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Summary

The selection of controlled variables and measurements is an important aspect of
the control structure design. Using the self-optimizing control framework makes
it possible to select controlled variables as combinations of measurements which
minimizes the steady state loss. However, in a broader perspective, one is not
only interested in the steady state loss, but also in the chemical plant’s economy.
This work has combined the steady state loss with prices of measurements using a
Mixed Integer Quadratic Programming (MIQP)-formulation, so that the optimal
subset of measurements also results in the overall best economics for the process
plant. In this way the control structure design could be implemented as part of the
process design phase, to make the plant as profitable as possible. This work also
utilized the power of the MIQP-formulations to include wider selection criteria,
which made it possible to select different measurement devices with a variety of
prices and uncertainty. From this it was possible to calculate the best trade-off
between prices and losses due to measurement uncertainty when different measuring
devices are available to a project. Normal process plants also handles constraints,
which also need to be controlled. The constraints also have a corresponding loss -
also called back-off (due to measurement uncertainty) related them. This has also
been included in the total cost calculation, and evaluated both within an active
constraint region and an unconstrained region. The developed methods have been
tested and evaluated on a Dummy problem and a Subsea separation system.




Sammendrag

Det & velge hvilke tilstander man skal regulere, og hvilket méaleutstyr man skal
installere er en viktig del av i utviklingen av et prosessanleggs reguleringsystem.
Bestemmelsen av disse tilstandene er utgangspunktet for rammeverket «Self Opti-
mizing Control» som kan brukes (blant annet) til & bestemme hvilket tap et bestemt
utvalg av kontrollerte variable har pa et system i stasjonaer tilstand. Som ingenigrer
er vi ikke bare interessert i & regne pa tapet et reguleringsystem har, men ogsa
hvilken kostnad det medbringer. I denne oppgaven kombineres tapet i stasjoneer
tilstand, med priser pa maleutstyr for & finne den optimale sammensetningen av
hvilke og hvor mange malinger et system burde ha for & minimere anleggets to-
tale kostnader. For & fa til dette har systemet blitt satt opp i et «Mixed Integer
Quadratic Programming» (MIQP) optimaliserings program. Gjennom dette har
det ogsa veert mulig & inkludere andre utvelgingskritererer slik at det er mulig &
velge den beste kombinasjonen av ngyaktige (men dyre) og billige (men ungyaktige)
malinger ut fra hvilken kombinasjon som gir den laveste totale kostnaden for regu-
leringsystemet. Et annet viktig aspekt i regulering av prosessanlegg er hvordan man
skal regulere begrensninger. Slike begrensninger vil ogsa komme med et assosiert
tap (grunnet maleusikkerhet). Slike tap har ogsd blitt inkludert i beregningen av
den totale kostnaden til reguleringsystemet, og blitt evaluert bade i et begrenset og
ubegrenset omrade. For & teste metodene har bade et enkelt « Dummy»-problem
og et undervanns separasjonsystem blitt benyttet.
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Chapter

Introduction

In chemical engineering plants, it is important to control and operate the system
as close to its optimum in order to maximize profit. Plantwide control looks at
the decision on how to make the control system design for the whole chemical
plant[3], instead of focusing on each unit operation individually. Self-optimizing
control is a framework within plantwide control which helps us selecting (among
others) controlled variables. The idea is to select a control structure so that it
is possible to control the system with an acceptable economic loss minimizing
the impact of uncertainties in disturbances. This economic loss links the system
profitability, through a cost function with the control structure design. The goal
is to minimize the economical loss which is equivalent to control the system as
close to optimum as possible. One area of interest is the selection of measured
variables. In general, more measurements give the controller a better understanding
on how the system behaves and therefore provide a closer to optimum control of
the system. However, as seen in Figure 1.1 the loss decreases rapidly for the
first few measurements, but after that installing new measurements have little
effect on the system’s performance. By not installing measurement devices we
save both investment and maintenance costs. It is therefore of interest to choose
only a subset of the measurement candidates. Although a method for choosing
a subset of measurements has been presented in literature [4], so far no method
of coupling the prices of installing these measurements within the self-optimizing
control framework has been introduced.

An area of interest within control is subsea processing of crude oil. As oil fields
are getting increasingly more difficult to access, subsea processing has gained at-
tention over the last years[5]. There are many potential benefits of using subsea
processing: By removing water and sand from the oil stream at the sea bed, these
components do not need to be transported to the top side facility reducing the costs
of artificial lift dramatically, reduce the risk of hydrate formation,and the tube di-
ameter of oil pipelines can be shrank. The need an offshore topside facility can be
eliminated or reduced, which is a huge potential benefit, especially in harsh condi-
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Loss

Number of Measurements

Figure 1.1: Illustration of optimal average loss of a system for the best subset of mea-
surements.

tions as the arctic or at very deep water where topside processing are considered
difficult or not economical feasible. Over the last years, the oil price has dropped,
making the need for cost savings even higher. The field of subsea processing is
therefore an interesting candidate when linking up the selection of measurements
for control with the price of measurements for control structure design.

1.1 Objective

This work aims to develop a method to include the prices of measurements into a
optimization problem that finds the optimal subset of measurements for a control
structure in a process plant. This should be done within the Self-optimizing control
framework. The work could be seen as a continuation of Yelchuru and Skogestad
[4] which utilize Mixed Integer Quadratic Programming (MIQP) to optimize the
selected control variables (CV).

The prices of measurements are included into the same optimization problem as the
loss calculation determined by the control structure, where the goal is to minimize
the total cost. By doing so, the control structure could be implemented as part
of the process design phase, which is beneficial, since today’s process plants is
generally tested in process models, and to include operational aspects (control)
into the plant design phase may lead to savings during operation[6]. It is thereafter
of interest to investigate how a second measurement candidate set with different
prices and uncertainties (sometimes referred to as noise) influences the selection
of measurements as well as the total project cost. In the end, the framework is
extended to also consider a process with constraints. The goal is to design a control
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structure which takes into account the back-off due to measurement noise, the
unconstrained loss and the prices of each selected measurement in a constrained
system. The control structure giving the lowest total cost should be selected.
The methods are presented and applied to both a dummy problem and a subsea
oil/water processing system with three separators.




Chapter 1. Introduction




Chapter

Literature Review

This chapter presents some theoretical background for the work that is going to be
conducted.

2.1 Self-Optimizing Control

This section gives a introduction to self-optimizing control, and methods within
this field of study. It is based on the paper [6]. The term self-optimizing control
was first used by Skogestad [3] and is regarded a framework from which ”the goal is
to find controlled variables (CV) which, when kept at constant setpoints, indirectly
lead to mear-optimal operation with acceptable economic loss”. To understand what
loss is, a cost function J is defined so that it creates a optimization problem which
minimizes the cost (or maximizes profit). The cost function could be given in $/s:

min  J(u,z,d) (2.1)
subject to: g(u,z,d) <0
h(u,z,d) =0

where u are inputs to values, x are states, d are disturbances, g is inequality con-
straints and h is equality constraints. The loss is defined as the distance between
the optimum point found in the optimization problem above and the actual oper-
ating value, hence the loss can be defined as in (2.2)

L= J(u,z,d) — JP(d) (2.2)

where J(u, z,d) is the cost function at given inputs (u), states (2) and disturbances
(d) compared to an optimal point (J°P?).

The idea of self-optimizing control is that by carefully selecting the controlled
variables, the work done by a online real-time optimizer can be minimized. The
real-time optimizer can be a computer or trained human operators. Consider a gen-
eral feedback system as given in Figure 2.1: In this system the different timescales
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Real-Time
Optimizer
cs(t)
Controller c=h(y(t))
c(t)
A0 y(t)
d(t) Yo(t)
— Process 4’6)

ny

Figure 2.1: A general feedback control structure used in self-optimizing control

can be read from top to bottom. The Real-Time optimizer works on a timescale of
hours and computes set points (¢s) to the normal controllers which reject distur-
bances (d) on timescales from seconds up to minutes and hence giving inputs (u)
to valves. The selection of controlled variables (c¢) could be described as in (2.3).
y is all possible measurements which consist of a reading/signal from the process
(yo) and a related measurement noise (n¥).

c(t) = h(y(t)) (2.3)

where c(t) is the controlled variable, h is a selection matrix based on the mea-
surements y(¢). This is where the self-optimizing control theory comes in hand.
Normally this is denoted ¢ = Hy, where H € R™*"v. Values in H can simply
be a single 1 in every row which symbols an one-to-one relationship between the
measurement and controller, but it could also be a linear combination of multiple
measurements into one controller. Finding the optimal measurement combination
is an important aspect in self optimizing control. An important aspect of using self-
optimizing control (instead of only real-time optimizer) is that the control structure
selection is solved off-line in steady state. This saves time for the real-time opti-
mizer, but may lead to a loss L as defined in (2.2). Self optimizing control has to
be seen as a complement, not instead of Model Predictive Control (MPC).

2.1.1 Brute-Force Approaches

Over the years many approaches have been made within the framework to find
the best controlled variables. The earliest methods were based on brute-force
approaches, to evaluate all possible combinations [3]. However, the brute-force

6
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approaches has limitations due to the complexity of large chemical plants, which
requires finding solutions to a huge set of optimization problems. For instance,
consider the classical Tennessee-Eastman challenge by Downs and Vogel [7] which
have 42 measurements (n,) and 12 controllers (n.). This leads to almost 8 billion
possibilities as seen in (2.4).

n

Cle = ( y) =7.98 x 10° (2.4)
Y nc

This leads to unfavorable calculation time, so that one need to make assumptions to

reduce the number of problems. A common simplification is to neglect measurement

noise. However, this can lead to poor CV choices and can be numerically difficult

to solve.

2.1.2 Local Methods

Whereas brute-force methods tries to evaluate all possible measurement-controller
possibilities, the local method approach is trying to reduce this number by pre-
screening. This pre-screening of CVs is done by looking at which measurements
perform well close to the nominal points, by making small perturbations. This is
done by Taylor expansions so that the cost function can be approximated by the
quadratic function:

J(Au, Ad) = JP' + [J, + J4] [23]
1 Juw  Jud] [A (2:5)

< T T wu ud u

1 [AuTAdT] {Jdu Jdd] [Ad]

where J; = 9.J/0i and J;; = 02.J/0i0j are the first and second derivative of the cost
function with respect to general variables ¢ and j[8]. Around a optimal nominal
point, J, = 0 which is then used in (2.5) while differantiating with respect to Au,
which gives:

oJ Au
oo~ Ju Fubu+ Juad = [Juudud { A d} —0 (2.6)

0

This equation is then solved for the optimal input (Au°P*(d)) which yields:
AuP(d) = —J;, 1J,qAd (2.7)

Combining the quadratic approximation, (2.5) with (2.7) and the expression for
the loss, (2.2) gives[9]:

L= %(Au — AuP!(d)) Jyu (Au — AuPt(d)) (2.8)

This can be also written as: ]
L= |el3 (29)
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where || - ||2 is the two-norm and z is defined as

2= JY2(Au— AuPt) (2.10)

Finding Local Optimal Control Structures

It can be shown that the measurement y = yy + nY, when linearized around the
optimum nominal point can be rewritten as:

Ay = GYAu + GYAd +nY 2.11
d

where Ay = y — y°P! is the distance away from the nominal point, GY = dy/0u
and GY = dy/dd and are the gain from inputs and gain from disturbances respec-
tively. The controlled variables ¢ are then chosen to be linear combinations of the
measurements:

Ac= HAy (2.12)

Inserting (2.11) into (2.12) gives (2.13) which denotes the local approximation of ¢
around the nominal point.

Ac=HGYAu+ HGYAd + HnY (2.13)

Exact Local Method

To evaluate the loss as well as the best measurement combination for a given
control structure, it is possible to use the exact local method[8]. The loss is an
important indicator because it shows how the system behaves compared to the
optimum. Rearranging (2.13) and assuming that the optimal steady state point
does not require active control (Ac = 0) gives:

Au=—(HGY) ' H(GYAd + n") (2.14)

This is inserted into the expression for the loss (2.10) together with the expression
of optimal input (AU! = —J_ 1J,4AD) becomes:

2= —JY2HGY)TH[(GY — GY Tt Jua) Ad + nY) (2.15)
A matrix F is then introduced as seen in (2.16):
F=GY~GYJ,} Jua (2.16)
so that (2.15) can be rewritten as
z=—JY2HGY)"'H[FAd nY] (2.17)

The matrix F' is not easy to obtain in the current form, but since it is the sensitiv-
ities of the optimal measurement values with respect to the disturbances it could
also be defined as:

F = 0y°"'/od (2.18)
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which can be obtained by for instance re-optimization. The exact local method

also takes measurement or disturbance noise into account. These are defined as
Ad = Wyd' (2.19)
nY = W,n' (2.20)

where W, and W,, are diagonal matrices which denotes the magnitude of the noise

for disturbance and measurement noise respectively whereas d’ and n’ are the
scaling vectors. Define matrices Y and M:

Y =[FW, W] (2.21)

M =—JY2(HGY)"*HY (2.22)
so that when using (2.17), (2.9) becomes
d'1l 2
L= |4 g (229

The loss can then be calculated depending on the disturbance and noise. The
two-norm is used for the worst case loss(2.24) [8].

1
Loyorst = 5&2‘(M) (2.24)

where ¢ is the largest singular value. The infinity norm is used when disturbance
are assumed independent and uniformly distributed resulting the average loss [10].

1
Loy = EHJMHF2 (2-25>

where || - ||F is the Frobenius norm. When d’ and n’ are normally distributed
with zero mean and unit variance, the worst case loss goes to infinity whereas the
average loss becomes:

1
Loy = §||M||%‘ (226)

Minimum Loss Method (Explicit Solution)

To find the optimal selection of variables several methods have been suggested,
for instance the null-space method[11] and the extended null space method [12].
However, in this work the minimum loss method with explicit solution has been
chosen [12] and [4]. Starting out with matrix M (2.22), which is the basis for the
loss calculations, one can introduce a invertible matrix ) that does not affect the
loss, so that Ac = QHAy. Inserting @ into (2.22) becomes:

M = -J}2(QHGY)'\QHY
= —JYXHGY)'QT'QHY (2.27)
—JY2(HGY)"*HY
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In the last part of (2.27) @Q was chosen so that HGY = JU? to cancel the non-
linearity so that (2.27) becomes:

wmin[HY |
subject to  HGY = J1/2 (2.28)

The optimization problem in (2.28) has the explicit solution:
H=(G")'(yyTh)-! (2.29)

which is the best locally measurement combination for a given set of all measure-
ments, based on the assumption that YY7 is invertible. It is not given that this
H is the same in the entire operating range, it could change in different operating
areas. Note that (2.28) is the same as (2.26) scaled with two. This means that the
optimization problem (2.28) actually minimizes the average loss.

2.1.3 Selecting subsets of measurements

In the local methods explained above, the selection matrix H is based on all avail-
able measurements. However, in subsea applications or other processes in general,
it may not be feasible or necessary to use all the possible measurement candidates.
Is it possible to control the system just as good (or nearly as good) by choosing only
a few measurements? A measurement has always an investment cost related to it,
so by not installing the measurement equipment this could be economically benefi-
cial. There could also be other reasons for not installing measurement equipment,
for instance space considerations. When one starts to limit the number of mea-
surements the previous formulations need extra attention due to the combinatorial
problem that arises from all the possible control structures. There are currently two
main approaches that can solve subset of measurement problems. Firstly, it is the
(Bidirectional) Branch and Bound approach, Cao and Kariwala [13]. Alternatively,
it is possible to formulate the selection of subset as a mixed integer quadratic op-
timization problem (MIQP) which is solved by mathematical programming solvers
(which utilize among others Branch and Bound algorithms),Yelchuru and Skoges-
tad [4]. MIQP-formulations is chosen in this work since they have the benefit over
Branch and Bound algorithms beacuse modern MIQP solvers can handle multiple
constraints directly without further customization.

Mixed Integer Quadratic Programming (MIQP)
A mixed integer quadratic optimization problem takes the general form:
minz” Qz + ¢" x (2.30)
xr

st. Az <b
[ <zx<u

where x is the objective vector, @) is a symmetric objective matrix, ¢ is linear
objective vector, A is a linear constraint matrix, b is a linear constraints vector,

10
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[ is the lower bounds for z and w is the upper bounds for z. Some or all of the
values in x, must take integer values. It is also possible to limit some or all values
to binary values.

MIQP formulation for selection of subsets

The following paragraph explains the restructuring needed to express the selection
of a subset of measurements as an MIQP. It differs slightly from the purely math-
ematical form.

When adapting the general formulation in the previous section into the selection
of a subset of measurements small modifications has to be made, and letters are
changed to follow the previous notation. Starting out with (2.28), the previous
matrix H, which still is the objective, is transformed into a vector of length n,, - n,
and called hs. The selection of measurements are taken care of by a vector of binary
variables, o, which is of length n,. These are called selection variables. If o; has
a value of 1 this means that the measurement was chosen in the subset, a value of
0 means that the measurement was not chosen in the subset. ¢ is appended to hs.
A single integer is also appended to take care of the number of measurements that
is going to be selected. The matrix Y from (2.28) is transformed into symmetric
block matrix (Yy,) repeating Y one time for each degree of freedom (normally
ny). Ypg is then multiplied with itself transposed due to use of Frobenius norm
(giving the system its quadratic properties as given in (2.28)). YA is calculated
from (2.31) and (2.32). Extra rows and columns are added for the selection criteria
(these are all set to zero, to not having any impact on the quadratic term). In
the mathematical it is not needed to include these changes in Ya. However, this is
done to express it the way it is implemented in solver software.

[Y} o0
Yo = (2.31)
o --- [Y}
Y5 = Youk - Yy (2.32)
r ny Ny T
—
[ Y; } .. 0
Y
0 --- 0
Ya= . (2.33)
0 --- 0
1
—~ =
.| 0 [ 0 ] ]

To avoid influence on loss and cost by measurements that is not chosen, linear
constraints make sure that the corresponding elements in the selection matrix H
are set to zero. This is done by using the big-M approach [14]. This constraints
also limits the values of H. An increase in big-M (not to be confused with matrix

11
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M) gives longer calculation time, but may be needed if the numerical values in H
is within a large range. The final formulation of the problem becomes:

min Al Yahs (2.34)

h(;,aj
s.t Gy5Th5 = js linear constraints
| < hs <u bound constraints
Po=s
— MO']' S Hi,j S MO’j leﬂy,lzlnu

where js is a reformulated J,,, GY5 is reformulated GY, P is a vector of ones
(P = [1...1] € RY*") s is an integer equal the number of measurements in the
subset (n,,), and ! and u is the lower and upper bounds on hs. Another benefit
of using MIQP-formulations is that it is easy to incorporate structural constraints
on which measurements to choose, for instance, if one wants two temperature
measurements and three flow measurements. This can be selected by extending
the Po = s term with more rows of s. This was also introduced by Yelchuru and
Skogestad [4] and will not be covered in this work.

2.2 Constrained problems

So far, only unconstrained measurement selections have been investigated, that
is, the original objective function for the process (not the MIQP) has no active
constraints. However, in many chemical engineering problems there will be con-
straints, reducing the degrees of freedom (DoF) in the system. Such constraints
can for instance be maximum temperature in a reactor, or maximum molar fraction
of a bi-product in a product stream. These constraints will in most cases restrict
(or constrain) the optimum operation point. So what is a constrained optimization
problem? A general optimization problem is defined as:

mmin f(x) (2.35)
st g(z) <0
h(zx)=0

where f(z) is the cost function, g(z) are inequality constraints and h(x) are equality
constraints. An illustration of a constrained problem is given in Figure 2.2, where
the system has an inequality constraint g(z) < 0. In addition a system can also have
equality constraints h(z) = 0 (not drawn in Figure 2.2). A physical illustration of
this is a ball rolling down a hill (f(x)) towards the bottom (blue dot). If the ball
rolls into a fence, the fence is equal to inequality constraints (g(z)). The ball is free
to move away from the fence if the optimum lies on the same side of the fence as
the ball (this will however make the constraint unnecessary). Equality conditions
(h(x)) on the other hand can be taught of as rails. The ball can hence only roll on
the railings (as a train).

12
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2 — 55—

Figure 2.2: A constrained problem. The problem is constrained by the black line g(x)
which limits possible solution to points in the top right corner. The optimal solution is
hence moved from the blue circle to the black square.

In general the Lagrange function is given as:
Lz A v) = f(2) + g(2)" A+ h(z)r (2.36)

where x is the system variables, \ is the Lagrange multiplier for the inequality
constraint g(z) and v is the Lagrange multiplier for the equality constraint h(x).
The first KKT condition[15] can be physically explained as a force balance and is
easily obtained by differentiating (2.36) with respect to « around the optimal point
(z* ,\*,v*) becomes:

VL =Vf(z*) + Vg@) "\ + Vh(z*)v* =0 (2.37)

How hard the system pushes towards the constraint is therefore equal to the La-
grange multiplier. Now, consider a specific inequality constraint g; () with a cor-
responding Lagrange multiplier A1, which is perturbed by a small amount € so that
g1(x) +€ < 0. As long as € is small it can be shown that (2.37) can be written
asBiegler [15]:

0= h(z9) = h(z") = Vh(z")" (2 - %)
= gi(z%) — gi(a*) = Vgi(a*) T (a° — 27),i # 1 (2.38)
—6—91(936) gi(a") = Vgi(a*) (2 —27),i =1

combining the results found in (2.38) with (2.37) gives that the differnce in cost

13
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function f(z) a small perturbation away from the optimal point becomes:
fa®) = fla*) = V f(a*) fz%) = f(a¥)
=— Z viVhj(z*)" (2 — %) — Z NV ()T (z —2*)  (2.39)
' =0 l =—c
~ Z vy (hj(z®) — h;(z%)) — Z Ai (9i(z%) — gi(27))

= Ae (2.40)
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Chapter

Including Prices in Control
Structure Selections

This chapter explains the new methods developed in this thesis. First, a possible
method to include measurement prices is shown and then a method for selection
between two different measurement sets is presented. The last method of measure-
ment selection that is demonstrated, is when one of the states in the process is
constrained.

3.1 Including Prices for Unconstrained Systems

The following section aims to find new methods to give new selection criteria based
on price and accuracy considerations.

3.1.1 Motivation

If the control structure is created alongside the design phase, it is possible to
optimize which measurement devices is going to be (bought and) installed in order
to operate the plant at its optimal capacity. A measurement installed in a plant
will always come at a price, with both a fixed purchase cost and a maintenance
cost. The motivation is therefore clear from an economic perspective; reduce the
number of measurements to a minimum, without affecting the plant performance.
Including prices of measurements and alongside, calculating the performance of a
plant (loss) is therefore of interest. From this, a number of questions arises. For
instance: To what degree do you loose performance if you choose an inexpensive
temperature measurement over an expensive pressure measurement? The price of
a measurement device is often related to its accuracy, so what if you can choose
a cheap inaccurate measurement device over an expensive accurate measurement
device? This chapter aims to find a method, which when implemented can answer
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questions like these.

3.1.2 Including Prices in Measurement Selection

In Section 2.1.3, which is based on [4], a method for selecting a subset of measure-
ments using an MIQP-formulation was explained. The reason for not including
all possible measurements could be for instance cost considerations, but a method
to select measurements also based on the prices of measurements is yet to be pre-
sented in literature. To include a price of a measurement, a price term is added
to the linear term for each of the measurements in the objective function. If the
measurement is not selected, the selection variable (o) will be zero and hence not
affect the final cost. If the measurement is selected, the corresponding selection
variable will be one and the measurement price is added to the objective function.
The MIQP formulation with prices as linear costs in the objective function is then
given by:

Ir}iin hiYahs +plo (3.1
)

s.t Gy(;Th(; = js linear constraints

| < hs <wu bound constraints

Po=s
—MO'j S Hi,j S MO’j leny,lzlnu
05 € [O, 1]

where the linear term p” o is added to (2.34) to give (3.1). Here p” is a vector of
prices with length n,,.

3.1.3 Select a Subset From Two Different Measurement Sets

The previous section explains how a price of a measurement can be inserted into
a MIQP-problem. But choosing measurements is not just about choosing where
in the process measurement equipment should be located, but also what kind of
measurement device is going to be purchased. This can be illustrated by having
the choice between the measurement device from producer A which is accurate, but
expensive, and a measurement device from producer B which is less accurate, but
cheaper. In order to cope with this, the MIQP-formulation needs to be extended.
Recall that the measurement noise (W,,) is the measurement uncertainty which is
given in (2.21). A second set of measurement noise W5 is defined so that:

Yo = [FWy Wyl (3.2)

Y, from now denoted Y7, where the goal is to define a new Y which consists of
both Y7 and Y5. In order to build the final matrices for the MIQP formulation, Y

16



3.1 Including Prices for Unconstrained Systems

needs to be restructured to fit the number of inputs v as shown in Section 2.1.3:

[Y1] 0
Yipw=1: . (3.3)
L 0 (V1]
[[Ya] -+ 0]
Your =1 : o
L0 - [Y3]]

The quadratic term in the MIQP-formulation arises due to the Frobenius norm in
(2.28). The quadratic term becomes:

Yis = Y1 Yi ik (3.4)

Va5 = YouueYa pin (3.5)

By merging the two sets of measuring devices (3.4) and (3.5), the final restructured
Y5 becomes:

_[Yis O
}/5 - |: 0 Y2,5:| (36)

where Yy € R(Zmunyx2nuny)  The number of selection variables o needs to be
increased with n,. One particular selection variable is from now on denoted o 1,

which is the selection variable for y; in measurement set wy. The final quadratic
objective matrix YA now becomes:

2:My Ny
—~
%] - 0
Ty
—_——
0 --- 0
Ya = 0 -0 . (3.7)
——
0 --- 0
0 - 0
1
~
.0 [0]_

where Ya € R27unyt2ny+1x2nuny+2ny+1 - A pew set of linear constraint is added,
to force values in the selection matrix to zero, if the selected measurement belongs
to a different measurement set wy. Example: Measurement y15ws (0152 = 1) is
selected, the constraint has to make sure that both o151 =0 and Hy5,1 =0 .

The constraints are added using the selection variables and the big-M constraints[16].

17
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In a case where two measurement devices sets are available, the constraints are for-
mulated as:

[Hy
|H,

wy| + Mo <M (3.8)
wy| + Moy <M (3.9)

FECZE

Gy Wis

where y; is the measurement, corresponding to an input u; and a measurement
device set wy. These constraints are created for each Hj; ;. The absolute sign is
included to take care of negative values of H. The constraints work so that if a
measurement device from the second set (w = 2) is chosen, then [Hy, o, w, |+ M <
M and the only value for |Hy, 4, w,| that makes this true is |Hy, v, w,| = 0. To
force the solver to only select either y;w; or y;ws SOS constraints was added [16].

3o Wis

Final MIQP-formulation
The final MIQP-formulation is given in (3.10)

min h;YAh(; —|—]3T(Tj,k (3.10)
hs,oj.k
s.t Gy(;Th(; =Js linear constraints
[ <hs<u bound constraints
Poj=s
— Mo, < H;jr < Moj g j=lngi=1..n, k=1...n,
|H; jw=k| + M0 wrr =M
Uj,k € [0, 1]

3.1.4 Select the Optimal Number of Measurements

Previously the MIQP-formulation has only been used to minimize the loss as given
in (2.26). However, since prices of measurements are also included, the optimum
number of measurements is the smallest total cost (the loss plus the prices of
measurements). In an engineering perspective we are interested in the total cost of
a project. By minimizing the total cost, this should give an important insight since
the total cost already include all the process losses (distance away from the optimal
operating point) and the costs related (in this case the prices of measurements). As
opposed to only looking at the loss, as in Figure 1.1, which will reach its minimum
at the maximum number of available measurements. The total cost could provide
a function which has a minimum at a number of measurements smaller than the
maximum number of measurements n,,.
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3.2 Including Prices for Constrained Systems

3.2.1 Back-off Loss From Constrained Input

As seen in Section 2.1.2 the loss L, which was defined as L = Jectual — JoPt arises
due to measurement noise (W, ) or disturbance noise (Wy). If a constraint is added,
it is needed to back-off away from the new constrained optimum to avoid constraint
violation due to measurement uncertainty. This is true for systems where the con-
strained optimum lies on the constraint (active constraints). Example: One needs
to control a temperature so that it is maximum 100°°C, the measurement has
1°°C uncertainty. This means that the temperature actually need to be controlled
at 99°°C to avoid constraint violation.

