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Abstract

The research related to agent based modelling and statistical learning
has increased in the recent years, as alternatives to main stream econo-
metrics. This project combines the three for constructing and evalu-
ating a forecasting experiment of capital markets. The model is ap-
plied on the stock indexes S&P500 and FTSE100 in a time period of 15
years. The performance of the model is measured in economic profits,
where transaction costs are taken into account. The model provides two
methods that each provide an annualized Sharpe ratio. The buy-and-
hold strategy on the FTSE100 index is by this measure outperformed to
above 1 and 2 BPS in transaction costs, respectively. On the S&P500 in-
dex, the model underperforms the buy-and-hold. The model is capable
of capturing gains in different market regimes on both indexes.
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Sammendrag

Forskning relatert til agentbasert modellering og statistisk læring har
blitt intensivert iløpet av de siste årene, som alternativer til tradisjonell
økonometri. Dette prosjektet kombinerer de tre for å konstruere og
evaluere et prediksjonseksperiment i kapitalmarkeder. Modellen er an-
vendt på aksjeindeksene S&P500 og FTSE100 i en tidsperiode på 15
år. Modellens ytelse er målt i økonomisk profitt, hvor transaksjonskost-
nader er medregnet. Modellen inneholder to metoder som produserer
hver sin årlige Shape ratio. De er høyere enn kjøp-og-hold strategien på
FTSE100 med bare 1 og 2 BPS. På S&P500 indeksen er derimot kjøp-og-
hold den som er mest profitabel. Modellen oppnår økonomisk profitt
over kjøp-og-hold i forskjellige marketregimer, på begge indekser.
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Chapter 1

Introduction

Partly due to increased computation power in recent years, methods with
origin in physics and computer science have been suggested for describing
financial markets. In this project, two such modelling approaches will be
combined for the task of predicting the stock market. The two approaches
are a specific agent based model (ABM) and a statistical learning method.
Even before giving a short introduction of the two approaches, we want to
emphasise that a combined model is proposed for building a bridge between
the two. In fact, the ABMs will apply statistical learning for forecasting
future returns. Thus the two approaches will be entangled. It is a key
objective to compare the pure statistical learning approach to the entangled
model. The investigations of the complete model’s performance in the stock
market is as well of high interest.

Statistical learning has a wide range of applications, as well as a method
for forecasting capital markets. Our statistical learning method, and its re-
lation to main stream econometrics, is to a large extent in line with [Fiévet
and Sornette, 2016]. We formalize and discuss the method in Chapter 3,
with the description of the specific model used by the ABMs. [Atsalakis and
Valavanis, 2009] provide a literature survey of more than hundred articles
that apply a subset of the statistical learning techniques for stock market
forecasting. The results of [Allen and Karjalainen, 1999] report of profitable
strategies by applying statistical learning, however they see the profits dimin-
ish after transaction costs are taken into account. In this project we require
certain precautions in order to apply the model to capital markets. This will
be elaborated in Chapter 2. As one of the papers addressing these require-
ments and report of promising returns, we mention [Creamer and Freund,
2010]. The scarcity of such papers can arguably be due to the inversion of
the file drawer bias. If an article is presenting insignificant empirical findings,
it is often more difficult to publish. The bias might be present also for sig-
nificant findings in econometrics, where the researchers may be tempted to
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1. Introduction

sell their work to a hedge fund instead of handing it in to a journal. Due
to this, [Timmermann and Granger, 2004] argue that there is still a hope of
successful forecasting.

As mentioned, the ABMs will take usage of statistical learning for predict-
ing stock returns. Agent based modelling is a technique that focuses on the
interactions of microscopic elements, autonomous agents, in order to inves-
tigate the collective macroscopic behaviour. This is a bottom up approach, in
contrast to what is generally used in econometrics and economics. A general
introduction to agent based modelling can be found in [Bonabeau, 2002]. An
ABM can under the right conditions be a self-organizing system and thus
give rise to extreme events. This property is often missing in main stream
market models.

”ABM is a mindset more than a technology. The ABM mindset consists
of describing a system from the perspective of its constituent units”
[Bonabeau, 2002]

Despite the promising properties of agent based modelling, there are also
issues. [Richiardi et al., 2003], [Windrum et al., 2007] and [Sornette, 2014]
highlight several of them. Many of the ABMs are constructed in order to
show stylized facts like asset bubbles and power law distributed returns.
However, a wide range of ABMs can produce such results. [Sornette, 2014]
argues that the personal preference of the modeller is central in the con-
struction of a model. As well, it is genuinely hard to compare the different
models and this makes the approach less robust. Further, the calibration
of an ABM to empiric data can be problematic. Often, empirical data is as-
sumed to describe the collective behaviour of the agents. Since agent based
modelling is a bottom up approach, it is a major challenge to reverse engi-
neering the underlying behaviour of the agents to fit with the data. However
there are examples of successful calibrations of ABMs in the context of stock
markets. The success is measured by the ability to predict future returns
out of the calibration sample. We mention that [Wiesinger et al., 2012], [Sati-
nover and Sornette, 2012a], [Satinover and Sornette, 2012b] and [Andersen
and Sornette, 2005] report of well calibrated ABMs. Without actually ad-
dressing statistical learning, the three latter papers construct ABMs that can
be viewed as close to statistical learning methods. This has in particular
triggered our interest of proposing the bridge between the two approaches.

As earlier stated, the reader will in Chapter 2 be introduced to the require-
ments necessary for applying the model to the capital market. These re-
quirements will be essential for the project as a whole. In Chapter 3 follows
the description of the statistical learning method. The ABM applying this
method is later introduced in Chapter 4. In order to construct a complete
model, a so-called search technology is presented in Chapter 5, due to the re-
quirements set in Chapter 2. The different benchmark and analysis methods
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of the results are described in Chapter 6. The evaluations are discriminated
into two categories: efficient market hypothesis evaluation and market spec-
troscopy. This discrimination will become clear in Chapter 6. The results
and related discussions will follow in Chapter 7. Our model shows mixed
results in the former of the two categories. However the model is able to
gain economic profits in different market regimes. This is a very favourable
feature. Through the market spectroscopy we observe no or even negative
correlation between prediction accuracy and economic profits. The results
indicate the usage of a broad set of forecasting models, due to the fact that
there is no obvious logic in which of the parameter sets that lead to high
economic profits. Lastly, we provide concluding remarks in Chapter 8. A
glossary is provided in order to easily look up central variables and con-
cepts.
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Chapter 2

Forecasting Protocol

As promised in the introduction, certain requirements and concepts are
needed in order to forecast capital markets. [Fama, 1970] introduced the
efficient market hypothesis (EMH) as a cornerstone assumption in finance.
The essence of the concept is that historical information is fully reflected in
the present price of securities, with no additional information contained in
them. A rather simple statement like this has made an enormous impact
on how people view the financial markets. An implication of EMH is that
returns are not forecastable. The evaluation of our forecasting model will
thus be related to challenging the EMH. Per se, the hypothesis is not em-
pirically testable. We will in this chapter establish a protocol in order to
do this. According to Fama, one can use a couple of assumptions in or-
der to incorporate a testable framework, however it is still far from a trivial
exercise. One first assume that new information will immediately be incor-
porated in the price. One can argue that modelling of an asset price is in
fact modelling of news relevant for the asset. If we denote our information
set as Ωt at time t, we can write the return in excess of expected return as
ηt+1 = rt+1 − E[r̃t+1|Ωt]. We have that ηt+1 is a fair game with respect to Ωt
if

E[η̃t+1|Ωt] = 0, (2.1)

where the tilde indicates that we deal with a random variable and rt is the re-
turn from a given security at time t. Eq. 2.1 implies that it is not possible to
consistently obtain excess risk-weighted returns in capital markets. This is not
preventing investors to be lucky, or even repeatedly, but they can not system-
atically obtain excess risk-weighted returns. Fama presents two further cases
of the fair game model. One is the sub-martingale model, which says that
one can not consistently obtain excess risk-weighted returns with respect to
the underlying security, i.e. a buy-and-hold strategy. Further assumptions
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2. Forecasting Protocol

lead to the usage of the more strict random walk theory. This is widely
applied in the mathematics of financial derivatives. For further reading and
applications we refer to [Wilmott, 2013]. There have been a massive research
in evaluating the statistical properties of historical asset prices, letting Ωt be
the price sequence. By looking for excess predictability using this informa-
tion set, researchers and practitioners then seeks to question the so-called
weak form of EMH. An overview of statistical tests are found in [Lim and
Brooks, 2011]. Highly influential discoveries of statistical anomalies were
reported by for instance [Lo and MacKinlay, 1988] and [Granger and Mor-
genstern, 1963]. However, it is important to keep in mind that findings of for
example a deviation from a random walk, is not necessarily equivalent to a
violation of EMH. This is emphasised by for instance [Fama, 1970], [Fama,
1991], [Malkiel, 2003]. It is non-trivial to relate certain statistical anomalies
and the possibility of achieving consistent excess risk-weighted returns.

The perhaps most striking evidence of EMH are the reported performance of
mutual fund managers. The results show that the managers underperform
the market on average (e.g. see [Jensen, 1968] and [Malkiel, 1995]). One
could assume that the professionals, if anyone, should be able to outperform
a buy-and-hold strategy of a broad market index. According to [Malkiel,
2003], one should favour economic significance, not only look into statistical
anomalies. An important argument made by [Grossman and Stiglitz, 1980]
is that gathering information and creating advanced strategies are costly
operations. They reason that, if such investments did not pay off at all, no-
body would bother to do it. In the later review [Fama, 1991], Fama agrees
with Grossman and Stiglitz in that there is something to be exploited by in-
creasing the level of sophistication of investment strategies. However, Fama
argues that the related costs will on average and over time not be sufficiently
high in order to prove the EMH wrong.

More precise and testable definitions of EMH have been proposed by [Jensen,
1978], [Malkiel, 1991] and [Timmermann and Granger, 2004]. Instead of spec-
ifying that the available information is reflected in the market, they focus on
the possibility of obtaining consistent excess risk-weighted returns. Such
definition fits well with the testing of technical trading strategies. Accord-
ing to [Timmermann and Granger, 2004], statistical tests are not sufficient
to evaluate EMH, also because of the suppression of the importance of risk-
premia and the ignorance of transaction costs, as well as possible dividends
and interest rate effects. The two latter will not be relevant for our model.
However, this motivate us further to carry out a trading strategy approach
in order to benchmark in terms of EMH. A review of technical trading strate-
gies is provided by [Park and Irwin, 2007]. However, it is indeed not straight
forward to evaluate a technical trading strategy. This will be described in
Chapter 6. We will in this project use the EMH definition of [Timmermann
and Granger, 2004], which is the following:
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EMH definition: A market is efficient with respect to the infor-
mation set Ωt, search technologies St, and forecasting models
Mt, if it is impossible to make economic profits by trading on the
basis of signals produced from forecasting model in Mt defined
over predictor variables in the information set Ωt and selected
using a search technology in St.

