
Handover between Wireless Networks for
Medical Applications

Michele Agostini

Master of Telematics - Communication Networks and Networked Services

Supervisor: Frank Alexander Krämer, ITEM
Co-supervisor: Luca Spalazzi, UNIVPM

David Palma, ITEM

Department of Telematics

Submission date: August 2016

Norwegian University of Science and Technology

Problem Description

Name of student: Michele Agostini

This project focuses on the medical area and how on the In-
ternet of Things can provide an improvement. This could be an
important improvement in the everyday life of patients, nowa-
days secluded in their locations, and an interesting step for-
ward in use the new technologies in our lives.

The monitored data can be very different one from another,
and different constraints may exist. It will be necessary to con-
sider where the analysis is done, choosing between the sensor,
the border router, the cloud or a combination of the previous
options. Sensors can lose connectivity, so its required to offer a
way to buffer data or analyze data directly in the sensor.

The main goal is to manage the handover between two differ-
ent gateways, how and when it should happen, because of the
time that it needs to be done. The signal power, the batteries or
the work balance are some options that will be considered in
the definition of the algorithm.

We assume multiple WPANs and search for suitable ways to
let connected sensors, i.e. patients, free to move between them.
This means manage the handover from one network to another
always considering the constraints that the types of data moni-
tored need.

Assignment given: 31th March 2016

Supervisor: David Palma

Responsible Professor: Frank Alexander Kraemer

i

A B S T R A C T

This project takes inspiration from the medical area and focuses
on how the Internet of Things can provide improvements. The
idea is to build a system that leaves the patients move freely in
the hospital and in the meanwhile to be able to properly man-
age data collected by their wearable sensors.

Therefore the main goal of the work is to manage the han-
dover between two different WPANs. This is a key activity in
these kind of systems, because it takes time to be performed
and it is resources demanding.

The handover operation will be fully analysed and evaluated
in all its characteristics in order to find a suitable solution for
the project purposes.

iii

To my family.

C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.2 Scope and Objectives 2

1.2.1 Scope 2

1.2.2 Objectives 2

1.3 Methodology 4

1.4 Structure 4

2 state of the art 6

2.1 IEEE 802.15.4 6

2.2 Bluetooth Low Energy 7

2.3 IPv6 7

2.4 6LoWPAN 8

2.5 RPL 9

2.6 Contiki 11

2.7 Thread 12

2.8 MQTT 13

2.9 Zolertia 13

3 implementation of the network 15

3.1 Hands on 15

3.1.1 Hello World 15

3.1.2 Wireless with Contiki 16

3.2 Set up of a MQTT network 18

3.2.1 MQTT, Mosquitto and MQTT.fx 19

3.2.2 Connection Performance 21

3.3 Understanding the network 21

3.3.1 Need for information 21

3.3.2 IPv6 Addresses 23

3.3.3 Identifying the problem 25

3.4 The new network 27

3.4.1 Solving the problem 27

3.4.2 Results 30

4 default handover implementation 33

4.1 Handover background 33

4.1.1 The handover definition 33

4.1.2 Setting up two different networks 34

4.2 Performance evaluation 36

4.2.1 Test description 37

4.2.2 Results 39

vii

Contents

4.3 Analysis and Considerations 41

4.4 Considerations 43

5 proposed solutions 44

5.1 Managing the handover 45

5.1.1 Guidelines 45

5.1.2 The implementation 46

5.2 Proposals 53

5.2.1 Manual handover 54

5.2.2 Application layer handover 55

5.3 Test and Results 57

5.3.1 Test implementation 58

5.3.2 Results 60

5.3.3 Analysis 62

6 conclusions and future work 66

6.1 Conclusions 66

6.2 Future work 69

6.2.1 Improved Custom handover handler 69

6.2.2 Smart application layer 71

6.2.3 Smart node-driven handover 72

6.2.4 Mixed approach 73

References 74

viii

L I S T O F F I G U R E S

Figure 1 6LoWPAN in the protocol stack (source:
IoTin5days[5]) 9

Figure 2 RPL in the protocol stack (source: IoTin5days[5]) 10

Figure 3 RPL connection scheme 11

Figure 4 Broker architecture in MQTT (source: IoTin5days[5]) 13

Figure 5 The Zolertia boards (source: Zolertia[12]) 14

Figure 6 Network example 17

Figure 7 The MQTT.fx application with the node
messages and the Mosquitto broker shell
in the background 20

Figure 8 Border router shell before the changes 22

Figure 9 Border router shell after the changes 23

Figure 10 MQTT client shell after the changes 23

Figure 11 Connection phase problem 27

Figure 12 Radio Duty Cycle 29

Figure 13 Handover illustration 34

Figure 14 Border router webserver example 37

Figure 15 Networks cover range during tests 38

Figure 16 Tests configuration 39

Figure 17 Handover idea 46

Figure 18 The RPL connection phase 50

Figure 19 DIO filter workflow 52

Figure 20 Handover operations 53

Figure 21 Proposal 1 achievements 55

Figure 22 Proposal 2 achievements 57

Figure 23 Standard Handover vs Custom Handover 63

Figure 24 Handover phases comparison 64

Figure 25 Standard deviation comparison 65

Figure 26 Milestones 66

Figure 27 Custom handovers comparison 71

Figure 28 Application layer handover 72

Figure 29 Mixed approach 74

x

L I S T O F TA B L E S

Table 1 ContikiMAC vs NullRDC 29

Table 2 Results in ticks 31

Table 3 Results in seconds 31

Table 4 Standard handover results 41

Table 5 Results in ticks 61

Table 6 Results in seconds 62

Table 7 Focus on RPL handover phases in sec-
onds 69

xi

A C R O N Y M S

6LOWPAN IPv6 over Low power Wireless Personal Area Net-
works

BLE Bluetooth low energy

CSMA Carrier Sense Multiple Access

DAG Directed acyclic graph

DIO DODAG Information Object

DIS DODAG Information Solicitation

DODAG Destination Oriented DAG

FFD Full Function device

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronic Engineers

IETF Internet Engineering Task Force

IOT Internet of Things

IP Internet Protocol

IPV4 Internet Protocol version 4

IPV6 Internet Protocol version 6

ISM Industrial, Scientific and Medical

JSON JavaScript Object Notation

MAC Medium Access Control

MCU Mobile Control Unit

MQTT MQ Telemetry Transport

OF Objective Function

OS Operating system

OSI Open Systems Interconnection

xiii

List of Tables

QOS Quality of Service

RAM Random Access Memory

RDC Radio Duty Cycle

RFD Reduced Function Device

RPL Routing Protocol for Low-Power and Lossy Networks

RSSI Received signal strength indication

SLAAC Stateless address autoconfiguration

TCP Transmission Control Protocol

UDP User Datagram Protocol

USB Universal Serial Bus

WPAN Wireless personal area network

xiv

1

I N T R O D U C T I O N

1.1 motivation

The increasing number of connected systems that surround
us and the rising of new technologies such as the Internet of
Things and the Cloud Computing are changing the World. It is
now possible to think of new ways to reinvent every aspect of
our lives and this project aims to contribute this change.

If we imagine a hospital where there are many patients, each
one of them wears several sensors that measure various param-
eters. Nowadays they are wired at their locations, but why do
not we imagine to free patients from wires, make them comfort-
able and, above all, allow them free to move within the hospital
without bonds?

This means creating a communication infrastructure consist-
ing of:

• patient sensors

• gateways

• routers

• cloud

Patients will be monitored by wearable sensors connected to
gateways and routers located in the hospital area and a cloud
service in which all the data can be collected and analysed.

The medical aspect is out of the scope, the parameters are not
defined, but it is clear the fact that they will be of a different na-
ture and therefore with different needs and management. The
body temperature sensor will need a lower transmission rate
than heartbeat sensor. The latter will need to be considered es-
sential, you can not waste any of the available data.

1

1.2 scope and objectives

This situation opens big issues and challenging ideas, there
are a lot of options and questions to answer to: Which technolo-
gies? Which infrastructures? Which platforms?

What happens if a sensor loses communication signal to the
gateway: will it have a buffer or will it be able to analyse data it-
self? How do we handle the handover between the various gate-
ways? Depending on what do we choose?
The roaming of the sensors through the infrastructure will be
a key aspect of all the project, it will be fully analysed in this
work.

Another key aspect of the project is the resource constraints
having sensors that will be powered by batteries. It is necessary
to take into account the consumption of resources in every as-
pect: in the technology to be used, how to handle analysis, how
to manage handovers, which micro controllers to choose.

1.2 scope and objectives

1.2.1 Scope

This project is to focus on the Handover of a node between
networks, since this is a key aspect of the Internet of Things
technologies considering our scenario.

In order to properly manage the handover, we will need to:

• see how an handover works in the standard implementa-
tion

• understand which layers and variables are involved in
this operation

• evaluate the performance

• define if improvements are needed for our own purpose

To discuss these points we will provide details about the im-
plementation of the network and backgrounds on the involved
technologies.

1.2.2 Objectives

O.1: Build a network

2

1.2 scope and objectives

The first step of this project will be to implement a network for
our test, without this step would be impossible to continue the
work.

O.2: Understand the network

The handover is a sensitive operation that involves most of the
mechanisms of the network, so we need a deep understanding
of the system to fulfil our purposes.

O.3: Evaluate the default handover implementation

To understand if the default implementation of the handover is
suitable for our purposes we need to investigate its behaviour
and test it in order to have all the information about it.

O.4: Improve the handover

The last objective of this thesis is to improve the aspects that
not satisfy of the handover mechanism so we will finally have
an implemented network with a working handover system that
will let future projects continue to work in this subject area.

1.2.2.1 Research questions

R1: Is IEEE 802.15.4 a good choice to support the structure
we need?

We answer this question setting up a network and testing its
performance with different upper layers options.

R2: Is MQTT suitable to be on the top layer of our network?

On the upper layers the options are multiple, but MQTT seems
one of the most used options. We will test the MQTT behaviour
during all the path of this project.

R3: How is the Handover handled in the default
implementation?

First thing we need to do to achieve our goal is to study the
default implementation of the handover, understand it evaluate
it.

R:4 How is possible to improve the Handover considering
our purposes?

The answer to this question is strongly dependent on R3, be-
cause only after the full comprehension of the standard imple-
mentation will we be able to know where and how we can do
our improvements.

3

1.3 methodology

1.3 methodology

The work we describe in this thesis can be methodologically di-
vided in three main parts.

In the first one we describe how we implement a working
network that uses MQTT and we provide the details necessary
to face a connection issue shown by the system.

In the second part we start to investigate the handover mech-
anism, we understand which part of the system are involved
and we find out some problems that make the standard han-
dover not enough performing for our purposes.

