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Summary

The selection of controlled variables and measurements is an important aspect of
the control structure design. Using the self-optimizing control framework makes
it possible to select controlled variables as combinations of measurements which
minimizes the steady state loss. However, in a broader perspective, one is not
only interested in the steady state loss, but also in the chemical plant’s economy.
This work has combined the steady state loss with prices of measurements using a
Mixed Integer Quadratic Programming (MIQP)-formulation, so that the optimal
subset of measurements also results in the overall best economics for the process
plant. In this way the control structure design could be implemented as part of the
process design phase, to make the plant as profitable as possible. This work also
utilized the power of the MIQP-formulations to include wider selection criteria,
which made it possible to select different measurement devices with a variety of
prices and uncertainty. From this it was possible to calculate the best trade-off
between prices and losses due to measurement uncertainty when different measuring
devices are available to a project. Normal process plants also handles constraints,
which also need to be controlled. The constraints also have a corresponding loss -
also called back-off (due to measurement uncertainty) related them. This has also
been included in the total cost calculation, and evaluated both within an active
constraint region and an unconstrained region. The developed methods have been
tested and evaluated on a Dummy problem and a Subsea separation system.
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Sammendrag

Det å velge hvilke tilstander man skal regulere, og hvilket m̊aleutstyr man skal
installere er en viktig del av i utviklingen av et prosessanleggs reguleringsystem.
Bestemmelsen av disse tilstandene er utgangspunktet for rammeverket «Self Opti-
mizing Control» som kan brukes (blant annet) til å bestemme hvilket tap et bestemt
utvalg av kontrollerte variable har p̊a et system i stasjonær tilstand. Som ingeniører
er vi ikke bare interessert i å regne p̊a tapet et reguleringsystem har, men ogs̊a
hvilken kostnad det medbringer. I denne oppgaven kombineres tapet i stasjonær
tilstand, med priser p̊a m̊aleutstyr for å finne den optimale sammensetningen av
hvilke og hvor mange m̊alinger et system burde ha for å minimere anleggets to-
tale kostnader. For å f̊a til dette har systemet blitt satt opp i et «Mixed Integer
Quadratic Programming» (MIQP) optimaliserings program. Gjennom dette har
det ogs̊a vært mulig å inkludere andre utvelgingskritererer slik at det er mulig å
velge den beste kombinasjonen av nøyaktige (men dyre) og billige (men unøyaktige)
m̊alinger ut fra hvilken kombinasjon som gir den laveste totale kostnaden for regu-
leringsystemet. Et annet viktig aspekt i regulering av prosessanlegg er hvordan man
skal regulere begrensninger. Slike begrensninger vil ogs̊a komme med et assosiert
tap (grunnet m̊aleusikkerhet). Slike tap har ogs̊a blitt inkludert i beregningen av
den totale kostnaden til reguleringsystemet, og blitt evaluert b̊ade i et begrenset og
ubegrenset omr̊ade. For å teste metodene har b̊ade et enkelt «Dummy»-problem
og et undervanns separasjonsystem blitt benyttet.
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Chapter 1
Introduction

In chemical engineering plants, it is important to control and operate the system
as close to its optimum in order to maximize profit. Plantwide control looks at
the decision on how to make the control system design for the whole chemical
plant[3], instead of focusing on each unit operation individually. Self-optimizing
control is a framework within plantwide control which helps us selecting (among
others) controlled variables. The idea is to select a control structure so that it
is possible to control the system with an acceptable economic loss minimizing
the impact of uncertainties in disturbances. This economic loss links the system
profitability, through a cost function with the control structure design. The goal
is to minimize the economical loss which is equivalent to control the system as
close to optimum as possible. One area of interest is the selection of measured
variables. In general, more measurements give the controller a better understanding
on how the system behaves and therefore provide a closer to optimum control of
the system. However, as seen in Figure 1.1 the loss decreases rapidly for the
first few measurements, but after that installing new measurements have little
effect on the system’s performance. By not installing measurement devices we
save both investment and maintenance costs. It is therefore of interest to choose
only a subset of the measurement candidates. Although a method for choosing
a subset of measurements has been presented in literature [4], so far no method
of coupling the prices of installing these measurements within the self-optimizing
control framework has been introduced.

An area of interest within control is subsea processing of crude oil. As oil fields
are getting increasingly more difficult to access, subsea processing has gained at-
tention over the last years[5]. There are many potential benefits of using subsea
processing: By removing water and sand from the oil stream at the sea bed, these
components do not need to be transported to the top side facility reducing the costs
of artificial lift dramatically, reduce the risk of hydrate formation,and the tube di-
ameter of oil pipelines can be shrank. The need an offshore topside facility can be
eliminated or reduced, which is a huge potential benefit, especially in harsh condi-
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Number of Measurements

Lo
ss

Figure 1.1: Illustration of optimal average loss of a system for the best subset of mea-
surements.

tions as the arctic or at very deep water where topside processing are considered
difficult or not economical feasible. Over the last years, the oil price has dropped,
making the need for cost savings even higher. The field of subsea processing is
therefore an interesting candidate when linking up the selection of measurements
for control with the price of measurements for control structure design.

1.1 Objective
This work aims to develop a method to include the prices of measurements into a
optimization problem that finds the optimal subset of measurements for a control
structure in a process plant. This should be done within the Self-optimizing control
framework. The work could be seen as a continuation of Yelchuru and Skogestad
[4] which utilize Mixed Integer Quadratic Programming (MIQP) to optimize the
selected control variables (CV).
The prices of measurements are included into the same optimization problem as the
loss calculation determined by the control structure, where the goal is to minimize
the total cost. By doing so, the control structure could be implemented as part
of the process design phase, which is beneficial, since today’s process plants is
generally tested in process models, and to include operational aspects (control)
into the plant design phase may lead to savings during operation[6]. It is thereafter
of interest to investigate how a second measurement candidate set with different
prices and uncertainties (sometimes referred to as noise) influences the selection
of measurements as well as the total project cost. In the end, the framework is
extended to also consider a process with constraints. The goal is to design a control

2



1.1 Objective

structure which takes into account the back-off due to measurement noise, the
unconstrained loss and the prices of each selected measurement in a constrained
system. The control structure giving the lowest total cost should be selected.
The methods are presented and applied to both a dummy problem and a subsea
oil/water processing system with three separators.
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Chapter 2
Literature Review

This chapter presents some theoretical background for the work that is going to be
conducted.

2.1 Self-Optimizing Control
This section gives a introduction to self-optimizing control, and methods within
this field of study. It is based on the paper [6]. The term self-optimizing control
was first used by Skogestad [3] and is regarded a framework from which ”the goal is
to find controlled variables (CV) which, when kept at constant setpoints, indirectly
lead to near-optimal operation with acceptable economic loss”. To understand what
loss is, a cost function J is defined so that it creates a optimization problem which
minimizes the cost (or maximizes profit). The cost function could be given in $/s:

min J(u, x, d) (2.1)
subject to: g(u, x, d) ≤ 0

h(u, x, d) = 0

where u are inputs to values, x are states, d are disturbances, g is inequality con-
straints and h is equality constraints. The loss is defined as the distance between
the optimum point found in the optimization problem above and the actual oper-
ating value, hence the loss can be defined as in (2.2)

L = J(u, x, d)− Jopt(d) (2.2)

where J(u, x, d) is the cost function at given inputs (u), states (x) and disturbances
(d) compared to an optimal point (Jopt).

The idea of self-optimizing control is that by carefully selecting the controlled
variables, the work done by a online real-time optimizer can be minimized. The
real-time optimizer can be a computer or trained human operators. Consider a gen-
eral feedback system as given in Figure 2.1: In this system the different timescales
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Real-Time
Optimizer

Controller

Process

c = h(y(t))

+
d(t) y0(t)

ny

y(t)

c(t)

cs(t)

u(t)

Figure 2.1: A general feedback control structure used in self-optimizing control

can be read from top to bottom. The Real-Time optimizer works on a timescale of
hours and computes set points (cs) to the normal controllers which reject distur-
bances (d) on timescales from seconds up to minutes and hence giving inputs (u)
to valves. The selection of controlled variables (c) could be described as in (2.3).
y is all possible measurements which consist of a reading/signal from the process
(y0) and a related measurement noise (ny).

c(t) = h(y(t)) (2.3)

where c(t) is the controlled variable, h is a selection matrix based on the mea-
surements y(t). This is where the self-optimizing control theory comes in hand.
Normally this is denoted c = Hy, where H ∈ Rnc×ny . Values in H can simply
be a single 1 in every row which symbols an one-to-one relationship between the
measurement and controller, but it could also be a linear combination of multiple
measurements into one controller. Finding the optimal measurement combination
is an important aspect in self optimizing control. An important aspect of using self-
optimizing control (instead of only real-time optimizer) is that the control structure
selection is solved off-line in steady state. This saves time for the real-time opti-
mizer, but may lead to a loss L as defined in (2.2). Self optimizing control has to
be seen as a complement, not instead of Model Predictive Control (MPC).

2.1.1 Brute-Force Approaches
Over the years many approaches have been made within the framework to find
the best controlled variables. The earliest methods were based on brute-force
approaches, to evaluate all possible combinations [3]. However, the brute-force
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approaches has limitations due to the complexity of large chemical plants, which
requires finding solutions to a huge set of optimization problems. For instance,
consider the classical Tennessee-Eastman challenge by Downs and Vogel [7] which
have 42 measurements (ny) and 12 controllers (nc). This leads to almost 8 billion
possibilities as seen in (2.4).

Cncny =
(
ny
nc

)
= 7.98× 109 (2.4)

This leads to unfavorable calculation time, so that one need to make assumptions to
reduce the number of problems. A common simplification is to neglect measurement
noise. However, this can lead to poor CV choices and can be numerically difficult
to solve.

2.1.2 Local Methods
Whereas brute-force methods tries to evaluate all possible measurement-controller
possibilities, the local method approach is trying to reduce this number by pre-
screening. This pre-screening of CVs is done by looking at which measurements
perform well close to the nominal points, by making small perturbations. This is
done by Taylor expansions so that the cost function can be approximated by the
quadratic function:

J(∆u,∆d) ≈ Jopt + [Ju + Jd]
[
∆u
∆d

]
+1

2[∆uT∆dT ]
[
Juu Jud
Jdu Jdd

] [
∆u
∆d

] (2.5)

where Ji = ∂J/∂i and Jij = ∂2J/∂i∂j are the first and second derivative of the cost
function with respect to general variables i and j[8]. Around a optimal nominal
point, Ju = 0 which is then used in (2.5) while differantiating with respect to ∆u,
which gives:

∂J

∂u
≈ Ju︸︷︷︸

0

+Juu∆u+ Jud∆d = [JuuJud]
[
∆u
∆d

]
= 0 (2.6)

This equation is then solved for the optimal input (∆uopt(d)) which yields:

∆uopt(d) = −J−uu1Jud∆d (2.7)

Combining the quadratic approximation, (2.5) with (2.7) and the expression for
the loss, (2.2) gives[9]:

L = 1
2(∆u−∆uopt(d))Juu(∆u−∆uopt(d)) (2.8)

This can be also written as:
L = 1

2‖z‖
2
2 (2.9)
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where ‖ · ‖2 is the two-norm and z is defined as

z = J1/2
uu (∆u−∆uopt) (2.10)

Finding Local Optimal Control Structures

It can be shown that the measurement y = y0 + ny, when linearized around the
optimum nominal point can be rewritten as:

∆y = Gy∆u+Gyd∆d+ ny (2.11)

where ∆y = y − yopt is the distance away from the nominal point, Gy = ∂y/∂u
and Gyd = ∂y/∂d and are the gain from inputs and gain from disturbances respec-
tively. The controlled variables c are then chosen to be linear combinations of the
measurements:

∆c = H∆y (2.12)

Inserting (2.11) into (2.12) gives (2.13) which denotes the local approximation of c
around the nominal point.

∆c = HGy∆u+HGyd∆d+Hny (2.13)

Exact Local Method

To evaluate the loss as well as the best measurement combination for a given
control structure, it is possible to use the exact local method[8]. The loss is an
important indicator because it shows how the system behaves compared to the
optimum. Rearranging (2.13) and assuming that the optimal steady state point
does not require active control (∆c = 0) gives:

∆u = −(HGy)−1H(Gyd∆d+ ny) (2.14)

This is inserted into the expression for the loss (2.10) together with the expression
of optimal input (∆Uopt = −J−1

uu Jud∆D) becomes:

z = −J1/2
uu (HGy)−1H[(Gyd −G

yJ−1
uu Jud)∆d+ ny] (2.15)

A matrix F is then introduced as seen in (2.16):

F = Gyd −G
yJ−1
uu Jud (2.16)

so that (2.15) can be rewritten as

z = −J1/2
uu (HGy)−1H[F∆d ny] (2.17)

The matrix F is not easy to obtain in the current form, but since it is the sensitiv-
ities of the optimal measurement values with respect to the disturbances it could
also be defined as:

F = ∂yopt/∂d (2.18)

8
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which can be obtained by for instance re-optimization. The exact local method
also takes measurement or disturbance noise into account. These are defined as

∆d = Wdd
′ (2.19)

ny = Wnn
′ (2.20)

where Wd and Wn are diagonal matrices which denotes the magnitude of the noise
for disturbance and measurement noise respectively whereas d′ and n′ are the
scaling vectors. Define matrices Y and M :

Y = [FWd Wn] (2.21)

M = −J1/2
uu (HGy)−1HY (2.22)

so that when using (2.17), (2.9) becomes

L = ‖M
[
d′

n′

]
‖22 (2.23)

The loss can then be calculated depending on the disturbance and noise. The
two-norm is used for the worst case loss(2.24) [8].

Lworst = 1
2 σ̄

2(M) (2.24)

where σ̄ is the largest singular value. The infinity norm is used when disturbance
are assumed independent and uniformly distributed resulting the average loss [10].

Lav = 1
6‖M‖F

2 (2.25)

where ‖ · ‖F is the Frobenius norm. When d′ and n′ are normally distributed
with zero mean and unit variance, the worst case loss goes to infinity whereas the
average loss becomes:

Lav = 1
2‖M‖

2
F (2.26)

Minimum Loss Method (Explicit Solution)

To find the optimal selection of variables several methods have been suggested,
for instance the null-space method[11] and the extended null space method [12].
However, in this work the minimum loss method with explicit solution has been
chosen [12] and [4]. Starting out with matrix M (2.22), which is the basis for the
loss calculations, one can introduce a invertible matrix Q that does not affect the
loss, so that ∆c = QH∆y. Inserting Q into (2.22) becomes:

M = −J1/2
uu (QHGy)−1QHY

= −J1/2
uu (HGy)−1Q−1QHY

= −J1/2
uu (HGy)−1HY

(2.27)
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In the last part of (2.27) Q was chosen so that HGy = J
1/2
uu to cancel the non-

linearity so that (2.27) becomes:

min
H
‖HY ‖F

subject to HGy = J1/2
uu (2.28)

The optimization problem in (2.28) has the explicit solution:

H = (Gy)T (Y Y T )−1 (2.29)

which is the best locally measurement combination for a given set of all measure-
ments, based on the assumption that Y Y T is invertible. It is not given that this
H is the same in the entire operating range, it could change in different operating
areas. Note that (2.28) is the same as (2.26) scaled with two. This means that the
optimization problem (2.28) actually minimizes the average loss.

2.1.3 Selecting subsets of measurements
In the local methods explained above, the selection matrix H is based on all avail-
able measurements. However, in subsea applications or other processes in general,
it may not be feasible or necessary to use all the possible measurement candidates.
Is it possible to control the system just as good (or nearly as good) by choosing only
a few measurements? A measurement has always an investment cost related to it,
so by not installing the measurement equipment this could be economically benefi-
cial. There could also be other reasons for not installing measurement equipment,
for instance space considerations. When one starts to limit the number of mea-
surements the previous formulations need extra attention due to the combinatorial
problem that arises from all the possible control structures. There are currently two
main approaches that can solve subset of measurement problems. Firstly, it is the
(Bidirectional) Branch and Bound approach, Cao and Kariwala [13]. Alternatively,
it is possible to formulate the selection of subset as a mixed integer quadratic op-
timization problem (MIQP) which is solved by mathematical programming solvers
(which utilize among others Branch and Bound algorithms),Yelchuru and Skoges-
tad [4]. MIQP-formulations is chosen in this work since they have the benefit over
Branch and Bound algorithms beacuse modern MIQP solvers can handle multiple
constraints directly without further customization.

Mixed Integer Quadratic Programming (MIQP)

A mixed integer quadratic optimization problem takes the general form:

min
x
xTQx+ qTx (2.30)

s.t.Ax ≤ b
l ≤ x ≤ u

where x is the objective vector, Q is a symmetric objective matrix, q is linear
objective vector, A is a linear constraint matrix, b is a linear constraints vector,
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l is the lower bounds for x and u is the upper bounds for x. Some or all of the
values in x, must take integer values. It is also possible to limit some or all values
to binary values.