The spirit of this definition is that in order to judge the efficiency of the mar-
ket, one has to be in the shoes of an investor under realistic conditions. From
the EMH definition, predicting prices better than random is not challenging
the EMH as long as it is not possible to profit from. We will use this as a key
argument for the evaluation of our model. An often missed requirement is
the search technology specification, which we reveal in Chapter 5. This is
crucial for testing strategies, changing the view from ex post to ex ante. A
search technology St refers to a predecided way to decide which of the fore-
casting models we at each timestep will apply. Thus, a search technology is
identifying the forecasting models Mt ex ante. One can still investigate how
all the forecasting models would have performed ex post, where obviously
some models will perform very well, on pure luck. But the ex post analysis
of the Mt performance can tell something about the behaviour of the model
with respect to its parameters. However, we again emphasize that a forecast-
ing model is not valuable for a market participant if it was only shown to
be profitable ex post. We have now made a distinction between the ex post
and ex ante view, where both the approaches will be used, but for different
purposes.

A common method for testing strategies is the backtest. This refers to testing
strategies by using existing historic data of the underlying asset. Backtesting
will be applied in order to evaluate the model, where the search technology
is included. We will in Chapter 3 specify the information set Ωt and through
Chapter 3 and 4 define the forecasting models Mt. The final collection of
models are summarized in Chapter 4.3.
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Chapter 3

The basis of the ABM - Statistical
Learning

In this chapter we introduce the basis of our forecasting models Mt, accord-
ing to the EMH definition in Chapter 2. All the agents are applying statistical
learning to predict future returns. By computer scientists the term machine
learning is commonly used. To formalise the concept, this is an generic ap-
proach of forecasting an outcome based on an observation set, where the
formal problem can be formulated as

Y = f (X) + ε, (3.1)

where the aim is to find a good estimator f̂ for the function f , given observed
output Y and input X. With the hypothesis that Y and X have a relation, we
can predict the future output through the estimate Ŷ = f̂ (X). By working
with empiric data, there will always be some degree of fluctuating outputs,
even with the same inputs. This is due to stochastic effects or even as a result
of imprecise measurement methods. Therefore, an error term is needed,
denoted as ε. This term is incorporating the error arising from such sources.
The error term has a zero mean and is independent of X.

Let n be the number of observations in the training data. The training data
is used for calibrating the learning method. We have for each observation
i, one output yi and d different inputs, so xi = (xi1, xi2, .., xid)

T. With those
definitions, we can write the training set as {(x1, y1), (x2, y2), ..., (xn, yn)}.
Through the calibration, we will obtain f̂ (xi) ≈ yi. We use the principle of
Eq. 3.1 to do so, fitting f̂ to our training set. However, in order to obtain
a successful estimation of f , the model should predict f̂ (x0) ≈ y0 when x0
and y0 are not contained in the training data, but are new arriving data. We
will refer to such data as out-of-sample data.
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3. The basis of the ABM - Statistical Learning

There exists a broad range of statistical learning methods, from linear regres-
sion to support vector machines to neural networks. The learning methods
can often be labelled as either supervised or unsupervised. In an unsuper-
vised method, there is a lack of observables of yi. In this project, a super-
vised learning model will be applied, due to having access of observing yi
through market quotes. A central issue with any supervised learning model
is the bias-variance trade-off. We can formulate the trade-off through con-
sidering the expected squared prediction error, which can be written as

Err(x) = E[(Y− f̂ (x))2]

= (E[ f̂ (x)]− f (x))2 + E[( f̂ (x)− E[ f̂ (x)])2] + σ2
ε , (3.2)

where x is not a part of the training set used to estimate f . The variable
σε is the variance of the error term ε. In Eq. 3.2 we can identify the first
term as the bias squared, the second the variance, while σ2

ε remains as an
irreducible error term. We can see if our model under- or overfit the training
data by looking at the performance of the in-sample and the out-of-sample.
The out-of-sample error is high both if the model is under- or overfitted. To
discriminate the two, we can conclude with an overfit if the in-sample er-
ror is low. If it is high, we have underfitting. Low bias is typically obtained
through doing a linear regression on linear data. Methods like decision trees
and support vector machines are more flexible, thus increase the possibility
of overfitting and we get a high variance. With high variance we mean that f̂
would change much if our training data is substituted with another another
set measured under the same circumstances. Most often it is not possible to
obtain both low variance and low bias for an experiment, so that minimiz-
ing the error in Eq. 3.2 is not about tuning both to zero. This is therefore
known as the variance-bias trade-off and emerge in numerous other opti-
mization problems. The trade-off is addressed in the next subchapter, when
we determine our training data and information set.

3.1 Linking Statistical Learning and EMH

To recapitulate, statistical learning is in essence a method of estimating fu-
ture events based on previous events. There are in principle no underlying
assumptions of the process producing Y. That makes it on the one side
look weak, having no underlying theory of how the market works. On the
other hand, this is a great advantage. Wrong assumptions of the market
behaviour can lead into fatal miscalculations. Thus the errors made by a sta-
tistical learning approach are in principle not due to limited beliefs of how
the market works. Rather they are consequences of the EMH.
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3.2. Mapping returns into categories

For setting the EMH in context of statistical learning, the definition of the
EMH in Chapter 2 is useful. The weak form of the EMH is often restricted to
let the information set represent past returns only, having Ωt = {r1, . . . , rt}.
We have the freedom to use all past return, or a selection. The bias-variance
trade-off implies that our results would be highly biased when using a large
feature space1. When using all past stock returns, the feature space is enor-
mous and even growing day by day. This motivates us to limit the number
of past returns in Ωt. We let the training set be a rolling window of a con-
stant length. The number of returns used are equal to lis, the in-sample length.
For each return ri predicted, let a lag of m previous returns to be the input.
We denote m as the memory length. This specification will from now on be
used as the number of inputs d introduced previously. The dataset that will
be used for predicting future returns can then be written on the following
form.

Dt := {(Ω̂t−lis , rt−lis+1), . . . , (Ω̂t−1, rt)} where Ω̂t = {rt−m+1, . . . , rt} (3.3)

The information set Ωt mentioned in the EMH definition is now defined as
all the different returns contained in Dt , meaning Ωt = {rt−m+1−lis , . . . , rt}.
Before we go further into the details of the statistical learning setup, it is
worth mentioning which actions we allow our models to carry out in the
market. In this project, we only consider going long through ordinary buy-
ing, or going short through one day short selling. The result of a prediction
will thus lead to switching between long and short position, or staying in
the current.

3.2 Mapping returns into categories

If not in a strict mathematical sense, one can view stock returns as contin-
uous. They are quantitative, which allows for predicting quantitative out-
puts with a statistical learning method. This is generally called regression.
When the dataset is stochastic and noisy, the resulting feature space can be
very large. However, a trading strategy can still be successful without pre-
dicting the exact returns. For example, the ability to predict only up- and
downmoves in the stock price can be very profitable. We choose to use dis-
crete outputs for our model. Predicting such outputs are referred to as a
classification method. As well, we suggest using discrete inputs through a
pre-processing that is mapping the stock returns into discrete data. When
simplifying the price time series into discrete returns, the information in-
corporated in the time series are strongly compressed. For example, binary
returns are obtained from collapsing the real returns into up and down
movements, ignoring magnitude. We compress a real return into one of v

1The feature space refer to the space of the collection of all input variables.
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3. The basis of the ABM - Statistical Learning

discrete categories, namely the mapping R → Nv = C. With the memory
length m and |C| = v different categories of the returns, Ω̂t can be con-
structed in vm unique ways.

3.3 Decision Tree Approach

We will apply the decision tree approach in this project, a well known ap-
proach in the field of statistical learning. This is a non-parametric supervised
learning method, meaning that no explicit assumptions of the functional
form of f in Eq. 3.1 are necessary. Let the input be an ordered historical
sequence of m discrete returns, such that the feature space is of size vm. This
is a classification problem due to predicting outputs that take on a finite set
of values, recalling that Y, Xj ∈ {1, 2, . . . , v}. The decision tree approach di-
vides the feature space into vm hyper-rectangular disjoint sets, B1, B2, . . . , Bvm

or lower, depending if one introduce a stopping criteria due to possible over-
fit. In each set Bj, a probability distribution for the output Y is estimated
from the training data. The decision boundaries are always parallel to the axes
in the feature space, separating the feature space by rectangular boxes.

A decision tree is designed as a structure similar to a flowchart. The tree is
build up of connected nodes that in our case are representing either a condi-
tion or a value. Each node representing a condition are referred to as branch
nodes. The branch nodes have a set of subordinated child nodes. Depend-
ing on the outcome of the condition at a branch node, the decision process
moves to the respective child node that corresponds to this condition. The
nodes that contain a value have no child nodes. Such nodes are denoted as
leaf nodes. The tree is build by selecting a root node where we from there
make recursive binary splitting. The inputs are discriminated into to the
disjoint sets Bj, in the end we will have vm leaf nodes where the respective
observation frequencies will be stored. Based on the observation frequency,
we have the empiric statistical probability of an observation to belong to a
specific leaf. To recapitulate, the observation frequency is simply the aver-
age of all inputs from training data which end up in the set Bj. Predictions
are then made using the probabilities. The specific algorithm used in this
project is an optimised classification and regression tree algorithm (denoted
as CART for short) based on [Breiman et al., 1984]. The main tool for imple-
menting the decision trees are to be found in [Pedregosa et al., 2011].

The decision tree approach has typically a high variance and a low bias. One
can make the tree finer and finer grained in the calibration of the training
data, having an unique path for each configuration of the elements. Re-
call from the bias-variance trade-off discussion, that when the feature space
grows, the chance of over-fitting increases. An approach often taken in sta-
tistical learning is to look at the performance of the prediction in the training

12



3.3. Decision Tree Approach

data versus the out-of-sample data, in order to investigate if either a under-
fitting or overfitting is present. The length of the training and out-of-sample
data can then be varied to obtain a optimal value. This can tell what quality
of prediction the model obtains. However, this technique is functioning well
if the samples are statistically independent. The samples used for stock pre-
dictions are strict sequential in time. As well, the returns in capital markets
are not strictly stationary, which makes this approach even less suited. We
thus use fixed and limited in-sample length lis and out-of-sample length los,
where the former is varied across simulations. It could be interesting to also
vary out-of-sample length los. That could be done by recursive predictions,
adding the predictions to the training data one by one. We will however in
this project have the restriction los = 1.

