
Modelling a tracer injection and sensor
manifold

Abel Tenu Mekonnen

Chemical Engineering

Supervisor: Heinz A. Preisig, IKP

Department of Chemical Engineering

Submission date: July 2016

Norwegian University of Science and Technology

Summary

Residence Time Distribution (RTD) of a rector system is the probability function that describes
the time a fluid element spends inside the system. RTD is used by most chemical engineers to
describe the hydraulics within a system and also to compare the behaviour of the real equipment
with their respective ideal models. The technique is used both for design and troubleshooting.
Experimentally, the non-reacting tracer is introduced into the inlet of the system and the con-
centration is measure at the inlet and the outlet. The signals are then used to compute the RTD.
The ideal excitation signal contains all frequencies this is either a pulse or its integral, the step.
The quality of the two signals thus determines directly the quality of the computed.

This thesis focuses on the design of a tracer injection and sensor manifold. The entire the-
sis work is conducted in two parts: first, to validate the design of the in-house conductivity
sensor and second, to design the tracer injection using a CFD simulation tool, for which Open-
FOAM is used.

To validate the design of the in-house conductivity sensor, several simulations using the simple-
Foam solver were performed utilising tetrahedral and hexahedral meshes of the liquid body in
the sensor. The simulations were used to visualize the flow behavior in the form of the velocity
and pressure fields. The objective of performing the simulation for the two types of mesh is to
find how the results are affected by the choice.

To design the tracer injection part, several simulations using the simpleFoam and the scalar-
TransportFoam solvers were performed. These were used to visualize the tracer cloud forma-
tion and the distribution of the tracer throughout the sensor for a given injector design. Two
types of a 90 degree bent cylinder injector design, one with large length and a needle shape at
one end of the geometry and the other is circular shape in both ends with small length, were
studied. For both injector designs, a counter-current injection flow direction was used.

In terms of the execution time and RAM usage, the hexahedral mesh performed better than
the tetrahedral mesh of the sensor. But in terms of the quality of the mesh and the accuracy
of the result of simulations, the tetrahedral mesh of the sensor was better than the hexahedral
mesh. The result of the simulation for the tetrahedral mesh agrees well with the experiment
showing only 4.8% error. Results of the simulations showed that the conductivity sensor has a
high pressure drop due to different cross sectional areas in some parts; the main effects are due
to the rozita and cone part. Hence, there is a need for an improvement of either the rozita and
cone parts or design completely a new sensor.

Evolution and distribution of the tracer cloud passing through the sensor is affected by the
shape and size of the injection tube and the tracer flow direction. The 90 degree bent cylin-
der with needle shape at one end of the injector gives unexpected result, as the tracer cloud is
formed at the top of the pipe and not as expected at the bottom. This result also contradicts
result from previous work of Oscar Pujol, which gives a tracer cloud formation at the center
of the pipe near the tip of the injector for the same injector design. The second injector design

i

gives a good mixing and distribution of the tracer. Based on the simulation I recommended to
adding a mixer after the injector and before the sensor inlet in order to improve the mixing and
distribution of the tracer concentration.

Salome is used to generate all the geometries and tetrahedral meshes and ”snappyHexMesh”
is used to generate the hexahedral meshes. All simulations were running on one of NTNU’s
high performance computer.

ii

Acknowledgements

First of all I like to sincerely appreciate my supervisor, Prof Heinz for his immense support,
mentoring and especially for giving me a chance to do this thesis. I started this thesis with
out any previous experience or knowledge about CFD, OpenFOAM and Linux but his massive
tolerance helped me to developed this master thesis. I would like also to thank Mikael Hammer
for his support to get all necessary tools to setup the experiment.

At last, my appreciation goes to Ph.D. student sigve karolius, friends and colleagues who at
one time or the other offer word of advise and encouragement all through this thesis.

iii

iv

Table of Contents

Summary i

Acknowledgements iii

Table of Contents vi

List of Tables vii

List of Figures xi

Abbreviations xii

1 Introduction 1
1.1 Scope . 1
1.2 Previous Work . 2
1.3 Structure of the report . 2

2 Theory 3
2.1 Introduction to CFD . 3
2.2 The Governing Equations of CFD . 3

2.2.1 The continuity equation . 4
2.2.2 The momentum equation . 6
2.2.3 The energy equation . 9

2.3 Numerical grid or Mesh . 10
2.3.1 Salome . 12
2.3.2 SnappyHexMesh . 13

2.4 OpenFOAM . 13

3 Modeling 15
3.1 Pre-processing . 15

3.1.1 Mesh generation . 15
3.1.2 Boundary and Initial Conditions . 16
3.1.3 Physical Properties . 18
3.1.4 Control, Discretisation and Linear Solver Settings 19

3.2 Running the Simulation . 20

v

3.3 Post-processing . 21
3.4 Running OpenFoam on a Supercomputer . 21
3.5 Experimental Work . 22

4 Result and Discussion 23
4.1 Modeling of conductivity sensor . 24

4.1.1 Hexahedral Mesh . 26
4.1.2 Tetrahedral Mesh . 29
4.1.3 Sensitivity Analyse . 31
4.1.4 Hexahedral mesh of the modified sensor 32
4.1.5 Tetrahedral Mesh of the modified sensor 35

4.2 Injection System Design . 38
4.2.1 Bent cylinder injector with needle shape at one end of the geometry . . 38
4.2.2 Bent cylinder injector geometry with circular shape at both end 45

4.3 Structured mesh of the conductivity sensor . 51

5 Conclusion and scope for future work 55
5.1 Conclusion . 55
5.2 Scope for future work . 56

Bibliography 57

Appendix A simpleFoam Files 59

Appendix B scalarTransportFoam Files 67

Appendix C Files used for running OpenFoam and snappyHexMesh in parallel using
supercomputer 75

Appendix D snappyHexMesh Files 79

Appendix E Quantitative results of simulation and experiment 87

Appendix F Modified scalarTransportFoam files 89

vi

List of Tables

3.1 Boundary Conditions for simpleFoam simulation in the case of the conductivity
sensor modeling . 18

3.2 Boundary Conditions for simpleFoam simulation in the case of injection system
design . 18

3.3 Boundary Conditions for scalarTransportFoam simulation in the case of injec-
tion system design . 18

3.4 Linear-solver settings for both simpleFoam and scalarTransportFoam simulations 20

4.1 Summaries of the results of simulations for a conductivity sensor modelling
case . 24

4.2 Summaries of the results of simulations for injection system design case 24

E.1 summery of all results of simulations and experiment from eleven pump flow
rates, pump speed in rpm and velocity in m/s 88

vii

viii

List of Figures

2.1 Models of a flow[1] . 4
2.2 Finite control volume fixed in space[1] . 5
2.3 Forces in the x-direction acting on infinitesimally small, moving fluid element[1]. 7
2.4 Two dimensional elements: (a) Triangle element has 3 nodes and (b) Quadrilat-

eral element has 4 nodes . 11
2.5 Three dimensional elements[5]: (a) Tetrahedral element has 4 nodes, (b) Hexa-

hedral element has 8 nodes, and (c) Prismatic element has 6 nodes 11
2.6 Types of Meshes based on the connectivity of points 12
2.7 OpenFOAM case structure[8] . 14

3.1 Experiment setup . 22

4.1 The fluid part of the conductivity sensor . 25
4.2 Section view of the fluid part of the conductivity sensor 25
4.3 Hexahedral mesh of the sensor fluid part . 26
4.4 Velocity Field: top at t=0, middle at t=150 and bottom at t=300 sec 27
4.5 Pressure Field: top at t=0, middle at t=150 and bottom at t=300 sec 28
4.6 Tetrahedral mesh of the sensor . 29
4.7 Velocity Field: top at t=0 sec, middle at t=150 sec and bottom at t=300 sec . . . 30
4.8 Pressure Field: top at t=0 sec, middle at t=150 sec and bottom at t=300 sec . . . 30
4.9 Simple geometries using for sensitivity analyse 32
4.10 Section view of the modified sensor fluid part 32
4.11 Hexahedral mesh of the modified sensor . 33
4.12 Velocity Field: top at t=0, middle at t=150 and bottom at t=300 sec 34
4.13 Pressure Field: top at t=0, middle at t=150 and bottom at t=300 sec 34
4.14 Tetrahedral mesh of the modified sensor . 35
4.15 Velocity Field:top at t=0, middle at t=150 and bottom at t=300 sec 36
4.16 Pressure Field: top at t=0, middle at t=150 and bottom at t=300 sec 36
4.17 comparison of simulation results with the experiment result 37
4.18 Geometry of the injector part together with half of the sensor 38
4.19 Mesh: top, injector part together with half of the sensor and bottom, injector

part only . 39
4.20 Velocity field during injection at t=300 sec. top shows at injection system part

only while bottom shows for the full geometry 40

ix

4.21 Pressure field during injection at t=300 sec. top shows at injection system part
only while bottom shows for the full geometry 40

4.22 Evolution of the injection cloud during injection at t=1 sec. Top figure shows
evolution of cloud in y axis while bottom figure shows it in the z axis 41

4.23 simpleFoam simulation result during injection stopped at t=300 sec. top, veloc-
ity while bottom, pressure . 41

4.24 Evolution of the injection cloud showed in the y axis, side view 43
4.25 Evolution of the injection cloud showed in the z axis, top view 44
4.26 Geometry of the injector part together with half of the sensor 45
4.27 Mesh: top, mesh of the injector together with half of the sensor and bottom,

mesh of injector part only . 45
4.28 Velocity field during injection at t=300 sec. top shows at injection system part

only while bottom shows for the full geometry 46
4.29 Pressure field during injection at t=300 sec. top shows at injection system part

only while bottom shows for the full geometry 46
4.30 Evolution of the injection cloud during injection at t= 1sec. Top figure shows

evolution of cloud in y axis while bottom figure shows in z axis 47
4.31 simpleFoam simulation result during injection stopped at t=300 sec. top, veloc-

ity while bottom, pressure . 48
4.32 Evolution of the injection cloud showed in the y axis, side view 49
4.33 Evolution of the injection cloud showed in the z axis, top view 50
4.34 Half part of the sensor geometry . 51
4.35 Structured mesh of the sensor half part . 52
4.36 Structured Mesh of the sensor inlet part . 52
4.37 Structured Mesh of the pin part . 53

A.1 Pressure Boundary Condition . 60
A.2 Velocity Boundary Condition . 61
A.3 transportProperties file . 62
A.4 RASProperties file . 62
A.5 controlDict file . 63
A.6 fvSchemes files . 64
A.7 fvSolution file . 65

B.1 Scalar field Boundary Condition file . 68
B.2 transportProperties file . 69
B.3 controlDict file for the first scalarTransportFoam simulation 70
B.4 controlDict file for the second scalarTransportFoam simulation 71
B.5 fvSchemes files . 72
B.6 fvSolution file . 73

C.1 decomposeParDict . 76
C.2 sample job script used to run OpenFoam case on supercomputer with parallel . 77
C.3 Job script used to run snappyHexMesh case on supercomputer with parallel . . 77

D.1 surfaceFeatureExtractDict file . 80
D.2 snappyHexMeshDict file . 85

x

F.1 createFields.H file . 90
F.2 scalarTransportFoam.C file . 91

xi

Abbreviations

CFD = Computational Fluid Dynamics

DILU = Diagonal Incomplete-LU

GAMG = Generalized Geometric-Algebraic Multi-Grid

MPI = Message Passing Interface

NTNU = Norwegian University of Science and Technology

PBiCG = Preconditioned Bi-Conjugate Gradient

RAS = Reynolds-averaged stress

RTD = Residence Time Distribution

STL = Stereolithography

2D = Two Dimensional

3D = Three Dimensional

xii

Chapter 1
Introduction

1.1 Scope

RTD of a rector systems is the probability distribution function that describes the length of the
time a fluid element spends inside the given system. RTD is used by most chemical engineers to
describe the hydraulics within a system and also to compare the behavior of the real equipment
with their respective ideal models. The technique is used both for design and troubleshoot-
ing.RTD is measured experimentally by introducing non-reacting tracer into the system at the
inlet and measuring the concentration at the inlet and the outlet[3, 4]. Thus in order to mea-
sure the RTD, one requires an injector to inject the tracer at the inlet of the system and two
sensors(one at the inlet and the second at the outlet of the system) to measure the trace concen-
tration. This thesis is on the design of the conductivity sensor and tracer injection.