MIQP formulation for selection of subsets

The following paragraph explains the restructuring needed to express the selection
of a subset of measurements as an MIQP. It differs slightly from the purely math-
ematical form.
When adapting the general formulation in the previous section into the selection
of a subset of measurements small modifications has to be made, and letters are
changed to follow the previous notation. Starting out with (2.28), the previous
matrix H, which still is the objective, is transformed into a vector of length nu ·ny
and called hδ. The selection of measurements are taken care of by a vector of binary
variables, σj , which is of length ny. These are called selection variables. If σj has
a value of 1 this means that the measurement was chosen in the subset, a value of
0 means that the measurement was not chosen in the subset. σ is appended to hδ.
A single integer is also appended to take care of the number of measurements that
is going to be selected. The matrix Y from (2.28) is transformed into symmetric
block matrix (Yblk) repeating Y one time for each degree of freedom (normally
nu). Yblk is then multiplied with itself transposed due to use of Frobenius norm
(giving the system its quadratic properties as given in (2.28)). Y∆ is calculated
from (2.31) and (2.32). Extra rows and columns are added for the selection criteria
(these are all set to zero, to not having any impact on the quadratic term). In
the mathematical it is not needed to include these changes in Y∆. However, this is
done to express it the way it is implemented in solver software.

Yblk =

[Y ] · · · 0
... . . . ...
0 · · · [Y ]

 (2.31)

Yδ = Yblk · Y Tblk (2.32)

Y∆ =



ny·nu︷ ︸︸ ︷[
Yδ
]

· · · 0

...

ny︷ ︸︸ ︷ 0 · · · 0
... . . . ...
0 · · · 0

 ...

0 · · ·

1︷ ︸︸ ︷[
0
]


(2.33)

To avoid influence on loss and cost by measurements that is not chosen, linear
constraints make sure that the corresponding elements in the selection matrix H
are set to zero. This is done by using the big-M approach [14]. This constraints
also limits the values of H. An increase in big-M (not to be confused with matrix
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M) gives longer calculation time, but may be needed if the numerical values in H
is within a large range. The final formulation of the problem becomes:

min
hδ,σj

hTδ Y∆hδ (2.34)

s.t GyTδ hδ = jδ linear constraints
l ≤ hδ ≤ u bound constraints
Pσ = s

−Mσj ≤ Hi,j ≤Mσj j=1...ny,i=1...nu

where jδ is a reformulated Juu, Gyδ is reformulated Gy, P is a vector of ones
(P = [1...1] ∈ R1×ny ), s is an integer equal the number of measurements in the
subset (nm), and l and u is the lower and upper bounds on hδ. Another benefit
of using MIQP-formulations is that it is easy to incorporate structural constraints
on which measurements to choose, for instance, if one wants two temperature
measurements and three flow measurements. This can be selected by extending
the Pσ = s term with more rows of s. This was also introduced by Yelchuru and
Skogestad [4] and will not be covered in this work.

2.2 Constrained problems
So far, only unconstrained measurement selections have been investigated, that
is, the original objective function for the process (not the MIQP) has no active
constraints. However, in many chemical engineering problems there will be con-
straints, reducing the degrees of freedom (DoF) in the system. Such constraints
can for instance be maximum temperature in a reactor, or maximum molar fraction
of a bi-product in a product stream. These constraints will in most cases restrict
(or constrain) the optimum operation point. So what is a constrained optimization
problem? A general optimization problem is defined as:

min
x

f(x) (2.35)

s.t g(x) ≤ 0
h(x) = 0

where f(x) is the cost function, g(x) are inequality constraints and h(x) are equality
constraints. An illustration of a constrained problem is given in Figure 2.2, where
the system has an inequality constraint g(x) ≤ 0. In addition a system can also have
equality constraints h(x) = 0 (not drawn in Figure 2.2). A physical illustration of
this is a ball rolling down a hill (f(x)) towards the bottom (blue dot). If the ball
rolls into a fence, the fence is equal to inequality constraints (g(x)). The ball is free
to move away from the fence if the optimum lies on the same side of the fence as
the ball (this will however make the constraint unnecessary). Equality conditions
(h(x)) on the other hand can be taught of as rails. The ball can hence only roll on
the railings (as a train).
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Figure 2.2: A constrained problem. The problem is constrained by the black line g(x)
which limits possible solution to points in the top right corner. The optimal solution is
hence moved from the blue circle to the black square.

In general the Lagrange function is given as:

L(x, λ, ν) = f(x) + g(x)Tλ+ h(x)ν (2.36)

where x is the system variables, λ is the Lagrange multiplier for the inequality
constraint g(x) and ν is the Lagrange multiplier for the equality constraint h(x).
The first KKT condition[15] can be physically explained as a force balance and is
easily obtained by differentiating (2.36) with respect to x around the optimal point
(x∗,λ∗,ν∗) becomes:

∇xL = ∇f(x∗) +∇g(x∗)Tλ∗ +∇h(x∗)ν∗ = 0 (2.37)

How hard the system pushes towards the constraint is therefore equal to the La-
grange multiplier. Now, consider a specific inequality constraint g1(x) with a cor-
responding Lagrange multiplier λ1, which is perturbed by a small amount ε so that
g1(x) + ε ≤ 0. As long as ε is small it can be shown that (2.37) can be written
asBiegler [15]:

0 = h(xε)− h(x∗) ≈ ∇h(x∗)T (xε − x∗)
0 = gi(xε)− gi(x∗) ≈ ∇gi(x∗)T (xε − x∗), i 6= 1 (2.38)
−ε = gi(xε)− gi(x∗) ≈ ∇gi(x∗)T (xε − x∗), i = 1

combining the results found in (2.38) with (2.37) gives that the differnce in cost
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function f(x) a small perturbation away from the optimal point becomes:

f(xε)− f(x∗) ≈ ∇f(x∗)T f(xε)− f(x∗)

= −
∑
i

ν∗i∇hj(x∗)T (xε − x∗)−
∑
i

λ∗i∇gi(x∗)T (xε − x∗) (2.39)

≈
∑
i

ν∗j

=0︷ ︸︸ ︷
(hj(xε)− hj(x∗))−

∑
i

λ∗i

=−ε︷ ︸︸ ︷
(gi(xε)− gi(x∗))

= λ∗1ε (2.40)
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Chapter 3
Including Prices in Control
Structure Selections

This chapter explains the new methods developed in this thesis. First, a possible
method to include measurement prices is shown and then a method for selection
between two different measurement sets is presented. The last method of measure-
ment selection that is demonstrated, is when one of the states in the process is
constrained.

3.1 Including Prices for Unconstrained Systems
The following section aims to find new methods to give new selection criteria based
on price and accuracy considerations.

3.1.1 Motivation
If the control structure is created alongside the design phase, it is possible to
optimize which measurement devices is going to be (bought and) installed in order
to operate the plant at its optimal capacity. A measurement installed in a plant
will always come at a price, with both a fixed purchase cost and a maintenance
cost. The motivation is therefore clear from an economic perspective; reduce the
number of measurements to a minimum, without affecting the plant performance.
Including prices of measurements and alongside, calculating the performance of a
plant (loss) is therefore of interest. From this, a number of questions arises. For
instance: To what degree do you loose performance if you choose an inexpensive
temperature measurement over an expensive pressure measurement? The price of
a measurement device is often related to its accuracy, so what if you can choose
a cheap inaccurate measurement device over an expensive accurate measurement
device? This chapter aims to find a method, which when implemented can answer
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questions like these.

3.1.2 Including Prices in Measurement Selection

In Section 2.1.3, which is based on [4], a method for selecting a subset of measure-
ments using an MIQP-formulation was explained. The reason for not including
all possible measurements could be for instance cost considerations, but a method
to select measurements also based on the prices of measurements is yet to be pre-
sented in literature. To include a price of a measurement, a price term is added
to the linear term for each of the measurements in the objective function. If the
measurement is not selected, the selection variable (σj) will be zero and hence not
affect the final cost. If the measurement is selected, the corresponding selection
variable will be one and the measurement price is added to the objective function.
The MIQP formulation with prices as linear costs in the objective function is then
given by:

min
hδ

hTδ Y∆hδ + p̄Tσ (3.1)

s.t GyTδ hδ = jδ linear constraints
l ≤ hδ ≤ u bound constraints
Pσ = s

−Mσj ≤ Hi,j ≤Mσj j=1...ny,i=1...nu
σj ∈ [0, 1]

where the linear term p̄Tσj is added to (2.34) to give (3.1). Here p̄T is a vector of
prices with length ny.

3.1.3 Select a Subset From Two Different Measurement Sets

The previous section explains how a price of a measurement can be inserted into
a MIQP-problem. But choosing measurements is not just about choosing where
in the process measurement equipment should be located, but also what kind of
measurement device is going to be purchased. This can be illustrated by having
the choice between the measurement device from producer A which is accurate, but
expensive, and a measurement device from producer B which is less accurate, but
cheaper. In order to cope with this, the MIQP-formulation needs to be extended.
Recall that the measurement noise (Wn) is the measurement uncertainty which is
given in (2.21). A second set of measurement noise Wn2 is defined so that:

Y2 = [FWd Wn2] (3.2)

Y , from now denoted Y1, where the goal is to define a new Y which consists of
both Y1 and Y2. In order to build the final matrices for the MIQP formulation, Y

16



3.1 Including Prices for Unconstrained Systems

needs to be restructured to fit the number of inputs u as shown in Section 2.1.3:

Y1,blk =

[Y1] · · · 0
... . . . ...
0 · · · [Y1]

 (3.3)

Y2,blk =

[Y2] · · · 0
... . . . ...
0 · · · [Y2]


The quadratic term in the MIQP-formulation arises due to the Frobenius norm in
(2.28). The quadratic term becomes:

Y1,δ = Y1,blkY
T
1,blk (3.4)

Y2,δ = Y2,blkY
T
2,blk (3.5)

By merging the two sets of measuring devices (3.4) and (3.5), the final restructured
Yδ becomes:

Yδ =
[
Y1,δ 0

0 Y2,δ

]
(3.6)

where Yδ ∈ R(2nuny×2nuny). The number of selection variables σ needs to be
increased with ny. One particular selection variable is from now on denoted σj,k,
which is the selection variable for yi in measurement set wk. The final quadratic
objective matrix Y∆ now becomes:

Y∆ =



2·ny·nu︷ ︸︸ ︷[
Yδ
]

· · · · · · 0

...

ny︷ ︸︸ ︷ 0 · · · 0
... . . . ...
0 · · · 0

 · · ·
...

... · · ·

ny︷ ︸︸ ︷ 0 · · · 0
... . . . ...
0 · · · 0

 ...

0 · · · · · ·

1︷ ︸︸ ︷[
0
]



(3.7)

where Y∆ ∈ R2nuny+2ny+1×2nuny+2ny+1. A new set of linear constraint is added,
to force values in the selection matrix to zero, if the selected measurement belongs
to a different measurement set wk. Example: Measurement y15w2 (σ15,2 = 1) is
selected, the constraint has to make sure that both σ15,1 = 0 and H15,i,1 = 0 .
The constraints are added using the selection variables and the big-M constraints[16].
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In a case where two measurement devices sets are available, the constraints are for-
mulated as:

|Hyj ,ui,w1 |+ Mσj,2 ≤M (3.8)
|Hyj ,ui,w2 |+ Mσj,1 ≤M (3.9)

where yj is the measurement, corresponding to an input ui and a measurement
device set wk. These constraints are created for each Hj,i,k. The absolute sign is
included to take care of negative values of H. The constraints work so that if a
measurement device from the second set (w = 2) is chosen, then |Hyj ,ui,w1 |+M ≤
M and the only value for |Hyj ,ui,wk | that makes this true is |Hyj ,ui,w1 | = 0. To
force the solver to only select either yjw1 or yjw2 SOS constraints was added [16].

Final MIQP-formulation

The final MIQP-formulation is given in (3.10)

min
hδ,σj,k

hTδ Y∆hδ + p̄Tσj,k (3.10)

s.t GyTδ hδ = jδ linear constraints
l ≤ hδ ≤ u bound constraints
Pσj,k = s

−Mσj,k ≤ Hi,j,k ≤Mσj,k j=1...ny,i=1...nu,k=1...nw
|Hi,j,w=k|+ Mσj,w 6=k = M
σj,k ∈ [0, 1]

3.1.4 Select the Optimal Number of Measurements
Previously the MIQP-formulation has only been used to minimize the loss as given
in (2.26). However, since prices of measurements are also included, the optimum
number of measurements is the smallest total cost (the loss plus the prices of
measurements). In an engineering perspective we are interested in the total cost of
a project. By minimizing the total cost, this should give an important insight since
the total cost already include all the process losses (distance away from the optimal
operating point) and the costs related (in this case the prices of measurements). As
opposed to only looking at the loss, as in Figure 1.1, which will reach its minimum
at the maximum number of available measurements. The total cost could provide
a function which has a minimum at a number of measurements smaller than the
maximum number of measurements ny.
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3.2 Including Prices for Constrained Systems

3.2.1 Back-off Loss From Constrained Input

As seen in Section 2.1.2 the loss L, which was defined as L = Jactual − Jopt, arises
due to measurement noise (Wn) or disturbance noise (Wd). If a constraint is added,
it is needed to back-off away from the new constrained optimum to avoid constraint
violation due to measurement uncertainty. This is true for systems where the con-
strained optimum lies on the constraint (active constraints). Example: One needs
to control a temperature so that it is maximum 100 ° ◦C, the measurement has
1 ° ◦C uncertainty. This means that the temperature actually need to be controlled
at 99 ° ◦C to avoid constraint violation.
Back-off is defined here as the loss due to uncertainty of measurement of the con-
strained, or in mathematical terms: Lcons. When backing off, the least the size of
the movement possible is equal to the measurement uncertainty. This can be seen
as a perpendicular perturbation. As seen in (2.40), moving away from the optimal
point by a perturbation ε, moves the value of the cost function λε away from the
optimum point. Combining (2.40) with (2.2), and introducing the measurement
noise (Wn) as ε gives:

Lcons = λWn (3.11)

Note that the more strongly active a constraint is, the larger the Lagrange multiplier
will be and hence the loss. A weakly active constraint will produce a very small
Lagrange multiplier and hence the loss will be small. The loss given in (3.11) is
only valid for one particular constraint at one specific point. However, so is also
the loss calculated using the exact local method for the unconstrained case. It is
now of interest to combine the unconstrained loss and the constrained loss into a
single problem to find the total loss. Also note that there are ways to reduce this
back-off, for instance by using squeeze and shift methods [17]. However, this has
not been considered in this work.

3.2.2 Assumptions

When introducing a constraint it is assumed that we know which input (u) and
which measurement (y) is used to control the constraint. It is also assumed that
only one measurement is needed to control the constraint using only one input. This
is will reduce the degrees of freedom and hence affect which inputs and measure-
ments are available for selection the unconstrained case. In addition it is assumed
that a change in disturbance does not change the active constraint around the local
point. This is due to the local methods used for the unconstrained case. Further
it is assumed that the unconstrained loss stays the same while backing off. It is
then possible to split up the optimization problem into two smaller independent
optimization problems.
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Chapter 3. Including Prices in Control Structure Selections

3.2.3 Split Into Two Optimization Problems
Consider a process with j = 1, 2...ny measurements, i = 1, 2...nu inputs, and
d = 1, 2...nd disturbances, which is linearized around a optimal nominal point so
that (2.11) applies. A constraint is added and one measurement yj and one input
ui are used to control the constraint. Split up (2.11) into a constrained and an
unconstrained case:

∆ycons = Gy(yj , :)∆u+Gyd(yj , :)∆d+ ny (3.12)
∆yuncons = Gy(y 6=j , :)∆u+Gyd(y 6=j , :)∆d+ ny (3.13)

where Gy(yj , :) means row yj and all columns of Gy and Gy(y 6=j , :) means all rows
except row yj and all columns of Gy. As seen in (3.12) and (3.13) one row in
Gy and Gyd is moved from the unconstrained case to the constrained case. Noise
is neglected (for now) and perfect control of the constraint is assumed so that
∆c = H∆y = 0 =⇒ ∆ycons = 0. Next solve (3.12) for the input used to control
the constraint, ui:

∆ui = Gyd(yj , :)
−Gy(yj , ui)

∆d+ Gy(yj , u6=i)
−Gy(yj , ui)

∆u6=i (3.14)

In practice, the second term in (3.14) could be very small if paring the yj with ui
is done properly. However, in the general case inserting (3.14) into (3.13) gives:

∆yuncons = Gy(y 6=j , :)
[

Gy
d
(yj ,:)

−Gy(yj ,ui)∆d+ Gy(yj ,u 6=i)
−Gy(yj ,ui)∆u6=i

∆u6=i

]
+Gyd∆d

∆yuncons =

Gy,uncons︷ ︸︸ ︷(−Gy(y 6=j , ui)Gy(yj , u6=i)
Gy(yj , ui)

+Gy(y6=j , u6=i)
)∆uuncons︷ ︸︸ ︷

∆u6=i

+
(
−
Gy(y 6=j , ui)Gyd(yj , :)

Gy(yj , ui)
+Gyd(y6=j , :)

)
︸ ︷︷ ︸

Gy
d,uncons

∆d
(3.15)

In general Gyd,uncons is only used in (2.16) to calculate F , and is therefore not needed
in cases where F is found by re-optimization as in (2.18). The system described in
(3.15) represents the reduced version of (2.11), which then is implemented in the
self optimizing control framework described earlier.

