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We present a comparative study of computational methods for estimation of ionospheric scintillation indices. First, we review the
conventional approaches based on Fourier transformation and low-pass/high-pass frequency filtration. Next, we introduce a novel
method based on nonparametric local regression with bias Corrected Akaike Information Criteria (AICC). All methods are then
applied to data from the Norwegian Regional Ionospheric Scintillation Network (NRISN), which is shown to be dominated by
phase scintillation and not amplitude scintillation. We find that all methods provide highly correlated results, demonstrating the
validity of the new approach to this problem. All methods are shown to be very sensitive to filter characteristics and the averaging
interval. Finally, we find that the new method is more robust to discontinuous phase observations than conventional methods.

1. Introduction

Global Navigation Satellite Systems (GNSS) are based on
satellite signals being transmitted to receivers on the ground.
These signals must pass through the ionosphere on the way,
where the variation in electron density causes undesirable
fluctuations in the observed signal. This distortion, known as
scintillation, can affect both the amplitude and phase of GNSS
signals. The relevant electron density variations range from
decameters to kilometers in size [1–3].

In the auroral zones, it is much more common for
phase scintillation than amplitude scintillation to be the
dominant effect (e.g., [4–6]). Scintillation is a large challenge
for navigational systems, as it can disturb not only single-
receiver systems but also networked systems [3, 4, 7–9]. In
a worst-case scenario, the user receiver can end up with a
loss of signal lock, which causes discontinuities in the phase
measurements. This is known as a cycle-slip.

A good understanding of the ionospheremorphology can
aid the development of suitablemitigation algorithms, that is,

algorithms that assign weights to observations based on the
scintillation distortion of each satellite link.

To be more specific, a more realistic stochastic model
for GNSS observables would have to take into account the
variance caused by scintillation. This would avoid biased
solutions. Today, the stochastic model includes the follow-
ing: correlation among observations [10]; satellite elevation
dependency modeled by exponential function [11]; temporal
and cross-correlations [12]; and multipath detection and
monitoring [13].That is, a suitable robustweighting algorithm
that reduces the influence of the satellite exposed by scintilla-
tion will look similar to the one proposed by Eueler and will
enhance the ability to resolve the carrier-phase ambiguity and
to improve the stochastic model for GNSS processes.

This is most commonly gauged by the phase scintillation
index 𝜎𝜙, which is simply defined as the standard deviation
of the detrended carrier phase 𝜙 over some period of time. A
critical step in the calculation of 𝜎𝜙 is a frequency filter, which
is used to separate the high-frequency ionospheric distortions
from the low-frequency distortions due to, for example,
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multipath interference. The scintillation indices are usually
calculated for one-minute intervals and then processed with
a Butterworth sixth-order high-pass filter [14–23]. However,
the estimated value of 𝜎𝜙 can be highly sensitive to the
cutoff frequency of the filter. While the most common cutoff
frequency is 0.1 Hz, it has been shown that this is suboptimal
at high latitudes and that higher values like 0.3Hzmight yield
better results [24].The variation in the carrier phase of GNSS
signals is also commonly quantified using the rate of total
electron content index (ROTI) [25–27]. Several other indices
for quantifying phase variations have also been proposed
[24, 28–32]. It is worth noting that all of these indices are
directly related to the scintillation signal variance.

Some scintillation indices use methods based on wavelet
transforms for the filtration. A major advantage of wavelet
filters is that they manage to preserve local features in the
signal, thus avoiding misinterpretation that can occur when
using standard filter approaches [24, 33–36]. While such
wavelet filters may yield better results than conventional fil-
ters, the computational load can become very high, especially
when processing data with high sampling rates (50+Hz).The
improvement that can be achieved by substituting a wavelet
filter for the conventional filters must therefore be weighed
against the computational load required, especially if the
algorithm is intended for real-time applications.

The primary focus of this paper is on nonparametric
local regression with bias Corrected Akaike Information
Criteria as a viable alternative for the computation of reliable
scintillation indices. In addition, we perform a statistical
analysis of the scintillation indices and show that they can
be well described by the Nakagami and Frechet distributions.
The paper is organized as follows.

Section 2: it includes detailed description of the data
sets used in this paper; Section 3: it deals with digital filter
construction of low-pass filter algorithms for amplitude scin-
tillation index computation and high-pass filter algorithms
for phase scintillation computation. Filter types discussed
are the Chebyshev, Butterworth, and Elliptic filters. These
algorithms are used to validate the new approach; Section 4:
it tackles nonparametric regression with kernel smooth-
ing; Section 5: this section presents how the scintillation
indices are computed by the conventional methods and the
new approach; Section 6: it shows statistical analysis of
scintillation indices, including distributions, sensitivity, and
correlation analysis of implemented algorithms; Section 7: it
presents generalization of the preceding sections; Section 8:
it includes conclusion and applications of the results.

2. Test Data

The data used for the investigation herein was obtained
from three different NRISN observation sites in the north-
ernmost parts of Norway. These sites are highlighted with
an italic typeface in Table 1 and encircled in Figure 1. The
observational data is taken from day 50 of year 2014, which
according to the I95 index corresponds to relatively high
ionospheric activity. (The I95 index [37] is used for the
classification of ionospheric activity by CPOS software.) For
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Figure 1: Sites characteristics of Norwegian Ionospheric Scintilla-
tion Network.

more information about the ionospheric activity levels, see
Figures 15 and 16. The NRISN sites are equipped by dual-
frequency Septentrio PolaRxS receivers tracking GPS and
GLONASSL1 andL2 frequencieswith sampling rate of 100Hz
and are capable of tracking up to 12 satellites for each system.
The baselines vary between 176 and 1988 km, and the height
difference between sites is around 400m.To give a full picture
of the baseline lengths and the height difference between sites
above the ellipsoid WGS84, Tables 2 and 3 are provided.

To accurately determine the relative performances of the
various algorithms, it is important to test different values
for the filter parameters. This also allows us to determine
the optimal filter parameters for the computation of the
amplitude and phase variances for GNSS signals. In this
case, the relevant parameters are the satellite elevation angle,
cutoff frequency, and averaging period. The algorithms were
tested with a cutoff frequency of 0.1 ± 0.05Hz for the signal
amplitude and 0.3 ± 0.1Hz for the phase and an averaging
interval of 30, 60, or 90 seconds.

3. Digital Filters Construction

To study the influence of scintillation on GNSS signals, the
standard deviations of the amplitude fluctuations 𝑆4 and
phase fluctuations 𝜎𝜙 must be computed. To achieve this
goal, digital filters that satisfy our requirements have to be
constructed. For this, we require both a suitable low-pass
filter to compute the amplitude scintillation index 𝑆4 and a
high-pass filter to compute the phase scintillation index 𝜎𝜙.

Digital Finite Impulse Response (FIR) and Infinite
Impulse Response (IIR) filters are chosen and used to con-
struct sixth-order Butterworth, Chebyshev, and Elliptic low-
pass filters. Further details on the design and implementation
of digital FIR/IIR filters are well described in [38–41]. Once
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Table 1: List of NRISN observation sites.