In the third and last we show our proposals to improve the
standard handover mechanism.

1.4 structure

Chapter 2 talks about the background knowledge that is needed
to go through this project, speaking about both hardware and
software technologies.

Chapter 3 describes the implementation of the network that
we will use for the following work. After the implementation
we describe how the network works and how it is possible to
solve a connection issue about the Radio Duty Cycle that made
the connection phase too long. This chapter answers to objec-
tives O.1 and O.2 and gives information about R.1 and R2.

Chapter 4 goes deep in the handover mechanism. It shows
what an handover is and how it takes place in the standard im-
plementation of the network: testing it, analysing it and identi-
fying the most important issues to solve to make improvements.
With these information we discuss O.3 and R.3.

Chapter 5 illustrates the proposals we make to improve the
handover mechanism, the reasons why we think these different
versions improve the system and the results of the test we did
to show their performances. This chapter is about O.4 and R.4.

4

1.4 structure

Chapter 6 discusses the future work and summarizes the
work done with the conclusions. With this chapter we com-
plete the answers to R.1 and R.2.

5

2

S TAT E O F T H E A RT

In this chapter we present the main technologies that will be
analysed in the work. Further details will be presented during
the work too, in order to make it easier to understand.

2.1 ieee 802 .15 .4

IEEE 802.15.4 [1] is a standard defined in the 2003, it provides
the physical layer and the media access control of the OSI model.
Offering the lower network layers of the OSI model, it is meant
to be an operational base for any system that focuses in low
power and low cost characteristics, this means also low data
rate and low range cover.

These characteristics make IEEE 802.15.4 slightly different
from Wi-Fi [2] technology that is meant for large bandwidth
and more power applications.

The physical layer (PHY) provides the actual transmission of
the data and the medium access control (MAC) layer let the
frames from the upper layers to go through the physical layer.

IEEE 802.15.4 supports two types of network topologies: star
and peer-to-peer, and the nodes can be of two types too: Full
Function device (FFD) and Reduced Function Device (RFD).
The former, can do any operation, the latter are simpler and
can only communicate with the FFD nodes.

The definition and the options for the upper layers is up to
the developer, several projects are based on this technology due
to the increasing interest in the IoT.

6

2.2 bluetooth low energy

2.2 bluetooth low energy

BLE [3], acronym for Bluetooth low energy or Bluetooth LE, is
a wireless technology standard developed by Bluetooth Special
Interest Group. Even if it shares part of the name with his fa-
mous brother (classic) Bluetooth, it is quite different.

BLE strongly focuses on low power, low cost and low require-
ments systems, but it manages to achieve the same communi-
cation range. In fact the BLE has a data rate up to 1 Mbit/s,
a power consumption up to 0.01-0.5 W and almost the same
range of classic bluetooth about 100 m.

BLE and Classic Bluetooth share the same spectrum range
too: 2.400 GHz-2.4835 GHz ISM band, but they have different
channels.

Since the Bluetooth 4.0 specification is it possible for devices
to provide both BLE and Classic Bluetooth implementation (it
was not back compatible before), this has been a great step
forward for the diffusion of this technology. Nowadays it is
supported by a large number of hardware manufactures and
Operating Systems.

2.3 ipv6

IPv6 (Internet Protocol version 6[4]) is the newest IP (Inter-
net Protocol) developed by the Internet Engineering Task Force
(IETF), it has become necessary to outdo the old IPv4 that was
not ready to face the new technology challenges.

IPv6 was not designed to be compatible with IPv4, but a lot
of systems of communication have been developed and it is
now possible.

One of the differences between the two versions is the num-
ber of the addresses, IPv6 make possible to have an enormous
amount of addresses thanks to the different number of bits
used: 128 bit long addresses replace the 32 bit old ones. This
means something about 2128 options or 3.4x1038 addresses.

7

2.4 6lowpan

The larger number of addresses is not the only difference
between the two protocols, other improvements are carried out
by the IPv6:

• hierarchical address allocation

• multicasting that enables the transmission of a packet through
multiple destinations at a time

• Stateless address autoconfiguration (SLAAC) and Neigh-
bor Discovery Protocol that permits to a node to auto con-
figure itself in a network

• routers processing simplified

The structure of an IPv6 packet consists of two parts: a header
and a payload, but optional headers can be added to enable
special information. Nowadays the number of connected smart
systems is increasing very fast and IPv6 is an essential step for-
ward to permit the development of new technologies.

2.4 6lowpan

6LoWPAN is the acronym of IPv6 over Low power Wireless
Personal Area Networks[6], it has been developed by the IETF
to answer the new technological needs. The raising of the In-
ternet of Things showed how important is to have a system to
create networks between low power and low resources devices.

The main goal of 6LoWPAN is to be an adaptation layer be-
tween the wide spread IPv6 and the IEEE 802.15.4, which can
be read as connect internet to the world of small resources sys-
tems.

There were some important issues to connect these worlds,
one of the most important was the different size of the packets
between the two layers. In order to solve this problem 6LoW-
PAN provides a encapsulation and header compression system
that allows the two worlds to communicate.

Other important features of 6LoWPAN are the address auto-
configuration, that makes possible to create IPv6 stateless ad-
dresses, the mesh routing protocol, to use the multi-hop tech-
nology, and the use of the 15.4 frames in which the IPv6 packets
are fragmented.

8

2.5 rpl

Figure 1: 6LoWPAN in the protocol stack (source:
IoTin5days[5])

2.5 rpl

RPL means Routing Protocol for Low-Power and Lossy Net-
works [7] and it is based on a distance vector routing specif-
ically designed for systems with resources constraints, devel-
oped by the IETF group.

The image below, taken from the IoTin5Days document, shows
the role of RPL in the protocols stack:

The RPL network created is a Destination Oriented Directed
Acyclic Graph (DODAG), it supports different traffic patterns
and it is identified by an id, the DODAGID.

In a single network we can have different RPL instances,
which can contain multiple dodags; a node can be part of mul-
tiple instances but it can be contained in only one DODAG for
every instance.

9

2.5 rpl

Figure 2: RPL in the protocol stack (source: IoTin5days[5])

Every DODAG has a DODAG root that acts like a sink, ev-
ery path from the other nodes ends to it, because the graph is
acyclic.

The connection phase
In the scenario of this project more than the routing protocol
itself, that is optimized by the Objective Function (OF) and the
Rank number, we are interested at the connection establishment
that has a key role in the handover happening.

If we consider that we have a working DODAG, the con-
nection phase of a new node starts after the bootstrap with
the broadcasting of a DODAG Information Solicitation (DIS)
message, it is used to request information about the available
DODAG to other nodes (not necessarily the root).

A node that receives a DIS answers to the sender with a
DODAG Information Object (DIO), a message that contains in-
formation about the DODAG.

Once the new node receives a valid DIO, it is processed and
the node can join the network.

10

2.6 contiki

Figure 3: RPL connection scheme

2.6 contiki

Contiki [8] is an open source operative system developed by
a worldwide community. It is designed to be very light and
low resources demanding so it can run over several low power
systems. It is in particular good to be used in embedded semi-
controller with few hardware resources.

It is based on the C language and processes are designed
as protothreads, this lets the developers fast implement their
projects using the wide known thread programming technique.

Despite its lightness, Contiki is full of useful features:

• it is a multitasking OS

• it is memory efficient

11

2.7 thread

• it is power efficient

• it is it possible to load modules in run-time

• it has a network simulator called Cooja, that let the devel-
oper fast simulate large networks

Contiki has another main characteristic that makes it very inter-
esting for the purpose of this work, it is designed specifically
the Internet of Things. This means that, in addition at the es-
sentials features seen above, the IP stack is fully implemented:
IPv6, UDP, TCP, HTTP and 6LowPAN.

2.7 thread

Thread is a protocol for the Internet of Things developed by
the Thread Group[9], in which it is possible to find an interest-
ing number of famous companies such as: NXP, Samsung and
ARM for example.

Thread is IPv6 based and this make it very compatible with
other systems, the Thread stack provides the Transport and Net-
work layers of the OSI model and it is designed using other
standards as UDP (User Datagram Protocol) transport and
6LowPAN with IPv6 addressing. It is based in IEEE 802.15.4
for the lower layers, and it gives to the developer total freedom
for the application layer.

As it is possible to see, Thread is not a whole new standard,
but it has

• Simple commissioning to join or leave a network

• Power saving support for sleeping devices

• Full point to point network without single point of failure

The Thread network is based on 4 characters connected with
thread links:

• Border Router: it connects the network to the cloud

• Leader: the coordinator of the network

• Thread Router: it is able to become leader if necessary

• End Device Router Eligible: it can be promoted to router
if required by the leader to improve the network

12

2.8 mqtt

2.8 mqtt

MQTT[10] (MQ Telemetry Transport) is a connectivity protocol
that works over the TCP/IP and it has been developed to work
with low resources consumption.

It is based on the Broker architecture, the messages are or-
ganized in topics with the publish/subscribe model. A node

Figure 4: Broker architecture in MQTT (source: IoTin5days[5])

publishes its messages to its publish topic and will receive from
the Broker any message published in its subscribed topics.

Different Quality of Service (QoS) levels are available that de-
fine how the messages are delivered to other nodes.

The default Json (JavaScript Object Notation) format for the
messages makes simple the combination of this technology with
other systems.

Mosquitto
Mosquitto[11] is a MQTT broker developed by the Eclipse IoT
Working Group. It is OpenSource and it is specifically thought
for the Internet of Things and this is why it is has been chosen
for this project.

2.9 zolertia

Zolertia[13] is a company located in Barcelona that produces
systems for the Internet of Things. Their projects claim to be
appreciated both for enterprise solutions and the academic or
developers worlds. Zolertia produces its own hardwares and

13

2.9 zolertia

firmwares or they design specific solutions for their client.

At the moment Zolertia produces three main platforms:

• RE-mote: it is the most complete development board pro-
duced by Zolertia. It carries two radios, battery charger,
external storage, many interfaces and connectors

• Firefly: it is a small and simple card that carries only the
essentials features, but this let it be used in many scenar-
ios and it can be extended

• Z1: is a general purpose card with a low power MCU, a
2.4GHz Transceiver and sensors

Figure 5: The Zolertia boards (source: Zolertia[12])

The first two platforms, RE-mote and Firefly, are based on the
Zoul module. It carries a CC2538 core by Texas Instruments, an
ARM Cortex, 32Kb RAM and double RF interface.

Zolertia platforms support different operating systems, among
which Contiki OS and RIOT: an OS for low memory systems
with real-time functions.

14

3

I M P L E M E N TAT I O N O F T H E N E T W O R K

In this chapter we describe the first part of the practical work
of this thesis that goes from the classic Hello World example to
the first implementation of a working network.