Back-off is defined here as the loss due to uncertainty of measurement of the con-
strained, or in mathematical terms: L°™°. When backing off, the least the size of
the movement possible is equal to the measurement uncertainty. This can be seen
as a perpendicular perturbation. As seen in (2.40), moving away from the optimal
point by a perturbation €, moves the value of the cost function Ae away from the
optimum point. Combining (2.40) with (2.2), and introducing the measurement
noise (W,,) as € gives:

L™ = AW, (3.11)

Note that the more strongly active a constraint is, the larger the Lagrange multiplier
will be and hence the loss. A weakly active constraint will produce a very small
Lagrange multiplier and hence the loss will be small. The loss given in (3.11) is
only valid for one particular constraint at one specific point. However, so is also
the loss calculated using the exact local method for the unconstrained case. It is
now of interest to combine the unconstrained loss and the constrained loss into a
single problem to find the total loss. Also note that there are ways to reduce this
back-off, for instance by using squeeze and shift methods [17]. However, this has
not been considered in this work.

3.2.2 Assumptions

When introducing a constraint it is assumed that we know which input (u) and
which measurement (y) is used to control the constraint. It is also assumed that
only one measurement is needed to control the constraint using only one input. This
is will reduce the degrees of freedom and hence affect which inputs and measure-
ments are available for selection the unconstrained case. In addition it is assumed
that a change in disturbance does not change the active constraint around the local
point. This is due to the local methods used for the unconstrained case. Further
it is assumed that the unconstrained loss stays the same while backing off. It is
then possible to split up the optimization problem into two smaller independent
optimization problems.
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3.2.3 Split Into Two Optimization Problems

Consider a process with j = 1,2..n, measurements, : = 1,2...n, inputs, and
d = 1,2...n4 disturbances, which is linearized around a optimal nominal point so
that (2.11) applies. A constraint is added and one measurement y; and one input
u; are used to control the constraint. Split up (2.11) into a constrained and an
unconstrained case:

AyCOnS — Gy(yj’ )Au —+ Gz(y]’ )Ad + ’I’Ly (312)
Agtncons Gy(y#, DA+ Gg(y#j’ Ad + nY (3.13)

where GY(y;,:) means row y; and all columns of GY and G¥(y.;, :) means all rows
except row y; and all columns of GY. As seen in (3.12) and (3.13) one row in
GY and GY is moved from the unconstrained case to the constrained case. Noise
is neglected (for now) and perfect control of the constraint is assumed so that
Ac=HAy =0 = Ay = 0. Next solve (3.12) for the input used to control
the constraint, wu;:

@ yr0) Gy, )
Au; = _—dV T A 4 #Au i 3.14
EETTINRTS R eI Rt (8:14)

In practice, the second term in (3.14) could be very small if paring the y; with u;
is done properly. However, in the general case inserting (3.14) into (3.13) gives:

G (y5:1) GY (y; ui) ,
Ay"eoms = GY(yzj, 1) | —GY (w5 ui) d+ —G”(yj»ui)Au# + GYAd
Guncons
Aguncons
—GY(ysi, u;)GY (Y, us; —_—
Ayuncons — ( (yij’u ) (y] u# ) 4 Gy(y;é]yu;éz)) AU;@
Gelag, ) | (3.15)
GY(y25,ui)Gy(y5,2) '
— : d GY(yx4,: ) Ad
+ < Gy(yj, Ui) + d(y?éj )
Gg,uncons
In general GY .. is only used in (2.16) to calculate F, and is therefore not needed

in cases where F' is found by re-optimization as in (2.18). The system described in
(3.15) represents the reduced version of (2.11), which then is implemented in the
self optimizing control framework described earlier.

3.2.4 Calculating the Total Loss

If only one set of measurement devices is available (w = 1), the constrained loss
given in (3.11) can only be added directly to the unconstrained loss found using
the self optimizing control framework. However, in general the constrained case
becomes an optimization problem since it is possible to choose different devices
with different prices (w > 1). It is still assumed that a known measurement is
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Figure 3.1: Illustration of constrained loss (back-off) and unconstrained loss (process
loss). A constraint is added so that u; > 1. The illustration is not to scale.

selected to control the constraint so that the only choice left is to choose from
the different measurement device sets (w). It has previously be shown that the
unconstrained is a MIQP-problem. However, the constrained case becomes an
integer linear optimization problem (ILP) as seen (3.16):

min (AW, )or + P’ o (3.16)
s.t Pak =1
ok € [Oa ]-]

where A is the value of the constraint’s Lagrange multiplier, W, is the measure-
ment noise of measurement device set wy, oy is the selection variable for measure-
ment device set wy. pT is the prices and P is a vector of ones with length equal the
number of measurement sets (k). Note that this problem actually is very simple
to calculate, since all o is binary. Note that the unconstrained and constrained
optimization problem can be solved separately given the mentioned assumptions.
An illustration of the constrained and unconstrained loss is given in Figure 3.1.
The figure illustrates that the losses are orthogonal (not a linear combination of
each other) and could therefore be added to find the total loss so that:

Ltotal — [uncons 4 rcons (317)

The total loss vector in Figure 3.1 is for illustration only and is not to scale.
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3.2.5 Implementation

A steady state optimization is ran at a given nominal point and the solver provides
a A for the given constraint. After a nominal point with a corresponding A is
found, the same self optimizing control sequence as described above is ran in order
to calculate the gain matrix GY, the sensitivty matrix F' and the Hessian matrix
Juu- The corresponding input u; and measurement y; for the constraint need to
be removed from each matrix before entering the MIQP-formulation. This means
for instance that the size of the gain matrix is reduced from GY € R™*"« to
GYuneons ¢ Ry~ Meons XMu—"cons where n.,ns iS the number of constraints.

3.3 Software Implementation

The models described in the previous sections has been implemented in MATLAB
(version 2015b). For source code of the described methods and models see Ap-
pendix A. The MIQP-formulation has been implemented in the commercial math-
ematical programming solver GUROBI (version 6.5.1) with MATLAB API. Gurobi
provides user readable optimization files, these are included in Appendix B. The
general software implementation steps are given as follows:

1. Perform steady state simulations using MATLAB with fmincon-solver.
2. Choose a nominal point for local study, using an active constraint map

3. Perform small feed perturbations around nominal point to calculate sensitiv-
ity matrix F.

4. Perform small input perturbations around nominal point to calculate gain
matrix and Hessian matrix from finite differences (Appendix C)

Define magnitude for disturbances and noise
Build all matrices needed for MIQP formulations
Include a second measurement set, if applicable

Define prices for measurements

© »®» N = o

Define constraints for the MIQP formulations
10. Perform MIQP calculation using GUROBI
In addition to what has been described earlier the following assumptions apply.

o Assume if d changes, active constraint does not change
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Case Study: Dummy Problems

This chapter applies the methods for measurement selection as described in the
previous chapter, on two dummy problems. The first dummy problem presents an
unconstrained problem. The second dummy problem is created in order to present
a constrained problem. The results are regarded as proof of concepts. First the
following evaluation criteria are defined:

Loss is the unconstrained loss, process loss or steady state loss. It is defined
in (2.26)

Price is defined as the prices of measurements. The price could be of one
single measurement device or total price, which is the sum of prices for the
selected measurements.

Back-off is the constrained loss. Due to measurement uncertainty, it is un-
known how close to the constraint the measurement actually is, hence a back-
off away from the constrained value is required. However, when backing-off
we also travel away from the optimum, and the distance away from the opti-
mum is the constrained loss or back-off.

Cost or total cost, is the sum of all the terms mentioned above. In a uncon-
strained case the cost (or total cost) will be the sum of the unconstrained
loss and the prices of measurements. Whereas in a constrained case the total
cost will be the sum of the unconstrained loss, prices of measurements and
back-off.
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4.1 Unconstrained Dummy Problem Model De-
scription

A simple dummy problem was created as a test case. The same problem is defined
in [8] and [4]. Imagine a case with two inputs u, one disturbance d and two outputs
z. The four measurements y are given as:

y=1[n 2 w uz}T (4.1)
The objective function J defined as:
J = (2’1 + 22)2 + (Zl — d)2 (42)

The outputs depend linearly on inputs through (4.3)

z=G"u+Gid (4.3)
with
. (11 10
G* = [10 9] (4.4)
. 10

The Hessian matrix evaluated around a nominal point for the inputs v was found
to be:

244 222
Juu = {222 202] (4.6)
198
Then the gain matrix becomes:
11 10
10 9
{7
GY = 10 (4.8)
0 1
whereas GY becomes:
Gi=T[0 9 0 0" (4.9)

The sensitivity vector is then calculated from (2.16) with the matrices found in
(4.6) to (4.9).
-1
F= |1 (4.10)
9 .
-9
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4.2 Model Verification

In the base case the disturbance noise is W; = 1 and the measurement noise is:
W, = diag([0.01 0.01 0.01 0.01]) (4.11)
Y is calculated from (2.21) and becomes:

-1 001 O 0 0
-1 0 001 O 0
9 0 0 001 O
-9 0 0 0 0.0

Y = (4.12)

1

4.2 Model Verification

In order to verify the model it was tested to produce the same results as Yelchuru
and Skogestad [4]. This does not include prices. Big-M was set to 120. A plot
showing the optimal average loss is given in Figure 4.1 shows good correspondence
with the results from [4]. Figure 4.1 and shows that it may be unnecessary to choose
all four measurements as the losses are 0.000502 vs. 0.000366 for three and four
measurements respectively. Although this represent a percentage big increase, the
absolute number is so small that it is unlikely that it will be economical beneficial
to choose all four measurements in this case.

In addition, the corresponding selection matrix H for a set of three measure-
ments (n,, = 3), was calculated and is given in (4.13) and shows that the model
produces the same results as Yelchuru and Skogestad [4, Section 5.1]. Recall that
the selection matrix H € R™*™ . Also recalls that ¢ = Hy so that the columns
with 0’s means that the measurement was not chosen. In a cost perspective this
is equal to not installing the measurement device in the actual plant, saving both
investment and operating cost of that measurement.

_[1.0182 0 0.3959 0.2828

Hm =3) = 107637 0 2.0643 1.9795

(4.13)

4.3 Including Price of Measurements

With a working model, it is now of interest to test the influence of prices of mea-
surements. So far the cost function from the MIQP-formulation has been equal
to the loss. When prices are introduced this means that the project both has a
loss related to the control structure, but also a price related to the measuring de-
vices. The objective is still to be the same both from an engineering and economic
perspective, to minimize the project cost.

4.3.1 Identical Prices of Measurements

The dummy case was simulated with constant prices of measurements, meaning
that all measurements have the same price. The simulation was then repeated by
changing the price for each iteration in order to produce a figure similar to Figure
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Chapter 4. Case Study: Dummy Problems

2
F

[|M]]

1
2

Loss:

2 3
Number of Measurements

Figure 4.1: The loss plotted against the number of measurement. All prices of measure-
ment are set to 0.

4.1. The prices were set to 0.05, 0.5 and 1. The case with prices equal to zero was
added for comparison. The result is given in Figure 4.2.

The figure illustrates how price influence the total cost. At low prices, choosing
between three or four measurements has only a small effect. When the prices
increase to 0.5, choosing four measurements has a significant higher total cost. In
these cases choosing three measurements will be the best solution. However at a
price of 1 per measurement the price of measurements are much higher than the
loss, meaning that only two measurements gives the lowest total cost.

4.3.2 Individual Prices of Each Measurement

In the previous section, identical prices for each measurement were assumed. How-
ever, in reality each (type of) measurement could have an unique price. For in-
stance, a composition measurement is more expensive than a flow measurement
or a temperature measurement. To show this effect, new prices were given to the
different measurements, one at at time, as seen in the first column of 4.1.

The most interesting result is found when ys is given the price of 0.01: yo was
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4.4 Include a Second Measurement Device Set

3.5

/ = Price = 0
3

= Price = 0.05
Price = 0.5
= Price = 1

25

1.5

Cost (Loss + Price)
[N}

0.5

0 L

2 3
Number of Measurements

Figure 4.2: The total cost plotted against the number of measurements. All measure-
ments have the same cost in each line. A cost as low as possible is wanted.

namely not chosen when n,, = 3 in any of the other cases, as seen in Table 4.1.
However, if the price of yo = 0.01, this is changed. In this case both the price of
measurements and the loss play a role when selecting the measurement set. Also
note that choosing three measurements always gives the lowest total cost. An
extension of this case is when both prices and measurement noise are unique for
each device.

4.4 Include a Second Measurement Device Set

When constructing a plant the engineer may be faced with a choice of either buying
inexpensive measurement devices with bad accuracy (high noise level) or expensive
measurement devices with good accuracy (low noise level). The engineer is always
looking for the best project economy and hence choosing the device giving the
lowest total cost. By using the procedure from Section 3.1.3, the trade-off between
a cheap investment and poor performance, and expensive investment and better
performance is optimized.
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Chapter 4. Case Study: Dummy Problems

Table 4.1: Measurement selection with individual prices. The prices for each measure-
ment is given in the first column. The next column denotes the number of measurement
in the simulation. The third column is the selected subset of measurements and last the
related total cost.

Measurement price No. y  Selected Measurements Cost

Y1, Y2 5, Y3 , Y4
0.01, 0.10, 0.10, 0.10

2 Y1,y2 1.110300

3 Y1,Y3,Y4 0.210502

4 Y1,Y2,Y3,Y4 0.310366
0.10, 0.01, 0.10, 0.10

2 Y1,Y2 1.110300

3 Y1,Y2,Y3 0.210662

4 Y1,Y2,Y3,Y4 0.310366
0.10, 0.10, 0.01, 0.10

2 Y1,Y2 1.200300

3 Y1,Y3,Y4 0.210502

4 Y1,Y2,Y3,Y4 0.310366
0.10, 0.10, 0.10, 0.01

2 Y1,Y2 1.200300

3 Y1,Y3,Y4 0.210502

4 Y1,Y2,Y3,Y4 0.310366

4.4.1 No Prices of Measurements

The simplest test for this optimization problem is to use two measurement device
sets (wy and wg) with different measurement noise (W,,) and then set the price
to zero. The program should choose only measurements with a small measure-
ment noise, because choosing «bad» measurements when «good» measurements
are available at no cost will only lead to higher losses. Define the two device sets
as:

Wy = diag([0.1 0.1 0.1 0.1}) (4.14)
W2 = diag([0.01  0.01 0.01 0.01])

The results from the simulation is given in Table 4.2. The table shows that if the
prices are zero, the optimizer selects the «good» measurements.

4.4.2 Good and Expensive vs. Bad and Cheap

To show the trade off between «good» and expensive vs. «bad» and inexpensive
measurements, the measurement noise was defined as in (4.14) and the prices were
set to 0.02 and 0.2 for w; and ws respectively. The results when using these pa-
rameters for the noise and prices is given in Table 4.3. The table shows that with
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4.5 Constrained Dummy Problem Model Description

the prices given in this problem, the best trade-off is to use inaccurate measure-
ments (w;). The optimal number of measurements are three, with a slightly lower
cost than using four measurements. The final selection matrix (H) for the optimal
number of measurements (n,, = 3) is given in (4.15). Empty columns (non chosen
measurements) are not included, so that each column represents the measurements
given in Table 4.3.

_1.0188 0.3893 0.2768

= 0.7678 2.0198 1.9391

(4.15)

4.5 Constrained Dummy Problem Model Descrip-
tion

To test the method described in Section 3.2 for a constrained problem, a new
dummy problem that better illustrates a constrained case, was created. Consider
a process with the following objective/cost function:

Lo, 1 2

J = -ui + - (ug — da) (4.16)

2 2
where uq and us are the two inputs, and ds is the second of two disturbances. A
constraint is given on the value of u; so that:

uy—d;—1>0 (4.17)

The disturbances varies so that: —0.5 < d; < 0.5 and —1 < dy < 1. The nominal
value for both disturbances are therefore 0. This results in the following optimiza-
tion problem, which is minimized around the nominal point:

1 1
miniu% + §u§ (4.18)

stu; >1

which gives a value Lagrange multiplier for the constraint at A = 1. Next define
the measurements y as:

y=[u wy di dy (ug—d) (4.19)

Table 4.2: Selected subset of measurements with two measurement device sets (w; and
wz) with all prices set to zero. Only measurements from the «good» device set (ws) are
chosen.

No. y Selected Measurements Loss
2 Y1w2,Yy2w2 1.000300
3 Y1W2,Y3W2,Ya W2 0.000502
4 yrwg,yows,yswa,yswy  0.000366
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Chapter 4. Case Study: Dummy Problems

Table 4.3: Selected subset of measurement with two device sets (wn1 and wp2) at
different number of chosen measurement and the subset’s corresponding cost (loss +
prices).

No. y Selected Measurements Cost
2 ywiyew 1.070000
3 Y1w1,Y3wi,Y4 w1 0.109329
4 Y1W1,Y2W1,Y3W1,YaW1 0.116290

Remember that:

_ Yy dy
Y = Ynom + %(U unom) + %(d dnom) (420)

which is equivalent to (2.11) with the gain matrices defined in (4.21) and (4.22).

1 0
0 1
GV =01 2 (4.21)
2 3
1 0
0 0
0 0
GY=1{1 02 (4.22)
05 3
-1 0

Let’s assume that the measurement y5; = u; — d;y is used to control the constraint
on u; and we can perfectly control this constraint, then the system can be split
into a constrained and unconstrained problem. The constrained problem becomes:

Ay = [1 0] {ﬁﬂ +[-1 0] [ﬁjﬂ +ny (4.23)

Whereas the unconstrained problem becomes:

1 0 0 0
uncons __ 0 1 A'Ull 0 0 Ad1
AT =100 9 [Au2:|+ 102 {A@]*”y (4.24)
2 3 05 3

If the noise is neglected(very small compared to the inputs and disturbances) and
perfect control (Ac = HAy =0 = Ay = 0) of this constraint is assumed, (4.23)
becomes:

- Au1 = Adl (425)
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4.6 Measurement Selection for a Constrained Dummy Problem

Table 4.4: The noise and price for each of the measurement sets

w1 w2

Noise 0.1 1
Price 0.2 0.02

Inserting (4.25) into (4.24) gives:
0 -1+0 0
1 —-04+0 0| |Ady
uncons __
A Y R B {Adg} oy (426)

3 -2+05 3

-~ | ——

Glncons G}

d,uncons

The expression for the unconstrained measurements, (4.26) is then used in the self
optimizing control framework as presented earlier (Section 2.1 and Chapter 3). The
unconstrained cost function becomes:

1
Juncons —_ 5(’&2 _ d2)2 (427)

The Hessian matrices are found analytically: Ju, = 1, Jua = [0 —1]. From this
the sensitivity matrix is calculated from (2.16). The maginitude of the disturbances
was previously defined so that:

1" (4.28)

Wy=1[05 1
Two measurement device sets (w; and ws) is defined with measuring noise and
prices given in Table 4.4. Note that ys, which is used on the constraint, still
belongs in wy and wsy. So that choosing between these still applies for ys.

4.6 Measurement Selection for a Constrained Dummy
Problem

The price and uncertainty for this model is given in Table 4.4. The unconstrained
part of the problem has four measurements (n, = 4), one input (n, = 1) and two
measurement device sets (n,, = 2). The constrained part of the system has one
measurement, one input and two measurement device sets. The system was imple-
mented with a big-M of 500. The results from the simulation is given in Table 4.5.
The table shows that the unconstrained loss quickly decreases, the constrained loss
stays the same, which is due to the fact that the same measurement device (ysw;)
is chosen for all cases. The optimum number of (unconstrained) measurements is
two since this gives the lowest total cost. Note that if three or four (unconstrained)
measurements is chosen, these come from the second device set (ws), probably be-
cause of the low price, and the decrease in loss is very small anyway. The selection
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Chapter 4. Case Study: Dummy Problems

Table 4.5: Selected Measurements including different losses and total cost for the con-
strained dummy problem. The chosen measurement device for the constraint is included
in selected measurements, and counted in the first column through (+1).

No. y  Selected Measurements Luncons Leons Ltetel  Total Cost
1(+1)  yowy,yswy 0.505000 0.100000 0.605000 1.005000
2(+1)  yrwi,yowr,Yswe 0.024231 0.100000 0.124231 0.724231
3(+1)  y1wr,y2ws,yswa,yswi 0.023659 0.100000 0.123659  0.743659
A(+1) 1w ,yownyswe,yawa,yswy  0.023604  0.100000  0.123604  0.763604

matrix, H for the best case (n, = 2) is given in (4.29). Empty columns (non chosen
measurements) are removed, and the constrained measurement does not contribute
to H as it is a 1-to-1 relationship between y5 and u;.

H = [1.9231 1.0000]

(4.29)
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Chapter

Case Study: Subsea separation
system

This chapter applies the methods for measurement selection on a subsea separation
system, where the final goal is a control structure design using the selection matrix
(H).

5.1 Subsea Separation Model Description

The model has been adapted from Tyvold [1]. The model has only been modified
in order to increase numerical robustness. The cost function and constraint have
also been modified. This section only briefly describes the model, as it has not
been the focus in this thesis, for details; consult [1]. Only a two-phase (oil and
water) system is considered.

5.1.1 Gravity Separator

In order to do an initial bulk separation, a model of a gravity separator is used. It
is created as a horizontal tank with one inlet and two outlets. The liquid at the
inlet is considered an emulsion and the only separation force is the gravitational
buoyancy forces acting on the droplets due to the density difference between oil
and water. Hence, a pure water phase and a pure oil phase is formed at the bottom
and top of the separator respectively. A weir separates the two outlet, so that all
liquid hitting the weir goes in the bottom stream, and all liquid above the weir goes
in the top stream, notated g, and ¢; respectively. It is assumed that a movement of
oil in one direction is counteracted by an equal movement of water in the opposite
direction. A figure showing the phase separation is given in Figure 5.1.
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Chapter 5. Case Study: Subsea separation system

Water Phase

Figure 5.1: Horizontal gravity separator. Figure taken from [1]. Liquid enters as an
emulsion, the gravitational buoyancy forces acting on the density differences separates the
two phases so that an oil layer and a water layer is created. A weir separates the outlet
streams.

Horizontal Velocity

The horizontal velocity is modelled as two separate plug flows, which are separated
by the weir height. The horizontal velocity in the bottom part is given by:

_ B

- (5.1)

Uh
where A, is the cross sectional area of the lower part of the separator derived by
trigonometry:

Ay = %2 [2cos_1 (%) —sin (2cos_1 (R_—RH“’)” (5.2)

where R is the vessel radius and Hyy is the height of the weir.

Vertical Velocity

The droplets experience a vertical velocity due to the gravitational forces, assuming
Stoke’s law, so that the velocity expression becomes:
2r2 —
Uy = d(pd p)g (53)
Iu(a)
where g4 is the radius of the droplet, pg and p are the densities of the droplet and
continuous (emulsion) phase respectively, g is the gravitational constant and ()
is the viscosity as a function of oil fraction (sometimes referred to as oil-cut). It
is assumed that the emulsion phase does not have any vertical velocity itself. This
includes also the neglection of all turbulence in the vertical direction.

34



5.1 Subsea Separation Model Description

Droplet size

The model assumes an average droplet diameter instead of a droplet size distribu-
tion. It is also assumed that the droplet size is independent of the flow. It is further
assumed that neither droplet break-up or coalescence take place in the emulsion
phase.

Concentration profile

It is assumed uniform concentration profiles within the three different phases (oil
phase, emulsion phase and water phase). This means that the concentration is
constant in each of the three phases. In the oil phase, it is assumed pure oil a = 1,
the emulsion phase has the inlet oil fraction o = «;;, and the water phase consists
of pure water, « = 0. This assumption becomes less accurate when there is an
increase in the standard deviation of the droplet size distribution.

Viscosity

The viscosity is regarded, as a function of oil fraction and is calculated for the
emulsion phase from[18]. The viscosity is constant inside the emulsion phase due
to the assumption of constant concentration in each phase.

Qil Fraction in Product Streams

The volumetric volume fractions of the top and bottom streams are estimated from

the vertical distance covered as a function of the residence time. This means that

a droplet located below the weir height (H,,) will travel a vertical distance:
Ah=2L (5.4)

Up

where L is the horizontal distance covered from the inlet to the weir, v, is the

vertical droplet velocity and vy is the horizontal droplet velocity. The amount of

oil left in the bottom stream is limited by

d=H, — Ah (5.5)

By geometry the area with remaining oil (emulsion phase going into bottom stream)
given by d becomes:

A, = %2 [2005_1 (%) - sin(?cos_1 (%))} (5.6)

Due to the concentration assumptions given earlier the oil fraction in the bottom
is

A
op = amA—: (5.7)
The oil fraction in the top stream is then calculated by a component volume balance

(in practice a mass balance due to constant density).
1

oy = *[Oém(hn - abqb] (5~8)
qt
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Continuous

Swirl Element

Inlet Flow — Oi_l dumplels ——~ HPO
in water

Pure water

Figure 5.2: Principle sketch of the swirl separator. Figure adapted from [1]

where ¢, ¢;n and g are the volumetric flows in the top-, in- and bottom stream
respectively.

5.1.2 Swirl Separator

The system also consists of two Swirl/In-Line separators. This is a relative new
separator technology developed by CDS Technology (now: FMC Technology) and
Statoil [19]. Figure 5.2 shows the working principle of the swirl separator. The
following subsection describes how the swirl separators are modeled. Define first
that an input to the separator model is the flow split between the light phase outlet
(LPO) flow and the inlet flow:

FS = qu’o (5.9)

Axial velocity

The axial velocity profile is assumed as an annular plug flow without friction at the
wall. It is assumed two discrete constant velocities based on radius of the droplet
so that there is one velocity in the area which goes into the light phase output
and one velocity for the area which goes into the heavy phase output. The axial
velocity profile is given in (5.10).

L 0<r<B
v.(r) = . R <r<R (5.10)
7T(R2—R$ ) 1 = =

In (5.10) R; is the tube radius for the light phase outlet, R is the total radius
(radius of heavy phase outlet), ggpo is the volumetric flow in the heavy phase
outlet. Although this velocity profile is unrealistic from a fluid flow perspective, it
could be an OK assumption for finding an estimation of separation performance.

Tangential Velocity

The point of using a swirl separator is that tangential/centrifugal forces will sepa-
rate heavier droplets from lighter droplets. Experimental work has shown that the
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5.1 Subsea Separation Model Description

tangential velocity can be described as a Rankine vortex [20]. A Rankine vortex is
a velocity profile that can be divided into an inner region with a solid body rotation
and an outer region with free vortex movement. These regions are separated at
a characteristic radius R.. In this model the tangential velocity is assumed con-
stant above this characteristic radius, so that the final expression for the tangential
velocity downstream of the swirl element is given as:

vyrer I ,0<r <R
vp(r) =4 0 e - (5.11)
vyt e* ,R.<r<R
where v7**" is the maximum tangential velocity described by:
Vg = Qu,p (5.12)

where (2 is an empirical proportionality constant based on the swirl element’s ge-
ometry and v, is the axial bulk velocity (in this case:v, = v, ). Equation (5.11)
is given immediately downstream the swirl element where the swirl has maximum
momentum. However, when the droplets travel in the axial direction, they loose
momentum due to friction from the pipe wall. A new expression is needed so that
it may be possible to calculate the tangential velocity at a distance away from the
swirl element. An experimentally determined decaying factor, Cgecay is & added to
the expression [21], so that:

vg(r, 2) = vy(r) exp (—Caecay2/2R) (5.13)

where z is the axial coordinate A sketch showing how the swirl element gives
tangential velocity to the droplets is given in Figure 5.3.

Radial Velocity

The radial velocity is determined by Stoke’s law so that the radial velocity of

droplet is:

2r2(pg — p)v2(r, 2)
9u(r, z)r

where 14 is the droplet radius, p is the viscosity, pq is the dispersed phase density

and p is the continuous phase density.

vp(r,z) = (5.14)

Figure 5.3: Sketch showing how the swirl element gives tangential forces to the droplets.
Figure gathered from [2].
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Viscosity

The viscosity is calculated the same way as in the gravity separator, Section 5.1.1.

