.3.2. The posterior of C is characterized by a mean of 2.56 and
standard deviation of 0.028, whereas the posterior of σ is characterized by a mean
of 0.151 and standard deviation of 0.0028. We see that the posteriors show
excellent convergence, which is quantified by a reciprocal of the Kullback-Leibler
divergence between the priors and posteriors approximately equal to zero. Thus,
we conclude that the priors have limited influence on the posteriors.

To validate our modeling approach, we use the MAP estimate for the posterior
of C to plot the residuals for different control volumes. The result from this
analysis can be seen in Figure 5.3.3. Here, we visualize the relationship between
mother vessel diameter and the calculated residuals as defined in Equation 5.15.
Based on these results, we observe a trend of increasing error e∗ as a function of

¹Maximum a posteriori probability (MAP): Mode of the posterior distribution.
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Figure 5.3.2: Posterior distributions of Murray’s coefficient p(C|r) and geo-
metric uncertainty p(σ|r) inferred using Bayesian analysis. The convergence
of the procedure is validated through the Kullback-Leibler divergence between
the priors and posteriors.
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Figure 5.3.3: Residuals for the MAP estimates as a function of observed
mother diameter. Note that the residual analysis is done over 1489 control
volumes and that the fraction of observations in the region around a residual
of 0− 0.25 mm is very high.
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mother diameter. We observe that the MAP estimate leads to an
under-estimation of radius for the largest mother diameters, but are unable to
find other meaningful structures in the residuals.

5.3.2 Uncertainty Quantification

5.3.2.1 Experimental Setup

Once the posterior distributions are inferred, the relative resistance Rrel,i is given
by

Rrel,i = (ri (1 + εi|r))−C|r (5.17)

where εi|r and C|r are the posterior distributions of εi and C, respectively.
In this experiment, we investigate the effect of uncertainty in Murray’s law on

CTFFR by sampling from the distributions of relative outlet resistances. In
practice, we quantify the uncertainty of CTFFR in the coronary network
introduced in Section 4.2 using Latin Hypercube MC sampling with 5000model
evaluations.

5.3.2.2 Results

Figure 5.3.4 shows that the uncertainty in Murray’s law gives a significant
post-stenotic uncertainty of CTFFR. Quantitatively, the 95% central prediction
interval gives a post-stenotic interval of [0.728, 0.814], where the CTFFR values
are measured right after the stenosis.
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Figure 5.3.4: 95% central prediction interval showing the uncertainty in
CTFFR as a result of uncertainty in Murray’s law estimated from MC sampling
with 5000 model evaluations.

5.3.3 Sensitivity Analysis

5.3.3.1 Experimental Setup

In this experiment, we want to investigate the sensitivity of CTFFR with respect to
the uncertainty in individual terminal resistances. First, we examine the
sensitivity of Rrel,i, defined in Equation 5.17, with respect to ε|r and C|r using PC.
Thus, we analyze the relative effects of Murray’s coefficient and geometric
uncertainty on the total uncertainty associated with Murray’s law. For efficient
evaluation, we approximate the PDFs/CFDs of the posterior distributions using
parametric approximations from the Scipy library [62].

Second, we evaluate the sensitivity of CTFFR to terminal resistances using the
coronary network introduced in Section 4.2. Due to the high number of outlets
(Ni = 114), the sensitivity analysis is performed using the RF metamodel. A
thorough explanation of the RF metamodel is given in Section 3.2.3.
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5.3.3.2 Results

The sensitivity of a relative terminal resistance with respect to the geometric
uncertainty εi and the uncertainty in Murray’s coefficient C can be seen in Table
5.3.1. The results show that the uncertainty in the relative terminal resistances is
determined almost solely by the geometrical uncertainty term εi.