Site 4-char ID Receiver type Antenna type

Tromso TRO2 1001 Septentrio PolaRxS MCGNSS
Septentrio

Vega VEG2 1002 Septentrio PolaRxS PolaNt MC

Ny-Ålesund NYA2 1003 Septentrio PolaRxS JAV RING-
ANT G3T

Hofn HOF2 1010 Septentrio PolaRxS TRM41249.00
Færøyene FAR2 1012 Septentrio PolaRxS LEIAT504GG
Kautokeino KAU2 1006 Septentrio PolaRxS TRM559800.00
Honningsvag HON2 1005 Septentrio PolaRxS TRM559800.00
Bjørnøya BJO2 1008 Septentrio PolaRxS TRM41249.00
Hopen HOP2 1009 Septentrio PolaRxS TRM41249.00

Table 2: List of NRISN distance differences (km).

Sites TRO2 VEG2 NYA2 HOF2 FAR2 KAU2 HON2 BJO2 HOP2
TRO2 X 533.5 1053 1578 1433 176 301 540 787
VEG2 — X 1476 1278 1004 603 822 1018 1288
NYA2 — — X 1846 1982 1152 970 526 411
HOF2 — — — X 493.5 1734 1849 1715 1954
FAR2 — — — — X 1559 1728 1720 1988
KAU2 — — — — — X 245 626 837
HON2 — — — — — — X 454 617
BJO2 — — — — — — — X 280
HOP2 — — — — — — — — X

Table 3: NRISN ellipsoidal station heights (WGS84).

Site Height (m)
Tromso 132.4342
Vega 56.4121
Ny-Ålesund 81.2904
Honningsvag 73.8241
Hopen 37.4744
Hofn 82.8036
Færøyene 110.2158
Kautokeino 413.3949
Bjørnøya 53.6580

the filter specifications have been determined, the next step
is to compute the corresponding filter coefficients in the
frequency domain. This is usually done with the compu-
tationally efficient Parks-McClellan algorithm. A detailed
description of the algorithm is beyond the scope of this paper.
The interested reader is referred to [41, Section 7.3]. Since
an ideal low-pass filter is impossible to obtain, we often use
approximations. In this paper, three different approximations
are considered, namely, the Butterworth, Chebyshev, and
Elliptic filters.

3.1. Cutoff Frequency Determination. A raw GNSS scintil-
lation signal is a nonstationary signal that is affected by

the Doppler shift caused by satellite-receiver relative motion
(trend), the slowly varying background ionosphere, and
scintillation. In order to study the scintillation, trends and
slow fluctuations in the raw signal should be removed;
that is, any signal components that do not originate from
scintillation must be excluded.There exist many methods for
carrying out this detrending operation, for example, linear
regression by fitting a straight line to the original data or
the ratio and difference detrending methods. Detrending is
the statistical operation performed to remove the long-term
change in the mean function and is equivalent to high-pass
filter. That is, the variance at lower frequencies is reduced
compared to variance at high frequencies.

In general, the data detrending is a preprocessing step
to achieve stationarity of the observed signal. The next step
is then to analyze the signal statistically, by, for example,
computing the first and the second moments of the signal,
namely, the phase scintillation index 𝜎𝜙 and amplitude scin-
tillation index 𝑆4. To perform a proper detrending, the cutoff
frequency must be selected properly. The most important
part of the scintillation spectrum is around the Fresnel
frequency. It also extends to higher frequencies, but with
decreasing power per bandwidth. The Fresnel frequency is
𝑓𝐹 = V/√2𝜆𝑧 [3, 30], where V is the relative velocity between
the satellite and ionosphere, 𝜆 is the wavelength of the signal
(∼19 cm), and 𝑧 denotes the distance between the receiver
and the ionosphere (∼350 km at 90 degrees elevation). Ideally,
the cutoff frequency should be slightly below the Fresnel
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frequency but still high enough to remove the unwanted
signal components. Also, it should be a constant, so that the
scintillation values are comparable. For the case of GNSS
scintillation data, a Butterworth filter with a constant cutoff
frequency of 0.1 Hz is the most common approach, but it has
been shown that this value is inappropriate at high latitudes
[16, 24].

3.2. Butterworth Approximation. The high-order Butter-
worth approximation [40, p. 264] satisfies our needs, as the
filter has a low ripple and minimum transition band. Due
to these characteristics, the Butterworth sixth-order filter is
the most used filter in computation of scintillation indices 𝑆4
and 𝜎𝜙. The cutoff frequency 𝑓𝑐 is user defined parameter, by
default set to 0.1 Hz for low-pass filters and 0.3Hz for high-
pass filters. The derivation of such indices is usually carried
out using Algorithm 1, that is, fast convolution using a fast
Fourier transform (FFT) and multiplication in the frequency
domain. For each Fourier coefficient, the magnitude of the
frequency response of 𝑛th-order Butterworth filter is given
by the following equation:

󵄨
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𝐻 (𝑓)

󵄨
󵄨
󵄨
󵄨
=

1

√1 + (𝑓/𝑓𝑐)
±2𝑛
. (1)

Note the ± sign in the exponent, which toggles whether the
filter exhibits a low-pass or high-pass behavior. Also, the
filter gain has been normalized to unity in the region with
minimum attenuation, that is, when either𝑓 ≪ 𝑓𝑐 or𝑓 ≫ 𝑓𝑐.

3.3. Chebyshev Approximation. The Chebyshev approxima-
tion [41, p. 27] has passband ripple that can be dumped and
a remarkable transition band. Based on these qualities, its
chosen to approximate the ideal low-pass filter with the user
specification parameters. However, unlike the Butterworth
case, the Chebyshev filter has ripples in the passband and
rapid transition and is able to satisfy the user specification
with lower order than Butterworth.The phase response is not
linear as the Butterworth case.

Themagnitude of the frequency response of an 𝑛th-order
Chebyshev filter is
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where 𝜖 determines the ripple magnitude and is less than 1.
𝑇𝑛 is a Chebyshev polynomial given by the expression

𝑇𝑛 (𝑥) =
{

{

{

cos [𝑛 cos−1 (𝑥)] , if 𝑥 ≤ 0,

cosh [𝑛 cosh−1 (𝑥)] , if 𝑥 > 0.
(3)

3.4. Elliptic Approximation. The Elliptic filters [40, p. 275]
known as Cauer filters yield smaller transition bandwidths
than Butterworth or Chebyshev filters for any given order
but are equiripple in both the passbands and stopbands.
In general, Elliptic filters meet a given set of performance
specifications with the lowest order of any filter type.
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Figure 2: Typical low-pass digital filter characteristics used to
compute the amplitude scintillation.

For Elliptic filters, the normalized cutoff frequency 𝑓𝑐 is
a number between 0 and 1, where 1 corresponds to half the
sampling frequency (Nyquist frequency). The filter has the
smallest transition band of the two approaches described so
far but is very complicated analytically.

Themagnitude of the frequency response of an 𝑛th-order
Elliptic filter is
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, (4)

where 𝜖 controls the deviation in the passband and 𝐸𝑛 is the
Jacobian Elliptic function [42, pp. 567–588] of order 𝑛.