Concentration

The concentration at the center of the separator is calculated by:

FS(R® - R}) + (1 - FS)(r}, — R?)
(1—FS)(r? — R?) + FS(R? — R?)

ac(r,z) = ain (5.15)
where «;,, is the inlet oil fraction, F'S is the flow split, R; is the radius of the inner
pipe, r is the radial coordinate and r;, is the radial coordinate at the inlet

Solving the Separator Model

The aim of the swirl model is to find a position r;,, which is the last droplet position

entering the light phase output stream r = R;. To find this, the residence time

is needed. The residence time, 7, is calculated from the tangential velocity and is
written as:

B m(R? — R?)L

(1 - FS)QML

where ¢;y, is the inlet volumetric flow. Then (5.14) is integrated over time ¢t = 0 to
t = 7 using a constant time step, Runge-Kutta integrator. Then r;, for the droplet
leaving at r = R; is found. The oil fraction of the light phase outlet stream can be
calculated from:

(5.16)

FS(R* — R}) + (1 - FS)(r} —R?)ﬂ (5.17)

alpo = min [1,041'” ( FS(R° — %) n

The minimum expression is only to make sure that the model only calculates oil
fractions below 1. The other outlet stream is then calculated using component
mass balance as seen in (5.18)

iy, — O 5o F'S
dlap — 2= hrol’S (5.15)

To compensate for the simplified velocity profiles, a constant re-entrainment factor
is added. The re-entrainment ¢, is calculated as:

Qre = kreAv (519)

where k,. is an empirical fitting parameter and Awv is the velocity difference between
the two phases. The equation for calculating oil fraction including re-entrainment
becomes:

1
QPO = 7[Q£PO (qLPO — Qre + Oéi{POQre] (520)
qLPO

The oil fraction in the heavy phase outlet is still calculated by (5.18), but o pg is
replaced with arpo.
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5.2 System Analysis

Switching Continuous Phase in the Swirl Separator

The swirl separator explained above is created for a continuous water phase. How-
ever, in the system a swirl separator for a continuous oil phase is also required. The
main difference between these two are that the droplets in a continuous oil phase
consists of water which have a higher density than oil droplets. The consequence is
that the droplets in this case are pushed outwards instead of inwards. Due to the
higher oil content, this requires a larger inner tube radius, R; than before. Other
small changes include smoothing of the tangential velocity function.

5.1.3 Final System

A flow sheet of the final system is given in Figure 5.4. A flow (g;,) with a given
oil fraction (oyy) is inserted into a gravity separator, which sends oil (and some
water) in the top stream (g;) and water (and some oil) through the bottom stream
(g»). The top stream enters a swirl separator (Dewaterer) which aims to remove
the residual water. The residue water stream (qupo,pw) is sent down for mixing
with the bottom stream from the gravity separator (¢;) and enters the second swirl
separator (Deoiler), where residual oil (¢r,po,po) is removed and sent to mix with
the oil stream in the Dewaterer (qrpo,pw), to form the oil product stream (qr, prod)-
The water product stream out of the deoiler is denoted as qu prod-

Dewaterer

(Dec

eoiler

Figure 5.4: Flow diagram of a subsea separation system. The dewaterer and deoiler
are swirl separators for a continuous oil phase and continuous water phase respectively.
Disturbances are marked with red, whereas the possible measurements are marked in
orange. ¢; denotes a flow measurement whereas a; denotes a oil fraction measurement.
The figure is based on a figure from [1].

5.2 System Analysis

The following sections present own work, but using the subsea model from [1] as a
background. There are two disturbances in the system, g;, and a;, (drawn in red)
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Chapter 5. Case Study: Subsea separation system

and 16 measurement signals (drawn in orange) in the system as seen in Figure 5.4.
There are three inputs, which is the flow splits in the separators. An illustration of
the inputs is given in Figure 5.5. Since the feeds are given, the three inputs equals
the degrees of freedom in the system. A flow split in separator ; is defined as:

FSi=q1r0o.i/Gin, (5.21)

where LPO stands for the light phase outlet. In practice the flow split will be a
controller setting a ratio between the opening of two valves which controls the flow.

Dewaterer

---- FSpw

____________ N --FSpo

(Dec

1
eoiler

Figure 5.5: Flow diagram where the inputs F'Se, FSpw and F'Spo are drawn. F'S is
an abbreviation for flow split, and the subscripts are abbreviations for gravity separator,
dewaterer and deoiler, respectively.

5.2.1 Constraint

The subsea processing plant could have multiple constraints, for instance due to
regulations. One of these regulations is the consternation of oil in produced water.
The Norwegian Petroleum Directorate states that the maximum allowance of oil in
discharged water is 30 mg L.=1[22], which depending on the oil density is ~ 30 ppm.
Other restrictions could apply for well re-injection. However, due to the numeri-
cal robustness of the model, the constraint of oil in produced water is set to 1%
(H,proa < 0.01). From an economic perspective, having oil in the water stream
means that valuable product is spilled, and should therefore be avoided. However,
there is also a trade off, since a low concentration of oil in water, could give a
low yield in the oil product stream. The constraint removes a degree of freedom
since it must be controlled. The natural choice is to choose the input F'Spo and
the measurement ag proq to control this constraint. This reduces the steady state
degrees of freedom to two (F'Sg and F'Spo) and the unconstrained measurements
to 15.
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5.3 Steady State Optimization

5.3 Steady State Optimization

To find the best control structure design, a steady state optimization needs to be
conducted. Firstly a cost function is defined, next a steady state optimization is ran
to find the active constraint region. The steady state optimization was conducted
using a script from Tyvold [1] as a basis.

5.3.1 Cost Function

A cost function that could represent a subsea separation system was created and
given in (5.22).

m}n J = _aL,proqu,prodEoil + (]- - aL,prod)qL,prodpwater (522)

where the first term is the earnings from the oil in the product stream. FE,; is
the earnings from oil. A price of 40 $/barrel was assumed. The second term is the
costs for processing the residual water in the oil production stream. pyqte,- is the
price of topside water processing, a cost of 20 $/barrel was assumed. In addition a
regulation term was added, this does not influence the final cost, but could increase
numerical robustness.

5.3.2 Active Constraint Region

To map out when the constraint given in Section 5.2.1 is active, a simulation
was ran with different values for the feed(18 m*h™! < ¢, < 23m3h~! and 0.35
< @jp < 0.6). That an constraint is active means that the optimum value of the
cost function would change if the constraint is removed. To decide whether the
constraint is active, the Lagrange multiplier of the constraint is plotted against
the two different feed changes, since a small value of the Lagrange multiplier will
symbolize an unconstrained region, whereas a high value will consider an active
constraint. The active constraint map is given in Figure 5.6, a whiter pixel indicates
a higher Lagrange multiplier. The whiter dots in the middle could suggest some
numerical noise, as this region moved to another part of the plot when the case was
simulated again. The figure shows that the constraint is mostly inactive except for
cases with a high flow rate (g;,) and high oil fraction (a;y).

5.3.3 Simulation results

A simulation was ran in order to see how the inputs (flow splits) change with
different feed changes. The results from the steady state simulations are given as
contour plots in Figure 5.7. The figure shows relatively large changes in the flow
splits at different in flows and oil fractions, especially for the gravity separator.
In addition plots showing the oil fractions in the product streams was created.
The results are plotted with different feed concentration and a constant feed flow
of 23m3h~!. The results are given in Figure 5.8 and 5.9. Note that a value of
o prod = 0.01 in Figure 5.9, means that the constraint is active. Be aware that
the non-smooth behaviour of the graphs could suggest some numerical difficulties.
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din [mg / h]

0.35 0.4 0.45 0.5 0.55 0.6
Qin

Figure 5.6: Active constraint map. A white pixel indicates an active constraint, whereas
black indicates an unconstrained region. Figure created by plotting the value of the
Lagrange multiplier.
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Figure 5.7: Figure shows a contour plot for each of the three flow splits.
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Figure 5.8: Oil fraction in production stream plotted against inlet oil fraction with a

constant in flow of 23m3h~!
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Figure 5.9: Oil fraction in water production stream plotted against inlet oil fraction with
a constant in flow of 23m®h~!. The figure clearly shows that there is an unconstrained
region between 0.42 and 0.49.
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5.4 Control Structure Design

The main purpose of this work has been to develop methods for measurement
selection for control structure design. Two nominal points were chosen and the
methods described in Chapter 3 was applied. One nominal point has an active
constraint, while the other lies in the unconstrained region. In addition budget
constraints were added to see how this influence the choice of measurements. The
final goal of this section is to find a selection matrix (H). Recall the evaluation
criteria from the previous chapter:

e Loss is the unconstrained loss, process loss or steady state loss. It is defined
in (2.26)

e Price is in this work defined as the prices of measurements. The price could
be of one single measurement device or total price, which is the sum of prices
for the selected measurements.

e Back-off is the constrained loss. Due to measurement uncertainty, it is un-
known how close to the constraint the measurement actually is, hence a back-
off away from the constrained value is required. However, when backing-off
we also travel away from the optimum, and the distance away from the opti-
mum is the constrained loss or back-off.

e (st or total cost, is the sum of all the terms mentioned above. In a uncon-
strained case the cost (or total cost) will be the sum of the unconstrained
loss and the prices of measurements. Whereas in a constrained case the total
cost will be the sum of the unconstrained loss, prices of measurements and
back-off. From a economic perspective, it is the total cost of a project that
is of interest, and is therefore minimized.

5.4.1 Operation in Unconstrained Region

Based on the active constraint map in Figure 5.6, the point where oy, = 0.4 and
¢in = 20m3h ™!, was chosen to study a nominal point in the unconstrained region.
The steady state results are given in Table 5.1 and 5.2 for inputs and measurements
respectively.

Table 5.1: Nominal values for all inputs with feed at a;, = 0.4 and ¢, = 20 m3h™

Input  Nominal Value

FSe 0,3612
FSpw 0,9089
FSpo 0,2239

As seen in the Table 5.2, the oil fraction in the water stream (a g proq) is less
than 0.01 which was the limit for the constraint.
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Table 5.2: Nominal values for all measurements with feed at a;, = 0.4 and ¢, =
20m*h~1

Measurement  Flow [m®s~1]  Oil fraction [-]

t 0,0020 0,8953

b 0,0035 0,1199
LPO,DW 0,0018 0,9411
HPO,DW 0,0002 0,4389
in,DO 0,0037 0,1355
LPO,DO 0,0008 0,5945
H,prod 0,0029 0,0031
L,prod 0,0027 0,8322

Sensitivity Matrix

The sensitivity matrix (F) was found using re-optimization around the nominal
point. The re-optimization was done by running the simulation with a 1% increase
in the disturbances, one disturbance at the time. The sensitivity matrix was then
calculated by using (2.18) and assuming that:

Oy Ay

Hessian Matrix

The Hessian matrix of the cost function was found using finite differences. There
are three unconstrained inputs (the nominal point is not in the active constraint
region), finite differences in several variables and second derivatives using the cen-
tral step method were applied. The step size for both F'Spy and FSpo was set
to 0.1% of the nominal values. The equations used are given in Appendix C. The
Hessian Matrix was found to be:

0.5153 0.5564 0.0869
Juw = |0.5564 1.4047 0.0930 (5.24)
0.0869 0.0930 0.1687

To make sure that the cost function is convex, the eigenvalues were checked. Pos-
itive eigenvalues of the Hessian matrix implies that the system is positive semi-
definite, and means that the system is convex. Be aware that this analysis is done
locally, so it is not known if the system is globally convex. In this case all three
eigenvalues were positive, and the function is therefore convex around this nominal
point.

Gain Matrix

The gain matrix is the Jacobian matrix of the system, and was found using finite
differences, as was the case for the Hessian matrix. The gain matrix was found to
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be: ~ _
0.0020 0
—0.5166 0
—0.0020 0
—0.1510 0

0.0027  0.0018
—0.7346 —0.4773
—0.0007 —0.0018
—0.7506 —0.0835
—0.0027 —0.0018
—0.2323 —0.1578 0
—0.0006 —0.0004 0.0008
—0.1832 —-0.1330 —0.2612
—0.0021 —-0.0014 —0.0008
—0.2465 —0.1650 —0.0965

0.0021 0.0014  0.0008
|—0.3957 —0.2595 —0.1564

GY

OO DO OO O OO

(5.25)

In (5.25) GY € R™*™ each row corresponds to a measurement and each column
to a input. The first four rows in the second column, represent the flow and oil
fraction measurements out of the gravity separator. It is no surprise that an input
change in the second input (F'Spy ) has no effect on these measurements, since
these are located upstream of the Dewaterer. The same argument can be used
regarding the ten first measurements in the third column, all these measurements
are located upstream of the Deoiler.

Disturbance and Measurement Noise

Define that the disturbances for the system are:

di = qin £5m3h~! (5.26)

This gives a disturbance Wy of:
Wq = diag([5 0.2]) (5.28)

In order to set the prices to each measurement it is assumed that the flow measure-
ments are cheaper than the oil fraction measurements, since the latter are much
more complicated. More importantly, the prices of measurements must be given as
annualized costs (or more precise $/s), as oppose to fixed cost. This is due to how
the cost function is defined. In a subsea case, it is possible to think that the operator
company outsources the subsea operation and maintenance of the measurements
for a given number of years to a service company. Two set of measurement devices
(w1 and we) with a given measurement noise (W,,) and prices are defined in Table
5.3. Note that the values given in the table are not based on actual data, but are
set in what is considered a realistic order of magnitude, relative to the actual model
and cost function formulation.
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Table 5.3: Measurement noise and price, for different measurement equipment with two
different measurement device sets.

w1 w9
Oil fraction noise [-] +0.001 £0.02
Flow noise [m?h1!] +0.01 +0.4
Price oil fraction measurements [$/s] 2 x 1072 1 x 1073
Price flow measurements [$/s] 1x107% 5x107*

Unconstrained Loss

A big-M of 1000 was chosen, in order for the system not to reach the big-M
constraint, as this may influence the calculated loss for the system. The system
was implemented as described in Section 3.3. The unconstrained loss for each
number of measurement was calculated, and is shown in Figure 5.10. The figure

Loss 5||M|[3[$/s]

1072

4 6 8 10 12 14 16
Number of Measurements

Figure 5.10: The unconstrained loss for the system operating in the unconstrained

region.

shows that the unconstrained loss decreases rapidly for the first few measurements
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before flattening out at a very small loss when more measurements are added.

Total Cost

The total cost of the system (unconstrained loss + prices of measurements) is
given in Figure 5.11. As seen in the figure, the optimal number of measurements

1072

Total Cost [$/s]

2 4 6 8 10 12 14 16
Number of Measurements

Figure 5.11: The total cost for the system operating in the unconstrained region. Total
cost includes prices of measurements and unconstrained loss.

(number that gives the lowest total cost) is six. After six measurements, the prices
of the additional measurements dominates over the decrease in unconstrained loss.
Note that the difference between five and six measurements is very small, and the
engineer may therefore decide to select only five in a more realistic case.

Analysis of the Selected Measurements

The costs between four and seven measurements are investigated to see which part
of the total cost contributes so that the optimal number of measurements are six.
There are, in this unconstrained case, two components that makes up the total
cost, the unconstrained loss, the prices of measurement. A bar plot showing how
each of these components make up the total cost for four to seven measurements,
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are given in Figure 5.12. A table showing the selected measurements, when a sub-

1073
9 T T
B Unconstrained loss
] I Prices of measurements

Cost [$/5]

4 5 6 7
Number of Measurements

Figure 5.12: The total cost for the system separated in each of the components making
up the total cost.

set of four to seven measurements is chosen is given in Table 5.4. As seen in Table
5.4 all measurements comes from the cheap measurement set (ws). When more
measurements are selected the loss decreases whereas the price of measurements
increases. Note that the optimal combination always include one oil fraction mea-
surement. It has been established that choosing five flow measurements and one
oil fraction measurement from the inaccurate measurement set (ws) gives the best
trade-off between measurement costs and loss. The final selection matrix (H) is
now presented and could be sent to a controller. The selection matrix is given in
(5.29). Only measurements included in the subset are given in the selection matrix.

qpw2 qLPO,DWW2 (HPO,DWW2 (in,DOW2 {LPO,DOW2 QLPO,DOW?2
FSa —110.52 12.42 —22.56 —133.08 37.18 —0.15
H= rSpw 295.31 55.00 —399.51 —104.20 —125.59 —0.58
FSpo —10.13 —9.54 —2.55 —12.67 202.37 —0.89
(5.29)
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Table 5.4: Selected measurements including the unconstrained loss and the total prices
of measurements.

No. y Selected Measurements Lvneens  Price

4 qrWa, 0.0056 0.003
qHPO,DW W2,
QHgPO,DWW2,
OLPO,DOW?2
5 qrWa, 0.0029 0.003
qLPO,DW W2,
qHPO,DW W2,
qLPO,DOW2,
QL PO, DOW?2
6 qrWa, 0.0024  0.0035
qLPO,DW W2,
qHPO,DW W2,
4in,DOW?2,
qLPO,DOW?2,
OLPO,DOW?2
7 qiwa, 0.0021 0.004
w2,
qLPO,DW W2,
qHPO,DW W2,
in,DOW2,
qLPO,DOW?2,
QL PO, DOW2

A flowsheet with the chosen measurement is presented in Figure 5.13 to give
the viewer a better systematic look. The chosen control structure have a very
small loss, it combines both flow and oil fraction measurements. Since the inputs
u are flow splits, it makes sense to use more flow measurements than oil fraction
measurements, as these are directly a consequence of the given flow split. Based
on the chosen cost function, which aims to maximize the total amount of oil (not
just maximize flow or maximize oil fraction) it also make sense that one oil fraction
measurement is needed and this is located close to the final production stream. The
five flow measurements is located around the whole flow sheet, but not directly on
the oil product stream. The reason for this may be that it is better to choose
to pair the measurement and input as close as possible, which is suggested by
Larsson and Skogestad [23]. Of the chosen measurements, ¢;, po may seem a
little unnecessary since both ¢, and ggpo,pw are chosen. ¢, po is also the last
measurement to be added as seen in Table 5.4, and does not contribute a great deal
to the loss reduction. However, by knowing both ¢;, po and qr,ro,po it should be
possible to give a very good controller values to F'Spo which actually is defined as:
4r.P0,p0/qin,po- This is confirmed by the values in the selection matrix H where
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4dLPO,DW
Dewaterer
—— qHPO,DW
arLpPO,DO «— | qLPO,DO
qp — /De_oiler
4in,DO

Figure 5.13: Flowsheet of the subsea processing system where only the selected mea-
surements are shown.

¢in,po and qrpo,po has the highest weight for the input F'Spo.

Budget constraint

Given the measurement noise and the prices, the best measurement combination
was found above. However, it is possible that the project runs into financial difficul-
ties, in that case the engineer may be asked to cut the investment cost (installation
of measurements) in the project, for instance by 20%. The previous price of mea-
surements was 0.0035, as seen in Table 5.4. This is then reduced. How much
will the loss increase, and what is the new selected subset of measurements? This
budget constraint is implemented through a new linear constraint defined as:

Ny My

SN pikoje <0.0028 (5.30)

k7

where pj 1 is the price of measurement ; in set . This will naturally limit the results
to a large extend. The selected measurements with corresponding unconstrained
loss and prices of measurements are given in Table 5.5. As seen in the table, the
optimal number of measurements was four for the case with budget constraint.
Note that four measurements is the absolute best case, this is because that it
has the crucial oil fraction measurement, which is removed when choosing five
measurements. The corresponding selection matrix, H is given in (5.31). Each
component correspond to the measurements given in Table 5.5, in the same order
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Table 5.5: Selected measurements including unconstrained loss and the total prices of
measurement with the budget constraint active.

No. y Selected Measurements Lvneens  Price

3 qrWa, 0.06 0.002
qHPO,DW W2,
QH prodW?2

4 qprWa, 0.0063  0.0025
qHPO,DW W2,
qLPO,DOW?2,
OLPO,DOW?2

5 qrWa, 0.17 0.0025
qLPO,DW W2,
dHPO,DW W2,
qLPO,DOW2,
4H,prodW2

as in the table.

Qpw2 qHPO,DWW2 {LPO,DOW2 CLPO,DOW2

FSa —255.66 —167.67 36.33 —0.15
H= FSpw | 136.98 —d57.78 —127.63 —0.59 (5.31)
FSpo —13.37 —5.80 202.62 —0.89

A comparison of the best subset with and without budget constraint is given in
Figure 5.14. As illustrated in the figure, the prices of measurements has dropped,
but the controller is not able to get a good view of the system and hence, the
unconstrained loss increases. This is as expected.
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Figure 5.14: Comparison of best measurement selection for cases with and without
budget constraint. With budget constraint, the selected measurement set consists of four
measurements, whereas it consists of six for the case without the budget constraint.
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5.4.2 Operation in Active Constraint Region

Based on the active constraint map in Figure 5.6, the point where «;, = 0.6
and ¢;, = 23m3h~! was chosen for the study of a nominal point with an active
constraint. The nominal values are given in Table 5.6 and 5.7, for the inputs and
the measurements respectively.

Table 5.6: Nominal valus for the input with feed at o, = 0.6 and g = 23m3h~1.

Input  Nominal Value

F Sg 0.7522
FSpw 0.9172
FSpo 0.3110
Table 5.7: Nominal values for all measurements with feed at a;, = 0.6 and ¢, =

23m®h~t.

Measurement  Flow [m®s™1]  Oil fraction [-]

t 0.0048 0.74343
b 0.0016 0.1923
LPO,DW 0.0044 0.7535
HPO,DW 0.0004 0.5221
in,DO 0.0020 0.2585
LPO,DO 0.0006 0.8091
H,prod 0.0014 0.01
L,prod 0.0050 0.7603

Note that apg proq = 0.01 which indicates that the constraint is active. The
Lagrange multiplier at this nominal point was found to be 0.8817. In order to
calculate the gain matrix and the Hessian, each row and column corresponding to
either the input F'Spo or the measurement o ,roq is removed, as seen in Sec-
tion3.2, so that J,,, € R?*2 and GY € R~ 1X"n«~1 The Hessian matrix was found
to positive semi-definite, as all eigenvalues were positive, so that the system is con-
vex around this nominal point. The noise and prices for each measurements are
assumed to be the same as in the unconstrained case.

Unconstrained Loss

A Dbig-M of 1000 was chosen. A selection criteria for the constraint was created
(the optimizer can still choose from a g proqwi and @y proqwsz). A term calculating
the back-off due to the constraint was also added to the simulation. As shown in
Figure 5.15, the unconstrained loss decreases to a minimum at four and five mea-
surements, before increasing again from five to six. This is because the optimizer
shifts the measurement set from choosing only accurate measurements (w;) to more
inaccurate (wz). This is shown in Table 5.8. Note that as oppose to cases where
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Figure 5.15: The unconstrained loss for the system operating in the constrained region.
A zoom-in of the plot is included in the area between three and six selected measurements,
however, the values for four and five are several order of magnitudes smaller than three
and six. The measurement chosen for the constraint is not included in the counting of
measurements.
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Figure 5.16: The total cost of the system operating in the constrained region, including
prices of measurements, unconstrained loss and constrained back-off. A zoom-in of the
plot is included in the area between three and six measurements to better see the details
in this part of the graph.

the prices are set to zero, it is possible that the minimum value of the loss comes at
fewer measurements than the maximal number of measurements. This is because
the optimizer minimizes the total cost for each number of measurements and not
just the unconstrained loss. When many measurements are chosen the optimizer
often selects the «bad» measurements as the loss will be relatively small anyway.

Total Cost

The total cost of a constrained system consist of unconstrained loss, prices of mea-
surements and constrained back-off. The total cost of the system with an active
constraint is given in Figure 5.16. As seen in the figure, the lowest total cost is at
four (unconstrained) measurements. However, the difference is very small between
four and three measurements.

In order to study which part makes up the total cost, a bar plot separating each
part of the cost component was created. The plot is given in Figure 5.17. The
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Figure 5.17: The total cost for three to seven unconstrained measurements separated
into each of the components, making up the total cost.
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qt —— Dewaterer
—— 4dLPO,DO
—— qQHPO,DW
(H prod)
/De_oiler ‘
QH,éarod

Figure 5.18: Flowsheet of the subsea processing system where only the selected mea-
surements are shown. am,prod is given in parenthesis since this is a measurement for a
constrained input.

figure illustrates that most of the total cost is the prices of measurements. The
constrained back-off make up a considerable part of the total cost. The uncon-
strained loss is as has been shown in Figure 5.15 almost negligible for four and
five selected measurements. Be aware that this nominal point is actually the point
where the Lagrangian multiplier of the constraint has its maximum value of the
whole investigated region (as seen in Figure 5.6).

Analysis of the Selected Measurements

The selected subset for three to seven (unconstrained) measurements are investi-
gated. The selected subsets are given in Table 5.8. As seen earlier, the optimal
number of unconstrained measurements is four. The selected measurements are
all from the accurate and expensive set (w;). Only flow measurements are cho-
sen. However, when increasing the number of measurements to five, the additional
measurements are flow measurements from the inaccurate and inexpensive mea-
surement set (ws). If more than five measurements are selected, all measurements
comes from wy. Note that the expensive measurement is chosen for the constraint,
this is because the Lagrangian is so large that it makes up a considerable part of
the total cost. It was therefore important to minimize the noise for the constrained
back-off. The chosen measurements are drawn on the flow sheet in Figure 5.18.
The final selection matrix for the optimum number of measurements is given in
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Table 5.8: Selected measurements including the unconstrained loss and the total prices
The chosen measurement device for the constraint is included in the

of measurements.

selected measurements and counted through (+1).

Selected Measurements

LU’I’LCOTLS

Price

3(+1)

qrwi,
qHPO,DW W1,
Qin, DOWT,
(OZH prodwl)

0.00019

0.006

4(+1)

qtW1,
qHPO,DW W1,
qdLrPO,DOW1,
4H,prodW1,
(aH prodwl)

2.5e-06

0.006

5(+1)

qtwi,
qHPO,DW W1,
qLPO,DOW1,
4H,prodWi,
qL,prodW2,
(aH prodW1 )

2.5e-06

0.0065

6(+1)

qi W2,

QpWa,
qLPO,DW W2,
qHPO,DW W2,
qdLPO,DOW2,
4H,prodW2,
(aH prodwl )

0.0014

0.0055

7(+1)

qiw2,

W2,

QpWa,
qHPO,DW W2,
4in,DOW2,
qdLPO,DOW2,
4H,prodW2,
(aH prodwl)

0.0013

0.006
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(5.32)
qGtw1  qHPO,DWW1 (qLPO,DOW1 GH prodWi
I— FS, 52.15 293.78 —560.73 256.00 (5.32)
FSpw \ —66.98 —370.36 —174.47 68.93

where each column in H corresponds to the measurements listed in Table 5.8. The
selection matrix now only has two rows since F'Spo is controlled by a g prod. When
comparing the constrained case to the unconstrained case, the unconstrained loss is
much smaller, since the measurements are selected from the accurate and expensive
set (wy). However, the prices of measurements makes the total cost higher for the
constrained case (6 x 1073$/s vs. 7 x 1073 $/s) which is due to the expensive
oil fraction measurement used to reduce the back-off and control the constraint.
When it comes to which measurement that was selected one could argue that both
grro,pw and ¢r,po,po plays an important role as fluid can be cross-fed along these
points. In addition ¢ po, pw has the highest weighting in the selection matrix for
the input F'Spw which make sense as this is the measurement mostly affected by a
change in the Dewaterer. ¢; could be needed to pair close to the gravity separator.

Budget Constraint

A budget constraint was added so that the prices of measurements are reduced by
at least 20% from the previous optimum. The sum of all prices has to be smaller
than 0.0048. As opposed to the unconstrained case in the previous section, where
the optimal selected measurements without budget constraint were mostly flow
measurements from the inexpensive measurement set (ws), this nominal point has a
better price saving possibility as the selected subset consisted of flow measurements
from the expensive device set (wi), as seen in Table 5.8. The results from the
simulation with an active budget constraint is given in Figure 5.19, which shows
the total cost for two to seven (unconstrained) measurements. The optimal number
of measurements with the budget constraint is still four. However, the difference
between four and three is very small. The selected measurements for three to seven
(unconstrained) measurements are investigated, and the measurements as well as
the corresponding unconstrained loss and price is shown in Table 5.9. As shown
in the table, the optimizer has, due to the budget constraint, a tendency to choose
more measurements from the second device set (wq) than previously.
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Figure 5.19: Total cost of the system operating in the constrained region, with budget
constraint. Only measurements two to seven are possible.
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Figure 5.20: Comparison of the loss and prices of measurements with and without the
budget constraint.

The final selection matrix H for the case with active budget constraint is given in
(5.33)

qiwsa QpW2  HPO,DWW2  qH,prodW?2
FS, ( 522  —150  —27.83 130.12 )

H =
FSpw \ —82.25 —-0.47 —469.96 28.40

(5.33)

where each column of H corresponds to the measurements listed in Table 5.9.
The optimum subset of measurements is compared to the case with no budget
constraint. The result is shown in Figure 5.20. As can be seen in the figure, adding
a budget constraint naturally increases the unconstrained loss and the prices of
measurements have decreased, but not so much that it compensates for the increase
in unconstrained loss.
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Table 5.9: Selected measurements including the unconstrained loss and the total prices,

with active budget constraint.