Parameter S1,i ST,i
C 0.01 0.01
εi 0.99 0.99

Table 5.3.1: Main and total Sobol sensitivity indices expressing the sensitiv-
ity of a relative terminal resistance with respect to the geometric uncertainty
term εi and the uncertainty in Murray’s coefficient C. The sensitivity analysis
is performed using PC and the parametrized posterior distributions for εi and
C.

Based on the findings from the sensitivity analysis of a relative terminal
resistance Rrel,i, we neglect the effect of uncertainty in Murray’s coefficient on
terminal resistance uncertainty. Thus, we quantify the sensitivity of CTFFR with
respect to the geometric uncertainty of the terminal resistances. The result from
the sensitivity analysis is shown in Figure 5.3.6 and Figure 5.3.5. We observe that
the sensitivity of CTFFR with respect to terminal resistance uncertainty increases
with increasing outlet diameter. Relative to outlet diameter, we observe that
CTFFR is particularly sensitive to the post-stenotic outlets. No clear differences
are observed for vessel outlets in the RCA, pre-stenotic LAD, or CX region.
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Figure 5.3.5: Coronary tree with a stenosis in the upper LAD and outlets
grouped after the relative importance of terminal resistances according to the
total Sobol sensitivity indices.
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Figure 5.3.6: Total Sobol sensitivity of CTFFR to terminal resistance uncer-
tainty in the coronary tree with a stenosis in the upper LAD. The Sobol sen-
sitivity indices are plotted according to reported vessel diameters of the coro-
nary dataset.

5.4 Discussion

Terminal outlet resistances for CTFFR are typically determined using Murray’s
law. Here, we analyze Murray’s law using the published dataset of coronary artery
geometry from Kassab et al. [29]. Our regression analysis shows that Murray’s
coefficient has high variability when fitted for single bifurcations, but that the
variability reduces when Murray’s law is evaluated over larger control volumes.
The mean fitted value of Murray’s coefficient using control volume sampling
shows good agreement with the MAP estimate from Bayesian inference,
c = 2.49 vs. c = 2.56, respectively. In contrast, the mean fitted value of Murray’s
coefficient for bifurcations is c = 2.24, which shows that estimates for Murray’s
coefficient are sensitive to the modeling approach. The residual analysis indicates
that the absolute deviation from Murray’s law increase with increasing vessel
radius. Further, the residuals show a systematic deviating trend for higher vessel
radii. It is unclear whether this deviation is a result of noise or uncaptured
structures in the dataset.
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The results from the Bayesian analysis show that the relationship between
vessel radii in the coronary system can be successfully modeled by a power law
relationship. Although, with the current modeling approach, we see that relative
resistances determined from Murray’s law are heavily influenced by geometric
uncertainty. In contrast, the uncertainty in Murray’s coefficient has a lower
influence on the terminal resistance uncertainty.

Further, we evaluate the effect of uncertainty in terminal resistances on CTFFR,
and find that larger vessels and vessels downstream from the stenosis are of
greater importance to the resulting estimate (see Figure 5.3.6 and 5.3.5). This
finding could prove valuable for clinical applications of CTFFR. CTA image data
has variable quality depending on factors like angle, slice thickness, patient
movement and more. The take-home message from this work is that a proper
description of post-stenotic outlets is necessary for an accurate CTFFR estimate.
On the other hand, uncertainties in pre-stenotic regions and parallel vessels are of
less importance to the CTFFR estimate.

It must be noted that the inferred uncertainty of Murray’s law was derived
from the coronary dataset of Kassab et al. [29]. In contrast to the geometry in a
conventional CTFFR simulation, this geometry was quantified using an
elastomer-casting method. Based on the high uncertainty of coronary lumen
segmentation, it is reasonable to believe that the uncertainty in CTFFR as a result
of uncertainty inMurray’s law could be even higher than estimated in this chapter.

