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Abstract Underwater snake robots constitute a bio-inspired
solution within underwater robotics. Increasing the motion
efficiency in terms of the forward speed by improving the lo-
comotion methods is a key issue for underwater robots. Fur-
thermore, the energy efficiency is one of the main challenges
for long-term autonomy of these systems. In this study, we
will consider both these two aspects of efficiency, which in
some cases can be conflicting. To this end, we formulate
a multi-objective optimization problem to minimize power
consumption and maximize forward velocity. In particular,
the optimal values of the gait parameters for different motion
patterns are calculated in the presence of trade-offs between
power consumption and velocity. As is the case with all
multi-objective optimization problems, the solution is not a
single point but rather a set of points. We present a weighted-
sum method to combine power consumption and forward
velocity optimization problems. Particle Swarm Optimiza-
tion (PSO) is applied to obtain optimal gait parameters for
different weighting factors. Trade-off curves or Pareto fronts
are illustrated in a power consumption–forward velocity plane
for both lateral and eel-like motion pattern. They give infor-
mation on objective trade-offs and can show how improv-
ing power consumption is related to deteriorating the for-
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ward velocity along the trade-off curve. Therefore, decision
makers can specify the preferred Pareto optimal point along
the trade-off curve. Moreover, we address some interesting
questions regarding the optimal gait parameters, which is a
significant issue for the control of underwater snake robots
in the future.

Keywords Underwater snake robot · multi-objective
optimization · PSO · energy efficiency

1 Introduction

The use of underwater vehicles has rapidly increased the last
decades since these systems are able to operate in deep and
high risk areas which humans cannot reach. Nowadays, au-
tonomous underwater vehicles (AUVs) and remotely oper-
ated vehicles (ROVs) are widely used in the subsea envi-
ronment for different challenging tasks [6]. These vehicles
are suitable for various work assignments such as inspec-
tion, surveillance, maintenance, repairing equipment, build-
ing structures, and data collection, and they are extensively
used in the subsea oil and gas industry and by the science
community. For the long term autonomy of these systems,
energy efficiency is one of the main challenges.

For centuries, engineers and scientists have gained inspi-
ration from the natural world in their search for solutions to
technical problems, and this process is termed biomimetics.
As has been noted in the bio-robotics community, underwa-
ter snake robots bring a promising prospective to improve
the efficiency and maneuverability of next generation under-
water vehicles [1,11,30]. They have several promising appli-
cations for underwater exploration, monitoring, surveillance
and inspection, and they carry a lot of potential for inspec-
tion of subsea oil and gas installations. Also, for the biology
and marine archeology communities, snake robots that are
able to swim smoothly without much noise, and that can
navigate in difficult environments such as ship wrecks, are
very interesting [11]. To realize operational snake robots for
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such underwater applications, a number of different control
design challenges must first be solved. An important con-
trol problem concerns the ability to achieve efficient motion
with preferably a minimum amount of consumed energy in
order to be able to undertake longer missions, and this is the
topic of this paper.

In [10], the relationships between the gait parameters,
the consumed energy and the forward velocity for differ-
ent motion patterns for underwater snake robots were inves-
tigated. In addition, based on simulation studies empirical
rules were proposed in order to choose the most efficient
motion pattern. Furthermore, in [9], comparison results are
obtained for the power consumption of underwater snake
robots and ROVs. In particular, it is shown that the biolog-
ically inspired swimming robots are more energy efficient
compared to the ROVs. These initial simulation studies pre-
sented in [9, 10] provide interesting insights regarding the
power consumption and the efficiency of underwater snake
robots. To our knowledge, however, no research has been
published formulating a multi-objective optimization prob-
lem considering both the minimization of the power con-
sumption and maximization of the forward velocity. In this
paper, we formulate this problem and propose a method to
solve the multi-objective optimization problem.

In the motion optimization problem, the mentioned multi-
objective function is optimized by iterating on the gait pa-
rameters subject to the dynamic model of the underwater
swimming robot, which is quite challenging mainly due to
the hydrodynamic effects. In [11, 12], the authors propose a
model of underwater snake robots, where the dynamic equa-
tions are written in closed form. Compared to the models
in [1, 4, 21, 24, 27, 30] it is an advantage from an analysis
point of view that the model is in closed form, as opposed
to including numerical evaluations of the drag effects. In ad-
dition, it is beneficial that it includes both resistive and re-
active fluid forces, since swimming snake robots operate at
Reynolds numbers that require both these effects to be taken
into account. In particular, the modeling approach presented
in [11, 12] takes into account both the linear and the nonlin-
ear drag forces (resistive fluid forces), the added mass effect
(reactive fluid forces), the fluid moments and current effects.
This model will thus be used in the optimization.