3.2.4 Calculating the Total Loss
If only one set of measurement devices is available (w = 1), the constrained loss
given in (3.11) can only be added directly to the unconstrained loss found using
the self optimizing control framework. However, in general the constrained case
becomes an optimization problem since it is possible to choose different devices
with different prices (w > 1). It is still assumed that a known measurement is
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Figure 3.1: Illustration of constrained loss (back-off) and unconstrained loss (process
loss). A constraint is added so that u1 ≥ 1. The illustration is not to scale.

selected to control the constraint so that the only choice left is to choose from
the different measurement device sets (w). It has previously be shown that the
unconstrained is a MIQP-problem. However, the constrained case becomes an
integer linear optimization problem (ILP) as seen (3.16):

min (λWnk)σk + p̄Tσk (3.16)
s.t Pσk = 1

σk ∈ [0, 1]

where λ is the value of the constraint’s Lagrange multiplier, Wnk is the measure-
ment noise of measurement device set wk, σk is the selection variable for measure-
ment device set wk. p̄T is the prices and P is a vector of ones with length equal the
number of measurement sets (k). Note that this problem actually is very simple
to calculate, since all σk is binary. Note that the unconstrained and constrained
optimization problem can be solved separately given the mentioned assumptions.
An illustration of the constrained and unconstrained loss is given in Figure 3.1.
The figure illustrates that the losses are orthogonal (not a linear combination of
each other) and could therefore be added to find the total loss so that:

Ltotal = Luncons + Lcons (3.17)

The total loss vector in Figure 3.1 is for illustration only and is not to scale.
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Chapter 3. Including Prices in Control Structure Selections

3.2.5 Implementation
A steady state optimization is ran at a given nominal point and the solver provides
a λ for the given constraint. After a nominal point with a corresponding λ is
found, the same self optimizing control sequence as described above is ran in order
to calculate the gain matrix Gy, the sensitivty matrix F and the Hessian matrix
Juu. The corresponding input ui and measurement yj for the constraint need to
be removed from each matrix before entering the MIQP-formulation. This means
for instance that the size of the gain matrix is reduced from Gy ∈ Rny×nu to
Gy,uncons ∈ Rny−ncons×nu−ncons where ncons is the number of constraints.

3.3 Software Implementation
The models described in the previous sections has been implemented in MATLAB
(version 2015b). For source code of the described methods and models see Ap-
pendix A. The MIQP-formulation has been implemented in the commercial math-
ematical programming solver GUROBI (version 6.5.1) with MATLAB API. Gurobi
provides user readable optimization files, these are included in Appendix B. The
general software implementation steps are given as follows:

1. Perform steady state simulations using MATLAB with fmincon-solver.

2. Choose a nominal point for local study, using an active constraint map

3. Perform small feed perturbations around nominal point to calculate sensitiv-
ity matrix F .

4. Perform small input perturbations around nominal point to calculate gain
matrix and Hessian matrix from finite differences (Appendix C)

5. Define magnitude for disturbances and noise

6. Build all matrices needed for MIQP formulations

7. Include a second measurement set, if applicable

8. Define prices for measurements

9. Define constraints for the MIQP formulations

10. Perform MIQP calculation using GUROBI

In addition to what has been described earlier the following assumptions apply.

• Assume if d changes, active constraint does not change
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Chapter 4
Case Study: Dummy Problems

This chapter applies the methods for measurement selection as described in the
previous chapter, on two dummy problems. The first dummy problem presents an
unconstrained problem. The second dummy problem is created in order to present
a constrained problem. The results are regarded as proof of concepts. First the
following evaluation criteria are defined:

• Loss is the unconstrained loss, process loss or steady state loss. It is defined
in (2.26)

• Price is defined as the prices of measurements. The price could be of one
single measurement device or total price, which is the sum of prices for the
selected measurements.

• Back-off is the constrained loss. Due to measurement uncertainty, it is un-
known how close to the constraint the measurement actually is, hence a back-
off away from the constrained value is required. However, when backing-off
we also travel away from the optimum, and the distance away from the opti-
mum is the constrained loss or back-off.

• Cost or total cost, is the sum of all the terms mentioned above. In a uncon-
strained case the cost (or total cost) will be the sum of the unconstrained
loss and the prices of measurements. Whereas in a constrained case the total
cost will be the sum of the unconstrained loss, prices of measurements and
back-off.
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Chapter 4. Case Study: Dummy Problems

4.1 Unconstrained Dummy Problem Model De-
scription

A simple dummy problem was created as a test case. The same problem is defined
in [8] and [4]. Imagine a case with two inputs u, one disturbance d and two outputs
z. The four measurements y are given as:

y =
[
z1 z2 u1 u2

]T (4.1)

The objective function J defined as:

J = (z1 + z2)2 + (z1 − d)2 (4.2)

The outputs depend linearly on inputs through (4.3)

z = Gzu+Gzdd (4.3)

with

Gz =
[
11 10
10 9

]
(4.4)

Gzd =
[
10
9

]
(4.5)

The Hessian matrix evaluated around a nominal point for the inputs u was found
to be:

Juu =
[
244 222
222 202

]
(4.6)

Jud =
[
198
180

]
(4.7)

Then the gain matrix becomes:

Gy =


11 10
10 9
1 0
0 1

 (4.8)

whereas Gyd becomes:
Gyd =

[
10 9 0 0

]T (4.9)

The sensitivity vector is then calculated from (2.16) with the matrices found in
(4.6) to (4.9).

F =


−1
−1
9
−9

 (4.10)
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4.2 Model Verification

In the base case the disturbance noise is Wd = 1 and the measurement noise is:

Wn = diag(
[
0.01 0.01 0.01 0.01

]
) (4.11)

Y is calculated from (2.21) and becomes:

Y =


−1 0.01 0 0 0
−1 0 0.01 0 0
9 0 0 0.01 0
−9 0 0 0 0.01

 (4.12)

4.2 Model Verification
In order to verify the model it was tested to produce the same results as Yelchuru
and Skogestad [4]. This does not include prices. Big-M was set to 120. A plot
showing the optimal average loss is given in Figure 4.1 shows good correspondence
with the results from [4]. Figure 4.1 and shows that it may be unnecessary to choose
all four measurements as the losses are 0.000502 vs. 0.000366 for three and four
measurements respectively. Although this represent a percentage big increase, the
absolute number is so small that it is unlikely that it will be economical beneficial
to choose all four measurements in this case.

In addition, the corresponding selection matrix H for a set of three measure-
ments (nm = 3), was calculated and is given in (4.13) and shows that the model
produces the same results as Yelchuru and Skogestad [4, Section 5.1]. Recall that
the selection matrix H ∈ Rnu×ny . Also recalls that c = Hy so that the columns
with 0’s means that the measurement was not chosen. In a cost perspective this
is equal to not installing the measurement device in the actual plant, saving both
investment and operating cost of that measurement.

H(nm = 3) =
[
1.0182 0 0.3959 0.2828
0.7637 0 2.0643 1.9795

]
(4.13)

4.3 Including Price of Measurements
With a working model, it is now of interest to test the influence of prices of mea-
surements. So far the cost function from the MIQP-formulation has been equal
to the loss. When prices are introduced this means that the project both has a
loss related to the control structure, but also a price related to the measuring de-
vices. The objective is still to be the same both from an engineering and economic
perspective, to minimize the project cost.

4.3.1 Identical Prices of Measurements
The dummy case was simulated with constant prices of measurements, meaning
that all measurements have the same price. The simulation was then repeated by
changing the price for each iteration in order to produce a figure similar to Figure

25



Chapter 4. Case Study: Dummy Problems
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Figure 4.1: The loss plotted against the number of measurement. All prices of measure-
ment are set to 0.

4.1. The prices were set to 0.05, 0.5 and 1. The case with prices equal to zero was
added for comparison. The result is given in Figure 4.2.

The figure illustrates how price influence the total cost. At low prices, choosing
between three or four measurements has only a small effect. When the prices
increase to 0.5, choosing four measurements has a significant higher total cost. In
these cases choosing three measurements will be the best solution. However at a
price of 1 per measurement the price of measurements are much higher than the
loss, meaning that only two measurements gives the lowest total cost.

4.3.2 Individual Prices of Each Measurement
In the previous section, identical prices for each measurement were assumed. How-
ever, in reality each (type of) measurement could have an unique price. For in-
stance, a composition measurement is more expensive than a flow measurement
or a temperature measurement. To show this effect, new prices were given to the
different measurements, one at at time, as seen in the first column of 4.1.

The most interesting result is found when y2 is given the price of 0.01: y2 was
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4.4 Include a Second Measurement Device Set
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Figure 4.2: The total cost plotted against the number of measurements. All measure-
ments have the same cost in each line. A cost as low as possible is wanted.

namely not chosen when nm = 3 in any of the other cases, as seen in Table 4.1.
However, if the price of y2 = 0.01, this is changed. In this case both the price of
measurements and the loss play a role when selecting the measurement set. Also
note that choosing three measurements always gives the lowest total cost. An
extension of this case is when both prices and measurement noise are unique for
each device.

4.4 Include a Second Measurement Device Set
When constructing a plant the engineer may be faced with a choice of either buying
inexpensive measurement devices with bad accuracy (high noise level) or expensive
measurement devices with good accuracy (low noise level). The engineer is always
looking for the best project economy and hence choosing the device giving the
lowest total cost. By using the procedure from Section 3.1.3, the trade-off between
a cheap investment and poor performance, and expensive investment and better
performance is optimized.
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Chapter 4. Case Study: Dummy Problems

Table 4.1: Measurement selection with individual prices. The prices for each measure-
ment is given in the first column. The next column denotes the number of measurement
in the simulation. The third column is the selected subset of measurements and last the
related total cost.

Measurement price No. y Selected Measurements Cost
y1 , y2 , y3 , y4

0.01, 0.10, 0.10, 0.10
2 y1,y2 1.110300
3 y1,y3,y4 0.210502
4 y1,y2,y3,y4 0.310366

0.10, 0.01, 0.10, 0.10
2 y1,y2 1.110300
3 y1,y2,y3 0.210662
4 y1,y2,y3,y4 0.310366

0.10, 0.10, 0.01, 0.10
2 y1,y2 1.200300
3 y1,y3,y4 0.210502
4 y1,y2,y3,y4 0.310366

0.10, 0.10, 0.10, 0.01
2 y1,y2 1.200300
3 y1,y3,y4 0.210502
4 y1,y2,y3,y4 0.310366

4.4.1 No Prices of Measurements
The simplest test for this optimization problem is to use two measurement device
sets (w1 and w2) with different measurement noise (Wn) and then set the price
to zero. The program should choose only measurements with a small measure-
ment noise, because choosing «bad» measurements when «good» measurements
are available at no cost will only lead to higher losses. Define the two device sets
as:

Wn1 = diag(
[
0.1 0.1 0.1 0.1

]
) (4.14)

Wn2 = diag(
[
0.01 0.01 0.01 0.01

]
)

The results from the simulation is given in Table 4.2. The table shows that if the
prices are zero, the optimizer selects the «good» measurements.

4.4.2 Good and Expensive vs. Bad and Cheap
To show the trade off between «good» and expensive vs. «bad» and inexpensive
measurements, the measurement noise was defined as in (4.14) and the prices were
set to 0.02 and 0.2 for w1 and w2 respectively. The results when using these pa-
rameters for the noise and prices is given in Table 4.3. The table shows that with
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4.5 Constrained Dummy Problem Model Description

the prices given in this problem, the best trade-off is to use inaccurate measure-
ments (w1). The optimal number of measurements are three, with a slightly lower
cost than using four measurements. The final selection matrix (H) for the optimal
number of measurements (nm = 3) is given in (4.15). Empty columns (non chosen
measurements) are not included, so that each column represents the measurements
given in Table 4.3.

H =
[
1.0188 0.3893 0.2768
0.7678 2.0198 1.9391

]
(4.15)

4.5 Constrained Dummy Problem Model Descrip-
tion

To test the method described in Section 3.2 for a constrained problem, a new
dummy problem that better illustrates a constrained case, was created. Consider
a process with the following objective/cost function:

J = 1
2u

2
1 + 1

2(u2 − d2)2 (4.16)

where u1 and u2 are the two inputs, and d2 is the second of two disturbances. A
constraint is given on the value of u1 so that:

u1 − d1 − 1 ≥ 0 (4.17)

The disturbances varies so that: −0.5 < d1 < 0.5 and −1 < d2 < 1. The nominal
value for both disturbances are therefore 0. This results in the following optimiza-
tion problem, which is minimized around the nominal point:

min1
2u

2
1 + 1

2u
2
2 (4.18)

s.t.u1 ≥ 1

which gives a value Lagrange multiplier for the constraint at λ = 1. Next define
the measurements y as:

y =
[
u1 u2 d1 d2 (u1 − d1)

]
(4.19)

Table 4.2: Selected subset of measurements with two measurement device sets (w1 and
w2) with all prices set to zero. Only measurements from the «good» device set (w2) are
chosen.

No. y Selected Measurements Loss
2 y1w2,y2w2 1.000300
3 y1w2,y3w2,y4w2 0.000502
4 y1w2,y2w2,y3w2,y4w2 0.000366
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Chapter 4. Case Study: Dummy Problems

Table 4.3: Selected subset of measurement with two device sets (wn1 and wn2) at
different number of chosen measurement and the subset’s corresponding cost (loss +
prices).

No. y Selected Measurements Cost
2 y1w1,y2w1 1.070000
3 y1w1,y3w1,y4w1 0.109329
4 y1w1,y2w1,y3w1,y4w1 0.116290

Remember that:

y = ynom + ∂y

∂u
(u− unom) + ∂y

∂d
(d− dnom) (4.20)

which is equivalent to (2.11) with the gain matrices defined in (4.21) and (4.22).

Gy =


1 0
0 1

0.1 2
2 3
1 0

 (4.21)

Gyd =


0 0
0 0
1 0.2

0.5 3
−1 0

 (4.22)

Let’s assume that the measurement y5 = u1 − d1 is used to control the constraint
on u1 and we can perfectly control this constraint, then the system can be split
into a constrained and unconstrained problem. The constrained problem becomes:

∆ycons =
[
1 0

] [∆u1
∆u2

]
+
[
−1 0

] [∆d1
∆d2

]
+ ny (4.23)

Whereas the unconstrained problem becomes:

∆yuncons =


1 0
0 1

0.1 2
2 3

[∆u1
∆u2

]
+


0 0
0 0
1 0.2

0.5 3

[∆d1
∆d2

]
+ ny (4.24)

If the noise is neglected(very small compared to the inputs and disturbances) and
perfect control (∆c = H∆y = 0 =⇒ ∆y = 0) of this constraint is assumed, (4.23)
becomes:

−∆u1 = ∆d1 (4.25)
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4.6 Measurement Selection for a Constrained Dummy Problem

Table 4.4: The noise and price for each of the measurement sets

w1 w2

Noise 0.1 1
Price 0.2 0.02

Inserting (4.25) into (4.24) gives:

∆yuncons =


0
1
2
3


︸︷︷︸
Gyuncons

[
∆u2

]
+


−1 + 0 0
−0 + 0 0
−0.1 + 1 0.2
−2 + 0.5 3


︸ ︷︷ ︸

Gy
d,uncons

[
∆d1
∆d2

]
+ ny (4.26)

The expression for the unconstrained measurements, (4.26) is then used in the self
optimizing control framework as presented earlier (Section 2.1 and Chapter 3). The
unconstrained cost function becomes:

Juncons = 1
2(u2 − d2)2 (4.27)

The Hessian matrices are found analytically: Juu = 1, Jud =
[
0 −1

]
. From this

the sensitivity matrix is calculated from (2.16). The maginitude of the disturbances
was previously defined so that:

Wd =
[
0.5 1

]T (4.28)

Two measurement device sets (w1 and w2) is defined with measuring noise and
prices given in Table 4.4. Note that y5, which is used on the constraint, still
belongs in w1 and w2. So that choosing between these still applies for y5.

4.6 Measurement Selection for a Constrained Dummy
Problem

The price and uncertainty for this model is given in Table 4.4. The unconstrained
part of the problem has four measurements (ny = 4), one input (nu = 1) and two
measurement device sets (nw = 2). The constrained part of the system has one
measurement, one input and two measurement device sets. The system was imple-
mented with a big-M of 500. The results from the simulation is given in Table 4.5.
The table shows that the unconstrained loss quickly decreases, the constrained loss
stays the same, which is due to the fact that the same measurement device (y5w1)
is chosen for all cases. The optimum number of (unconstrained) measurements is
two since this gives the lowest total cost. Note that if three or four (unconstrained)
measurements is chosen, these come from the second device set (w2), probably be-
cause of the low price, and the decrease in loss is very small anyway. The selection
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Chapter 4. Case Study: Dummy Problems

Table 4.5: Selected Measurements including different losses and total cost for the con-
strained dummy problem. The chosen measurement device for the constraint is included
in selected measurements, and counted in the first column through (+1).

No. y Selected Measurements Luncons Lcons Ltotal Total Cost
1(+1) y2w1,y5w1 0.505000 0.100000 0.605000 1.005000
2(+1) y1w1,y2w1,y5w1 0.024231 0.100000 0.124231 0.724231
3(+1) y1w1,y2w1,y3w2,y5w1 0.023659 0.100000 0.123659 0.743659
4(+1) y1w1,y2w1,y3w2,y4w2,y5w1 0.023604 0.100000 0.123604 0.763604

matrix, H for the best case (ny = 2) is given in (4.29). Empty columns (non chosen
measurements) are removed, and the constrained measurement does not contribute
to H as it is a 1-to-1 relationship between y5 and u1.

H =
[
1.9231 1.0000

]
(4.29)
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Chapter 5
Case Study: Subsea separation
system

This chapter applies the methods for measurement selection on a subsea separation
system, where the final goal is a control structure design using the selection matrix
(H).