A broader overview of decision trees and their alternatives are presented
by [James et al., 2014] and [Loh, 2011]. It is worth mentioning that through
the usage of a binary pre-processing of the data, all classification methods
give same results. This is because the true decision boundaries in fact will
turn out to be the same across methods. In this project, we will in the end
use binary mapping as input for the statistical learning algorithm, therefore
we do not discuss different methods and choices. For further motivating
a binary mapping, in addition to its simplicity, we can argue that market
participants tend to be focusing on up- and down moves, not evaluating the
values of returns in a linear manner. Such observations have been reported
by for instance [Tversky and Kahneman, 1974].

13





Chapter 4

Time Series Decomposition into an
ABM

We will now introduce the ABM. Recall that the ABM is applying statisti-
cal learning in order to predict the stock market. This approach allows for
several agents that collectively incorporate the market returns. On the most
fundamental level, since investors are collectively producing the price time
series, one can in theory decompose the time series into the actions of all
investors. Of course this is an infeasible task in real capital markets. How-
ever, decomposing time series is a reoccurring topic in the literature, where
the idea is to decompose the series into a superposition of underlying basis
states. For example Fourier decompositions have been used in numerous
fields of research to decompose time series, e.g. to distinguish long term
price cycles from shorter cycles. Another approach is to apply a bottom up
approach, using agent based modelling. We will decompose the time series
into K interacting and heterogeneous agents.

4.1 Decomposing into agents of a lower category

We aim to decompose a sequence of |C| categories into K sequences of |C′|
categories. In principle, |C| can be both larger, less or equal |C′|. Let el-
ements of the rolling window sequence of Ωt be compressed into C cate-
gories. Recall the information set Ωt is defining the set of available returns
that can be used for forecasting through statistical learning. Further, let
C = {−1, 0, 1}. In order to compress real returns into trinary returns, we
introduce a noise threshold rτ. The real returns that are in absolute magni-
tude smaller than rτ are set to zero. Thus we filter out noise from the returns,
where noise is defined by rτ.

The information set Ωt is split into K heterogeneous agents that each get
assigned an information set Ω(k)

t . These sets have the same length as Ωt,
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4. Time Series Decomposition into an ABM

|Ωt| = lis +m. Let Ωtj represent the j’th ordered element in Ωt. The elements
in the agents’ information sets take on binary values, i.e. |C′| = 2. We let
C′ = {−1, 1} and the following rules apply for the information sets.

Ω(k)
tj = Ωtj ∀ k, if Ωtj 6= 0 (4.1)

K

∑
k=1

Ω(k)
tj = 0, if Ωtj = 0 (4.2)

which implies the conservation rule

Ωtj =
1
k

K

∑
k=1

Ω(k)
tj . (4.3)

We immediately see that a consequence of the choice of |C′| = 2 and Ω(k)
tj ∈

{−1, 1}, is that we require an even number of agents. In the example of
K = 2, one can simply write Eq. 4.1 and 4.2 together as

Ω(1)
tj =

{
+Ω(2)

tj , , if Ωtj 6= 0.

−Ω(2)
tj , , if Ωtj = 0.

(4.4)

With K as even, at each point in time where Ωtj = 0 we have ( K
K/2) ways of

specifying the agents’ information sets. Let the number of zeros contained in
Ωt be denoted as ρ. The number ρ is referred to as the number of ambiguous
returns. As there are ( K

K/2) combinations for each ambiguous return, we

will have ( K
K/2)

ρ
combinations along the whole Ωt. Thus, degeneracy is

introduced through this decomposition. In the field of computer science,
this is referred to as a compression loss. Agents have different beliefs about
the ambiguous returns and this will through the statistical learning method
possibly result in different beliefs of future returns. This makes the agents
heterogeneous.

In the case of rτ = 0, all agents have the same dataset and thus predict
the same future returns. We refer to this situation as having a one-agent
model, due to the fact that we could replace all the identical agents by one
of them. This situation will be a key reference point for our forecasting
models. The one-agent model is in other words just the application of the
statistical learning method without having agents interacting. One can also
take a different view, arguing that the ABM is a multi-agent extension of the
statistical learning method. For evaluating the contribution of the ABM to
market forecasting, one can compare the multi-agent model to the one-agent
model. The economic profits of the ABM should be improved or equal to the
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4.2. Overconfident Agents

one-agent model in order to report of a promising method. Given the ABM
is successful, we are obtaining a turn-around in the principle of causality. To
elaborate, there is a implicit ”left-right” causality in Eq. 4.3, meaning that
the agents are determined by a decomposition of the information set. If the
ABM predicts the market better than the one-agent model, i.e. the direct use
of Ωij without a decomposition, one can argue that the causality is turned.
This is the essence of what is called reverse engineering. In short, a reversed
engineering is the calibration of a model to a given environment and success-
fully reproduce the behaviour of this environment. This is discussed further
in the ABM summary in Chapter 4.3. We frame a null hypothesis regarding
the multi-agent approach as the following.

Hypothesis 1 H0 : The introduction of a multi-agent extension in statistical learn-
ing does not result in improved trading performance.

If the null hypothesis 1 is rejected, one can argue for a successful reverse
engineering of the market. The approach for evaluating the null hypothesis
will be revealed in presented in Chapter 6.

4.2 Overconfident Agents

We recall that a compression loss is present due to having ρ ambiguous
returns in the information set Ωt. According to the conservation rule in
Eq. 4.3, there are many possible configuration of the agents’ information
sets. The choice will be motivated by overconfidence. To clarify, confidence
is nothing but the judgement of probability. The concept of overconfidence
has been paid much attention in behavioural fiance, with a strong link to
psychology. Thus the following statement is worth pondering;

”Perhaps the most robust finding in the psychology of judgement is that
people are overconfident” [De Bondt and Thaler, 1995].

An effect related to this is the so-called illusion of knowledge. This describes
the effect of disagreeing agents that becomes increasingly polarized, when
available information can support both sides. [Lord et al., 1979] argue that
people are biased by their initial opinion when interpreting relevant em-
pirical information. This implies that people tend to get biased towards
their initial opinion by suppressing evidence that disconfirm their belief. As
well, Lord et al. state that people ”draw undue support for their initial posi-
tion from mixed or random empirical findings”. This is often referred to as the
confirmation bias. A consequence is that slightly heterogeneous agents that
do decisions based on the same set of information will end up increasing
the polarization among them. When the information is ambiguous and the
predictability is low, [Griffin and Tversky, 1992] argue that experts are even
more overconfident than nonexperts. From the psychological experiment
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4. Time Series Decomposition into an ABM

by [Wason, 1966], there is even a bias implying a search for confirmatory
information. A possible explanation for the confirmation bias is that peo-
ple are averse to ambiguity. From the experiments by [Heath and Tversky,
1991], people facing choices under uncertainty are drawn to choices that
make them feel competent. Further discussions on overconfidence and the
confirmation bias within in the field of finance are to be found in e.g. [Bar-
ber and Odean, 2001] and [Hirshleifer, 2001]. Several theoretical models
have been suggested with the aim to incorporate this, see [Daniel et al.,
1998], [Scheinkman and Xiong, 2003] and [Odean, 1998]. There, overcon-
fidence is interpreted as a too optimistic estimate of the precision of the
information available to an agent. We will interpret overconfident agents as
agents with a confirmation bias, leading to the illusion of knowledge.

Since EMH is central in the construction and evaluation of the model, it is
worth discussing the above arguments in light of EMH. The EMH’s antithe-
ses can in some aspects be the findings from behavioural finance. There
have been shown numerous deviations from the assumption that investors
are rational. A review of empirical evidence of EMH can be found in [Yen
and Lee, 2008]. Since the seminal EMH paper by [Fama, 1970], the theory
has specially since the nineties been questioned by the academics rooted
in behavioural finance. Both camps have gained major attention, noticing
that Fama himself shared the Nobel Price together with his criticiser and be-
havioural finance scholar Robert Schiller. One can have long discussions re-
lated to if behavioural finance and EMH are mutually exclusive or not. How-
ever, both Fama and Malkiel (see [Fama, 1991], [Fama, 1998] and [Malkiel,
2003]) are arguing that the evidence presented in behavioural finance are
not actually challenging EMH. Many studies show that ex post, somewhere
in time and certain asset class, the market was inefficient. Thus there are
seldom evidences of an opportunity of profit through exploiting theories
from behavioural finance. In the review by Malkiel, he argues that irra-
tional behaviour, overvaluations, undervaluations and other abnormalities,
not necessarily implies an inefficient market. As well, behavioural finance is
often criticised of not having a usable framework for treating finance, that
pointing out biases is only highlighting spurious special cases instead of de-
scribing something more fundamental and general. However, that does not
make the findings less true. Also due to the definition of EMH in Chapter
2, it is not a direct contradiction between irrational behaviour and EMH. As
well, even with some degree of inefficiencies in the markets it is difficult to
consistently profit from trading the market. Thus we leave this discussion
without making a further comparison of the two schools.
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4.2. Overconfident Agents

4.2.1 Implementing overconfidence

To recapitulate the confirmation bias described above, the bias can in some
situations result in overconfident agents. We will let our agents interpret
ambiguous information in a fashion consistent with this, through the con-
servation laws in Eq. 4.1 and 4.2. Recall that the agents have the same
interpretation of large price movements, i.e. movements that are not filtered
out as noise. However with spurious information, meaning the returns are
below the noise threshold rτ, overconfidence becomes present. A small or
zero movement in the price is indeed useful information for an investor, how-
ever it can be distorted by the confirmation bias. We propose that the agents
modify their ambiguous return data in order to improve their confidence
in predicting future returns. Thus they end up being overconfident with
respect to the real dataset. This turns into an optimization problem that will
be discussed below. When the agents get sufficiently polarized, they end
up predicting different outcomes when using statistical learning on their re-
spective modified datasets Ω(k)

t . In such situations, where the agents have
different beliefs of the future returns, the resulting collective prediction will
be set as uniform random. This mean, when the agents are sufficiently po-
larized, the ABM turn into a noise trader. With this specification, the ABM
predicts like the sum of the overconfident agents if the polarization is low,
but as a noise trader when it is high. Since the polarization depend on rτ in a
non-linear but generally increasing fashion, we expect the ABM to carry out
more noise trades when the containment of small returns in Ωt increases.
However, it is worth mentioning that the collective prediction of agreeing
agents can be different than the prediction of their corresponding one-agent
model, i.e. when rτ = 0. This implies that the ABM is not a pure switching
mechanism between the corresponding one-agent model and a noise trader.