In order to address optimization of both the power con-
sumption and the forward velocity, a combination of the
goals are proposed as a single objective function. There-
fore, we formulate the problem as a constrained optimiza-
tion problem subject to constraints. There exist two types
of optimization algorithms to solve this kind of problem:
gradient-based methods and derivative free algorithms. Gen-
erally, gradient-based algorithms are faster than derivative
free ones. However, gradient-based algorithms are suscepti-
ble to getting trapped in local optima, meaning that the op-
timized solution depends on the initial points [18]. There-
fore, derivative free and stochastic methods, which have the
ability to avoid local solutions, have received attention in
problems with highly non-smooth objective functions con-

taining multiple optima. Consequently, as also mentioned in
[30], derivative free and stochastic methods are an appropri-
ate choice for the motion optimization. Derivative free algo-
rithms are adopted from researchers in the fields of swim-
ming robots to investigate the efficiency of undulatory lo-
comotion. In [19], a genetic algorithm (GA) is applied to a
three link swimmer in order to optimize the swimming gait.
Furthermore, a notable study regarding the optimization of
swimming gaits is performed in [16], where optimized pat-
terns of anguilliform swimming are investigated using 3D
simulations. In particular, a custom evolutionary optimiza-
tion algorithm combined with a three-dimensional numeri-
cal solution is obtained for the swimmer. By using Navier-
Stokes equations an optimization problem with two distinct
optimization objectives, efficiency and velocity, is solved.
Note that the computational cost of solving the Navier-Stokes
equations of their model restricts the results to only one op-
timization run for each fitness goal. In [28], multi-objective
optimization was applied for a land-based snake robot to ob-
tain the gait parameters in order to optimize head stability
and the speed of the robot simultaneously. Furthermore, in
[3] a multi-objective evolutionary algorithm (MOEA) was
proposed in order to design and optimize heterogeneous snake-
like modular robot. In particular, the MOEA was implemented
to maximize the moving behaviour of the robot while min-
imizing the total number of segments. However, the energy
efficiency was not considered neither in [28] nor in [3]. In [2]
a probability-based reinforcement learning approach (PI2)
was applied to a land-based snake robot to learn the loco-
motion control parameters of the robot in order to generate
motor primitives and locomotion. In [30], the total required
energy was minimized by manipulating the gait parameters
and keeping the velocity constant. A penalty term was in-
troduced in the objective function to penalize any deviation
of the velocity from its desired value. Therefore, a trade-off
between the velocity and the required energy was not ad-
dressed in [30]. In this paper, however, we propose to mini-
mize the energy and maximize the velocity, simultaneously.

In this study, the PSO algorithm is applied to solve the
optimization problem. The PSO algorithm has received sig-
nificant attention during the past decades [13]. The idea of
the PSO algorithm is inspired from the social behavior of
animals such as bird flocking. PSO is initialized with a pop-
ulation of random solutions, called particles. Each particle is
assigned a random velocity according to the experiences of
the particle itself and its neighborhoods. As opposed to GA,
PSO has memory and the knowledge of good solutions is re-
tained during generations. Moreover, in PSO particles share
the information and speed up the convergence by a mecha-
nism of constructive cooperation. Recently, application of
Reinforcement Learning (RL) method on robotic domain
has received attention [17]. RL is a learning method which
uses interaction with environment to maximize the expected
cumulative reward for an agent. Both RL and PSO meth-
ods require many function evaluation to converge. However,
parallel implementation of PSO may reduce the computa-
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tional time significantly. A comparison between PSO and
RL methods for multi-robot obstacle avoidance can be found
in [5], which shows the highest fitness of PSO.

In this paper, based on the dynamic model presented in
[11, 12], a multi-objective optimization problem is devel-
oped with the aim of maximizing the achieved forward ve-
locity of the robot and minimizing the corresponding aver-
age power consumption of the system. Results are obtained
for the two most common swimming patterns for underwa-
ter snake robot locomotion: lateral undulation and eel-like
motion patterns. To the authors’ best knowledge, investiga-
tion of efficient motion patterns by solving a multi-objective
optimization problem has not been considered in previous
literature. Furthermore, please note that the proposed opti-
mization framework is applied to obtain the parameters of
the most efficient motion pattern, which can be used in the
future for control and design of underwater snake robots.

The paper is organized as follows. Sect. 2 presents the
dynamic model of an underwater snake robot. The multi-
objective optimization framework is presented in Sect. 3,
followed by results obtained for an underwater snake robot
in Sect. 4. Finally, conclusions and suggestions for further
research are given in Sect. 5.

2 Dynamic Model

This section briefly presents the model of the kinematics and
dynamics of an underwater snake robot moving in a virtual
horizontal plane. A more detailed presentation of the model
can be found in [11], [12].