Model simulations are important tool to validate the feasibility of the design and to optimize the
design before the apparatus is manufactured. Because of the growth of computational power
and storage capacity, the development of validated and fast numerical procures; Computational
Fluid Dynamics (CFD) is used to solve fluid flow related problems.

Nowadays, there are a lot of programs to solve CFD problems which are either developed
by commercial companies or by open source communities. FLUENT, CFX and COMSOL are
some of the best known programs which developed by commercial companies; OpenFOAM,
SU2 and Code saturn are the most known programs in the open source community.

The aim of this thesis is to use CFD simulations to validate the design of the in-house con-
ductivity sensor and to design the tracer injection which yields the best distribution of tracer
concentration throughout the sensor. A CFD simulations tool, called OpenFOAM is used for
performing the simulation and software called Salome is used to generate the geometry and a
mesh throughout this thesis work. This thesis was done in two parts namely:

• To validate the in-house conductivity sensor by performed simulation using simpleFoam
solver. The simulation is used to visualize the flow behavior in the form of the velocity
and pressure fields. A simple experiment was done to measure the pressure drop of the
real conductivity sensor, and the result compared with the simulation result to check the
viability of the simulation. The simulation was done utilising structured and unstructured

1

Chapter 1. Introduction

meshes of the liquid body in the sensor to see how the simulation result is affected by the
mesh type and to get the most suited mesh type for the sensor.

• To design the injection system. Simulation were performed using the simpleFoam and
the scalarTransportFoam solvers. This is used to visualize the distribution of the tracer
concentration throughout the sensor.

All simulations were performed in parallel with 16 mpi processor using a supercomputer at
NTNU, called Vilje.

1.2 Previous Work
This thesis is the continuation of my specialization course project on modeling of the Conduc-
tivity sensor using CFD simulation, which was conducted in fall 2015. The project focused on
to validate the design of the in-house conductivity sensor using a CFD simulation tool, called
OpenFOAM. The simpleFoam simulation was performed using a tetrahedral mesh of the sensor
geometry. Without considering the design of the injection system and assuming the tracer being
injected at the inlet of the sensor, simulation was performed using scalarTransportFoam solver.
At the time, the simulations did not converge, which lead to this continuation project.

1.3 Structure of the report
Including this introduction section, the thesis report is arranged in five chapters as indicated
below:
The over view of computational fluid dynamics including the basic theory of the three basic
governing equations of CFD and an introduction about used software in this thesis outlined in
Chapter 2.
Chapter 3 briefly describes the three basic procedures of CFD used for modelling the conduc-
tivity sensor and injection system. This includes the procedure and basic theory to generate the
geometry and mesh of the sensor and injector, defining boundary and initial conditions and the
choice of the discretisation schemes and linear-solver settings. In addition a description on how
to execute the OpenFOAM job on NTNU’s supercomputer is included.
Chapter 4 summarizes the result obtained and the discussion of the results.
Finally Chapter 5 summarises the findings of the project and recommendations future work are
given.

2

Chapter 2
Theory

2.1 Introduction to CFD
CFD is a multidisciplinary topic which uses applied mathematics, physics and computational
software to solve and analyse a problem that involves fluid flows as well as to visualize how
an object affected when the fluids passed on it. A naiver-Stokes equation is the fundamental
basis of CFD problems, which describe how the pressure, temperature, density, and velocity of
a moving fluid are related. The required calculation to simulate the interaction of fluids with
surface defined by boundary conditions performed, using a computer[2].

The main concept of CFD methods is to find the flow quantities value in the system at a large
number of connected points which is called numerical grid or mesh. CFD methods used three
basic procedures, called pre-processing, simulation, and post-processing to get the solution for
a given case.

• Pre-processing: First the geometry of a given problem is defined. Then its volume which
is occupied by the fluid is divided into discrete cells, called mesh or grid, then the physical
modeling and boundary conditions are defined.

• Simulations: iteratively equations are solved.

• Post-processing: the solution result is analysed and visualized using post-processor tool.

2.2 The Governing Equations of CFD
Continuity, momentum, and energy equations are the three fundamental governing equations of
fluid dynamics that talks about physics. All this three fundamental governing equations of fluid
dynamics are the base for CFD.

All of the fundamental governing equations of fluid dynamics are based on the three funda-
mental physical principles, which are:

• Conservation of mass

• Newton’s second law, and

3

Chapter 2. Theory

• Conservation of energy

These fundamental physical principles applied to a suitable model of the flow to produce math-
ematical statement of the governing equations, either in conservation or non-conservation form.
The form of the governing equation is depending on which flow model is used to derive it.

For a continuum fluid, there are four basic model of flow which is used to driving the gov-
erning equation. Two of the four model have a finite control volume either control volume fixed
in space with the fluid moving through it or the control volume moving with the fluid such that
the same fluid particles are always in the same control volume(Figure 2.1(a) and 2.1(b)). The
other two of the four flow model have infinitesimal small volume either it fixed in space, where
the fluid is moving through it or the volume moving alongside with a streamline (Figure 2.1(c)
and 2.1(d)).

Figure 2.1: Models of a flow[1]

2.2.1 The continuity equation
The continuity equation is the one of the governing flow equation which is obtained by applying
the conservation of mass principle to a suitable model among the four model of flow. There are
four forms of continuity equation depend on the four model of flow, but mathematically all are
the same. For this report the finite control volume fixed in space model of flow is used to derive
the continuity equation.

4

2.2 The Governing Equations of CFD

Figure 2.2: Finite control volume fixed in space[1]

This model shown at Figure 2.1(a).The control volume is fixed in space and it bounds by the
surface which is called the control surface. The detail of the flow model is shown in Figure 2.2,
where V is the flow velocity, dS is the vector elemental surface area, and dV is an elemental
volume inside the finite control volume. Applied the conservation of mass principle to this
control volume,which is expressed as follows

X = Y (2.1)

Where, X is the net mass flow out of control volume through surface S and Y is the time rate of
decrease of mass inside control volume.
First find an expression for the left side of Eq.2.1. Across any fixed surface the mass flow of
a moving fluid is equal to the product of density and volumetric flow rate of the fluid, which
is itself the product of area of surface and component of velocity perpendicular to the surface.
Therefore the elemental mass flow across the area dS will be:

ρV ndS = ρV.dS (2.2)

As shown from the Figure 2.2, dS always points out of the control volume, therefore the sign of
ρV.dS depend on the direction of V. It will be either positive (means outflow) when V points
out of the control volume or negative (means inflow) when V points into the control volume.
The summation over S of the elemental mass flow which expressed in Eq.2.2 gives the net mass
flow which out from the entire control volume through the control surface. Hence, the left side
of Eq.2.1 becomes

X =

∫∫
S

ρV.dS (2.3)

Now similarly find an expression for the right side of Eq.2.1. In the elemental volume dV, mass
will be product of density and dV. Therefore the total mass inside the control volume will be:∫∫∫

V

ρ dV (2.4)

5

Chapter 2. Theory

The rate of mass increase with time inside V is then

∂

∫∫∫
V

ρ dV ∂t (2.5)

The above equation can be express as follow

∂ρ

∂t
(dxdydz) (2.6)

And it is equal to the rate of mass increase with time inside the element. The right side of Eq.2.1
becomes the negative of Eq.2.6.

The conservation mass principle is said that the net mass flow out from the given system must
equal to the rate of mass decrease with time inside the given system. Applied this principle to
the fixed element in Fig.2.2, which gives the expression as follows:

[
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
]dxdydz = −∂ρ

∂t
(dxdydz) (2.7)

by doing simple rearrangement it becomes:

∂ρ

∂t
+ [

∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
] = 0 (2.8)

The term in brackets in Eq.2.8, is the divergence of ρV which is expressed with∇ .(ρV). There-
for Equation 2.8 becomes:

∂ρ

∂t
+∇.(ρV) = 0 (2.9)

This is the continuity equation in the form of a partial differential equation. Equation 2.9 de-
rived based on an infinitesimally small element that’s why the equation is in the form of partial
differential equation and also the element is fixed in space such that the equation is in the form
of conservation.

2.2.2 The momentum equation

To derive the momentum equation, newton’s second law will apply to a model of a flow. New-
ton’s second low stated that: the net force on the fluid element is the product of its mass and
acceleration of the fluid element. Newton’s second low mathematically written as follow:

F = ma (2.10)

Both the four models of fluid can be used to derive the momentum equation, but the infinitesimal
fluid element moving along a streamline, which is shown in the Figure 2.1(b) is chosen to derive
the momentum equation in this report.

6

2.2 The Governing Equations of CFD

Figure 2.3: Forces in the x-direction acting on infinitesimally small, moving fluid element[1].

Figure 2.3 shows the surface force in the x-direction which acting on the infinitesimally
small, moving fluid element and it used to derive the x component of the momentum equation.
Newton’s law which expressed mathematically in Eq.2.10 only show the vector relation, and it
can be express in three direction, i.e in x, y, and z direction as scalar form. So Eq.2.10 written
as the scalar form only in the x direction as follows:

Fx = max (2.11)

The left side of Eq.2.11 tells us the moving fluid element exposed by forces in the x direction
and there are two kinds of this force namely:

• The body force: the force that act directly on the mass of the fluid element volume.
Gravitational, centrifugal, and electromagnetic forces are some of the body force.

• The surface forces: the force that act directly on the surface of the fluid element. These
force is the result of two sources: the pressure distribution acting on the surface of the
fluid element, introduced by the outside fluid which surrounding the volume of the fluid
element; and the shear and normal stresses distributions acting on the surface of the fluid
element, it is the result of the friction between the outside fluid and the surface of the fluid
element.

The x component of the body force acting on the fluid element denote by B express as follow:

B = ρfx(dx dy dz) (2.12)

7

Chapter 2. Theory

Where, fx is the x component of the body force per unit mass acting on the fluid element and
(dx dy dz) is the fluid element volume.

The shear and normal stresses are related to the time change of the shearing deformation and
the volume of the fluid element, respectively. Both denote by τ with different directions.
The net surface force acting on the fluid element in the x direction express mathematically as
follow:

D = [p− (p+
∂p

∂x
)]dy dz + [(τxx +

∂τxx
∂x

dx)− τxx]dy dz

+[(τyx +
∂τyx
∂y

dy)− τyx]dx dz + [(τzx +
∂τzx
∂z
− τzx)]dx dy

(2.13)

Where, D is the net surface force acting on the fluid element in the x direction.