3.5. Implementation. In this study, we have implemented
digital filters of types FIR and IIR.The frequency response for
all three filter types are given, respectively, by Figures 2 and
3. These figures show the difference between the filter types
(Butterworth, Elliptic, and Chebyshev).

4. Nonparametric Regression

In contrast to other data modeling methods, for instance,
parametric and semiparametric, a nonparametric regression
makes no assumptions about the shape of the distribution
function. This class of modeling lets the data speak for
themselves and they open the way for a new model by their
flexibility.

Let us now suppose that we have a vector of observations
X = (𝑋1, 𝑋2, . . . , 𝑋𝑛) sampled from an unknown density
function𝑓(𝑥) and that our aim is to estimate𝑓(𝑥) and display
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Figure 3: Typical high-pass digital filter characteristics used to
compute the phase scintillation.

it graphically.The density estimation function is then defined
as

̂
𝑓 (𝑥) =

1

𝑛ℎ

𝑛

∑

𝑖=1

𝐾[

(𝑥𝑖 − 𝑥)

ℎ

] , (5)

where ℎ is the smoothing parameter and 𝐾(⋅) is the kernel
function. This kernel cannot be arbitrarily chosen but needs
to satisfy three requirements: it must be nonnegative, 𝐿2
normalized, and symmetric around the origin.

There are lots of different kernel functions that satisfy
these requirements, for example, the uniform kernel, quartic
kernel, Gaussian kernel, and Epanechnikov kernel. The pre-
cise choice of kernel function is in practice less important
than the choice of smoothing parameter ℎ.

4.1. MSE and MISE. We wish to investigate the performance
of the kernel density estimation (KDE) at a single point or
over the whole real line and find out how close our estimator
is to its target. The Mean Square Error (MSE) and Mean
Integrated Square Error (MISE) can be used to measure such
performance or efficiency of nonparametric methods.

The MSE when estimating 𝑓(𝑥) using the estimator ̂𝑓(𝑥)
at point 𝑥 is given by

MSE {̂𝑓 (𝑥)} = 𝐸 [̂𝑓 (𝑥) − 𝑓 (𝑥)]
2

= var {̂𝑓 (𝑥)} + {bias (̂𝑓 (𝑥))}
2
.

(6)

We see that the MSE can be decomposed into two parts,
namely, variance and bias terms. In contrast to parametric
models, the bias is ignored. The MISE is defined as

MISE {̂𝑓 (𝑥)} = ∫MSE {̂𝑓 (𝑥)} d𝑥. (7)

4.2. Asymptotic Statistical Properties of KDE. In this section,
we will derive asymptotic approximations for the bias and
variance of the KDE. These terms are necessary to derive the
optimal smoothing parameter ℎopt. For these derivations, it
will be useful for defining the second moment 𝜇2(𝐾) and
norm ‖𝐾‖ of the KDE:

𝜇2 (𝐾) = ∫

∞

−∞
𝑢
2
𝐾 (𝑢) d𝑢,

‖𝐾‖
2
2 = ∫

∞

−∞
{𝐾 (𝑢)}

2 d𝑢.
(8)

4.2.1. Derivation of Bias Approximation. We will start by
deriving an expression for the expectation value of the kernel
density ̂𝑓ℎ(𝑥):
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(9)

The approximation of 𝐸{̂𝑓ℎ(𝑥)} is obtained by using the
Taylor expansion up to the second terms in ℎ and letting ℎ →
0. By the definition of bias, this result yields

bias {̂𝑓ℎ (𝑥)} = 𝐸 [̂𝑓ℎ (𝑥)] − 𝑓 (𝑥)
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(10)

Some facts about the bias of ̂𝑓ℎ(𝑥) are as follows:

(1) bias{̂𝑓ℎ(𝑥)} ∼ 𝑜(ℎ
2
). Larger values of ℎwill character-

ize the process as oversmoothing.
(2) The sign and the direction are decided by 𝑓󸀠󸀠(𝑥).
(3) If we include more terms in the Taylor series expan-

sion, we will reduce the error term.

4.2.2. Derivation of Variance Approximation. The variance
of stochastic variable 𝑋 is defined as var(𝑋) = 𝐸(𝑋

2
) −

𝐸(𝑋)
2 and applying the Taylor expansion of 𝑓(𝑥 + 𝑠ℎ) and

∫
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2d𝑠 = 0 (from the symmetry of the kernel):
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Some facts about the variance of ̂𝑓ℎ(𝑥) are as follows:

(1) var{̂𝑓ℎ(𝑥)} ∼ 𝑜(ℎ
−1
). Small values of ℎ will character-

ize the process as undersmoothing.
(2) 𝑛ℎ gives the number of the observations inside the

processing window.
(3) The variance increases with the magnitude of 𝑓(𝑥).

4.2.3. Bandwidth Selection of KDE. As mentioned earlier,
the bandwidth selection is more important than the choice
of the kernel. This section is devoted to computing the
optimal smoothing parameter ℎopt.We start by evaluating the
expressions given by (6) and (7):
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for ℎ → 0 and (𝑛ℎ) → ∞, and the Asymptotic Mean
Integrated Square Error (AMISE) reads

AMISE {̂𝑓ℎ (𝑥)} =
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4
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2
2 .

(14)

The exact computation of MISE is given in Wand and
Jones [43, p. 24].

The optimal smoothing parameter ℎopt is found by mini-
mizing the expression given by (14):
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set (15) to be equal to 0, and solve; we get

ℎMISE ∼ {
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Inserting this expression of ℎMISE into (13), we get

MISE {̂𝑓ℎ (𝑥)} ∼
5
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) .
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Several smoothing parameter selection procedures exist,
for instance, plug-in methods (Section 4.2.3), focused infor-
mation criteria (FIC) [44, p. 145], cross-validation, penalizing
functions, and Akaike Information Criteria (AIC).The inter-
ested reader is referred to [45, Chap. 5].

4.3. Kernel Methods for Nonparametric Regression. In this
section, we try to put all pieces together to construct a class of
kernel-type regression estimators known as local polynomial
kernel estimators. The main idea is to estimate the regression
function at a particular point 𝑥 by locally fitting a 𝑝th degree
polynomial to the data by employing the weighted least
square techniques. The weights are chosen to the height of
the kernel function centered about the point 𝑥.

The steps needed to derive the expression of the local
polynomial kernel estimator are as follows.

(i) Local polynomial definition: Let 𝑝 be the order of the
polynomial we fit at point 𝑥 to estimate 𝑦̂ = ̂𝑓(𝑥):

𝑃 (𝑥) = 𝛽0 + 𝛽1 (𝑋𝑖 − 𝑥) + ⋅ ⋅ ⋅ + 𝛽𝑝 (𝑋𝑖 − 𝑥)
𝑝
. (18)

(ii) Weights definition: theweights are given by the kernel
density function

𝐾ℎ (𝑋𝑖 − 𝑥) =
1

ℎ

𝐾(

𝑋𝑖 − 𝑥

ℎ

) . (19)

(iii) Weighted least square: the value of the estimate at a
point 𝑥 is 𝛽0, where ̂𝛽minimize the expression:

𝑆 (𝛽) = ∑𝐾ℎ (𝑋𝑖 − 𝑥) (𝑌𝑖 − 𝑃 (𝑥))
2
. (20)

The weighted least square solution in matrix form
read ̂𝛽 = (𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊𝑌, where 𝑌 is (𝑛 × 1) vector
of responses. The design matrix𝑋 read

X =
[
[
[
[

[

1 (𝑋1 − 𝑥) ⋅ ⋅ ⋅ (𝑋1 − 𝑥)
𝑝

.