2.1 Notations and Defined Symbols

The underwater snake robot consists of n rigid links of equal
length 2l interconnected by n− 1 joints. The links are as-
sumed to have the same mass m and moment of inertia J =
1
3 ml2. The mass of each link is uniformly distributed so that
the link CM (center of mass) is located at its center point (at
length l from the joint at each side). The total mass of the
robot is therefore nm. The following vectors and matrices
are used in the subsequent sections:

A =

1 1
. . . . . .

1 1

 , D =

1 −1
. . . . . .

1 −1

 ,

where A,D ∈ R(n−1)×n. Furthermore,

e =
[

1, . . . , 1
]T ∈ Rn, E =

[
e 0n×1

0n×1 e

]
∈ R2n×2 ,

Sθ = diag(sinθ) ∈ Rn×n, Cθ = diag(cosθ) ∈ Rn×n

θ̇
2
=
[

θ̇1
2
, . . . , θ̇n

2
]T
∈ Rn ,K = AT (DDT )−1 D.

2.2 Kinematics of Underwater Snake Robot

The snake robot is assumed to move in a virtual horizontal
plane, fully immersed in water, and has n+2 degrees of free-
dom (n links angles and the x-y position of the robot). The
link angle of each link i ∈ 1, . . . ,n of the snake robot is de-
noted by θi ∈R, while the joint angle of joint i∈ 1, . . . ,n−1
is given by φi = θi−θi−1. The link angles and the joint an-
gles are assembled in the vectors θ = [θ1, . . . ,θn]

T ∈Rn and
φ = [φ1, . . . ,φn−1]

T ∈ Rn−1, respectively. The heading (or
orientation) θ̄ ∈ R of the snake is defined as the average of
the link angles, i.e. as θ̄ = 1

n ∑
n
i=1 θi [22]. The global frame

position pCM ∈ R2 of the CM (center of mass) of the robot
is given by

pCM =

[
px
py

]
=

[ 1
nm ∑

n
i=1 mxi

1
nm ∑

n
i=1 myi

]
=

1
n

[
eT X
eT Y

]
, (1)

where (xi,yi) are the global frame coordinates of the CM of
link i, X = [x1, . . . ,xn]

T ∈ Rn and Y = [y1, . . . ,yn]
T ∈ Rn.

2.3 Hydrodynamic Modeling

The dynamic modeling of the contact forces is quite compli-
cated compared to the modeling of the overall rigid motion.
In [11], it is shown that the fluid forces and torques on all
links can be expressed in vector form as

f =
[

fx
fy

]
=

[
fAx
fAy

]
+

[
f I

Dx
f I

Dy

]
+

[
f II

Dx
f II

Dy

]
, (2)

and

τ =−Λ 1θ̈ −Λ 2θ̇ −Λ 3θ̇ |θ̇ |, (3)

respectively, where the vectors fAx and fAy represent the ef-
fects from added mass forces and the vectors f I

Dx
, f I

Dy
and

f II
Dx

, f II
Dy

represent the linear and nonlinear drag forces, re-
spectively. The detailed derivation of the vectors fAx , fAy ,
f I

Dx
, f I

Dy
, f II

Dx
, f II

Dy
and the matrices Λ 1, Λ 2 and Λ 3 can be

found in [11].

2.4 Equations of Motion

This section presents the equations of motion for the under-
water snake robot. In [11,12] it is shown that the acceleration
of the CM may be expressed as[

p̈x
p̈y

]
=−Mp

[
k11 k12
k21 k22

][
lKT (Cθ θ̇

2
+Sθ θ̈)

lKT (Sθ θ̇
2−Cθ θ̈)

]

−Mp

[
k12 −k11
k22 −k21

][
Va

x
Va

y

]
θ̇ +Mp

[
eT fDx
eT fDy

]
,

(4)

where the detailed derivation of the matrix Mp and vectors
Va

x , Va
y , k11, k12, k21and k22 is given in [11,12]. In addition,
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it is shown that under the influence of fluid forces (2) and
torques (3), the complete equation of motion of the under-
water snake robot are obtained by (4) and

Mθ θ̈ +Wθ θ̇
2
+Vθ θ̇ +Λ 3|θ̇ |θ̇ +KDxfDx+KDyfDy = DT u,

(5)

where fDx = f I
Dx

+ f II
Dx

and fDy = f I
Dy

+ f II
Dy

representing the
drag forces in x and y directions and u ∈ Rn−1 the control
input. For more details and the derivation of the matrices
Mθ , Wθ , Vθ , KDx and KDy, see [12].

Remark 1. It is interesting to note that if, in the dynamic
model (4) and (5), we set the fluid parameters to zero and re-
place the drag forces in x and y direction with ground friction
models [22], then the model reduces exactly to the dynamic
model of a ground snake robot described in [22]. The un-
derwater snake robot model is thus an extension of the land
snake robot model, and may be used for amphibious snake
robots moving both on land and in water.