5.1 Subsea Separation Model Description

The model has been adapted from Tyvold [1]. The model has only been modified
in order to increase numerical robustness. The cost function and constraint have
also been modified. This section only briefly describes the model, as it has not
been the focus in this thesis, for details; consult [1]. Only a two-phase (oil and
water) system is considered.

5.1.1 Gravity Separator

In order to do an initial bulk separation, a model of a gravity separator is used. It
is created as a horizontal tank with one inlet and two outlets. The liquid at the
inlet is considered an emulsion and the only separation force is the gravitational
buoyancy forces acting on the droplets due to the density difference between oil
and water. Hence, a pure water phase and a pure oil phase is formed at the bottom
and top of the separator respectively. A weir separates the two outlet, so that all
liquid hitting the weir goes in the bottom stream, and all liquid above the weir goes
in the top stream, notated qb and qt respectively. It is assumed that a movement of
oil in one direction is counteracted by an equal movement of water in the opposite
direction. A figure showing the phase separation is given in Figure 5.1.
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Chapter 5. Case Study: Subsea separation system

qin

qb qt

Oil Phase
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Water Phase
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Figure 5.1: Horizontal gravity separator. Figure taken from [1]. Liquid enters as an
emulsion, the gravitational buoyancy forces acting on the density differences separates the
two phases so that an oil layer and a water layer is created. A weir separates the outlet
streams.

Horizontal Velocity

The horizontal velocity is modelled as two separate plug flows, which are separated
by the weir height. The horizontal velocity in the bottom part is given by:

vh = qb
Ab

(5.1)

where Ab is the cross sectional area of the lower part of the separator derived by
trigonometry:

Ab = R2

2

[
2cos−1

(R−Hw

R

)
− sin

(
2cos−1

(R−Hw

R

))]
(5.2)

where R is the vessel radius and HW is the height of the weir.

Vertical Velocity

The droplets experience a vertical velocity due to the gravitational forces, assuming
Stoke’s law, so that the velocity expression becomes:

vv = 2r2
d(ρd − ρ)g
9µ(α) (5.3)

where rd is the radius of the droplet, ρd and ρ are the densities of the droplet and
continuous (emulsion) phase respectively, g is the gravitational constant and µ(α)
is the viscosity as a function of oil fraction (sometimes referred to as oil-cut). It
is assumed that the emulsion phase does not have any vertical velocity itself. This
includes also the neglection of all turbulence in the vertical direction.
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5.1 Subsea Separation Model Description

Droplet size

The model assumes an average droplet diameter instead of a droplet size distribu-
tion. It is also assumed that the droplet size is independent of the flow. It is further
assumed that neither droplet break-up or coalescence take place in the emulsion
phase.

Concentration profile

It is assumed uniform concentration profiles within the three different phases (oil
phase, emulsion phase and water phase). This means that the concentration is
constant in each of the three phases. In the oil phase, it is assumed pure oil α = 1,
the emulsion phase has the inlet oil fraction α = αin and the water phase consists
of pure water, α = 0. This assumption becomes less accurate when there is an
increase in the standard deviation of the droplet size distribution.

Viscosity

The viscosity is regarded, as a function of oil fraction and is calculated for the
emulsion phase from[18]. The viscosity is constant inside the emulsion phase due
to the assumption of constant concentration in each phase.

Oil Fraction in Product Streams

The volumetric volume fractions of the top and bottom streams are estimated from
the vertical distance covered as a function of the residence time. This means that
a droplet located below the weir height (Hw) will travel a vertical distance:

∆h = vv
vh
L (5.4)

where L is the horizontal distance covered from the inlet to the weir, vv is the
vertical droplet velocity and vh is the horizontal droplet velocity. The amount of
oil left in the bottom stream is limited by

d = Hw −∆h (5.5)

By geometry the area with remaining oil (emulsion phase going into bottom stream)
given by d becomes:

Ae = R2

2

[
2cos−1

(R− d
R

)
− sin

(
2cos−1

(R− d
R

))]
(5.6)

Due to the concentration assumptions given earlier the oil fraction in the bottom
is

αb = αin
Ae
Ab

(5.7)

The oil fraction in the top stream is then calculated by a component volume balance
(in practice a mass balance due to constant density).

αt = 1
qt

[αinqin − αbqb] (5.8)
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Figure 5.2: Principle sketch of the swirl separator. Figure adapted from [1]

where qt, qin and qb are the volumetric flows in the top-, in- and bottom stream
respectively.

5.1.2 Swirl Separator
The system also consists of two Swirl/In-Line separators. This is a relative new
separator technology developed by CDS Technology (now: FMC Technology) and
Statoil [19]. Figure 5.2 shows the working principle of the swirl separator. The
following subsection describes how the swirl separators are modeled. Define first
that an input to the separator model is the flow split between the light phase outlet
(LPO) flow and the inlet flow:

FS = qLPO
qin

(5.9)

Axial velocity

The axial velocity profile is assumed as an annular plug flow without friction at the
wall. It is assumed two discrete constant velocities based on radius of the droplet
so that there is one velocity in the area which goes into the light phase output
and one velocity for the area which goes into the heavy phase output. The axial
velocity profile is given in (5.10).

vz(r) =
{
qLPO
πR2

i
, 0 ≤ r ≤ Ri

qHPO
π(R2−R2

i
, Ri ≤ r ≤ R

(5.10)

In (5.10) Ri is the tube radius for the light phase outlet, R is the total radius
(radius of heavy phase outlet), qHPO is the volumetric flow in the heavy phase
outlet. Although this velocity profile is unrealistic from a fluid flow perspective, it
could be an OK assumption for finding an estimation of separation performance.

Tangential Velocity

The point of using a swirl separator is that tangential/centrifugal forces will sepa-
rate heavier droplets from lighter droplets. Experimental work has shown that the
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5.1 Subsea Separation Model Description

tangential velocity can be described as a Rankine vortex [20]. A Rankine vortex is
a velocity profile that can be divided into an inner region with a solid body rotation
and an outer region with free vortex movement. These regions are separated at
a characteristic radius Rc. In this model the tangential velocity is assumed con-
stant above this characteristic radius, so that the final expression for the tangential
velocity downstream of the swirl element is given as:

v0
θ(r) =

{
vmaxθ

r
Rc

, 0 ≤ r ≤ Rc
vmaxθ , Rc ≤ r ≤ R

(5.11)

where vmaxθ is the maximum tangential velocity described by:

vmaxθ = Ωvz,b (5.12)

where Ω is an empirical proportionality constant based on the swirl element’s ge-
ometry and vz,b is the axial bulk velocity (in this case:vz = vz,b). Equation (5.11)
is given immediately downstream the swirl element where the swirl has maximum
momentum. However, when the droplets travel in the axial direction, they loose
momentum due to friction from the pipe wall. A new expression is needed so that
it may be possible to calculate the tangential velocity at a distance away from the
swirl element. An experimentally determined decaying factor, Cdecay is a added to
the expression [21], so that:

vθ(r, z) = v0
θ(r) exp (−Cdecayz/2R) (5.13)

where z is the axial coordinate A sketch showing how the swirl element gives
tangential velocity to the droplets is given in Figure 5.3.

Radial Velocity

The radial velocity is determined by Stoke’s law so that the radial velocity of
droplet is:

vr(r, z) = 2r2
d(ρd − ρ)v2

θ(r, z)
9µ(r, z)r (5.14)

where rd is the droplet radius, µ is the viscosity, ρd is the dispersed phase density
and ρ is the continuous phase density.

θ

Figure 5.3: Sketch showing how the swirl element gives tangential forces to the droplets.
Figure gathered from [2].
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Viscosity

The viscosity is calculated the same way as in the gravity separator, Section 5.1.1.

Concentration

The concentration at the center of the separator is calculated by:

αc(r, z) = αin
FS(R2 −R2

i ) + (1− FS)(r2
in −R2

i )
(1− FS)(r2 −R2

i ) + FS(R2 −R2
i )

(5.15)

where αin is the inlet oil fraction, FS is the flow split, Ri is the radius of the inner
pipe, r is the radial coordinate and rin is the radial coordinate at the inlet

Solving the Separator Model

The aim of the swirl model is to find a position rin which is the last droplet position
entering the light phase output stream r = Ri. To find this, the residence time
is needed. The residence time, τ , is calculated from the tangential velocity and is
written as:

τ = π(R2 −R2
i )L

(1− FS)qin
(5.16)

where qin is the inlet volumetric flow. Then (5.14) is integrated over time t = 0 to
t = τ using a constant time step, Runge-Kutta integrator. Then rin for the droplet
leaving at r = Ri is found. The oil fraction of the light phase outlet stream can be
calculated from:

α′LPO = min
[
1, αin

(
FS(R2 −R2

i ) + (1− FS)(r2
in −R2

i )
FS(R2 −R2

i )

)]
(5.17)

The minimum expression is only to make sure that the model only calculates oil
fractions below 1. The other outlet stream is then calculated using component
mass balance as seen in (5.18)

α′HPO = αin − α′LPOFS

1− FS (5.18)

To compensate for the simplified velocity profiles, a constant re-entrainment factor
is added. The re-entrainment qre is calculated as:

qre = kre∆v (5.19)

where kre is an empirical fitting parameter and ∆v is the velocity difference between
the two phases. The equation for calculating oil fraction including re-entrainment
becomes:

αLPO = 1
qLPO

[α′LPO(qLPO − qre + α′HPOqre] (5.20)

The oil fraction in the heavy phase outlet is still calculated by (5.18), but α′LPO is
replaced with αLPO.
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5.2 System Analysis

Switching Continuous Phase in the Swirl Separator

The swirl separator explained above is created for a continuous water phase. How-
ever, in the system a swirl separator for a continuous oil phase is also required. The
main difference between these two are that the droplets in a continuous oil phase
consists of water which have a higher density than oil droplets. The consequence is
that the droplets in this case are pushed outwards instead of inwards. Due to the
higher oil content, this requires a larger inner tube radius, Ri than before. Other
small changes include smoothing of the tangential velocity function.

5.1.3 Final System
A flow sheet of the final system is given in Figure 5.4. A flow (qin) with a given
oil fraction (αin) is inserted into a gravity separator, which sends oil (and some
water) in the top stream (qt) and water (and some oil) through the bottom stream
(qb). The top stream enters a swirl separator (Dewaterer) which aims to remove
the residual water. The residue water stream (qHPO,DW) is sent down for mixing
with the bottom stream from the gravity separator (qb) and enters the second swirl
separator (Deoiler), where residual oil (qLPO,DO) is removed and sent to mix with
the oil stream in the Dewaterer (qLPO,DW), to form the oil product stream (qL,prod).
The water product stream out of the deoiler is denoted as qH,prod.

Gravity Separator

Dewaterer

Deoiler

qin, αin

qt, αt

qb, αb

qHPO,DW , αHPO,DW

qin,DO, αin,DO

qH,prod, αH,prod

qLPO,DO, αLPO,DO

qLPO,DW , αLPO,DW qL,prod, αL,prod

Figure 5.4: Flow diagram of a subsea separation system. The dewaterer and deoiler
are swirl separators for a continuous oil phase and continuous water phase respectively.
Disturbances are marked with red, whereas the possible measurements are marked in
orange. qj denotes a flow measurement whereas αj denotes a oil fraction measurement.
The figure is based on a figure from [1].

5.2 System Analysis
The following sections present own work, but using the subsea model from [1] as a
background. There are two disturbances in the system, qin and αin (drawn in red)
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Chapter 5. Case Study: Subsea separation system

and 16 measurement signals (drawn in orange) in the system as seen in Figure 5.4.
There are three inputs, which is the flow splits in the separators. An illustration of
the inputs is given in Figure 5.5. Since the feeds are given, the three inputs equals
the degrees of freedom in the system. A flow split in separator i is defined as:

FSi = qLPO,i/qin,i (5.21)

where LPO stands for the light phase outlet. In practice the flow split will be a
controller setting a ratio between the opening of two valves which controls the flow.

Gravity Separator

Dewaterer

Deoiler

FSG

FSDW

FSDO

Figure 5.5: Flow diagram where the inputs FSG, FSDW and FSDO are drawn. FS is
an abbreviation for flow split, and the subscripts are abbreviations for gravity separator,
dewaterer and deoiler, respectively.

5.2.1 Constraint

The subsea processing plant could have multiple constraints, for instance due to
regulations. One of these regulations is the consternation of oil in produced water.
The Norwegian Petroleum Directorate states that the maximum allowance of oil in
discharged water is 30 mg L−1[22], which depending on the oil density is ≈ 30 ppm.
Other restrictions could apply for well re-injection. However, due to the numeri-
cal robustness of the model, the constraint of oil in produced water is set to 1%
(αH,prod ≤ 0.01). From an economic perspective, having oil in the water stream
means that valuable product is spilled, and should therefore be avoided. However,
there is also a trade off, since a low concentration of oil in water, could give a
low yield in the oil product stream. The constraint removes a degree of freedom
since it must be controlled. The natural choice is to choose the input FSDO and
the measurement αH,prod to control this constraint. This reduces the steady state
degrees of freedom to two (FSG and FSDO) and the unconstrained measurements
to 15.
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5.3 Steady State Optimization

5.3 Steady State Optimization
To find the best control structure design, a steady state optimization needs to be
conducted. Firstly a cost function is defined, next a steady state optimization is ran
to find the active constraint region. The steady state optimization was conducted
using a script from Tyvold [1] as a basis.

5.3.1 Cost Function
A cost function that could represent a subsea separation system was created and
given in (5.22).

min
J
J = −αL,prodqL,prodEoil + (1− αL,prod)qL,prodpwater (5.22)

where the first term is the earnings from the oil in the product stream. Eoil is
the earnings from oil. A price of 40 $/barrel was assumed. The second term is the
costs for processing the residual water in the oil production stream. pwater is the
price of topside water processing, a cost of 20 $/barrel was assumed. In addition a
regulation term was added, this does not influence the final cost, but could increase
numerical robustness.

5.3.2 Active Constraint Region
To map out when the constraint given in Section 5.2.1 is active, a simulation
was ran with different values for the feed(18 m3 h−1 ≤ qin ≤ 23 m3 h−1 and 0.35
≤ αin ≤ 0.6). That an constraint is active means that the optimum value of the
cost function would change if the constraint is removed. To decide whether the
constraint is active, the Lagrange multiplier of the constraint is plotted against
the two different feed changes, since a small value of the Lagrange multiplier will
symbolize an unconstrained region, whereas a high value will consider an active
constraint. The active constraint map is given in Figure 5.6, a whiter pixel indicates
a higher Lagrange multiplier. The whiter dots in the middle could suggest some
numerical noise, as this region moved to another part of the plot when the case was
simulated again. The figure shows that the constraint is mostly inactive except for
cases with a high flow rate (qin) and high oil fraction (αin).

5.3.3 Simulation results
A simulation was ran in order to see how the inputs (flow splits) change with
different feed changes. The results from the steady state simulations are given as
contour plots in Figure 5.7. The figure shows relatively large changes in the flow
splits at different in flows and oil fractions, especially for the gravity separator.
In addition plots showing the oil fractions in the product streams was created.
The results are plotted with different feed concentration and a constant feed flow
of 23 m3 h−1. The results are given in Figure 5.8 and 5.9. Note that a value of
αH,prod = 0.01 in Figure 5.9, means that the constraint is active. Be aware that
the non-smooth behaviour of the graphs could suggest some numerical difficulties.
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Chapter 5. Case Study: Subsea separation system

Figure 5.6: Active constraint map. A white pixel indicates an active constraint, whereas
black indicates an unconstrained region. Figure created by plotting the value of the
Lagrange multiplier.
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Figure 5.7: Figure shows a contour plot for each of the three flow splits.
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Figure 5.8: Oil fraction in production stream plotted against inlet oil fraction with a
constant in flow of 23 m3 h−1
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Figure 5.9: Oil fraction in water production stream plotted against inlet oil fraction with
a constant in flow of 23 m3 h−1. The figure clearly shows that there is an unconstrained
region between 0.42 and 0.49.
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5.4 Control Structure Design
The main purpose of this work has been to develop methods for measurement
selection for control structure design. Two nominal points were chosen and the
methods described in Chapter 3 was applied. One nominal point has an active
constraint, while the other lies in the unconstrained region. In addition budget
constraints were added to see how this influence the choice of measurements. The
final goal of this section is to find a selection matrix (H). Recall the evaluation
criteria from the previous chapter:

• Loss is the unconstrained loss, process loss or steady state loss. It is defined
in (2.26)

• Price is in this work defined as the prices of measurements. The price could
be of one single measurement device or total price, which is the sum of prices
for the selected measurements.

• Back-off is the constrained loss. Due to measurement uncertainty, it is un-
known how close to the constraint the measurement actually is, hence a back-
off away from the constrained value is required. However, when backing-off
we also travel away from the optimum, and the distance away from the opti-
mum is the constrained loss or back-off.

• Cost or total cost, is the sum of all the terms mentioned above. In a uncon-
strained case the cost (or total cost) will be the sum of the unconstrained
loss and the prices of measurements. Whereas in a constrained case the total
cost will be the sum of the unconstrained loss, prices of measurements and
back-off. From a economic perspective, it is the total cost of a project that
is of interest, and is therefore minimized.

5.4.1 Operation in Unconstrained Region
Based on the active constraint map in Figure 5.6, the point where αin = 0.4 and
qin = 20 m3 h−1, was chosen to study a nominal point in the unconstrained region.
The steady state results are given in Table 5.1 and 5.2 for inputs and measurements
respectively.