The work described in this chapter used the document IoT
in Five days [5] as useful way to go through these first steps.
Before to start the work a whole reading and understanding of
this guide has been necessary and it has been the base of this
first stage of the work.

Despite the early stage of these steps and their easy-go first
looking, they required time to be well implemented and under-
stood.

3.1 hands on

The work described in this section includes the first steps needed
to familiarize with the Zolertia and Contiki platforms, from the
installation until the first communication examples.

3.1.1 Hello World

As in every project the work starts with the installation of the
platform Contiki in our host.

After the resolution of some missing dependencies and some
needed update in the guide, we are ready for the classic Hello
World example that establish the starting point of the work.

This first step let us understand how the communication be-
tween the mote, a Zolertia Re-mote, and our host works. The
Hello World example simply write in the mote shell a corre-

15

3.1 hands on

sponding message after the mote bootstrap phase.

The next step is to analyse a contiki process thread that has
the following structure:

PROCESS_THREAD(hello_world_process, ev, data)

{

PROCESS_BEGIN();

printf("Hello, world\n");

PROCESS_END();

}

[14]

After this first example we moved forward exploring the Con-
tiki OS and the Re-mote mote features. We learned to use Con-
tiki events, as a buttons pressure, handle the board leds and
reading values from the board multiple sensors.

With these first examples and with a deepening of the Con-
tiki platform we are ready to enter the area of work we are
interested in, the communication between motes.

3.1.2 Wireless with Contiki

This chapter marks the beginning of the work on the commu-
nication between motes and it is based on 3 different roles: a
border router, a client and a sniffer to see and analyse the pack-
ets traffic.

To set up our first beginner network we used the follow
motes organization:

• mote1: rpl-border-router example

• mote2: udp-client example

• mote3: sniffer example[15]

The Border Router is the conjunction between the external
world and our 6LoWPAN network based on the IEEE 802.15.4
protocol. The packets are handled by the RPL and directed to

16

3.1 hands on

Figure 6: Network example

the DODAG root, the border router.

To connect the border router to the external world in this
project we use the Tunslip utility provided in Contiki. Tunslip
creates a bridge that connects the border router and the RPL
network to the local machine.

Tunslip is activated in the border router Makefile when we
use the command:

make connect-router

to start the border router.

On top of that stack many technologies can be used, both
UDP as in this example and the TCP protocols are supported,

17

3.2 set up of a mqtt network

like the messaging application MQTT.

In this first implementation the udp-client example simply
broadcasts packets that are redirected to the DODAG root and
then can be processed and in case sent to external applications.

In order to fully understand how the network works even
other udp examples have been examined, the udp-client will
be the one we will use during the rest of project as test for its
easy way of working.

The sniffer is used to sniff packets as its name explains and
it can be used combined with softwares like Wireshark[16] to
analyse the packets traffic.

Meanwhile the implementation of the first two examples did
not require many efforts, it can be useful describe the imple-
mentation of the sniffer. In fact we have to use another appli-
cation, Sensniff, to connect the two extremes of the pipe: Wire-
shark and the sniffer.

Important to note is that at the moment this project is being
done it has been discovered a bug that does not let use the snif-
fer example with the Re-mote board. This made necessary the
use of a supplementary Z1 board.

After some settings optimization work in Wireshark, like the
”dissect only good FCS packets” option, it is possible in the end to
see the packets traffic and it is very useful to comprehend how
the system works and to debug future problems.

3.2 set up of a mqtt network

After these first steps useful to understand the basics of the plat-
forms used in this project, in this chapter we introduce a new
technology that is very important in the final implementation:
MQTT [10].

In this chapter we illustrate all the characters participating in
the system and we implement our first MQTT network.

18

3.2 set up of a mqtt network

3.2.1 MQTT, Mosquitto and MQTT.fx

As explained in the second chapter a MQTT network is com-
posed by clients and a broker.

The MQTT clients are based on the mqtt-demo example avail-
able in the Contiki platform, instead as broker we chose to use
the open-source Mosquitto broker[11] installed in our host.

This structure as to be paired of course with a border router
in order to have the communication between the MQTT client
and the broker through 15.4.

There is one thing that we need to pay attention to, the broker
default listening port. This is because in the mqtt-demo example
the default port is set to 1883, so we have to be sure that the
MQTT client port and the broker port will be the same in order
to have communication. To change the listening port of the bro-
ker we can use the -p [port number] option.

After this we witnessed the first connection, made clear by
these broker messages:

New connection from aaaa::212:4b00:616:fc9 on port 1884.

New client connected from aaaa::212:4b00:616:fc9 as

d:mqtt-demo:cc2538:00124b160fc9 (c1, k11520,

u’use-token-auth’).

It is possible to note as the MQTT client id is build up from
the node address.

The connection goes through 3 phases made clear by the
node led, as well explained in the example Makefile:

• fast blinking led: searching for a network

• medium blinking led: connecting to a network

• slow and long led: connected / publishing

3.2.1.1 MQTT.fx

MQTT.fx[17] is a desktop application that works like a MQTT
client and it is very useful to connect to the MQTT broker and
read/send messages.

19

3.2 set up of a mqtt network

In MQTT the messages are organized in topics, so in order
to read the messages from the node we have to be sure to sub-
scribe to the topic in which the Re-mote is publishing, in the
default example this topic is iot-2/evt/fmt/json.

Connecting to the broker and subscribing to the quoted topic
we see the messages coming from the MQTT client in the de-
fault Json format:

Figure 7: The MQTT.fx application with the node messages and
the Mosquitto broker shell in the background

{"d":{"myName":"Zolertia RE-Mote platform","Seq

#":1,"Uptime (sec)":339,"Def

Route":"fe80::212:4b00:616:fc9","RSSI

(dBm)":-94,"On-Chip Temp (mC)":26190,"VDD3

(mV)":3249}}

We can see that a lot of information come with the Re-mote
messages, analysing the content of the message we can read:

• myName: the hardcoded name of the node

• Seq: the sequential number of the messages

• Uptime (sec): the uptime of the node, in seconds

• Def Route: the route used to deliver the messages

• RSSI (dBm): Received signal strength indication

• On-Chip Temp (mC): the on-Chip temperature

• VDD3 (mV): power

20

3.3 understanding the network

3.2.2 Connection Performance

In the previous chapter we described how we managed to im-
plement a working MQTT network, but we did not mention the
performance and this is a big issue of this implementation.

Once the node is connected to the border router and to the
broker, the network works as expected, but the problem is in
the connection phase.

With the default settings the behaviour of the MQTT client in
the connection phase is very unpredictable with a time of con-
nection that goes from 10 seconds to some minutes. In certain
occasions we have a working connection after 3-4 minutes.

This is clearly an unacceptable frame of time in a scenario as
the one we are dealing in this project, since we have to think
that during this time we should receive a big amount of data
from the sensors. This would create problems both with the
data buffering and the data analysis.

Due to of these reasons we decide that it is necessary deeper
investigate the connection phase in order to improve the perfor-
mances into an acceptable range of time.

A detailed evaluation and analysis of the performance are
not elaborated because even after few tests it is clear that both
the time needed and the random behaviour are not acceptable.
This is why instead we directly try to work on them.

3.3 understanding the network

After the implementation of the network described in the pre-
vious chapter a deepening in the understanding of the network
is necessary both to be able to improve the connection perfor-
mances and to able to properly manage the system looking for-
ward to the future work.

3.3.1 Need for information

The first step into this understanding is to have information to
analyse in order to see the workflow of the system, as trivial as

21

3.3 understanding the network

it seems: without data it is impossible to comprehend what is
going on in the platform.

To achieve this goal is necessary to intervene in multiple lo-
cations and in different ways.

First of all it is possible to use the verbosity option activated
both in the mosquitto broker and in the tunslip tool with the
parameter -v.

Another way to get more data is to enable the debug options
in the files involved in the system. This step requires some at-
tention to find out every file used by the system and to build
the whole image. IPV6, RPL, sicslowpan, uip, MQTT are some
of the protocols involved.

Different files have different ways to activate the debug op-
tions, most of them are enabled with the strings DEBUG PRINT
and DEBUG 1.

With these changes the amount of data in our possession
increased, we see it comparing the images below:

Figure 8: Border router shell before the changes

With this new information is possible to start a deepening
into the system and this will involve different sides.

22

3.3 understanding the network

Figure 9: Border router shell after the changes

Figure 10: MQTT client shell after the changes

3.3.2 IPv6 Addresses

IPv6 is one of the most important technologies in this project, a
proper comprehension of the addresses characteristics is neces-

23

3.3 understanding the network

sary.

First of all it is important to distinguish between link-local
and global addresses:

• link-local addresses: These addresses start with the FE80::/1
prefix (not editable) and are used to communicate with
other nodes in the same network.

• unique local addresses: addresses that start with the pre-
fix FC00::/7 and are used for local communications inside
a network.

• global addresses: Equivalent to the IPv4 public addresses,
they are unique in the whole Internet and can be used to
send a packet to different networks.

In our project the communication is inside one single net-
work, so link-local addresses are used as showed in the MQTT
messages from the node.

An important special address is ff02::1 since IPv6 does not
implement broadcast addressing, this is the address used for
this purpose. For example at the end of the bootstrap this is
the address to whom the node sends a DIS message trying to
reach any border router in range.

The node address in contiki can be handled in 2 different
ways, it can be hardcoded or not hardcoded. As it is easy to
understand, in the hardcoded way it is possible to specify the
address in the code with the IEEE ADDR CONF HARDCODED
option. Otherwise in the not hardcoded option, the default one,
the address is build from the MAC, so it can be somehow con-
sidered static too.

In both the possibilities address prefix is negotiated with the
border router and it depends on the network prefix. This be-
haviour influences both the link-local and the global address.

We tried various configurations about the addresses involv-
ing different prefixes (from aaaa::/64 to fd00::/64) and hardcoded
/ not hardcoded settings, but no improvements have been seen
in the connection performances.

Because of this we decided to use the default option, with
not hardcoded addresses build up from the MAC.

24

3.3 understanding the network

3.3.3 Identifying the problem

Since the variables involved in the connection problem are sev-
eral we decide to make a test to get closer to the issue.

The test consists in leave a part MQTT and go back to the
udp-client example. In this way we can understand if the long
time needed to the node to connect to the border router is due
to of MQTT or not.

With the udp example we have the same performances and
the same behaviour in the connection phase. Despite this could
seem a bad news, it actually is not because tells us that MQTT
is not the problem.

The investigation consists in the analysis of the border router
and MQTT-client logs and after a careful deepening we have
been able to identify the problem comparing the usual work-
ing flow of RPL [18] and our logs.