The total force acting on the fluid element is the sum of the body force and surface force acting
on the fluid element. Therefore, the x component of the total force found by adding Eq.2.12
and Eq.2.14 and cancelling some terms, it denote by Fx and express as follow:

Fx = [−∂p
∂x

+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

]dx dy dz + ρfxdx dy dz (2.14)

This equation, Eq.2.14 is the expression of the force term in Eq.2.11.
The right-side of Eq.2.11 is the product of mass and the x component of acceleration of the fluid
element.
Mass of the fluid element which denote by m is the product of the density and volume of the
fluid element and express as follow:

m = ρ dx dy dz (2.15)

The acceleration of the fluid element is the time rate of change of its velocity, and the x compo-
nent of the acceleration is denote by ax which mathematically expressed as follow:

ax =
Du

Dt
(2.16)

The combinations of Eq.2.14, Eq.2.15 and Eq.2.16 give the x component of the momentum
equation for a viscous flow. And by using similar procedure the y and z component of the
momentum equation can be found. Both the expression of the momentum equations, that means
x, y, and z components shown below:

ρ
Du

Dt
= −∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρfx (a)

ρ
Dv

Dt
= −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρfy (b)

ρ
Dw

Dt
= −∂p

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρfz (c)

(2.17)

Eq.2.17 (a) to 2.17(c) is the x, y, and z component of the momentum equations in the form of
non-conservation, respectively. Eq.2.17 is called the Navier-Stokes equations which is the name

8

2.2 The Governing Equations of CFD

of the founders of the equation. The Navier-stokes equations can be also obtained in the form
of conservation by applying the definition of the substantial derivative only in the left-hand side
of Eq.2.17.

Let consider the x component of the Navier-Stokes equation and the left-hand side of the equa-
tion re-write as follow:

ρ
Du

Dt
= ρ

∂u

∂t
+ ρV.∇u (2.18)

By expanding and rearranging the derivative term in the right-hand side of Eq.(2.18), the deriva-
tive term express as follow:

ρ
∂u

∂t
=
∂(ρu)

∂t
− u∂ρ

∂t
(2.19)

Similarly, by doing the vector identity for the divergence of the product of a scalar and a vector
and rearranging the divergence term in the right-hand side of Eq.2.18 re-wright as follow:

ρV.∇u = ∇.(ρuV)− u∇.(ρV) (2.20)

By substitute Eq.2.19 and Eq.2.20 into Eq.2.18 and rearranging, the following equation ob-
tained:

ρ
Du

Dt
=
∂(ρu)

∂t
− u[∂ρ

∂t
+∇.(ρV)] +∇.(ρuV) (2.21)

The term in brackets in Eq.2.21 is the same with the left-hand side of Eq.2.9 which is the
continuity equation and it is equal to zero. So Eq.2.21 reduces to:

ρ
Du

Dt
=
∂(ρu)

∂t
+∇.(ρuV) (2.22)

By substitute Eq.2.22 into Eq.2.17 (a), the x component of the Navier-Stokes equation in the
form of conservation is obtained. And with similar procedure the y and z component of the
Navier-stokes equation in the form of conservation also found. Both the Navier-Stokes equa-
tions in the conservation form shown below:

∂(ρu)

∂t
+∇.(ρuV) = −∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρfx (a)

∂(ρv)

∂t
+∇.(ρvV) = −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρfy (b)

∂(ρw)

∂t
+∇.(ρwV) = −∂p

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρfz (c)

(2.23)

2.2.3 The energy equation
The third physical principle, which is the conservation of energy, is applied to a model of a flow
in order to derive the energy equation. The same with the momentum equation derivation the
flow model of an infinitesimal fluid element moving along a streamline is used for deriving the
energy equation. The conservation of energy principle, which is the first law of thermodynam-
ics, stated that the rate of change of energy inside fluid element is the sum of the net heat flux

9

Chapter 2. Theory

into the fluid element and the rate of work done on the fluid element due to body and surface
forces.

The rate of change of energy inside fluid element is the combination of two energies: Inter-
nal energy due to the random motion molecules; and Kinetic energy due to translational fluid
element motion.

The Energy equations which is deriving from using the flow model of an infinitesimal mov-
ing fluid element and applying the first law of thermodynamics is in the non-conservation form
and mathematically written as follow:

ρ
D

Dt
(e+

V 2

2
) = ρq +

∂

∂x
(k
∂T

∂x
) +

∂

∂y
(k
∂T

∂y
) +

∂

∂z
(k
∂T

∂z
)

−∂up
∂x
− ∂vp

∂y
− ∂wp

∂z
+
∂uτxx

∂x
+
∂uτyx

∂y
+
∂uτzx

∂z

+
∂vτxy

∂x
+
∂vτyy

∂y
+
∂vτzy

∂z
+
∂wτxz

∂x
+
∂wτyz

∂y
+
∂wτzz

∂z
+ τ f.V

(2.24)

In sum up, it is very difficult to solve all the three governing equations analytically as both
equations are a coupled system of nonlinear partial differential equations, so numerical solutions
is required. Numerical solutions only give the value of the flow quantities at connected points
in the system, called numerical grid or mesh. Therefore, the decomposition of the domain into a
number of smaller, non-overlapping sub-domains is very important. Besides, the decomposition
of the domain, the differential equations that representing the flow must be converting into a
set of algebraic equation by using a procedure, called discretization. The resulting algebraic
equations can be linear or non-linear and it is usually large, so a digital computer is used to
solve it.

2.3 Numerical grid or Mesh
As mentioned in the previous section, CFD requires the subdivision of the geometry into a
number of smaller, non-overlapping sub-domains which contains points, nodes, faces, cells,
volumes (in the case of three dimensional (3D)) to solve the flow physics, and the network of
these sub-domains are called grid or mesh. The quality of the mesh is very important to get a
better solution, since solver use the previous node solution as initial conditions for solving the
next node. The time needed to solve the problem, the speed of convergence, usage of the RAM
memory and the accuracy of the solution highly dependent on the granularity of the mesh. In
general, the finer mesh gives more accurate solution but it consuming more time and RAM to
generate the solution.

The mesh can be uniform or non-uniform in terms of size of the mesh element: Uniform mesh
has approximately equal size elements, while non-uniform mesh has non equal size elements.
Both kind of mesh have their own advantages, for example non-uniform mesh is advantageous
than uniform mesh to capture nonlinearities and gradients in spatial locations where they are
strong with minimal numerical error, while in some case where numerical error is dependent to
a certain degree on the size difference between adjacent elements using uniform mesh is more
advantageous over non-uniform mesh.

10

2.3 Numerical grid or Mesh

The mesh can be create using a different kinds of element shape such as triangles, quadrilater-
als in 2D and tetrahedral, hexahedral, and prisms in 3D. The numbers of nodes in an element
depends on the shape of the element. Three dimensional elements requires more computational
time and memory required than two dimensional elements, since three dimensional elements
have a larger number of nodes than two dimensional elements. Therefore, the most suited ele-
ment shape for a particular application must be used when generating 3D meshes to produces
the least practicable computational effort.

Figure 2.4: Two dimensional elements: (a) Triangle element has 3 nodes and (b) Quadrilateral element
has 4 nodes

Figure 2.5: Three dimensional elements[5]: (a) Tetrahedral element has 4 nodes, (b) Hexahedral element
has 8 nodes, and (c) Prismatic element has 6 nodes

Generally, based on the connectivity of points, there are three types of meshes: Structured,
Unstructured, and Hybrid mesh.

• Structured mesh: in this type of mesh each point has the same number of neighbors,
in other word structured meshes has regular connectivity. Quadrilateral and hexahedral
elements are the possible element choice to produce structured mesh in 2D and 3D, re-
spectively. This kind of mesh has a better convergence and higher resolution.

• Unstructured mesh: each point can have different number of neighbors, which means
the mesh have irregular connectivity. Triangles and tetrahedral elements are the possible

11

Chapter 2. Theory

choices to produce unstructured mesh in 2D and 3D, respectively. This kind of mesh is
easy to make but it utilise high memory storage and needs longer time to compute.

• Hybrid mesh: this mesh is a combination of structured and unstructured mesh. This kind
of mesh is very useful for a very complex geometry, which is difficult to make a structured
mesh.

(a) Structured Mesh[11] (b) Unstructured Mesh[11] (c) Hybrid Mesh[12]

Figure 2.6: Types of Meshes based on the connectivity of points

The mesh can be created in the CFD package itself or in the third party software. The
OpenFOAM mesh generator utility, called snappyHexMesh and the third-party mesh generator
tool, called Salome are used to crate pure hexahedral and tetrahedral mesh of the conductivity
sensor, respectively, in this thesis. In the next subsections the overview of the theory behind
snappyHexMesh and Salome will be outline.

2.3.1 Salome

”SALOME is a free software that provides a generic platform for pre and post-processing for
numerical simulation. It is based on an open and flexible architecture made of reusable compo-
nents available as free software[7].”

Salome is free software and it is compatible with OpenFOAM. In Salome, the user can ei-
ther make both the geometry and generates the mesh or import the geometry from other CAD
software and generate the mesh only. It is easy to use, as it contains various drawing operations
and a lot of different kinds of shapes to draw the geometry and a lot of algorithms for generate
the mesh. Since Salome has a lot of different kind of algorithms and hypothesis, it is possible
to generate unstructured, structured and hybrid mesh. The creation of fine mesh, especially
tetrahedral mesh (unstructured mesh) is computationally heavy and as such requires powerful
computer. Salome has several options for exporting the generated mesh, so the user can export
the mesh in different file format depends on the software used for the CFD simulation later. The
.UNV file format is used for importing the mesh into OpenFOAM.

12

2.4 OpenFOAM

2.3.2 SnappyHexMesh
SnappyHexMesh is the mesh generation utility supplied with the OpenFOAM. It generates a
hexahedral mesh from a triangulated surface geometry in the Stereolithography (STL) format.
It is imported from external CAD software and located in a constant/triSurface sub-directory of
the case directory[8]. The geometry with the STL file format must be surround by a background
mesh of hexahedral cells which is created using blockMesh utility of OpenFOAM before the
snappyHexMesh is executed. The objective of the snappyHexMesh is generating the structured
mesh(pure hexahedral mesh) of an object by cutting and refining of the background mesh which
is intersect with STL surface and snapping it to the surface of an object. And finally it crates
the boundary layers. The entire process is controlled by snappyHexMeshDict which is located
in the ”system” sub-directory. The snappyHexMesh contains three main libraries or programs
called:

• ”autoRefineDriver”: responsible for the cutting and refining of the mesh

• ”autoSnapDriver”: responsible for snapping of the mesh on to the surface of an object

• ”autoLayerDriver”: responsible for the Creation of the boundary layers

These three programs activates by setting true for castellatedMesh, snap, and addLayeres com-
mand which are found in the snappyHexMeshDict files, respectively.

SnappyHexMesh is suitable and effective, probably the quicker to generate a complex struc-
tured mesh. But for the very complex geometry it’s too difficult to make a high quality mesh,
especially in the boundary layer regions, since it generates its own mesh by cutting the back-
ground mesh through the surface.

2.4 OpenFOAM
OpenFOAM is a free Linux-based CFD Toolbox distributed by the OpenFOAM foundation
which includes Pre-processing, solving (simulation), and Post-processing. OpenFOAM is based
on a C++ library, which the user can create a new solvers and utilities using some pre-requisite
knowledge of C++ programing language[8]. It does not have any kind of graphical user inter-
face, so every information or inputs needs to run the program is feeding through specific text
files using Linux terminal.

OpenFOAM are organised into different set of directories according to the type of flow, for
example combustion, compressible, electromagnetics, incompressible and then different sub-
directories according to types of solver, for example icoFoam, pisoFoam, simpleFoam. To use
OpenFOAM, the user must create a case inside a directory and sub-directory depends on what
kind of flow and solver is going to be used for solving the problem. The user also must assign a
name for the case which becomes a name of a directory and it contains the minimum set of files
required to run an application. Every OpenFOAM cases must contains at least three directory
folders which are ”system”, ”constant” and ”time” directories.