3 Optimization of Motion

This section presents an optimization framework to inves-
tigate the efficient motion of the underwater snake robot
model presented in Sect. 2. We depict the optimization frame-
work in Fig. 1, consisting of the plant (the underwater snake
robot model), a joint actuation controller, and an optimizer.
The optimizer requires the simulation of the model in order
to evaluate the objective function for different gait param-
eters. The constraints defining the feasible region are also
inputs of the optimizer. In the following, the procedures of
the joint controller and the optimizer are discussed in detail.

3.1 Joint actuation controller

The joint actuation controller consists of the gait pattern
(motion pattern) generator and joint control, which are dis-
cussed in this subsection.

Motion Pattern Previous studies on swimming snake robots
have focused on two motion patterns; lateral undulation and
eel-like motion. In this paper, we will use a general sinu-
soidal motion pattern that describes a broader class of mo-
tion patterns including lateral undulation and eel-like motion
[8]. Lateral undulation [22], which is the fastest and most
common form of ground snake locomotion, can be achieved
by creating continuous body waves, with a constant ampli-
tude, that are propagated backwards from head to tail. In
order to achieve lateral undulation, the snake robot is com-
manded to follow the serpenoid curve as proposed in [7].
Eel-like motion can be achieved by propagating lateral ax-
ial undulations with increasing amplitude from head to tail
[11]. In this paper, a general sinusoidal motion pattern is

achieved by making each joint i ∈ {1, · · · ,n−1} of the un-
derwater snake robot track the sinusoidal reference signal

φ
∗
i (t) = αg(i,n)sin(ωt +(i−1)δ )+ γ, (6)

where α and ω are the maximum amplitude and the fre-
quency, respectively, δ determines the phase shift between
the joints, while the function g(i,n) is a scaling function for
the amplitude of joint i which allows (6) to describe a quite
general class of sinusoidal functions, including several dif-
ferent snake motion patterns. For instance, g(i,n) = 1 gives
lateral undulation, while g(i,n) = (n− i)/(n+1) gives eel-
like motion [11]. The parameter γ is a joint offset coordinate
responsible for the direction control [22].

Low-level joint control A PD-controller is used to calculate
the joints’ actuator torques from the joints’ reference angles
according to

ui = kp(φ
∗
i −φi)+ kd(φ̇

∗
i − φ̇ i), i = 1, . . . ,n−1 , (7)

where kp > 0 and kd > 0 are the gains of the controller.

3.2 Optimization problem formulation

An optimization problem is the minimization or maximiza-
tion of a function from all feasible solutions. The goal of mo-
tion optimization is to minimize energy consumption and to
maximize the forward velocity, simultaneously. This type of
optimization problem which involves more than one objec-
tive function is known as multi-objective optimization [25].
In the following, both the energy consumption and the for-
ward velocity are formulated and an approach to combine
these two goals is introduced.

For underwater snake robots, the propulsion is generated
by the motion of the joints and its interaction with the sur-
rounding fluid. The actuator torque input to the joints is thus
transformed into a combination of joint motion and energy
that is dissipated by the fluid. We assume that the joints are
ideal and thus the total amount of energy of the system (Es)
generated by this input is the summation of kinetic energy
(Ekinetic) and the energy that is dissipated to the surrounding
fluid (Efluid) [30]. Therefore, the total energy consumption
for the propulsion of the robot can be written as

Es = Ekinetic +Efluid =

T∫
0

(
n−1

∑
i=1

ui(t)φ̇i(t)

)
dt, (8)

where T is the time that corresponds to a complete swim-
ming cycle, ui is the actuation torque of joint i given by (7)
and φ̇i is the joint’s angular velocity defined as φ̇i = θ̇i− θ̇i−1.

For a complete swimming cycle T the average power
consumption, Pavg, is calculated as follows

Pavg =
1
T

T∫
0

(
n−1

∑
i=1

ui(t)φ̇i(t)

)
dt. (9)
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Fig. 1: Illustration of the optimization framework.

The forward velocity for a complete swimming cycle T is
defined as

ῡ =

√
(px(T )− px(0))2 +(py(T )− py(0))2

T
, (10)

where the initial and the final points are used to calculate
the travelled distance of the robot.

The optimization problem can be formulated by

min
α,ω,δ

Jopt = [Pavg,−ῡ ], (11a)

s.t: | φ ∗i |≤ φ
max
i , | φ̇ ∗i |≤ φ̇

max
i , | ui |≤ umax

i , (11b)
0≤ α ≤ α

max, 0≤ ω ≤ ω
max, 0≤ δ ≤ δ

max, (11c)

where (11b) gives the physical constraints of the joints due
to the servo motors and the physical design of the snake [23],
and (11c) expresses the possible range of the parameters of
the sinusoidal motion pattern (6).