The chosen measurement device for the constraint is

included in the selected measurements and counted through (+1).

Selected Measurements

LU’I’LCOTLS PI‘ICC

3(+1)

qrwa,
qHPO,DW W2,
Qin, DOW2,
(OZH prodW1 )

0.0026  0.004

4(+1)

qi W2,

QpWa,
qHPO,DW W2,
4H,prodW2,
(aH prodwl)

0.002  0.0045

5(+1)

qrtwa,
qHPO,DW W2,
qLPO,DOW?2,
4H,prodW2,
qL,prodW2,
(aH prodW1 )

0.003  0.0045

6(+1)

qi W2,

QpWa,
qLPO,DW W2,
qHPO,DW W2,
qdLPO,DOW2,
4H,prodW2,
(aH prode)

0.0014  0.0045

7(+1)

qrwa,

qpw2,
4dLPO,DW W2,
qHPO,DW W2,
qdLrPO,DOW2,
4H ,prodW2,
qL,prodW?2,
(aH prodw2)

0.0025  0.0045
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Chapter

Discussion and Conclusion

A method for combining the cost of measurements with the corresponding pro-
cess losses due to measurement uncertainty, has been presented within the self-
optimizing control framework. The goal in self-optimizing control is to identify an
optimal control structure design. This has been done by using MIQP optimization
tools. By using the MIQP-formulation it become possible to extend the frame-
work to also include different sets of measurements and one was able to find the
best trade-off between accurate (and expensive) and inaccurate (and inexpensive)
measurements. A method of including a process constraint and calculate the nec-
essary back-off loss has also been implemented. It was shown that the back-off
makes up a considerable part of the loss when the constraint is active, and that
the constrained back-off can be larger than the unconstrained loss. The MIQP-
formulations also handles budget constraints. It was shown that the total cost of
a project increases due to higher unconstrained loss when a budget constraint is
added. The methods were applied to both a Dummy case, for proof-of-concept
purposes, and a more advanced Subsea separation process where all the developed
methods where implemented simultaneously. The Dummy problem presented was
proven to produce results similar to already published literature[4], before the new
methods were applied. All in all, this work has shown that it is possible to link
economical considerations with the design of the control structure, and this could
be a step to introduce process control ideas directly into the process design phase.

6.1 Limitations of the Presented Methods

The methods presented in this work have, however, some limitations:

In this work it has been assumed that the disturbance does not change the active
constraints. However, the plant may be operated in different ways depending on
which of the constraints are active. Some approaches to this problems has been
proposed in literature, for instance by the multi-parametric programming approach
[24]. When comparing the selected subset in the active constraint and the uncon-
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strained region, the selected measurements are not necessarily the same, this may
lead to losses.

Another limitation is that the results are only valid locally around the nominal
point, this is of course a simplification, and may be OK for a stable system run-
ning in steady state. However, if large disturbances occur, this may lead to large
losses because of the selected control structure design. The self-optimizing control
framework is therefore not applicable to highly dynamic systems (for instance batch
processes). The resulting measurement combination for controlled variables must
therefore be seen as good candidate for control structure rather than necessarily
be the final one.

6.2 Uncertainty and Price of Measurements

The main focus in this work has been to present methods. The selection of the
actual prices and measurement uncertainty has therefore not been investigated in
detail. For instance, flow measurements has been given a constant uncertainty
independent of the actual flow. This full scale accuracy means that the error in
percent is much higher at smaller volumetric flows, this could have had an impact
on the selection of measurements. The magnitude of the noise is also questionable.
For instance, it was assumed that inaccurate flow measurement has an full scale
uncertainty of 5 x 1074 m?h~!, which is 2% given that the maximum is 20m3h~!.
This is the maximum uncertainty listed for volumetric flow meters according to
Perry and Green [25, Chapter 10-15]. Since most of the flows in the system is less
than 20m>®h~1!, the error in percent will be greater, due to the full scale accuracy.
The prices set to each type of measurement is given with the following assump-
tions: 1) Flow meters are cheaper than oil fraction measurements. 2) Inaccurate
measurements are cheaper than more accurate devices. Besides that, prices are
only set so that they are in what could be excepted to be a reasonable range. For
instance 0.006 $/s is equivalent to 189000 $/year

6.3 Some Words About Numeric Issues

Although the MIQP-formulations has a lot of benefits, the reader should be aware of
some issues that may occur: It is important, when working with MIQP-formulations,
to be aware that finding the optimal solution is not guaranteed [26]. This is be-
cause mixed integer solvers does not normally evaluate all possible combinations
(picking eight measurements out of 30 candidates has for instance almost 6 million
combinations). Instead, the solvers really on pre-solving techniques to reduce the
number of possibilities and hence reduce the calculation time[27]. However, this
may lead to inaccurate results, as seen in Figure 6.1.
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0.1 2 B |

Total Cost [$/s]

4-1072 | :

= Adjusted Gurobi solver parameters

\ = Standard Gurobi solver parameters
0 . ! ! ! !

2 4 6 8 10 12 14 16
Number of Measurements

Figure 6.1: Comparing solver parameters

The following Gurobi solver parameters were found to have an effect in order to
improve the results (taken from scripts in Appendix A):

params.Presolve = 2;
params.MIPFocus 3;
params.NumericFocus = 3;
params.IntFeasTol = le-9;

Presolve is set to aggressive (2 of 2) which means it takes more time, but leads to
a tighter model. MIPfocus is set to 2 (of 3) to improve optimality. NumericFocus
is set to 3 (of 3) so that the solver is much more careful in numerical calculations.
IntFeasTol is an abbreviation for Integer Feasibility Tolerance. When solving in-
teger problems, a solution value may be 1 x 10~7 when it should be 0. This will
affect the loss calculations (making smaller loss than what is realistic, since the
value of 1 x 1077 is included in the selection matrix, but not counted as a mea-
surement), the tolerance is therefore set to its tightest level.

It should also be noted that using a large enough value for big-M is important.
The values in the selection matrix H, should never be close to this value in order
to not affect the loss calculations.

In general, numerical uncertainties regarding the MIQP-formulations provides a
drawback to the methods presented in this work. Numerical methods (Finite dif-
ference method) were also applied to calculate Hessian and Jacobian matrices.
These matrices are very important to have correct, since they make up the crucial
GYH = Jy, constraint that is needed to find the minimum loss. Hence, using
(simple) numerical methods to calculate these matrices rises the uncertainty of the
results.
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6.4 Further Work

Although the methods presented here has been tested for two cases, these have
been relatively simple compared to many chemical engineering plants. Especially
the number of inputs have been very limited. The methods should therefore be
tested on more complex plants in order to verify their validity.

It is also of interest to verify the performance by implementing the control structure
with a controller in a dynamic model, where dead time is an issue. One could for
instance also include some time delay in the oil fraction measurements. As these
measurements may be slower than a simpler flow measurement.

There has been a number of assumptions, especially regarding the implementation
of the loss from the constraint. A natural extension of this work is therefore to; 1)
increase the number of constraints, 2) Let the selection of which measurement and
input that is needed to control the constraint be selected by the control structure,
instead of letting this be predetermined.

There are also open issues within the self-optimizing control framework, which
this work is a part of [6], that could be of interest. Specific issues related to this
work are: 1) Further integration of the control structure into the design phase of
the project and 2) Active set changes due to multiple active constraint regions.
The latter is important while using the present methods will most likely produce
different measurement subsets, as already seen when comparing Table 5.4 and 5.8.
As explained in Section 6.2, measurement noise has only been implemented with
full scale accuracy. However, this may lead to large errors in percent, since a lot
of the flows in the subsea case is very small. A natural continuation could be to
investigate noise given in rate accuracy.
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Y.

Appendix

MATLAB-scripts

This appendix contains all the MATLAB code used in this work. For space con-
siderations, only scripts used to produce results are listed here. That means, for

instance scripts used for plotting is not included here.

A.1 Dummy Case

A.1.1 Dummy With One Measurement Set

close all;clear all;clc
% Dummy case, only one measurement set available

%% Define the matrix

© 0 N O U oA W N e

Juu [244 222;222 202];
Jud = [198 180];
Gy = [ 11 101 0 ; 10 9 0 11",
Gd = [10 9 0 01';
10
11 Wd =1;
12 Wn = diag([0.01 0.01 0.01 0.011);
13 F=1[-1-19-91]";

14 Juul2=Juu” (1/2);
15 nu=2;
16 nd=1;
17 ny=4;

19 Y = [F*xWd Wn];

20 %RandomCase

21 %% Building the restructured matrices
22 Ydel=Y;

24 for i=l:nu-1
25 Ydel=blkdiag(Ydel,Y);
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26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80

end
Fdel=YdelxYdel'

Gydel=[];
for i=1:nu
Gydel=blkdiag (Gydel, Gy) ;
end
Gydel';

jdel=[];
for i=l:nu

jdel=[jdel ; Juul2(:,1i)];
end

%% Find the optimal number of measurements
M=120; %Big-M

% price for measurements
mprices=0.05+ones (1,ny);
%$Define empty results matrices
cost = zeros(length(nu:ny),1);
loss = zeros(length(nu:ny),1);
Hres=zeros (nu,ny, length(nu:ny));

Meas=zeros (l,ny,length(nu:ny));

% measurements required

for nm=nu:ny % Run through all possible number of measurements

QO=blkdiag(Fdel, zeros (ny,ny),0);

A= [Gydel' zeros (nu*xnu, ny)
zeros (nu*nu, 1) ;
zeros (1, nuxny) ones (1,ny) -1 ;
—eye (nu*ny) -Mxrepmat (eye (ny) ,nu, 1) zeros (nuxny, 1) ;
eye (nuxny) -Mxrepmat (eye (ny),nu, 1) zeros (nuxny, 1)
7
zeros (1, nuxny) zeros (1,ny) 1 ;
1i
c = [zeros(l,nuxny) mprices 0 1
lb=[-inf (nuxny, 1) ; zeros (ny, 1) ;0 15
ub=[1inf (nu*ny, 1) ; ones (ny, 1) ;ny 15
b= [jdel;
0

zeros (nuxny, 1) ;
zeros (nuxny, 1)
nm

17

clear model;

names = {'ylul‘, 'y2ul', 'y3ul','y4ul','ylu2','y2u2','y3u2'...
'y4u2','sigmal','sigmaZ','sigma3','sigma4','nm'};

model.varnames = names;

model.Q = sparse(Q);

model.A = sparse(A);
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81
82
83
84
85

model.obj = c;
model.rhs = b;
model.lb = 1lb;
model.ub = ub;
model.sense =

[repmat ('=',nu*nu+l, 1) ; repmat ('<',2xnu*ny,1);'='];
model .modelsense="min"'
model.vtype = [repmat ('C',nuxny,1l);repmat('B',ny,1); " 'I"]

gurobi_write (model, 'MeasSelectPriceO.lp');

$params.ResultFile = 'test.mps'
params.Presolve = -1;
params.FeasibilityTol=1e-9;
params.OptimalityTol=1le-9;
$params.FeasibilityTol=1le-4

results = gurobi (model, params)
$results = gurobi (model)

for v=1:length (names)
fprintf ('%s %e\n', names{v}, results.x(v));

P o oe

fprintf ('0bj: %e\n', results.objval);
Fill results matrices
Selected measurements

Meas (:, :,nm—nu+l) = results.x(2+«ny+1l:3xny)"';

% Selection matrix

Hres (:, :,nm-nu+l) = [results.x(l:ny)"'; results.x(ny+1l:2xny)"'];
H = (Hres(:,:,nm-nu+l));

% Total cost

cost (nm-nu+l)= (results.x'*Qxresults.x)/2+model.obj*results.x;

)

% Calculate loss with expression from Exact Local Method
loss (nm-nu+l)= 0.5*norm(Juul2/ (HxGy) *xHxY, "fro') "2;

end

A.1.2 Dummy With Two Measurement Sets

© 0 N o U oe W N e

o T T T~ T S S S S
© N o A W N o= O

close all;clear all;clc

This is the dummy case for two measurement sets, without constraints
Cost function:

(z1 - 2z2)°2 + (zl- d)"2

uu [244 222;222 202];

Jud = [198 180];

Q oe oo oe
[

Gy = [ 11 101 0 ; 10 9 0 11"';
Gd [10 9 0 01"';

—_

wd =1;

Wnl = diag([0.1 0.1 0.1 0.1]);
Wn2 diag([0.01 0.01 0.01 0.011);
F=1[-1-19-91"';

Juul2=Juu” (1/2);

nu=2;

nd=1;

ny=4;

T




19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
T2
73
T4

Y1 [FxWd Wnl];

Y2 = [F*«Wd Wn2];

Y = [Y1;Y2];

% Building the restructured matrices

Ydell=Y1;

Ydel2=Y2;

for i=l:nu-1
Ydell=blkdiag(Ydell, Y1) ;
Ydel2=blkdiag(Ydel2,Y2);
size (Ydell);
size (Ydel2);

end

Fdell=YdellxYdell';

Fdel2=Ydel2xYdel2';

Fdel = blkdiag(Fdell,Fdel2);

o
o

Gydel=[];
for i=1:nu
Gydel=blkdiag (Gydel, Gy) ;

end

Gydel = [Gydel;Gydel];
Gyl = [Gy;Gyl;
jdel=[1;

for i=1:nu
jdel=[jdel ; Juul2(:,1)1;
nd

[0]

oo e

Create gurobi model
M=100; % Big-M

mprices=[0.02xones (1,ny) 0.2%ones(l,ny)]; % Prices of measurements

%Define empty result vectors

cost = zeros(length(nu:ny),1l);
loss = zeros(length(nu:ny),1);
Hres=zeros (nu, 2*ny, length (nu:ny));
Meas=zeros (1, 2xny, length (nu:ny));

Hadj = zeros (nu,2xny, length(nu:ny));
% If statement so that one only chooses the correct set
corresponding

o

% to the measurement selection
subM = zeros (ny*nu*2,ny*2);

for i=l:ny
subM (i, i+ny) = 1; % ulwl <> w2
subM (i+ny,i+ny)=1; % u2wl <> w2
subM (i+2+ny, i) = 1; % ulw2 <> wl
subM (i+3*ny,1i) = 1; % u2w2 <> wl
end

for nm = nu:ny

% H sigma_l sigma_2 nm
QO=blkdiag(Fdel, zeros (ny,ny), zeros (ny,ny),0);
$H sigma-1 sigma-2

% Solve for a measurements combination with all measurements

for
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T

78

79

110
111
112

114
115
116
117

119
120
121
122
123

A= [Gydel' zeros (nuxnu, ny) zeros (nuxnu, ny)
zeros (nuxnu, 1) ;
zeros (1, nuxny=*2) ones (1,ny) ones (1,ny) -1
—eye (nuxny=2)
-Mx ( [repmat (eye (ny),nu,1l);zeros (2+«ny,ny) 1)
-Mx ([zeros (2xny,ny) ; repmat (eye (ny) ,nu,1)])
zeros (nuxny*2,1);
eye (nuxny=*2) -Mx ( [repmat (eye (ny),nu,1l);zeros (2+xny,ny) 1)
-Mx ([zeros (2xny,ny) ; repmat (eye (ny),nu, 1) 1)
zeros (nuxny*2,1);
zeros (1, nuxny*2) zeros (1,ny) zeros (1,ny) 1
eye (nuxny=*2) M+ subM zeros (nyxnux*2,1);
—eye (nu*ny=2) M+ subM zeros (nyxnux*2,1);
17
c = [zeros(l,nu*ny*2) mprices 0 1;
lb=[-inf (nuxny=*2,1); zeros (ny,1l); zeros(ny,1l) ;0 15
ub=[inf (nuxny=*2,1); ones (ny,1l) ; ones(ny,1l) ;ny 15
b= [jdel;
0

zeros (2+«nuxny, 1) ;
zeros (2xnuxny, 1)

nm

Mxones (2+xnu*ny, 1)
M+ones (2+xnuxny, 1)
1i

clear model;

model.Q = sparse(Q);

model.A = sparse(A);

model.obj = c;

model.rhs = Db;

model.lb = 1b;

model.ub = ub;

model.sense = [repmat ('=',nuxnu+l,1l);repmat ('<',2*nu*xny,1l);...

repmat ('<',2xnu*ny,1l); '=';repmat ('<',2+nuxny, 1) . |.

;repmat ('<',2xnu*ny,1)]
model .modelsense="min"'
model.vtype = [repmat ('C',2+nu*ny,1l);repmat ('B',2xny,1);"'1"]
gurobi_-write (model, 'DummyTwoSets.lp');

params.Presolve = -1;
params.FeasibilityTol=1le-9;
params.OptimalityTol=1le-9;
results = gurobi (model, params)
% Selected measurements

Meas (:, :,nm-nu+l) = [results.x(17:20)"' results.x(21:24)"'];
Measdiag = diag(Meas (:,:,nm-nu+l));

o

% prices of measurements

price (nm-nu+l) = c*results.x;

% Selection matrix

Hres (:, :,nm-nu+l) = [results.x(1l:4)" results.x(9:12)"';
results.x(5:8)' results.x(13:16)"'];

Hadj(:, :,nm-nu+l) = Hres(:,:,nm-nu+l)xMeasdiag;
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124
125
126
127
128
129
130

H = (Hres(:,:,nm-nu+l));

$Total cost

cost (nm-nu+l)= (results.x'xQxresults.x)/2+model.obj*results.x;
% Unconstrained loss

loss (nm-nu+l)= 0.5+norm(Juul2/ (HxGyl) «xHxY, "'fro')"2;

end

A.1.3 Constrained Dummy

w

© 0 N o s

10

12
13
14
15
16

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42

clear all

clc

% This script calculates the loss when one of the inputs are
constrained

% The constrained input must be specified by user—-promt.

% Objective

smin (J) = (1/2)*ul”2 + (1/2) (u2-d2) "2

s.t. ul-dl-1 >= 0
dnom = [0 0];

Q = [0.5 0;
0 0.51;
A = [1 0]; % Define constraint
c = [0 —dnom (2)];
b = (l+dnom(l)); % Define constraint
clear model;
names = {'ul', 'u2'};
model.varnames = names;
model.Q = sparse(Q);

model.A = sparse(A);
model.obj = c;

model.rhs = b;

model.sense = ['>'];
model.objcon = dnom(2) "2;
gurobi_write (model, 'gp.lp');

results = gurobi (model); % Calculate nominal point
lambda = results.pi; % Calculate lagrange multiplier of constraint

oo
)

nu = 2;

ny = 4;% y = [ul u2 dl d2]

nd = 2;

nc = 1; % number of constraints

$fprintf ('Which u is constrained, enter value less or equal to
%d:"',nu);

$consu = input('"');
consu = 1; % Which u is constrained?

% Reduced J= 0.5 (u2°2-2+u2+d2+d272) + 1
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44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95
96
97
98

Juul2 = Juu” (1/2);
Jud = [0 -1]; %dl d2

Gyd(:,1) = (-Gy(:,consu)+Gyd(:,1));
Gy (:,consu) = [];

F = (-Gy/Juu) «Jud+Gyd;

Wwd = [0.5 1]';

Wnlvec = [0.1 0.1 0.1 0.17;

Wn2vec = [1 1 1 1]

Wnl = diag(Wnlvec);
Wn2 = diag(Wn2vec);

Y1l = [FxWd Wnl];

Y2 = [F*«Wd Wn2];

Y = [Y1;Y2];

Ydell=Y1;

Ydel2=Y2;
Fdell=YdellxYdell"';
Fdel2=Ydel2xYdel2';

Fdel = blkdiag(Fdell,Fdel2);

Gydel=[];
for i=l:nu-nc %unconstrained u???
Gydel=blkdiag (Gydel, Gy) ;

end

size (Gydel)

Gydel = [Gydel;Gydel];% Wnl Wn2
Gyl = [Gy;iGyl;

jdel=[];

o

for i=l:nu-nc % Unconstrained
jdel=[jdel ; Juul2];
end

M=500; % Big-M
%$Define empty matrices

price = zeros(length(nu-nc:ny),1l); % price of measurements
loss = zeros(length(nu-nc:ny),1); % Unconstrained loss
closs = zeros(length(nu-nc:ny),1); % Constrained loss

cost = zeros(length(nu-nc:ny),1l); % pricet+loss+closs

ltot =zeros(length(nu-nc:ny),1l); % Total loss

Hres=zeros ((nu-nc),2*ny, length (nu-nc:ny));
Meas=zeros (1, 2+«ny, length (nu-nc:ny)) ;
cmeas=zeros (1,2, length(nu-nc:ny)); % Selected constrained measurement

oo

%% Unconstrained Two Set of Measurements

mprices = [0.2%ones(l,ny) 0.02%xones(l,ny)]; % Prices of each
measurement
cprices = [0.2 0.02]; % Prices of constrained measurement

Link up so that if one measurement set is selected, the corresponding
value in Selection matrix for the same measurement in the other set
Is set to zero

o° o o
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119
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122

130

131
132

134
135
136
137
138

subM = zeros (nyx (nu-nc)*2,nyx2);
for i=l:ny

subM (i, i+ny) = 1; % u2wl <> w2

subM (i+ny,1)=1; % u2w2 <> wl

% subM(i+2xny,i) = 1;

$subM(i+3xny, i) = 1;
end
% Constrained big—-M
consumat = eye (nyx (nu-nc));
sigmalMconstr = —-Mx* ([consumat*repmat (eye(ny),nu-1,1);zeros(ny,ny)l);
sigma2Mconstr = -Mx* ([zeros (ny,ny);consumat+repmat (eye(ny),nu-1,1)1);
for nm = (nu-nc) :ny

Q=blkdiag(Fdel, zeros (ny,ny),zeros (ny,ny), 0, zeros (4,4)); %Last
two is for ul

$H sigma-wl sigma-w2
snm
A= [Gydel' zeros ( (nu-nc) x (nu-nc) ,ny)
zeros ( (nu—nc) = (nu—nc) ,ny) zeros ( (nu-nc) x (nu-nc), 1)
zeros (1,4) ;
zeros (1, (nu—nc) *xny=*2) ones (1,ny) ones (1,ny)
-1 zeros (1,4);
-blkdiag(eye ( (nu-nc) *ny),eye ( (nu-nc) *xny) ) sigmalMconstr

sigma2Mconstr zeros ((nu-nc)x*ny=2,1)
zeros ( (nu-nc) *ny*2,4) ;
blkdiag(eye ( (nu-nc) *ny),eye ( (nu-nc) xny) ) sigmalMconstr
sigma2Mconstr zeros ((nu-nc)x*ny=*2,1)
zeros ( (nu-nc) *xny*2,4);

zeros (1, (nu-nc) *xny*2) zeros (1,ny) zeros (1,ny)
1 zeros (1,4) ;
eye ((nu—-nc) *xny*2) M+*subM e
zeros (ny* (nu-nc)*2, 1) zeros((nu-nc)*nyx*2,4);
—eye ((nu-nc) xny=*2) Mx*subM

zeros (nyx (nu-nc) *2, 1) zeros((nu-nc) nyx2,4);
zeros (1, (nu-nc)xny*2+2xny+1l) 0 0 1 1; % Force to select only
one of these
zeros (1, (nu—nc)xny*2+2xny+1l) 1 1 0 0; % Force to select only
one of these
1i
% sigma-cons
c = [zeros(l, (nu-nc)+ny*2) mprices 0 cprices (1)
cprices(2) 0 0];
c(end-1) = lambdaxWnlvec(1l);

c(end) = lambda*Wn2vec (1) ;

lb=[-inf ((nu-nc)xny=*2,1); zeros(ny,1l); zeros(ny,1l) ;0;0;,0
-inf ;-inf];

ub=[1inf ( (nu-nc) *xny*2,1); ones (ny,1l) ; ones(ny,1) ;ny;1;1

;inf; inf];

b= [jdel;
0
zeros (2% (nu-nc) *ny, 1) ;
zeros (2% (nu-nc) xny, 1)
nm
M#ones (2% (nu-nc) *ny, 1)
M+ones (2% (nu-nc) *ny, 1)
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stry

clear model;

names = {...%’H,ylulwl', 'Hoy2ulwl', 'H.y3ulwl', 'H_.y4ulwl',
'H_oylu2wl', 'H_.y2u2wl', 'H.y3u2wl', "H_y4u2wl',...
...%"'Hylulw2', 'H_y2ulw2', 'H_y3ulw2', 'H_y4ulw2',...
'Hoylu2w2', 'Hoy2u2w2', 'H.y3u2w2',6 'H_y4u2w2', ...
'Sy_1lw_1$', 'Sy 2w_1$', 'Sy 3w.l$', 'Sy_4w_1S$',...
'Sy 1w_2$', 'Sy 2w.2$', 'Sy 3w.2$', 'Sy 4w 2$',...

'nm'...
"$y_5w.1$', 'Sy 5w.2$', 'HySulwl', '"H.ySulw2'};
model.varnames = names;

model.sos (1) .type =1;
model.sos (1) .index=[ (4*ny+3) (4*ny+4)];
model.sos (1) .weight=[1 1];

model.Q = sparse(Q);

model.A = sparse(A);

model.obj = c;

model.rhs = b;

model.lb = 1lb;

model.ub = ub;

model.sense =

[repmat ('="', (nu—nc) * (nu-nc) +1, 1) ; repmat ('<', 2 (nu-nc) »ny, 1)
repmat ('<',2* (nu-nc) *ny,1); '=';repmat ('<', 2% (nu-nc) *ny,1); ...
repmat ('<',2* (nu-nc) *ny,1);'="';'="1];

model .modelsense="min"'
model.vtype =
[repmat ('C', 2% (nu-nc) *ny, 1) ;repmat ('B',2+ny,1);"'I";...
repmat ('B',2,1);repmat ('B',2,1)1;
gurobi_write (model, 'gp2.lp');
params.Presolve = -1
params.FeasibilityTol=le-9
params.OptimalityTol=1le-9

results = gurobi (model, params)
Fill in results
Hres (:, :,nm- (nu-nc)+1) = [results.x(l:2xny)"'];
H = Hres(:, :,nm-(nu-nc)+1);
Meas (:, :,nm- (nu-nc)+1l) = [results.x(2+«ny+l:4xny)'];
cmeas (:, :,nm- (nu-nc)+1) = [results.x(end-3:end-2)"'];

loss (nm- (nu-nc)+1)=
(results.x'*Q*results.x)/2;%+model.objxresults.x;
lossl= 0.5%norm(Juul2/ (HxGyl) *HxY, '"fro') "2; %unconstrained loss
Make sure that loss is calculated correctly in optimizer vs.
Exact local method
if loss (nm-(nu-nc)+1)-lossl > le-3
disp ('Error in unconstrained loss calculation')

o
5
o
S

break
end
% Constrained Loss, H(l) is constrained
closs (nm- (nu-nc)+1) = c(end-l:end)*results.x(end-1l:end);
price (nm- (nu-nc)+1l) = c(l:end-2)x*results.x(l:end-2);
ltot (nm- (nu-nc)+1l) = loss(nm-(nu-nc)+l) + closs (nm-(nu-nc)+1);
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193 cost (nm- (nu-nc)+1) = loss(nm-(nu-nc)+1)+closs (nm- (nu-nc)+1)...
194 +price (nm- (nu-nc)+1);
195 end

A.2 Subsea Case
A.2.1 Subsea Model Scripts

All scripts in this subsection was created by Tyvold [1].