Table 5.1: Nominal values for all inputs with feed at αin = 0.4 and qin = 20 m3 h−1.

Input Nominal Value
FSG 0,3612
FSDW 0,9089
FSDO 0,2239

As seen in the Table 5.2, the oil fraction in the water stream (αH,prod) is less
than 0.01 which was the limit for the constraint.
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Table 5.2: Nominal values for all measurements with feed at αin = 0.4 and qin =
20 m3 h−1.

Measurement Flow [m3 s−1] Oil fraction [-]

t 0,0020 0,8953
b 0,0035 0,1199

LPO,DW 0,0018 0,9411
HPO,DW 0,0002 0,4389
in,DO 0,0037 0,1355
LPO,DO 0,0008 0,5945
H,prod 0,0029 0,0031
L,prod 0,0027 0,8322

Sensitivity Matrix

The sensitivity matrix (F ) was found using re-optimization around the nominal
point. The re-optimization was done by running the simulation with a 1% increase
in the disturbances, one disturbance at the time. The sensitivity matrix was then
calculated by using (2.18) and assuming that:

F = ∂y

∂d
≈ ∆y

∆d (5.23)

Hessian Matrix

The Hessian matrix of the cost function was found using finite differences. There
are three unconstrained inputs (the nominal point is not in the active constraint
region), finite differences in several variables and second derivatives using the cen-
tral step method were applied. The step size for both FSDW and FSDO was set
to 0.1% of the nominal values. The equations used are given in Appendix C. The
Hessian Matrix was found to be:

Juu =

0.5153 0.5564 0.0869
0.5564 1.4047 0.0930
0.0869 0.0930 0.1687

 (5.24)

To make sure that the cost function is convex, the eigenvalues were checked. Pos-
itive eigenvalues of the Hessian matrix implies that the system is positive semi-
definite, and means that the system is convex. Be aware that this analysis is done
locally, so it is not known if the system is globally convex. In this case all three
eigenvalues were positive, and the function is therefore convex around this nominal
point.

Gain Matrix

The gain matrix is the Jacobian matrix of the system, and was found using finite
differences, as was the case for the Hessian matrix. The gain matrix was found to
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be:

Gy =



0.0020 0 0
−0.5166 0 0
−0.0020 0 0
−0.1510 0 0
0.0027 0.0018 0
−0.7346 −0.4773 0
−0.0007 −0.0018 0
−0.7506 −0.0835 0
−0.0027 −0.0018 0
−0.2323 −0.1578 0
−0.0006 −0.0004 0.0008
−0.1832 −0.1330 −0.2612
−0.0021 −0.0014 −0.0008
−0.2465 −0.1650 −0.0965
0.0021 0.0014 0.0008
−0.3957 −0.2595 −0.1564



(5.25)

In (5.25) Gy ∈ Rny×nu each row corresponds to a measurement and each column
to a input. The first four rows in the second column, represent the flow and oil
fraction measurements out of the gravity separator. It is no surprise that an input
change in the second input (FSDW ) has no effect on these measurements, since
these are located upstream of the Dewaterer. The same argument can be used
regarding the ten first measurements in the third column, all these measurements
are located upstream of the Deoiler.

Disturbance and Measurement Noise

Define that the disturbances for the system are:

d1 = qin ± 5 m3 h−1 (5.26)
d2 = αin ± 0.2 (5.27)

This gives a disturbance Wd of:

Wd = diag(
[
5 0.2

]
) (5.28)

In order to set the prices to each measurement it is assumed that the flow measure-
ments are cheaper than the oil fraction measurements, since the latter are much
more complicated. More importantly, the prices of measurements must be given as
annualized costs (or more precise $/s), as oppose to fixed cost. This is due to how
the cost function is defined. In a subsea case, it is possible to think that the operator
company outsources the subsea operation and maintenance of the measurements
for a given number of years to a service company. Two set of measurement devices
(w1 and w2) with a given measurement noise (Wn) and prices are defined in Table
5.3. Note that the values given in the table are not based on actual data, but are
set in what is considered a realistic order of magnitude, relative to the actual model
and cost function formulation.
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Table 5.3: Measurement noise and price, for different measurement equipment with two
different measurement device sets.

w1 w2

Oil fraction noise [-] ±0.001 ±0.02
Flow noise [m3 h−1] ±0.01 ±0.4
Price oil fraction measurements [$/s] 2× 10−3 1× 10−3

Price flow measurements [$/s] 1× 10−3 5× 10−4

Unconstrained Loss

A big-M of 1000 was chosen, in order for the system not to reach the big-M
constraint, as this may influence the calculated loss for the system. The system
was implemented as described in Section 3.3. The unconstrained loss for each
number of measurement was calculated, and is shown in Figure 5.10. The figure
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Figure 5.10: The unconstrained loss for the system operating in the unconstrained
region.

shows that the unconstrained loss decreases rapidly for the first few measurements
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before flattening out at a very small loss when more measurements are added.

Total Cost

The total cost of the system (unconstrained loss + prices of measurements) is
given in Figure 5.11. As seen in the figure, the optimal number of measurements
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Figure 5.11: The total cost for the system operating in the unconstrained region. Total
cost includes prices of measurements and unconstrained loss.

(number that gives the lowest total cost) is six. After six measurements, the prices
of the additional measurements dominates over the decrease in unconstrained loss.
Note that the difference between five and six measurements is very small, and the
engineer may therefore decide to select only five in a more realistic case.

Analysis of the Selected Measurements

The costs between four and seven measurements are investigated to see which part
of the total cost contributes so that the optimal number of measurements are six.
There are, in this unconstrained case, two components that makes up the total
cost, the unconstrained loss, the prices of measurement. A bar plot showing how
each of these components make up the total cost for four to seven measurements,
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are given in Figure 5.12. A table showing the selected measurements, when a sub-
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Figure 5.12: The total cost for the system separated in each of the components making
up the total cost.

set of four to seven measurements is chosen is given in Table 5.4. As seen in Table
5.4 all measurements comes from the cheap measurement set (w2). When more
measurements are selected the loss decreases whereas the price of measurements
increases. Note that the optimal combination always include one oil fraction mea-
surement. It has been established that choosing five flow measurements and one
oil fraction measurement from the inaccurate measurement set (w2) gives the best
trade-off between measurement costs and loss. The final selection matrix (H) is
now presented and could be sent to a controller. The selection matrix is given in
(5.29). Only measurements included in the subset are given in the selection matrix.

H =


qbw2 qLP O,DWw2 qHP O,DWw2 qin,DOw2 qLP O,DOw2 αLP O,DOw2

FSG −110.52 12.42 −22.56 −133.08 37.18 −0.15
FSDW 295.31 55.00 −399.51 −104.20 −125.59 −0.58
FSDO −10.13 −9.54 −2.55 −12.67 202.37 −0.89


(5.29)
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Table 5.4: Selected measurements including the unconstrained loss and the total prices
of measurements.

No. y Selected Measurements Luncons Price
4 qbw2,

qHPO,DWw2,
αHPO,DWw2,
αLPO,DOw2

0.0056 0.003

5 qbw2,
qLPO,DWw2,
qHPO,DWw2,
qLPO,DOw2,
αLPO,DOw2

0.0029 0.003

6 qbw2,
qLPO,DWw2,
qHPO,DWw2,
qin,DOw2,
qLPO,DOw2,
αLPO,DOw2

0.0024 0.0035

7 qtw2,
qbw2,
qLPO,DWw2,
qHPO,DWw2,
qin,DOw2,
qLPO,DOw2,
αLPO,DOw2

0.0021 0.004

A flowsheet with the chosen measurement is presented in Figure 5.13 to give
the viewer a better systematic look. The chosen control structure have a very
small loss, it combines both flow and oil fraction measurements. Since the inputs
u are flow splits, it makes sense to use more flow measurements than oil fraction
measurements, as these are directly a consequence of the given flow split. Based
on the chosen cost function, which aims to maximize the total amount of oil (not
just maximize flow or maximize oil fraction) it also make sense that one oil fraction
measurement is needed and this is located close to the final production stream. The
five flow measurements is located around the whole flow sheet, but not directly on
the oil product stream. The reason for this may be that it is better to choose
to pair the measurement and input as close as possible, which is suggested by
Larsson and Skogestad [23]. Of the chosen measurements, qin,DO may seem a
little unnecessary since both qb and qHPO,DW are chosen. qin,DO is also the last
measurement to be added as seen in Table 5.4, and does not contribute a great deal
to the loss reduction. However, by knowing both qin,DO and qLPO,DO it should be
possible to give a very good controller values to FSDO which actually is defined as:
qLPO,DO/qin,DO. This is confirmed by the values in the selection matrix H where
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Gravity Separator
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Deoilerqb

qHPO,DW
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qLPO,DOαLPO,DO
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Figure 5.13: Flowsheet of the subsea processing system where only the selected mea-
surements are shown.

qin,DO and qLPO,DO has the highest weight for the input FSDO.

Budget constraint

Given the measurement noise and the prices, the best measurement combination
was found above. However, it is possible that the project runs into financial difficul-
ties, in that case the engineer may be asked to cut the investment cost (installation
of measurements) in the project, for instance by 20%. The previous price of mea-
surements was 0.0035, as seen in Table 5.4. This is then reduced. How much
will the loss increase, and what is the new selected subset of measurements? This
budget constraint is implemented through a new linear constraint defined as:

nw∑
k

ny∑
j

¯pj,kσj,k ≤ 0.0028 (5.30)

where ¯pj,k is the price of measurement j in set k. This will naturally limit the results
to a large extend. The selected measurements with corresponding unconstrained
loss and prices of measurements are given in Table 5.5. As seen in the table, the
optimal number of measurements was four for the case with budget constraint.
Note that four measurements is the absolute best case, this is because that it
has the crucial oil fraction measurement, which is removed when choosing five
measurements. The corresponding selection matrix, H is given in (5.31). Each
component correspond to the measurements given in Table 5.5, in the same order
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Table 5.5: Selected measurements including unconstrained loss and the total prices of
measurement with the budget constraint active.

No. y Selected Measurements Luncons Price
3 qbw2,

qHPO,DWw2,
αH,prodw2

0.06 0.002

4 qbw2,
qHPO,DWw2,
qLPO,DOw2,
αLPO,DOw2

0.0063 0.0025

5 qbw2,
qLPO,DWw2,
qHPO,DWw2,
qLPO,DOw2,
qH,prodw2

0.17 0.0025

as in the table.

H =


qbw2 qHPO,DWw2 qLPO,DOw2 αLPO,DOw2

FSG −255.66 −167.67 36.33 −0.15
FSDW 136.98 −557.78 −127.63 −0.59
FSDO −13.37 −5.80 202.62 −0.89

 (5.31)

A comparison of the best subset with and without budget constraint is given in
Figure 5.14. As illustrated in the figure, the prices of measurements has dropped,
but the controller is not able to get a good view of the system and hence, the
unconstrained loss increases. This is as expected.
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Figure 5.14: Comparison of best measurement selection for cases with and without
budget constraint. With budget constraint, the selected measurement set consists of four
measurements, whereas it consists of six for the case without the budget constraint.
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5.4.2 Operation in Active Constraint Region
Based on the active constraint map in Figure 5.6, the point where αin = 0.6
and qin = 23 m3 h−1 was chosen for the study of a nominal point with an active
constraint. The nominal values are given in Table 5.6 and 5.7, for the inputs and
the measurements respectively.

Table 5.6: Nominal valus for the input with feed at αin = 0.6 and qin = 23 m3 h−1.

Input Nominal Value
FSg 0.7522
FSDW 0.9172
FSDO 0.3110

Table 5.7: Nominal values for all measurements with feed at αin = 0.6 and qin =
23 m3 h−1.

Measurement Flow [m3 s−1] Oil fraction [-]

t 0.0048 0.74343
b 0.0016 0.1923

LPO,DW 0.0044 0.7535
HPO,DW 0.0004 0.5221
in,DO 0.0020 0.2585
LPO,DO 0.0006 0.8091
H,prod 0.0014 0.01
L,prod 0.0050 0.7603

Note that αH,prod = 0.01 which indicates that the constraint is active. The
Lagrange multiplier at this nominal point was found to be 0.8817. In order to
calculate the gain matrix and the Hessian, each row and column corresponding to
either the input FSDO or the measurement αH,prod is removed, as seen in Sec-
tion3.2, so that Juu ∈ R2×2 and Gy ∈ Rny−1×nu−1. The Hessian matrix was found
to positive semi-definite, as all eigenvalues were positive, so that the system is con-
vex around this nominal point. The noise and prices for each measurements are
assumed to be the same as in the unconstrained case.

Unconstrained Loss

A big-M of 1000 was chosen. A selection criteria for the constraint was created
(the optimizer can still choose from αH,prodw1 and αH,prodw2). A term calculating
the back-off due to the constraint was also added to the simulation. As shown in
Figure 5.15, the unconstrained loss decreases to a minimum at four and five mea-
surements, before increasing again from five to six. This is because the optimizer
shifts the measurement set from choosing only accurate measurements (w1) to more
inaccurate (w2). This is shown in Table 5.8. Note that as oppose to cases where
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Figure 5.15: The unconstrained loss for the system operating in the constrained region.
A zoom-in of the plot is included in the area between three and six selected measurements,
however, the values for four and five are several order of magnitudes smaller than three
and six. The measurement chosen for the constraint is not included in the counting of
measurements.
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Figure 5.16: The total cost of the system operating in the constrained region, including
prices of measurements, unconstrained loss and constrained back-off. A zoom-in of the
plot is included in the area between three and six measurements to better see the details
in this part of the graph.

the prices are set to zero, it is possible that the minimum value of the loss comes at
fewer measurements than the maximal number of measurements. This is because
the optimizer minimizes the total cost for each number of measurements and not
just the unconstrained loss. When many measurements are chosen the optimizer
often selects the «bad» measurements as the loss will be relatively small anyway.

Total Cost

The total cost of a constrained system consist of unconstrained loss, prices of mea-
surements and constrained back-off. The total cost of the system with an active
constraint is given in Figure 5.16. As seen in the figure, the lowest total cost is at
four (unconstrained) measurements. However, the difference is very small between
four and three measurements.
In order to study which part makes up the total cost, a bar plot separating each

part of the cost component was created. The plot is given in Figure 5.17. The
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Figure 5.17: The total cost for three to seven unconstrained measurements separated
into each of the components, making up the total cost.
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Figure 5.18: Flowsheet of the subsea processing system where only the selected mea-
surements are shown. αH,prod is given in parenthesis since this is a measurement for a
constrained input.

figure illustrates that most of the total cost is the prices of measurements. The
constrained back-off make up a considerable part of the total cost. The uncon-
strained loss is as has been shown in Figure 5.15 almost negligible for four and
five selected measurements. Be aware that this nominal point is actually the point
where the Lagrangian multiplier of the constraint has its maximum value of the
whole investigated region (as seen in Figure 5.6).

Analysis of the Selected Measurements

The selected subset for three to seven (unconstrained) measurements are investi-
gated. The selected subsets are given in Table 5.8. As seen earlier, the optimal
number of unconstrained measurements is four. The selected measurements are
all from the accurate and expensive set (w1). Only flow measurements are cho-
sen. However, when increasing the number of measurements to five, the additional
measurements are flow measurements from the inaccurate and inexpensive mea-
surement set (w2). If more than five measurements are selected, all measurements
comes from w2. Note that the expensive measurement is chosen for the constraint,
this is because the Lagrangian is so large that it makes up a considerable part of
the total cost. It was therefore important to minimize the noise for the constrained
back-off. The chosen measurements are drawn on the flow sheet in Figure 5.18.
The final selection matrix for the optimum number of measurements is given in
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Table 5.8: Selected measurements including the unconstrained loss and the total prices
of measurements. The chosen measurement device for the constraint is included in the
selected measurements and counted through (+1).

No. y Selected Measurements Luncons Price
3(+1) qtw1,

qHPO,DWw1,
αin,DOw1,
(αH,prodw1)

0.00019 0.006

4(+1) qtw1,
qHPO,DWw1,
qLPO,DOw1,
qH,prodw1,
(αH,prodw1)

2.5e-06 0.006

5(+1) qtw1,
qHPO,DWw1,
qLPO,DOw1,
qH,prodw1,
qL,prodw2,
(αH,prodw1)

2.5e-06 0.0065

6(+1) qtw2,
αbw2,
qLPO,DWw2,
qHPO,DWw2,
qLPO,DOw2,
qH,prodw2,
(αH,prodw1)

0.0014 0.0055

7(+1) qtw2,
qbw2,
αbw2,
qHPO,DWw2,
qin,DOw2,
qLPO,DOw2,
qH,prodw2,
(αH,prodw1)

0.0013 0.006
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(5.32)

H =
( qtw1 qHPO,DWw1 qLPO,DOw1 qH,prodw1

FSg 52.15 293.78 −560.73 256.00
FSDW −66.98 −370.36 −174.47 68.93

)
(5.32)

where each column in H corresponds to the measurements listed in Table 5.8. The
selection matrix now only has two rows since FSDO is controlled by αH,prod. When
comparing the constrained case to the unconstrained case, the unconstrained loss is
much smaller, since the measurements are selected from the accurate and expensive
set (w1). However, the prices of measurements makes the total cost higher for the
constrained case (6× 10−3 $/s vs. 7× 10−3 $/s) which is due to the expensive
oil fraction measurement used to reduce the back-off and control the constraint.
When it comes to which measurement that was selected one could argue that both
qHPO,DW and qLPO,DO plays an important role as fluid can be cross-fed along these
points. In addition qHPO,DW has the highest weighting in the selection matrix for
the input FSDW which make sense as this is the measurement mostly affected by a
change in the Dewaterer. qt could be needed to pair close to the gravity separator.