Generally, in multi-objective optimization such as (11),
there does not exist a single global solution to optimize all
objective functions simultaneously. Particularly in this case,
the objective functions are often in conflict, meaning that
maximizing the velocity results in increasing the power con-
sumption and vice versa. A solution is called Pareto optimal
[25] of optimization problem (11), if there does not exist an-
other point such that power consumption can be decreased
in value without degrading the forward velocity or the for-
ward velocity can be increased without enhancing power
consumption. The Pareto frontier or efficient frontier is the
collection of Pareto optimal solutions. For bi-objective func-
tions (e.g., (11)), the frontier can be expressed in Cartesian
coordinates. An efficient way to generate the Pareto frontier
is the weighted-sum method that combines both objective
functions in a single criterion function [31]:

Jbal = wp(Pavg)sc−wυ(ῡ)sc, (12)
wp = 1−wυ , (13)

where (Pavg)sc and (ῡ)sc are scaled values of the power
consumption and forward velocity, respectively, and wp and
wυ are the weighting factors of respectively the power con-
sumption and the forward velocity. The solution is always
the Pareto frontier, if the coefficients are positive. In order
to plot the Pareto frontier, one can find the solutions for dif-
ferent values of wp varying from 0 to 1 (and wυ changing

from 1 to 0) using a small step size ∆wp. Therefore, the op-
timization problem (11) can be transformed to a new opti-
mization problem by replacing the objective function Jopt to
Jbal in (12). In order to find the solution of the new optimiza-
tion problem for specific weighting factors, an optimization
algorithm is required. In the following PSO is introduced as
a proper optimization method for motion optimization.

3.3 PSO algorithm

The PSO algorithm is a population-based probabilistic algo-
rithm first introduced by Kennedy and Eberhart in 1995 [13].
The PSO algorithm exploit a set of potential solutions to
the optimization problem. Each potential solution is called
a particle, and the set of particles is named a population.
The first population is randomly initialized using a random
number generator. The location of each particle in the new
generation is determined by PSO update equations, which
mimic the social behavior of members of bird flocks or fish
schools.

Consider an unconstrained nonlinear problem where the
objective function f (x) must be minimized. Let xi(k) denote
the ith particle of the kth generation, and ν i(k) represent its
velocity. The update equations for all i ∈ {1,2, · · · ,np} and
k ∈ N are as follows:

ν i(k+1) =ν i(k)+ c1ρ1(k)(pl,i(k)−xi(k))
+ c2ρ2(k)(pg,i(k)−xi(k)), (14a)

xi(k+1) =xi(k)+ν i(k+1). (14b)

where c1,c2 ∈R+, ρ1(k),ρ2(k)∼U(0,1) are uniformly dis-
tributed random numbers between 0 and 1, ν i(0), 0, pl,i(k)
is the best location of the ith particle over all generations,
and pg,i(k) is the location for the best particle over all gen-
erations,

pl,i(k), argmin
x∈{xi( j)}kj=0

f (x), (15a)

pg,i(k), argmin
x∈{{xi( j)}kj=0}

np
i=1

f (x). (15b)

Therefore, c1 and c2 are named cognitive and social accel-
eration terms, respectively. The objective function, f (x), de-
fined in (12) as Jbal, is a weighted sum of the average power
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consumption and the forward velocity. Therefore, the PSO
algorithm minimizes the average power consumption while
it maximizes the forward velocity by manipulating the gait
parameters α , ω and δ . For each set of weights, the PSO
algorithm obtains different optimal values of the gait param-
eters. We vary the weights in the different optimization runs
in order to obtain different Pareto optimal points.

In this paper, we use the von Neumann neighborhood
topology which has the best performance among other topolo-
gies such as lbest and gbest [15]. In the von Neumann neigh-
borhood topology, each particle has 4 neighborhoods which
are defined by special enumeration.

The performance of the PSO algorithm can be improved
by introducing an inertia weight. In this case for xi(k) ∈Rnc

the velocity equation (14a) is replaced by

ν̂ i(k+1) =w(k)ν i(k)+ c1ρ1(k)(pl,i(k)−xi(k))
+ c2ρ2(k)(pg,i(k)−xi(k)), (16a)

ν
j

i (k+1) =sign(ν̂ j
i (k+1)) min{|ν̂ j

i (k+1)|,ν j
max},

j ∈ {1,2, · · · ,nc}, (16b)

ν
j

max =λ (u j
iw− l j

iw), (16c)

w(k) =w0−
k
K
(w0−w1). (16d)

where the maximum velocity gain λ is a scalar, liw,uiw ∈Rnc

are, respectively, the lower and upper bound of the indepen-
dent variables, w0,w1 are the initial and final inertia weights,
respectively, K is the maximum number of generations.

Remark 2: As stated before, the optimizer only requires
the plant to evaluate the objective function. Therefore, the
proposed multi-objective optimization framework can be con-
sidered as a general tool for investigating motion efficiency
of different dynamic models of swimming snake robots con-
trolled by sinusoidal motion patterns such as (6).