Looking into the RPL protocol:

As expected at the end of the bootstrap phase, in our MQTT
client example this means at the end of the Init phase, we see
the node correctly broadcast a DIS message:

RPL: Sending a DIS to ff02::1a

This message is properly received from our border router
and it answers in the right way to it with a DIO message:

RPL: Received a DIS from fe80::11:22ff:fe33:4401

RPL: Multicast DIS => reset DIO timer

RPL: Sending a multicast-DIO with rank 256

So far everything works properly according to the RPL stan-
dard, but after this message the problem takes place.

This DIO is not properly received by the node, it takes a long
and, most worrying, random time to be received.

Most of the times we can see this cycle repeating several
times with the node sending some DISs and the border router

25

3.3 understanding the network

always answering with a DIO, before finally it gets caught by
the node, processed and the connection established as it possi-
ble to see in the log messages below:

RPL: Received a DIO from fe80::212:4b00:616:fc9

RPL: Neighbor state changed for fe80::212:4b00:616:fc9,

nscount=0, state=1

RPL: Neighbor added to neighbor cache

fe80::212:4b00:616:fc9

RPL: Incoming DIO (id, ver, rank) = (30,240,256)

RPL: Incoming DIO (dag_id, pref) =

(fd00::212:4b00:616:fc9, 0)

RPL: DIO option 4, length: 14

RPL: DAG conf:dbl=8, min=12 red=10 maxinc=1792 mininc=256

ocp=1 d_l=255 l_u=65535

RPL: DIO option 8, length: 30

RPL: Copying prefix information

RPL: New instance detected (ID=30): Joining...

RPL: rpl_add_parent lladdr #0x20004fe8

fe80::212:4b00:616:fc9

RPL: Adding fe80::212:4b00:616:fc9 as a parent: succeeded

RPL: adding global IP address fd00::212:4b00:616:f3a

RPL: rpl_set_preferred_parent fe80::212:4b00:616:fc9 used

to be NULL

RPL: Joined DAG with instance ID 30, rank 768, DAG ID

fd00::212:4b00:616:fc9

The problem can be synthesized and easily understood look-
ing at the following image:

26

3.4 the new network

Figure 11: Connection phase problem

After this analysis we finally identified the problem, that
takes place in the RPL connection. This is an important step
forward and in the next chapter we illustrated how is possible
to solve it.

3.4 the new network

In this chapter we describe how we manage to solve the identi-
fied problem and we discuss the performances of the new im-
plemented network, the results of this first part of the project.

3.4.1 Solving the problem

In the previous chapter we managed to isolate the problem,
but the road to solve it is still not easy to spot. Despite we now
know the problem takes place in the RPL protocol, we only
know that that is the symptom, but the problem could even be
caused by something else.

3.4.1.1 RPL Rank

The RPL Rank is one of the suspected for this behaviour, in
fact in RPL protocol specifications is possible to see that a node
ignores a DIO message from nodes with higher rank than his
own.

27

3.4 the new network

This routine is necessary to avoid loops in the parent-child
network structure.

We already know from the DIO messages sent by the border
router that it has a default rank of 256:

RPL: Sending a multicast-DIO with rank 256

So if the node at the beginning starts with a lower rank it will
consequently ignore the DIO.

The rank is not fixed during the life cycle of the nodes and
the behaviour observed could be explained by the progressive
rising of the node rank while it is searching for a acceptable
network until it is higher than 256.

The analysis of the logs shows that the node use to start with
a default network of 512 though, as we can see in the lines
below, and it changes during the life time but it has never ob-
served to go under the 256 level.

RPL: rank 512 dioint 13, 1 nbr(s)

RPL: nbr 238 256, 256 => 512 d* (last tx 0 min ago)

This means that the rank parameter is not what causes our
problem.

3.4.1.2 Radio Duty Cycle

The Radio Duty Cycle is the next part we look into, because
despite the problem we observed takes place in the RPL con-
nection, this could be caused by something else.

28

3.4 the new network

Figure 12: Radio Duty Cycle

In contiki we have available 2 different options to handle the
RDC, ContikiMAC and NullRDC[19]. As the names suggest
the RDC is not the only thing involved in this choice, but even
the MAC (Medium Access Control) layer.

Net: sicslowpan Net: sicslowpan
MAC: CSMA MAC: nullmac
RDC: contikimac RDC: nullrdc

Table 1: ContikiMAC vs NullRDC

ContikiMAC is the default option and it is a very power ef-
ficient RDC protocol and it is used with the CSMA MAC layer
protocol. Due to its power efficiency, with ContikiMAC the
node transceiver is in sleeping mode for most of the time and
this is the reason of its power efficiency.

NullRDC is the other RDC mechanism offered by Contiki
and it has opposite properties: it lets the node transceiver al-
ways up not caring about the power efficiency and it uses the
nullmac mechanism instead of CSMA (Carrier Sense Multiple
Access) that does not do any MAC layer processing, as it possi-
ble to understand from the name.

This is something that can be at the origin of our problem, be-
cause the ContikiMAC could be too much extreme in the power
efficiency side and so create issues in the packets reception.

29

3.4 the new network

The two option are very different one from the other and
switch to the use of NullRDC is a drastic change, considering
the importance of the power efficiency in the scenario of this
project.

So before to take this important choice it is worth to try to
improve ContikiMAC instead directly go on trying NullRDC.

This can be done with the CONTIKIMAC CONF WITH PHASE
OPTIMIZATION. As the name suggests this option enable/dis-
able the phase optimization and it is disabled by default be-
cause it is not available for all the platforms.

It is not clear if the RE-mote platform is supported, but we
can observe that no improvements are shown with the activa-
tion of this option.

Consequently the only option remained is to switch from
ContikiMAC to NullRDC and this is done by specifying the
new options in the project-conf.h files of both the border router
and the mqtt-demo examples. In this way we dont change the
default settings of the whole platform.

//specify what RDC driver Contiki should use

#define NTSTACK_CONF_RDC nullrdc_driver || contikimac

//specify what MAC driver Contiki should use

#define NETSTACK_CONF_MAC nullmac_driver || csma

These new settings clearly show a different and better be-
haviour in the connection phase of the node, that is described
in the next sub chapter.

3.4.2 Results

This new settings bring with them big differences in the net-
work.

In fact in the IoT scenario where we have to handle low re-
sources devices the power efficiency is very important and the
choice of NullRDC instead of ContikiMAC of course affect that
side.

30

3.4 the new network

In addition, we are renouncing at the MAC layer too, con-
sidering that mixed approaches, based on NullRDC and CSMA
or using the NullRDC settings only in the client node, are not
supported.

These choices have big consequences (that we will discuss
further in the work), but looking at the good results that we
are going to show and considering that the main goal of this
project is to be focused on the Handover, it seems to be the best
choice to go on in the development of this work in this way.

The Results

These data are taken from the final project tests. The DIS to
DIO time is a little higher than the real first connection time
because in the handover the node discards the DIO messages
from the old network waiting for the new ones.

The meaning of these data are just to show how the random
behaviour of the connection has been stabilized and the aver-
age time for a connection is passed from minutes to seconds.

An acceptable value that will be further investigated in the
next chapters and for the moment is enough for us to continue
the work.

Average DIS to DIO 430.87 157.887

Average DIO to RPL reconnect 5.09 0.471

Table 2: Results in ticks

In the last column is showed the standard deviation.

This give as an Average time from DIS to DIO of 3,360786 sec-
onds and an Average time from DIO to RPL reconnect of 0,039702

seconds. At this time it has to be added the average time of the
MQTT connection that is 6,138678s .

Average DIS to DIO 3,360786 seconds
Average DIO to RPL reconnect 0,039702 seconds

Table 3: Results in seconds

31

3.4 the new network

The main point we want to focus on is that after these changes
we have a stable connection phase that needs less than 10 sec-
onds, against the previous random behaviour that certain times
needed 3 or 4 minutes to establish a connection.

32

4

D E FA U LT H A N D O V E R I M P L E M E N TAT I O N

The handover is the main argument discussed in this project,
after we set up a working network in the chapter 3, in this
chapter we analyse how it works in the default implementation
of the system.

4.1 handover background

First of all it is important to clearly discuss what an handover
is and why it is so important that is the core of this work. Then
in this sub chapter we show the work necessary to get the plat-
form ready to perform it.

4.1.1 The handover definition

A handover is a change of network the node is connected to.

The reasons that leads to this change can be of various forms
and strongly dependent on the user case scenario. The easiest
way to see it is to imagine that the node is not any more under
the cover range of its border router.

This can happen both if the node is changing its position or if
the first border router is not reachable any more for any reason.

To be out of cover or observing the signal strength are just ba-
sic ways to see the need of an handover, there is a big amount
of studies on this issue and the answer is strongly dependent
on the scenario.

A handover could be useful to have a better work balance in
a system or it could be useful to improve the power efficiency
changing to a border router with more battery for example. A
handover could even be triggered by the application layer with

33

4.1 handover background

Figure 13: Handover illustration

the proper structure.

Other than the reason that brings us to an handover, very im-
portant is even to understand what happens during a handover
in order to properly handle it. This is important because the
handover is a heavy operation for a low-resource system, we
have to keep in mind that this project is about low-resource de-
vices and the transmission phase is one of the most demanding.

In the medical area scenario for example a properly handled
handover could let patients being easily moved from one area
to another without any worrying about the extremely impor-
tant and various data the sensor are controlling.

In order to do that we need to know how an handover takes
places, what happens in the device, what changes are shown
and after that in case try to improve the standard behaviour in
our purposes view.

4.1.2 Setting up two different networks

In order to perform a handover it is of course necessary to have
at least two different working border routers, in the purpose
of this project we are mostly interested in have two complete

34

4.1 handover background

different networks (i.e. different prefixes) to better simulate a
real scenario and this is what we are going to implement.

Theoretically a handover can be performed even inside the
same network going from one border router to another, but in
the Contiki RPL implementation we have only one active bor-
der router in charge at a time, another border router will be-
come active only if the first one is not available for any reason.

As we said in chapter 3.1.2 to connect a router we use the
command

make connect-router

that starts the border router activities and connects the node
to the local machine through the Tunslip utility.

It is interesting to note that since we need to start the border
router with this command, we need to have them connected to
our host by an USB cable and this is why we cant have a battery
powered border router in the scenario of this project.

To implement 2 different networks we need to make some
change to this routine. We need to create 2 different directories
because we need to edit the Makefile of each border router.

The prefixes are defined in the Makefile with the following
lines:

ifeq ($(PREFIX),)

PREFIX = fd00::1/64

endif

ifeq ($(PREFIX),)

PREFIX = fd22::1/64

endif

As it possible to see the prefix of the first network is fd00::/64,
as advised in the Contiki guide, and the second prefix is fd22::/64,
that is arbitrary.