Also, the accuracy of the variance-based sensitivity analysis with the RF
metamodel is unclear. Results from experiments in previous chapters (Section
4.1.2, 4.2.3 and 4.1.3) show promising results for problems with fewer input
parameters. However, the exact accuracy for problems with high-dimensional
input spaces is unclear. The main challenge is that a proper validation of the RF
metamodel would require a high-dimensional MC analysis, an extremely
computationally expensive procedure. Using the current run time, our
computational resources and the necessary number of samples based on
published literature by Sarrazin et al. [140], our estimates indicate that a full MC
validation would require a computational time of between 10 and 45 days.
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However, the validation would be feasible using the latest tools in
high-performance computing and is an interesting area for future research.
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Errors are not in the art but in the artificers.

Sir Isaac Newton

6
Invisible Arteries

Capturing the fluid dynamics of the coronary arteries requires a complete
mapping of all branches in the coronary system. However, the current resolution
of CTA only enables a mapping of coronary arteries down a vessel diameter of
≈ 1mm [personal communication, 9/23, 2015]. General practice in applications
of CTFFR is to model major arteries and neglect the effect of small branching
vessels on pressure and flow characteristics [26].

There is reason to believe that neglectingminor arteries could have a significant
impact on estimated pressure and flow in a coronary simulation. In segmented
vessel data from CTA, it is common to observe vessel tapering in the absence of
branching. However, research in both healthy and atherosclerotic patients have
found no significant tapering in vessel segments without arterial branches [141].
Thus, observed vessel tapering on CTA indicates that the flow loss to invisible
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Figure 6.0.1: A cast of coronary arteries with the right coronary arteries in
yellow and the left coronary arteries in red. The figure shows the high density
of arteries and branches in the coronary system [142].

branches is of a magnitude that could imply a possible effect on CTFFR estimates.

In this chapter, we estimate the effect of invisible branches on volumetric flow
loss and CTFFR using the model presented in Chapter 2. For this purpose, we use
the coronary geometry dataset from Kassab et al. [29] where coronary arteries
are mapped down to an arterial diameter of≈ 0.1mm. A more thorough
description of this dataset can be found in Section 2.1.4. Also, we propose a
mathematical model to reduce the effect of blood loss due to unaccounted
branching to invisible arteries on CTFFR.

6.1 Leaky VesselModel (LVM)

Here, we propose a mathematical model to investigate the effect of invisible
branches on CTFFR which we refer to as the Leaky Vessel Model (LVM). The
essence behind the LVM is that we attempt to model the flow to invisible arteries
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by introducing a leakage term. In practice, this is done by adding an additional
flow outlet and a corresponding resistance for every vessel segment in our CTFFR

model.

To estimate the resistance values, we minimize the difference between the
model flow and the theoretical flow according to Murray’s law. The model flow qi
for a vessel segment i is a function of the microvascular resistance Rmicro (Section
2.2) and the additional leakage resistances Rl so that

qi = f(Rmicro,Rl), (6.1)

where f is the CTFFR model. The theoretical flow for the vessel segment i
according to Murray’s law is given by

qi = arci , (6.2)

where a is the proportionality constant of Murray’s law. Thus, the leakage
resistances Rl are found by solving the optimization problem

(Rl,Rmicro, a) = argmin
∑
i

(
qi(Rmicro,Rl)− arci

arci

)2

. (6.3)

where the minimization is performed with respect to the leakage resistances Rl,
the microvascular resistance Rmicro and the proportionality constant a.

6.2 Quantification of Flow to Invisible Branches

6.2.1 Experimental Setup

In this experiment, we estimate the flow to CTA-invisible coronary arteries based
on the coronary geometry dataset. First, we identify invisible and visible outlets
for the coronary system with different CTA-visibility thresholds. Second, we
estimate the expected flow fraction to invisible arteries using the CTFFR model.
The expected flow fractions are based on Murray’s law with the empirically

105



determined value of the Murray’s coefficient, c = 2.56 as found in Chapter 5.
Also, we investigate the flow fraction to invisible arteries for different values of
Murray’s coefficient.