Remark 3: Note that the cost of transportation (COT)
metric could be considered as an alternative objective func-
tion to obtain efficient locomotion of a robot. The minimum
COT would then be obtained at some speed at which the
robot can cover the given distance with the least energy ex-
penditure. However, using COT as the objective function
will not provide optimal values of the gait parameters for
different velocities. Multi-objective optimization with the
proposed objective function provides a guideline for the op-
timal values of the gait parameters for different values of
the achieved forward velocity and the average power con-
sumption. Hence, these optimal values of the gait param-
eters are available to the operator of the robot, something
which would not be possible to obtain by using COT as the
objective function.

4 Optimization Study

In this section, optimization results are presented for both
lateral undulation and eel-like motion. The dynamic model

presented in Sect. 2 was implemented in Matlab R2013b.
The time evolution was calculated using the ode23tb solver
with a relative and absolute error tolerance of 10−4. The
PSO is implemented using GenOpt which is developed by
Lawrence Berkeley National Laboratory and is written in
java. GenOpt runs multiple simulations in parallel to reduce
computation time and allows using any simulation software
to evaluate the cost function [29].

4.1 Parameters of the underwater snake robot

We consider an underwater snake robot with n = 10 links,
each one having length 2l = 0.18 m and mass m = 0.8 kg,
i.e. identical to the physical robot Mamba presented in [23].
The initial values of the states of the snake robot were set to
initial reference values at t = 0. The hydrodynamic related
parameters ct , cn, µn λ1, λ2 and λ3 for the elliptic section
with major and minor diameters 2a = 2 ·0.055 m and 2b =
2 · 0.05 m, respectively, ρ = 1000 kg/m3 and for the fluid
coefficients set to C f = 0.03, CD = 2, CA = 1, CM = 1 were
calculated by using equations derived in [11]. An extensive
discussion about the values of the fluid parameters can be
found in [11]. In these simulations the joint PD-controller
(7) was used with parameters kp = 20, kd = 5, while lateral
undulation or eel-like motion were achieved by moving the
joints according to (6) by choosing g(i,n) = 1 and g(i,n) =
(n− i)/(n+ 1), respectively. Note that current effects have
not been considered in this study.

4.2 Optimization parameters

The PSO parameters are given in Table 1. It was suggested
in [26] to use a population size of about 5nc for xi(k) ∈Rnc ,
where nc = 3 in this case study. Different numbers of gen-
erations are tested and we conclude that PSO finds the op-
timal point in less than 20 generations. The inertia weights
are chosen based on the suggestion in [20], the maximum of
velocity gain, λ is commonly set to 0.5 [29] and the accel-
erations are chosen such that c1 + c2 = 4 [14].

The values of the physical constraints of the joints due to
the servo motors in (11b) are set to umax

i = 2300 Nm, φ max
i =

90o, φ̇ max
i = 429o/s, while the range of the parameters of

sinusoidal motion pattern in (11c) are set to αmax = 90o,
ωmax = 210o/s and δ max = 90o. Furthermore, in this initial
study the join offset is set γ = 0.

The step size for changing the weights, ∆wp, is equal to
0.05. In the first step, we optimize the velocity regardless of
the power consumption which means wp = 0,wυ = 1 in (13),
and the maximum values of the velocity and the power con-
sumption are obtained and can be used to scale the objective
functions for the next sets of weights. In the next step, we
start to reduce the weight of the velocity wυ , while increas-
ing the power consumption weight wp. Note that the initial
value of PSO in the first step are defined based on expert
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number of particles np 16
number of generations ng 20
cognitive acceleration c1 2.8

social acceleration c2 1.2
max velocity gain λ 0.5

initial inertia weight w0 1.2
final inertia weight w1 0

Table 1: PSO parameters.

knowledge, and the optimal value of each step is used as the
initial guess of the next step. For instance, the initial value of
the optimization problem where wp = 0.05,wυ = 0.95 is the
optimal value of the first step optimization problem where
wp = 0,wυ = 1.

In this study, PSO was implemented within a distributed
computing framework consisting of 12 computing cores. In
order to obtain a Pareto optimal point, np×ng = 16×20 =
320 simulation runs are required. Distributing the simulation
runs among 12 nodes results in a speedup factor larger than
one. For this case study, the computation time to obtain a
Pareto optimal point was about 65 minutes.

4.3 Results

In this section, the results of the proposed multi-objective
optimization is presented for both lateral undulation and eel-
like motion patterns for the underwater snake robot with pa-
rameters as shown in Sect. 4.1; and the optimal forward ve-
locity, ῡ , and the optimal average power consumption, Pavg,
are illustrated with the corresponding gait parameters.