A ”system” directory contains three main files which are used to set parameters for the applica-
tion. The controlDict files contains a general information about start/end time for simulation,

13

Chapter 2. Theory

time step of solution, written time interval in which the simulation results are written, parameter
for data output, and etc; The fvSchemes file is the file which the user define the discretiastion
schemes for derivatives, divergences, laplacian, interpolation, etc terms at run-time used in the
solution; and the fvSolution file contains the equation solvers, tolerances, algorithm and con-
verergence criteria, which are used to run the case.

A ”constant” directory contains a files used to specifying physical properties such as transporta-
tion properties and RASproperties (properties for Reynolds averaging) for turbulent modeling
needed to solve the case. There is also a sub-directory polyMesh which contains full informa-
tion about a Mesh.

The ”time” directories containing individual files of data, it can be initial and boundary con-
ditions which is set by the user in the ”0” folder as the simulation start at time t=0 or the results
written by OpenFOAM itself, for particular fields, for example velocity and pressure fields.
The names of each time directories are based on written interval value of the result of simula-
tion which the user defines it in the controlDict directory.

Figure 2.7 shows the basic directory of an OpenFOAM case structure, which contains the min-
imum set of files required to run an application.

Figure 2.7: OpenFOAM case structure[8]

When once put every necessary properties and parameters for each three folder in the case
directory, the user must use a serious of commands in terminal in order to execute the case.The
command used to execute the solution is same as the solver used, for examples ”icoFoam” for
icoFoam solver and ”simpleFoam” for the simpleFoam solver, from the case directory.

14

Chapter 3
Modeling

As it was mentioned before, CFD methods use three general procedures for solving the given
case. The brief insight into the three general procedures of CFD used for modeling the conduc-
tivity sensor and injection system will be outline in this chapter.

3.1 Pre-processing

3.1.1 Mesh generation
As mentioned in the introduction, this thesis has two main objectives: validate the in-house
conductivity sensor and design the injection system. For the first task, simpleFoam simulations
were performed to compute for the sensor the flow behaviour in the form of the velocity and
pressure field. For the second task, both simpleFoam and scalarTransportFoam simulations per-
formed using a geometry which consists the injection system part together with the conductivity
sensor, in order to visualize the distribution of a tracer (passive scalar) concentration throughout
the conductivity sensor for a given injector design.

The fluid part of the geometries for both tasks was constructed in Salome. Because the ve-
locity and pressure profile at the entrance is not known, one extends the pipe at the entrance
with the dimension of approximately five times the diameter of the pipe at the inlet. This is
used to get the laminar flow behaviour of the velocity filed and avoid large velocity gradients in
the direction normal to the boundaries near the original inlet of the geometries. For each geom-
etry, first different parts of the geometry define using different drawing operation in geometry
module of Salome, such as points, lines, 2d sketch, cylinder, faces, solid, rotation, cut, mirror
image, etc, and then all parts put together using the operation called partition. Group of solids
and faces of the geometry was generated in the geometry module. Group of solids used later
in the mesh module to mesh the geometry with different level of refinement using sub-mesh,
while group of faces used to create group of boundary patch for the mesh and used to define the
boundary condition later in the OpenFOAM case. Among the several options of algorithms and
hypothesis in Salome, NETGEN 3D was used for both geometry to create the pure tetrahedral
mesh (unstructured mesh).

Beside the tetrahedral mesh which was generated in Salome, the hexahedral mesh (structured
mesh) of the conductivity sensor is created in OpenFOAM mesh generation utility, called snap-

15

Chapter 3. Modeling

pyHexMesh. To generate the hexahedra mesh of the conductivity sensor in snappyHexMesh,
first the geometry of the sensor which was created in Salome is imported as .stl file into a snap-
pyHexMesh directory and located in ”triSurface” sub-folders inside ”constant” sub-directory.
The snappyHexMeshDict which is located in the ”system” sub-directory is used to control the
entire process, and this files located in AppendixD. This kind of mesh gives lower number of
cells and nodes compared to the tetrahedral mesh which was created in Salome for the same
geometry.

The mesh of the conductivity sensor geometry has three different groups of patches, called:

• inlet,

• outlet, and

• walls

While the mesh of the geometry which contains the injection part together with the conductivity
sensor has four different groups of patches, called:

• inlet

• injection-inlet

• outlet

• walls

After the mesh created in Salome, then it exported in .UNV file format and later it imported
to OpenFOAM. In Salome the mesh is created in mm and converted to m when imported to
OpenFOAM, since all the units in OpenFOAM are SI Units. The mesh of the given geometry
located in ”polyMesh” sub-folder inside the ”constant” folder under subdirectory incompress-
ible/simpleFoam for pressure and velocity simulation, where incompressible indicates the type
of flow; and a subdirectory basic/scalarTransportFoam for tracer concentration simulation.

3.1.2 Boundary and Initial Conditions
After the mesh of the geometry is created and imported into OpenFOAM, the next and most
important step in CFD simulation are the definition of the initial and boundary conditions of
the different fields. All this files are located in the ”0” directory of the case, as the case start
up at time t=0 sec. The initial conditions define the initial state of the case and the boundary
conditions define what is going on the boundaries of the domain.

For simpleFoam, the ”0” directory contains two files namely one for the pressure field and
one for the velocity field. And for scalarTransportFoam, the ”0” directory contains three files
namely one for the volumetric flow rate (φ), one for the velocity field and the other for the con-
centration/scalar field. But the initial and boundary conditions was defined only for scalar field
while the φ and velocity files are copy from the simpleFoam case at the simulation latest time.

Pressure field (p): for the incompressible solvers in OpenFOAM, pressure is defined as kine-
matic pressure, which is the ”reduced” pressure divided by density and it has the Unit ofm2/s2.

16

3.1 Pre-processing

As the pressure absolute value is not relevant, the initial field is set to be ”uniform” with the
value of zero, which means initially the pressure inside the geometry was the same as atmo-
spheric pressure. The boundary conditions are defined for all the boundary patches of the ge-
ometries, which are described in the previous sub-section. For inlet, walls and injection-inlet
boundary patches, a ”zeroGradient” boundary conditions is used, which means that pressure
gradient is zero in the direction perpendicular to the boundary and it extrapolates the values
from the domain. For the outlet boundary patch, the fixedValue condition with a value of ”uni-
form 0” is used, it means initially the pressure at the outlet was the same as the atmospheric
pressure and throughout the simulation this value will be changing.

Velocity field (U): the initial field is set to be ”uniform” with the value of zero, but the ve-
locity must be expressed with three dimensions, such as x, y and z directions, so the inter-
nal field expressed as the form of ”uniform (0 0 0)”. The boundary conditions (inlet, walls,
and injection-inlet) are set to be uniform and fixed (”fixedValue”). In order to visualize the
tracer concentration distribution throughout the sensor geometry, both simpleFoam and scalar-
TransportFoam simulations are performed two times. Hence, the boundary condition for the
injection-inlet patches is defined two times with different initial velocity values. The first sim-
pleFoam simulation was performed when the tracer was injected while the second simpleFoam
simulation was performed when the tracer injection was finished. The value of ”uniform (0 0
0)” is used at the walls boundary patches, which means the velocity of the fluid at the wall of
the geometry in both direction is zero throughout the simulation. For the outlet boundary patch,
a ”pressureInletOutletVelocity” condition with the value of ”uniform (0 0 0)” is used, it is the
combination of pressureInletvelocity and InletOutlet conditions. This boundary condition is a
good choice when the direction of the fluid flow is unknown and there is a back flow at the out-
let. Since the value is set as uniform (0 0 0), the pressureInletOutletVelocity condition works
like the zeroGradient condition, that means both conditions gives the same result for our cases.

Concentration/scalar transport field (T): the initial and boundary condition for this field is de-
fined two times at the injection-inlet boundary patch, as the simulation was performed two times
in scalarTransortFoam solver. For the first simulation, the simulation when the tracer was in-
jected, the initial field set to be uniform with the value of uniform zero, which means no tracer
concentration initially inside the entire geometry. And ”fixedValue” condition with the value
of uniform 1 is used as a boundary condition at injection-inlet boundary patch. And for the
second simulation, the simulation when the tracer injection was finished, the initial field set to
be ”nonuniform” with value of T which is found from the first scalarTransportFoam simulation
at the latest time (the latest time of the simulation is the same with the tracer injection time,
which is 1 sec in this case). And the boundary condition change from ”fixedValue” with the
value of uniform 1 to ”zeroGradient” condition at the injection-inlet patch.
For both scalarTransportFoam simulations the same boundary condition is defined for the inlet,
outlet and walls boundary patches. For inlet, ”fixedValue” conditions with the value of uniform
zero is used, meaning throughout the simulation there is no scalar concentration at the inlet of
the geometry. For the outlet and walls boundary patches, ”zeroGradient” conditions is used,
meaning the concentration gradient is zero in the direction perpendicular to the boundary and it
extrapolates the values from the domain throughout the simulation.

In order to perform the scalarTransportFoam simulation, the two files beside the T file, such
as φ and velocity files are copied from the simpleFoam simulation in to the ”0” subdirectory of

17

Chapter 3. Modeling

the scalarTransportFoam simulation case.
For the first simulation of scalarTransportFoam, the φ and velocity files are copied from the first
simpleFoam simulation at the latest time into the ”0” subdirectory of the scalarTransportFoam
case, as the case start up at time t=0 sec.
And for the second simulation of scalarTransportFoam, the φ and velocity files are copied from
the second simpleFoam at the latest time into the ”1” subdirectory of the scalarTransportFoam
case, as the case start up at time t=1 sec.

Summaries of the boundary conditions used for simpleFoam and scalarTransportFoam simu-
lations in the case of both modeling of the conductivity sensor and injection system design are
presents in Table 3.1 to Table 3.3.

Variable inlet outlet walls

Velocity(U) fixedValue zeroGradient fixedValue

Pressure(p) zeroGradient fixedValue zeroGradient

Table 3.1: Boundary Conditions for simpleFoam simulation in the case of the conductivity sensor mod-
eling

Variable inlet injection-inlet outlet walls

Velocity(U) fixedValue fixedValue zeroGradient fixedValue

Pressure(p) zeroGradient zeroGradient fixedValue zeroGradient

Table 3.2: Boundary Conditions for simpleFoam simulation in the case of injection system design

Variable inlet injection-inlet outlet walls

concentration(T) fixedValue fixedValue/zeroGradient zeroGradient zeroGradient

Table 3.3: Boundary Conditions for scalarTransportFoam simulation in the case of injection system
design

The boundary conditions files for pressure and velocity fields are located in AppendixA and
for Concentration field is found in AppendixB

3.1.3 Physical Properties
The physical properties for the case stored in the ”control” directory of the OpenFOAM direc-
tory tree and each physical properties file has a suffix name of Properties. For a simpleFoam
case, two dictionaries must be defined: transportProperties dictionary is the dictionary which
the kinematic viscosity of the case is stored, water at a temperature of 18oc with the value of

18

3.1 Pre-processing

1.06∗106[9] was used for this thesis; and RASProperties dictionary which contains information
about RASModel and flow properties. SimpleFoam is used for steady-state turbulence flow but
it is possible to use it also for steady-state laminar flow simply by putting laminar as RASModel
and switched off turbulence in the RASProperties dictionary[8]. For the scalarTransportFoam
case, the only property must that specified is the diffusion coefficient of the tracer which is
stored in the transportProperties dictionary.