We will now describe how the agents are calibrated into overconfident states.
Whenever Ωtj = 0, let the choice of Ω(k)

tj of each agent be a function of the in-
ternal uniformity of the agents. The internal uniformity is denoted as p̄t and
represents the average confidence level of the agents at time t. This confi-
dence level refers to how confident the agents are in their predictions. Recall-
ing that the agents use the statistical learning method presented in Chapter
3, the confidence is based on the agents’ information set. The minimized p̄t
is simply obtained when there are as many reoccurring Ω̂ as possible in Ωt,
in total over all agents. Thus we have high uniformity when the distribution
of Ω̂ is uniform and low if it is skewed. Overconfidence occurs when p̄t of
a multi-agent model is lower than for the corresponding one-agent model.

A feature implied by Eq. 4.3 is the following. Within each Ω(k)
t , there are ρ

ambiguous returns that must be assigned values to by the ABM. Each assign-
ment depends on all other assignments across Ω(k)

t . As well, all assignments
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4. Time Series Decomposition into an ABM

made by an agent are entangled to all the other agents. To obtain a global
optimal p̄t, all possible assignments are relevant for the global outcome. To
repeat, increasing p̄t is equivalent to increasing the number of reoccurring
Ω̂ in the data. For measuring this, one can consider the distribution of in-
puts to the statistical learning method Ω̂(k) ∈ Ω(k)

t , denoted as φ
(k)
Ω for each

agent k. One can measure the p̄(k)t in each agent by performing a Pearson’s
chi-squared test of the distribution φ

(k)
Ω [Pearson, 1900]. The null hypothesis

of the test is that φ
(k)
Ω is uniform. We simply define the test as

χ2
t,(k) = ∑

θ∈Ω̂k

(θ − u)2

u
(4.5)

where u = E[φ(k)
Ω ] given φ

(k)
Ω would be uniform distributed. In the case

of having independent normal distributed data, as assumed in the null hy-
pothesis, the sample statistics χ2 would follow a chi-squared distribution.
The probability of observing χ2 is determined by comparing to the χ2 dis-
tribution and from this a p-value is obtained. Again, we can observe at
maximum vm different Ω̂ within Ωt. For the internal uniformity, we simply
use the average p-value resulting from the test of each of the agents. Again,
the more reoccurring Ω̂ that appears in the respective datasets, the lower the
p-value(s) and internal uniformity will become. Thus we have a quantitative
measure of overconfidence and internal uniformity through p̄t.

4.2.2 Overconfidence calibration

It can be high number of possible combinations of selecting values for the
ambiguous returns, in total ( K

K/2)
ρ
. However, it is not essential to obtain

the exact global minimum of p̄t in order to introduce overconfidence. We
have no reason to believe that the performance will differ fundamentally
between the global minimum and a state that is very near. These arguments
motivate the usage of a Monte Carlo approach. A pseudocode is provided
in Algorithm 1 in addition to the description that now follows. First, one can
observe that by arranging the agents’ information sets in a two dimensional
lattice, this system can be viewed as a Boolean network or spin lattice. In
comparison to the Ising model from statistical physics, our model is more
restricted with respect to where flips can occur. As well, the interactions
in our model use global information, i.e. each flip decision depend on all
others in the system. With a flip, we refer to the action of switching values
between agents at a site where Ωtj = 0. Due to the degeneracy introduced
for those sites, a flip will not violate the laws represented by Eq. 4.1, 4.2 and
4.3.
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4.2. Overconfident Agents

The method of simulated annealing will be applied in order to approximate
the global minimum for p̄t. In this context, p̄t is often referred to as the
internal energy of the system. p̄t will be used as the cost function in the
optimization process. More formally, we are seeking the global minimum

ψ∗ ∈ Ψ∗ := {ψ ∈ Ψ : p̄t(ψ) ≤ p̄t(π) ∀ π ∈ Ψ}, (4.6)

where p̄t(π) refers to the internal uniformity of the system in state π. Simu-
lated annealing explores the solution space with a varying probability of ac-
cepting suboptimal solutions in the short term. This evolutionary approach
is a well known technique for approximating a global optimum in the case
of a large solution space, where the main concern is to avoid the solution to
be a local optimum.

Further, a flip results in moving the system from a state Ψ towards a state
Ψ′, with respective internal uniformity p̄t(Ψ) and p̄t(Ψ′). We will apply the
flipping procedure in the spirit of the Metropolis-Hastings algorithm, using
Boltzmann statistics. The flip conditions are the following.

• A flip is always applied if it results in a lower internal uniformity.

• If a flip is not resulting in a lower internal uniformity, the flip is applied
with a probability exp(−β∆ p̄t), with ∆ p̄t = p̄t(Ψ′)− p̄t(Ψ).

The variable β is the thermodynamic beta, inverse proportional to the tem-
perature T. This convention has its origin in statistical physics and the
analogy is widely used outside of the field. One can see that the temper-
ature regulates to what extent the system is randomized. We can write
the acceptance probability of moving from state Ψ to Ψ′ as A(Ψ → Ψ′) =
min[1, exp(−β∆ p̄t)], where A then is an appropriate mapping to an interval
between zero and one. The algorithm selects flippable sites randomly, for
so applying a flip weighted by the acceptance probability. The procedure
start with an initial temperature T0 and the temperature T is then cooled
towards zero. For each temperature step ∆T, ξ random sites are sequen-
tially selected and faced with the flip conditions. The number ξ is denoted
as number of optimization loops. The Monte Carlo approach can in a simple
manner tune the extent of optimization, by increasing ξ, T0 and the num-
ber of temperature steps. It is not in the scope of this project to dig too
deep into further details and issues arising with simulated annealing. For
the interested reader, an overview is to be found in the paper by [Ingber,
1993]. Further, the simulated annealing process is only done for the initial
information sets in each asset class, i.e. before the first trade of the ABM
is carried out. Recall that when the trading has started, Ωt is a rolling win-
dow that propagate further through the stock return data. For each new
flippable site arriving the window, the acceptance probability is reduced to
AT=0 and only the new site is flipped. Running the full simulated anneal-
ing process for each timestep would be very time consuming, thus with a
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4. Time Series Decomposition into an ABM

sufficient low internal uniformity we choose to avoid this. In Appendix A
we look into how this process evolves through time, compared to using an
uniform probability distribution as the acceptance function.

Algorithm 1 Initialization of the agents

1: procedure Polarize the agents through minimizing p̄t
2: t← t0 ; // Initialize time
3: Ω(k)

t ← Ωt ; // Split information set into K agents, as in Eq. 4.1, 4.2 and 4.3
4: T ← T0 ; // Temperature initialization
5: x ← ξ ; // Optimization loops initialization
6: loop: // Monte Carlo optimizer
7: j← random element where Ωtj = 0 ;
8: x ← rand(0,1) ; // Generate a new random number ∈ (0, 1)
9: if A(Ψ→ Ψ′) > x then // Metropolis-Hastings’ acceptance probability

10: flip Ω(k)
tj ∀ k

11: x ← x− 1
12: if x 6= 0 then
13: goto loop.
14: else
15: x ← ξ // Reset inner loop
16: T ← T − ∆T // Cooling
17: if T > 0 then
18: goto loop.
19: else
20: end procedure

4.3 Summary of the ABM

We present a short summary of the forecasting models Mt that now are de-
rived. A flowchart description can be found in Figure 4.1. First, Chapter
4.1 goes through the process of decomposing Ωt into heterogeneous agents.
Returns in Ωt that are below the noise threshold rτ are viewed as ambigu-
ous, where the agents are required to assign such returns according to Eq.
4.2. The returns above the noise threshold are set according to Eq. 4.1. This
implies the conservation rule in Eq. 4.3, meaning the sum of the agents’ in-
formation sets remains the same as Ωt. When rτ = 0, the ABM behaves like
a so called one-agent model, since no returns are viewed as ambiguous and
the agents are all identical. Due to this, we can view our model a multi-agent
extension of the standard statistical learning method. As well, one can view
the decomposition of the agents as a reverse engineering of the market into
heterogeneous agents with different perception of the same dataset. The
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heterogeneity is caused by the introduced overconfidence that polarize the
agents. The agents do predictions based on the statistical learning method
presented in Chapter 3, where the specific method is decision trees. If the
agents predict the same outcome for a future return, the collective prediction
by the ABM is set as this prediction. However if the agents have different
predictions, i.e. the agents are too polarized, the ABM predicts as a noise
trader. With the motivation of the confirmation bias presented early in Chap-
ter 4.2, the agents are calibrated such that their initial confirmation bias, that
is leading to overconfidence, is near the maximal. The calibration method is
a Monte Carlo approach, elaborated in Chapter 4.2.2.

Initialization
(Monte Carlo)

Construct 

𝑀𝑡
(Θ)

If all 

𝑟𝑡+1
(𝑘)

equal

Ω𝑡+1 Thomson 
Reuters

Update agents’ 

Ω𝑡+1
(𝑘)

Decision trees 

predict 𝑟𝑡+1
(𝑘)

for 
each agent k

Trade based on 
the prediction

Trade random 
(noise trading)

𝑡 ← 𝑡 + 1
If 

𝑡 = 𝑡𝑒𝑛𝑑
Done

Yes

Yes

No

No

Figure 4.1: The flowchart describes the process of constructing an unique forecast-
ing model M(Θ)

t . A forecasting model is uniquely defined through Θ = {rτ , m, lis},
the noise threshold, memory length and in-sample length, respectively. The two
latter determine the decision trees, while rτ filter out returns and allow for hetero-
geneous agents. The initialization is described in Chapter 4.2.2. Then one enter a
loop that first predict a future return through decision trees. The upper diamond
box raise the condition regarding the collective decision of the agents. The con-
dition discriminate into two trading rules, either noise trading or trade based on
the collective decision. The data contained in the information set Ω is provided by
Thomson Reuters. The information sets Ω(k)

t are applied by the decision trees in
order to predict future returns. The end of the trading period is here denoted as
tend.