Budget Constraint

A budget constraint was added so that the prices of measurements are reduced by
at least 20% from the previous optimum. The sum of all prices has to be smaller
than 0.0048. As opposed to the unconstrained case in the previous section, where
the optimal selected measurements without budget constraint were mostly flow
measurements from the inexpensive measurement set (w2), this nominal point has a
better price saving possibility as the selected subset consisted of flow measurements
from the expensive device set (w1), as seen in Table 5.8. The results from the
simulation with an active budget constraint is given in Figure 5.19, which shows
the total cost for two to seven (unconstrained) measurements. The optimal number
of measurements with the budget constraint is still four. However, the difference
between four and three is very small. The selected measurements for three to seven
(unconstrained) measurements are investigated, and the measurements as well as
the corresponding unconstrained loss and price is shown in Table 5.9. As shown
in the table, the optimizer has, due to the budget constraint, a tendency to choose
more measurements from the second device set (w2) than previously.
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Figure 5.19: Total cost of the system operating in the constrained region, with budget
constraint. Only measurements two to seven are possible.
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Figure 5.20: Comparison of the loss and prices of measurements with and without the
budget constraint.

The final selection matrix H for the case with active budget constraint is given in
(5.33)

H =
( qtw2 αbw2 qHPO,DWw2 qH,prodw2

FSg 5.22 −1.50 −27.83 130.12
FSDW −82.25 −0.47 −469.96 28.40

)
(5.33)

where each column of H corresponds to the measurements listed in Table 5.9.
The optimum subset of measurements is compared to the case with no budget
constraint. The result is shown in Figure 5.20. As can be seen in the figure, adding
a budget constraint naturally increases the unconstrained loss and the prices of
measurements have decreased, but not so much that it compensates for the increase
in unconstrained loss.
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Table 5.9: Selected measurements including the unconstrained loss and the total prices,
with active budget constraint. The chosen measurement device for the constraint is
included in the selected measurements and counted through (+1).

No. y Selected Measurements Luncons Price
3(+1) qtw2,

qHPO,DWw2,
αin,DOw2,
(αH,prodw1)

0.0026 0.004

4(+1) qtw2,
αbw2,
qHPO,DWw2,
qH,prodw2,
(αH,prodw1)

0.002 0.0045

5(+1) qtw2,
qHPO,DWw2,
qLPO,DOw2,
qH,prodw2,
qL,prodw2,
(αH,prodw1)

0.003 0.0045

6(+1) qtw2,
αbw2,
qLPO,DWw2,
qHPO,DWw2,
qLPO,DOw2,
qH,prodw2,
(αH,prodw2)

0.0014 0.0045

7(+1) qtw2,
qbw2,
qLPO,DWw2,
qHPO,DWw2,
qLPO,DOw2,
qH,prodw2,
qL,prodw2,
(αH,prodw2)

0.0025 0.0045
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Chapter 6
Discussion and Conclusion

A method for combining the cost of measurements with the corresponding pro-
cess losses due to measurement uncertainty, has been presented within the self-
optimizing control framework. The goal in self-optimizing control is to identify an
optimal control structure design. This has been done by using MIQP optimization
tools. By using the MIQP-formulation it become possible to extend the frame-
work to also include different sets of measurements and one was able to find the
best trade-off between accurate (and expensive) and inaccurate (and inexpensive)
measurements. A method of including a process constraint and calculate the nec-
essary back-off loss has also been implemented. It was shown that the back-off
makes up a considerable part of the loss when the constraint is active, and that
the constrained back-off can be larger than the unconstrained loss. The MIQP-
formulations also handles budget constraints. It was shown that the total cost of
a project increases due to higher unconstrained loss when a budget constraint is
added. The methods were applied to both a Dummy case, for proof-of-concept
purposes, and a more advanced Subsea separation process where all the developed
methods where implemented simultaneously. The Dummy problem presented was
proven to produce results similar to already published literature[4], before the new
methods were applied. All in all, this work has shown that it is possible to link
economical considerations with the design of the control structure, and this could
be a step to introduce process control ideas directly into the process design phase.

6.1 Limitations of the Presented Methods
The methods presented in this work have, however, some limitations:
In this work it has been assumed that the disturbance does not change the active
constraints. However, the plant may be operated in different ways depending on
which of the constraints are active. Some approaches to this problems has been
proposed in literature, for instance by the multi-parametric programming approach
[24]. When comparing the selected subset in the active constraint and the uncon-
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strained region, the selected measurements are not necessarily the same, this may
lead to losses.
Another limitation is that the results are only valid locally around the nominal
point, this is of course a simplification, and may be OK for a stable system run-
ning in steady state. However, if large disturbances occur, this may lead to large
losses because of the selected control structure design. The self-optimizing control
framework is therefore not applicable to highly dynamic systems (for instance batch
processes). The resulting measurement combination for controlled variables must
therefore be seen as good candidate for control structure rather than necessarily
be the final one.

6.2 Uncertainty and Price of Measurements
The main focus in this work has been to present methods. The selection of the
actual prices and measurement uncertainty has therefore not been investigated in
detail. For instance, flow measurements has been given a constant uncertainty
independent of the actual flow. This full scale accuracy means that the error in
percent is much higher at smaller volumetric flows, this could have had an impact
on the selection of measurements. The magnitude of the noise is also questionable.
For instance, it was assumed that inaccurate flow measurement has an full scale
uncertainty of 5× 10−4 m3 h−1, which is 2% given that the maximum is 20 m3 h−1.
This is the maximum uncertainty listed for volumetric flow meters according to
Perry and Green [25, Chapter 10-15]. Since most of the flows in the system is less
than 20 m3 h−1, the error in percent will be greater, due to the full scale accuracy.
The prices set to each type of measurement is given with the following assump-
tions: 1) Flow meters are cheaper than oil fraction measurements. 2) Inaccurate
measurements are cheaper than more accurate devices. Besides that, prices are
only set so that they are in what could be excepted to be a reasonable range. For
instance 0.006 $/s is equivalent to 189 000 $/year

6.3 Some Words About Numeric Issues
Although the MIQP-formulations has a lot of benefits, the reader should be aware of
some issues that may occur: It is important, when working with MIQP-formulations,
to be aware that finding the optimal solution is not guaranteed [26]. This is be-
cause mixed integer solvers does not normally evaluate all possible combinations
(picking eight measurements out of 30 candidates has for instance almost 6 million
combinations). Instead, the solvers really on pre-solving techniques to reduce the
number of possibilities and hence reduce the calculation time[27]. However, this
may lead to inaccurate results, as seen in Figure 6.1.
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Figure 6.1: Comparing solver parameters

The following Gurobi solver parameters were found to have an effect in order to
improve the results (taken from scripts in Appendix A):

params.Presolve = 2;
params.MIPFocus = 3;
params.NumericFocus = 3;
params.IntFeasTol = 1e-9;

Presolve is set to aggressive (2 of 2) which means it takes more time, but leads to
a tighter model. MIPfocus is set to 2 (of 3) to improve optimality. NumericFocus
is set to 3 (of 3) so that the solver is much more careful in numerical calculations.
IntFeasTol is an abbreviation for Integer Feasibility Tolerance. When solving in-
teger problems, a solution value may be 1× 10−7 when it should be 0. This will
affect the loss calculations (making smaller loss than what is realistic, since the
value of 1× 10−7 is included in the selection matrix, but not counted as a mea-
surement), the tolerance is therefore set to its tightest level.
It should also be noted that using a large enough value for big-M is important.
The values in the selection matrix H, should never be close to this value in order
to not affect the loss calculations.
In general, numerical uncertainties regarding the MIQP-formulations provides a
drawback to the methods presented in this work. Numerical methods (Finite dif-
ference method) were also applied to calculate Hessian and Jacobian matrices.
These matrices are very important to have correct, since they make up the crucial
GyH = Juu constraint that is needed to find the minimum loss. Hence, using
(simple) numerical methods to calculate these matrices rises the uncertainty of the
results.
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6.4 Further Work
Although the methods presented here has been tested for two cases, these have
been relatively simple compared to many chemical engineering plants. Especially
the number of inputs have been very limited. The methods should therefore be
tested on more complex plants in order to verify their validity.
It is also of interest to verify the performance by implementing the control structure
with a controller in a dynamic model, where dead time is an issue. One could for
instance also include some time delay in the oil fraction measurements. As these
measurements may be slower than a simpler flow measurement.
There has been a number of assumptions, especially regarding the implementation
of the loss from the constraint. A natural extension of this work is therefore to; 1)
increase the number of constraints, 2) Let the selection of which measurement and
input that is needed to control the constraint be selected by the control structure,
instead of letting this be predetermined.
There are also open issues within the self-optimizing control framework, which
this work is a part of [6], that could be of interest. Specific issues related to this
work are: 1) Further integration of the control structure into the design phase of
the project and 2) Active set changes due to multiple active constraint regions.
The latter is important while using the present methods will most likely produce
different measurement subsets, as already seen when comparing Table 5.4 and 5.8.
As explained in Section 6.2, measurement noise has only been implemented with
full scale accuracy. However, this may lead to large errors in percent, since a lot
of the flows in the subsea case is very small. A natural continuation could be to
investigate noise given in rate accuracy.
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Appendix A
MATLAB-scripts

This appendix contains all the MATLAB code used in this work. For space con-
siderations, only scripts used to produce results are listed here. That means, for
instance scripts used for plotting is not included here.

A.1 Dummy Case
A.1.1 Dummy With One Measurement Set

1 close all;clear all;clc
2 % Dummy case, only one measurement set available
3

4 %% Define the matrix
5 Juu = [244 222;222 202];
6 Jud = [198 180];
7

8 Gy = [ 11 10 1 0 ; 10 9 0 1]';
9 Gd = [10 9 0 0]';

10

11 Wd =1;
12 Wn = diag([0.01 0.01 0.01 0.01]);
13 F = [-1 -1 9 -9 ]';
14 Juu12=Juuˆ(1/2);
15 nu=2;
16 nd=1;
17 ny=4;
18

19 Y = [F*Wd Wn];
20 %RandomCase
21 %% Building the restructured matrices
22 Ydel=Y;
23

24 for i=1:nu-1
25 Ydel=blkdiag(Ydel,Y);
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26 end
27 Fdel=Ydel*Ydel'
28

29 Gydel=[];
30 for i=1:nu
31 Gydel=blkdiag(Gydel,Gy);
32 end
33 Gydel';
34

35 jdel=[];
36 for i=1:nu
37 jdel=[jdel ; Juu12(:,i)];
38 end
39

40

41 %% Find the optimal number of measurements
42 M=120; %Big-M
43 % price for measurements
44 mprices=0.05*ones(1,ny);
45 %Define empty results matrices
46 cost = zeros(length(nu:ny),1);
47 loss = zeros(length(nu:ny),1);
48 Hres=zeros(nu,ny,length(nu:ny));
49 Meas=zeros(1,ny,length(nu:ny));
50 % measurements required
51 for nm=nu:ny % Run through all possible number of measurements
52

53 Q=blkdiag(Fdel,zeros(ny,ny),0);
54

55 A= [Gydel' zeros(nu*nu,ny) ...
zeros(nu*nu,1) ;

56 zeros(1,nu*ny) ones(1,ny) -1 ;
57 -eye(nu*ny) -M*repmat(eye(ny),nu,1) zeros(nu*ny,1) ;
58 eye(nu*ny) -M*repmat(eye(ny),nu,1) zeros(nu*ny,1) ...

;
59 zeros(1,nu*ny) zeros(1,ny) 1 ;
60 ];
61

62 c = [zeros(1,nu*ny) mprices 0 ];
63

64 lb=[-inf(nu*ny,1); zeros(ny,1) ;0 ];
65 ub=[inf(nu*ny,1); ones(ny,1) ;ny ];
66

67 b= [jdel;
68 0
69 zeros(nu*ny,1);
70 zeros(nu*ny,1)
71 nm
72 ];
73

74

75 clear model;
76 names = {'y1u1', 'y2u1', 'y3u1','y4u1','y1u2','y2u2','y3u2'...
77 'y4u2','sigma1','sigma2','sigma3','sigma4','nm'};
78 model.varnames = names;
79 model.Q = sparse(Q);
80 model.A = sparse(A);
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81 model.obj = c;
82 model.rhs = b;
83 model.lb = lb;
84 model.ub = ub;
85 model.sense = ...

[repmat('=',nu*nu+1,1);repmat('<',2*nu*ny,1);'='];
86 model.modelsense='min'
87 model.vtype = [repmat('C',nu*ny,1);repmat('B',ny,1);'I']
88 gurobi write(model, 'MeasSelectPrice0.lp');
89

90 %params.ResultFile = 'test.mps'
91 params.Presolve = -1;
92 params.FeasibilityTol=1e-9;
93 params.OptimalityTol=1e-9;
94 %params.FeasibilityTol=1e-4
95 results = gurobi(model, params)
96 %results = gurobi(model)
97 % for v=1:length(names)
98 % fprintf('%s %e\n', names{v}, results.x(v));
99 % end

100 fprintf('Obj: %e\n', results.objval);
101 % Fill results matrices
102 % Selected measurements
103 Meas(:,:,nm-nu+1) = results.x(2*ny+1:3*ny)';
104 % Selection matrix
105 Hres(:,:,nm-nu+1) = [results.x(1:ny)'; results.x(ny+1:2*ny)'];
106 H = (Hres(:,:,nm-nu+1));
107 % Total cost
108 cost(nm-nu+1)= (results.x'*Q*results.x)/2+model.obj*results.x;
109 % Calculate loss with expression from Exact Local Method
110 loss(nm-nu+1)= 0.5*norm(Juu12/(H*Gy)*H*Y,'fro')ˆ2;
111

112 end

A.1.2 Dummy With Two Measurement Sets

1 close all;clear all;clc
2 % This is the dummy case for two measurement sets, without constraints
3 % Cost function:
4 % J = (z1 - z2)ˆ2 + (z1- d)ˆ2
5 Juu = [244 222;222 202];
6 Jud = [198 180];
7

8 Gy = [ 11 10 1 0 ; 10 9 0 1]';
9 Gd = [10 9 0 0]';

10

11 Wd =1;
12 Wn1 = diag([0.1 0.1 0.1 0.1]);
13 Wn2 = diag([0.01 0.01 0.01 0.01]);
14 F = [-1 -1 9 -9 ]';
15 Juu12=Juuˆ(1/2);
16 nu=2;
17 nd=1;
18 ny=4;
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19

20 Y1 = [F*Wd Wn1];
21 Y2 = [F*Wd Wn2];
22 Y = [Y1;Y2];
23 % Building the restructured matrices
24 Ydel1=Y1;
25 Ydel2=Y2;
26 for i=1:nu-1
27 Ydel1=blkdiag(Ydel1,Y1);
28 Ydel2=blkdiag(Ydel2,Y2);
29 size(Ydel1);
30 size(Ydel2);
31 end
32 Fdel1=Ydel1*Ydel1';
33 Fdel2=Ydel2*Ydel2';
34 Fdel = blkdiag(Fdel1,Fdel2);
35

36

37 %%
38 Gydel=[];
39 for i=1:nu
40 Gydel=blkdiag(Gydel,Gy);
41 end
42 Gydel = [Gydel;Gydel];
43 Gy1 = [Gy;Gy];
44 %%
45 jdel=[];
46 for i=1:nu
47 jdel=[jdel ; Juu12(:,i)];
48 end
49 %% Solve for a measurements combination with all measurements
50 % Create gurobi model
51 M=100; % Big-M
52

53 mprices=[0.02*ones(1,ny) 0.2*ones(1,ny)]; % Prices of measurements
54

55 %Define empty result vectors
56 cost = zeros(length(nu:ny),1);
57 loss = zeros(length(nu:ny),1);
58 Hres=zeros(nu,2*ny,length(nu:ny));
59 Meas=zeros(1,2*ny,length(nu:ny));
60 Hadj = zeros(nu,2*ny,length(nu:ny));
61 % If statement so that one only chooses the correct set for ...

corresponding
62 % to the measurement selection
63 subM = zeros(ny*nu*2,ny*2);
64 for i=1:ny
65 subM(i,i+ny) = 1; % u1w1 <-> w2
66 subM(i+ny,i+ny)=1; % u2w1 <-> w2
67 subM(i+2*ny,i) = 1; % u1w2 <-> w1
68 subM(i+3*ny,i) = 1; % u2w2 <-> w1
69 end
70

71 for nm = nu:ny
72 % H sigma 1 sigma 2 nm
73 Q=blkdiag(Fdel,zeros(ny,ny),zeros(ny,ny),0);
74 %H sigma 1 sigma 2 %nm

78



75 A= [Gydel' zeros(nu*nu,ny) zeros(nu*nu,ny) ...
zeros(nu*nu,1) ;

76 zeros(1,nu*ny*2) ones(1,ny) ones(1,ny) -1 ...
;

77 -eye(nu*ny*2) ...
-M*([repmat(eye(ny),nu,1);zeros(2*ny,ny)]) ...
-M*([zeros(2*ny,ny);repmat(eye(ny),nu,1)]) ...
zeros(nu*ny*2,1);