All the physical Properties files are located in the AppendixA for simpleFoam case and in the
AppendixB for the scalarTransportFoam case.

3.1.4 Control, Discretisation and Linear Solver Settings

Files which contain information about control, discretisation and linear-solver settings are stored
in the controlDict, fvSchemes and fvSolution dictionary, respectively, and both these three dic-
tionaries are located in the ”system” directory.

In controlDict dictionary: start/stop time for the simulation, time step for solution, and reading
and writing of the solution data were sets.

In fvSchemes dictionary: the choices of finite volume discretisation schemes for terms in equa-
tions were specified.

In fvSolution dictionary: the choice of the linear-solver, solution tolerances and algorithm for
the fields which are calculating in the simulation were sets. OpenFOAM have several options of
linear-solver but in this thesis, GAMG: generalized geometric-algebraic multi-grid solver with
GaussSeidel smother, tolerance of 1 ∗ 107 , and relative tolerance of 0.1 were used for pres-
sure equation; PBiCG: preconditioned bi-conjugate gradient solver with diagonal incomplete-
LU(DILU) preconditioner, tolerance of 1 ∗ 108 and relative tolerance of 0.01 were used for
velocity equation; and PBiCG solver with DILU preconditioner, tolerance of 1 ∗ 105 and rel-
ative tolerance of 0 were used for tracer transport(T) equation. As the relative tolerance value
set to 0 for the tracer transport, the solution forced to converge at each time step to the solver
tolerance.

Both the solver tolerance, tolerance and relative tolerance, relTol determines the convergence
of the solver. The solver tolerance should represent the minimum value of the residual and
the relative tolerance specifies the ratio of current to initial residuals value which solver uses as
convergence criteria. The solver converges if either the residuals is less than the solver tolerance
or the value of the ratio of current residual to final residual falls below the relative tolerance[8].

All linear-solver settings for simpleFoam and scalarTransportFoam simulations are summarise
in Table 3.4.

19

Chapter 3. Modeling

Variable Solver Preconditioner Smoother Tolerance relTol

Velocity(U) PBiCG DILU - 1 ∗ 108 0.01

Pressure(p) GAMG - GaussSeidel 1 ∗ 107 0.1

concentration(T) PBiCG DILU - 1 ∗ 105 0

Table 3.4: Linear-solver settings for both simpleFoam and scalarTransportFoam simulations

All this text files are located in AppendixA for simpleFoam case and in AppendixB for the
scalarTransportFoam case.

3.2 Running the Simulation
After setting every information and data in the three directory, such as ”0”, ”constant”, and ”sys-
tems” directory, then the next step will be running the simulation. The simple way of running
the OpenFOAM application is to run the case in the foreground. For example to run simple-
Foam, first entering the case directory and typing simpleFoam at the terminal/command prompt.

For this thesis every OpenFOAM cases running in parallel on multiprocessor using NTNU’s
supercomputer: Vilje. In order to run the simulation in the supercomputer, all files of the case
must first be transferred from the host computer to the supercomputer. And in addition to all
OpenFOAM case files two additional files are needed: decomposeParDict which is located in
the system directory and the job script file which contains all information used to run the case
in the supercomputer. The more detailed description about how to run the OpenFOAM case in
parallel using supper computer is outlined in section 3.4.

Summary: For the case of modeling the conductivity sensor, simulations were performed with
the simpleFoam solver using hexahedral and tetrahedral meshes of the sensor. And for the case
of the injection system design, several simulations were performed for each of the injector de-
sign with the simpleFoam and the scalarTransportFoam solvers using the following procedures:

For simpleFoam:

• First, the pressure and velocity fields were calculated at a time when the tracer was in-
jected.

• Second, the pressure and velocity fields were calculated at a time when the tracer injection
was stopped/finished.

For scalarTransportFoam:

• First, the initial distribution of the tracer concentration inside the sensor was analysed
when the tracer was injected using the value of φ and velocity fields obtained from the
first simpleFoam simulation.

20

3.3 Post-processing

• Second, the final distribution of the tracer concentration was analysed when the tracer
injection was finished using the value of φ and velocity fields obtained from the second
simpleFoam simulation and the value of concentration field obtained from the first scalar-
TransportFoam simulation as initial conditions for the T field.

3.3 Post-processing
OpenFOAM has a post-processing tool to visualize the result of the simulation, called paraFoam.
It is also used to view the mesh before the case run to check any error in the mesh. To start the
paraFoam post-processing, typing paraFoam in the terminal window from within the case di-
rectory or from another directory. This opens the paraView window showing the solution of
the given case graphically. There is a panel in the left side of the paraview window which is
used to control the given case. This panel contains the following: ”Pipeline browser” which
lists all opened modules in paraView; ”Properties panel” which contains the input selections,
such as times, regions and fields for the given case; ”Display panel” which used to control the
selected module visual representation; and ”Information panel” which gives information about
mesh geometry and size[8].

In this thesis, the final result of pressure and velocity fields are shown graphically throughout the
entire geometry for the simpleFoam simulation and the distribution of the tracer concentration
throughout the geometry are shown graphically for scalarTransportFoam simulation.

3.4 Running OpenFoam on a Supercomputer
Running OpenFOAM using a single processor sometimes takes long time to generate a solution,
especially for complex geometry, very fine and unstructured mesh. So to generate a solution in
the short period of time it is better to run OpenFOAM in parallel on distributed processor using
a supercomputer. To run OpenFOAM case in parallel, the geometry and associated fields must
be broken into pieces and distributed to a separate processor using a method, called domain
decomposition. The standard message passing interface (MPI) is used to running OpenFOAM
in parallel.

The OpenFOAM utility, called ”decomposePar” is used to decompose the mesh and fields.
There is a file in the system folder which contains the parameters used for the decomposition
of the mesh and fields, and it is called ”decomposeParDict”. OpenFOAM has three methods of
decomposition which specified in the following method keyword: ”Simple”, ”hierchical” and
”scotch”.

The supercomputer which is found at the NTNU is used to run all the simulation cases for
this thesis. It is called ”Vilje” and it has 1404 nodes, 2 eight-core processor per node and 16
cores per node. There is a lot of software installed on it including OpenFOAM[10].

All simulations used 16 mpi processors, so the mesh and associated fields must be broken in to
pieces and distributed into these 16 processors. ”Simple” method keyword is chosen to decom-
pose the mesh and fields for both simpleFoam and scalarTransportFoam simulations. The same
decomposeParDict file is used for both solvers, and it is located in AppendixC.1.

21

Chapter 3. Modeling

To run OpenFoam on Vilje, a simple job script is needed. This job script contains name of
the job, Vilje account name, the wall clock time limit of the job, number of cpus, number of
mpi processor and some other information needed to run the case. First it must be made ex-
ecutable by typing ”chmod +x < jobscriptname > in terminal, since it written in the host
computer, then it has to be submit by typing ”qsub < jobscriptname >”. The job scripts used
for both simpleFoam and scalarTransportFoam in this thesis are located in AppendixC.2.

Each file used for running a case in OpenFOAM including the job script can be written ei-
ther in the supercomputer itself or in the host computer and transfer into the supercomputer
home directory using a command ”scp” in the terminal. This command used for transferring
files and folder from host computer to the supercomputer and vice versa.

After the simulation is done, the solution must be gather together and put into the specific
time folders in the ”0” directory of the OpenFOAM case, since the solution is distributed into
each mpi processor as the case running using 16 mpi processor. ”ReconstructPar” command
which is specified in the job script is responsible for this task.

3.5 Experimental Work
A simple experiment was performed to measure the pressure drop of the real conductivity sensor
using various pump speed. The experiment setup consists of U-tube, conductivity sensor, pump,
plastic pipe and T-junction. The setup is shown in figure 3.1.

Figure 3.1: Experiment setup

Distilled water is pumped from source tank to sink tank through the conductivity sensor
with various pump speeds and the pressure drop over the conductivity sensor is read from the
U-tube.
The objective of performing this experiment is to check the viability of the simulation results.
Less or equal to 5% error between the simulation and the experiment result is acceptable. All
the experiment results for the various pump speeds are summarised in Table E.1 which is located
in AppendixE.

22

Chapter 4
Result and Discussion

As mentioned in chapter one, this thesis has two main objectives. To fulfill the two objectives
several simulations were performed using simpleFoam and scalarTransportFoam solvers.

To validate the design of the in-house conductivity sensor and to get a best suited mesh type for
the sensor geometry, several simpleFoam simulations were performed utilising tetrahedral and
hexahedral meshes of the liquid body in the sensor.

To design the injection system, two types of injector geometries were studied. To visualize
the trace cloud formation and distribution throughout the geometry for a given injection design,
simulations were performed with the simpleFoam and scalarTransportFoam solvers.

Two different names were used for the same conductivity sensor in this thesis namely old and
modified sensor. Old sensor is denoted for the conductivity sensor geometry which was gener-
ated using a measurement from the technical drawing and direct measurement from the physical
sensor, while modified sensor is denoted for the conductivity sensor geometry which some part
of the sensor geometry changed with in expected error bounds.

Figure 4.1 and 4.2 summaries the main results from the simulations for the modeling of the
conductivity sensor and injection system design cases. The more detailed discussions on all
obtained results are outline in the next sub-sections.

23

Chapter 4. Result and Discussion

Sensor geometry
Simulation
Performed

Results

Old sensor (Hex-
ahedral Mesh)

simpleFoam
The result of simulation is not in good agreement with
the experiment, 55% error was found. The mesh qual-
ity is also not good enough.

Old sensor
(Tetrahedral
Mesh)

simpleFoam
The result of simulation is not in a good agreement
with the experiment, 38.7% error was obtained. But
the mesh has a good quality and granularity.

modified sensor
(Hexahedral
Mesh)

simpleFoam

Yields a better result of simulation than the above two
cases, but still not in a good agreement with the exper-
iment, 23.7% error was found. The mesh has a granu-
larity but does not have a best quality.

Modified sensor
(Tetrahedral
Mesh)

simpleFoam

The result of simulation is in a good agreement with
the experiment showing only 4.8% error. A pressure
drop of 63.49cmH2O was obtained. The mesh has a
good quality but it needs to be more fine (dense).

Table 4.1: Summaries of the results of simulations for a conductivity sensor modelling case

Injector geometry
Simulation
Performed

Results

90 degree bent cylinder
with a needle shape at
one end

simpleFoam(x2)
and scalarTrans-
portFoam(x2)

The tracer cloud was formed in unex-
pected direction and most of the tracer goes
through in the top of the sensor. This is not
a desired occurrence.

90 degree bent cylinder
with circular shape at
both end

simpleFoam(x2)
and scalarTrans-
portFoam(x2)

This design gives a better cloud formation
and tracer distribution throughout the sensor
geometry.

Table 4.2: Summaries of the results of simulations for injection system design case

4.1 Modeling of conductivity sensor
The aim of this section is to perform the simpleFoam simulation of the conductivity sensor to
visualize the flow behavior of the fluid inside the sensor. This is used to validate the design of the
in-house conductivity sensor. Simulations were performed utilising tetrahedral and hexahedral
meshes. The objective of performing the simulation with different types of meshes of the sensor
is to find how the results of simulations are affected by the choice. For this purpose only the
fluid part of the conductivity sensor was created in Salome, as shown in figure 4.1 and figure
4.2.

24

4.1 Modeling of conductivity sensor

Figure 4.1: The fluid part of the conductivity sensor

(a) section view of the fluid part

(b) cone-part (c) rozita-part

Figure 4.2: Section view of the fluid part of the conductivity sensor

25

Chapter 4. Result and Discussion

As shown in figure 4.2, all the black color parts are the fluid part and all the gray color parts
are the solid parts and the solid part consider like a wall in the simulation. But when created the
geometry in Salome, the fluid part created as a solid and a solid part was created as empty. This
is because of the mesh only generated on the fluid.