To recapitulate, the collection of all forecasting strategies are denoted as
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4. Time Series Decomposition into an ABM

Mt and a single unique strategy is denoted as M(Θ)
t . Through the previous

chapters there are only three parameters that are chosen not to be hold fixed.
These are the noise threshold rτ, the memory length m and the in-sample
length lis. The two latter parameters where introduced in the former chapter
and determining the statistical learning approach. Together, the the three
parameters are uniquely determining an individual strategy. Thus we can
write Θ = {rτ, m, lis}. In addition to challenging the EMH, a central question
to be answered is the null hypothesis 1. This is questioning the multi-agent
model’s ability to forecasting stock prices compared to the one-agent model
and will be elaborated further in Chapter 6. The next step for addressing the
performance of the model is the introduction of a search technology. This
will be introduced in the following chapter.
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Chapter 5

Search Technology

From the definition of the EMH in Chapter 2, we have required to intro-
duce a search technology St. The search technology will decide in each
timestep which forecasting model M(Θ)

t that will be applied for forecasting
the next return rt+1. The motivation for a search technology was mentioned
in Chapter 2 and is closely related to data-snooping. The data-snooping issue
is addressed by e.g. [Lo and MacKinlay, 1990] and [Sullivan et al., 1999]. Lo
argues the following

”Although the likelihood of finding such spurious regularities is usually
small (especially if the regularity is a very complex pattern), it increases
dramatically with the number of ‘searches’ conducted on the same set
of data” [Lo, 2007].

The introduction of the search technology aims to mitigate the issue ad-
dressed by Lo. There is an infinite number of potential relevant parameters
that can be used in a forecasting model. Due to this, [Timmermann and
Granger, 2004] argue that all the parameters that have been applied must be
revealed for the reader. Not doing so will lead to an enormous bias. We
will in the next chapter present all parameters that have been applied in this
project.

To recapitulate, highlighting some of many strategies that perform well af-
ter a full sweep through the parameter space is not sufficient for satisfying
our forecasting experiment. The strategies, i.e. the forecasting models M(Θ)

t ,
need to be chosen by the search technology ex ante. With such a constraint,
the approach for testing EMH is close to the test of obtaining consistent
excess risk-weighted return through in real time speculating in the market
based on Ωt, Mt and St. Since market participants aim to exploit profitable
trading strategies, assuming they are on average quite rational, stable statis-
tical patterns in the price time series will have a short lifetime. There is an
old saying about EMH:
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”If any $100 bills are lying around the stock exchanges of the world,
they will not be there for long.”

One can thus assume that the search technology should dynamically al-
ternate between strategies. The period where a strategy is capturing posi-
tive returns can we expect to decrease with time. This because an increas-
ing amount of financial speculation is carried out with automated trading
systems, arguable making the markets more efficient. [Timmermann and
Granger, 2004] recommends a thick modelling approach, namely ”where a deci-
sion based on a combination of outputs of models with statistically similar outputs”.
This is in line with our approach of using the collection Mt and we refer
to [Granger and Jeon, 2004] for a broader introduction to thick modelling.
The opposite, thin modelling, base decisions on a single model. For a chang-
ing environment like the financial market, it is thus hard to have a well per-
forming single model through a long period of time. Further, [Timmermann
and Granger, 2004] argue that one should not apply a forecasting technique
in a point in time where it was not available for the market participants. For
an EMH evaluation using historical data, we do a ”time-travel” in that sense
that we trade with market participants back in time. Thus it is not sensi-
ble to apply relatively new techniques like statistical learning and ABMs on
data that dates back to e.g. 1930. Since the search technology is emphasized
to be an ex ante method, this will lead to a contradiction. For our backtest,
we thus only trade in the time period where our techniques were available
for the market participants.

There are numerous ways to define a search technology. For example, one
can assume that the forecasting model with the highest accuracy will be se-
lected in each timestep. Another possibility is to let the search technology
use a Markowitz portfolio optimizer. One can feel tempted to try out many
different search technologies for obtaining good results. However, this un-
dermines the whole idea of introducing St. To have a large collection of St
will lead us back to an ex post selection of the best performing method. We
limit the number of search technologies to only two. We denote the search
technologies as S(1)

t and S(2)
t .

Both of our search technologies will be based on the Sharpe ratio. The ratio
is defined and discussed further in Chapter 6.1. We let S(1)

t select at each
timestep t the model M(Θ)

t with the highest total Sharpe ratio. Here the total
Sharpe ratio refers to a Sharpe ratio that is measured from the point in time
where the strategy started trading, until time t. The other search technology,
S(2)

t , uses a rolling Sharpe ratio. Here the Sharpe ratio is measured over the
last 100 days, or as many days as possible if we are closer to the starting
date of the trading. By construction, the two approaches have their pros
and cons. S(2)

t has a shorter response time for selecting models. On the
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other hand, it might be the case that well performing forecasting models are
rather consistent long term, in this case S(1)

t would be a good choice. By
applying these two search technologies, we can attempt to evaluate which
of the two situations that on average is representable.

We will also pay attention to which of the forecasting models that are used
by a search technology. By simply looking at the distribution of rτ of the
M(Θ)

t picked by each St, we can determine which type of ABM that result in
high economic profits.
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Chapter 6

Benchmarking

As mentioned in the introduction, the weak EMH is stating that it is not
possible for an investor to consistently obtain excess risk-adjusted rates of
returns, when only using historical returns as information set. There is a
concern arising with introducing the term of excess returns. This is because
it is relative to a benchmark that is considered to be efficient. As well, the
definition of risk is not completely trivial. Therefore we will in Chapter 6.1
introduce different performance measures that have different approaches of
the risk evaluation. There is a not a strict consensus in financial literature
for benchmarking, treatments of possible biases or measurement methods
in general. We attempt to establish a solid approach in this project in order
to evaluate our results.

First, we clarify two important issues. It is in principle impossible to detach
a trader from the market, since by carrying out trades the trader interferes
with the other market participants. All trades influence the market, but as
the trading volume grows, so does the market impact. In this project we
assume the market impact of the model to be negligible. This assumption
is necessary in order to do backtesting. By avoiding this assumption one
have to forecast how the market would have reacted to the trades resulting
from the model. This would lead us into an absurd scenario. Assuming low
volumes traded by the model should be sufficient for avoiding this effect.
The second issue is related to the precision of the implementation itself,
the look-ahead bias. This bias is fairly simple to interpret, however still not
easy to mitigate. As the name suggest, this bias is addressing the access of
information in a point in time where it should not yet be available for the
modeller. We request no such mistakes in our technical implementation of
the trading strategies. Procedures addressing this issue is in line with what
is described in [Fiévet and Sornette, 2016].

We can distinguish the evaluation of the results by separating them into two
main categories. The first is the EMH evaluation, where we take use of the
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search technology to satisfy the definition of EMH in Chapter 2. The evalua-
tions related to this category are restricted to the contents of Chapter 6.1 and
6.2. The second category is the ex post market spectroscopy. The performance
obtained by different forecasting models will give us a spectroscopy of the
price time series of the traded instrument. This approach has for example
been applied by [Zhou et al., 2011]. They explain the term ”spectroscopy”
through the analogy of the technique from physics with the same name.
More concrete, we can hopefully observe how different strategies capture
different aspects of the traded instrument by scanning the parameter space.
By being careful, having significant statistics and avoiding data snooping
issues, we might gain knowledge of which situations the market can to an
extent be predictable and where our models can succeed. Here we again
emphasise that this approach build on ex post measurements and should
not be confused with the first category. The null hypothesis 1 is comparing
the one-agent situation with the multi-agent and will primarily be evaluated
through the spectroscopy.

6.1 Risk-Return Performance Measures

The by far most popular risk-return performance measure (RRPM) is the
Sharpe ratio. It is defined as the excess return divided by the volatility of
the asset price. The volatility is set as the standard deviation. Here the
excess return is defined as the mean return of the asset, minus the risk free
rate of return. The latter is thus a benchmark rate, often set as the interest
rate of a government bond. In this fashion the Sharpe ratio is including
both opportunity cost and a risk-return weighting. We will use the Sharpe
ratio as our key benchmark, due to its simplicity and preferred measure in
the literature. However the Sharpe ratio have several issues that are worth
mentioning. It is not entirely correct to call the volatility and risk by the
same name. A problem with risk is that it is not an observable, like returns
are. The standard deviation is only a precise statistic measure when the time
series of returns are produced by a process being parametric and stationary.
First, it is doubtful to claim that returns are stationary. Having a parametric
process generating returns is as well questionable. Another issue is how the
Sharpe ratio favours different types of strategies. Say if a strategy benefits
from capturing certain pockets of predictability that causes large upward
movements in its returns, but can be rather rare. In this case the Sharpe
ratio will be suffering. One can discuss if such a strategy is at all is possible
to keep consistent, not being a cause of luck. This question is in principle
also relevant for a more stable strategy, due to EMH.

Several alternatives to the Sharpe ratio exist. The Sortino ratio [Sortino and
Van Der Meer, 1991] simply exchange the standard deviation in the denom-
inator in the Sharpe ratio with the standard deviation of only the negative
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returns. The Omega ratio is as well an interesting supplement [Keating and
Shadwick, 2002]. This measure rather considers the whole distribution of re-
turns, giving a more nuanced picture of the situation when combined with
the Sharpe ratio. By only using mean and standard deviation, potentially
a lot of information is lost, specially if a deviation from normality. The
Omega ratio does not exclude any higher moments of the return distribu-
tion, including kurtosis and skewness. The first step to calculate the Omega
ratio is to generate the empirical cumulative distribution function (CDF) of
the returns. A loss threshold rω has to be chosen exogenous and represents
the return that is viewed as being the minimal acceptable one. In fact this
is somewhat analogous to the risk free rate used in the Sharpe ratio, but
rω rather describes the intersection of loss and gain viewed by the investor.
The CDF is divided into two areas, gains and losses, where the former is
the area above rω and the latter is below. Then the Omega ratio ω(rω) is
defined as the probability weighted ratio of gains (G) to losses (L), given a
loss threshold rω. We can write the ratio as

ω(rω) :=

∫ b
rω
(1− F(r))dr∫ rω

a F(r)
=

G(rω)

L(rω)
, (6.1)

where (a, b) is the interval of returns. For the interested reader, [Kazemi
et al., 2004] show that the Omega ratio as well can be viewed in a derivative
context.1