.

.

.

.

. d
.
.
.

1 (𝑋𝑛 − 𝑥) ⋅ ⋅ ⋅ (𝑋𝑛 − 𝑥)
𝑝

]
]
]
]

]

. (21)

The weight matrix 𝑊 is (𝑛 × 𝑛) diagonal matrix of
weights 𝑤𝑖 = 𝐾ℎ(𝑋𝑖 − 𝑥):

W =

[
[
[
[
[
[
[
[

[

𝑤1 0 ⋅ ⋅ ⋅ 0

0 𝑤2

.

.

. 0

.

.

.

.

.

. d
.
.
.

0 0 ⋅ ⋅ ⋅ 𝑤𝑛

]
]
]
]
]
]
]
]

]

. (22)

The value of the estimate at a point 𝑥 is the intercept
coefficient 𝛽0 of the local fit of 𝑃(𝑥):

𝑦̂ = 𝑒
𝑇
(𝑋
𝑇
𝑊𝑋)

−1
𝑋
𝑇
𝑊𝑌, (23)

where 𝑒𝑇 = [1 0 ⋅ ⋅ ⋅ 0] is a vector of dimensions
((𝑝 + 1) × 1).
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Some important remarks are as follows.

(1) For 𝑝 = 0, we fit a constant function locally and
this estimator is known as the Nadaraya-Watson
kernel estimator:

̂
𝑓NW (𝑥) =

∑
𝑛
𝑖=1𝐾ℎ (𝑋𝑖 − 𝑥)𝑌𝑖

∑
𝑛
𝑖=1𝐾ℎ (𝑋𝑖 − 𝑥)

. (24)

(2) For 𝑝 = 1, the estimator function corresponds
to the Priestley-Chao kernel estimator

̂
𝑓PC (𝑥) =

1

ℎ

𝑛

∑

𝑖=1

(𝑥𝑖 − 𝑥𝑖−1)𝐾(
𝑥 − 𝑥𝑖

ℎ

)𝑦𝑖. (25)

(3) Final product: the key is the optimal smoothing
parameter ℎopt. To compute the phase scintilla-
tion index 𝜎𝜙, the steps are as follows:
(i) Find the smoothing parameter ℎopt. In this

study, we have employed the AIC and the
bias Corrected AIC (AICC) for smoothing
parameter selection [46, Chap. 3]. This
operation is repeated for each computation
of 𝜎𝜙.

(ii) Compute the weights based on the height
of the chosen kernel.

(iii) Locally fit a 𝑝th degree polynomial to the
data by using the weighted least square
technique.

4.4. Analytical Analysis of KDE. We will now derive an
analytical relationship between the conventional filters and
the new approach based on kernel smoothing. With the
conventional approach, we apply a Fourier transform to
the function 𝑔(𝑥), multiply it by the filter transfer function
𝐻(𝑓) in the frequency domain, and then apply the inverse
Fourier transform to transform the filtered function back to
its original domain. According to the convolution theorem
of Fourier analysis, this can equivalently be written as a
convolution of the function 𝑔(𝑥) with the inverse Fourier
transform ℎ(𝑥) = F−1{𝐻(𝑓)} of the filter transfer function:

F
−1
{F {𝑔 (𝑥)}𝐻 (𝑓)} = 𝑔 (𝑥) ∗ ℎ (𝑥) . (26)

For simplicity, we will limit the analysis to a first-order low-
pass filter of the Butterworth type, as obtained by setting 𝑛 = 1
and choosing a positive exponent in (1):

𝐻(𝑓) =

1

√1 + (𝑓/𝑓𝑐)
2
. (27)

Taking the inverse Fourier transform of this, we get

ℎ (𝑥) =

𝑓𝑐

𝜋

𝐾0 [𝑓𝑐 |𝑥|] , (28)

where 𝐾0(⋅) is the modified Bessel function of the second
kind. Substituting back into (26), we get

F
−1
{F {𝑔 (𝑥)}𝐻 (𝑓)} =

𝑓𝑐

𝜋

𝑔 (𝑥) ∗ 𝐾0 [𝑓𝑐 |𝑥|] . (29)

Writing the convolution explicitly out, we find that the first-
order Butterworth filter is equivalent to a kernel smoothing
using a Bessel function as the kernel:

F
−1
{F {𝑔 (𝑥)}𝐻 (𝑓)}

=

𝑓𝑐

𝜋

∫𝑔 (𝑥)𝐾0 [𝑓𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑥
󸀠󵄨󵄨
󵄨
󵄨
󵄨
] d𝑥󸀠.

(30)

From this result, we see that the cutoff frequency 𝑓𝑐 of the
Butterworth filter is directly equivalent to the smoothing
parameter ℎ in KDE equation (5). The modified Bessel
function of the second kind can be written in integral form
as

𝐾0 (𝑧) = ∫

∞

0

cos (𝑧𝑡)
√1 + 𝑡

2
d𝑡. (31)

It is also worth noting that

1

𝜋

∫

∞

−∞
𝐾0 (𝑧) d𝑧 = 1, (32)

which means that the Bessel kernel is a proper density func-
tion, but with a pole at the origin.We have established a direct
analytical link between the conventional Butterworth filter
approach and the new kernel smoothing approach. In this
light, the nonparametric filter approach can be considered as
a generalization of the conventional filters to other kernels,
with the conventional filters as a special case.

4.4.1. Higher Order Approximation. For higher order 𝑛, the
computation of the Fourier transforms of (1), (2), and (4)
is very complex analytically. For future work, the numerical
methods and Monte Carlo simulation may be considered as
suitable techniques for analyzing the relationship between
the conventional filters and the new approach based on
nonparametric local regression.

4.4.2. Scintillation Cutoff Frequency Determination. We have
established the link between the optimal smoothing parame-
ter 1/ℎopt = 𝐵𝑤 and the cutoff frequency𝑓𝑐 of associated filter
equations (30) and (5). As a result, we can define the filter
link function implicitly by Ψ = 𝐹(𝑓𝑐, 𝐵𝑤) = 0. The relation
between 𝑓𝑐 and 𝐵𝑤 is given by the following equation:

𝑓𝑐 = 𝜅𝐵𝑤

or 𝐵𝑤 = 𝜅𝑓𝑐,
(33)

where 𝜅 is a proportionality constant.