Since we have both the border router connected to our host,
we need to edit the call to Tunslip too, because we need to
create 2 different bridges to the local machine, this is done by

35

4.2 performance evaluation

adding the -s [siodev] parameter.

First router:

connect-router: $(CONTIKI)/tools/tunslip6

sudo $(CONTIKI)/tools/tunslip6 -L -v3 $(PREFIX)

Second router:

connect-router: $(CONTIKI)/tools/tunslip6

sudo $(CONTIKI)/tools/tunslip6 -s ttyUSB1 -L -v3

$(PREFIX)

The last change needed is in the command used to start the
border router, since now we have 2 of them connected at the
same time we need to specify the device with the port parame-
ter:

make PORT=/dev/ttyUSB0 connect-router

With these changes we are able to connect the 2 border routers
and have 2 different networks. As it is possible to see in the bor-
der router shells they create 2 different DODAGs:

First router:

RPL: Node set to be a DAG root with DAG ID

fd00::212:4b00:616:fc9

#A root=201

Second router:

RPL: Node set to be a DAG root with DAG ID

fd00::212:4b00:615:a0ee

#A root=238

Another helpful tool to see the networks situation is the built-
in webserver in the border router example. This is a simple
web page reachable inserting the border router IPv6 address in
the browser (into brackets) that shows the neighbours and the
established routes of the border router, like in this image:

4.2 performance evaluation

In this chapter we describe the tests done on the handover and
the implications that the results show.

36

4.2 performance evaluation

Figure 14: Border router webserver example

Before we show how we performed the test is important to
talk about the cover range of the Re-mote border router, be-
cause to force the handover we need to move the node out of
the range of its first border router and into the range of the sec-
ond one.

The Zolertia Re-mote is equipped with the CC2538 2.4-GHz
transceiver by Texas Instruments [20]. The cover range changes
a sensibly considering the use of an antenna as it is easy to
imagine.

We have a range about 30 meters with the use of the antenna,
but under a meter if we use it without.

Since we proved that the use of the antenna has implications
only in the cover range and not in the correct transmission of
the packets, we removed the antenna for the tests in order to
have little ranges in which we have to move our node to force
the handover.

4.2.1 Test description

The first part of the test consists in defining the positions of the
2 border routers in such a way that we have an overlapped area
of the 2 networks as shown in the image below:

37

4.2 performance evaluation

Figure 15: Networks cover range during tests

We define 3 static positions, by empiric tests, in which the
node is moved step by step. The positions are chosen with this
purpose:

• Position 1: covered only by network 1 (P1)

• Position 2: covered by both the networks (P2)

• Position 3: covered by network 2 (P3)

With the resulting configuration:
The role of Position 2 is important to understand what hap-

pen when the node is under the cover range of both the net-
works, otherwise to only perform the handover 2 positions
could be enough.

The tests are done by 4 steps:

1. We start the node in P1

2. After the node initialization is done we move to P2

3. After an arbitrary time of 30 seconds we move on P3

4. Behaviour observation

38

4.2 performance evaluation

Figure 16: Tests configuration

4.2.2 Results

First of all we describe the observed node behaviour in the first
test following the step by step procedure to understand what
goes on in the system. We use the border router webservers to
look into the events.

4.2.2.1 First test

Step 1: the mote is started in Position 1 and it establishes con-
nection with the border router 1, the border router 2 is out of
range and so it does not show anything about the node in its
webserver:

First router:

Neighbours

fe80::212:4b00:615:a0ee

fe80::212:4b00:615:a0e6

Routes

fd00::212:4b00:615:a0e6/128 (via fe80::212:4b00:615:a0e6)

Second router:

Neighbours

fe80::212:4b00:616:fc9

Routes

Step 2: the node is moved to Position 2, it enters the cover
range of border router 2 and looking at its webserver we see
that it has been added as a neighbour. Despite that no routes

39

4.2 performance evaluation

are established between the node and the border router 2:

First router:

Neighbours

fe80::212:4b00:615:a0ee

fe80::212:4b00:615:a0e6

Routes

fd00::212:4b00:615:a0e6/128 (via fe80::212:4b00:615:a0e6)

Second router:

Neighbours

fe80::212:4b00:616:fc9

fe80::212:4b00:615:a0e6

Routes

Step 3: the node is moved to Position 3, it goes out of the
border router 1 cover range and now it is only under the bor-
der router 2 one. At this point we have all the conditions that
should induce the handover, but instead we are not able to see
anything happen in the first place.

Only after some minutes we are able to see the node led to
start middle-fast blinking telling us that the node was in a con-
nection phase. After that we are able to see that the mote es-
tablish a new connection with the border router 2 as is shown
both in the border router 2 webserver with the new routes and
in the broker shell with a new connection:

First router:

Neighbours

fe80::212:4b00:615:a0ee

fe80::212:4b00:615:a0e6

Routes

fd00::212:4b00:615:a0e6/128 (via fe80::212:4b00:615:a0e6)

Second router:

Neighbours

fe80::212:4b00:616:fc9

fe80::212:4b00:615:a0e6

Routes

fd22::212:4b00:615:a0e6/128 (via fe80::212:4b00:615:a0e6)

40

4.3 analysis and considerations

Note: the route between the node and the border router 1 is
still visible because it has a lifetime defined in the code before
it expires.

This first test clearly shows a problem in the handover be-
haviour because the time needed to complete the operation is
about minutes when we necessarily need a time much smaller
than that to be possible consider to use it in a real scenario.

One test is of course not enough to evaluate the performance
of a system and we went on with the experiments, but after 20

of them behaviour was not acceptable and improvements were
needed.

In fact after 20 tests we register the following results to com-
plete the handover (i.e. to establish a new connection):

Average Handover time 163,25 seconds 2’ 43”
Standard deviation 149.08 seconds

Table 4: Standard handover results

These measurements are done looking at the border router
shells that shows the time the messages are received by the up-
time of the board in seconds.

Someone could object that this is not a measurement precise
enough, and this could be true but looking at the magnitude
of the measurements they are clear enough to require changes.
This is the reason why no other measurements are considered
needed.

Very important instead is to understand why the system needs
so much time to perform a handover and what happen during
that time, this is what we do in the next chapter.

4.3 analysis and considerations

After the default handover test the first thing we want to do is
to investigate the behaviour of the node during the handover
to understand what makes it so long and where we can focus
on to improve the performances.

41

4.3 analysis and considerations

Analysing the log files we find that the longest phases in-
volved in the handover, when we move the node from Position
2 to Position 3 out of its network, are 2:

• MQTT disconnection from the broker

• RPL reconnection to the new network

mqtt disconnection When the node is out of its network
it has not any event that makes it reacts, so when the Publishing
event timer is triggered the node tries to publish the message
to the Broker.

But being out of range this is impossible and so the node is
stuck in the Publishing phase for a long time, in the node shell
is possible to see in fact a long series of Publishing messages
that are printed during that phase.

This phase ends when the broker disconnects the node be-
cause it is not receiving any answer to is PINGREQ messages.

rpl reconnection The second problem is about the RPL
reconnection, in fact while the node enters new networks it
starts to receive the DIO messages from the new border router,
messages sent by the border router because of its DIO even
timer.

The problem is that the node in the first place ignores those
messages because they are from a different DAG, as it possible
to see in the following messages from the node shell:

RPL: Received a DIO from fe80::212:4b00:615:a0b8

[...]

RPL: Root ignored DIO for different DAG

Only when the disconnection from the first network is com-
pleted will the node at the end accept the DIO message from
the new border router, processes it and establish a new connec-
tion.

42

4.4 considerations

4.4 considerations

The time needed to complete a handover is clearly not accept-
able in the vision of this project, we can not use minutes to
process this operation. We have to remember that we are man-
aging critical patients data.

With the information we found out about the standard han-
dover it is clear that the implementation of Contiki is not thought
to involve handovers, the events and triggers necessary for this
operation have not sufficient performance.

These are the reasons why instead of going deeper in the
analysis of the standard handover we directly decide to imple-
ment new mechanisms to handle this operation.

These activities are illustrated in the next chapter.

43

5

P R O P O S E D S O L U T I O N S

The previous chapter shows the standard implementation of
the handover mechanism does not work for our purpose, in a
medical area scenario it is not acceptable to use minutes to han-
dle an handover, we need to improve the system.

In order to do that we decided to change our point of view:
we are not interested in the handover by movement because we
want to be able to trigger the handover ourselves.

We made this decision because it is not the main scope of
this project to define when to do a handover, this is a different
question that needs further studies to be answered. In fact, to
decide when perform a handover is a question that involves
possibly a huge amount of variables and most of all it could be
strictly dependent on the scenario in which the handover takes
place.

Instead we want to focus on how to perform a handover with
the best performances possible with our platform.

In order to reach this purpose the first goal of this chapter is
to define a way to trigger the handover on our own, manually
with a button pressure. This will be the first proposal presented
in this thesis.

The second proposal makes a step forward moving the han-
dover activation from a manual activity to an application layer
decision. In the future smarter algorithms may be able to han-
dle most of the decisions.

Both the proposals are based on the same handover handler
mechanism, that gives them the same performances that will
be illustrated in the following chapter.

44

5.1 managing the handover

5.1 managing the handover

5.1.1 Guidelines

The work to define a new way to perform the handover starts
from the results of the standard implementation we illustrated
in chapter 4. With those tests we identified the main critical
phases in the MQTT disconnection and in the following RPL
reconnection, and those are the areas in which we concentrate
our efforts to improve the performance.

Since the handover operation involves a large number of sub-
jects, from MQTT to RPL, and most of them are deeply inserted
in the platform functioning we have to pay attention at our
work. One of the guidelines used to carry on the work is to not
twist too much the working flow, but instead use as much as
possible the present structure in order to not compromise the
stability of the system.

This way of working makes harder at the beginning to edit
the code and the system, but at the end it has a good trade-off
preserving the system and letting us reuse most of the routines
and events in it.

Following these guidelines we define the idea of the han-
dover handler we want to create: using the functions provided
by MQTT we request the disconnection from the Mosquitto Bro-
ker, after that we disconnect from the RPL network.

Properly handling these actions let us be ready to establish a
new connection, but instead of taking care on our own of those
connection activities we will use as much as possible the built
in connection system.

As it possible to see in the image we handle the descending
part through the disconnection from the old network and, with
the appropriate adaptations that solve the RPL reconnection is-
sue, we leave the system taking care about the new connection.