An extensive overview of different relevant RRPMs is found in [Eling and
Schuhmacher, 2007]. They applied 13 different RRPMs for evaluating the
return data of 2763 hedge funds. The conclusion is that the ranking of the
funds does not change much depending on the measure used. A possible
explanation is that the returns investigated are elliptical distributed, which
for example is observed by [Lhabitant, 2009] and also in the data presented
by [Eling and Schuhmacher, 2007]. The same observations are done for mu-
tual funds, where according to [Guo and Xiao, 2016] there seems not to be
any ranking differences. However, in the (white) paper by [Winton Capital
Management, 2003] they conclude the opposite and argue for the use of the
Omega ratio for achieving a correct ranking of hedge funds. To simplify
this problem, we will present both the Sharpe ratio and the Omega ratio for
our resulting model. It is out of the scope of this project to investigate in
detail the return distribution of all strategies. The risk-free rate of return
included the Sharpe ratio will be set to zero, since the ratio will be used for
comparing strategies with the same risk-free rate of return. However, the

1The Omega ratio is in fact mathematically equal to the expectation value of a call op-
tion payoff, divided by the expectation value of a put option payoff. Here the expectations
are under the historical probability measure and the underlying asset’s strike price can be
translated into the loss threshold.
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same approach is not as trivial for the thresholds rω in the Omega ratio. As
discussed by [Winton Capital Management, 2003], the rankings can differ
considerably depending on rω. This feature has its pros and cons. The ad-
vantage is that one can better specify what are considered as profit and loss.
On the other hand, the Omega ratio is more complex and intricate for com-
parison purposes in contrast to the Sharpe ratio. This because rω introduces
an additional degree of freedom. The risk-free rate of return linearly scales
the Sharpe ratio, such that a ranking of strategies applying the Sharpe ratio
will be unproblematic. We will for simplicity use the Sharpe ratio for as the
key performance measure. The Omega ratio will exclusively be used in or-
der to obtain a more nuanced view of how drawdowns and large returns are
impacting the strategies. We consider the thresholds rω = 0 and rω = 1% in
the Omega ratio evaluation in Chapter 7.1.

6.2 Transaction Costs Analysis

Transaction costs have a path dependent impact on the returns obtained by
a trading strategy. The costs are typically build up as brokerage fees and
market bid-ask spread. These costs can vary both between traders and in
time. For the EMH evaluation we require the measuring of economic profits,
i.e. it is crucial that transaction costs are accounted for. In order to include
transaction costs, we first assume the transaction costs for each movement
in position to be the same. Meaning that obtaining a long position is as
costly as a short position, which often can be achieved even for retail traders
when having margin accounts. As well, the transaction costs are assumed
to be constant in time. We avoid quoting a specific value to the transaction
costs, instead we introduce the Annualized Sharpe ratio Break Even (ASBE).
This measure represents the cost per transaction that is necessary for the
model to obtain the same annualized Sharpe ratio as the corresponding buy-
and-hold strategy. The ASBE will be measured in number of basis points
(BPS).2 The number of BPS is subtracted from the model’s returns at each
point in time where a transaction occurs.

6.3 Trading quantiles

The excess predictability of stock returns does not translate directly into
excess returns. To provide a simple example of the difference, consider a
strategy that predicts small movements accurately but misses all the large.
Thus the strategy can result in having poor economic profits, even though
it predicts the market movements better than random. [Fiévet and Sornette,
2016] introduce a measure of the ability to predict the market with resulting

2Basis point is a common unit in finance, where one basis point equals 0.01%
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positive returns, based on random strategies as a benchmark. One first gen-
erate a set of random strategies. The random strategies are generated such
that the average change of position will be equal to the strategy being bench-
marked. The transaction costs will then be very similar. It is then assumed
that the random and non-random strategies can be compared without a
further transaction cost discussion. We generate for each trading strategy
M(Θ)

t a set of Φ random strategies generated as described above. Let the
compounded returns of the i′th random strategy be denoted as Ri(t). The
set of all random strategies is then written as SR = {R1(t), ..., RΦ(t)}. For
simplicity, we let M(Θ)

t represent the compounded returns of the respective
forecasting model. The quantile function of the strategy M(Θ)

t is then defined
as

Q(t) = P(R(t) ≤ M(Θ)
t |R(t) ∈ SR) (6.2)

The quantile function contains a lot of information, but we will for each
strategy M(Θ)

t extract the mean only. With the time independent value can
we evaluate the average ability of M(Θ)

t to profit from prediction of future
returns, with the random strategies with no predictive power as the bench-
mark. The average of all the mean quantile functions, where each corre-
spond to a strategy M(Θ)

t , is denoted as Q. In order to limit the discussion
in the next chapter, only Q will be presented Chapter 7.2, for each traded
instrument.

It is worth mentioning that there exists several other similar methods apply-
ing random strategies. One of them is the martingale predictor used by for
instance [Satinover and Sornette, 2012a], [Satinover and Sornette, 2012b]. An-
other is the random strategy used by [Biondo et al., 2013]. The key strength
and difference of our approach is that the transaction cost analysis can ele-
gantly be avoided if the above assumption holds.

6.4 Prediction Accuracy

In addition to the quantile function that concentrates on evaluating the trad-
ing performance, also the accuracy of the predictions will be evaluated. This
is not meant as a performance benchmark per se, but still provides interest-
ing information about the forecasting models. Then one can investigate the
relation between excess accuracy and excess return through comparing with
the quantile functions. We introduce an accuracy measure through compar-
ing the real and predicted returns. Let the real returns be mapped into |C∗|
categories, while predicted returns are mapped into |C′| categories. For test-
ing the accuracy of the predicted returns, we start with the following null
hypothesis.
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Hypothesis 2 H0 : the categorical real and predicted returns, mapped into |C∗|
and |C′| respectively, are statistically independent.

The values resulting from mapping the predicted and real returns are used
for building a contingency table, with the elements as Oi,j. The table is used
in a Pearson’s chi-square test of independence [Pearson, 1900], as used in
Chapter 4.2, now with Hypothesis 2 as the null hypothesis. We define the
test as

χ2 =
|C∗|

∑
i=1

|C′|

∑
j=1

(Oi,j − µi,j)
2

µi,j
, (6.3)

where µi,j = Npi pj is the expected frequency of Oi,j given the null hypothesis
2. Further we have

N =
|C∗|

∑
i=1

|C′|

∑
j=1

Oi,j, pi =
1
N

|C′|

∑
j=1

Oi,j, and pj =
1
N

|C′|

∑
i=1

Oi,j .

It is common to assume a p-value threshold that can indicate predictive
power. Meaning, a strategy that is generating the predicted returns has
predictive power if the resulting p-value is below this threshold. The con-
vention is to set this threshold to 0.05. The degrees of freedom of the test is
(|C′| − 1)(|C∗| − 1). We will apply binary mapping for both predicted and
real returns, i.e. |C∗| = |C′| = 2. In our case we have multiple experiments
where we independently carry out statistical tests. Then, some resulting p-
values will be very low just by chance, even though the null hypotheses 2
in fact is true. One would expect a fraction of 5% of the tests to be such
false positives, meaning type I errors in null hypothesis. For the EMH eval-
uation, this issue is solved simply by introducing the search strategy, due to
having just one experiment. In a forecasting framework, one can argue that
this is a more powerful approach than accounting for the false discoveries.
However, for looking into the prediction accuracy it is necessary to take the
false discoveries into account. According to [Harvey and Liu, 2014], the false
discovery rate approach is favourable for the treatment of trading strategies,
compared to a family-wise error rate like the Bonferroni procedure. The
Benjamini-Hochberg procedure is a good option within the class of false
discovery rate approaches [Benjamini and Hochberg, 1995]. A similar ap-
proach, which is more appropriate under positive dependence assumptions
of the samples, was later provided by [Benjamini and Yekutieli, 2001]. One
can argue that our trading strategies are to some extent dependent. But the
prediction accuracy is meant first and foremost as an indication of strategy
behaviour, not a strict performance measure in it self. Thus do we consider
the Benjamini-Hochberg procedure as a sufficient method to account for the
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type I errors. The procedure functions as the following. Let the resulting
p-value for strategy i, with respect its null hypothesis Hi, be denoted as
Pi. The ordered sequence of p-values is denoted as P1, P2, . . . , P|Θrτ |, where
|Θrτ | is the number of strategies per noise threshold rτ. We repeat that
Θ = {rτ, m, lis}. This is uniquely determining a forecasting model and the
values for the noise threshold rτ, memory length m and in-sample length lis
are determined in Chapter 6.5. The two latter are specifying the training set
of the statistical learning approach, while the former is defined through the
ABM that apply statistical learning. Following the Benjamini-Hochberg pro-
cedure with the level α, we let z be the largest α in which Pi ≤ i

|Θrτ |
α. Then

we reject all corresponding Hi for i = 1, 2, . . . , z. The maximum acceptable α
is set to 0.05.

This analysis is presented in Chapter 7.2 as the final part of the market
spectroscopy.

6.5 Specification of parameters, dataset and trading re-
strictions

In this project we will apply our model to highly liquid stock indexes. Thus
it is assumed that all placed orders are possible to carry out. The indexes
selected in this project are the U.S. S&P500 and the British FTSE100, where
the data is provided by Thomson Reuters. At each prediction done by a
forecasting model M(Θ)

t , the whole compounded wealth obtained by the
model at time t is invested either into a long or short position. The choice
is depending on the prediction of the return at t + 1. All forecasting models
start out with the same initial wealth, where compounded returns of the
trades are normalized by this.

Through the last chapters, it has become clear that the essential parame-
ters determining our forecasting models are the noise threshold rτ, mem-
ory length m and in-sample length lis. This is uniquely defined by the set
Θ = {rτ, m, lis}. Below we will provide the specific values used for these pa-
rameters. Further, the number of agents K is restricted to 2. Only with two
agents the resulting measurements for the ABM differs significantly from
the one-agent model, making the two-agent restriction sufficient for now.
As well, we avoid to further increase the parameter space. With the frame-
work presented in Chapter 4, the extension to more agents is in principle
straight forward.

For an overview of the impact of rτ on the input dataset, it is worth mention-
ing the relation between rτ and the amount of returns being cut off. Stock
return distributions are shown to be similar or more heavy tailed than the
Gaussian distribution (see for example [Malevergne et al., 2005] and [Pis-
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arenko and Sornette, 2006]). Instead of fitting the whole distribution of
returns for more generality, we seek a simple understanding of how the cut-
off behaves in our range of noise thresholds. First we look at the dataset
consisting of daily returns from the S&P500, between the start of year 2000
until end of 2015. The lowest rτ applied in the models, rτ = 0.0001, leads
to treating around 1.2% of the returns as noise. The largest noise threshold
considered, rτ = 0.001, corresponds to a 10.6% cutoff. In same time range
for the FTSE100, rτ = 0.0001 to correspond to only 1.0% cut off. The largest
threshold, rτ = 0.001, to corresponds to 9.8%. The set of noise thresholds
used in this project is chosen as rτ ∈ [0.1%, 0.05%, 0.025%, 0.01%, 0%] . The
memory lengths used are m ∈ [2, 3, 4, 5]. Lastly, the in-sample lengths are
restricted to lis = 20 + 10b where b ∈ [1, 2, 3, . . . , 49]. The simulations pre-
sented in Chapter 7 are exclusively using these sets of parameter values,
where we do not exclude any experiments for the reader due to the argu-
mentation in Chapter 5.