4.1.1 Hexahedral Mesh
The hexahedral mesh of the sensor fluid part was created using the OpenFOAM mesh generator
utility, called snappyHexMesh. The fluid part which was created in Salome used to generate
this mesh. The geometry was imported to snappyHexMesh case directory as a .stl text format.
This mesh has 1,933,973 of hexahedra cells and 26,039 of polyhedra cells and it shown in figure
4.3.

Figure 4.3: Hexahedral mesh of the sensor fluid part

As seen from figure 4.3, the quality of the mesh was not good enough, especially around
the pin part and at the tip of rozita part. This is due to the Sharpe edge both at the tip of the
pin and rozita. It is difficult to get six faces around the pin part and at the tip of the rozita, so
instead of hexahedra cells polyhedra cells was created, since six faces are needed to generate
hexahedral element shape. Generally, the mesh has six non-orthogonal faces and two highly
skewed faces which may affect the quality of the result of simulation later in the simulation.
The effect of the non-orthogonal faces can be removed by putting non-orthogonal corrector in
the ”fvSolution” subdirectory. As seen from figure 4.3 which is indicated by the red circle, the
mesh has a uniform six layers in the narrowest part of the sensor and it is a good number of
layers for laminar flow.

After the mesh was generated, the simulation was done in OpenFOAM with the simpleFoam
solver to visualize the flow behaviour in the form of the velocity and pressure fields. Simula-
tions were performed using various pump flow rates. The result of simulation for a maximum

26

4.1 Modeling of conductivity sensor

pump flow rate, which gives 0.488m/s of sensor inlet velocity is shown in figure 4.4 and 4.5 and
the rest of the results are summarise in Table E.1.

As seen from figure 4.4, the fluid passing through the sensor with similar velocity which is
equal to the initial sensor inlet velocity, except in the rozita and cone part of the sensor. There
was a high velocity in these two parts. This result indicates that the flow cross sectional area
in the rozita and cone part is not the same with the flow cross sectional area of the rest of the
sensor parts.

The pressure decreases along the fluid flow direction as shown in figure 4.5, this is mainly due
to the cone and rozita parts of the sensor which creates a higher reduction in pressure. The pres-
sure drop of 29.98cmH2O was found for sensor inlet velocity of 0.488m/s and it is very lower
than the pressure drop of 66.7cmH20 which was found from experiment for the same sensor
inlet velocity. There was approximately 55% of error between the simulation and experiment.

Figure 4.4: Velocity Field: top at t=0, middle at t=150 and bottom at t=300 sec

27

Chapter 4. Result and Discussion

Figure 4.5: Pressure Field: top at t=0, middle at t=150 and bottom at t=300 sec

28

4.1 Modeling of conductivity sensor

4.1.2 Tetrahedral Mesh

The tetrahedral mesh of the sensor fluid part was created in Salome using the same geometry
in the above case.The sensor geometry was meshed with different refinement level using a sub-
mesh. The mesh is more fine in the rozita and cone part of the sensor geometry, since this two
parts are the most critical part for the pressure drop as seen from the simulation result of the
above hexahedral mesh case. This mesh is pure tetrahedra mesh with 6,608,075 tetrahedra cells
and it shown in figure 4.6.

Figure 4.6: Tetrahedral mesh of the sensor

The mesh has 334 non-orthogonal faces and no skewed faces. Similarly, the effect of these
non-orthogonal faces were removed by sitting non-orthogonal corrector in ”fvSolution” subdi-
rectory. The mesh has more than six layer in the narrowest part of the sensor. But the layer is
not uniform like the hexahedral mesh, since tetrahedra element shape gives unstructured mesh
type. This mesh has a better quality than the hexahedral mesh in the above case, as the mesh
has a good uniformity and granularity throughout the entire sensor geometry.

Similarly, simulations were performed in OpenFOAM using the simpleFoam solver with vari-
ous pump flow rates. The results of simulations are shown in figure 4.7 and figure 4.8 for sensor
inlet fluid velocity of 0.488m/s and the rest of the results of the remaining sensor inlet velocities
are summarise in Table E.1.

As seen from figure 4.7 and 4.8, the behaviour of the result of simulation for the tetrahedral
mesh is almost the same with the result from the hexahedral mesh. As shown clearly in figure
4.7, there is a zero fluid velocity around the tip of the pin in the outlet side. The pressure drop
for the tetrahedral mesh which is 40.9cmH2O is much higher than which is found from the hex-
ahedral mesh for the same sensor inlet velocity of 0.488m/s. But still the result of simulation for
the tetrahedral mesh was not the same or nearly the same with the experimental result, 38.7%
of error was found.

29

Chapter 4. Result and Discussion

Figure 4.7: Velocity Field: top at t=0 sec, middle at t=150 sec and bottom at t=300 sec

Figure 4.8: Pressure Field: top at t=0 sec, middle at t=150 sec and bottom at t=300 sec

30

4.1 Modeling of conductivity sensor

Generally, as seen from the result of both types of meshes, the results of simulations were
not in a good agreement with the experiment result. As mentioned in section 3.5, a good agree-
ment between the result of simulation and experiment with only less or equal to 5% error is
very important to be sure of the accuracy of the result of simulation. So, before continue with
the next task of the thesis some investigation on the fluid property, the choice of the boundary
conditions, solvers and the dimensions of the sensor fluid part was performed.

The Reynold numbers were calculated for various pump flows rates at sensor inlet diameter
and all the values are less than 2000 as seen from Table E.1. This value tells that the flow has
a laminar behavior. All simulations assume a laminar flow, so no need have changed to turbu-
lence flow. Friction is already considered in the calculations for the laminar flow simulations
and no problem in the boundary conditions and solvers. So this shows that the problem is not in
the simulations, but is more likely in the dimensions of the sensor fluid part geometry, since the
drawing of the fluid part was created using the dimensions which are measured directly from the
physical sensor and the sensor has some parts which are difficult to measure exactly. Sensitivity
analyse was performed on the sensor geometry to get the exact dimensions of sensor fluid part.
The result obtained from the sensitivity analyse was discussed in the next sub-section.

4.1.3 Sensitivity Analyse

As seen from the result of simulation for both hexahedral and tetrahedral mesh in sub-section
4.1.1 and 4.1.2, the cone and rozita parts are the most critical part for the increment in pres-
sure drop and in addition to that these two parts are also the most difficult parts to measure the
dimensions exactly from the real sensor using a measurement tool. Therefore, the sensitivity
analyse focused on this two parts.

First, two concentric cylinder with rozita in the middle was created, as shown in figure 4.9(a)
and mesh it with tetrahedral element shape in Salome. Then the simulation was performed with
three different size of rozita, for r values of 1.5, 1.45 and 1.4 mm using simpleFoam solver.
Where, r is the radius of the single rozita cylinder which is shown with red circle in the bottom
left side of figure 4.9(a). The pressure drop of 5.42, 6.09 and 7.09 m2/s2 was found, respec-
tively. The result shows that the reduction of the rozita radius with 0.05 and 0.1mm increase the
pressure drop by 12.36% and 30.81%, respectively.

Second, two concentric cylinder with cone at the inlet side was created, as shown in figure
4.9(b) and mesh it with tetrahedral element shape in Salome. The simulation was performed
with three different values of x: 0.46, 0.44 and 0.42 mm. Where, x is the perpendicular distance
between the outer and inner cone which is shown with red line in the bottom left side of figure
4.9(b). The pressure drop of 5.36, 5.47 and 5.59 m2/s2 was obtained, respectively. The simu-
lation result shows that the reduction of x with 0.02 and 0.04mm increase the pressure drop by
approximately 2 and 4.3%, respectively.

The sensor fluid part geometry was modified based on the sensitivity analyse results. The radius
of the rozita decreased by 0.01mm while the perpendicular distance between the outer and inner
cone decreased by 0.06mm. The modified sensor fluid part was created in Salome and it shown
in figure 4.10.

31

Chapter 4. Result and Discussion

(a) Two concentric cylinder with rozita in the middle

(b) Two concentric cylinder with cone at the inlet side

Figure 4.9: Simple geometries using for sensitivity analyse

Figure 4.10: Section view of the modified sensor fluid part

Similarly, simulations with simpleFoam solver were performed for the modified sensor
using both hexahedral and tetrahedral mesh and results were discussed in the next two sub-
sections.

4.1.4 Hexahedral mesh of the modified sensor
This mesh was generated in snappyHexMesh using the same parameters and procedures as the
first case. The mesh has 4,962,578 of hexahedra cells and 581,578 of polyhedra cells. This
mesh is shown in figure 4.11.

32

4.1 Modeling of conductivity sensor

Figure 4.11: Hexahedral mesh of the modified sensor

This mesh is approximately three times finer than the hexahedral mesh of the old sensor
which is illustrated in sub-section 4.1.1. Figure 4.11 shows that the quality of the mesh around
the rozita part was not good enough. This is due to the sharp edge around it, which is created
because of the reduction of the rozita radius. The mesh has three non-orthogonal faces, seventy
skewed faces and eight layers. This numbers indicated that the mesh has a good quality in terms
of the number of non-orthogonal faces and layers, while in terms of number of skewed faces
the mesh quality is not good enough.

After the mesh was created, simulations were performed using simpleFoam solver for various
pump flow rates. The result of simulation for the sensor inlet velocity of 0.488m/s is illustrated
in figures 4.12 and 4.13. Results for the others pump flow rates are illustrated quantitatively in
Table E.1.

Figure 4.12 clearly shows that the reduction of the rozita radius increase the fluid velocity
inside the rozita part. This is due to the effect that, for the size reduction of any part of the
sensor, makes the reduction of the flow cross sectional area. In addition to that the figure shows
unexpected result of simulation behaviour around the pin part at the outlet side, which indicated
zero fluid velocity in the flow direction. This is might be due to the poor mesh quality around
the pin part and the presence of high number of skewed faces in the mesh.

As seen from figure 4.13, the pressure decreases along the flow direction and the reduction
of the size of rozita and cone increase the pressure drop as expected. The pressure drop of
50.9cmH2O was found but this value is still very lower than the real pressure drop of the sensor
which is found from the experiment. There was around 23.7% of error between the simulation
and experiment.

33

Chapter 4. Result and Discussion

Figure 4.12: Velocity Field: top at t=0, middle at t=150 and bottom at t=300 sec

Figure 4.13: Pressure Field: top at t=0, middle at t=150 and bottom at t=300 sec

34

4.1 Modeling of conductivity sensor

4.1.5 Tetrahedral Mesh of the modified sensor

The tetrahedral mesh of the modified sensor was created in Salome. Similarly, the sensor was
meshed with different refinement level, which means that the mesh is finer in the critical part
of the sensor: cone and rozita part. The mesh is pure tetrahedral mesh with 7,499,090 of cells.
This mesh is illustrated in figure 4.14.

As seen from figure 4.14, the mesh has a good quality and granularity, especially in the critical
part of the sensor geometry. The mesh has 394 non-orthogonal faces while no skewed faces and
it needs to be finer in the narrowest part of the sensor geometry in order to increase the number
of layers, as it has only five layers.

Figure 4.14: Tetrahedral mesh of the modified sensor

Similarly, simulations were performed with the simpleFoam solver for various pump flow
rates. Here only the results of simulation for the fluid velocity of 0.488m/s at the sensor inlet
are illustrated in figure 4.15 and 4.16, while the results of simulations for others various pump
flow rates are summarise quantitatively in Table E.1.