45

5.1 managing the handover

Figure 17: Handover idea

5.1.2 The implementation

The first step in the implementation is to find where the dis-
connection and connection phases are handled, with the work
done in the chapter 4, we found that the files involved are:

• mqtt-demo.c for MQTT (contiki/examples/c2538-common/mqtt-
demo)

• rpl-icmp6.c for RPL (contiki/core/net/rpl/)

In the explanation of the changes done we follow the logic
in which the functions are called during the workflow, it is im-
portant to note that in the snapped code we present, we cut off
the debug information and comments to have a code as clean
as possible.

1. my handover handler() - mqtt-demo.c

This custom function we define is the entry point of the entire
handover process, this function is called by the trigger events
we will show in the next sub chapters.

The role of this function is to start the MQTT disconnection
from the broker, this is done with the following code:

46

5.1 managing the handover

static void

my_handover_handler(void){

my_disconnected_event=true;

mqtt_disconnect(&conn);

}

my disconnected event is a custom boolean variable we use as
a flag to say to the system when the custom handover mode is
active.

We use this solution because in this way we preserve the stan-
dard functioning of the system when we are not interested on
performing a handover, this let us leave unaltered the stability
of the platform during its normal way of working.

mqtt disconnect() is a MQTT function that disconnects the client
from the broker, using the conn parameter, a struct that contains
all the information about the connection currently used.

2. case STATE DISCONNECTED - mqtt-demo.c

After the MQTT disconnection is done, the MQTT EVENT
DISCONNECTED event is triggered by the system, this makes
the call to the function state machine() with the system state on
STATE DISCONNECTED.

Entering the relative switch case in which the disconnection
is handled:

case STATE_DISCONNECTED:

[...]

if(my_disconnected_event==true){

my_disconnected_event=false;

start_myhandover();

}

[...]

In the snipped code we show the changes done in the default
function: we add an if condition that checks if the the custom
handover mode is active or not, if it is we call the custom func-

47

5.1 managing the handover

tion start myhandover() defined in the rpl-icmp6.c file.

This is an example about how we tried to use as much as pos-
sible to working structure of the system. We start on our own
the MQTT disconnection on point 1, but we use the platform
events to detect the completion of the procedure.

This is important because the disconnection takes time, we
will see it in the results, and before continuing with the han-
dover working-flow we need to wait until this is completed.
Otherwise it occurs that we would call the RPL disconnection
before the MQTT disconnection is completed facing a failure in
the system.

The disconnection is confirmed by a led that starts blinking
and by the broker shell in which we can see the following mes-
sages:

Received DISCONNECT from d:mqtt-demo:cc2538:00124b160f3a

Client d:mqtt-demo:cc2538:00124b160f3a disconnected.

3. start my handover() - rpl-icmp6.c

Calling this function we pass to the rpl-icmp6.c file, this says
us that we are in the RPL protocol area. In fact this custom
function handles the RPL disconnection, one of the step that
needed more work on it, despite the final easy looking code.

void

start_myhandover(void)

{

mydag = rpl_get_any_dag();

rpl_free_instance(mydag->instance);

dis_output(NULL);

}

rpl get any dag() is a RPL built-in function that retrieves the
current dag struct and save it to the custom mydag variable.
This variable is important because lets us remember the old
network, otherwise after the disconnection we would not know

48

5.1 managing the handover

which was the last network we were connected to.

rpl free instance() is a RPL built-in function too, it manages
the disconnection from the current RPL instance, that we pass
as a parameter using mydag->istance.

This function is defined in the rpl-dag.c file (contiki/core/net/r-
pl/) and it is important to look at its code to understand how
the RPL disconnection is handled:

void

rpl_free_instance(rpl_instance_t *instance)

{

[...]

for(dag = &instance->dag_table[0], end = dag +

RPL_MAX_DAG_PER_INSTANCE; dag < end; ++dag) {

if(dag->used) {

rpl_free_dag(dag);

}

}

[...]

}

It is possible to see that the main activity of this code is to call
another RPL built-in function, rpl free dag(dag). This function,
in order:

1. sets the DAG as unused

2. removes the routes

3. removes the parent

dis output() is the last RPL built-in function called.

After rpl free instance() is processed our node is completely
disconnected from the network and so it is ready to start a new
connection routine.

As we explained in chapter 2, the RPL connection starts with
the broadcasting of a DIS message from the node and this is the
function that let us do that. The NULL parameter corresponds
to a broadcasted DIS, instead of a unicast message if we would
pass an address as a parameter. After the disconnection phase
from MQTT and from RPL, with this function we send a new

49

5.1 managing the handover

DIS message from the node and enter again the standard con-
nection routine.

4. dio input() - rpl-icmp6.c
As we said in the 5.1.1 Guidelines, to stay close to the usual
system workflow costed us efforts in the complete understand-
ing of the platform, but it has its good trade-off, like in this case.

dio input() is the function activated by the system any time
the node receives a DIO message. As we saw in chapter 2 the
RPL connection mechanism is started when the border router
receives the node DIS and answers with a DIO message, here
again the same image as a reminder:

Figure 18: The RPL connection phase

What in this image is in the block Processing DIO is done, in
part, in the dio input() function.

But we had to add something to this code in order to work
out one major aspect of a Handover: every time we perform a
handover we want to change network and in order to achieve
this goal we need to create a filter in this function that avoid

50

5.1 managing the handover

the processing of the old border router DIO messages.

This is done adding if conditions in the code of the dio input()
function.

static void

dio_input(void)

{

[...]

if(mydiocheck==true){

if(uip_ipaddr_cmp(&dio.dag_id,&mydagid)){

goto discard;

}else{

//do nothing

}

}

[...]

rpl_process_dio(&from, &dio);

discard:

uip_clear_buf();

}

The first if condition checks the value of the mydiocheck vari-
able, a boolean variable we use to activate/deactivate the cus-
tom handover mode. In this way we are able to preserve the
usual behaviour of the system when we are not performing
any handover.

In the second one instead, we do the actual comparison be-
tween the old network we were connected to and the new DIO
message arrived. This is done using the DODAG ID as param-
eter of the comparison:

uip_ipaddr_cmp(&dio.dag_id,&mydagid)

At this point the node is not connected to any DODAG, but
in point 3 we saved the previous DODAG ID in the mydagid
variable.

• If the condition is true it means the DIO we received is
from the old border router, so we can not accept it in or-
der to perform the handover and change to a new net-
work. This is done by the built-in function uip clear buf()

51

5.1 managing the handover

that will delete any information about the received DIO
cleaning the buffer.

• If the condition is false we have received a DIO from a
new network: this means that the dio input() has elabo-
rated the DIO message and can now call the function that
will finalize the processing of the DIO message and estab-
lish the new RPL connection: rpl process dio() .

The following diagram summarize the working flow of the
filter we add at the dio input() function:

Figure 19: DIO filter workflow

5. New connection
After the DIO processing is done in the rpl process dio() func-
tion the system establishes a new connection to the new RPL
DODAG and then to the broker, as we can see in the following
messages:

New connection from fd22::212:4b00:616:f3a on port 1884.

New client connected from fd22::212:4b00:616:f3a as

d:mqtt-demo:cc2538:00124b160f3a (c1, k11520,

u’use-token-auth’).

It is important to note that the address of the MQTT broker
is coded in the node, we assume that this is static and the node

52

5.2 proposals

knows that. In this way even if the node is connected to a new
network, with a different prefix, it is able anyway to connect to
its broker and deliver properly the MQTT messages.

At the end of the process we are now able to provide a more
detailed image of the whole operation:

Figure 20: Handover operations

This custom handover mechanism we defined is used in both
the proposals we show in the next chapter.

5.2 proposals

Over the handover mechanism presented in the previous chap-
ter we built 2 different proposals. The main practical difference
between these proposals is how we trigger the handover, but
this change implies a big logic difference indeed because we
move from a manual triggered handover to a handover trig-
gered by the application layer.

Even if in the redaction of this thesis the proposals and the
custom handover implementation are presented separately, they
were developed side by side and the two parts should be con-
sidered as one. This choice aims to improve the readability of
the thesis.

53

5.2 proposals

The logic behind the definition of the proposals is to improve
the 2 biggest issues identified in the standard handover in chap-
ter 4, the MQTT disconnecting and the RPL connecting phases.

5.2.1 Manual handover

This first proposal provides a manual trigger to start the han-
dover operation, the trigger is represented by the user button
available in the Re-mote board.

With minor changes in the mqtt-demo.c file we are able to pro-
gramme the button to start the handover calling the custom
function my handover handler():

if(ev == sensors_event && data == PUBLISH_TRIGGER){

my_handover_handler();

}

This is the if condition we inserted in the MQTT PROCESS
THREAD, that basically calls the my handover handler() function,
presented in the previous chapter, that starts the handover when
the user button is pressed.

This is a raw implementation of the handover, started by a
manual event that implies a direct human interaction.

Despite that this proposal is a first way we are able to solve
the issues about the standard handover, in fact triggering our-
selves the handover we solve the MQTT disconnection phase
issue.

At the same time our handover handler solves the RPL recon-
nection problem because before the new DIO messages from a
different network were ignored, as we saw in chapter 4. Now
they are accepted as soon as they arrive and they are even fil-
tered to avoid the reconnection to the old network.

This image helps us to understand the steps forward we
achieved with this proposal:

54

5.2 proposals

Figure 21: Proposal 1 achievements

But this first implementation, even if we said it is a raw one,
lets us think a different way to improve it and make it smarter.

For example from this starting point it would not be hard to
think of a handover not triggered by the button pressure, but
indirectly by the mobility of the mote, through the RSSI value.

The Re-mote has a sensor to evaluate the Received Signal
Strength Indication, as we read in the json messages the node
send to the MQTT broker. It is easy to imagine how to build a
cycle that every a certain interval of time checks the RSSI value
and, if it is under a certain threshold, it starts the handover call-
ing the my handover handler() function.

Even if this would be an interesting way to proceed, we de-
cided to take another path, that we will show in the proposal 2.

This is because we do not know which variables will be in-
volved in the future in the decision of when performing a han-
dover. This is a huge and different issue and as we said before
it is not the first purpose of this project that is focused on how
perform it. But it is important to note how it could be easy in
a possible future work to take over from here and go down on
that road.

5.2.2 Application layer handover

As we said in the previous chapter with the second proposal
we take a different path.

55

5.2 proposals

Now that we have a manual way to trigger the button, and
we saw which options could be taken from there, we want in-
stead get to another point: since when trigger a handover is a
very big issue, we imagine that this is not a node driven deci-
sion, but an application layer one instead.

This could seem some minor difference, but it is a big change
in the point of view of the problem indeed. With this change of
paradigm we have big advantages.