The parameters related to the initialization process of the ABM will be fixed
through all forecasting models. We will do a short investigation of the an-
nealing impact through preliminary results presented in Appendix A. We
settle with the parameters T0 = 0.03, the optimisation loops ξ = 20 and
having in total 10 equally distanced temperature steps towards zero from
T0.

Closing this chapter, we have finally established the project’s approach of
forecasting in finance. The key takeaway is famously framed by a legendary
scientist.

”The first principle is that you must not fool yourself - and you are the
easiest person to fool.” (Richard Feynman3).

3This quote can be found in the book ”Surely You’re Joking, Mr. Feynman!”: Adventures of
a Curious Character, WW Norton & Company, 2010
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Chapter 7

Results

The model presented through the previous chapters give interesting results.
Through the discussion in Chapter 2, we did argue for measuring trading
performance as economic profits. The Sharpe ratio is chosen as the key per-
formance measure. The performance of the complete model with respect to
the EMH evaluation is presented in Chaper 7.1. As stated in the null hy-
pothesis 1, a comparison of the multi-agent model and one-agent model is
of interest. This will mainly be discussed through the market spectroscopy
in Chapter 7.2. In that chapter, all forecasting models Mt will be discussed,
including predictive power, performance measures and the quantile func-
tion.

7.1 Gains in UK, losses in U.S.

The forecasting models Mt are applied on two different indexes in the same
time period, January 2000 until the end of December 2015. Due to differ-
ent in-sample lengths in the forecasting models, they will start trading at
different points in time. Therefore, the search technologies S(1)

t and S(2)
t

start picking models when all models have started trading in the market,
which is in January 2002. The risk-return performance measurements are
displayed in Table 7.1, without taking into account transaction costs. It is
clear that both the search technologies perform well on the FTSE100. On the
S&P500, both S(1)

t and S(2)
t have a lower annualized Sharpe ratio than the

buy-and-hold strategy. The Omega ratio is also included, where we see that
S(2)

t on the S&P500 and the respective buy-and-hold strategy better capture
larger returns compared to S(1)

t . This is observed by viewing the ranking
of the thresholds rw. By doing this comparison also for the FTSE100, the
buy-and-hold strategy is best suited for capturing large returns according
to the Omega ratio. Observe in Table 7.1 that the ranking of the strategies
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are not the same using the Omega ratio instead of the Sharpe ratio. In this
situation, the returns obtained by the strategies can witness of non-elliptical
bounded distributions.

Table 7.1: Risk-return performance measurements without transaction costs ac-
counted for. Trading period of all strategies is year 2002-2015. The resulting Sharpe
ratios have zero risk-free rate of return and are all annualized.

Index Strategy Sharpe ratio Omega ratio
rw=0 rw=1%

S&P500
Buy-and-hold 0,492 3,704 0,357

S(1)
t 0,394 4,813 0,190

S(2)
t 0,117 5,026 0,309

FTSE100
Buy-and-hold 0,341 3,308 0,343

S(1)
t 0,396 4,967 0,142

S(2)
t 0,526 5,687 0,111

For a proper measure of economic profits, also transaction costs must be
included. Table 7.2 displays the search technologies’ properties related to
transaction costs. The most essential is the ASBE introduced in Chapter
6.2, measured in BPS. Through trading the S&P500, both S(1)

t and S(2)
t are

below the break even point without transaction costs accounted for. There
is another situation in the FTSE100 trading, where both S(1)

t and S(2)
t have a

ASBE above 1 BPS. However, even the ASBE of 2.209 BPS resulting from S(2)
t

is probably below the rates most brokers can offer. The performance of S(2)
t

is better compared to S(1)
t both before and after accounting for transaction

costs. Notice that S(2)
t have more transactions than S(1)

t on the FTSE100,
as displayed in Table 7.2. A similar difference is found between the two
search technologies trading S&P500, but there S(1)

t has the most transactions.
However, the number of transactions are fairly similar for all applied search
technologies. A final remark to the Table 7.2 is the ratio of long positions
taken by the search technologies. On both indexes the search technologies
are close to applying half of the positions long, where the rest as short.
On the S&P500, both S(1)

t and S(2)
t have most long positions, where on the

FTSE100 the amount of long positions are under half.

The capital gains produced by the search technologies are presented in Fig-
ure 7.1 and 7.2, together with the respective buy-and-hold strategies. The
gains are measured as Net Asset Value (NAV), where all strategies are start-
ing out with the same. Through time, the compounded returns are added
to the NAV. No transaction costs are applied in these figures. Starting with
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Table 7.2: Transaction overview. Trading period of all strategies is year 2002-2015.
The ASBE is introduced in Chapter 6.2 and measured in BPS. The ASBEs contain
zero risk-free rate of return.

Index Strategy Transaction
Days

Long
Positions

ASBE

S&P500
S(1)

t 45,57% 53,090% < 0,00BPS
S(2)

t 46,54% 50,441% < 0,00BPS

FTSE100
S(1)

t 46,63% 45,125% 1,055BPS
S(2)

t 45,58% 46,173% 2,209BPS
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Figure 7.1: Net Asset Value of the search technologies S(1)
t and S(2)

t , together with
the buy-and-hold strategy, all applied on S&P500. The vertical axis represents the
normalized Net Asset Value (NAV), the capital gains measured taking the com-
pounded returns of the strategies. No transaction costs are applied in this figure.

Figure 7.1, the broad picture is that both S(1)
t and S(2)

t perform well in bear
markets. This is specially observed during the crashes resulting from the dot-
com bubble in 2003 and the financial crisis in 2008-2009. Generally speaking,
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Figure 7.2: Net Asset Value of the search technologies S(1)
t and S(2)

t , together with
the buy-and-hold strategy, all applied on FTSE100. The vertical axis represents the
normalized Net Asset Value (NAV), the capital gains measured taking the com-
pounded returns of the strategies. No transaction costs are applied in this figure.

both strategies underperform buy-and-hold in bull markets, where S(1)
t to a

larger extent is capturing upward price movements than S(2)
t . We observe

a very different situation for the trading of FTSE100, displayed in Figure
7.2. There, both the search technologies are performing well during crashes
compared to buy-and-hold. However, they are both on par with the buy-
and-hold strategy in bull markets, specially in the time period between the
two large crashes. As argued in Chapter 5, the time it would take for a
strategy ceasing to capture positive returns can we assume would decrease
with time. This since an increasing amount of financial speculation is car-
ried out with automated trading systems. Such an argument is plausible
due to observing Figure 7.1 and 7.2. The search technologies are in general
not performing well with respect to buy-and-hold in the most recent years.

With the first look, it seems peculiar that the search technologies strongly
outperform the buy-and-hold strategy in a market crash. It is indeed a
preferable result, however the underlying reason may have a simple expla-
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nation. In a dramatic crash, prices have large drops for several days in a
row. This would make the forecasting models’ training data to be calibrated
in favour of short selling. That being said, the in-sample lengths used in
the forecasting models are on average rather long, comparing to the crash
duration. But in both the largest crashes, on both indexes, the markets were
already in a bear or flat state for a period between the market peak and the
crash. This time window can give the forecasting models enough time for
calibration in order to profit from the crash. It is also worth pointing out
that a noise trader will on average perform rather well in the case of a crash,
because the amount of short positions will result in extremely large returns.
Thus, if the ABM acts like a noise trader, it would most likely perform well.
It is a very strong property of a trading strategy to be able to profit in differ-
ent market regimes. That we clearly see in both search technologies applied
on FTSE100 and to some extent by S(1)

t when trading S&P500.
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Figure 7.3: The distribution of selected models with respect to the noise threshold
rτ are here displayed. Each bar correspond to a given search technology on a given
index. The search technologies S(1)

t and S(2)
t are both applied on FTSE100 and

S&P500 in the time period of year 2002-2015.

In light of the null hypothesis 1, there should be a significant fraction of
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multi-agent models picked by the search technologies. The distributions of
selected models with respect to the noise threshold rτ are shown in Figure
7.3. We observe that both search technologies, on both indexes, are applying
models with a wide range of noise thresholds. S(2)

t has a similar distribution
on both indexes, almost uniform. On the other hand, the distribution belong-
ing to S(1)

t are on both indexes much more skewed. This could be expected
from how the search technologies are defined. S(2)

t picks forecasting models
based on a rolling Sharpe ratio, while S(1)

t uses an expanding Sharpe ratio.
Thus one can assume that on average, S(2)

t will change forecasting models
more frequently than S(1)

t , possibly resulting in a less skewed distribution of
forecasting models. All in all, it is clear that the multi-agent models are well
represented in the search technologies, where the one-agent models in fact
are in minority.

7.2 Market Spectroscopy - multi-agents are promising

For a broader view of how the forecasting models behave, we turn to the
market spectroscopy. Here all forecasting models Mt are investigated. We
repeat that an unique forecasting model is denoted as M(Θ)

t , where Θ =
{rτ, m, lis}. This is uniquely determining a forecasting model and the values
for the noise threshold rτ, memory length m and in-sample length lis are
determined in Chapter 6.5. The two latter are specifying the training set of
the statistical learning approach, while the former is defined through the
ABM that apply statistical learning. Mt is then the collection of all unique
forecasting models.

First, Figure 7.4 and 7.5 are displaying the annualized Sharpe ratios of all
Mt, for each index respectively. There we pay special attention to how the
one-agent models perform compared to the multi-agent models. The one-
agent models are clearly not dominating, but neither are the multi-agent
models. In fact, when fixing one of the three parameters m, lin or rτ, none
of the resulting forecasting models are consistently dominating. But there
are pockets of the parameter space where some forecasting models perform
very well in terms of Sharpe ratio. For example, the impact on the result-
ing Sharpe ratio can be very different depending on the noise thresholds.
This motivates the usage of a wide range of parameters, due to the fact
that we do not observe any obvious logic in which parameter combination
that is superior. The concept of thick modelling discussed in Chapter 5 is
in line with this argument. However, through these observations, the null
hypothesis 1 can not be rejected. The multi-agent models are contributing
to a higher performance, but for certain parameter intervals. Even though
the null hypothesis 1 stands, the introduction of multi-agent models can
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possible contribute positively when applying the search technology if the
outperforming models are picked.