6.2.2 Results

Figure 6.2.1 shows the number of visible- and invisible flow outlets for three
different visibility thresholds, 0.5mm, 1.0mm and 1.5mm. The ratios of visible
to total flow outlets are 54/114, 16/114 and 4/114 for the visibility thresholds
0.5mm, 1.0mm and 1.5mm, respectively. This means that only 14.0% of the
total flow outlets are visible at the clinically relevant visibility threshold of 1mm.

Figure 6.2.2 shows the flow fraction to invisible branches as a function of
distance from the inlet of the coronary artery tree for three different visibility
thresholds, 0.5mm, 1.0mm and 1.5mm. The result suggests that a significant
fraction of the coronary flow disappears to invisible branches for all visibility
thresholds considered. In particular, the results indicate that up to≈ 50% of the
coronary flow is through invisible branches for the clinically relevant visibility
threshold of 1mm. Importantly, this finding is not heavily influenced by different
assumptions of Murray’s coefficient, c. Also, we observe that the visibility
threshold has a significant effect on the flow fraction to invisible branches, e.g. a
visibility threshold of 0.5mm reduces the maximum flow fraction to invisible
branches down to≈ 10%.
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Figure 6.2.1: Figure showing visible and invisible flow outlets of the coronary
tree for three different visibility thresholds, 0.5mm (left), 1.0mm (middle) and
1.5mm (right).
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Figure 6.2.2: Fractional flow to invisible branches as a function of length
from the inlet of the coronary arteries for a visibility threshold of 1 mm (up-
per), visibility thresholds of 0.5 mm, 1.0 mm and 1.5 mm (middle) and for
three different values of Murray’s coefficient (lower).

6.3 Effect of Invisible Branches onCTFFR

6.3.1 Experimental Setup

In this experiment, we investigate the expected error in CTFFR due to the
presence of invisible branches. The analysis is based on the coronary network
from Kassab et al. [29] with clinically relevant a 75% area stenosis in varying
positions. Barring the stenoses, the parameters of the CTFFR model are the same
as the mean values used in Chapter 4 and Chapter 5. The effect of invisible
outlets on CTFFR is quantified by comparing the estimated CTFFR for a model
with full visibility to a model with a clinically relevant visibility threshold of
1mm. This analysis is performed for nine different coronary networks, which
each has a uniquely positioned stenosis. Three of the networks have a stenosis in
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the RCA, three have a stenosis in the LAD, and three have a stenosis in the CX.
For each main coronary artery, the stenoses are allocated in the proximal-,
medial- and distal regions.

6.3.2 Results

The effect of invisible branches on CTFFR for three different coronary networks is
shown in Figure 6.3.1. The results suggest that invisible branches could have a
significant effect on CTFFR. Further, the effect of invisible branches could both
increase or decrease the CTFFR value, depending on the position of the stenosis
and nature of the invisible flow outlets.
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Figure 6.3.1: CTFFR for a 75% area stenosis in one of the following locations:
RCA (upper), LAD (middle) and CX (lower). The experiment is performed
with full visibility and a visibility threshold of 1mm.

Quantitative results for the effect of invisible branches on CTFFR is shown in
Table 6.3.1. We see that the expected error in CTFFR due to invisible branches is
rapidly increasing for increasing visibility thresholds. In particular, the error for
the clinically relevant visibility threshold of 1mm is a mean absolute error of
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0.0507 and a mean-squared error of 0.003893.

Visibility threshold MAE MSE

0.5 mm 0.0134 0.000553
1 mm 0.0507 0.003893
1.5 mm 0.1207 0.018116

Table 6.3.1: Effect of visibility threshold on Mean Absolute Error (MAE) and
Mean Squared Error (MSE) of CTFFR. In this analysis, the expected error from
invisible outlets are investigated for nine different coronary networks, each
with a uniquely positioned stenosis. The error is calculated from the CTFFR
values immediately downstream of the stenosis.