We do not care any more about the low resources constraints
of the devices, because we are taking away from them the han-
dover operation and we are giving it to the application layer.

This means both that our devices have one complex opera-
tion less than before to perform and, at the same time, giving
the handover activity to the application layer, we are free to
think at any possible handover management we want, no mat-
ter how complex it could be.

With this different point of view we definitely separate the
handover from the device. The handover is now managed by
the application layer that can be thought as a complex cloud
infrastructure that could be in possession of the whole network
information. In this way it can define a proper way to decide
when make a node perform a handover from one network to
another.

In order to do that we need an infrastructure that lets us com-
municate with the node and ask it to start the operation. We
already have it, this structure is MQTT itself.

In fact the broker architecture and the topic messaging model
are a suitable option for this purpose.

The changes are in the mqtt-demo.c file, in the pub handler()
function, that is the function that process the MQTT messages
published by the broker in the topic the node is subscribed to.

if(strncmp(&topic[10], "hand", 4) == 0) {

if(chunk[0] == ’1’) {

my_handover_handler();

} else{

56

5.3 test and results

printf("chunk not correct to start the handover.

Please send a 1 to start the handover \n");

}

return;

}

Considering that the default topic that the mote subscribes to
is iot-2/cmd/+/fmt/json, in the example declined in iot-2/cmd/+/
leds/json, we decided to maintain the same structure to let the
new code be easy integrable in the function.

So the new topic to public to is iot-2/cmd/hand/fmt/json and
the payload that starts the call of the handover function is 1, de-
fined arbitrary. These messages are easily sent by the MQTT.fx
application.

At this moment we only need a value to let the process start,
in the future this could be easily an IPv6 address that we can
use as a parameter to pass to the rpl-icmp6 file in which we can
wait for a DIO from this address.

With this proposal we make another step forward, summa-
rized in the following image:

Figure 22: Proposal 2 achievements

5.3 test and results

So far we discussed the logic improvements of the developed
proposal, but to fully evaluate these proposals we have to test
their performances to see how they enhanced the standard im-

57

5.3 test and results

plementation on the field.

In this chapter we describe how we perform the test and we
will discuss the results.

It is important to note that there are no differences between
the 2 proposals performances, since they both use the same han-
dover handler. There is a delay from sending and processing
the MQTT message, but these activities are out of the handover
operation.

Since we are not any triggering the handover by movement,
but using both the methods during the test, both manually with
the user button and by MQTT message, the test are made under
the full cover range of both the border routers. We remember
that with the use of antennas the network cover range is about
30 meters, so this is not influencing the tests at all.

5.3.1 Test implementation

The purpose of the test is to evaluate the time needed by the
system to perform the handover operation, but in order to give
a full understanding we do not measure only the total time of
the handover, but for all steps of the action.

Therefore the first step of the test is to define checkpoints that
we want to keep trace of. To do that we insert some readable
printf that will be contained in the log, then we will be able to
elaborate them.

Checkpoints definition

The checkpoints we define to observe the system are meant
to measure any operation involved in the handover and are the
following:

1. Button/Message trigger

2. MQTT disconnection

a) Start disconnection

b) End of the disconnection

3. Rpl disconnection

58

5.3 test and results

a) Start disconnection

b) End of disconnection

4. New DIO received

5. New RPL connection

6. New MQTT connection

With these checkpoints we are able to fully monitor the sys-
tem performances, phase by phase:

• MQTT disconnecting time: defined as the difference be-
tween point 2.a and 2.b

• RPL disconnecting time: defined as the difference between
point 3.a and 3.b

• Time to receive a new DIO: that is the time from the com-
pleted RPL disconnection (3.b), when we send a DIS mes-
sage, to point 4

• New RPL connection: the time needed to establish a new
RPL connection (5) since we receive the new DIO (4)

• New MQTT connection: that is the time from the estab-
lishment of the new RPL connection (5) to the new MQTT
connection (6), the end of the handover

And from to these measurements we can also have structured
measures, probably the most important to us:

• Total Handover time: defined as the time from the activa-
tion trigger (1) to the new MQTT connection (6)

• Total RPL Handover: defined as the time to change the
RPL network, since the start of the disconnection from the
old border router (3.a) to the connection to the new one
(5)

These checkpoints are printed in the node shell, we save the
log file through adding the -l option when we call the perl script
with the command:

perl ~/contiki/tools/serial-log.pl -t /dev/ttyUSB2 -b

115200 -r none -l

59

5.3 test and results

that saves a file with the default name of serial.log in the di-
rectory in which it is executed.

But looking at the log there is still something we need to im-
prove, because the script prints the uptime of the node, but it
has a maximum precision in the order of seconds.

This is of course not acceptable for the measurements we
want to do and the solution we found was to add a timestamp
in the checkpoints using the Contiki function clock time().

This function measures the uptime of the node in ticks per
second, the implementation is platform specific and in the Re-
mote, that uses the Texas Instruments cc2538, we have that 1
tick = 7.8 millisec according to the datasheet [20].

This is an acceptable precision for our test, to transform the
number of ticks we only need to use this easy equation:

Number of ticks * 7.8 = Number of milliseconds (/1000 =

Number of seconds)

This is how a checkpoint looks like in the code:

printf("CHECKPOINT1 - Handover triggered: CLOCK TIME

%lu\n", clockmaker());

5.3.2 Results

The results we present are collected performing 100 handovers
with our system.

During the test the handovers are triggered using both the
user button and MQTT messages, as we specified, this does not
influence in any way the results since both the methods use the
same handover handler and we consider as starting point when
the handover is started.

It is important to note that the time that elapses between 2

handovers is not significant, since what we are evaluating is
only the handover operation. As a method specification, a new
handover has been triggered when the previous one ends and

60

5.3 test and results

the node delivers a message to the broker.

Awk parser

Once the tests are done we collect the log files and we elabo-
rate them with a parser developed in awk [21], an interpreted
language designed to work with textual data.

The parser elaborates the log files, it works in different phases:

1. Clean the log: getting only the lines we need, in which we
inserted the checkpoints

2. Calculations: using the checkpoints the parser evaluate
any handover phase time

3. Average time and standard deviation: after evaluating ev-
ery checkpoint, the parser return the average time and the
standard deviation for any measure

Results

These are the results that the parser elaborates for us:

Total Handover 1293.79 718.28

RPL Handover 442.07 157.898

MQTT Disconnecting 64.71 18.293

RPL Disconnecting 6.11 0.371

DIS to DIO 430.87 157.887

DIO to RPL reconnect 5.09 0.471

Table 5: Results in ticks

The units of measurement of these data are expressed in ticks
and the value next to each line is the standard deviation.

To be logically interpreted we need to transform them in sec-
onds and evaluate the other measurements we are interested
in:

61

5.3 test and results

Total Handover 10,091 5,602

RPL Handover 3,448 1,235

MQTT Disconnecting 0,505 0,143

RPL Disconnecting 0,048 0,003

DIS to DIO 3,361 1,231

DIO to RPL reconnect 0,039 0,003

New MQTT connection 6,138 5,738

Table 6: Results in seconds

Note:
The new MQTT connection is not evaluate directly by the parser,
we calculate it as:

Total Handover - MQTT disconnecting - RPL Handover

5.3.3 Analysis

In chapter 4 we saw that the standard implementation of the
handover was not satisfying for our purposes because we had
an excessive time to perform a handover.

The first result we can comment is how we improved this
time with our proposals: we passed from an average time of
163,25 seconds to 10,09 seconds.

62

5.3 test and results

Figure 23: Standard Handover vs Custom Handover

This is a big step forward of more than one order of magni-
tude (almost two) that proves the work we have done improved
sensibly the system performances.

The difference between the two implementations is big as we
see, but we want to deeply investigate the result, because 10 sec-
onds in a real scenario is still a big time. In fact these solutions
represent a good start, but there is still work that is possible to
do on it.

To understand where the further works could be focused it
is useful to deeply analyse the results. If we break up the total
time measure we can see how this is composed and this offers
interesting clues:

63

5.3 test and results

Figure 24: Handover phases comparison

As it possible to see in the image, from the 5 phases that
compose the handover operation, 2 of them together represent
the 94% of the total time:

• Average time to receive a new DIO: 33% (3,36s)

• Average time new to establish a new MQTT connection:
61% (6,138s)

These results are pretty impressive, it means that the other 3

phases together are only the 6% of the handover, but there is
more.

In fact the Average time to receive a new DIO and the Av-
erage time to establish a new MQTT connection are even the
phases with the larger standard deviation:

64

5.3 test and results

Figure 25: Standard deviation comparison

As a matter of fact, these two phases are the ones in which
we have the most of the packets exchange between the node
and the border router and on the opposite the phases in which
we do not have much packets exchange are pretty faster, like
the RPL disconnecting and reconnecting.

In any case, these 2 facts give a strong indication that there is
still work to do in those areas.

Work that it is not possible to do inside this thesis, but we
will try to give our contribute in the next chapter: Conclusions
and Future Work.

65

6

C O N C L U S I O N S A N D F U T U R E W O R K

In this final chapter we draw conclusions from the work done,
summarizing the most important milestones and we define some
clues for the possible future works.

6.1 conclusions

The work done in this project can be retraced looking at the
main chapters of the thesis: 3 - Implementation of a Network, 4 -
Standard Handover and 5- Proposals.

This helps us to individuate the milestones we achieved:

Figure 26: Milestones

Each milestone brings important conclusions on the platform
and the work done.

In Chapter 3 we set up the network we used for the rest of the
project and in this first step we had the chance to understand

66

6.1 conclusions

the platform we worked on. Even if this was an early stage we
had to take important choices as the switch from ContikiMAC
to NullRDC.

This change let us have a stable network improving the crit-
ical connection phase, with this action we have been able to
establish a connection within few seconds compared to the ran-
dom behaviour we had before and the minutes needed to com-
plete it.

In this way we have been able to go through the project until
the end, but the choice we made, even if necessary, has some
side effects that have to be considered. The NullRDC protocol
has an obvious impact in the energy efficiency of the system
and in low resources devices this is a key aspect.

In a possible future real implementation, this aspect, together
with the nullmac protocol that comes along, can not be ignored
and has to be worked out.

After we had an usable network we studied in Chapter 4

how our system performs the handover operation and we had
to conclude that the standard implementation does not provide
an acceptable handler.

In fact the bad performance triggers, like timers, events or
routines, shows that the handover operation is not well per-
formed in the Contiki platform. This is pretty obvious in the
MQTT level, in which we had the node stuck in the publishing
phase.

These aspects made clear that there were work to be done
and we gave our contribute in the Chapter 5 with 2 different
proposals. Each one developed following a different logic.

proposal 1, in which the handover is triggered by the button
pressure, is meant to be a base for possible future work that
wants to let the node decide on its own when to perform the
handover.