Figure 7.4: All forecasting models Mt are applied on the S&P500 index over the
period of year 2000-2015. The resulting yearly, or annualized, Sharpe ratios are
displayed, with zero risk-free rate of return. For each memory length m, forecasting
models with all the different noise levels are displayed at every in-sample length lis.
The in-sample length lis and memory length m are determining the training set of
the statistical learning approach. No transaction costs are applied. As a reference,
the annualized Sharpe ratio of the buy-and-hold strategy is equal to 0.492 (as stated
in Table 7.1).

By the measurements of the quantile function defined in Eq. 6.2, we compare
the forecasting models’ trading ability with random strategies. The quantile
function Q represents the fraction of forecasting models that are performing
better than random strategies. As mentioned in Chapter 6.3, only the aver-
age quantile function Q will be discussed. Q is averaged over time and Θ.
First, the average quantile function resulting from forecasting the FTSE100
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index is equal to 77.57%. For the S&P500 index, Q = 74.25%. This tells us
that the forecasting models on average perform better than random strate-
gies.

As argued in Chapter 6, there is a non-trivial relationship with the pre-
dictability of stock returns and the returns obtained by trading based on
predictions. The predictability, or prediction accuracy, is displayed through
Figure 7.6 and 7.7. This reports of a general low accuracy. The predictive
power is only significant for a fraction of the forecasting models trading the
S&P500 index. None are significant on the FTSE100. By comparing with the
quantile function one observes that the predictability and performance have
no or even negative correlation.

44



7.2. Market Spectroscopy - multi-agents are promising

Figure 7.5: All forecasting models Mt are applied on the FTSE100 index over the
period of year 2000-2015. The resulting yearly, or annualized, Sharpe ratios are
displayed, with zero risk-free rate of return. For each memory length m, forecasting
models with all the different noise levels are displayed at every in-sample length lis.
The in-sample length lis and memory length m are determining the training set of
the statistical learning approach. No transaction costs are applied. As a reference,
the annualized Sharpe ratio of the buy-and-hold strategy is equal to 0.341 (as stated
in Table 7.1).
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Figure 7.6: The prediction accuracies of all forecasting models Mt are presented
in form of p-values. All of Mt are here applied on the S&P500 index in the time
span of year 2000-2015. The p-values are defined through to the test in Chapter
6.4. The significance level for the p-values are adjusted according to the Benjamini-
Hochberg procedure. The adjusted significance level is visualized in the figure as
a horizontal line, denoted as ρBH . If no line is present, none of the p-values are
significant. For each memory length m, forecasting models with all the different
noise levels are displayed at every in-sample length lis. The in-sample length lis
and memory length m are determining the training set of the statistical learning
approach. No transaction costs are applied.
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Figure 7.7: The prediction accuracies of all forecasting models Mt are presented
in form of p-values. All of Mt are here applied on the FTSE100 index in the time
span of year 2000-2015. The p-values are defined through to the test in Chapter
6.4. The significance level for the p-values are adjusted according to the Benjamini-
Hochberg procedure. None of the p-values are significant. For each memory length
m, forecasting models with all the different noise levels are displayed at every in-
sample length lis. The in-sample length lis and memory length m are determining
the training set of the statistical learning approach. No transaction costs are applied.
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Chapter 8

Concluding remarks

In summary, we have proposed a model for forecasting and trading financial
instruments. The model is constructed in order to build a bridge between
statistical learning, agent based model and EMH. The EMH definition in
Chapter 2 provides an essential framework for implementing the forecast-
ing experiment. The model’s performance is measured in economic profits,
where transaction costs are taken into account. The experiment take usage
of a backtesting methodology, meaning that the model is applied on histor-
ical data. This requires a careful description of the methodology, due to
numerous possible biases described through the previous chapters.

The model is constructed as an ABM where each agent predicts future
returns of a financial instrument with the usage of a statistical learning
method. The financial instruments considered are the U.S. S&P500 index
and the British FTSE100 index. There exists a broad range of statistical learn-
ing methods, however all agents take usage of decision trees. The concept
of statistical learning, its relation to EMH and the decision tree approach
are described in Chapter 3. Further, the ABM is described in Chapter 4.
Motivated by psychology and behavioural finance, the agents are calibrated
through a simulated annealing procedure. A summary is then provided in
Chapter 4.3. In order to apply the ABM for forecasting and trading, the
search technologies in Chapter 5 and benchmarking methodology in Chap-
ter 6 are provided.

Through the EMH evaluation in Chapter 7.1, it is observed that the perfor-
mances of the models are very different with respect to which index they
are trading. There are in total four different experiments, having two search
technologies applied on two indexes. The following performance measures
refers to the annualized Sharpe ratio. The buy-and-hold strategy’s is outper-
formed by both search technologies on the FTSE100, up to above 1 and 2 BPS,
respectively. For the S&P500, both search technologies are outperformed by
the buy-and-hold strategy without taken into account transaction costs. In
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8. Concluding remarks

general we are left with no conclusion of which of the two search technolo-
gies that is preferred. Going back to questioning the EMH, the conclusion
is not straight forward. One can suggest that S&P500 is an efficient mar-
ket, while FTSE100 is questionable. On the other hand, one can view the
situation as having four experiments, where two failed the test while two
slightly succeeded. This leaves us with a ambiguous answer. Even though
the two indexes are fairly correlated in their trends, the results of applying
our model for trading them are very different. However, all experiments ex-
cept one are able to outperform the buy-and-hold strategy in different market
regimes. This is a very strong property.

The results from the market spectroscopy are displayed in Chapter 7.2.
Through the measured quantile functions, we observe the forecasting mod-
els to perform better than random strategies on average. The predictive
power, described in Figure 7.6 and 7.6, reports of a general low accuracy.
The predictive power is only significant for a small fraction of the forecast-
ing models. By comparing with the resulting quantile function, one can
interpret a relationship between accuracy and performance. We observe
that the two have no or even negative correlation. Through the Sharpe ratio
measurements in Figure 7.4 and 7.5 it is not observed any obvious logic in
which parameter range that gives superior performance. This fact motivates
the usage of a broad range to be applied in the search technology, in line
with thick modelling. As well it is worth mentioning that multi-agent mod-
els are not outperformed by the one-agent models consistently, or the other
way around. With this we can not reject the null hypothesis 1. It is still
possible that the ABMs to some degree are successfully reverse engineering
the markets, however it is hard to conclude.

A closer relationship between agent based modelling and statistical learning
creates positive synergies, both through the result of our model, but also
in terms of bringing the two academic fields closer. We report of mixed re-
sults regarding the challenge of EMH through the suggested model. In the
context of forecasting in capital markets, it is a necessary to construct the
models in the framework of finance. The framework presented through this
project can be generalized for backtesting a broad range of trading strate-
gies. The field of agent based modelling has been criticized for not applying
a consistent framework for constructing experiments. For forecasting pur-
poses, we suggest a common platform for evaluations and constructions of
ABMs.
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Appendix A

Evolution of the simulated annealing
procedure

The ABM is initialized by a simulated annealing process described in Chap-
ter 4.2.2. For this, the internal uniformity p̄ introduced in Chapter 4.2 is a
central measure. To get an intuition of how the minimization of p̄ evolves
through time, we have tracked p̄ through the initialization process and fur-
ther the next year on the S&P500 index. A visualization is provided in
Figure A.1. At time zero, the model start trading and one new stock return
is arriving its information set each day. Before time zero, the initialization
process is applied to the information set of the agents. To recapitulate, p̄ is
measured from the information sets of the agents. p̄ is calculated for each
optimization loop of in total ξ loops and temperature step. The temperature
cools from T0 to zero.

For comparing the effect of minimizing p̄ during the initializion and during
trading, we consider also an uniform random choice for the flips in the
ABM. This is displayed as the graph in Figure A.1 starting at time zero. One
observes that the internal uniformity is not only on average, but globally
much lower through the year with the model in the market when using
the simulated annealing procedure compared to a uniform random flipping
procedure.
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A. Evolution of the simulated annealing procedure

200 150 100 50 0 50 100 150
time

0.0

0.2

0.4

0.6

0.8

1.0

p̄

Uniform Random

Simulated Annealing

Figure A.1: The plot shows the resulting internal uniformity p̄ from the simulated
annealing and a uniform random flipping. The prediction period starts at time
equal zero, where the model trades the S&P500, from lis days out in the year of
2000 until the last day in the same year. The initialization is made in the time
interval before zero. The noise level, rτ , is set to 0.001, while memory length m = 2
and in-sample length lis = 100. The initial temperature T0 equals 0.03 and the
number of linear steps to zero temperature is set to 10. The number of optimization
loops per temperature step is set as ξ = 20.
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Glossary

ASBE Annualized Sharpe ratio Break Even. This measure represents the
cost per transaction that is necessary for the model to obtain the same
annualized Sharpe ratio as the corresponding buy-and-hold strategy.
The ASBE is measured in number of basis points (BPS). p. 32

forecasting models Mt is the collection of all forecasting strategies gener-
ated through the ABMs. A single unique strategy is denoted as M(Θ)

t ,
where Θ = {rτ, m, lis}. p. 7

in-sample length lis, the in-sample length, is the number of returns used in
the training set of a statistical learning method. p. 11

information set The information set Ωt is describing the information avail-
able for an market participant or forecasting model at time t. p. 5

internal uniformity p̄t, the internal uniformity, is a measure of the confi-
dence level among the agents at time t. This is minimized with a
Monte Carlo technique in order to polarize the agents. p. 19

memory length The memory length m is the number of sequential returns
applied as the input in the statistical learning method. p. 11

multi-agent model In contrast to the one-agent model, the ABM takes on
the multi-agent model form in the case of rτ 6= 0. This allow for het-
erogeneity and possibly different predictions of future returns among
the agents. p. 16

noise threshold The real returns that are in absolute magnitude smaller
than the noise threshold rτ, are set to zero. p. 15

53



Glossary

one-agent model In the case of rτ = 0, all agents have the same dataset
and thus predict the same future returns. We refer to this situation as
having a one-agent model, due to the fact that we could replace all the
identical agents by one of them. p. 16

return rt is the return from a given security at time t. p. 5

search technology A search technology in St refers to a predecided way to
decide which of the forecasting models in Mt that at each timestep
will be selected. Two search technologies are applied, S(1)

t and S(2)
t , as

described in Chapter 5. p. 7
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