6.4 Effect of Leaky VesselModel onCTFFR

6.4.1 Experimental Setup

In this experiment, we investigate the performance of the LVM. For this purpose,
we compare the expected error in CTFFR using the LVM and the conventional
method without correction for flow loss to invisible arteries. The models are
compared using the same coronary networks as in Section 6.3. In other words,
we compare the methods for nine coronary networks, each with a stenosis in a
unique position. The comparison of the models is made for the clinically relevant
visibility threshold of 1.0mm.

6.4.2 Results

Figure 6.4.1 shows the estimated CTFFR for a model with full visibility, a
conventional model with limited visibility, and the LVM for three different
coronary networks. Here, we see that the newly introduced LVM improves the
estimates of CTFFR and closely resembles the CTFFR estimates obtained under full
visibility. In contrast, the conventional method with limited visibility results in a
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Figure 6.4.1: CTFFR for a 75% area stenosis in one of the following locations:
RCA (upper), LAD (middle) and CX (lower). The figure shows the model
with full visibility (blue) and the two models with limited visibility: the con-
ventional method (green) and the LVM (red).
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Method MAE MSE

Conventional Method 0.0507 0.003894
Leaky Vessel Model 0.0208 0.000702

Table 6.4.1: Mean Absolute Error (MAE) and Mean Squared Error (MSE)
of CTFFR for the conventional method and the LVM. In this analysis, the ex-
pected error from invisible outlets is investigated for nine different coronary
networks, each with a uniquely positioned stenosis.

significant discrepancy between the estimated CTFFR for different visibility
thresholds.

The results from the quantitative investigation of the performance of the
conventional method and the LVM is shown in Table 6.4.1. The table indicates
that the LVM significantly reduces the CTFFR error due to invisible branches. In
fact, MAE shows a reduction from 0.0507with the conventional model to
0.0208, corresponding to an error reduction of≈ 60%.

6.5 Discussion

In this chapter, we investigate the influence of CTA-invisible coronary arteries on
CTFFR. The problem is investigated using theCTFFR model introduced in Chapter
2. In this work, we find that only a small number of coronary arteries are
expected to be visible on CTA. As a result, our analysis shows that a substantial
amount of the coronary blood flow is lost to invisible arteries. In fact, we estimate
that up to 50% of the blood flow is lost to invisible arteries with a visibility
threshold of 1mm. Further, we compare CTFFR estimates for coronary networks
with full visibility to coronary networks with clinically relevant visibility
thresholds. The results show that invisible arteries may have a significant effect on
CTFFR. In fact, the quantitative investigation shows an expected mean absolute
error of CTFFR, MAE = 0.0507 for a visibility threshold of 1mm. This
corresponds to a mean error of±6.3% (±0.0507/0.8) for a stenosis at the
clinical threshold (FFR = 0.8). In other words, the expected error is highly
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relevant for clinical applications of CTFFR.
To reduce the error from invisible arteries, we propose a new mathematical

model, referred to as the LVM. To our knowledge, this is the first model that
incorporates the effect of invisible arteries on CTFFR. The LVM is based on
principles of Murray’s law and incorporates a leakage term that is shown to
significantly reduce the error due to invisible arteries. For a visibility threshold of
1mm, our quantitative analysis indicates that the LVM reduced the expected
model error by≈ 60%.

Note that the coronary geometry from Kassab et al. [29] only incorporates
vessels with a diameter above approximately 0.1mm. It is reasonable to assume
that a significant number of smaller coronary arteries exists so that the effect of
invisible arteries on CTFFR may be even larger than what we have exhibited in our
investigations. Therefore, we believe that better understanding of the effect of
invisible vessels is paramount for the future of CTFFR. Also, our analysis shows
that the expected flow fraction to invisible branches may be significantly reduced
with a decreasing visibility threshold. Accordingly, increasing the resolution of
CTA is another direction one might take to improve the accuracy of CTFFR,
preferably in combination with a model to account for the effect of invisible
arteries.
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I’m never going to be in danger of getting the Nobel Prize for
literature.