Gravity separator - Initial Guess

1 function [Vo_-t,Vo_b]=gavity_-sep2 (FS,gin,Vo_-in)

2 Lsep=7;

3 R=1.7;

4 Hw=0.75%2*R;

5 g=-9.81;

6

7 gt=FS*qgin;

8 gb=gin-qgt;

9

10 rhoo=881;rhow=1064;%kg/m"3

11 % Viscosity (eqg:2.7)

12 % mum=(0.47+Vo_in"3-0.4xVo_in"2+0.11%Vo_in+0.001); %Paxs
13 mum=(0.6*Vo_in"3-0.506%Vo_in"24+0.137+xVo_in+0.001); %Paxs
14 % Droplet size

15 rd=60%x10"-6; %m”3

16

17 %Cross section area of weir (eq:3.27)

18 AHw=R"2/2* ((2+acos ((R-Hw) /R))-sin(2+acos ( (R-Hw) /R)));
19 % Horinzontal velocity of bottom plug flow (eq:3.26)
20 vh=gb/AHw;

21 %Vertical velocity of droplet (eq:3.28)

22 vv=2+*g=* (rhoo-rhow) xrd"2/ (9*mum) ;

23 %$Droplet Vertical distance travel (eq:3.29)

24 h=Lsep*vv/vh;

25 % If the "slowest" droplet of o0il travel h>Hw -> No oil in waterphase
26 d=max (Hw-h,0); %if h>Hw -> Vo_b=0

27 % if Hw>h there will be o0il in bottom:

28 %Cross section area of bottom section

29 S%that still contains emulsion (Fig:3.11b, eqg:3.30)

30 Ad=R"2/2* ((2xacos ((R-d)/R))-sin(2*acos ((R-d)/R)));

31

32 Vw_b=((AHw-Ad) /AHw+Ad/AHw« (1-Vo_in));

33 Vo_b=1-Vw_b;

34

35 Vo_t=(Vo_in-Vo_bx* (1-FS))/FS;

36 1if Vo_t>1

37 Vo_t=1;

38 Vo_b=(Vo_-in-Vo_t*FS) / (1-FS);

39 end

'S
o

(o)
=~



41

end

Dewaterer - Intitial Guess
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function [Vo_LPO,Vo_HPO,gen]=DeWaterer (gqin,Vo_-in,FS,rin,p3)

Ro=p3(2) ;Ri=p3(3);

gi=FSxqgin; %$Light phase out flow
go=gin-qgi; %$Heavy phase out flow

Volume fractio of water in outlets before

the re-entrainment is accounted for

eq:3.21

Vw_HPO=(1-Vo_in) * (((1-FS) *R1i"2+FS* (Ri"2-rin"2) )/ ((1-FS)*Ri"2));
% eq:3:22

Vw_LPO=((1-Vo_in) *gqin-Vw_HPOxqo) /qi;

% Re-entrainment definitions

u_-LPO=qgi/ (pi*Ri"2); % Area averaged velocity
u_-HPO=qgo/ (pi* (Ro"2-Ri"2)); % Area averaged velocity
du=u_LPO-u_HPO;

k=2+x10"-4;

gen=kxdu;

de oo oo

$Re-Entrainment

if du>=0 % Velocity in oil > Velocity in water
Vw_LPO= (Vw_LPOx (gi-gen) +Vw_HPO*gen) /qi;
Vw_HPO=((1-Vo_in) *gin-Vw_LPOxqgi) /qo;

else
Vw_HPO= (Vw_HPO+* (gi+gen) -Vw_LPOxqgen) /qi;

end

Restrict water volume fraction in HPO
to range Vw_in->1
if Vw_HPO>1
Vw_HPO=1;
elseif Vw_HPO< (1-Vo_in)
Vw_HPO=(1-Vo_.in);
end

oo oo

Vw_LPO=((1-Vo_in)xgin-Vw_HPOxqgo) /qi;

Vo_LPO=1-Vw_LPO;
Vo_HPO=1-Vw_HPO;
end

Deoiler - Initial guess

1
2
3

function [Vo_LPO,Vo.HPO,gen]=DeOiler (gin,Vo_-in,FS,rin,p2)
Ro=p2 (2) ;Ri=p2(3);
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4 gi=FSxgin; go=gin-qgi;

5

6 Vo_LPO=Vo_inx (FS* (Ro"2-Ri1i72)+(rin"2-Ri"2)* (1-FS)) ...
7 /(FS* (Ro"2-Ri"~2));

8 VO_HPO=(Vo_inxgin-Vo_LPOxqgi) /qo;

9 U_HPO=qgo/ (pi* (Ro"2-Ri72));u_-LPO=qgi/ (pi*xRi"2);

10

11 du=(u_.LPO-u_HPO) ;

13 k=2x10"-4;
14 %k=0;

15 gen=k«*du;
16 1f du>=0

17 Vo_LPO=(Vo_LPOx* (gi—-gen) +Vo_HPOxqgen) /qgi;
18 else

19 Vo_HPO= (Vo_HPO* (go+gen) -Vo_LPO*gen) /qo;
20 Vo_LPO=(Vo_-inxgin-Vo_HPOxqgo) /qi;

21 end

22

23 % k=5x10"-4;

24 % 1if du>=0

25 % gen=kxdu”2;

26 % Vo_LPO= (Vo_LPO* (gi—-gen)+Vo_HPOxqgen) /gi;
27 % else

28 % gen=-kxdu”2;

29 % Vo_HPO= (Vo_HPOx (gqo+gen) -Vo_LPO*gen) /qo;
30 % Vo_LPO=(Vo-in*gin-Vo_HPOxqgo) /gi;

31 % end

32

33 1if Vo_LPO>1

34 Vo_LPO=1;

35 elseif Vo_LPO<Vo_in

36 Vo_LPO=Vo_in;

37 end

38

39 Vo_HPO=(Vo_in*gin—-Vo_LPOxqgi) /qo;

40 end

Dewaterer - Used in Integrator

function [vr]l=swirl_sep2.o(t,x,in,element)
% Dewaterer
gin=in(1);
Ro=in (2);
Ri=in (3);
Vo_in=in (4);
ta=in(5);
rin=in(6);
FS=in(7);

© o N e G oA W N R
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Vw_in=(1-Vo_in);
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rhoo=881; %kg/m”3
rhow=1064;
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15
16 r=x(1);

17

18 Rc=0.25*Roj;

19 va=gin/ (pi*Ro"2)

4
20 1if element=='w' S%weak
21 k=3.5;
22 elseif element=='s' $strong
23 k=5;
24 elseif element=='1l'"' %large
25 k=7;
26 end

27 vtO=kxva; %eq:3.5
28 S%$Experimental correlation between rd and vt
29 %$1if vt0>4.45%28

30 % rd=(-8*vt0+160)/2x10"-6;
31

32 %else

33 % rd=(-107xvt0+600) /2x10"-6;
34

35 %end

36 rd= (-107+vt0+600)/2x10"-6+0.5* (1+tanh (10000 (vt0-4.45))) ...

37 * (((=8xvt0+160) /2x107°-6) - (-107+xvt0+600) /2%x10"-6) ;
38 %rd = 6e-6*xvt07°2-0.0001xvt0+0.0007;

39 %$Volume fraction of water on the inside

40 %of the droplet

41 Vw=Vw_in=* (((1-FS)*Ri"2+FS* (R1i"2-rin"2)) ...

42 / ((1-FS)*Ri"2+4FS* (Ri"2-r"2)));

43

44 SEmprical viscosity

45 mum=(0.203xVw"3+0.237«Vw"2-0.014xVw+0.0088) ;

46

47 %$Smooth centrifugal acceleration

48 f2=(vtOxexp (-0.04*vaxt/ (2+«Ro))) "2/r;

49 fl=(vtOxexp (-0.04*vaxt/ (2+«Ro))/Rc) "2xr;

50 f=f2-fl; beta=30;

51 ac=f2-0.5x ((f"2+beta”2) ".5+f); % eqg:3.18

52 S$vt=sqgrt (acxr);

53

54 %Radial velocity of droplet

55 vr=2/9% (rhow-rhoo) xrd”"2/mum+ac; % vr(r,z)eq:3.7
56 end

Deoiler - Used in Integrator

function DXDT=swirl_sep2 (t,x,1in,element)
%deoiler

gin=in(1);

Ro=1in(2);

Ri=in (3);

Vo_in=in (4);

ta=in(5);

rin=in(6);

FS=in(7);

© 0 N O U A W N e
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rhoo=881;%872; %$kg/m”3
rhow=1064;

r=x(1);
Rc=0.25*Ro;

va=gin/ (pi*Ro"2);
if element=='w' S%weak

k=3.5;

elseif element=='s' S$strong
k=5;

elseif element=='l' %large
k=7;

end

vt=k*va;

o

Experimental correlation between rd and vt
if vt>4.45%28

rd=(-8xvt+160) /2x10"-6;
else

rd=(-107*vt+600) /2x10"-6;
end
rd= (-107xvt+600)/2+«10"-6+0.5x (1+tanh (10000 (vt-4.45))) ...
* (((=8xvt+160)/2%107-6)—-(-107+vt+600) /2%x10"-6);
if vt>4%28

rd=10"-6+ (80-4xvt) ;

de oo

oo oo

o

de oo

o

o

else
rd=10"-6% (300-59*vt);

o

oo o

end
if vt>0.2%28
rd=0.0014xvt"™ (-1.244);

o oo oo

o

else
rd=-0.0645xvt+ 0.0233;

oo e

o

end

va=qginx (1-FS)/ (pix (Ro"2-Ri"2));
$rd=(-8*vt+160) /2x10"-6;

o

if gin>50/3600
rd=30+x10"-6;
else
rd=50+10"-6;
end

o

o

oo o

$diameter=2+xrd*«10"6
Vo_c=Vo_in#* (FS* (Ro"2-Ri"2)* (Ro"2-r"2)+ (rin"2-Ri"2)* (Ro"2-r"2)x (1-FS)) ...
/((r"2-Ri"2) * (Ro"2-r"2) * (1-FS)+FS* (Ro"2-Ri"2) * (Ro"2-r"2));

mum=(0.6xVo_c"3-0.506%xVo_c”2+0.137+xVo_c+0.001);
$mum=(0.47+xVo_c"3-0.4%«Vo_c"2+0.11xVo_c+0.001);
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vr=((2/9% (rhoo-rhow) xrd~2/ (mum) . . .

* (vtxexp (=0.04xvaxt/ (2«Ro))) "2/r) xheaviside (r-Rc) ... %r>Rc

+(2/9% (rhoo—rhow) xrd”2/mum. . .

*r* (vtxexp (-0.04+va*t/ (2«Ro)) /Rc) "2) xrheaviside (Rc-1)) ..

+*heaviside (r-0.9xRi); %To make sure r>0

drdt=vr;

DXDT=[drdt];
end

.7

$r<Rc

A.2.2 Optimization Scripts

All scripts in this subsection was created by Tyvold [1].

Steady State optimizer script

Main script. Everything run from this script.
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clearvars —except y
clear all

clc

tic

$xnom = load('xvar.mat');
$xnom = load('xnom2.mat');
%load('xnom20-0.35.mat");
load ('xnomadj2.mat")

x1l = x;
qin=[18:0.25:23]/3600;
%gin =[30:-0.25:15]/3600;
%gin= (20/3600);
$Vo_in=0.40;%
Vo-in=[0.35:0.0125:0.61;

$Vo_in = [0.3:0.0125:0.7];
Lsw=1.7;Ro=0.05;Ri=0.025;p2=[Lsw;Ro;Ri];
Lsw.DW=1.7;Ro.DW=0.05;Ri_DW=0.043;p3=[Lsw_DW; Ro_.DW; Ri_DW];

element="1";

dotvec = zeros(length(gin),length(Vo.in));
x=zeros (length (gin), length(Vo_-in), 21);
comp=zeros (length (gin), length(Vo_in), 6);
exitflag=zeros (length(gin), length(Vo.in));
Cost=zeros (length (gin), length (Vo_in));
options =...

optimset ('Algorithm', '"interior-point', 'Display', 'Off', 'MaxIter'...

,1le5, 'TolX"',1e-13, 'MaxFunEvals', 1le6, 'TolCon',le-5);
=[1;b=[];Aeq=[];beqg=[];
xopt = zeros(21,2);

oo oo oo oo

11.9/3600;0.03;8.1/3600;0.94];

xopt (:,1) = [0.33;0.91;Ri.DW;0.15;R1;6.7/3600;0.94;13.3/3600;0.13;...
6.1/3600;0.98;0.6/3600;0.5;13.9/3600;0.15;2/3600;0.83; ...
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% xopt(:,2) =
[0.4;0.86;R1DW;0.27;R1;8/3600;0.91;12/3600;0.22;7/3600; ...

o

0.97;1/3600;0.48;13/3600;0.24;3.5/3600;0.82;9.5/3600;0.03;...
10.5/3600;0.921;
grad = zeros(length(gin),length(Vo_-in),21);
%Optimization
for j=l:length(Vo-in)
for i=1:length(gin)
p=[gin(i);Vo-in(3)1;
% Bounds for inputs
$The bounadries on the FSs are just to help the solver
$and should not be active!!
1b=[0.2;0.5;0;0.01;p2(3);zeros(16,1)];
%$1b=[0;0.5;0;0;p2(3);zeros (16,1)1;
ub=zeros (21,1);
$ub(1:5,1)=[0.9;0.95;p3(3);0.6;p2(2)1;
ub(1:5,1)=[0.999;0.999;p3(3);0.6;p2(2)1;
for k =6:1length (ub)
a=factor (k) ;
if a(l)==2; %flow
ub(k,1)=gin (i) ;
else %volume fraction
ub (k,1)=1;
end
end
% Turn off initial guess and replace with old nominal wvalues
if j==1 && i==
x0 = squeeze (xnom) ;

o

o

oo oo oo

o

%$Initial guess
if J==1 && i==
% FS_.g,FS.DW,rin_.DW,FS_DO, rin_DO
x01=[Vo-in(1);0.8;0.4xRi_DW;0.3;0.65%Ro];
x0=InitialGuess (x01,p,p2,p3);
toc
elseif i==1 && j~=1
x0 = squeeze (xnom) ;

o

o o0 oo oo

o

o

$x0=x02;
else
x01=[Vo_in (1) ;x0(2);x0(3);x0(4);x0(5)];
x0=InitialGuess (x01,p,p2,p3);
end
% Forces guesses to be close to "true" values
if Vo_in(3j) < 0.45
for k = 1l:length (x0)
if (x0(k)/xopt(k,1)) > 1.1 || (x0(k)/xopt(k,1)) < 0.9
x0 (k) = xopt(k,1);
teller = teller +1;

oo oo oo

o

o

o

oo o

oo o

end
end

oo oo

o

elseif Vo_in(j) >= 0.45
for k = 1l:length (x0)
if (x0(k)/xopt(k,2)) > 1.1 || (x0(k)/xopt(k,2)) < 0.9
x0 (k) = xopt(k,2);

oo o

o\
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90 % end

91 % end

92 % end

93 x0 = squeeze(x1 (i, J,:));

94 [x(i,3,:),~,exitflag (i, j),output (i, j),lambda (i, j)] =
fmincon (...

95 @ (x)CostFunc2 (x,p,p2,p3),x0,A,b,Aeq, beq, 1b,ub, ...

96 @ (x)constraints2 (x,p,p2,p3,element,Vo_in(j)),options);

97 [Cost (i, J)1=CostFunc2(x (i, J,:),p,pr2,p3);

98 if exitflag(i,j)==1 ||exitflag(i,j)==2

99 x0=squeeze (x (i, 3, :));

100 elseif exitflag(i,j) == -2 && J>2

101 xold = squeeze(x (i, j-2,:));

102 x(i,j-1,:) = globaloptim(xold,Vo_in (j-1),qgin(i));

103 x(i,3,:) = globaloptim(x0,Vo_-in(j),gin(i));

104 x0=squeeze (x(i,73,:));

105 elseif exitflag(i,j) == -2 && j<=2

106 x(i,3,:) = globaloptim(x0,Vo_-in(j),gin(i));

107 x0=squeeze (x(i,3,:));

108 end

109 if j==

110 x02=x0;

111 end

112 %$Define a plot tolerance 1%

113 plottol = 0.01x0.99;

114 if x0(19)<plottol

115 dotvec (i, j) = 1;

116 else

117 dotvec (i, j) = 0;

118 end

119 end

120 end

121 Cost

122 y=x(:,:,15);

123 exitflag

124 toc

125 %%

126 for i=l:length (gin)

127 for j=l:length(Vo_in)

128 lambdaplot (i, j)= lambda (i, j).inegnonlin(3)

129 end

130 end

Initial Guess

This is ran if no initial solution is available.

1 function [y]=InitialGuess (x,p,p2,p3)

2 %$InitialGuess(x,p,p2,p3) Finds the values of the state
3 %vector that are consistent with the 5 first elements
4 FS_g=x(1);FSDW=x(2);rinDW=x(3);FS=x(4);rin=x(5);

5 gin=p(1);Vo_in=p(2);
6

7

8

$Gravity
[Vo_t,Vo.bl=gavity_-sep2 (FS_g,gin, Vo_in);
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9 gb=(1-FS_g)*qgin;
10 gt=gin-gb;

12 %DeWaterer
13 gi_DW=FS_DW*qgt; qo_-DW=(1-FS_DW)*gt;
14 [Vo_.LPO.DW,Vo_-HPO_DW]=DeWaterer (qt,Vo_-t,FS_DW, rin_DW,p3);

16 %DeOiler

17 g3=gb+go_DW;

18 Vo_3=(Vo_b*gb+Vo_HPO_DW+qo_DW) /g3;

19 [Vo_.LPO.DO,Vo_-HPO_DO]=DeOiler (gq3,Vo-3,FS,rin,p2);
20 gi=FS*qg3; go=g3-gi;

21 %$0il Product

22 qoil=qgi_DW+qgi;

23 V0.011=(Vo_.LPO_DW*gi_-DW+Vo_LPO_DO*qgi) /qgoil;

25 %$Output

26 x2=[qgt;Vo_-t;gb;Vo_-b;gi_-DW; Vo_.LPO_DW; go_-DW; Vo_HPO_DW; . ..

27 q3;Vo_3; gi;Vo_.LPO.DO; go; Vo_HPO.DO; goil; Vo_oil]; % age;
Added ; between g3 and Vo.-3, otherwise: error

28 y=[x;x2];

29

30 end

Cost Function

function [c]=CostFunc2 (x,p,p2,p3)
gin=p (1) ;Vo_-in=p(2);

%$0ilInWater=x(18) *x(19);

OilInWater=x(19) *x(18);

WaterInOil=(1-x(21))*x(20);

SWaterInOil=(1-x(17))*x(16);

%$c=10"4% (WaterInOil+OilInWater) ;

$c=(1-x(21))*10;

priceoilinoil = 40;

pricewaterinoil = 20;

priceoilinwater= 10;

c=(-x(21)*x(20))*6.289*priceoilinoil

14 + x(20)* (1-x(21))*6.289xpricewaterinoil
+0.00001* (x(16)*x(17))"2; ...

15 % + x(19)*x(18)*3600%6.289+priceoilinwater/1000 ;%+0.0001xx(4)"2;

16 end

© 0 N o U A W N e

e
w N = O

Constraint function

function [c,cegl=constraints2(x,p,p2,p3,element,Vo_in)
FS_g=x(1);FS.DW=x(2);rin DW=x(3) ;FS=x(4) ;rin=x(5);
gin=p(1l);Vo_in=p(2);

Lsw=p2 (1) ;Ro=p2(2) ; Ri=p2 (3);

Lsw_DW=p3(1l); Ro_-DW=p3(2) ; Ri_DW=p3(3) ;

[SAT SEC R VR
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$Gravity
[Vo_t,Vo.bl=gavity_-sep2 (FS_g,gin,Vo_in);
gb=(1-FS_g) *qin;

10 gt=gin-gb;

11 %DeWaterer

12 gqi_DW=FS_DWxqgt; %Light phase out flow

13 go_-DW=gt-gi_DW; %$Heavy phase out flow

14 ta.DW=pix*Ri_DW 2xLsw_DW/gi_DW; % eq:3.20

15

16 in_DW=[qgt, Ro_DW,Ri_DW,Vo.t,ta.-DW,rin_DW,FS_DW];

17 h_DW=ta_DW/10;

18 [T,X_DW]=RK2 (@swirl_sep2.0, [0 ta-DW], rin_DW, h_.-DW, in_.DW, element) ;
19 %options = odeset;

20 %[T,X_.-DW]= ode45(@swirl_sep2_.0,[0 ta-DW],rin_DW,options, in_.DW,element);
21

22 [Vo_LPO_DW,Vo_HPO_DW]=DeWaterer (qt,Vo_-t,FS_DW, rin_DW,p3);
23

24 rout_DW=X_DW (end,1);

25

26 %DeOiler

27 g3=gb+go_DW;

28 Vo_3=(Vo_brgb+Vo_HPO_DWxgo_DW) /g3;

20 gi=FSxqg3; $Light phase out flow

30 go=g3-di; %$Heavy phase out flow

31 ta=pix (Ro"2-Ri"2)*Lsw/qo;

32

33 in=[g3,Ro,Ri,Vo.3,ta,rin,FS];

34 h=ta/10;

35 [T,X]=RK2(@swirl_sep2, [0 ta],rin,h,in,element);

36 %options = odeset;

37 %$[T,X]=oded5(@swirl_sep2, [0 ta]l,rin,options,in,element) ;
38 rout=X(end,1l);

39

40 [Vo_LPO.DO,Vo_HPO_DO]=DeOiler (g3,Vo.3,FS,rin, p2);

41

42 %01l Product

43 goil=qgi_DW+qgi;

44 V0_0il=(Vo_LPO_DWxqgi_ DW+Vo_LPO_DO*qgi)/qgoil;

45

46 Sconstraints

47

48 %$In case of fixed flow splits:

49 FSzero=[FS_g-0.33;FSDW-0.91;FS-0.15];

50

51 ExplEg=[qt;Vo_t;gb;Vo_b;gi DW; Vo_LPO_DW; ...

52 qo-DW; Vo_HPO.DW; g3;Vo._3; ...

53 gi; Vo_.LPO_.DO; go; Vo_HPO.DO; goil; Vo_oil]l-x(6:21);
54 ceg=[ (Ri_-DW-rout.DW)/Ri_DW; (rout-Ri) /Ri;ExplEq];

55 c=[0.7-Vo_-t;Vo-3-0.6;x(19)-0.01;0.0001-x(19)1;%

56

57 %c=[0.7-Vo_t;Vo_.3-0.6];%

58 end

Integrator
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1 function [t,y]=RK2(ODEfile,tspan,yi,h,varargin)

2 %2nd-order Runge-Kutta

3 t=tspan(l):h:tspan(2);

4 1f t(end)~=tspan(2)

5 t (end+1l)=tspan(2);

6 end

7 d=diff(t);

s yi=(yi(:).")"';

9

10 y(:,1)=yi;

11 for i=l:length(t)-1

12 kl=d (i) «feval (ODEfile,t (i),y(:,1i),varargin{:});
13 k2:d(i)*feval(ODEfile,t(i+1),y(:,i)+k1,varargin{:});
14 yv(:,i+1)=y (:,1)+(k1l+k2)/2;

15 end

16 y=y';

17 t=t';

18 end

A.2.3 Self optimizing Control Scripts

This section includes the files for self-optimizing control for the subsea case. Note
that there are two scripts called optimizer and optimizeru inside this main script,
these are the same script as the steady state optimizer script given in Appendix
A.2.2.

1 % Script for selfoptimizing control

2 % Calculates measurements through exact local method

3 clear all

4 clc

5 gin = 23/3600; % Define a nominal point, inflow

6 Vo_.in = 0.6; % Define a nominal point, oil fraction

7 % Nominal point

8 %[xnom, cost2] = optimizer (Vo_in,qgin);

9 load('xg23vo06.mat');% Using results from simulations as start points

10 %lambda = load('lambdal.mat');% Using lambda from simulation

11 xnom = x1;

12 lambda = 0.8817;

13 nu = 3; ny =16; nd = 2; nc=1;% Number of inputs, measurements,
disturbances

14 yc = 14; % Which y is linked to constrained u3?

15 nyc = ny-nc; $Total available measurements

16 nuc = nu-nc; %$Total available inputs

17 %% Add 1% Disturbance to calculate F
18 di =1.01;

19 dl = ginxdi;

20 d2 = Vo_-inxdi;

21 deltadl = dl-gin;

22 deltad2 = d2-Vo.in;

23 for i=1:2

24 if i == 1

25 [xdl, costdl] = optimizer (Vo_.in,dl, xnom);
26 else

94




27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

52
53
54

55
56
57
58
59
60
61

62
63
64

65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80

[xd2, costd2]= optimizer (d2,gin, xnom) ;
end

xd = squeeze ([xdl xd2])"';
d = [deltadl deltad2];
%% Calculates sensitivity matrix
F = zeros(ny,nd);
for j = 6:length (xnom)
for i = l:length(d)
F(j-5,1) = (xd(j,1)-xnom(j))/d(i);
end

F(yc,:) = [1;
% Calculate Juu (Hessian)

o

costu = zeros (nu,nu);

%$xud = zeros (nu,nu,nu);

udiff = [0.999 1 1.001];

unom = [xnom(1l) xnom(2) xnom(4)];
x0 = squeeze (xnom) ;

teller = 0;
xud = zeros(21,9);

% Using small pertubations (+- 0.001) in three dimensions
for i=1l:length (unom) %ul

for j =1l:length(unom) %u2
%$for k = l:length(unom) u3 already constrained

Sif i==2 || J==2 %|| k==2

ceg= ['ceg=[ (Ri.DW-rout_DW)/Ri_DW; (rout-Ri)/Ri;ExplEqg;
x(1)-"
,num2str (unom (1) xudiff (i)) ...
';%(2)-", num2str (unom(2)xudiff(j)),"'1;"'1;

filehandle(ceq); % Rewrite the constraint file

%$if teller == 9

% x0 = squeeze(xud(:,8));

%end

x0 (1) =

x0 (1) *udiff (i) ;x0(2)=x0(2) udiff (j);%x0(4)=x0(4)~udiff (
teller = teller +1 ;
$[xud(i, j, k), costu(i,j, k)] = optimizeru(Vo_in,gin,x0);
$[xud(:,teller), costu(i,j, k)] =

optimizeru(Vo-in,gin, x0) <-this one;

[xud(:,teller), costu(i,j)] = optimizeru(Vo_-in,qgin,x0);
%else
% teller = teller + 1;
%end
$end

end

ceq = ['"];

filehandle (ceq); % Reset the constraint file

x0 = squeeze (xnom) ;

end

% Calcualte the finite differences using central step method

Julul = (costu(3,2)-2*costu(2,2)+costu(l,2))/(0.001"°2);

Julu2 = (costu(3,3)-costu(3,1)-costu(l,3)+costu(l,1))/(4x0.001%x0.001);
Ju2u2 = (costu(2,3)-2xcostu(2,2)+costu(2,1))/(0.001"°2);

Ju2ul = Julu2;

o

% Build Hessian matrix for the cost function
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Juu = [Julul Julu2;Ju2ul Ju2u2];

%% Calculate Gain Matrix (Gy) = Jacobian of measurements/inputs

deltau = 0.001;

o

% Calculating differentials using finite differences

Gyl = (xud(6:21,7)-xud(6:21,1))/(2xdeltau); %deltay/deltaul
Gy2 = (xud(6:21,6)-xud(6:21,4))/(2xdeltau); S%deltay/deltau2

Gy = [Gyl Gy2];

o

% Remove measurement correlated with u3 => x19 = yl4
Gy (yc,:) = [1I;

o

%% Scaling Matrices, Y, M and H

noisevecl = zeros(ny,1l);%zeros(ny,1l);
noisevec2 = zeros(ny,1l);%zeros(ny,1);

% Insert measurement noise
% High accuracy: set w-1l
for i=l:ny
if mod(i,2) == 1
noisevecl (1)

else

noisevecl (1) 0.001; % even for oilcut
end

end

o
o

Low accuracy: set w_2
for i=l:ny
if mod(i,2) ==
noisevec2 (i) = 0.4/3600 ;%0.1/3600; % 0dd for g
/3600 or NOT?)

else
noisevec2 (i) = 0.02;%0.01; % Even for oil-cut
end
end
% Keep u3 => yl4
Wnl4 (1) = noisevecl (yc);
Wnl4 (2) = noisevec2(yc);
% Remove u3 => yl4
noisevec2(yc) = [];

noisevecl (yc) [1;

% Insert disturbance noise here!!
Wd = diag([5/3600 0.2]1); %[g alfa]
Wnl = diag(noisevecl);

Wn2 = diag(noisevec2);

% Extend length of F and Gy

Yl = [F+«Wd Wnl];

Y2 = [FxWd Wn2];

jus}
|

= Gy'xinv (YxY"');

M ((Juu) " (1/2))*inv (H*Gy) sH*Y;

Lwc = (0.5+max (svd(M))) "2;

Lavg = 0.5%norm((Juu” (1/2)/ (HxGy))*HxY, 'fro') "2;

o° oo do oo

o

% Test for convexity (positive semi definite)
posdef = find(eig(Juu) < 0);
if isempty (posdef) == false

disp('Hessian is not positive definite')
else
disp('Hessian is positive definite')

= 0.01/3600; % O0dd for g (UNIT: /3600 or NOT?)