On a different point of view, proposal 2 provide a structure
that lets the application layer be in control of the entire system

67

6.1 conclusions

and in charge of the handover operations.

Both proposals are based on the same handover handler that
therefore is the core of work presented in this thesis. To develop
the new handler we had to go through the whole platform, in-
vestigating its deep functioning and trying to affect it as less as
possible to preserve its stability, but meanwhile provide a way
with acceptable performances to get the work done.

In fact the custom handler we developed represent a step for-
ward for the platform, that before was not provided with it and
so the handler improves the performances in a sensible way. We
again went from a random behaviour to a stable one increasing
the measurements by more than one order of magnitude.

In conclusion we can say that the work done can be consid-
ered an interesting direction to take for the platform that has
now an handler to perform in a stable, performing and logic
way the handover operation.

By analysing the tests results it is possible to see that there
is still room for improvements both working on the handler
itself and both pursuing the 2 different roads defined by the
proposals. We provide some clues about that in the next chap-
ter, Future Works.

mqtt deserves a deepening itself, since in the Introduction
the Research Question number 2 was: Is MQTT adapt to be on
the top layer of our network?.

At the end of the work we can say that MQTT has more than
one issues to work on, for example the longest phase in the
handover operation is the MQTT reconnection with the 61% of
the whole time. Considering even the absence of an efficient
disconnecting routine, these aspects are relevant.

Despite that MQTT showed good points as the unexception-
able messages managing we took great advance of in the pro-
posal 2.

68

6.2 future work

So we can conclude that even though there is work to be done
to improve MQTT performances, it can be considered a suitable
solution that is possible to use for this project purposes.

6.2 future work

There are different directions in which the future works can be
directed and it depends on the purposes that will be achieved.

6.2.1 Improved Custom handover handler

Maybe the most interesting future work could be done in the
custom handover handler. Even if this is one of the biggest im-
provements provided by this thesis we found during the work
different clues and ideas to work with.

Looking at the custom handover results is possible to notice
that one of the two longest phases is the time needed to receive
a new DIO from the new border router. If we focus only in
the RPL handover, not considering MQTT at the moment, we
can see that without this phase is possible to notice how faster
could be the RPL handover:

Average RPL Handover 3,448 1,235

Average RPL Disconnecting 0,048 0,003

Average DIS to DIO 3,361 1,231
Average DIO to RPL reconnect 0,039 0,003

Table 7: Focus on RPL handover phases in seconds

These are the 3 RPL handover phases, without MQTT. We
can see that the DIS to DIO phase is the longest one that most
affects the total operation. If we could imagine to eliminate this
time we could have a faster performance:

RPL Handover (3,448146) - DIS to DIO (3,360786) = 0,08736s

Less than one tenth of a second is an impressive time, but
hhow could be this goal achieved?

69

6.2 future work

The idea we figured out during the work is about the new
DIO messages processing.

At this moment the new DIO messages are ignored by the
node while it is connected to another network, they are only
accepted once we are not connected. But since we receive them
even while we are connected, the possible improvement is to
process the new DIO messages even while we are connected to
a network and save them in custom variables.

In this way we could imagine that if a smart application layer
sends us information about which connection we want to con-
nect to through a MQTT message for example, and we have
already a DIO message saved from that network, we can totally
avoid the DIO receiving time and directly ask to connect to the
new network.

To have a previous DIO saved means that we have been un-
der the cover range of the new network, but since what we want
to do is to perform a handover toward this network we should
already be, so this is not a problem.

So, as we showed before, we could achieve an RPL handover
time under a tenth of a second, even if we have to consider
some extra time for the new DIO processing, but this kind of
operation is not resources or time expensive.

The possible total time for an handover,considering again the
MQTT phases, could become:

Total handover time (10,091562) - DIO receiving time

(3,360786) = 6,730776s

An improvement of performance equal to 33,3% and this
matches Figure 24.

The logic behind this idea has been fully analysed and look-
ing at the code there are not obstacles known at the moment
for its implementation, the most tricky part will probably be
managing the DIO variables that need proper structures to be
saved and used.

70

6.2 future work

Figure 27: Custom handovers comparison

6.2.2 Smart application layer

As we said, in order to pursue this idea we need a smart appli-
cation layer and this is the main possible future work about the
proposal 2.

In fact the second proposal gives us the chance to control the
node from a remote position, but at the moment there is no
intelligence behind this control, we only trigger the handover
sending a MQTT message with the MQTT.fx application.

An interesting work could be done in this area to build a
smart application layer, in which we do not have any constraint
about the resources or the complexity of the elaboration, that is
able to tell the node exactly when perform the handover.
But another important step could be done: the application layer
could be in charge not only of triggering the handover but it
could even tell the node toward which network performs the
handover.

Technically speaking the platform is ready for this step, be-
cause at the moment the MQTT messages received by the node
that trigger the operation contain a default payload equal to 1,
in the future is not hard to adapt it to receive the DODAG ID
of the new network for example.

71

6.2 future work

Figure 28: Application layer handover

6.2.3 Smart node-driven handover

A different direction is to improve the node-driven handover,
where with node-driven we mean that we do not want to in-
volve the upper layers in the handover operation, but we want
to leave the node in charge.

At the moment in the proposal 1 the handover is triggered
by the user button pressure, this first step is not directly meant
for a real use, even if it is possible, but mostly for giving us the
chance to be in control of the handover operation.

It is not hard to imagine how we could improve it checking
in a routine some easy reachable environment variables such
as the RSSI, the battery level or the RPL routes. By evaluating
them the node could decide to trigger the handover itself.

Since the node is meant to have low resources, this future
work should be directed in the evaluation of simple environ-
ment variables that for example can be compared to defined
thresholds.

Even if this approach is simpler than the previous one, it
can have better performances since everything is done in the

72

6.2 future work

node, and it could be used in some emergency case in which
we want the node to be suddenly able to react to some environ-
ment change as going out of the cover range or a broken border
router.

6.2.4 Mixed approach

As is possible to see, both the directions, the application layer
or node driven-handover, have good points and are suitable for
different purposes.

This suggests us what could be the final step: a mixed ap-
proach.

What we mean for mixed approach is to have a smart appli-
cation layer in charge of most of the activities, that has a total
knowledge of the networks and with a smart algorithm to de-
cide when and toward which network the handovers should be
performed.

At the same time we could have on the node some basic rou-
tine to handle the most critical situations such as a missing bor-
der router. As previously explained, these checks can be done
with thresholds that are not resource demanding.

In this way we could have a very efficient system that han-
dles most of the activities from the application layer, in which
we have not resources constraints, and the emergencies han-
dled directly in the node to be always ready to answer to the
environment changes.

The following image show this idea:

73

6.2 future work

Figure 29: Mixed approach

In conclusion we can say that all these possible future works
are proofs that the work presented in this thesis constitute a
new, stable and flexible base that can represent the first step for
future improvements.

74

B I B L I O G R A P H Y

[1] IEEE 802.15.4, 2011.
https://standards.ieee.org/getieee802/download/

802.15.4-2011.pdf

[2] Wi-Fi Alliance website.
http://www.wi-fi.org/

[3] Bluetooth technology website. (Last access: 12/04/2016)
www.bluetooth.com

[4] Internet Protocol, Version 6 (IPv6) Specification, Network
Working Group.
https://www.ietf.org/rfc/rfc2460.txt

[5] IoT in 5 days, Github repository. (Last access: 28/05/2016)
https://github.com/alignan/IPv6-WSN-book

[6] IPv6 over Low-Power Wireless Personal Area Networks
(6LoWPANs): Overview, Assumptions, Problem State-
ment, and Goals. Network Working Group
https://tools.ietf.org/html/rfc4919

[7] RPL: IPv6 Routing Protocol for Low-Power and Lossy Net-
works. Internet Engineering Task Force (IETF)
https://tools.ietf.org/html/rfc6550

[8] Contiki website. (Last access: 22/05/2016)
http://www.contiki-os.org/

[9] Thread Group website. (Last access: 18/04/2016)
http://threadgroup.org/

[10] MQTT website. (Last access: 12/06/2016)
http://mqtt.org/

[11] Mosquitto website. (Last access: 20/05/2016)
https://mosquitto.org/

[12] Zolertia Github repository. (Last access: 24/06/2016)
https://github.com/Zolertia

75

Bibliography

[13] Zolertia website. (Last access: 15/04/2016)
http://zolertia.io/

[14] Contiki Github wiki, ”Processes” section. (Last access:
21/05/2016)
https://github.com/contiki-os/contiki/wiki/Processes

[15] Sensniff github page. (Last access: 11/05/2016)
https://github.com/g-oikonomou/sensniff

[16] Whireshark website. (Last access: 16/06/2016)
https://www.wireshark.org/

[17] MQTT.fx website. (Last access: 25/04/2016)
http://mqttfx.jfx4ee.org/

[18] Using RPL. (Last access: 29/06/2016)
https://github.com/maniacbug/contiki-avr-zigduino/

wiki/Using:RPL

[19] Contiki Github, Radio Duty Cycle Protocols. (Last access:
07/07/2016)
https://github.com/contiki-os/contiki/wiki/

Change-mac-or-radio-duty-cycling-protocols

[20] CC2538 Microcontroller System-On-Chip, Texas Instru-
ments. (Last access: 05/07/2016)
http://www.ti.com/lit/ds/symlink/cc2538.pdf

[21] The GNU Awk Users Guide. (Last access: 14/07/2016)
https://www.gnu.org/software/gawk/manual/gawk.html

76

	Abstract
	Dedication
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Scope and Objectives
	Scope
	Objectives

	Methodology
	Structure

	State of the Art
	IEEE 802.15.4
	Bluetooth Low Energy
	IPv6
	6LoWPAN
	RPL
	Contiki
	Thread
	MQTT
	Zolertia

	Implementation of the network
	Hands on
	Hello World
	Wireless with Contiki

	Set up of a MQTT network
	MQTT, Mosquitto and MQTT.fx
	Connection Performance

	Understanding the network
	Need for information
	IPv6 Addresses
	Identifying the problem

	The new network
	Solving the problem
	Results

	Default Handover implementation
	Handover background
	 The handover definition
	Setting up two different networks

	Performance evaluation
	Test description
	Results

	Analysis and Considerations
	Considerations

	Proposed solutions
	Managing the handover
	Guidelines
	The implementation

	Proposals
	Manual handover
	 Application layer handover

	Test and Results
	Test implementation
	Results
	Analysis

	Conclusions and Future Work
	Conclusions
	Future work
	Improved Custom handover handler
	Smart application layer
	Smart node-driven handover
	Mixed approach

	References