David Eddings

7
Discussion

7.1 Summary

The aim of this thesis is to quantify and reduce the uncertainty of CTFFR. In
particular, we focus on uncertainties from the interaction between CFD and the
coronary physiology. Our findings suggest several ways to improve the
interaction between physiology and fluid dynamics to reduce the uncertainty in
CTFFR estimates.

First, we investigate the effect of uncertainty of physiological input parameters
on CTFFR. Our results show that moderate uncertainty in physiological input
parameters can lead to rather dramatic uncertainties in estimated FFR, which
could have a significant impact on clinical decisions. For the CTFFR model, the
most influential physiological parameters were found to be cardiac output and
myocardial vasodilatory response, TCRI. Also, we compare the expected
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uncertainty in CTFFR due to uncertainty in physiological parameters to the
uncertainty from lumen segmentation. Despite the approximate nature of this
comparison, we find that the uncertainty of lumen segmentation has the greatest
effect on CTFFR. However, the uncertainty from lumen segmentation is only
slightly higher than the uncertainty from physiological input parameters.

Based on the results of the uncertainty analysis, we propose methods to
decrease the uncertainty of CTFFR. One way to approach this is by using
additional clinical measurements. For example, cardiac output, myocardial flow
fraction, and hematocrit could be measured non-invasivly with current clinical
tools. Our analysis shows that reducing the uncertainty of the measurable
physiological parameters can have a significant effect on CTFFR uncertainty. Also,
the uncertainty in these parameters could potentially be reduced by other means,
for example with higher accuracy of population-based statistics or by better
mathematical modeling.

Terminal outlet resistances and flow distribution in CTFFR models are typically
determined using Murray’s law. In this thesis, we analyze Murray’s law using the
published dataset of coronary artery geometry from Kassab et al. [29]. We find
that the relationship between vessel radii in the coronary system can be
successfully modeled by a power law relationship like Murray’s law. Also, we find
that relative resistances determined from Murray’s law are heavily influenced by
geometric uncertainty. In contrast, the uncertainty in Murray’s coefficient has a
lower influence on the terminal resistance uncertainty. Further, we evaluate the
effect of uncertainty in terminal resistances on CTFFR, and find that larger vessels
and vessels downstream from the stenosis are of greater importance to the
resulting estimate. This finding could prove valuable for clinical applications of
CTFFR where CTA image data has variable quality. Thus, a proper description of
post-stenotic outlets is necessary for an accurate CTFFR estimate. On the other
hand, uncertainties in pre-stenotic regions and parallel vessels are of less
importance to CTFFR.

Also, we investigate the influence of CTA-invisible coronary arteries on CTFFR.
Here, we find that only a small number of coronary arteries are expected to be
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visible on CTA and that the invisible arteries may have a significant effect on
CTFFR. To reduce the error from invisible arteries, we propose a new
mathematical model, referred to as the LVM. The LVM is based on principles of
Murray’s law and incorporates a leakage term that is shown to significantly reduce
the error due to invisible arteries.

7.2 Suggestions for futurework

In this thesis, we have highlighted several challenges in current applications of
CTFFR. In particular, we have highlighted challenges in the cross-section between
physiology and CFD. In this section, we will present suggestions for future work
and areas which we believe have a promising potential for future development of
CTFFR.

7.2.1 Improved Analysis using 3D-CFD Models

Even though lumped-parameter models for solving fluid dynamics are well
supported, they are not always able to accurately capture the complex
characteristics of coronary flow. For this reason, 3D-CFD solvers or hybrid
models¹ remain the gold-standard for clinical applications of CTFFR. Therefore, a
major assumption in this thesis is that methods to quantify and reduce the
uncertainty in lumped-parameter models are relevant for clinical CTFFR

algorithms.