78 eye(nu*ny*2) -M*([repmat(eye(ny),nu,1);zeros(2*ny,ny)]) ...
-M*([zeros(2*ny,ny);repmat(eye(ny),nu,1)]) ...
zeros(nu*ny*2,1);

79 zeros(1,nu*ny*2) zeros(1,ny) zeros(1,ny) 1 ...
;

80 eye(nu*ny*2) M*subM zeros(ny*nu*2,1);
81 -eye(nu*ny*2) M*subM zeros(ny*nu*2,1);
82 ];
83

84 c = [zeros(1,nu*ny*2) mprices 0 ];
85 lb=[-inf(nu*ny*2,1); zeros(ny,1); zeros(ny,1) ;0 ];
86 ub=[inf(nu*ny*2,1); ones(ny,1) ; ones(ny,1) ;ny ];
87 b= [jdel;
88 0
89 zeros(2*nu*ny,1);
90 zeros(2*nu*ny,1)
91 nm
92 M*ones(2*nu*ny,1)
93 M*ones(2*nu*ny,1)
94 ];
95

96

97 clear model;
98 model.Q = sparse(Q);
99 model.A = sparse(A);

100 model.obj = c;
101 model.rhs = b;
102 model.lb = lb;
103 model.ub = ub;
104 model.sense = [repmat('=',nu*nu+1,1);repmat('<',2*nu*ny,1);...
105 repmat('<',2*nu*ny,1);'=';repmat('<',2*nu*ny,1)...
106 ;repmat('<',2*nu*ny,1)]
107 model.modelsense='min'
108 model.vtype = [repmat('C',2*nu*ny,1);repmat('B',2*ny,1);'I']
109 gurobi write(model, 'DummyTwoSets.lp');
110

111 params.Presolve = -1;
112 params.FeasibilityTol=1e-9;
113 params.OptimalityTol=1e-9;
114 results = gurobi(model, params)
115 % Selected measurements
116 Meas(:,:,nm-nu+1) = [results.x(17:20)' results.x(21:24)'];
117 Measdiag = diag(Meas(:,:,nm-nu+1));
118 % prices of measurements
119 price(nm-nu+1) = c*results.x;
120 % Selection matrix
121 Hres(:,:,nm-nu+1) = [results.x(1:4)' results.x(9:12)'; ...
122 results.x(5:8)' results.x(13:16)'];
123 Hadj(:,:,nm-nu+1) = Hres(:,:,nm-nu+1)*Measdiag;
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124 H = (Hres(:,:,nm-nu+1));
125 %Total cost
126 cost(nm-nu+1)= (results.x'*Q*results.x)/2+model.obj*results.x;
127 % Unconstrained loss
128 loss(nm-nu+1)= 0.5*norm(Juu12/(H*Gy1)*H*Y,'fro')ˆ2;
129

130 end

A.1.3 Constrained Dummy

1 clear all
2 clc
3 % This script calculates the loss when one of the inputs are ...

constrained
4 % The constrained input must be specified by user-promt.
5 % Objective
6 %min(J) = (1/2)*u1ˆ2 + (1/2)(u2-d2)ˆ2
7 %s.t. u1-d1-1 >= 0
8 dnom = [0 0];
9

10 Q = [0.5 0;
11 0 0.5];
12 A = [1 0]; % Define constraint
13 c = [0 -dnom(2)];
14 b = (1+dnom(1)); % Define constraint
15 clear model;
16 names = {'u1', 'u2'};
17 model.varnames = names;
18 model.Q = sparse(Q);
19 model.A = sparse(A);
20 model.obj = c;
21 model.rhs = b;
22 model.sense = ['>'];
23 model.objcon = dnom(2)ˆ2;
24 gurobi write(model, 'qp.lp');
25

26 results = gurobi(model); % Calculate nominal point
27 lambda = results.pi; % Calculate lagrange multiplier of constraint
28 %%
29 nu = 2;
30 ny = 4;% y = [u1 u2 d1 d2]
31 nd = 2;
32 nc = 1; % number of constraints
33 %fprintf('Which u is constrained, enter value less or equal to ...

%d:',nu);
34 %consu = input('');
35 consu = 1; % Which u is constrained?
36 % Reduced J= 0.5*(u2ˆ2-2*u2*d2+d2ˆ2) + 1
37

38 Gy = [1 0;
39 0 1;
40 0.1 2;
41 2 3];
42 Gyd = [0 0;
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43 0 0;
44 1 0.2;
45 0.5 3];
46 %Juu = [0 0; 0 1];
47 Juu = 1;
48 Juu12 = Juuˆ(1/2);
49 Jud = [0 -1]; %d1 d2
50

51 Gyd(:,1) = (-Gy(:,consu)+Gyd(:,1));
52 Gy(:,consu) = [];
53 F = (-Gy/Juu)*Jud+Gyd;
54

55 Wd = [0.5 1]';
56 Wn1vec = [0.1 0.1 0.1 0.1];
57 Wn2vec = [1 1 1 1];
58 Wn1 = diag(Wn1vec);
59 Wn2 = diag(Wn2vec);
60 Y1 = [F*Wd Wn1];
61 Y2 = [F*Wd Wn2];
62 Y = [Y1;Y2];
63 Ydel1=Y1;
64 Ydel2=Y2;
65 Fdel1=Ydel1*Ydel1';
66 Fdel2=Ydel2*Ydel2';
67 Fdel = blkdiag(Fdel1,Fdel2);
68

69 Gydel=[];
70 for i=1:nu-nc %unconstrained u???
71 Gydel=blkdiag(Gydel,Gy);
72 end
73 size(Gydel)
74 Gydel = [Gydel;Gydel];% Wn1 Wn2
75 Gy1 = [Gy;Gy];
76 %
77 jdel=[];
78 for i=1:nu-nc % Unconstrained
79 jdel=[jdel ; Juu12];
80 end
81

82

83 M=500; % Big-M
84 %Define empty matrices
85 price = zeros(length(nu-nc:ny),1); % price of measurements
86 loss = zeros(length(nu-nc:ny),1); % Unconstrained loss
87 closs = zeros(length(nu-nc:ny),1); % Constrained loss
88 cost = zeros(length(nu-nc:ny),1); % price+loss+closs
89 ltot =zeros(length(nu-nc:ny),1); % Total loss
90 Hres=zeros((nu-nc),2*ny,length(nu-nc:ny));
91 Meas=zeros(1,2*ny,length(nu-nc:ny));
92 cmeas=zeros(1,2,length(nu-nc:ny)); % Selected constrained measurement
93 %% Unconstrained Two Set of Measurements
94 mprices = [0.2*ones(1,ny) 0.02*ones(1,ny)]; % Prices of each ...

measurement
95 cprices = [0.2 0.02]; % Prices of constrained measurement
96 % Link up so that if one measurement set is selected, the corresponding
97 % value in Selection matrix for the same measurement in the other set
98 % Is set to zero
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99 subM = zeros(ny*(nu-nc)*2,ny*2);
100 for i=1:ny
101 subM(i,i+ny) = 1; % u2w1 <-> w2
102 subM(i+ny,i)=1; % u2w2 <-> w1
103 % subM(i+2*ny,i) = 1;
104 %subM(i+3*ny,i) = 1;
105 end
106 % Constrained big-M
107 consumat = eye(ny*(nu-nc));
108 sigma1Mconstr = -M*([consumat*repmat(eye(ny),nu-1,1);zeros(ny,ny)]);
109 sigma2Mconstr = -M*([zeros(ny,ny);consumat*repmat(eye(ny),nu-1,1)]);
110

111 for nm = (nu-nc):ny
112

113 Q=blkdiag(Fdel,zeros(ny,ny),zeros(ny,ny),0,zeros(4,4)); %Last ...
two is for u1

114 %H sigma w1 sigma w2 ...
%nm

115 A= [Gydel' zeros((nu-nc)*(nu-nc),ny) ...
zeros((nu-nc)*(nu-nc),ny) zeros((nu-nc)*(nu-nc),1) ...
zeros(1,4) ;

116 zeros(1,(nu-nc)*ny*2) ones(1,ny) ones(1,ny) ...
-1 zeros(1,4);

117 -blkdiag(eye((nu-nc)*ny),eye((nu-nc)*ny)) sigma1Mconstr ...
sigma2Mconstr zeros((nu-nc)*ny*2,1) ...

zeros((nu-nc)*ny*2,4) ;
118 blkdiag(eye((nu-nc)*ny),eye((nu-nc)*ny)) sigma1Mconstr ...

sigma2Mconstr zeros((nu-nc)*ny*2,1) ...
zeros((nu-nc)*ny*2,4);

119 zeros(1,(nu-nc)*ny*2) zeros(1,ny) zeros(1,ny) ...
1 zeros(1,4) ;

120 eye((nu-nc)*ny*2) M*subM ...
zeros(ny*(nu-nc)*2,1) zeros((nu-nc)*ny*2,4);

121 -eye((nu-nc)*ny*2) M*subM ...
zeros(ny*(nu-nc)*2,1) zeros((nu-nc)*ny*2,4);

122 zeros(1,(nu-nc)*ny*2+2*ny+1) 0 0 1 1; % Force to select only ...
one of these

123 zeros(1,(nu-nc)*ny*2+2*ny+1) 1 1 0 0; % Force to select only ...
one of these

124 ];
125 % sigma cons
126 c = [zeros(1,(nu-nc)*ny*2) mprices 0 cprices(1) ...

cprices(2) 0 0];
127 c(end-1) = lambda*Wn1vec(1);
128 c(end) = lambda*Wn2vec(1);
129 lb=[-inf((nu-nc)*ny*2,1); zeros(ny,1); zeros(ny,1) ;0;0;0 ; ...

-inf ;-inf];
130 ub=[inf((nu-nc)*ny*2,1); ones(ny,1) ; ones(ny,1) ;ny;1;1 ...

;inf;inf];
131

132 b= [jdel;
133 0
134 zeros(2*(nu-nc)*ny,1);
135 zeros(2*(nu-nc)*ny,1)
136 nm
137 M*ones(2*(nu-nc)*ny,1)
138 M*ones(2*(nu-nc)*ny,1)
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139 1
140 1
141 ];
142

143 %try
144 clear model;
145 names = {...%'H y1u1w1', 'H y2u1w1', 'H y3u1w1','H y4u1w1', ...
146 'H y1u2w1', 'H y2u2w1', 'H y3u2w1','H y4u2w1',...
147 ...%'H y1u1w2', 'H y2u1w2', 'H y3u1w2','H y4u1w2',...
148 'H y1u2w2', 'H y2u2w2', 'H y3u2w2','H y4u2w2',...
149 '$y 1w 1$', '$y 2w 1$', '$y 3w 1$', '$y 4w 1$',...
150 '$y 1w 2$', '$y 2w 2$', '$y 3w 2$', '$y 4w 2$',...
151 'nm'...
152 '$y 5w 1$','$y 5w 2$','H y5u1w1','H y5u1w2'};
153 model.varnames = names;
154

155

156 model.sos(1).type =1;
157 model.sos(1).index=[(4*ny+3) (4*ny+4)];
158 model.sos(1).weight=[1 1];
159 model.Q = sparse(Q);
160 model.A = sparse(A);
161 model.obj = c;
162 model.rhs = b;
163 model.lb = lb;
164 model.ub = ub;
165 model.sense = ...

[repmat('=',(nu-nc)*(nu-nc)+1,1);repmat('<',2*(nu-nc)*ny,1);...
166 repmat('<',2*(nu-nc)*ny,1);'=';repmat('<',2*(nu-nc)*ny,1);...
167 repmat('<',2*(nu-nc)*ny,1);'=';'='];
168 model.modelsense='min'
169 model.vtype = ...

[repmat('C',2*(nu-nc)*ny,1);repmat('B',2*ny,1);'I';...
170 repmat('B',2,1);repmat('B',2,1)];
171 gurobi write(model, 'qp2.lp');
172 params.Presolve = -1
173 params.FeasibilityTol=1e-9
174 params.OptimalityTol=1e-9
175 results = gurobi(model, params)
176 % Fill in results
177 Hres(:,:,nm-(nu-nc)+1) = [results.x(1:2*ny)'];
178 H = Hres(:,:,nm-(nu-nc)+1);
179 Meas(:,:,nm-(nu-nc)+1) = [results.x(2*ny+1:4*ny)'];
180 cmeas(:,:,nm-(nu-nc)+1) = [results.x(end-3:end-2)'];
181 loss(nm-(nu-nc)+1)= ...

(results.x'*Q*results.x)/2;%+model.obj*results.x;
182 loss1= 0.5*norm(Juu12/(H*Gy1)*H*Y,'fro')ˆ2; %unconstrained loss
183 % Make sure that loss is calculated correctly in optimizer vs.
184 % Exact local method
185 if loss(nm-(nu-nc)+1)-loss1 > 1e-3
186 disp('Error in unconstrained loss calculation')
187 break
188 end
189 % Constrained Loss, H(1) is constrained
190 closs(nm-(nu-nc)+1) = c(end-1:end)*results.x(end-1:end);
191 price(nm-(nu-nc)+1) = c(1:end-2)*results.x(1:end-2);
192 ltot(nm-(nu-nc)+1) = loss(nm-(nu-nc)+1) + closs(nm-(nu-nc)+1);
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193 cost(nm-(nu-nc)+1) = loss(nm-(nu-nc)+1)+closs(nm-(nu-nc)+1)...
194 +price(nm-(nu-nc)+1);
195 end

A.2 Subsea Case

A.2.1 Subsea Model Scripts
All scripts in this subsection was created by Tyvold [1].

Gravity separator - Initial Guess

1 function [Vo t,Vo b]=gavity sep2(FS,qin,Vo in)
2 Lsep=7;
3 R=1.7;
4 Hw=0.75*2*R;
5 g=-9.81;
6

7 qt=FS*qin;
8 qb=qin-qt;
9

10 rhoo=881;rhow=1064;%kg/mˆ3
11 % Viscosity (eq:2.7)
12 % mum=(0.47*Vo inˆ3-0.4*Vo inˆ2+0.11*Vo in+0.001); %Pa*s
13 mum=(0.6*Vo inˆ3-0.506*Vo inˆ2+0.137*Vo in+0.001); %Pa*s
14 % Droplet size
15 rd=60*10ˆ-6; %mˆ3
16

17 %Cross section area of weir (eq:3.27)
18 AHw=Rˆ2/2*((2*acos((R-Hw)/R))-sin(2*acos((R-Hw)/R)));
19 % Horinzontal velocity of bottom plug flow (eq:3.26)
20 vh=qb/AHw;
21 %Vertical velocity of droplet (eq:3.28)
22 vv=2*g*(rhoo-rhow)*rdˆ2/(9*mum);
23 %Droplet Vertical distance travel (eq:3.29)
24 h=Lsep*vv/vh;
25 % If the "slowest" droplet of oil travel h>Hw -> No oil in waterphase
26 d=max(Hw-h,0); %if h>Hw -> Vo b=0
27 % if Hw>h there will be oil in bottom:
28 %Cross section area of bottom section
29 %that still contains emulsion (Fig:3.11b, eq:3.30)
30 Ad=Rˆ2/2*((2*acos((R-d)/R))-sin(2*acos((R-d)/R)));
31

32 Vw b=((AHw-Ad)/AHw+Ad/AHw*(1-Vo in));
33 Vo b=1-Vw b;
34

35 Vo t=(Vo in-Vo b*(1-FS))/FS;
36 if Vo t>1
37 Vo t=1;
38 Vo b=(Vo in-Vo t*FS)/(1-FS);
39 end
40
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41 end

Dewaterer - Intitial Guess

1 function [Vo LPO,Vo HPO,qen]=DeWaterer(qin,Vo in,FS,rin,p3)
2

3 Ro=p3(2);Ri=p3(3);
4

5 qi=FS*qin; %Light phase out flow
6 qo=qin-qi; %Heavy phase out flow
7

8 % Volume fractio of water in outlets before
9 % the re-entrainment is accounted for

10 % eq:3.21
11 Vw HPO=(1-Vo in)*(((1-FS)*Riˆ2+FS*(Riˆ2-rinˆ2))/((1-FS)*Riˆ2));
12 % eq:3:22
13 Vw LPO=((1-Vo in)*qin-Vw HPO*qo)/qi;
14 % Re-entrainment definitions
15 u LPO=qi/(pi*Riˆ2); % Area averaged velocity
16 u HPO=qo/(pi*(Roˆ2-Riˆ2)); % Area averaged velocity
17 du=u LPO-u HPO;
18 k=2*10ˆ-4;
19 qen=k*du;
20

21 %Re-Entrainment
22 if du>=0 % Velocity in oil > Velocity in water
23 Vw LPO=(Vw LPO*(qi-qen)+Vw HPO*qen)/qi;
24 Vw HPO=((1-Vo in)*qin-Vw LPO*qi)/qo;
25 else
26 Vw HPO=(Vw HPO*(qi+qen)-Vw LPO*qen)/qi;
27 end
28

29 % Restrict water volume fraction in HPO
30 % to range Vw in->1
31 if Vw HPO>1
32 Vw HPO=1;
33 elseif Vw HPO<(1-Vo in)
34 Vw HPO=(1-Vo in);
35 end
36