(UNIT:




end

o

%% Mesurement selection

Ydell=Y1;

Ydel2=Y2;

for i=l:nu-1-nc
Ydell=blkdiag(Ydell, Y1);
Ydel2=blkdiag(Ydel2,Y2);
size (Ydell);
size(Ydel2);

end

Fdell=YdellxYdell';

Fdel2=Ydel2xYdel2"';

Fdel = blkdiag(Fdell,Fdel2);

Juul2 = Juu” (1/2);
Gydel=[];

for i=l:nu-nc
Gydel=blkdiag (Gydel, Gy) ;

end

Gydel';

Gydel = [Gydel;Gydel];

Gyres = [Gy;Gyl; % For loss calculation only
Yres = [Y1;Y2]; % For loss calculation only
jdel=[1;

for i=l:nu-nc

jdel=[jdel ; Juul2(:,1)1;
end
Y = [Y1l;Y2]; % For loss Calculation only
Gyl = [Gy;Gyl; % For loss calculation only
Create GUROBI model
% Find the optimal number of measurements
= le3; %Big—-M
% Prices of measurements

= oo oo

Loss = zeros(l,ny-nc);
mprices = zeros(l,ny);
mprices2= zeros(l,ny);
for i = 1l:ny
if mod(i,2) == 1
mprices (i) = 0.001; % Flow wl
mprices2 (i) = 0.0005; %Flow w2
else
mprices (i) = 0.002; %0il fraction wl
mprices2 (i) = 0.001;% Oil fraction, w2
end
end
mprices(yc) = [];%removed constrained measurement
mprices2(yc) = [];
% Prices for the constraint
cprices = [mprices(2) mprices2(2)]; % wl w2

%Define empty matrices
Hres=zeros (nuc, 2«nyc, length (nuc:nyc)) ;
Meas=zeros (2, nyc, length (nuc:nyc)) ;
cmeas=zeros (1,2, length(nu-nc:ny));
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194 Hcons = zeros (2,2, length(nuc:nyc));

195 Hadj = zeros (nuc,2*nyc, length (nuc:nyc));

196 price = zeros(length(nuc:nyc),1l); % price of measurements
197 loss = zeros(length(nuc:nyc),1l); % Unconstrained loss

198 closs = zeros(length(nuc:nyc),1l); % Constrained loss

199 cost = zeros(length(nuc:nyc),1); % pricet+loss+closs

200 ltot =zeros(length(nuc:nyc),1l); % Total loss

202 subM = zeros (nycxnuc*2,nycx2);

203 % Selection criteria between each measurement set.
204 for i=l:nyc

205 subM (i, i+nyc) = 1;
206 subM (i+nyc, i+nyc)=1;
207 subM (i+2*nyc, i) = 1;
208 subM(i+3*nyc, i) = 1;
200 end
210 consumat = eye (nyc*nuc); %diag(helpvec)
211 sigmalMconstr = -Mx ([repmat (eye (nyc),nu-1,1);zeros (nycxnuc,nyc)]);
212 sigma2Mconstr = -Mx ([zeros (nycxnuc,nyc);repmat (eye (nyc),nu-1,1)1);
213 tic
214 % MIQP Model for Gurobi starts here
215 for nm = nuc:nyc
216 Q=blkdiag(Fdel, zeros (nyc,nyc), zeros (nyc,nyc), 0, zeros (4,4));
217 $H sigma-wl sigma_w2 nm
sigma_.c H_c
218
219 A= [Gydel' zeros (nuc*nuc,nyc) zeros (nucxnuc, nyc)
zeros (nucxnuc, 1) zeros(4,4) ;
220 zeros (1, nuc*nyc=2) ones (1,nyc) ones (1,nyc)
-1 zeros (1,4);
221 -blkdiag (eye (nuc*nyc),eye (nucxnyc)) sigmalMconstr
sigma2Mconstr zeros (nuc*nycx2,1) zeros (nuc*nycx2,4) ;
222 blkdiag (eye (nucxnyc),eye (nuc*nyc)) sigmalMconstr
sigma2Mconstr zeros (nuc*nyc*2,1l) zeros (nuc*nycx*2,4);
223 zeros (1, nucxnyc=2) zeros (1,nyc) zeros (1,nyc)
1 zeros (1,4) ;
224 eye (nucxnyc=2) M* subM zeros (nycxnucx2,1)
zeros (nucxnycx*2,4) ;
225 —eye (nuc*nyc*2) Mx*subM zeros (nycxnucx2,1)
zeros (nucxnyc=*2,4) ;
226 zeros (1, nucxnyc*2+2+nyc+l) 1 1 0 0;
227 zeros (1, nucxnyc*2+2+nyc+l) 1 0 0 1;
228 zeros (1, nucxnyc*2+2+nyc+l) 0 1 1 0;
229 zeros (1, nucxnycx2) mprices mprices2 0
cprices(l) cprices(2) 0 0;
230 1;
231
232 c = [zeros(l,nucxnyc+*2) mprices mprices2 0 cprices (1)
cprices(2) 0 0];
233 c(end-1) = lambdax*Wnl4 (1l); % Back-off loss
234 c(end) = lambdax*Wnl4(2); % Back-off loss
235 lb=[-inf (nuc*nyc*2,1); zeros (nyc,1l); zeros(nyc,1l) ;0;0;,0
—inf ;-inf];
236 ub=[inf (nuc*nyc*2,1); ones (nyc,1l) ; ones(nyc,1) ;jnyc; 1;1
;inf; inf];
237
238 b= [jdel;
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250

284

285

287
288
289
290
291

0

zeros (2+«nuc*nyc, 1) ;

zeros (2xnuc*nyc, 1)

nm

Mxones (2xnucxnyc, 1)

M+ones (2+xnuc*nyc, 1)

1

1

1

M;%0.0048 % Insert budget constraint here!
17

Stry
clear model;

model.varnames = namescript (nuc,ny,yc);

for n = l:nyc
model.sos (n) .type =1;
model.sos (n) .index=[ (4*nyc+n) (5xnyc+n)];

model.sos (n) .weight=[1 1];
end

model.Q = 0.5xsparse (Q);
model.A = sparse(A);
model.ob]j = c;

model.rhs = Db;

model.lb = 1lb;

model.ub = ub;
model.sense =

[repmat ('="',nucxnuc+l,1);repmat ('<',2xnuc*nyc,1); ...
repmat ('<',2xnucxnyc, l); '=';repmat ('<',2xnuc*nyc,1); ...
repmat ('<',2+nucxnyc,l);'=";'="';"'="';'<"];

model .modelsense="min';
model.vtype =

[repmat ('C', 2xnuc*nyc,1l);repmat ('B',2xnyc,1);"'I'; ...

repmat ('B',2,1);repmat ('B',2,1)1;
gurobi_write (model, 'gp2.lp');
% Parameters for better solving of the MIQP

params.Presolve = 2;
params.MIPFocus = 3;
params.NumericFocus = 3;

params.FeasibilityTol=1e-9;
params.OptimalityTol=1le-9;

params.IntFeasTol = le-9;
results = gurobi (model, params)
Hres (:, :,nm-nuc+l) = [results.x(l:nyc)'

results.x (2xnyc+1l:3%nyc)'; ...
results.x (nyc+l:2%nyc) '
results.x (3xnyc+l:4%nyc)'; ...
17
H = Hres(:, :,nm-nuc+l);
%$Selection matrix
Meas (:, :,nm—nuc+l) = [results.x(4xnyc+l:5+nyc)"';...
results.x (5+nyc+l:6*nyc) '];

cmeas (:, :,nm- (nuc)+1) = [results.x(end-3:end-2)"'];
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292

293

295

296
297
298

300
301
302
303
304
305

307
308
309
310

Hcons (:, :, nm—nuc+1) =
[results.x(end-3:end-2) ';results.x(end-1l:end) '];

%cost (nm-nuc+1l)= results.x'*xQ+results.x+model.obj*xresults.

lossl= 0.5xnorm(Juul2/ (HxGyres) *HxYres, 'fro') "2; %
Unconstrained loss

loss (nm- (nu-nc)+1) =

(results.x'+«Qxresults.x)/2;%$+model.objrresults.x;

Test for error in the loss calculation: Optimizer vs.

Exact local method

if abs(loss (nm-(nu-nc)+1l)-lossl) > le-3 && nm~=2
disp('Error in unconstrained loss calculation')

o
S
o
S

break
end
closs (nm- (nuc)+1) = c(end-l:end)*results.x(end-1:end);
price (nm-(nuc)+1l) = c(l:end-2)~*results.x(l:end-2);
ltot (nm- (nuc)+1) = loss (nm-(nuc)+l) + closs (nm- (nuc)+1);
cost (nm- (nuc)+1) = loss(nm-(nuc)+1)+closs (nm-(nuc)+1)...
+price (nm- (nuc) +1);
end
toc

Re-write the constraint file

function filehandle (ceq)
clear fin

fin = fopen('constraintsu.m','r+');

replaceline = 54;

newline = ceqg;

$endfile = 'c=[0.7-Vo_t;Vo_3-0.6;%x(19)-0.03;0.001-x(19)1;%";

endfile = '¢c=[0.7-Vo_t;Vo_.3-0.6];%";% <- use this if unconstrained

$endfile = 'c=[0.7-Vo_t;Vo_3-0.6;%x(19)-0.01];"'; %Use this if
constrained

endfile2 = 'end';

for k=1: (replaceline-1)
fgetl (fin);
end
fseek (fin, 0, "cof');
fprintf (fin, '$s\n',newline);
fprintf (fin, '$s\n',endfile);
fprintf (fin, '$s\n',endfile?);
fclose (fin);
clear fin constraintsu endfile endfile2
Spause (2) ;
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o B

Appendix

GUROBI Optimization Problem
Model Files

This appendix shows the optimization problems in a human readable format pro-
vided from the Gurobi solver. The file includes the cost functions with all bounds
and constraints.

B.1 Unconstrained Dummy Problem

1 Minimize
2 0.02 Cl6 + 0.02 C17 + 0.02 C18 + 0.02 C19 + 0.2 C20 + 0.2 C21 +
0.2 C22

3 + 0.2 C23 + [ 2.02 CO "2 + 4 CO  Cl - 36 CO » C2 + 36 CO % C3
4 + 2.02 Cl "2 - 36 Cl » C2 + 36 Cl » C3 + 162.02 C2 "2 - 324 C2 % C3
5 + 162.02 C3 "2 + 2.02 C4 "2 + 4 C4 « C5 - 36 C4 » C6 + 36 C4 « C7
6 + 2.02 C5 "2 - 36 C5  C6 + 36 C5 » C7 + 162.02 C6 "2 - 324 C6 % C7
7 + 162.02 C7 "2 + 2.0002 C8 "2 + 4 C8 = C9 - 36 C8  C10 + 36 C8
* Cl1
8 + 2.0002 C9 "2 - 36 C9 x C10 + 36 C9 * Cl1l1 + 162.0002 C10 "2
9 - 324 C10 % Cl1l + 162.0002 C11 "2 + 2.0002 Cl1l2 "2 + 4 Cl2 % C13
10 - 36 Cl2 = Cl4 + 36 Cl2 * C15 + 2.0002 C13 "2 - 36 C13 = Cl4
11 + 36 C13  C15 + 162.0002 Cl4 "2 - 324 Cl4 * C15 + 162.0002 C15 "2
12 1/ 2

13 Subject To
14 RO: 11 CO
15 R1: 10 CO

10 C1 + C2 + 11 C8 + 10 C9 + C10 = 11.5965512114594

9 Cl +C3 + 10 C8 + 9 C9 + C1l1l = 10.46518036156088

16 R2: 11 C4 10 C5 + C6 + 11 Cl2 + 10 C13 + C1l4 = 10.46518036156088
17 R3: 10 C4 9 C5 + C7 + 10 Cl2 + 9 C13 + C1l5 = 9.61665222413707

18 R4: Cl6 + Cl17 + C18 + C19 + C20 + C21 + C22 + C23 - C24 =0

+
+
+
+

19 R5: - CO - 100 Cl6 <=0
20 R6: - Cl1 - 100 C1l7 <=0
21 R7: - C2 - 100 C18 <=0
22 R8: - C3 - 100 Cl9 <=0
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23
24

25

57

R9:

R10:
R11l:
R12:
R13:
R14:
R15:
R16:
R17:
R18:
R19:
R20:
R21:
R22:
R23:
R24:
R25:
R26:
R27:
R28:
R29:
R30:
R31:
R32:
R33:
R34:
R35:
R36:
R37:
R38:
R39:
R40:
R41:
R42:
R43:
R44:
R45:
R46:
R47:
R48:
R49:
R50:
R51:
R52:
R53:
R54:
R55:
R56:
R57:
R58:
R59:
R60:
R61:
R62:
R63:
R64:
R65:

- C

Cl
Cl
Cl
Ccl
Cl
Cl
c2
co
Cl
Cc2
C3
Cc4
C5
ce
c7
Cc8
co9
Cl
Cl
Cl
Cl
Ccl
Ccl

4 - 100 Cl6e <=0
C5 - 100 C17 <=0
C6 - 100 C18 <=0
C7 - 100 C19 <=0
C8 - 100 C20 <=0
C9 - 100 C21 <=0
Cl0 - 100 C22 <=
Cll - 100 c23 <=
Cl2 - 100 C20 <=
Cl3 - 100 c21 <=
Cl4 - 100 C22 <=
Cl5 - 100 C23 <=

O O O O O O

- 100 Cl6 <=0
- 100 C17 <=0
- 100 C18 <=0
- 100 C19 <=0
- 100 Cle <=0
- 100 C17 <=0
- 100 C18 <=0
- 100 C19 <=0
- 100 C20 <=0
- 100 C21 <=0
0 - 100 Cc22 <=
1 - 100 C23 <=

2 - 100 Cc20 <=
3 - 100 C21 <=
4 - 100 C22 <=

O O O O O O

5 - 100 C23 <=

4 =4

+ 100 C20 <= 100

+ 100 C21 <= 100

+ 100 C22 <= 100

+ 100 C23 <= 100

+ 100 C20 <= 100

+ 100 C21 <= 100

+ 100 C22 <= 100

+ 100 C23 <= 100

+ 100 Cl6 <= 100

+ 100 C17 <= 100

0 + 100 C18 <= 100
1 + 100 Cl19 <= 100
2 + 100 Cle <= 100
3 + 100 C17 <= 100
4 4+ 100 C18 <= 100
5 4+ 100 C19 <= 100
CO + 100 C20 <= 100
Cl + 100 C21 <= 100
C2 + 100 C22 <= 100
C3 + 100 C23 <= 100
C4 + 100 C20 <= 100
C5 + 100 C21 <= 100
Cé6 + 100 C22 <= 100
C7 + 100 C23 <= 100
C8 + 100 Clée <= 100
C9 + 100 C17 <= 100

Cl0 + 100 C18 <= 100
Cll + 100 C19 <= 100

102




80 R66: — Cl2 + 100 Cl6 <= 100
81 R67: - C13 + 100 C17 <= 100
82 R68: - Cl4 + 100 C18 <= 100
83 R69: - C15 + 100 C19 <= 100

84 Bounds

85 CO0 free
86 Cl free
87 C2 free
88 C3 free
89 C4 free
920 C5 free
91 C6 free
92 C7 free
93 C8 free
94 C9 free
95 Cl0 free
96 Cll free
97 Cl2 free
98 Cl3 free
99 Cl4 free
100 Cl5 free
101 C24 <=4
102 Binaries
103 Cl6e Cl17 C18 Cl9 C20 C21 C22 C23
104 Generals
105 c24

106 End

B.2 Constrained Dummy Problem

1 Minimize
2 0.2 Sy-1w.1$ + 0.2 $Sy-2w_-1$ + 0.2 $y_3w_1$ + 0.2 Sy_4w_1$ + 0.02
Sy-1lw-2$

3 + 0.02 $y-2w_-2$ + 0.02 $Sy_3w.2$ + 0.02 $y_4w_2$ + 0.2 Sy_5w_1$

4 + 0.02 $y-5w-2$ + 0.1 H_.y5ulwl + H_y5ulw2 + [ 0.52 H_ylu2wl "2

5 - 2 Hoylu2wl % H_y2u2wl - 5.3 H_.ylu2wl x H_y3u2wl

6 - 10.5 H_ylu2wl % H_y4u2wl + 2.02 H_y2u2wl "2 + 10.6 H_y2u2wl =
H_y3u2wl

7 + 21 H_y2u2wl x H_y4u2wl + 14.065 H_y3u2wl "2

8 + 55.65 H_y3u2wl x H_y4u2wl + 55.145 H_y4u2wl "2 + 2.5 H_ylu2w2

9 - 2 Hoylu2w2 % H_y2u2w2 - 5.3 H.ylu2w2 x H_.y3u2w2

10 - 10.5 Hoylu2w2 x H_oy4u2w2 + 4 H_.y2u2w2 "2 + 10.6 H_y2u2w2 =
H_y3u2w2

11 + 21 H_y2u2w2  H_y4u2w2 + 16.045 H_y3u2w2 "2

12 + 55.65 H.y3u2w2 * H_y4u2w2 + 57.125 H_yd4u2w2 "2 ] / 2

13 Subject To

14 RO: H_y2u2wl + 2 H_y3u2wl + 3 H_y4u2wl + H_y2u2w2 + 2 H_y3u2w2

15 + 3 H.oyd4u2w2 =1

16 Rl: Sy-1w_1$ + Sy-2w_-1$ + Sy-3w_1$ + Sy_4w_1$ + S$Sy_-1lw_2$ + S$Sy_2w._2$

17 + Sy 3w.2$ + Sy 4w 2$ — nm = 0

18 R2: - H_ylu2wl - 500 $y-1w_1$ <=0
19  R3: — H.y2u2wl - 500 $y_2w_1$ <=0
20 R4: - H_y3u2wl - 500 $y-3w-1$ <=0

"2
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21 R5: - H.y4u2wl - 500 $y-4w_1$ <=0
22 R6: - H.ylu2w2 - 500 $y_-1lw.2$ <=0
23 R7: - H_y2u2w2 - 500 $y_-2w_2$ <=0
24 R8: - H_y3u2w2 - 500 $y-3w-2$ <=0
25 R9: - H.y4u2w2 - 500 $Sy-4w_2$ <=0
26 R10: H-ylu2wl - 500 $y-1lw_1$ <= 0
27 R11l: H_y2u2wl - 500 $y_2w_.1$ <= 0
28 R12: H.y3u2wl - 500 $y-3w_-1$ <=0
29 R13: H_.y4u2wl - 500 $y_4w_1$ <=0
30 R14: Hoylu2w2 - 500 $y-1lw-2$ <= 0
31 R15: H_y2u2w2 - 500 $y-2w_2$ <= 0
32 R16: H_y3u2w2 - 500 S$y_3w_2$ <= 0
33 R17: H_y4u2w2 - 500 $y-4w_2$ <= 0

34 R18: nm = 4

35 R19: H_ylu2wl
36 R20: H_.y2u2wl
37 R21: H.y3u2wl
38 R22: H_y4u2wl
39 R23: H_ylu2w2

500 $y-1w_2$ <= 500
500 $y_2w_2$ <= 500
500 $y_-3w_2$ <= 500
500 $y-4w_2$ <= 500
500 $y_1lw_1$ <= 500
40 R24: H_y2u2w?2 500 $y_-2w_1$ <= 500
41 R25: H_y3u2w?2 500 $y_3w_1$ <= 500
42 R26: H_y4u2w2 + 500 $y-4w_1$ <= 500

+ + + 4+ + + +

43  R27: H_ylu2wl + 500 $y-1lw_-2$ <= 500
44 R28: - H_y2u2wl + 500 $y_-2w_2$ <= 500
45 R29: - H_y3u2wl + 500 $y_3w_2$ <= 500
46 R30: - H.y4u2wl + 500 $y-4w_2$ <= 500
a7 R31: - H_ylu2w2 + 500 $y_-1lw_1$ <= 500
48 R32: - H_y2u2w2 + 500 $y_2w_1$ <= 500
49 R33: - H_y3u2w2 + 500 $y_3w_1$ <= 500
50 R34: H_y4u2w2 + 500 $y_-4w_1$ <= 500

51 R35: H_y5ulwl + H_y5ulw2 = 1

52 R36: $y_ 5w_.1$ + $y_ 5w.2$ 1

53 Bounds

54 H.ylu2wl free

55 H_y2u2wl free

56 H_.y3u2wl free

57 H_.y4u2wl free

58 H.ylu2w2 free

59 H_.y2u2w2 free

60 H.y3u2w2 free

61 H_y4u2w2 free

62 nm <= 4

63 Binaries

64 Sy lw.1l$ Sy 2w.1$ Sy 3w.1$ Sy dw.1$ Sy 1w 2$ Sy 2w.2$ Sy 3w 2$
Sy-4w_2$

65 Sy-5w_1$ $y_5w_2$ H_.y5ulwl H_y5ulw2

66 Generals

67 nm

68 SOS

69 sO0: S1 :: $y-5w_2$:1 H_ySulwl:1l

70 End
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B.3 Subsea Case: Inactive Constraint and Budget

Constraint

o oo~ w

22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44

Minimize
0.1 sigma.ylwl + sigma.-y2wl + 0.1 sigma.y3wl + sigma.y4wl + 0.1

+
+
+
+

+

+

sigma-y5wl

sigma.y6wl + 0.1 sigma.y7wl + sigma.y8wl + 0.1 sigma_y9wl

sigma-ylOwl + 0.1 sigma.yllwl + sigma-yl2wl + 0.1 sigma-yl3wl

0.1 sigma_.yl5wl + sigma.yléwl + 0.05 sigma.ylw2 + 0.1 sigma.y2w2

0.05 sigma.y3w2 + 0.1 sigma.y4w2 + 0.05 sigma_-y5w2 + 0.1
sigma-y6w2

0.05 sigma.y7w2 + 0.1 sigma.y8w2 + 0.05 sigma_.y9w2 + 0.1
sigma-yl0w2

0.05 sigma.yllw2 + 0.1 sigma.-yl2w2 + 0.05 sigma.yl3w2

.05 sigma.yl5w2 + 0.1 sigma.yléw2 + 0.5 sigma.yldwl

0.05 sigma.yl4w2 + 4.6876e-08 H_yl4u3wl + 4.6876e-07 H_yl4u3w2
+ [

o

.05106e-06 H_ylulwl "2 - 0.0011758790300657 H_ylulwl % H_y2ulwl

.2176e-07 H_ylulwl x H_y3ulwl

.0784676742445517e-04 H_ylulwl  H_y4ulwl

.4765e-06 H_ylulwl % H_y5ulwl

.00112207174454022 H_ylulwl x H_y6ulwl

.25246e-07 H_oylulwl x H_y7ulwl

.00104639528555011 H_ylulwl x H_y8ulwl

.03486e-07 H_ylulwl » H_y9ulwl - 0.0001013 H-ylulwl % H_ylOulwl
.46843e-07 H_ylulwl » H.yllulwl

.6862640249887278e-04 H_ylulwl % H_yl2ulwl

.50329%9e-07 H_ylulwl » H_yl3ulwl + 2.92965e-06 H_ylulwl =
H_oyl5ulwl

.4005539531045608e-04 H_ylulwl = H_yléulwl
.2560617341559827 H_y2ulwl "2

.4487874710108203e-04 H_y2ulwl % H_y3ulwl
.1278197511216987 H_y2ulwl * H_y4ulwl

.000786141 H_y2ulwl = H_y5ulwl

.3936303332784352 H_y2ulwl * H_yé6ulwl

.000389738 H_y2ulwl » H_y7ulwl

.9451428507673202 H_y2ulwl % H_y8ulwl
.4485927075530913e-04 H_y2ulwl % H_y9ulwl
.1337454565160713 H_y2ulwl * H_ylOulwl
.1829771912962576e-04 H_y2ulwl » H_yllulwl
.1813111469841493 H_y2ulwl * H_yl2ulwl

.000863157 H_oy2ulwl » H_yl3ulwl - 6.78433e-05 H_y2ulwl =
H_oyl5ulwl

.2331254765029068 H_y2ulwl % H_yl6ulwl + 1.00094e-07 H_y3ulwl "2
.062113515606881e-04 H_y3ulwl x H_yd4ulwl

.00931e-08 H_y3ulwl x H_ybulwl

.3520449449874706e-04 H_y3ulwl x H_yé6ulwl

.51853e-07 H_y3ulwl » H_y7ulwl

.2489481218670148e-04 H_y3ulwl = H_y8ulwl

.20508e-08 H_y3ulwl » H_y9ulwl + 0.00011394 H_y3ulwl % H_ylOulwl
.1125e-07 H_y3ulwl x H.yllulwl

.468591868055178e-04 H_y3ulwl x H_yl2ulwl

.63301e-07 H_y3ulwl » H_.yl3ulwl + 6.41343e-07 H_y3ulwl =
H_yl5ulwl

O O JOFHF OOOOOoONOO O - U O oy O WE N

o R oYU N W O
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46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78

79
80

82
83
84
85
86
87
88

89

90
91
92
93
94

+ 4+ o+ + + + +

+ +

N WHEDNDOWOWOWWOWONOHRE ODN

+ 4+ o+ +

I + +

WO OO O OO

+

o+ o+ o+

+
O O W o wo

e}

W H JF O WO Ul OO oNO

[y

.60218e-05 H_oy3ulwl % H.yl6ulwl + 0.0282441149930041 H_y4ulwl "2
.51339e-05 H_y4ulwl = H_yS5ulwl

.0693420227334188 H_y4ulwl * H_y6ulwl

.3298069215577417e-04 H_y4ulwl % H_.y7ulwl

.3847118906703809 H_y4ulwl * H_y8ulwl

.67693e-05 H_y4ulwl » H_y9ulwl

.0606339992451147 H_y4ulwl * H_ylOulwl

.2527239935002455e-04 H_y4ulwl % H_yllulwl

.078053131902459 H_y4ulwl x H_yl2ulwl

.5204173994488654e-04 H_y4ulwl » H_yl3ulwl

.5040632408146104e-04 H-y4ulwl % H_ylSulwl

.0443100304573928 H_yd4ulwl * H.yléulwl + 1.60005e-06 H_y5ulwl "2
.6448934890581382e-04 H_y5ulwl % H_y6ulwl

.76784e-07 H_ybulwl x H_y7ulwl

.1097248953901862e-04 H_y5ulwl % H_y8ulwl

.06877e-07 H_ybulwl x H_y9ulwl + 4.00665e-05 H.yS5ulwl » H_.ylOulwl
.11846e-07 H_y5ulwl » H_yllulwl + 1.69959e-05 H_y5ulwl =

Hoyl2ulwl

.50305e-08 H_y5ulwl » H_yl3ulwl + 3.41156e-06 H_y5ulwl =

H_oyl5ulwl

.000482794 H_y5ulwl » H_yléulwl + 0.1682697096011319 H_y6ulwl "2
.5758239563441348e-04 H.y6ulwl % H_.y7ulwl

.5514979461831324 H_y6ulwl % H_y8ulwl

.000122378 H.y6ulwl x H_y9ulwl

.0707589478282818 H_y6ulwl » H_ylOulwl

.000380456 H_y6ulwl x H_yllulwl

.1007971916201678 H_y6ulwl * H_yl2ulwl

.0283386692081644e-04 H_yb6ulwl x H_yl3ulwl

.8403338312081766e-04 H_y6ulwl % H_yl5ulwl

.1955001364558541 H_y6ulwl % H_ylé6ulwl + 1.74424e-07 H_y7ulwl "2
.3542279601113699e-04 H_.y7ulwl % H_y8ulwl

.66093e-08 H_y7ulwl » H_y9ulwl

.4136654198423814e-04 H_y7ulwl x H_ylOulwl

.5869e-07 H_y7ulwl » H_yllulwl

.8562234891509341e-04 H_y7ulwl x H.yl2ulwl

.55299e-07 H_y7ulwl » H_yl3ulwl - 4.81906e-07 H_y7ulwl =

H_yl5ulwl

.572614535664045e-04 H_y7ulwl » H_yléulwl

.322567291666435 H_y8ulwl "2 - 0.000210528 H_y8ulwl % H_y9ulwl
.4118031201287415 H_y8ulwl * H_ylOulwl

.0022094002926212 H_y8ulwl » H_yllulwl

.5331673263470015 H_y8ulwl * H_yl2ulwl

.00241992827644428 H_y8ulwl x H_yl3ulwl

.00209842780308302 H_y8ulwl * H_ylb5ulwl

.3462502596962378 H_y8ulwl = H_ylé6ulwl + 2.24722e-08 H_y9ulwl "2
.74266e-05 H_y9ulwl » H_ylOulwl - 1.4744e-07 H.y9ulwl » H.yllulwl
.87632e-05 H_y9ulwl x H_yl2ulwl + 1.91998e-07 H_y9ulwl =