Pareto fronts are presented in Fig. 2-3 for lateral undu-
lation and eel-like motion pattern, respectively. One can ob-
serve, as it was expected, that the maximum power is con-
sumed in the case of achieving maximum velocity, and min-
imum power consumption (equal to zero) occurs for zero
forward velocity. In the case of the motionless condition,
the objective function is to minimize the power consump-
tion regardless of the velocity (wp = 1,wυ = 0); thus the
optimal gait pattern parameter α = 0, and two other param-
eters ω and δ are not effective. The underwater snake robot
investigated in this study achieved maximum forward veloc-
ity ῡ = 0.84 m/s and ῡ = 0.60 m/s for lateral undulation and
eel-like motion, respectively, with the corresponding maxi-
mum average power consumption of Pavg = 34.25 W and
Pavg = 13.44 W.

Furthermore, the Pareto front presented in Fig. 2 illus-
trates that the average power consumption of the robot can
be decreased significantly from Pavg = 34.25 W to Pavg =
18.92 W by slightly decreasing the achieved forward veloc-
ity from ῡ = 0.84 m/s to ῡ = 0.81 m/s for the lateral un-
dulation. This means that a 44.76% decrease of the average
power consumption can be obtained, while the forward ve-
locity is only reduced by 3.57%. For the eel-like motion pat-

0 5 10 15 20 25 30 35
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ῡ
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/
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Fig. 2: Pareto front for lateral undulation.
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Fig. 3: Pareto front for eel-like motion pattern.

tern, Fig. 3 shows that the power consumption is decreased
from Pavg = 13.44 W to Pavg = 7.88 W, if we choose to
pay a marginal penalty by decreasing the forward velocity
from ῡ = 0.60m/s to ῡ = 0.58m/s. Therefore, the average
power consumption can be reduced by 41.37% in the eel-
like motion pattern while the corresponding forward veloc-
ity is decreased only by 3.33%. Therefore, decision makers
can choose the optimal gait pattern parameters such that a
significant reduction of the power consumption only results
in a slight reduction of the forward velocity.

Remark 4: Note that the Pareto fronts shown in Fig. 2-
3 can be considered as a useful tool to make the trade-off
between the power consumption and the forward velocity.
Therefore, based on the Pareto front, a proper set of gait pa-
rameters of the swimming robot can be chosen considering
the requirement of the control strategies and the available
power of the system.

Fig. 4a-5a show how the average power consumption
and the forward velocity vary for different optimal values of
the gait parameters in (6) for lateral undulation and eel-like
motion patterns, respectively. In addition, the 2D projections
of the 3D plots presented in Fig. 4a- 5a, for forward veloc-
ity and power consumption, are presented in Fig. (4b,5b)
and Fig. (4c,5c) for the investigated motion patterns. As was
expected, the maximum velocity is achieved for the set of
weighting factor wυ =1 and wp = 0. The maximum forward
velocity ῡ = 0.84 m/s is achieved for the gait parameters
α = 44.01o, ω = 210o/s and δ = 15.14o for lateral undu-
lation, while for eel-like motion pattern the robot achieves
maximum forward velocity ῡ = 0.60 m/s for the gait pa-
rameters α = 59.24o, ω = 209.98o/s and δ = 26.20o. The
maximum velocity is achieved when ω is at the maximum
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(a) 3D plots of optimal gait parameters.

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

δ [deg]

ῡ
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ῡ
[m

/
s]

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

α [deg]

ῡ
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(b) 2D plots for the forward velocity as a function of the optimal gait parameters.
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(c) 2D plots for the average power consumption as a function of the optimal gait parameters.

Fig. 4: Optimal solution of lateral undulation motion pattern.

value for both patterns, while the optimal values of α and
δ , however, are different for each pattern. Fig. (4b,5b) and
Fig. (4c,5c) show that an increase of the parameter δ re-
sults in a decrease of the forward velocity and power con-
sumption. Furthermore, the optimal value of parameter α is
greater than 30o for lateral undulation and greater than 50o

for eel-like motion pattern in all weighting sets. These ob-
servations are important not only for control purposes but
also for formulating the constraints for further optimization
investigations in future. Table 2 and Table 3 show the ob-
tained values for the gait parameters α , ω and δ for each
point of the Pareto front in Fig. 4 and Fig. 5 for the lateral
undulation and eel-like motion pattern, respectively. Fig. 6
and Fig. 7 present the body shape of the robot for each point
of the Pareto front for the lateral undulation and eel-like mo-
tion pattern, respectively.

Remark 5: By setting the parameter ω to the maximum
value, as is the case for almost all Pareto optimal points, we
can reduce the dimension of the search space, nc, to 2. In this
case, the parameter ω is eliminated from the optimization
problem and the parameters α and δ are the optimization
decision variables. In addition, choosing the maximum pos-
sible value for the parameter ω provides motivation for high

frequency actuation solutions for future work in the control
and design of swimming robots.