Thus, an important task for future work is to test the validity of this
assumption. This could be done by performing similar experiments on full
3D-CFD models of CTFFR. Due to the high computational demand of QA and
SA, this would require significant computational resources, but could be feasible
with a combination of clever algorithms for UQ and SA and the latest technology
in high-performance computing.

¹Hybridmodel: A combination of CFD solvers of different dimensions, e.g. 0D (lumped) and
3D
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7.2.2 Machine Learning and Big Data

In this work, we present promising results for the use of machine-learning
methods for variance-based SA. As pointed out in the thesis, this is an
experimental approach that could have tremendous potential for future
applications. The substantial increase in computational power over the last years
opens up new and exciting possibilities and enables computers to tackle
computational problems in higher and higher dimensions. A challenge for
classical SA is that many of themost developed and influential methods have poor
dimensional scaling and therefore have limited applicability for this new class of
SA problems. Thus, efforts to improve current methods and introduce new
approaches for SA is paramount to future high-dimensional applications of SA.

Also, machine learning and big data could play a promising role in the
development of more accurate physiological input parameters and physiological
models forCTFFR applications. The growing commercial and academic interest in
the field of CTFFR increases the available datasets and opens up new and
promising applications for machine learning and big data.

7.2.3 Myocardial Viability

A promising area for future research is the concept of myocardial viability. It is
likely that the degree of myocardial viability has a significant effect on boundary
conditions for CTFFR. It is already well known that only patients with confirmed
myocardial viability will benefit from revascularization procedures, and that the
amount of viable myocardium evaluated before the procedure is the best
indicator of long-term cardiac event-free survival after a cardiac intervention
[143–147].

There exist several well-supported clinical imaging techniques for assessment
of myocardial viability. Traditional imaging techniques include nuclear imaging
by 18F-fluorodeoxyglucose positron emission tomography (PET), nuclear
imaging by single-photon emission computed tomography (SPECT),
echocardiography with dobutamine, echocardiography with intravenous contrast
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agents, magnetic resonance imaging (MRI) with dobutamine or intravenous
contrast agents, and CT with intravenous contrast agents [143–155]. For a
further description of these methods, we recommend the articleMultimodality
Imaging for Assessment of Myocardial Viability: Nuclear, Echocardiography, MR,
and CT by Arrighi and Dilsizian [150].

The assessment of viable myocardium from cardiac CT is particularly
interesting to CTFFR and a combined assessment of viable myocardium and
CTFFR has a great potential in clinical applications. Currently, assessment of
myocardial viability with cardiac CT is mostly investigational, but the results
from initial studies are promising [143, 150, 151]. Further work could include
investigations of the use of cardiac CT to assess myocardial viability and how to
use the measured myocardial viability to increase the accuracy of CTFFR.

7.2.4 Improve Leaky Vessel Models

To our knowledge, the LVM proposed in this thesis is the first mathematical
model that aims to model the effect of CTA-invisible coronary arteries on CTFFR.
Thus, it is important to stress that this model is based on simple principles and
that there exists a significant potential to increase the accuracy of this model
further. Important factors in this development could be more available data and
an improved understanding of the presence of invisible arteries in the
myocardium.

7.2.5 Other methods

In the future work presented in this section, we have focused on methods and
areas related to the physiological model and physiological input parameters for
CTFFR. Thus, other areas for future development of CTFFR exists. Based on our
findings, the most critical of these areas is vessel segmentation from CTA. As a
result, a continued effort to increase the accuracy of segmentation algorithms
should be of utmost importance. On another note, it is likely that improvements
in specific fluid-dynamical modeling of the coronary system could have a
significant potential to improve the accuracy of CTFFR, e.g. multi-phase flow in
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stenosed areas.
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