The velocity of the fluid was the same for the entire sensor geometry except in the rozita and
cone part, which gives the higher fluid velocity, as shown clearly in figure 4.15. As seen from
figure 4.16, the pressure decreases in the flow direction and there is a more pressure reduction
in the cone and rozita part. There is also a negative pressure at the few Sharpe edge near the
cone and rozita part. This problem might be solved by making the mesh very fine (more dense)
at the edges. A pressure drop of 63.49cmH2O is obtained from this simulation. This value is
nearly the same with the experimental result, there was only approximately 4.8% error.

35

Chapter 4. Result and Discussion

Figure 4.15: Velocity Field:top at t=0, middle at t=150 and bottom at t=300 sec

Figure 4.16: Pressure Field: top at t=0, middle at t=150 and bottom at t=300 sec

36

4.1 Modeling of conductivity sensor

For a comparison, all the results of simulations from the four cases above and the experi-
mental result for eleven pump flow rates are plotted in a single figure, as shown in figure 4.17.
All the source dates used for generated this graph are found in Table E.1.

Figure 4.17: comparison of simulation results with the experiment result

All the results of simulations and figure 5.17 clearly show that tetrahedral mesh gives a
better result of simulations over the hexahedral mesh.The result of the simulation for the tetra-
hedral mesh of the modified sensor agrees well with the experiment showing only 4.8% error.
But in terms of the simulation execution time and RAM usage, the hexahedral mesh is better
than the tetrahedral mesh. In conclusion, the conductivity sensor has a high pressure drop due to
different cross sectional areas in some parts; the main effects are due to the rozita and cone parts.

The modified sensor with a tetrahedral mesh type gives a valid simulation result and it used
for the next task of this thesis: Design of the injection system which yields the best distribution
of tracer concentration throughout the sensor. All the results from this task are discussed in the
next sections.

37

Chapter 4. Result and Discussion

4.2 Injection System Design

The objective of this task is to design the tracer injector which can gives the best distribution
of tracer concentration. Simulations were performed to visualize how the shape and length of
the injector geometry affect the formation of the injection cloud and distribution throughout the
sensor, besides the flow direction of the tracer injection. The counter-current injection fluid flow
direction, the tracer injected in opposite direction of the fluid flow, is used for this task. This in-
jection fluid flow direction studied by Oscar Pujol[6] previously and his work showed that it has
a better mixing effect. So, the focused of this thesis is only on the shape and size of the injector
geometry. For this purpose two kinds of injector geometries were studied. Both geometries are
90 degree bent cylinder type with different face shape at the one end of the geometry.

Geometries and meshes of the two injector types together with the sensor were created in Sa-
lome. For both injector design the entire geometry was meshed with different refinement level.
The injection cylinder together with injector, cone and rozita part of sensor are denser than the
other part of the geometry. Because of the size of the entire geometry, only the geometry and
mesh of the injection cylinder together with half of the sensor part was shown in this report.
But all simulations were done using the whole geometry. Several simulations were performed
for each of the two cases using the simpleFoam and the scalarTransportFoam solvers. The ini-
tial fluid velocity of 0.488 m/s at the inlet boundary patch of the geometry which is delivered
by the pump maximum speed and the injection velocity of 5m/s (which is calculated from the
injection time of 1 sec, tracer volume of 1ml and 1mm diameter of injector inlet) was used for
all simulations. Results from both cases are discussed in the next two sub-sections.

4.2.1 Bent cylinder injector with needle shape at one end of the geometry

The Geometry and mesh of injector together with the sensor are shown in figure 4.18 and 4.19,
respectively.

Figure 4.18: Geometry of the injector part together with half of the sensor

38

4.2 Injection System Design

Figure 4.19: Mesh: top, injector part together with half of the sensor and bottom, injector part only

This mesh has 11,094,604 of tetrahedral cells without non-orthogonal and skewed faces.
This indicates that the mesh has a good quality and granularity. As seen from figure 4.19, the
geometry of the injector was not meshed, since it is not consider as a fluid body and only the
needle face of the injector was used as an inlet boundary patch for the tracer injection, which
means the direction of the injection is in the opposite direction of the fluid flow. This implicated
that the shape and size of geometry of the injector does not have any effect on the formation
of the injection cloud. Hence, the formation of the cloud only depends on the needle shape of
the injector inlet boundary patch. But this is not the case in reality, as the tracer injects at the
top of the injector and flow through the injector geometry before it goes out and mixed with the
fluid. Using this mesh, simulations were performed and the results of simulations are discussed
as follow:

First, the simpleFoam simulation was done at the time when the tracer injection taken place
to evaluate the pressure and velocity fields. For simplicity, this simulation is denoted by simple-
Foam simulation1. The result obtained from the simulation is shown in figure 4.20 and figure
4.21 for velocity and pressure fields, respectively

Because of the tracer, pressure build up at the top of the injection cylinder part near the in-
jector tip, as clearly shown in figure 4.21. Due to this, most of the fluid passes through the
bottom. And as seen from figure 4.20, the tracer cloud was formed at the top side which is
unexpected, as the tracer was injected in downward direction.

39

Chapter 4. Result and Discussion

Figure 4.20: Velocity field during injection at t=300 sec. top shows at injection system part only while
bottom shows for the full geometry

Figure 4.21: Pressure field during injection at t=300 sec. top shows at injection system part only while
bottom shows for the full geometry

Using the velocity and φ fields obtained from simpleFoam simulation1, the first scalar-
TransportFoam simulation was performed to evaluate the tracer scalar concentration distribu-
tion around the sensor during the tracer was injected. Similarly, for simplicity this simulation is
denoted by scalarTransportFoam simulation 1. Figure 4.22 shows the evolution of the injection
cloud and distribution through the geometry.

40

4.2 Injection System Design

Figure 4.22: Evolution of the injection cloud during injection at t=1 sec. Top figure shows evolution of
cloud in y axis while bottom figure shows it in the z axis

Second, simpleFoam simulation was performed during the tracer injection was stopped/finished
to evaluate the pressure and velocity fields. This simulation is denoted by simpleFoam simula-
tion 2. Figure 4.23 is illustrated the result obtained from this simulation.

Figure 4.23: simpleFoam simulation result during injection stopped at t=300 sec. top, velocity while
bottom, pressure

As seen from Figure 4.23 for velocity field, the presence of the injector geometry affects
the fluid flow to some extent. Because of the vertical cylinder part of the injector geometry
some void space was created, as the fluid is pumped continuously with a given velocity. This is

41

Chapter 4. Result and Discussion

clearly shown in figure 4.23 with a 0 velocity near the wall of the vertical cylinder part of the
injector.

Finally, using the velocity and φ fields from simpleFoam simulation 2 and the scalar field from
scalarTransportFoam simulation 1 at the end time of the simulation, which are 300 sec for ve-
locity and φ fields and 1 sec for scalar field, the second scalarTransportFoam simulation was
performed. This is used to visualize the distribution of the tracer concentration throughout the
sensor. The scalar field value obtained from scalarTransportFoam simulation 1 used as initial
condition for the scalar field in this simulation. Figures 4.24 and 4.25 show the distribution of
the injection cloud since injection is finished until it has passed through the sensor in y and z
axis, respectively.

Figures 4.22, 4.24 and 4.25 show that most of the tracer concentration goes through the top
of the sensor. This is not the expected phenomena from the given injection design. The ex-
pected phenomena for this injector design was either tracer distributed throughout the sensor or
most of the tracer concentration goes through bottom of the sensor geometry, Since the tracer is
injected in downward direction.

Generally, this injector design did not yield a good mixing as well as a better distribution of
tracer concentration throughout the sensor geometry. This is not a desired phenomenon for
measuring the conductivity later. For measuring conductivity, well mixed and evenly distributed
tracer concentration throughout the whole sensor geometry is important.

42

4.2 Injection System Design

Figure 4.24: Evolution of the injection cloud showed in the y axis, side view

43

Chapter 4. Result and Discussion

Figure 4.25: Evolution of the injection cloud showed in the z axis, top view

44

4.2 Injection System Design

4.2.2 Bent cylinder injector geometry with circular shape at both end
Now the injector has circular shape in both end of the geometry with small length. Figures 4.25
and 4.26 show the geometry and mesh of the injector part together with the sensor, respectively.

Figure 4.26: Geometry of the injector part together with half of the sensor

Figure 4.27: Mesh: top, mesh of the injector together with half of the sensor and bottom, mesh of
injector part only

Figure 4.27 clearly shows that the inside cylinder of the injector is consider as a fluid part
while the outer cylinder of the injector consider as a wall. Now the top faces of the injector is
the inlet boundary patch for the injection, which means the tracer is injected in the top-down
direction. But due to the bent part of the injector geometry the tracer flow direction is changed
into the opposite direction of the fluid flow. The mesh has 10,707,076 tetrahedral cells and it
has a good quality and granularity without non-orthogonal and skewed faces.

45

Chapter 4. Result and Discussion

The same simulation procedure, boundary conditions and parametrise as the above case were
used also for this case. Hence, only the results of simulations are discussed here.

Results obtained from simpleFoam simulation1, simpleFoam simulations during the tracer was
injected, at the end time of the simulation are shown in figure 4.28 and 4.29 for velocity and
pressure fields, respectively.

Figure 4.28: Velocity field during injection at t=300 sec. top shows at injection system part only while
bottom shows for the full geometry

Figure 4.29: Pressure field during injection at t=300 sec. top shows at injection system part only while
bottom shows for the full geometry

As shown clearly in figure 4.29 of pressure filed, there is a high pressure inside the injector
near the bent. This is due to change of flow direction of the tracer. The pressure decreases

46

4.2 Injection System Design

rapidly after the bent part and finally approaches the pressure as it meets the main stream.

The tracer is penetrated into the fluid in the center of the geometry and makes a uniform and
thin cloud, as clearly shown in figure 4.28. This situation gives a better mixing effect.

Using φ and velocity fields obtained from simpleFoam simulation1, the first scalarTransport-
Foam simulation was done. Results obtained from the scalarTransportFoam simulation1 at the
end time of the simulation are shown in figure 4.30.

Figure 4.30 clearly shows that the concentration distribution in both directions looked almost
the same, which indicates a good mixing and distribution of tracer concentration throughout the
sensor during tracer was injected.

Figure 4.30: Evolution of the injection cloud during injection at t= 1sec. Top figure shows evolution of
cloud in y axis while bottom figure shows in z axis

Results obtained from the second simpleFoam simulation, simpleFoam simulation during
the tracer injection was stopped, at the end time of the simulation are shown in figure 4.31.

As seen from figure 4.31 of velocity field, there is zero velocity inside the entire injector; this
is because of the presence of stationary fluid inside the injector. Similarly with the above case,
the presence of the injector geometry gives a 0 velocity near the wall of the vertical cylinder of
the injector.

47

Chapter 4. Result and Discussion

Figure 4.31: simpleFoam simulation result during injection stopped at t=300 sec. top, velocity while
bottom, pressure

Now, using the φ and velocity fields obtained from the second simpleFoam simulation and
scalar concentration filed obtained from the first scalarTransportFoam simulation at the end
time of the simulations, the second scalarTransportFoam simulation was performed. Results
from this simulation are illustrated in figures 4.32 and 4.33.

A very small amount of tracer remains inside injector held by the stationary fluid, since the
injection was stopped and it could not get enough force in order to go out from the injector, as
seen from figure 4.31 with small red dot in the inlet part of the injector. After some time it will
be totally dilute with the fluid, which is come into the injector through the bottom opening of
the injector.