5 Conclusions

In this paper, we developed an effective multi-objective op-
timization scheme to obtain optimal gait parameters for un-
derwater snake robots. The proposed optimization method
constitutes a general tool to investigate the motion efficiency
of different dynamic models of swimming snake robots con-
trolled by sinusoidal motion patterns. PSO was applied to
obtain the Pareto optimal gait parameters in the presence
of trade-offs between the the power consumption and the
forward velocity. Pareto fronts showed how improving ef-
ficiency with respect to the power consumption is related
to deteriorating efficiency in terms of the forward velocity
along the trade-off curve. Decision makers can consider the
Pareto front as an informative tool to specify the preferred
Pareto optimal point. Moreover, some interesting insights
about the optimal swimming gait parameters, which are sig-
nificant for the control and design of underwater snake robot,
were obtained. In the future, the efficiency of other sinu-
soidal motion patterns will be investigated. Furthermore, other
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(a) 3D plots of optimal gait parameters.

20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

δ [deg]

ῡ
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(b) 2D plots for the forward velocity as a function of the optimal gait parameters.
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(c) 2D plots for the average power consumption as a function of the optimal gait parameters.

Fig. 5: Optimal solution of eel-like motion pattern.

Table 2: Lateral undulation: Results from multi-optimization
study for the underwater snake robot.

wp α [deg] ω [deg/s] δ [deg] ῡ [m/s] Pavg [W]
0 44.0100 210.0000 15.1400 0.8425 34.2515
0.0500 41.5451 209.9863 16.1863 0.8407 29.9318
0.1000 38.5042 209.9987 17.6406 0.8327 24.9031
0.1500 37.1659 209.9976 18.9259 0.8259 22.3614
0.2000 34.9161 209.6835 20.3226 0.8107 18.9214
0.2500 33.4248 209.9899 22.9651 0.7922 15.6914
0.3000 32.1065 209.9997 26.1707 0.7640 12.4822
0.3500 31.7042 209.9932 28.3385 0.7444 10.8197
0.4000 31.9861 209.9938 30.8753 0.7233 9.3646
0.4500 32.0642 209.9931 33.6360 0.6956 7.8220
0.5000 32.4826 209.9995 35.8916 0.6731 6.7981
0.5500 33.2925 209.9890 38.9056 0.6417 5.6396
0.6000 34.4218 209.9967 41.3291 0.6170 4.8916
0.6500 35.0257 209.9667 44.0756 0.5842 4.0883
0.7000 37.7160 209.9899 47.2997 0.5523 3.4617
0.7500 39.7087 207.8852 50.9907 0.5060 2.7433
0.8000 39.1360 193.1456 53.9248 0.4379 1.9467
0.8500 54.4381 209.6399 75.3818 0.3102 0.8571
0.9000 68.4280 207.9591 89.1905 0.2425 0.4111
0.9500 46.4469 138.4423 89.9360 0.1555 0.1693
1.0000 0 16.5134 59.8411 0 0

Table 3: Eel-like motion: Results from multi-optimization
study for the underwater snake robot.

wp α [deg] ω [deg/s] δ [deg] ῡ [m/s] Pavg [W]
0 59.2350 209.9813 26.1994 0.6038 13.4369
0.0500 58.9029 209.9887 26.5538 0.6037 13.1134
0.1000 56.7018 209.9712 28.9106 0.6004 11.0886
0.1500 54.6536 209.9960 30.3223 0.5960 9.7995
0.2000 53.8984 209.9943 31.4665 0.5922 9.0650
0.2500 52.6137 209.9798 33.4673 0.5838 7.8826
0.3000 52.1308 209.9987 34.8301 0.5776 7.2274
0.3500 51.3303 209.9852 36.6885 0.5675 6.3739
0.4000 51.0358 209.9947 38.4587 0.5576 5.7077
0.4500 51.4150 209.9983 40.4453 0.5469 5.1124
0.5000 52.2181 209.9899 42.9157 0.5327 4.4629
0.5500 51.7512 209.9984 44.8704 0.5178 3.9089
0.6000 53.5402 209.9995 47.6477 0.5007 3.3852
0.6500 56.0090 209.9980 51.2005 0.4769 2.7965
0.7000 57.0378 209.9775 53.9967 0.4552 2.3694
0.7500 62.0106 209.9535 58.4522 0.4245 1.8881
0.8000 65.6760 209.9181 62.8889 0.3915 1.4920
0.8500 73.7492 209.8543 71.2193 0.3337 0.9857
0.9000 89.2687 209.9100 89.9740 0.2334 0.3958
0.9500 75.0664 150.9382 89.7837 0.1663 0.2004
1.0000 1.0695 0.0639 51.8275 0 0
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Fig. 6: Body shape for lateral undulation.
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Fig. 7: Body shape for the eel-like motion pattern.

design parameters of underwater snake robots (e.g., the num-
ber of the links) will be considered in the optimization vari-
ables.
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