H_yl3ulwl

.59437e-07 H_y9ulwl x H_yl5ulwl - 7.12397e-05 H_y9ulwl =

Hoyléulwl

.032571026112372 H_ylOulwl "2

.4943252974706013e-04 H_.ylOulwl » H_yllulwl
.0837117645940744 H_ylOulwl = H_yl2ulwl
.7685910544789462e-04 H_ylOulwl » H_yl3ulwl
.000389499 H_ylOulwl % H_yl5ulwl

.0455012061103151 H_ylOulwl = H_yléulwl + 9.3743e-07

Hoyllulwl "2
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96
97

98
99

100
101

118

130
131
132
133

135
136
137
138
139
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.4909076423386112e-04 H_yllulwl * H.yl2ulwl
.02191e-06 H_yllulwl * H_yl3ulwl + 2.08632e-06 H_yllulwl =

H_yl5ulwl

.4457940120790401e-04 H_yllulwl x H_ylé6ulwl
.0539775445068836 H_yl2ulwl "2 - 0.000487854 H._yl2ulwl =

H_oyl3ulwl

.6608671065024329e-04 H_yl2ulwl * H_yl5ulwl
.064022876007293 H_yl2ulwl x H.yléulwl + 1.10715e-06

H.yl3ulwl "2

.92688e-06 H_yl3ulwl * H_yl5ulwl - 0.000315819 H_yl3ulwl =

Hoyléulwl

.74913e-06 H_yl5ulwl "2

.3821454053607547e-04 H_ylb5ulwl » H_yléulwl
.0569778797619619 H_yl6ulwl "2 + 2.05106e-06 H.ylu2wl "2
.0011758790300657 H_ylu2wl % H_y2u2wl

.2176e-07 H_ylu2wl % H_y3u2wl

.0784676742445517e-04 H_ylu2wl x H_y4ulZwl

.4765e-06 H_ylu2wl » H_y5u2wl

.00112207174454022 H_ylu2wl x H_.y6u2wl

.25246e-07 H_ylu2wl » H_y7u2wl

.00104639528555011 H_ylu2wl * H_y8u2wl

.03486e-07 H_ylu2wl » H_y9u2wl - 0.0001013 H_-ylu2wl % H_ylOu2wl
.46843e-07 H_ylu2wl » H_yllu2wl

.6862640249887278e-04 H_ylu2wl x H_.yl2u2wl

.50329e-07 H_ylu2wl » H_yl3u2wl + 2.92965e-06 H_ylu2wl =

H_yl5u2wl

.4005539531045608e-04 H_ylu2wl % H_yl6u2wl
.2560617341559827 H_y2u2wl "2
.4487874710108203e-04 H_y2u2wl x H_y3ulZwl
.1278197511216987 H_y2u2wl % H_y4u2wl
.000786141 H_y2u2wl * H_y5u2wl
.3936303332784352 H_y2u2wl * H_y6u2wl
.000389738 H.y2u2wl x H_y7ulZwl
.9451428507673202 H_y2u2wl * H_y8u2wl
.4485927075530913e-04 H_.y2u2wl % H_y9u2wl
.1337454565160713 H_y2u2wl * H_ylOu2wl
.1829771912962576e-04 H_.y2u2wl % H.yllu2wl
.1813111469841493 H_y2u2wl * H_yl2u2wl
.000863157 H_y2u2wl = H_yl3u2wl - 6.78433e-05 H_y2u2wl =

H_yl5u2wl

.2331254765029068 H_y2u2wl * H_yl6u2wl + 1.00094e-07 H_y3u2wl "2
.062113515606881e-04 H_y3u2wl % H_y4u2wl

.00931e-08 H_y3u2wl = H_y5u2wl

.3520449449874706e-04 H_y3u2wl x H_y6u2wl

.51853e-07 H_y3u2wl » H_y7u2wl

.2489481218670148e-04 H_y3u2wl = H_y8ul2wl

.20508e-08 H_.y3u2wl x H_y9u2wl + 0.00011394 H_y3u2wl x H_ylOu2wl
.1125e-07 H_y3u2wl » H_.yllu2wl

.468591868055178e-04 H_y3u2wl % H_yl2ulZwl

.63301e-07 H_y3u2wl » H_yl3u2wl + 6.41343e-07 H_y3u2wl =

H_oyl5u2wl

.60218e-05 H_y3u2wl * H.yl6u2wl + 0.0282441149930041 H_y4u2wl "2
.51339%9e-05 H.y4u2wl x H_yb5u2wl

.0693420227334188 H_y4u2wl * H_y6u2wl

.3298069215577417e-04 H_y4u2wl = H_y7ul2wl

.3847118906703809 H_y4u2wl % H_y8u2wl

.67693e-05 H_y4u2wl = H_y9u2wl
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.0606339992451147 H_y4u2wl * H_ylOu2wl

.2527239935002455e-04 H_y4u2wl % H.yllu2wl

.078053131902459 H.y4u2wl » H_.yl2u2wl

.5204173994488654e-04 H_y4u2wl » H_yl3u2wl

.5040632408146104e-04 H_y4u2wl x H_ylbu2wl

.0443100304573928 H_y4u2wl * H_yl6u2wl + 1.60005e-06 H_yS5u2wl "2
.6448934890581382e-04 H_yb5u2wl = H_y6u2wl

.76784e-07 H_y5u2wl » H_y7u2wl

.1097248953901862e-04 H_y5u2wl * H_y8u2wl

.06877e-07 H_yb5u2wl x H_y9u2wl + 4.00665e-05 H_.y5u2wl » H_.ylOu2wl
.11846e-07 H_y5u2wl » H_yllu2wl + 1.69959e-05 H_y5u2wl =

Hoyl2u2wl

.50305e-08 H_y5u2wl » H_yl3u2wl + 3.41156e-06 H_y5u2wl =

H_yl5u2wl

.000482794 H_y5u2wl % H.yl6u2wl + 0.1682697096011319 H_y6u2wl "2
.5758239563441348e-04 H_y6u2wl = H_y7ul2wl

.5514979461831324 H_y6u2wl * H_y8u2wl

.000122378 H_y6u2wl » H_y9u2wl

.0707589478282818 H_y6u2wl *» H_ylOu2wl

.000380456 H_y6u2wl » H_yllu2wl

.1007971916201678 H_y6u2wl * H_yl2u2wl

.0283386692081644e-04 H_y6u2wl % H_yl3u2wl

.8403338312081766e-04 H_y6u2wl = H_ylbu2wl

.1955001364558541 H_y6u2wl * H_yl6u2wl + 1.74424e-07 H_y7u2wl "2
.3542279601113699e-04 H_.y7u2wl % H_y8u2wl

.66093e-08 H_y7u2wl x H_y9u2wl

.4136654198423814e-04 H_y7u2wl % H_ylOu2wl

.5869e-07 H_y7u2wl x H.yllu2wl

.8562234891509341e-04 H_y7u2wl % H.yl2u2wl

.55299e-07 H_y7u2wl » H_yl3u2wl - 4.81906e-07 H_y7u2wl =

H_oyl5u2wl

.572614535664045e-04 H_y7u2wl » H_yléu2wl

.322567291666435 H_y8u2wl "2 - 0.000210528 H_.y8u2wl % H_.y9u2wl
.4118031201287415 H_y8u2wl » H_ylOu2wl

.0022094002926212 H_y8u2wl * H_yllu2wl

.5331673263470015 H_y8u2wl * H_yl2u2wl

.00241992827644428 H_y8u2wl x H_yl3u2wl

.00209842780308302 H-y8u2wl x H_yl5u2wl

.3462502596962378 H_y8u2wl * H_yl6u2wl + 2.24722e-08 H_y9u2wl "2
.74266e-05 H_y9u2wl x H_ylOu2wl - 1.4744e-07 H.y9u2wl » H.yllu2wl
.87632e-05 H_y9u2wl » H_yl2u2wl + 1.91998e-07 H_y9u2wl =

H_oyl3u2wl

.59437e-07 H_y9u2wl » H_yl5u2wl - 7.12397e-05 H_y9u2wl =

Hoyl6u2wl

.032571026112372 H_ylOu2wl "2

.4943252974706013e-04 H_ylOu2wl » H.yllu2wl
.0837117645940744 H_yl0u2wl * H_yl2u2wl
.7685910544789462e-04 H_ylOu2wl » H_yl3u2wl
.000389499 H_ylOu2wl * H_yl5u2wl

.0455012061103151 H-ylOu2wl = H_yléu2wl + 9.3743e-07

Hoyllu2wl "2

.4909076423386112e-04 H_yllu2wl » H.yl2u2wl
.02191e-06 H_yllu2wl » H.yl3u2wl + 2.08632e-06 H_yllu2wl =

H_oyl5u2wl

.4457940120790401e-04 H_yllu2wl * H.yl6u2wl
.0539775445068836 H_yl2u2wl "2 - 0.000487854 H_yl2u2wl =

H_yl3u2wl
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.6608671065024329e-04 H_yl2u2wl * H_yl5u2wl
.064022876007293 H_yl2u2wl = H_ylé6u2wl + 1.10715e-06

H_yl3u2wl "2

.92688e-06 H_yl3u2wl % H_yl5u2wl - 0.000315819 H_yl3u2wl =

Hoyl6u2wl

.74913e-06 H_.yl5u2wl "2

.3821454053607547e-04 H_ylb5u2wl * H.ylé6u2wl
.0569778797619619 H_yl6u2wl "2 + 2.05164e-06 H.ylulw2 "2
.0011758790300657 H_ylulw2 * H_y2ulw2

.2176e-07 H_ylulw2 % H_y3ulw2

.0784676742445517e-04 H_ylulw2 * H_y4ulw2

.4765e-06 H_ylulw2 x H_yS5ulw2

.00112207174454022 H_ylulw2 % H_.y6ulw2

.25246e-07 H_ylulw2 = H_y7ulw2

.00104639528555011 H_ylulw2 % H_y8ulw2

.03486e-07 H_ylulw2 x H_y9ulw2 - 0.0001013 H_ylulw2 % H_ylOulw2
.46843e-07 H_ylulw2 x H.yllulw2

.6862640249887278e-04 H_ylulw2 % H_yl2ulw2

.50329e-07 H_ylulw2 = H_yl3ulw2 + 2.92965e-06 H_ylulw2 =

H_oyl5ulw2

.4005539531045608e-04 H_ylulw2 % H.ylé6ulw2
.2561607341559827 H_y2ulw2 "2
.4487874710108203e-04 H_y2ulw2 = H_y3ulw2
.1278197511216987 H_y2ulw2 * H_y4ulw2
.000786141 H_y2ulw2 = H_y5ulw2
.3936303332784352 H_y2ulw2 * H_y6ulw2
.000389738 H_y2ulw2 = H_y7ulw2
.9451428507673202 H_y2ulw2 * H_y8ulw2
.4485927075530913e-04 H_y2ulw2 % H_y9ulw2
.1337454565160713 H_y2ulw2 % H_ylOulw2
.1829771912962576e-04 H_y2ulw2 % H.yllulw2
.1813111469841493 H_y2ulw2 »* H_yl2ulw2
.000863157 H_y2ulw2 x H_yl3ulw2 - 6.78433e-05 H.y2ulw2 x

H_yl5ulw2

.2331254765029068 H_y2ulw2 * H_yleéulw2 + 1.00673e-07 H_y3ulw2
.062113515606881e-04 H_y3ulw2 x H_y4ulw2

.00931e-08 H_y3ulw2 *x H_y5ulw2

.3520449449874706e-04 H_y3ulw2 % H_.y6ulw2

.51853e-07 H_.y3ulw2 x H_y7ulw2

.2489481218670148e-04 H_y3ulw2 = H_y8ulw2

.20508e-08 H-_y3ulw2 x H_y9ulw2 + 0.00011394 H_y3ulw2 % H_ylOulw2
.1125e-07 H_y3ulw2 x H.yllulw2

.468591868055178e-04 H_y3ulw2 x H_yl2ulw2

.63301e-07 H_y3ulw2 » H_yl3ulw2 + 6.41343e-07 H_y3ulw2 =

H_yl5ulw2

.60218e-05 H_y3ulw2 » H.yloulw2 + 0.0283431149930041 H_y4ulw2
.51339e-05 H.y4ulw2 x H_yb5ulw2

.0693420227334188 H_y4ulw2 * H_y6ulw2

.3298069215577417e-04 H_y4ulw2 x H_y7ulw2

.3847118906703809 H_y4ulw2 * H_y8ulw2

.67693e-05 H_y4ulw2 x H_y9ulw2

.0606339992451147 H_y4ulw2 * H_ylOulw2

.2527239935002455e-04 H_y4ulw2 = H_yllulw2

.078053131902459 H_y4ulw2 x H_yl2ulw2

.5204173994488654e-04 H_y4ulw2 = H_yl3ulw2
.5040632408146104e-04 H_.y4ulw2 x H_yl5ulw2

.0443100304573928 H_y4ulw2 * H_yloéeulw2 + 1.60063e-06 H_y5ulw2

"2

"2

"2
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.6448934890581382e-04 H_ybSulw2 = H_y6ulw2

.76784e-07 H_y5ulw2 » H_.y7ulw2

.1097248953901862e-04 H_yb5ulw2 = H_y8ulw2

.06877e-07 H_y5ulw2 x H_y9ulw2 + 4.00665e-05 H_y5ulw2 x H_.ylOulw2
.11846e-07 H_y5ulw2 » H_yllulw2 + 1.69959e-05 H_y5ulw2 =

Hoyl2ulw2

.50305e-08 H_y5ulw2 » H_yl3ulw2 + 3.41156e-06 H_y5ulw2 =

H_oyl5ulw2

.000482794 H_y5ulw2 % H.yl6ulw2 + 0.1683687096011319 H_y6ulw2 "2
.5758239563441348e-04 H_y6ulw2 x H_y7ulw2

.5514979461831324 H_y6ulw2 * H_y8ulw2

.000122378 H_y6ulw2 *x H_y9ulw2

.0707589478282818 H_y6ulw2 * H_ylOulw2

.000380456 H_y6ulw2 = H_yllulw2

.1007971916201678 H_y6ulw2 * H_yl2ulw2

.0283386692081644e-04 H_y6ulw2 = H_yl3ulw2

.8403338312081766e-04 H_y6ulw2 x H_ylbulw2

.1955001364558541 H_y6ulw2 % H.ylé6ulw2 + 1.75003e-07 H_y7ulw2 "2
.3542279601113699e-04 H_.y7ulw2 % H_y8ulw2

.66093e-08 H_y7ulw2 » H_y9ulw2

.4136654198423814e-04 H_y7ulw2 x H_ylOulw2

.5869e-07 H_y7ulw2 » H_yllulw2

.8562234891509341e-04 H_y7ulw2 = H_yl2ulw2

.55299e-07 H_y7ulw2 x H_yl3ulw2 - 4.81906e-07 H_y7ulw2 x

H.yl5ulw2

.572614535664045e-04 H_y7ulw2 % H_yl6ulw2

.322666291666435 H_y8ulw2 "2 - 0.000210528 H_y8ulw2 % H_y9ulw2
.4118031201287415 H_y8ulw2 % H_ylOulw2

.0022094002926212 H_y8ulw2 * H_yllulw2

.5331673263470015 H_y8ulw2 % H_yl2ulw2

.00241992827644428 H_y8ulw2 x H_yl3ulw2

.00209842780308302 H._y8ulw2 = H_yl5ulw2

.3462502596962378 H_y8ulw2 * H_yl6ulw2 + 2.30509e-08 H_y9ulw2 "2
.74266e-05 H_y9ulw2 » H_ylOulw2 - 1.4744e-07 H_y9ulw2 x H.yllulw2
.87632e-05 H_y9ulw2 x H_yl2ulw2 + 1.91998e-07 H_y9ulw2 x

H_yl3ulw2

.59437e-07 H_y9ulw2 x H_ylb5ulw2 - 7.12397e-05 H_y9ulw2 x

Hoyléulw2

.032670026112372 H_ylOulw2 "2

.4943252974706013e-04 H_ylOulw2 * H.yllulw2
.0837117645940744 H_ylOulw2 = H_yl2ulw2
.7685910544789462e-04 H_ylOulw2 * H_yl3ulw2
.000389499 H_ylOulw2 % H_yl5ulw2

.0455012061103151 H_ylOulw2 % H.ylé6ulw2 + 9.38008e-07

Hoyllulw2 "2

.4909076423386112e-04 H_yllulw2 % H.yl2ulw2
.02191e-06 H_yllulw2 * H.yl3ulw2 + 2.08632e-06 H.yllulw2 =

H.yl5ulw2

.4457940120790401e-04 H_yllulw2 * H.yloéulw2
.0540765445068836 H_yl2ulw2 "2 - 0.000487854 H_yl2ulw2 =

Hoyl3ulw2

.6608671065024329e-04 H.yl2ulw2 x H_yl5ulw2
.064022876007293 H_yl2ulw2 * H.yleulw2 + 1.10773e-06

H_yl3ulw2 "2

.92688e-06 H_yl3ulw2 » H.yl5ulw2 - 0.000315819 H_.yl3ulw2 =

H_yléulw2

.74971e-06 H_yl5ulw2 "2
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.3821454053607547e-04 H_yl5ulw2 * H.ylé6ulw2
.0570768797619619 H_yl6ulw2 "2 + 2.05164e-06 H_.ylu2w2 "2
.0011758790300657 H_ylu2w2 * H_y2u2w2

.2176e-07 H_ylu2w2  H_y3u2w2

.0784676742445517e-04 H_ylu2w2 x H_y4u2w2

.4765e-06 H_ylu2w2 » H_y5u2w2

.00112207174454022 H_ylu2w2 % H_y6u2w2

.25246e-07 H_ylu2w2 *x H_y7u2w2

.00104639528555011 H_ylu2w2 x H_.y8u2w2

.03486e-07 H_ylu2w2 x H_y9u2w2 - 0.0001013 H_ylu2w2 * H_.ylOu2w2
.46843e-07 H_ylu2w2 » H_yllu2w2

.6862640249887278e-04 H_ylu2w2 x H.yl2u2w2

.50329e-07 H_ylu2w2  H_yl3u2w2 + 2.92965e-06 H_ylu2w2 x

H_yl5u2w2

.4005539531045608e-04 H_ylu2w2 % H.yl6u2w2
.2561607341559827 H_y2u2w2 "2
.4487874710108203e-04 H_.y2u2w2 % H_y3u2w2
.1278197511216987 H_y2u2w2 * H_y4u2w2
.000786141 H_y2u2w2 * H_y5u2w2
.3936303332784352 H_y2u2w2 * H_y6u2w2
.000389738 H_y2u2w2 *x H_y7u2w2
.9451428507673202 H_y2u2w2 % H_y8u2w2
.4485927075530913e-04 H_y2u2w2 = H_y9u2w2
.1337454565160713 H_y2u2w2 * H_ylOu2w2
.1829771912962576e-04 H_y2u2w2 * H.yllu2w2
.1813111469841493 H_y2u2w2 * H.yl2u2w2
.000863157 H_y2u2w2 = H_yl3u2w2 - 6.78433e-05 H_y2u2w2 x

H_oylb5u2w2

.2331254765029068 H_y2u2w2 * H_yl6u2w2 + 1.00673e-07 H_y3u2w2 "2
.062113515606881e-04 H_y3u2w2 % H_y4u2w2

.00931e-08 H_y3u2w2 * H_y5u2w2

.3520449449874706e-04 H_y3u2w2 + H_y6u2w2

.51853e-07 H_.y3u2w2 x H_y7ul2w2

.2489481218670148e-04 H_y3u2w2 +* H_y8u2w2

.20508e-08 H_y3u2w2 * H_y9u2w2 + 0.00011394 H_y3u2w2 x H_ylOu2w2
.1125e-07 H_y3u2w2 » H.yllu2w2

.468591868055178e-04 H_y3u2w2 x H.yl2u2w2

.63301e-07 H_y3u2w2 % H.yl3u2w2 + 6.41343e-07 H_y3u2w2 *

H_yl5u2w2

.60218e-05 H_y3u2w2 = H_yléu2w2 + 0.0283431149930041 H_y4u2w2 "2
.51339e-05 H_y4u2w2 = H_y5u2w2

.0693420227334188 H_y4u2w2 * H_y6u2w2

.3298069215577417e-04 H_y4u2w2 % H_y7u2w2

.3847118906703809 H_y4u2w2 * H_y8u2w2

.67693e-05 H_y4u2w2 » H_y9u2w2

.0606339992451147 H_y4u2w2 * H_ylOu2w2

.2527239935002455e-04 H_y4u2w2 % H.yllu2w2

.078053131902459 H_y4u2w2 x H_yl2u2w?2

.5204173994488654e-04 H_y4u2w2 x H_yl3u2w2

.5040632408146104e-04 H-y4u2w2 % H_ylb5u2w2

.0443100304573928 H_yd4u2w2 * H.yleu2w2 + 1.60063e-06 H_y5u2w2 "2
.6448934890581382e-04 H_y5u2w2 % H_.y6u2w2

.76784e-07 H_ybu2w2 x H_y7u2w2

.1097248953901862e-04 H_y5u2w2 % H_y8u2w2

.06877e-07 H_y5u2w2 » H_.y9u2w2 + 4.00665e-05 H_y5u2w2 * H_.ylOu2w2
.11846e-07 H_y5u2w2 x H_yllu2w2 + 1.69959e-05 H_y5u2w2 x

H.oyl2u2w2
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9.50305e-08 H_y5u2w2 * H_yl3u2w2 + 3.41156e-06 H_y5u2w2 =

H.yl5u2w2

.000482794 H_ybu2w2 » H_yléu2w2 + 0.1683687096011319 H_y6u2w2 "2

.5758239563441348e-04 H_.y6u2w2 % H_y7u2w2

.5514979461831324 H_y6u2w2 * H_y8u2w2

.000122378 H_y6u2w2 * H_y9u2w2

.0707589478282818 H_y6u2w2 * H_ylOu2w2

.000380456 H_y6u2w2 % H.yllu2w2

.1007971916201678 H_y6u2w2 * H_yl2u2w2

.0283386692081644e-04 H_y6u2w2 x H_yl3u2w2

.8403338312081766e-04 H_y6u2w2 % H_yl5u2w2

.1955001364558541 H_y6u2w2 * H.yl6u2w2 + 1.75003e-07 H_y7u2w2 "2

.3542279601113699e-04 H_.y7u2w2 % H_y8u2w2

.66093e-08 H_y7u2w2 = H_y9u2w2

.4136654198423814e-04 H_y7u2w2 % H_.ylOu2w2

.5869e-07 H_y7u2w2 % H_yllu2w2

.8562234891509341e-04 H_y7u2w2 x H_.yl2u2w2

.55299e-07 H_y7u2w2 x H_yl3u2w2 - 4.81906e-07 H_y7u2w2 x

H_oyl5u2w2

.572614535664045e-04 H_y7u2w2 x H_ylé6u2w2

.322666291666435 H_y8u2w2 "2 - 0.000210528 H_.y8u2w2 % H_.y9u2w2

.4118031201287415 H_y8u2w2 * H_ylOu2w2

.0022094002926212 H_y8u2w2 % H_yllu2w2

.5331673263470015 H_y8u2w2 * H_yl2u2w2

.00241992827644428 H_y8u2w2 x H_yl3u2w2

.00209842780308302 H_y8u2w2 x H_ylbu2w2

.3462502596962378 H_y8u2w2 * H_yl6u2w2 + 2.30509e-08 H_y9u2w2 "2

.74266e-05 H_y9u2w2 x H_ylOu2w2 - 1.4744e-07 H_.y9u2w2 x H.yllu2w2

.87632e-05 H_y9u2w2 » H_yl2u2w2 + 1.91998e-07 H_y9u2w2 x

H_yl3u2w2

.59437e-07 H_.y9u2w2 % H.ylbu2w2 - 7.12397e-05 H_y9u2w2 *

H.yléu2w2

.032670026112372 H_ylOu2w2 "2

.4943252974706013e-04 H-ylOu2w2 = H_yllu2w2

.0837117645940744 H_ylOu2w2 x H.yl2u2w?2

.7685910544789462e-04 H_ylOu2w2 x H_yl3u2w2

.000389499 H_ylOu2w2 * H_yl5u2w2

.0455012061103151 H_ylOu2w2 x H.yléu2w2 + 9.38008e-07

H_yllu2w2 "2

.4909076423386112e-04 H_yllu2w2 * H.yl2u2w2

2.02191e-06 H_-yllu2w2 % H_.yl3u2w2 + 2.08632e-06 H_yllu2w2 =*
H_oyl5u2w2

2.4457940120790401e-04 H-yllu2w2 x H._ylé6u2w2

0.0540765445068836 H_yl2u2w2 "2 - 0.000487854 H_yl2u2w2 =*
H_yl3u2w2

4.6608671065024329e-04 H_yl2u2w2 * H_yl5u2w2

0.064022876007293 H_yl2u2w2 % H_ylé6u2w2 + 1.10773e-06

H.yl3u2w2 "2

.92688e-06 H_yl3u2w2 * H.yl5u2w2 - 0.000315819 H_.yl3u2w2 =*

H.yléu2w2

2.74971e-06 H_ylb5u2w2 "2

2.3821454053607547e-04 H_yl5u2w2 x H_ylé6u2w2

0.0570768797619619 H_ylé6u2w2 "2 ] / 2

W H JF O WO Ul OO oNO

= =

[y

Subject To
RO:

0.002 H_.ylulwl - 0.5090991037076109 H_.y2ulwl - 0.002 H_y3ulwl
0.1489493216895732 H_y4ulwl + 0.00181598 H_y5ulwl
0.4888618616206708 H_y6ulwl + 0.00018402 H_y7ulwl
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395

R1:

R2:

R3:

+ +

R4:

+

O OO OO OO0 OONMWMOOOOOODODWOOOODOONIODOOOOODOOOOOWWOOO OO O wo o o

o

.7088079771181977
.1523008720973329

.000157135 H_yl5ulw2
1.69049292750346
.002 H_ylu2wl - 0.