5. Scintillation Indices Computation

This section presents the methods used to compute the
amplitude scintillation index 𝑆4 and phase scintillation index
𝜎𝜙, that is, to suppress all contributions but the scintillation
effects in the signal variance. Following the mathematical
formulation and notation suggested byKaplan et al. [47, chap.
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6.4], a simplifiedmodel for a received signal in the absence of
scintillation is

𝑟 (𝑡) = √2𝑃𝑠 (𝑡) cos (𝜔𝑡 + 𝜙) + 𝑛 (𝑡) , (34)

where 𝑃 is the received signal power, 𝑟(𝑡) is the observed
signal, 𝑠(𝑡) is the normalized transmitted signal, 𝑛(𝑡) is the
signal noise, 𝑡 is the time, 𝜔 is the carrier frequency, and 𝜙 is
a phase offset. Scintillation causes a perturbation to both the
received signal amplitude and the phase.Thus, in the presence
of scintillation, the model may be extended as

𝑟 (𝑡) = √2𝑃𝛿𝑃𝑠 (𝑡) cos (𝜔𝑡 + 𝜙 + 𝛿𝜙) + 𝑛 (𝑡) , (35)

where 𝛿𝑃 is a positive number that parametrizes signal
attenuation, while 𝛿𝜙 represents fluctuations in the phase
offset.

Figure 4 shows the steps necessary to compute the indices
discussed above.

The first step in the processing chain is the data cleaning,
which includes detecting and pruning outliers and handling
discontinuities caused by cycle-slips and missing observa-
tions in the data set.Next, we have to detrend the data set.This
means that we construct a time series of the received signal,
estimate the trend, and remove this from the signal. This will
remove disturbances due to, for example, the Doppler shift
from the relative motion of satellite and receiver. Next, we
pass the signal through either a high-pass or low-pass filter,
in order to isolate the scintillation components in the signal.
Finally, the last step is the computation of the scintillation
indices, which is the interesting part.

5.1. Filtering Techniques. Using digital filters to extract
specific signal components is an important technique in
many practical applications. For instance, we need the low-
frequency components of the signal strength to calculate the
amplitude scintillation 𝑆4 and the high-frequency compo-
nents of the signal phase to calculate 𝜎𝜙.

There are a variety of methods that can be used to design
the digital filters. One commonly used method is the bilinear
transform. The method uses the analog filter approximation
functions that have been developed and translate the filter
coefficients in a way that will make them usable for discrete
systems, the IIR filter. That is, the output of the filter will
depend on the previous values of the output as well as on
the past and the current values of the input. Such a process
is known as the autoregressive moving average (ARMA)
process.

Other methods use frequency response of the desired
filter to directly determine the digital filter coefficients.These
are known as Finite Impulse Response (FIR) filters and are
implemented as moving average filters. Once the FIR filter
coefficients have been determined, the output signal is simply
the convolution of the input signal with the filter coefficients.

One efficient way to implement this approach com-
putationally is that the convolution is performed through
multiplication in the frequency domain. This is done by first
using a fast Fourier transform (FFT) and thenmultiplying the
filter transfer function with the input signal and performing

Index computationFilteringDetrendingData cleaning

Figure 4: Building blocks of scintillation indices computation.

the inverse transform. This is described by Algorithm 1,
which assumes that the filter coefficients have already been
determined.

Algorithm 1 (filtering with FFT convolution). (1) Apply the
Fourier transform to the filter coefficients ℎ(𝑛):

𝐻(𝑧) = FFT [ℎ (𝑛)] . (36)

(2) Apply the Fourier transform to the input signal 𝑥(𝑛):

𝑋 (𝑧) = FFT [𝑥 (𝑛)] . (37)

(3) Multiply the complex sequences elementwise:

𝑌 (𝑧) = 𝐻 (𝑧)𝑋 (𝑧) . (38)

(4) Apply the inverse Fourier transform to transform the
filtered function back to its original domain:

𝑦 (𝑛) = FFT−1 [𝑌 (𝑧)] . (39)

(5) Normalization:The IFFT coefficients are the complex
conjugates of the Discrete Fast Transform (DFT) coefficients.
The output signal has to be scaled down by the length of the
signal.

5.2. Computation of the Amplitude Scintillation Index 𝑆4. The
amplitude scintillation index 𝑆4 is defined as the standard
deviation of the signal power normalized to the mean value
over the interval of interest, usually a 1-minute interval.

In order to compute this index, the necessary steps are as
follows:

(I) Computation of the total amplitude index 𝑆4𝑇 . The
index 𝑆4𝑇 is defined by the expression

𝑆4𝑇
=
√

⟨𝑆𝐼
2
⟩ − ⟨𝑆𝐼⟩

2

⟨𝑆𝐼⟩
2

,
(40)

where 𝑆𝐼 is the detrended power or satellites signal
intensity.

(II) Correction of 𝑆4 by removing the ambient noise: 𝑆4𝑇
can have large values due to the ambient noise, and
this must be removed. The removal process is done
by estimating the average carrier-to-noise ratio 𝐶/𝑁0
density over the entire evaluation interval and using
the estimate to compute 𝑆4 due the ambient noise.
If the signal-to-noise (𝑆/𝑁) density is known, the
predicted 𝑆4𝑁 due to the ambient noise [48] is given
by the expression

𝑆4𝑁
= √

100

𝑆/𝑁

[1 +

500

19 𝑆/𝑁

]. (41)
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Replacing 𝑆/𝑁 with the 60-second estimate 𝑆̂/𝑁̂,
we obtain an estimate of 𝑆4 due to the noise 𝑆4𝑁 .
Subtracting the square of this value from the square
of (40) yields the revised estimate of 𝑆4:

𝑆4 =
√

⟨𝑆𝐼
2
⟩ − ⟨𝑆𝐼⟩

2

⟨𝑆𝐼⟩
2

−

100

𝑆̂/𝑁̂

[1 +

500

19 𝑆̂/𝑁̂

].
(42)

(III) Detrending the signal to achieve stationarity:
Detrending the raw signal intensity is accomplished
by dividing the original time series by the filtered one.
The effect of this is the removal of the low-frequency
variance. The ratio method is attractive because it
is dimensionless; however, it cannot be used if the
data contains negative values, and it can also become
problematic if the fitted line crosses zero.
Detrending by the difference method produces sta-
tionarity of the signal under study.The first difference
∇𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1 eliminates a linear trend, while
the second difference ∇2𝑥𝑡 = 𝑥𝑡 − 2𝑥𝑡−1 + 𝑥𝑡−2 can
eliminate a quadratic trend and so on. In this study,
both methods are used and they produce almost the
same result; the first difference method has a little
higher range than the ratio method.
In order to classify the scintillation activity indicated
by 𝑆4, four categories [49] are defined: 𝑆4 ≤ 0.25 is
quiet, 𝑆4 ∈ (0.25, 0.50] is moderate, 𝑆4 ∈ (0.50, 1.00]
is disturbed, and 𝑆4 > 1.00 is severe.