The evolution of the injection cloud throughout the sensor part is almost looked the same in
both side of the geometry, as seen from figures 4.32 and 4.33. Result indicated that this design
of the tracer injector and the counter-current injection direction gives a good mixing and distri-
bution of the tracer concentration throughout the entire sensor.

Results from both injector design show that the formation of the tracer cloud and its distri-
bution throughout the sensor depends on the shape and size of the injector tube in addition to
the tracer flow direction.

48

4.2 Injection System Design

Figure 4.32: Evolution of the injection cloud showed in the y axis, side view

49

Chapter 4. Result and Discussion

Figure 4.33: Evolution of the injection cloud showed in the z axis, top view

50

4.3 Structured mesh of the conductivity sensor

4.3 Structured mesh of the conductivity sensor

Structured mesh has a lot of advantages over unstructured mesh, for example it utilise less mem-
ory storage and it is computationally faster. But creating structured mesh is more difficult than
creating unstructured mesh, since a lot of trade offs must be considered.

In this section, some work was performed to generate the structured mesh (pure hexahedral
mesh) of the conductivity sensor in Salome.

The geometry of the sensor was divided in to different small parts and generated using a block
to get sex face everywhere in the sensor geometry. Then using partition and glue face operation
all parts put together. Half part the sensor geometry shown in figure 4.34.

Figure 4.34: Half part of the sensor geometry

The sensor geometry was meshed with hexahedral element shape (structured mesh) using a
3D automatic hexahedralization hypothesis without defined the boundary patches. And it was
imported to OpenFOAM successfully. This mesh is shown in figure 4.35.

As seen from figure 4.35, the mesh has good and uniform quality and large number of uni-
form layers in the narrowest part of the sensor.

The problem was happened when tried to import the mesh with the boundary patches, the pro-
cess of importing the mesh into OpenFOAM is terminated with some errors.

To investigate the problem, only some parts of the sensor was meshed and the boundary patches
was defined. Then the mesh was imported to OpenFOAM successfully. Mesh of the pin part
and sensor inlet part shows in figures 4.36 and 4.37.

51

Chapter 4. Result and Discussion

Figure 4.35: Structured mesh of the sensor half part

Figure 4.36: Structured Mesh of the sensor inlet part

Since the individual parts of the sensor geometry was meshed and imported to OpenFOAM
with the boundary patches without error, the problem is not because of geometry. The problem
might be on the operation used to put all parts together. As mentioned earlier in this section,
all parts generated using blocks and there were a face difference between parts of the sensor at
the contact point/place. In order to put all parts together with some kind of operation might be
requires the same face at the contact place of the parts, since most of the operation creates a
common face from two faces. To overcome this problem requires a detail investigation.

52

4.3 Structured mesh of the conductivity sensor

Figure 4.37: Structured Mesh of the pin part

53

Chapter 4. Result and Discussion

54

Chapter 5
Conclusion and scope for future work

5.1 Conclusion

The objectives of this thesis is to use CFD simulations to validate the design of the in-house con-
ductivity sensor and to design the injection system which yields the best distribution of tracer
concentration throughout the sensor.

A validation of the in-house conductivity sensor was conducted by performing a simulations
with the simpleFoam solver. Two types of mesh of the sensor, a Hexahedral mesh generated in
snappyHexMesh and a tetrahedral mesh generated in Salome, were used. In terms of the exe-
cution time and RAM usage the hexahedral mesh performed better than the tetrahedral mesh of
the sensor. But in terms of the quality of the mesh and the accuracy of the result of simulations
the tetrahedral mesh of the modified sensor was better than the hexahedral mesh; the result of
the simulation for the tetrahedral mesh agrees well with the experiment showing only 4.8%
error. Results showed that snappyHexMesh was not a good candidate to generate the mesh for
the conductivity sensor, since it has a lot of sharp edges. The conductivity sensor has a high
pressure drop due to different cross sectional area in some parts; the main effects are due to in
the rozita and cone parts. Therefore, either design improvement in rozita and cone part only or
completely a new design of the conductivity sensor is necessary which can gives low pressure
drop and uniform fluid velocity throughout the sensor.

A design of the tracer injection was conducted by computation of fluid dynamics modeling.
The model contained two parts, first velocity and φ fields were calculating using the simple-
Foam solver and then transport of the tracer (passive scalar) was evaluated using the scalar-
TransportFoam solver. Two types of a 90 degree bent cylinder injector design, one with large
length and a needle shape at one end of the geometry and the other is circular shape in both
ends with small length, were studied. For both injector designs, a counter-current injection flow
direction was used. Results showed that the evolution and distribution of the tracer cloud pass-
ing through the sensor is affected by the shape and size of the injection tube and the tracer flow
direction. The result of simulation for a 90 degree bent cylinder with needle shape at the one
end of the injector gives unexpected phenomenon, as the tracer cloud is formed at the top of the
pipe and not as expected at the bottom. This result also contradicts result from previous work
of Oscar Pujol[6], which gives a tracer cloud formation at the center of the pipe near the tip of
the injector for the same injector design.The second injector design gives a good mixing and

55

Chapter 5. Conclusion and scope for future work

distribution of the tracer. Based on the simulation, I recommended to adding a mixer after the
injector and before the sensor inlet in order to improve the mixing and distribution of the tracer
concentration.

5.2 Scope for future work
The aim of the future works are to consider the conductivity equation in the simulation and
generate a structured, pure hexahedral mesh and perform all the simulations for the manifold
design. Particularly for the conductivity measurement it is better to use a structured mesh, since
the conductivity equation is linear.

Some work was done adding the conductivity equation in the scalarTransportFoam solver. This
work is not included in the report because it could not be completed. It is not an easy task but
certainly possible to include this equation in the OpenFOAM simulations. The scalarTransport-
Foam solver was modified first, by added the conductivity equation after the scalar Transport
equation in the scalartTransportFoam.C file, because the conductivity depends on the tracer
concentration. And second, the conductivity is defined as a scalar variable in the createFields.H
file. It compiled and calculates the conductivity without any error. But the problem was it cal-
culated the conductivity for the entire cell of the geometry which is unnecessary, since we only
want to calculate the conductivity in specific part of the conductivity sensor. This problem
might be solved by extracting the entire cell id and applying the conductivity equation for those
specific cells of the sensor part only for the reconstructions of the conductivity measurement.
The modified scalartTransportFoam.C and createFields.H are located in AppendixF.

56

Bibliography

[1] J.D. Anderson. Computational fluid dynamics. The basics with applications. McGraw-
Hill, 1995

[2] J. Blazek. Computational Fluid Dynamics. Principles and Applications. ELSEVIER. 1st
ed., 2001

[3] O. levenspiel. Chemical Reaction Engineering. John Wiley & Sons. 3rd ed., 1999

[4] G.Hill Charles. Introduction to Chemical Engineering Kinetics & Reactor Design. John
Wiley & Sons. 2nd ed., 2014

[5] Abdulnaser Sayma. Computational fluid dynamics. Ventus publishing Aps, 2009

[6] Oscar Pujol. Design of injector and conductivity sensor. July 2013

[7] SALOME official webpage (www.salome-platform.org). May 2016

[8] OpenCFD Ltd. OpenFOAM -user guide, version 2.4.0. 21st may 2016

[9] http://www.engineeringtoolbox.com/water-dynamic-kinematic-viscosity-d 596.html.
May 2016

[10] https://www.hpc.ntnu.no/display/hpc/NTNU+HPC+GROUP. 2016

[11] http://ntl.bts.gov/DOCS/ch5.html. June 2016

[12] http://perso.usthb.dz/ nhannoun/research.html. June 2016

57

58

Appendix A
simpleFoam Files

59

Figure A.1: Pressure Boundary Condition

60

Figure A.2: Velocity Boundary Condition

61

Figure A.4: RASProperties file

62

Figure A.5: controlDict file

63

Figure A.6: fvSchemes files

64

Figure A.7: fvSolution file

65

66

Appendix B
scalarTransportFoam Files

67

Figure B.1: Scalar field Boundary Condition file

68

Figure B.2: transportProperties file

69

Figure B.3: controlDict file for the first scalarTransportFoam simulation

70

Figure B.4: controlDict file for the second scalarTransportFoam simulation

71

Figure B.5: fvSchemes files

72

Figure B.6: fvSolution file

73

74

Appendix C
Files used for running OpenFoam and
snappyHexMesh in parallel using
supercomputer

75

Figure C.1: decomposeParDict

76

Figure C.2: sample job script used to run OpenFoam case on supercomputer with parallel

Figure C.3: Job script used to run snappyHexMesh case on supercomputer with parallel

77

78

Appendix D
snappyHexMesh Files

79

Figure D.1: surfaceFeatureExtractDict file

80

81

82

83

84

Figure D.2: snappyHexMeshDict file

85

86

Appendix E
Quantitative results of simulation and
experiment

87

Pum
p

speed
V

elocity
R

eynolds

relative
Pressure

D
rop

(m
2/s

2)

E
xperim

entR
esult

Sim
ulation

result

H
exadron

M
esh

Tetrahedron
M

esh

old
sensor

m
odified

sensor
old

sensor
m

odified
sensor

4000
0.488

1933.59
6.67

2.998
5.09

4.09
6.35

3600
0.44

1743.4
5.49

2.57
4.31

3.51
5.39

3200
0.392

1553.2
4.44

2.17
3.59

2.96
4.49

2800
0.34

1347.17
3.38

1.77
2.88

2.4
3.59

2400
0.29

1149.06
2.28

1.41
2.25

1.91
2.81

2000
0.247

978.68
1.81

1.13
1.77

1.51
2.2

1600
0.196

776.6
1.08

0.82
1.26

1.09
1.55

1400
0.172

681.51
0.95

0.69
1.04

0.9
1.28

1200
0.146

578.49
0.83

0.56
0.83

0.72
1.01

1000
0.122

483.4
0.75

0.44
0.65

0.56
0.78

800
0.097

384.34
0.59

0.33
0.47

0.41
0.57

Table E.1: summery of all results of simulations and experiment from eleven pump flow rates, pump
speed in rpm and velocity in m/s

88

Appendix F
Modified scalarTransportFoam files

89

Figure F.1: createFields.H file

90

Figure F.2: scalarTransportFoam.C file

91

	Summary
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Scope
	Previous Work
	Structure of the report

	Theory
	Introduction to CFD
	The Governing Equations of CFD
	The continuity equation
	The momentum equation
	The energy equation

	Numerical grid or Mesh
	Salome
	SnappyHexMesh

	OpenFOAM

	Modeling
	Pre-processing
	Mesh generation
	Boundary and Initial Conditions
	Physical Properties
	Control, Discretisation and Linear Solver Settings

	Running the Simulation
	Post-processing
	Running OpenFoam on a Supercomputer
	Experimental Work

	Result and Discussion
	Modeling of conductivity sensor
	Hexahedral Mesh
	Tetrahedral Mesh
	Sensitivity Analyse
	Hexahedral mesh of the modified sensor
	Tetrahedral Mesh of the modified sensor

	Injection System Design
	Bent cylinder injector with needle shape at one end of the geometry
	Bent cylinder injector geometry with circular shape at both end

	Structured mesh of the conductivity sensor

	Conclusion and scope for future work
	Conclusion
	Scope for future work

	Bibliography
	Appendix simpleFoam Files
	Appendix scalarTransportFoam Files
	Appendix Files used for running OpenFoam and snappyHexMesh in parallel using supercomputer
	Appendix snappyHexMesh Files
	Appendix Quantitative results of simulation and experiment
	Appendix Modified scalarTransportFoam files