.000157135 H-yl5u2w2

66.50518021113163

sigma-ylwl + sigma.y2wl +
sigma.y6wl + sigma.y7wl +

H_y8ulwl - 0.00181598 H_y9ulwl
H.ylOulwl - 0.00100428881865002 H_yllulwl

.0663214671335344 H_yl2ulwl - 8.11691181473468e-04 H_yl3ulwl
.1169118131409028e-04 H_yl5ulwl - 0.1498406426914123 H_yl6ulwl
.002 Hoylulw2 - 0.5090991037076109 H_y2ulw2 - 0.002 H_y3ulw2
.1489493216895732 H_y4ulw2 + 0.00181598 H_y5ulw2
.4888618616206708 H_y6ulw2 + 0.00018402 H_y7ulw2
.7088079771181977 H_y8ulw2 - 0.00181598 H_y9ulw2
.1523008720973329 H_ylOulw2 - 0.00100428881865002 H_yllulw2
.0663214671335344 H_yl2ulw2 - 8.11691181473468e-04 H_yl3ulw2
.1169118131409028e-04 H_yl5ulw2 - 0.1498406426914123 H_yl6ulw2
7.87087872548276

.00181708916666677 H_ybSulwl - 0.4773620917672417 H_y6ulwl
.00181708916666677 H_y7ulwl — 0.0843350702927625 H_y8ulwl
.00181708916666677 H_y9ulwl - 0.1578454846379168 H_ylOulwl
.00165995414535771 H_yllulwl + 0.2536437430674665 H_yl2ulwl
.000157135 H_yl3ulwl + 0.000157135 H_yl5ulwl

.0255172204707832 H_yl6ulwl + 0.00181708916666677 H_ybSulw2
.4773620917672417 H_y6ulw2 - 0.00181708916666677 H_y7ulw2
.0843350702927625 H_y8ulw2 - 0.00181708916666677 H_y9ulw2
.1578454846379168 H_ylOulw2 - 0.00165995414535771 H_.yllulw2
.2536437430674665 H_yl2ulw2 - 0.000157135 H_yl3ulw2

- 0.0255172204707832 H_yl6ulw2

5090991037076109 H_y2u2wl - 0.002 H_y3u2wl

.1489493216895732 H_y4u2wl + 0.00181598 H_y5u2wl
.4888618616206708 H_y6u2wl + 0.00018402 H_y7u2wl
.7088079771181977 H_y8u2wl - 0.00181598 H_y9u2wl
.1523008720973329 H_ylOu2wl - 0.00100428881865002 H_yllu2wl
.0663214671335344 H_yl2u2wl - 8.11691181473468e-04 H_yl3u2Zwl
.1169118131409028e-04 H_yl5u2wl - 0.1498406426914123 H_yl6u2Zwl
.002 H.ylu2w2 - 0.5090991037076109 H_.y2u2w2 - 0.002 H_.y3u2w2
.1489493216895732 H_y4u2w2 + 0.00181598 H_y5u2w2
.4888618616206708 H_y6u2w2 + 0.00018402 H_y7u2w2
.7088079771181977 H_y8u2w2 - 0.00181598 H_y9u2w2
.1523008720973329 H_ylOu2w2 - 0.00100428881865002 H_yllu2w2
.0663214671335344 H_yl2u2w2 - 8.11691181473468e-04 H_yl3u2w2
.1169118131409028e-04 H_yl5u2w2 - 0.1498406426914123 H_yl6u2w2
1.69049292750347

.00181708916666677 H_y5u2wl - 0.4773620917672417 H_y6u2wl
.00181708916666677 H_y7u2wl — 0.0843350702927625 H_y8u2wl
.00181708916666677 H_y9u2wl - 0.1578454846379168 H_ylOuZwl
.00165995414535771 H_yllu2wl + 0.2536437430674665 H_yl2u2wl
.000157135 H_yl3u2wl + 0.000157135 H_yl5u2wl
.0255172204707832 H_yl6u2wl + 0.00181708916666677 H_y5ul2w2
.4773620917672417 H_y6u2w2 - 0.00181708916666677 H_y7u2w2
.0843350702927625 H_y8u2w2 - 0.00181708916666677 H_y9u2w2
.1578454846379168 H_ylOu2w2 - 0.00165995414535771 H_yllu2w2
.2536437430674665 H_yl2u2w2 - 0.000157135 H_.yl3u2w2

- 0.0255172204707832 H.ylo6u2w2

sigma-y3wl + sigma-y4wl + sigma-y5wl
sigma.y8wl + sigma.y9wl + sigma_ylOwl

sigma-yllwl + sigma-yl2wl + sigma-yl3wl + sigma-yl5wl +

sigma.ylw2 + sigma.y2w2 +
sigma-y6w2 + sigma.y7w2 +

sigma.yléwl

sigma.y3w2 + sigma.y4w2 + sigma.ybw2
sigma-y8w2 + sigma-y9w2 + sigma-ylOw2
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451 + sigma-yllw2 + sigma-yl2w2 + sigma-yl3w2 + sigma.-yl5w2 +
sigma.ylé6w2

452 - nm = 0

453 R5: - H_ylulwl - le+06 sigma-ylwl <= 0
454 R6: - H_y2ulwl - le+06 sigma.y2wl <= 0
455 R7: - H_y3ulwl - le+06 sigma.-y3wl <= 0
456 R8: - H_y4ulwl - le+06 sigma.ydwl <= 0
457 R9: - H_y5ulwl - le+06 sigma.y5wl <= 0
458 R10: - H_.y6ulwl - 1le+06 sigma.y6wl <= 0
459 R11: - H_y7ulwl - 1le+06 sigma.y7wl <= 0
460 R12: - H_.y8ulwl - 1le+06 sigma.-y8wl <= 0
461 R13: - H_.y9ulwl - 1le+06 sigma.y9wl <= 0
462 R14: - H.ylOulwl - 1le+06 sigma-ylOwl <= 0
463 R15: - H.yllulwl - 1le+06 sigma.yllwl <= 0
464 R16: - H.yl2ulwl - 1le+06 sigma.-yl2wl <= 0
465 R17: - H_yl3ulwl - 1le+06 sigma.yl3wl <= 0
466 R18: - H_.ylb5ulwl - le+06 sigma.-ylbwl <= 0
467 R19: - H.yl6ulwl - 1le+06 sigma-yléwl <= 0
468 R20: - H.ylu2wl - 1le+06 sigma.ylwl <= 0
469 R21: - H_.y2u2wl - 1le+06 sigma.y2wl <= 0
470 R22: - H_.y3u2wl - 1le+06 sigma.y3wl <= 0
471 R23: - H_y4u2wl - 1le+06 sigma.-ydwl <= 0
472 R24: - H_y5u2wl - 1le+06 sigma.y5wl <= 0
473 R25: - H_.y6u2wl - 1le+06 sigma.y6wl <= 0
474 R26: - H_y7u2wl - 1le+06 sigma.y7wl <= 0
475 R27: - H_y8u2wl - le+06 sigma.y8wl <= 0
476 R28: - H_y9u2wl - 1le+06 sigma-y9wl <= 0
477 R29: - H_.ylOu2wl - le+06 sigma.ylOwl <= 0
478 R30: - H.yllu2wl - 1le+06 sigma-yllwl <= 0
479 R31: - H.yl2u2wl - le+06 sigma.yl2wl <= 0
480 R32: - H.yl3u2wl - 1le+06 sigma-yl3wl <= 0
481 R33: - H.yl5u2wl - 1le+06 sigma.ylbwl <= 0
482 R34: - H.yl6u2wl - le+06 sigma.yléwl <= 0
483 R35: - H_ylulw2 - 1le+06 sigma.ylw2 <= 0
484 R36: - H.y2ulw2 - 1le+06 sigma.y2w2 <= 0
485 R37: - H_y3ulw2 - 1le+06 sigma.y3w2 <= 0
486 R38: - H_.y4ulw2 - 1le+06 sigma.ydw2 <= 0
487 R39: - H_y5ulw2 - 1le+06 sigma.y5w2 <= 0
488 R40: - H_y6ulw2 - le+06 sigma.y6w2 <= 0
489 R41: - H_y7ulw2 - le+06 sigma.y7w2 <= 0
490 R42: - H_y8ulw2 - le+06 sigma.-y8w2 <= 0
491 R43: - H.y9ulw2 - 1le+06 sigma.y9w2 <= 0
492 R44: - H_ylOulw2 - le+06 sigma-yl0w2 <= 0
493 R45: - H.yllulw2 - le+06 sigma.yllw2 <= 0
494 R46: - H.yl2ulw2 - 1le+06 sigma.-yl2w2 <= 0
495 R47: - H_.yl3ulw2 - 1le+06 sigma.yl3w2 <= 0
496 R48: - H_.ylb5ulw2 - le+06 sigma.-ylbw2 <= 0
497 R49: - H.yl6ulw2 - 1le+06 sigma.yléw2 <= 0
498 R50: - H_.ylu2w2 - 1le+06 sigma.ylw2 <= 0
499 R51: - H_y2u2w2 - le+06 sigma.y2w2 <= 0
500 R52: - H_y3u2w2 - le+06 sigma.y3w2 <= 0
501 R53: - H_y4u2w2 - le+06 sigma.-ydw2 <= 0
502 R54: - H_yb5u2w2 - le+06 sigma.y5w2 <= 0
503 R55: - H_y6u2w2 - 1le+06 sigma.y6w2 <= 0
504 R56: — H_y7u2w2 - le+06 sigma.y7w2 <= 0
505 R57: - H_y8u2w2 - 1le+06 sigma.y8w2 <= 0
506 R58: - H_y9u2w2 - le+06 sigma-y9w2 <= 0
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507
508
509

511

516

530

532

R59:
R60:
R61:
R62:
R63:
R64:
R65:
R66:
R67:
R68:
R69:
R70:
R71:
R72:
R73:
R74:
R75:
R76:
R77:
R78:
R79:
R80:
R81:
R82:
R83:
R84:
R85:
R86:
R87:
R88:
R89:
R90:
R91:
RO2:
R93:
R94:
R95:
R96:
R97:
R98:
R99:

R100:
R101:
R102:
R103:
R104:
R105:
R106:
R107:
R108:
R109:
R110:
R111:
R112:
R113:
R114:
R115:

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

HoylOu2w2 - le+06 sigma.-ylOw2 <
Hyllu2w2 - le+06 sigma.yllw2 <
H_yl2u2w2 - le+06 sigma.yl2w2 <
H_oyl3u2w2 - le+06 sigma-yl3w2 <
H.yl5u2w2 - le+06 sigma.-ylbw2 <
Hoyl6u2w2 - 1le+06 sigma-yléw2 <
_ylulwl - le+06 sigma.ylwl <= 0
_y2ulwl - le+06 sigma.y2wl <= 0
_y3ulwl - 1le+06 sigma.y3wl <= 0
_y4ulwl - le+06 sigma.ydwl <= 0
_y5ulwl - 1le+06 sigma-y5wl <= 0
_y6ulwl - le+06 sigma.yébwl <= 0
_y7ulwl - 1le+06 sigma-y7wl <= 0
_y8ulwl - le+06 sigma.y8wl <= 0
_y9ulwl - 1le+06 sigma-y9wl <= 0
_y1l0ulwl - le+06 sigma.ylOwl <=
_yllulwl - le+06 sigma.yllwl <=
_yl2ulwl - 1le+06 sigma-yl2wl <=
_y1l3ulwl - 1le+06 sigma.-yl3wl <=
_y1l5ulwl - 1e+06 sigma.-ylbwl <=
_yl6ulwl - le+06 sigma.yléewl <=
_ylu2wl - 1le+06 sigma.ylwl <= 0
_y2u2wl - le+06 sigma.y2wl <= 0
_y3u2wl - le+06 sigma.y3wl <= 0
_y4u2wl - le+06 sigma.ydwl <= 0
_y5u2wl - le+06 sigma.y5wl <= 0
_y6u2wl - 1le+06 sigma.-y6wl <= 0
_y7u2wl - 1le+06 sigma.y7wl <= 0
_y8u2wl - le+06 sigma.y8wl <= 0
_y9u2wl - le+06 sigma.y9wl <= 0
_ylO0u2wl - 1le+06 sigma.-ylOwl <=
_yllu2wl - 1le+06 sigma.yllwl <=
_yl2u2wl - le+06 sigma.yl2wl <=
_yl3u2wl - 1le+06 sigma-yl3wl <=
_yl5u2wl - le+06 sigma.-ylbwl <=
_yléu2wl - 1le+06 sigma.yléwl <=
_ylulw2 - le+06 sigma.ylw2 <=
_y2ulw2 - le+06 sigma.y2w2 <= 0
_y3ulw2 - le+06 sigma.y3w2 <= 0
_y4ulw2 - le+06 sigma.ydw2 <= 0
_y5ulw2 - le+06 sigma.y5w2 <= 0
H.y6ulw2 - 1le+06 sigma.y6w2 <= 0
H_oy7ulw2 - le+06 sigma.y7w2 <= 0
H_y8ulw2 - 1le+06 sigma.y8w2 <= 0
Hoy9ulw2 - le+06 sigma-y9w2 <= 0
HoylOulw2 - le+06 sigma.ylOw2 <=
Hoyllulw2 - 1le+06 sigma.yllw2 <=
Hyl2ulw2 - le+06 sigma.yl2w2 <=
Hoyl3ulw2 - le+06 sigma.yl3w2 <=
Hoyl5ulw2 - le+06 sigma.-ylbw2 <=
Hyl6ulw2 - le+06 sigma.yléew2 <=
Hoylu2w2 - le+06 sigma.ylw2 <= 0
H_y2u2w2 - le+06 sigma.y2w2 <= 0
H_oy3u2w2 - le+06 sigma.y3w2 <= 0
H.y4u2w2 - le+06 sigma.y4w2 <= 0
H_oy5u2w2 - le+06 sigma.y5w2 <= 0
Hoy6u2w2 - le+06 sigma.y6w2 <= 0

O O O O o o

O O O O o o

O O O O o o

O O O O o o
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564
565
566

568

569

570

571

572

573

575

587

589

605

611

R11l6:
R117:
R118:
R119:
R120:
R121:
R122:
R123:
R124:
R125:
R126:
R127:
R128:
R129:
R130:
R131:
R132:
R133:
R134:
R135:
R136:
R137:
R138:
R139:
R140:
R141:
R142:
R143:
R144:
R145:
R146:
R147:
R148:
R149:
R150:
R151:
R152:
R153:
R154:
R155:
R156:
R157:
R158:
R159:
R160:
R161:
R162:
R163:
R164:
R165:
R166:
R167:
R168:
R169:
R170:
R171:
R172:

Hoy7u2w2
H_y8u2w2
H_oy9u2w2
H_oylOu2w2
Hoyllu2w2
Hoyl2u2w2
H_oyl3u2w2
H_yl5u2w2
H.yl6u2w2
nm = 15

Hoylulwl
H_oy2ulwl
H_oy3ulwl
H_oy4ulwl
H_oy5ulwl
Hoy6ulwl
Hoy7ulwl
H_oy8ulwl
H_oy9ulwl
H_ylOulwl
Hoyllulwl
Hoyl2ulwl
Hoyl3ulwl
H_oyl5ulwl
Hoylé6ulwl
Hoylu2wl
H_.y2u2wl
H_oy3u2wl
H_oy4u2wl
H_y5u2wl
Hoy6u2wl
H_y7u2wl
H_y8u2wl
H_oy9u2wl
H_ylOu2wl
Hoyllu2wl
Hoyl2u2wl
Hoyl3u2wl
H_oyl5u2wl
H_oyl6u2wl
Hoylulw2
H_oy2ulw2
H_y3ulw2
H_oy4ulw2
H_oy5ulw2
Hoy6ulw2
Hoy7ulw2
H_y8ulw2
H_oy9ulw2
H_ylOulw2
Hoyllulw2
Hoyl2ulw2
H_oyl3ulw2
Hoyl5ulw2
Hoyléoulw2

- le+06 sigma.y7w2 <= 0
- le+06 sigma.y8w2 <= 0
- le+06 sigma.y9w2 <= 0

+
+
+
+
+
+
+
+
+

+
+
+
+
+
+

o+ o+ o+ o+ o+
+ o+ o+ o+ o+ o+

+ o+ o+ o+

+
+
+
+
+
+

le+06
le+06
le+06
le+06
le+06
le+06

le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
1le+06
le+06
le+06
le+06
le+06

sigma-yl0w2
sigma-yllw2
sigma-yl2w2
sigma.-yl3w2
sigma-yl5w2
sigma.yleéw2

sigma_ylw2 <
sigma.y2w2 <
sigma-y3w2 <
sigma.ydw2 <

<:
<=

A
Il
cocooooo

= le+06
= 1le+06
= le+06
= le+06

sigma_y5w2 <= le+06
sigma.y6w2 <= le+06
sigma.y7w2 <= le+06

sigma-y8w2 <
sigma_yIw2 <

sigma-yl0w2
sigma-yllw2
sigma-yl2w2
sigma_-yl3w2
sigma_-yl5w2
sigma.yléw2

= le+06
= 1le+06

<= le+06
<= le+06
<= le+06
<= le+06
<= le+06
<= le+06

sigma_ylw2 <= 1le+06

sigma-y2w2 <
sigma.y3w2 <
sigma-ydw2 <

= le+06
= 1le+06
= le+06

sigma_y5w2 <= le+06
sigma.y6w2 <= le+06

sigma_y7w2 <

sigma.y8w2 <= le+06

sigma-yIw2 <

sigma-yl0w2
sigma-yllw2
sigma.-yl2w2
sigma-yl3w2
sigma.-ylb5w2
sigma.yléw2

= le+06

= le+06

<= le+06
<= le+06
<= le+06
<= le+06
<= le+06
<= le+06

sigma_ylwl <= le+06
sigma.y2wl <= le+06

sigma.-y3wl <

sigma.ydwl <= le+06

sigma_y5wl <
sigma_yb6wl <

sigma.y7wl <= le+06

sigma_y8wl <

sigma.y9wl <= 1le+06

sigma-yl0wl
sigma-yllwl
sigma-yl2wl
sigma_-yl3wl
sigma-yl5wl
sigma.-yléwl

= le+06
= le+06
= le+06
= le+06
<= le+06
<= le+06
<= le+06
<= le+06
<= le+06
<= le+06

H_oylu2w2 + le+06 sigma.ylwl <= 1le+06
H_y2u2w2 + le+06 sigma.y2wl <= 1le+06
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R173:
R174:
R175:
R176:
R177:
R178:
R179:
R180:
R181:
R182:
R183:
R184:
R185:
R186:
R187:
R188:
R189:
R190:
R191:
R192:
R193:
R194:
R195:
R196:
R197:
R198:
R199:
R200:
R201:
R202:
R203:
R204:
R205:
R206:
R207:
R208:
R209:
R210:
R211:
R212:
R213:
R214:
R215:
R216:
R217:
R218:
R219:
R220:
R221:
R222:
R223:
R224:
R225:
R226:
R227:
R228:
R229:

H_oy3u2w2 +
H_y4u2w2 +
H_y5u2w2 +
H_.y6u2w2 +
Hoy7u2w2 +
H_oy8u2w2 +
H.oy9u2w2 +
HoylOu2w2 +
Hoyllu2w2 +
Hoyl2u2w2 +
H_oyl3u2w2 +
H_ylb5u2w2 +
Hoyl6u2w2 +
- H.oylulwl
- H.y2ulwl
- H_y3ulwl
- H_oy4dulwl
- H_ybulwl
- H_y6ulwl
- H.y7ulwl
- H_y8ulwl
- H_y9ulwl
- H.ylOulwl
- Hoyllulwl
- H.yl2ulwl
- H_oyl3ulwl
- H_ylbulwl
- H_yléulwl
- H_ylu2wl
- H_y2u2wl
- H_y3u2wl
- H_y4u2wl
- H_oy5u2wl
- H_yé6u2wl
- H.y7u2wl
- H_y8u2wl
- H_y9u2wl
- H_ylOu2wl
- H.oyllu2wl
- Hoyl2u2wl
- H_yl3u2wl
- H_yl5u2wl
- Hoyléu2wl
- H.oylulw2
- H_y2ulw2
- H_y3ulw2
- H.oy4dulw2
- H_yb5ulw2
- H_oyoéulw2
- H.y7ulw2
- H_y8ulw2
- H_y9ulw2
- H.ylOulw2
- Hoyllulw2
- H_yl2ulw2
- H.yl3ulw2
- H_yl5ulw2

1
1
1
1
1
1
1

+ o+ o+ o+ o+ o+

o+ 4+ o+ o+ o+

e+06 sigma.y3wl <=

e+06 si

gma_y4dwl <=

e+06 sigma.ybwl <=

e+06 si

gma.ybwl <=

et+06 sigma.y7wl <=

et+06 si

gma-y8wl <=

e+06 sigma.ydwl <=

let+06 s
le+06 s
le+t06 s
le+06 s
le+t06 s
le+06 s
le+06
le+06
le+06
1le+06
le+06
le+06
le+06
le+06
le+06
+ le+06
+ le+06
+ le+06
+ le+06
+ le+06
+ le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
+ le+06
+ le+06
+ le+06
+ le+06
+ le+06
+ le+06
le+06
le+06
le+06
1le+06
le+06
1le+06
le+06
le+06
le+06
+ le+06
+ le+06
+ le+06
+ le+06
+ le+06

igma-ylOowl <=
igma_yllwl <

le+06
le+06
le+06
le+06
le+06
le+06
le+06
le+06
= le+06

igma.yl2wl <= le+06

igma-yl3wl <
igma_ylbwl <
igma-yleowl <
sigma_ylw2 <

= le+06
= 1le+06
= le+06
= le+06

sigma.y2w2 <= le+06

sigma_y3w2 <

= le+06

sigma.ydw2 <= le+06

sigma.y5w2 <

= le+06

sigma.y6w2 <= le+06

sigma.y7w2 <
sigma.y8w2 <

= le+06
= 1le+06

sigma.y9w2 <= le+06

sigma_-yl0w2
sigma_yllw2
sigma.yl2w2
sigma.-yl3w2
sigma-yl5w2
sigma.yléw2

sigma_ylw2 <
sigma.y2w2 <

<= le+06
<= le+06
<= le+06
<= le+06
<= le+06
<= le+06
= let+06

= le+06

sigma.y3w2 <= le+06

sigma_ydw2 <

= le+06

sigma.y5w2 <= le+06

sigma.yow2 <
sigma_y7w2 <
sigma.y8w2 <
sigma_yw2 <

sigma-yl0w2
sigma.yllw2
sigma.-yl2w2
sigma-yl3w2
sigma_-yl5w2
sigma-yléw2

sigma_ylwl <
sigma_y2wl <
sigma_y3wl <

= le+06
= 1le+06
= le+06
= le+06
<= le+06
<= le+06
<= le+06
<= le+06
<= le+06
<= le+06
= 1le+06
= le+06
= le+06

sigma.ydwl <= le+06

sigma_ySwl <

= le+06

sigma.yé6wl <= le+06

sigma.y7wl <
sigma_y8wl <
sigma_yIwl <

sigma_-ylOwl
sigma-yllwl
sigma.-yl2wl
sigma_-yl3wl
sigma-yl5wl

= le+06
= 1le+06
= le+06
<= le+06
<= le+06
<= le+06
<= le+06
<= le+06
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678 R230: - H.ylé6ulw2 + le+06 sigma.yléwl <= 1le+06

679 R231: - H.ylu2w2 + le+06 sigma_.ylwl <= le+06
680 R232: - H_y2u2w2 + le+06 sigma.y2wl <= le+06
681 R233: - H_y3u2w2 + 1le+06 sigma-y3wl <= le+06
682 R234: - H_.y4u2w2 + le+06 sigma.yd4wl <= le+06
683 R235: - H_yb5u2w2 + 1le+06 sigma_-yb5wl <= le+06
684 R236: - H_.y6u2w2 + le+06 sigma.y6owl <= le+06
685 R237: - H.y7u2w2 + 1le+06 sigma.-y7wl <= le+06
686 R238: - H_.y8u2w2 + le+06 sigma.y8wl <= le+06
687 R239: - H_.y9u2w2 + le+06 sigma.-y9wl <= le+06
688 R240: - H_ylOu2w2 + le+06 sigma-ylOwl <= le+06
689 R241: - H.yllu2w2 + le+06 sigma.yllwl <= le+06
690 R242: - H.yl2u2w2 + le+06 sigma.-yl2wl <= le+06
691 R243: - H.yl3u2w2 + le+06 sigma.yl3wl <= le+06
692 R244: - H_ylbu2w2 + le+06 sigma.-ylb5wl <= le+06

693 R245: - H.ylé6u2w2 + le+06 sigma.yléwl <= le+06

694 R246: H_.yl4u3wl + H_yl4u3w2 =1

695 R247: sigma-yl4wl + sigma-yl4w2 = 1

696 R248: 0.1 sigma.ylwl + sigma.y2wl + 0.1 sigma.y3wl + sigma_y4wl

697 + 0.1 sigma-y5wl + sigma-y6wl + 0.1 sigma.-y7wl + sigma-y8wl

698 + 0.1 sigma.y9wl + sigma.-ylOwl + 0.1 sigma.yllwl + sigma.yl2wl

699 + 0.1 sigma-yl3wl + 0.1 sigma-yl5wl + sigma-yléwl + 0.05 sigma-ylw2

700 + 0.1 sigma.y2w2 + 0.05 sigma.y3w2 + 0.1 sigma.y4w2 + 0.05
sigma_-y5w2

701 + 0.1 sigma.y6w2 + 0.05 sigma.y7w2 + 0.1 sigma.y8w2 + 0.05
sigma.-y9w2

702 + 0.1 sigma-ylOw2 + 0.05 sigma-yllw2 + 0.1 sigma-yl2w2

703 + 0.05 sigma-yl3w2 + 0.05 sigma.yl5w2 + 0.1 sigma.yléw2

704 + 0.5 sigma-yl4wl + 0.05 sigma-yl4w2 <= le+06

705 Bounds

706 H.ylulwl free
707 H_.y2ulwl free
708 H_y3ulwl free
709 H_y4ulwl free
710 H_y5ulwl free
711 H_.y6ulwl free
712 H.y7ulwl free
713 H_.y8ulwl free
714 H_y9ulwl free
715 H_ylOulwl free
716 H.oyllulwl free
717 H.yl2ulwl free
718 H_.yl3ulwl free
719 H_.yl5ulwl free
720 H.yl6ulwl free
721 H_.ylu2wl free
722 H_y2u2wl free
723 H_.y3u2wl free
724 H_y4u2wl free
725 H_.y5u2wl free
726 H.y6u2wl free
727 H.y7u2wl free
728 H_y8u2wl free
729 H_.ySu2wl free
730 H_ylOu2wl free
731 H_yllu2wl free
732 H.yl2u2wl free

118



735

751

765

767
768
769
770

72

773
774
775
776

778
779
780
781
782

784
785
786
787
788

H_yl3u2wl
H.yl5u2wl
H_oyléuZ2wl
Hoylulw2
H.oy2ulw2
H_oy3ulw2
H_y4ulw2
H_y5ulw2
H.y6ulw2
H_oy7ulw2
H_oy8ulw2
H_.y9ulw2
H_oylOulw2
H.oyllulw2
Hoyl2ulw2
H_yl3ulw2
H_yl5ulw2
H_oyléulw2
Hoylu2w2
H_oy2u2w2
H_oy3u2w2
H_y4u2w2
H_y5u2w2
H_y6u2w2
H.y7u2w2
H_y8u2w2
H_.y9u2w2
H_.ylOu2w2
Hoyllu2w2
H_yl2u2w2
H_yl3u2w2
H_.yl5u2w2
H_yléuZ2w2
nm <= 15
Binaries

sigma.ylwl sigma-y2wl sigma-y3wl sigma.-y4wl sigma.-y5wl sigma.y6wl

free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free
free

sigma.y7wl sigma.y8wl sigma.y9wl sigma.ylOwl sigma.-yllwl sigma.yl2wl
sigma-yl3wl sigma-yl5wl sigma.-yléwl sigma-ylw2 sigma.-y2w2 sigma-y3w2

sigma.y4w2 sigma.y5w2 sigma.y6w2 sigma.y7w2 sigma.y8w2 sigma.y9w2
sigma.ylOw2 sigma.yllw2 sigma.yl2w2 sigma.yl3w2 sigma.yl5w2

sigma-yléew2
sigma_-yl4wl sigma-yl4w2

Generals
nm

SOS

sO0: S1
sl: S1
s2: S1
s3: Sl
s4d: S1
sb: Sl
s6: S1
s7: Sl
s8: S1
s9: S1 ::
s10: S1 ::
sll: S1

sigma_ylwl:
sigma_y2wl:
sigma_y3wl:
sigma_y4wl:
sigma-y5wl:
sigma_y6wl:
sigma-y7wl:
sigma_y8wl:
sigma-y9wl:
sigma.ylOwl:1 sigma.ylOw2:1
sigma.yllwl:1 sigma.-yllw2:1
sigma-yl2wl:1 sigma-yl2w2:1

R e = = O = = S e

H.oyl4u3wl H_yl4u3w2

sigma_ylw2:
sigma_y2w2:
sigma_y3w2:
sigma_y4w2:
sigma.-y5w2:
sigma.y6w2:
sigma.y7w2:
sigma_y8w2:
sigma-y9w2:

I

1
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789 sl2: S1 :: sigma-yl3wl:1 sigma.yl3w2:1

790 s13: S1 :: sigma.yl5wl:1 sigma.yl5w2:1
791 sl4: S1 :: sigma_yléwl:1 sigma.yléw2:1
792  End
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Appendix

Finite Difference Method

MATLAB’s fmincon solver could in theory provide Hessian matrices. However,
these are based on Hessian of the Lagrangian [28] and is therefore not a good
representation of the Hessian of the cost function based on inputs. Due to this,
finite differences are used to calculate the Hessian. The finite difference method is a
method for approximation of derivatives. Finite differences can be given as forward
differences, backward differences and central differences. In this work, only central
differences was used[29]. Equations are given in (C.1) to (C.5). An illustration
showing how each step relate to each other are presented in Figure C.1.

flur +h,ug) — f(ur — h,uz)

Jur(u,uz) = T (C.1)
Fon(uns, ) Flug,ug + k:)Q—hf(ul, uy — k) ©2)
Fora(uts, ) fluy,ug + k) — 2f(1;12, ug) + f(ur,ug — k) ©3)
Fots(utn, ) fluy + hyug) — 2f(1;12, ug) + f(uy — h,ug) (C4)

Furun (i1, up) ~ fluy + hyug + k) — fug + hyug — k)4;kf(u1 — hyug + k) + f(ur — hyug — k)
(C.5)
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(u1 *h,U2+l€) (’U,17UQ+]€) (Ul +h,u2+k)

L ] [ J o
u2 (ug — hyug) —e ° o— (u1 + h,us)
° ° °

(u1 — h,us — k?) (U17U2 — k) (ul + h,us — k?)

ul

Figure C.1: Hlustriation of a grid for finite differences
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