(IV) Practical considerations: A full understanding of the
difference between 𝑆/𝑁0 and 𝐶/𝑁0 is necessary and
useful for the users of the GNSS receivers. 𝑆/𝑁0is
usually expressed in dB; it refers to the ratio of the
signal power and noise power in the given bandwidth
while 𝐶/𝑁0 is expressed in dB-Hz; it refers to carrier
power and the noise power per unit bandwidth.
The signal strength indicatormeasured by the receiver
is𝐶/𝑁0, the carrier-to-noise density measured in dB-
Hz. In the computation of 𝑆4𝑇 , the signal-to-noise
density 𝑆/𝑁0 is used. The relation between these two
quantities [50] is given by the expression

𝑆/𝑁0 = 10
𝐶/10𝑁0

. (43)

5.3. Computation of Scintillation Index 𝜎𝜙. Computation of
the phase scintillation 𝜎𝜙 is straightforward, as the procedure
is very similar to the computation of 𝑆4. The main difference
exists in data filtering; for 𝜎𝜙 high-pass filter, usually a
Butterworth filter with cutoff frequency of 0.3Hz is used
while 𝑆4 is as mentioned in Section 3.2.

For typical FIR, IIR, and FFT convolution, the filter trans-
fer function given by (1) is used. The sign in the exponent is
negative, which results in the high-pass behavior. Detrending
is a necessary step before carrying out the filtering. This
is accomplished by any method that is able to produce a
stationary time series. In this study, the ratio method is used
for data detrending. The next step is filtering. Algorithm 1
described previously is used.

For the case of the new approach, the details are given in
Section 4.3 and are summarized as follows:

(I) Preprocessing step requires handling outliers,missing
observations, and cycle-slip detection and repair.

(II) Choose a kernel density function to compute the
weights.

(III) Model selection with AIC/AICC is to determine the
optimal smoothing parameter ℎopt. The key is ℎopt.

(IV) Compute the weights based on the height of the
chosen kernel centered about the point of interest.

(V) locally fit a 𝑝th degree (𝑝 = 0, 1, or 2) polynomial to
the data by using the weighted least square technique.

(VI) Compute 𝜎𝜙 by taking the standard deviation of the
residuals.

6. Statistical Analysis

Themain objective of this section is to define the distributions
of phase and amplitude scintillation indices (𝑆4 and 𝜎𝜙), cor-
relation, and sensitivity analysis of the implemented filtering
algorithms. Focus will be directed to the new approach, the
nonparametric local regression with smoothing parameter
selection. Outliers detection and repair, discontinuities, and
missing observations are handled in data preparation.

6.1. Statistical Distribution of the Scintillation Index 𝑆4. The
power fluctuations of 𝛿𝑃 given in (35) are generally modeled
as a Nakagami 𝑚-distribution. The probability density func-
tion (PDF) of this distribution is given by (B.1) with mean
value of one and variance 1/𝑚.

Due to the characteristics of the Nakagami distributions,
𝑆4 = √1/𝑚will not exceed√2 [47, p. 296]. Figure 5 shows the
computed 𝑆4 index for an arbitrary GPS satellite and Figure 6
shows the distribution of 𝑆4.

6.2. Distribution of 𝜎𝜙. This subsection is devoted to the
computation of phase scintillation 𝜎𝜙. Figure 7 shows the
computed phase scintillation index for GPS satellite. Clearly,
the heavy tailed distribution family is the appropriate choice.
Here, we found that Frechet distribution equation (B.5)
models the empirical data very well.

The motivations for considering the log-normal as an
approximation model of the distribution of 𝜎𝜙 are as follows:
First, the log-normal distribution is a positive real-valued
function with a heavy tail that can describe the presence of
extreme variability in the data. Secondly, the distribution is
simple and practical and provides a very good fit to the data.
Finally its variance is scaling.

Figure 8 shows the distribution of phase scintillation
indices for an arbitrary GLONASS satellite, PRN 08. Clearly,
the distribution follows the heavy tailed distribution (the
Frechet and log-normal ones are appropriate fit).

6.3. Correlation Analysis. Often, we like tomeasure the linear
predictability of one signal 𝑥𝑡 from another one 𝑦𝑡. Assuming
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Figure 5: Amplitude scintillation index, 𝑆4 computed for GPS satel-
lite PRN23, year 2014 andDOY50, site Tromso. False scintillation(s)
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the figure.
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Figure 6: Distribution of the amplitude scintillation index 𝑆4
computed for GLONASS satellite PRN 13, year 2014 and DOY 50,
observed at site Tromso.

that the variance of both time series is finite, the cross-
correlation function [51, p.23] can be used for this purpose.
This function is defined as

𝜌𝑥𝑦 (𝑠, 𝑡) =

𝛾𝑥,𝑦 (𝑠, 𝑡)

√𝛾𝑥 (𝑡, 𝑡) 𝛾𝑦 (𝑠, 𝑠)

, (44)

where 𝛾𝑥,𝑦(𝑠, 𝑡) = 𝐸[(𝑥𝑡−𝜇𝑥𝑡)(𝑦𝑠−𝜇𝑦𝑠)] is the cross-covariance
function between two time series, 𝑥𝑡 and 𝑦𝑠, respectively. 𝐸(⋅)
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Figure 7: Phase scintillation index, 𝜎𝜙 for GPS satellite PRN 23, year
2014 and DOY 50, site Tromso.
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Figure 8: Empirical distribution of phase scintillation for an arbi-
trary GLONASS satellite, PRN 08. Heavy tailed Frechet distribution
is an appropriate fit to phase scintillation.

is the expectation operator. The Cauchy-Schwartz inequality
implies |𝛾𝑥,𝑦(𝑠, 𝑡)|

2
≤ 𝛾𝑥(𝑡, 𝑡)𝛾𝑦(𝑠, 𝑠).

The phase scintillation index 𝜎𝜙 is the dominant distur-
bance at high latitudes and is obtained by high-pass filtering.
For this reason, we have chosen two implementations of high-
pass filtering algorithms (FFT convolution and IIR) for the
correlation analysis. All plots have in common the cutoff
frequency 𝑓𝑐 = 0.3Hz and the averaging interval ⟨𝑇⟩ = 1
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Figure 9: (a) shows the correlation between the Butterworth sixth-order filter and the IIR filter. (b) shows the correlation between the
Butterworth sixth-order filter and an advanced nonparametric regression with kernel smoothing. Finally, (c) shows the correlation between
the Butterworth sixth-order filter and nonparametric regression. The plots show high correlation between filtering algorithms, up to 83.4%
for 𝜎𝜙 ≤ 0.1 rad.

minute. Three scenarios are presented below, using different
threshold values Th ∈ {0.1, 0.15, 0.25} rad.

6.3.1. Scenario 1: 𝜎𝜙 ≤ 0.1 rad. For this scenario, we drop all
scintillations indices 𝜎𝜙 above a threshold of 0.1 rad. Figure 9
shows that the algorithms are highly correlated, and the
correlation coefficient 𝜌 varies between 78% and 83%. The
new approach, that is, the nonparametric regression with
Akaike information criterion (AIC) [51, pp. 53-54] model
selection, performs very well. The algorithm does not take
into consideration any knowledge of physical problems, for
instance, multipath, Doppler effects due to satellite motion,
and cutoff frequency selection. The key is the smoothing
parameter ℎopt that determines the trade-off between the
variance and the bias terms.

In this scenario, we have dropped all observations above
the threshold value Th = 0.1 rad. These observations are
classified as extreme and correspond to severe ionospheric
activities.

6.3.2. Scenario 2: 𝜎𝜙 ≤ 0.15 rad. Figure 10 shows that the
algorithms are still highly correlated and the correlation
coefficient 𝜌 has decreased to values between 77.2% and
79.3%. The main reason for this reduction is the inclusion of
more extremal events that are classified as severe ionospheric
activities. Before the vertical lines indicated in Figure 10, the
algorithms are highly correlated.After the lines, decorrelation
appears between the two algorithms.

6.3.3. Scenario 3: 𝜎𝜙 ≤ 0.25 rad. In this scenario, we have
included all 𝜎𝜙 values (𝜎𝜙 > 0.25 rad are treated as outliers

and removed). Figure 11 shows that the correlation coefficient
has dropped to values between 69 and 74%.The reason is the
inclusion of the extremal events classified as severe.

The vertical line is used to point out/distinguish two
classes; the one to the left is highly correlated while the other
is uncorrelated and corresponds to the extreme ionospheric
activities and possibly noise in the signal.

6.4. Sensitivity Analysis. In order to carry out the sensitivity
analysis of the implemented algorithms, a reference algo-
rithm has to be chosen. The most common one used is high-
pass filter Butterworth with FFT convolution, order 6, and
cutoff frequency of 0.3Hz.

Let the function 𝐹 = 𝑓(𝑥, 𝑦, 𝑧) represents the phase
scintillation index 𝜎𝜙, depending on parameters (𝑥, 𝑦, 𝑧),
where 𝑥 and 𝑦 are the cutoff frequency and the averaging
interval parameters, respectively. 𝑧 = 𝑔(𝛼1, 𝛼2, . . . , 𝛼𝑘)

represents the remaining parameters, for instance, cycle-slip
detection and repair and handling outliers/glitch. We will
ignore the parameter 𝑧 to facilitate analysis.

In order to carry out the sensitivity analysis, keeping all
parameters constant and varying one parameter at a time are
common. This is done by the following equations:

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
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Figure 10: (a) shows the correlation between the Butterworth sixth-order filter and the IIR filter. (b) shows the correlation between the
Butterworth sixth-order filter and an advanced nonparametric regression with kernel smoothing. Finally, (c) shows the correlation between
the Butterworth sixth-order filter and nonparametric regression.The plots show high correlation between filtering algorithms, up to 78% for
𝜎𝜙 ≤ 0.15 rad.
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Figure 11: (a) shows the correlation between the Butterworth sixth-order filter and the IIR filter. (b) shows the correlation between the
Butterworth sixth-order filter and an advanced nonparametric regression with kernel smoothing. Finally, (c) shows the correlation between
the Butterworth sixth-order filter and nonparametric regression. The plots show high correlation between filtering algorithms, up to 74% for
𝜎𝜙 ≤ 0.25 rad.
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Figure 12: The panels show time series of 𝜎𝜙 calculated from filtered signal phase, using different settings for the 𝜎𝜙 calculation. The data is
from GLONASS satellite 25, year 2014, DOY 50, site Honningsvag. (a), (b), and (c) have been calculated for each 30-second, 60-second, and
90-second interval, respectively.

6.4.1. Scenario 1: Cutoff Frequency Constant. In this scenario,
we kept the cutoff frequency 𝑓𝑐 = 0.3Hz constant and varied
the average interval ⟨𝑇⟩ ∈ {30, 60, 90} seconds.

Figure 12 shows the results. The general shape of the time
series is very similar, but some of the modes/spikes are not
present in all of them. In general using a longer averaging
interval smooths the time series, broadening the spikes,
reducing their magnitude, and causing some of the spikes
to vanish. The longest interval time series does not appear
to offer any significant advantage over the middle interval
time series. The 30 sec interval time series contains more fine
structure than the 60 sec interval time series. In conclusion,
the averaging interval should not exceed 60 seconds.

6.4.2. Scenario 2: Averaging Interval Constant. In this sce-
nario, the averaging interval is constant and equal to
60 seconds while varying the cutoff frequency 𝑓𝑐 ∈

{0.2, 0.3, 0.4}Hz.
Figure 13 shows the results. The general shape of the

time series is very similar, but some of the modes/spikes are
not present in all of them. In general using a higher cutoff
frequency results in a reduction of the scintillation index
value throughout the time series. At time ≈ 340, there is a
large spike which is significantly reduced when changing the
cutoff frequency from 0.2 to 0.3Hz and vanishes for a cutoff
frequency of 0.4Hz. The phase scintillation values are clearly
strongly dependent on the cutoff frequency, even for amodest
change such as the one seen here. This is a known weakness
in the standard techniques of 𝜎𝜙 calculation (e.g., [52]).

Taking into account the first and the second sensitivity
analysis, the acceptable range for the computation of 𝜎𝜙

is 𝑓𝑐 ∈ [0.1, 0.3] and ⟨𝑇⟩ ∈ [30, 60]. These ranges give the
maximum variations in the data.

7. Implementation and Analysis

7.1. Data Collection and Analysis. As mentioned in the
introduction, the data used in this investigation are obtained
from the Norwegian Ionospheric Scintillation Network. The
reference stations used are encircled as shown in Figure 1.

For implementation and software packages used to com-
pute the scintillation indices 𝑆4 and 𝜎𝜙, the interested reader
is referred to Appendix C.

7.2. Interpretation of Results. The test results show that all
detrending filtering techniques produce almost the same
results. The main difference exists in statistical methods
used in data editing. That is, how outliers are detected and
removed, the missing observations, and glitch detection and
removal.

Thenew approach is robust against outliers, discontinuity,
and missing observations. Figure 14 shows how algorithms
(FFT convolution, IIR, and local kernel regression) handle a
discontinuity with a magnitude of 0.6 rad. The new approach
handles perfectly the discontinuity and avoids generating a
false scintillation due to discontinuity.

7.3. Remarks. Some remarks and suggestions are as follows:

(I) In order to capture false scintillation due to low
satellite elevation angles, the cutoff elevation angle
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Figure 13: The panels show time series of 𝜎𝜙 calculated from filtered signal phase, using different settings for the high-pass filter. The data
is from GPS satellite 17, year 2014, DOY 50, site Honningsvag. (a), (b), and (c) have been calculated using a cutoff frequency of 0.2, 0.3, and
0.4Hz, respectively.
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Figure 14:The panels show 1 minute of phase data that contains a discontinuity, filtered using different techniques. (a) has been filtered using
FFT convolution filter. (b) has been filtered using a IIR Butterworth filter. (c) has been filtered using the new approach.

was set to zero. Figure 5 shows the events which are
presented by shadowed rectangle.

(II) In this paper, we have computed scintillation indices
by means of different detrending and filtering tech-
niques. Identifying the weaknesses and the strengths
of each method, we can compute a reliable index that
can be used in further analysis, for instance, to carry
out the classification of the level of the ionosphere
disturbances.

(III) Nonparametric local regression with optimal
smoothing parameters can be used as scintillation
indices computation.

(IV) As can be seen in Figure 14, the new approach handles
discontinuities very well, while the other filter tech-
niques generate artificially high 𝜎𝜙 values. The new
approach computes 𝜎𝜙 = 0.0748 rad while the other
algorithms compute values of 0.226 and 0.212 rad,
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Figure 15: I95 index generated by the CPOS software for north of
Norway.
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Figure 16: I95 index generated by the CPOS software for south of
Norway.

respectively. Using the traditional techniques this dis-
continuity would be falsely reported as a scintillation
event.

8. Conclusion

We have shown that the new approach based on local
regression with kernel smoothing and with AIC/AICC for
bandwidth parameter selection can be used for computa-
tion of scintillation indices for high latitude data. The new
approach can be analytically related to the existing filtering
methods and is shown to produce highly correlated results

with the traditional approaches. However, the new approach
shows superior handling of discontinuities.

We have shown that applying the right detrending and
filtering techniques to the scintillation data at high latitude
one can obtain reliable scintillation indices (𝑆4 and 𝜎𝜙).
Clearly, the studies show that the phase scintillations are
dominant for these data sets.

For the derivation of 𝑆4, the digital filter FIR (Butter-
worth, Chebyshev, and Elliptic) and FFT convolution used
to implement the low-pass filter work well with minor
differences. For 𝜎𝜙, the digital filter IIR (Butterworth and
Elliptic) and FFT convolutionwork well.The difference exists
in statistical methods used to compute standard deviations
and how outliers, glitches, and missing observations are
handled. Poor methods can bias the estimation process. In
addition, the study shows that the derivation of scintillation
indices 𝑆4 and 𝜎𝜙 is sensitive to averaging interval and the
cutoff frequency. Figure 5 shows the false scintillation for 𝑆4.
In this case, all elevation angles are used under computation.

For the data sets classified as high ionospheric activity,
we have defined the empirical distribution of the scintillation
indices 𝑆4 and 𝜎𝜙 for the Norwegian Regional Ionospheric
Scintillation Network, located at high latitude (61.99∘N to
70.98
∘N). Heavy tailed Frechet/log-normal distribution (B.5)

is a good model for phase scintillation 𝜎𝜙 index as Figure 8
confirms. The distribution of 𝑆4 follows the Nakagami distri-
bution, given by (B.1) and shown by Figure 6.

Appendix

A. Ionosphere Classification

The Index 95 values are computed by the Trimble software
running the CPOS network and is used to classify the
ionosphere activity. I95 classification is defined as follows:

(i) [0, 2]: ionospheric disturbances have no influences.

(ii) (2, 4]: ionospheric disturbances are classified as weak.

(iii) (4, 8]: ionospheric disturbances are classified as
strong.

(iv) (8,∞): ionospheric disturbances are classified as
severe.

Figures 15 and 16 show the ionosphere activities for the
data sets analyzed (y: 2014, DOY: 50) which are classified as
strong to severe.

B. Empirical Distributions of 𝑆4 and 𝜎𝜙

This section gives some distributions employed in commu-
nication systems in order to characterize the statistics of the
signals transmitted throughmultipath fading channels.These
distributions are relevant for scintillation data as well.
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B.1. The Nakagami 𝑚-Distribution. A random variable 𝑋 is
said to have a Nakagami𝑚-distribution if, for some𝑚 ≥ 1/2
and V ≥ 0, its probability density function (pdf) is given by

𝑓𝑋 (𝑥) =
2

Γ (𝑚)

(

𝑚

V
)

𝑚

𝑥
(2𝑚−1)

𝑒
−(𝑚𝑥2)/V

, (B.1)

where V is the mean square value of 𝑋 and is defined as V =
𝐸(𝑋
2
) and 𝐸(⋅) is the expectation operator. For the parameter

𝑚, the ratio of the moments is defined by𝑚 = V2/𝐸(𝑋 − V)2.
For𝑚 = 1, we obtain the Rayleigh density function, given

by expression (B.2).

B.2. Rayleigh Distribution. A random variable 𝑋 is said to
have a Rayleigh distribution if its probability density function
(pdf) is given by

𝑓𝑋 (𝑥) =
𝑥

𝜎
2
exp{− 𝑥

2

2𝜎
2
} , 𝑥 ≥ 0. (B.2)

B.3. The Log-Normal Distribution. A random variable 𝑋 is
said to have a log-normal distribution if its probability density
function (pdf) is given by

𝑓𝑋 (𝑥)

=

{
{

{
{

{

1

√2𝜋𝜎

exp{−
ln2 (𝑥/𝑥𝑚)

2𝜎

} , 𝑥 ≥ 0,

0, otherwise,

(B.3)

where 𝑥𝑚 is the median of 𝑋 and 𝜎2 is the variance. The
log-normal distribution is characterized by the parameter 𝜌
known as the mean-to-median ratio and is given by 𝜌 =

𝐸(𝑋)/𝑋𝑚.
Alternatively, log-normal pdf can be written as

𝑓𝑋 (𝑥)

=

{
{

{
{

{

1

√2𝜋𝜎

exp{−
(ln𝑥 − ln𝑥𝑚)

2

2𝜎

} , 𝑥 ≥ 0,

0, otherwise.

(B.4)

B.4. Frechet Distribution. A random variable 𝑋 is said to
have a Frechet distribution if for parameter 𝜃 = (𝑎, 𝑏, 𝛼),
respectively, defining the scale, location, and the shape
parameters, the distribution is given by the expression

𝑓𝑋 (𝑥) =

{
{

{
{

{

0, 𝑥 ≤ 𝑏,

exp{−(𝑥 − 𝑏
𝑎

)

−𝛼

} , 𝑥 > 𝑏.

(B.5)

C. Implementation and Software Packages

The software used to generate the scintillation indices 𝑆4 and
𝜎𝜙 is implemented in the programming languages C, C++,
and R. All programs are configurable and generate a log-file
to report all events under processing.

(1) C++ configurable process decodes Septentrio
PolaRxS message types 4027 (measurements blocks)
and 4046 (correlation values) and produces a
suitable matrix format that is easy to process with
Matlab, Python, or R. The decoded messages are well
described in the SBF reference guide [53].

(2) Convolution with FFT: C++ program reads raw
scintillation data in matrix format and computes
the indices 𝑆4 and 𝜎𝜙. This module includes the
detrendingmethods varying between fitting a straight
line, ratio method, and more advanced techniques
such as nonparametric regression with information
criteria for model selection.

(3) Median filter: C++ program removes the glitches
(spikes) from scintillation indices data.

(4) Digital filters: R package, signal, is downloaded
from the Comprehensive R Archive Network
(CRAN). The package is used to implement FIR
(Butterworth, Elliptic, and Chebyshev) and IIR
(Butterworth, Elliptic) filters.

(5) Outliers: R package outliers downloaded from
CRAN is used to detect and remove outliers.

(6) Local regression: R package locfit downloaded
fromCRAN is used to carry out filtering via nonpara-
metric regression with AIC for model selection.

(7) Nonparametric analysis of covariance for regression:
R package fANCOVA downloaded from CRAN is used
to carry out filtering via nonparametric regression
with AICC for model selection.
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