37 Vw LPO=((1-Vo in)*qin-Vw HPO*qo)/qi;
38

39 Vo LPO=1-Vw LPO;
40 Vo HPO=1-Vw HPO;
41 end

Deoiler - Initial guess

1 function [Vo LPO,Vo HPO,qen]=DeOiler(qin,Vo in,FS,rin,p2)
2 Ro=p2(2);Ri=p2(3);
3
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4 qi=FS*qin; qo=qin-qi;
5

6 Vo LPO=Vo in*(FS*(Roˆ2-Riˆ2)+(rinˆ2-Riˆ2)*(1-FS))...
7 /(FS*(Roˆ2-Riˆ2));
8 Vo HPO=(Vo in*qin-Vo LPO*qi)/qo;
9 u HPO=qo/(pi*(Roˆ2-Riˆ2));u LPO=qi/(pi*Riˆ2);

10

11 du=(u LPO-u HPO);
12

13 k=2*10ˆ-4;
14 %k=0;
15 qen=k*du;
16 if du>=0
17 Vo LPO=(Vo LPO*(qi-qen)+Vo HPO*qen)/qi;
18 else
19 Vo HPO=(Vo HPO*(qo+qen)-Vo LPO*qen)/qo;
20 Vo LPO=(Vo in*qin-Vo HPO*qo)/qi;
21 end
22

23 % k=5*10ˆ-4;
24 % if du>=0
25 % qen=k*duˆ2;
26 % Vo LPO=(Vo LPO*(qi-qen)+Vo HPO*qen)/qi;
27 % else
28 % qen=-k*duˆ2;
29 % Vo HPO=(Vo HPO*(qo+qen)-Vo LPO*qen)/qo;
30 % Vo LPO=(Vo in*qin-Vo HPO*qo)/qi;
31 % end
32

33 if Vo LPO>1
34 Vo LPO=1;
35 elseif Vo LPO<Vo in
36 Vo LPO=Vo in;
37 end
38

39 Vo HPO=(Vo in*qin-Vo LPO*qi)/qo;
40 end

Dewaterer - Used in Integrator

1 function [vr]=swirl sep2 o(t,x,in,element)
2 % Dewaterer
3 qin=in(1);
4 Ro=in(2);
5 Ri=in(3);
6 Vo in=in(4);
7 ta=in(5);
8 rin=in(6);
9 FS=in(7);

10

11 Vw in=(1-Vo in);
12

13 rhoo=881; %kg/mˆ3
14 rhow=1064;
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15

16 r=x(1);
17

18 Rc=0.25*Ro;
19 va=qin/(pi*Roˆ2);
20 if element=='w' %weak
21 k=3.5;
22 elseif element=='s' %strong
23 k=5;
24 elseif element=='l' %large
25 k=7;
26 end
27 vt0=k*va; %eq:3.5
28 %Experimental correlation between rd and vt
29 %if vt0>4.45%28
30 % rd=(-8*vt0+160)/2*10ˆ-6;
31

32 %else
33 % rd=(-107*vt0+600)/2*10ˆ-6;
34

35 %end
36 rd= (-107*vt0+600)/2*10ˆ-6+0.5*(1+tanh(10000*(vt0-4.45)))...
37 *(((-8*vt0+160)/2*10ˆ-6)-(-107*vt0+600)/2*10ˆ-6);
38 %rd = 6e-6*vt0ˆ2-0.0001*vt0+0.0007;
39 %Volume fraction of water on the inside
40 %of the droplet
41 Vw=Vw in*(((1-FS)*Riˆ2+FS*(Riˆ2-rinˆ2))...
42 /((1-FS)*Riˆ2+FS*(Riˆ2-rˆ2)));
43

44 %Emprical viscosity
45 mum=(0.203*Vwˆ3+0.237*Vwˆ2-0.014*Vw+0.0088);
46

47 %Smooth centrifugal acceleration
48 f2=(vt0*exp(-0.04*va*t/(2*Ro)))ˆ2/r;
49 f1=(vt0*exp(-0.04*va*t/(2*Ro))/Rc)ˆ2*r;
50 f=f2-f1; beta=30;
51 ac=f2-0.5*((fˆ2+betaˆ2)ˆ.5+f); % eq:3.18
52 %vt=sqrt(ac*r);
53

54 %Radial velocity of droplet
55 vr=2/9*(rhow-rhoo)*rdˆ2/mum*ac; % vr(r,z)eq:3.7
56 end

Deoiler - Used in Integrator

1 function DXDT=swirl sep2(t,x,in,element)
2 %deoiler
3 qin=in(1);
4 Ro=in(2);
5 Ri=in(3);
6 Vo in=in(4);
7 ta=in(5);
8 rin=in(6);
9 FS=in(7);
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10

11 rhoo=881;%872; %kg/mˆ3
12 rhow=1064;
13

14 r=x(1);
15

16 Rc=0.25*Ro;
17 va=qin/(pi*Roˆ2);
18 if element=='w' %weak
19 k=3.5;
20 elseif element=='s' %strong
21 k=5;
22 elseif element=='l' %large
23 k=7;
24 end
25

26 vt=k*va;
27

28 %Experimental correlation between rd and vt
29 % if vt>4.45%28
30 % rd=(-8*vt+160)/2*10ˆ-6;
31 % else
32 % rd=(-107*vt+600)/2*10ˆ-6;
33 % end
34 rd= (-107*vt+600)/2*10ˆ-6+0.5*(1+tanh(10000*(vt-4.45)))...
35 *(((-8*vt+160)/2*10ˆ-6)-(-107*vt+600)/2*10ˆ-6);
36 % if vt>4%28
37 % rd=10ˆ-6*(80-4*vt);
38 %
39 % else
40 % rd=10ˆ-6*(300-59*vt);
41 %
42 % end
43 % if vt>0.2%28
44 % rd=0.0014*vtˆ(-1.244);
45 %
46 % else
47 % rd=-0.0645*vt+ 0.0233;
48 %
49 % end
50

51 va=qin*(1-FS)/(pi*(Roˆ2-Riˆ2));
52 %rd=(-8*vt+160)/2*10ˆ-6;
53

54 % if qin>50/3600
55 % rd=30*10ˆ-6;
56 % else
57 % rd=50*10ˆ-6;
58 % end
59

60 %diameter=2*rd*10ˆ6
61 Vo c=Vo in*(FS*(Roˆ2-Riˆ2)*(Roˆ2-rˆ2)+(rinˆ2-Riˆ2)*(Roˆ2-rˆ2)*(1-FS))...
62 /((rˆ2-Riˆ2)*(Roˆ2-rˆ2)*(1-FS)+FS*(Roˆ2-Riˆ2)*(Roˆ2-rˆ2));
63

64 mum=(0.6*Vo cˆ3-0.506*Vo cˆ2+0.137*Vo c+0.001);
65 %mum=(0.47*Vo cˆ3-0.4*Vo cˆ2+0.11*Vo c+0.001);
66
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67 vr=((2/9*(rhoo-rhow)*rdˆ2/(mum)...
68 *(vt*exp(-0.04*va*t/(2*Ro)))ˆ2/r)*heaviside(r-Rc)... %r>Rc
69 +(2/9*(rhoo-rhow)*rdˆ2/mum...
70 *r*(vt*exp(-0.04*va*t/(2*Ro))/Rc)ˆ2)*heaviside(Rc-r))...; %r<Rc
71 *heaviside(r-0.9*Ri); %To make sure r>0
72

73 drdt=vr;
74

75 DXDT=[drdt];
76 end

A.2.2 Optimization Scripts
All scripts in this subsection was created by Tyvold [1].

Steady State optimizer script

Main script. Everything run from this script.

1

2 clearvars -except y
3 clear all
4 clc
5 tic
6 %xnom = load('xvar.mat');
7 %xnom = load('xnom2.mat');
8 %load('xnom20-0.35.mat');
9 load('xnomadj2.mat')

10 x1 = x;
11 qin=[18:0.25:23]/3600;
12 %qin =[30:-0.25:15]/3600;
13 %qin= (20/3600);
14 %Vo in=0.40;%
15 Vo in=[0.35:0.0125:0.6];
16

17 %Vo in = [0.3:0.0125:0.7];
18 Lsw=1.7;Ro=0.05;Ri=0.025;p2=[Lsw;Ro;Ri];
19 Lsw DW=1.7;Ro DW=0.05;Ri DW=0.043;p3=[Lsw DW;Ro DW;Ri DW];
20

21 element='l';
22 dotvec = zeros(length(qin),length(Vo in));
23 x=zeros(length(qin),length(Vo in),21);
24 comp=zeros(length(qin),length(Vo in),6);
25 exitflag=zeros(length(qin),length(Vo in));
26 Cost=zeros(length(qin),length(Vo in));
27 options =...
28 optimset('Algorithm','interior-point','Display','Off','MaxIter'...
29 ,1e5,'TolX',1e-13,'MaxFunEvals',1e6,'TolCon',1e-5);
30 A=[];b=[];Aeq=[];beq=[];
31 % xopt = zeros(21,2);
32 % xopt(:,1) = [0.33;0.91;Ri DW;0.15;Ri;6.7/3600;0.94;13.3/3600;0.13;...
33 % 6.1/3600;0.98;0.6/3600;0.5;13.9/3600;0.15;2/3600;0.83;...
34 % 11.9/3600;0.03;8.1/3600;0.94];
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35 % xopt(:,2) = ...
[0.4;0.86;Ri DW;0.27;Ri;8/3600;0.91;12/3600;0.22;7/3600;...

36 % ...
0.97;1/3600;0.48;13/3600;0.24;3.5/3600;0.82;9.5/3600;0.03;...

37 % 10.5/3600;0.92];
38 % grad = zeros(length(qin),length(Vo in),21);
39 %Optimization
40 for j=1:length(Vo in)
41 for i=1:length(qin)
42 p=[qin(i);Vo in(j)];
43 % Bounds for inputs
44 %The bounadries on the FSs are just to help the solver
45 %and should not be active!!
46 lb=[0.2;0.5;0;0.01;p2(3);zeros(16,1)];
47 %lb=[0;0.5;0;0;p2(3);zeros(16,1)];
48 ub=zeros(21,1);
49 %ub(1:5,1)=[0.9;0.95;p3(3);0.6;p2(2)];
50 ub(1:5,1)=[0.999;0.999;p3(3);0.6;p2(2)];
51 for k =6:length(ub)
52 a=factor(k);
53 if a(1)==2; %flow
54 ub(k,1)=qin(i);
55 else %volume fraction
56 ub(k,1)=1;
57 end
58 end
59 % Turn off initial guess and replace with old nominal values
60 % if j==1 && i==1
61 % x0 = squeeze(xnom);
62 %
63 % %Initial guess
64 % if j==1 && i==1
65 % % FS g,FS DW,rin DW,FS DO,rin DO
66 % x01=[Vo in(i);0.8;0.4*Ri DW;0.3;0.65*Ro];
67 % x0=InitialGuess(x01,p,p2,p3);
68 toc
69 % elseif i==1 && j~=1
70 % x0 = squeeze(xnom);
71 %
72 %x0=x02;
73 % else
74 % x01=[Vo in(i);x0(2);x0(3);x0(4);x0(5)];
75 % x0=InitialGuess(x01,p,p2,p3);
76 % end
77 % Forces guesses to be close to "true" values
78 % if Vo in(j) < 0.45
79 % for k = 1:length(x0)
80 % if (x0(k)/xopt(k,1)) > 1.1 | | (x0(k)/xopt(k,1)) < 0.9
81 % x0(k) = xopt(k,1);
82 % teller = teller +1;
83 % end
84 % end
85 %
86 % elseif Vo in(j) >= 0.45
87 % for k = 1:length(x0)
88 % if (x0(k)/xopt(k,2)) > 1.1 | | (x0(k)/xopt(k,2)) < 0.9
89 % x0(k) = xopt(k,2);
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90 % end
91 % end
92 % end
93 x0 = squeeze(x1(i,j,:));
94 [x(i,j,:),~,exitflag(i,j),output(i,j),lambda(i,j)] = ...

fmincon(...
95 @(x)CostFunc2(x,p,p2,p3),x0,A,b,Aeq,beq,lb,ub,...
96 @(x)constraints2(x,p,p2,p3,element,Vo in(j)),options);
97 [Cost(i,j)]=CostFunc2(x(i,j,:),p,p2,p3);
98 if exitflag(i,j)==1 | | exitflag(i,j)==2
99 x0=squeeze(x(i,j,:));

100 elseif exitflag(i,j) == -2 && j>2
101 xold = squeeze(x(i,j-2,:));
102 x(i,j-1,:) = globaloptim(xold,Vo in(j-1),qin(i));
103 x(i,j,:) = globaloptim(x0,Vo in(j),qin(i));
104 x0=squeeze(x(i,j,:));
105 elseif exitflag(i,j) == -2 && j<=2
106 x(i,j,:) = globaloptim(x0,Vo in(j),qin(i));
107 x0=squeeze(x(i,j,:));
108 end
109 if j==1
110 x02=x0;
111 end
112 %Define a plot tolerance 1%
113 plottol = 0.01*0.99;
114 if x0(19)<plottol
115 dotvec(i,j) = 1;
116 else
117 dotvec(i,j) = 0;
118 end
119 end
120 end
121 Cost
122 y=x(:,:,15);
123 exitflag
124 toc
125 %%
126 for i=1:length(qin)
127 for j=1:length(Vo in)
128 lambdaplot(i,j)= lambda(i,j).ineqnonlin(3)
129 end
130 end

Initial Guess

This is ran if no initial solution is available.

1 function [y]=InitialGuess(x,p,p2,p3)
2 %InitialGuess(x,p,p2,p3) Finds the values of the state
3 %vector that are consistent with the 5 first elements
4 FS g=x(1);FS DW=x(2);rin DW=x(3);FS=x(4);rin=x(5);
5 qin=p(1);Vo in=p(2);
6

7 %Gravity
8 [Vo t,Vo b]=gavity sep2(FS g,qin,Vo in);
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9 qb=(1-FS g)*qin;
10 qt=qin-qb;
11

12 %DeWaterer
13 qi DW=FS DW*qt; qo DW=(1-FS DW)*qt;
14 [Vo LPO DW,Vo HPO DW]=DeWaterer(qt,Vo t,FS DW,rin DW,p3);
15

16 %DeOiler
17 q3=qb+qo DW;
18 Vo 3=(Vo b*qb+Vo HPO DW*qo DW)/q3;
19 [Vo LPO DO,Vo HPO DO]=DeOiler(q3,Vo 3,FS,rin,p2);
20 qi=FS*q3; qo=q3-qi;
21 %Oil Product
22 qoil=qi DW+qi;
23 Vo oil=(Vo LPO DW*qi DW+Vo LPO DO*qi)/qoil;
24

25 %Output
26 x2=[qt;Vo t;qb;Vo b;qi DW;Vo LPO DW;qo DW;Vo HPO DW;...
27 q3;Vo 3; qi;Vo LPO DO; qo; Vo HPO DO; qoil; Vo oil]; % age; ...

Added ; between q3 and Vo 3, otherwise: error
28 y=[x;x2];
29

30 end

Cost Function

1 function [c]=CostFunc2(x,p,p2,p3)
2 qin=p(1);Vo in=p(2);
3

4 %OilInWater=x(18)*x(19);
5 OilInWater=x(19)*x(18);
6 WaterInOil=(1-x(21))*x(20);
7 %WaterInOil=(1-x(17))*x(16);
8 %c=10ˆ4*(WaterInOil+OilInWater);
9 %c=(1-x(21))*10;

10 priceoilinoil = 40;
11 pricewaterinoil = 20;
12 priceoilinwater= 10;
13 c=(-x(21)*x(20))*6.289*priceoilinoil ...
14 + x(20)*(1-x(21))*6.289*pricewaterinoil ...

+0.00001*(x(16)*x(17))ˆ2;...
15 % + x(19)*x(18)*3600*6.289*priceoilinwater/1000 ;%+0.0001*x(4)ˆ2;
16 end

Constraint function

1 function [c,ceq]=constraints2(x,p,p2,p3,element,Vo in)
2 FS g=x(1);FS DW=x(2);rin DW=x(3);FS=x(4);rin=x(5);
3 qin=p(1);Vo in=p(2);
4 Lsw=p2(1);Ro=p2(2);Ri=p2(3);
5 Lsw DW=p3(1);Ro DW=p3(2);Ri DW=p3(3);
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6

7 %Gravity
8 [Vo t,Vo b]=gavity sep2(FS g,qin,Vo in);
9 qb=(1-FS g)*qin;

10 qt=qin-qb;
11 %DeWaterer
12 qi DW=FS DW*qt; %Light phase out flow
13 qo DW=qt-qi DW; %Heavy phase out flow
14 ta DW=pi*Ri DWˆ2*Lsw DW/qi DW; % eq:3.20
15

16 in DW=[qt,Ro DW,Ri DW,Vo t,ta DW,rin DW,FS DW];
17 h DW=ta DW/10;
18 [T,X DW]=RK2(@swirl sep2 o,[0 ta DW],rin DW,h DW,in DW,element);
19 %options = odeset;
20 %[T,X DW]= ode45(@swirl sep2 o,[0 ta DW],rin DW,options,in DW,element);
21

22 [Vo LPO DW,Vo HPO DW]=DeWaterer(qt,Vo t,FS DW,rin DW,p3);
23

24 rout DW=X DW(end,1);
25

26 %DeOiler
27 q3=qb+qo DW;
28 Vo 3=(Vo b*qb+Vo HPO DW*qo DW)/q3;
29 qi=FS*q3; %Light phase out flow
30 qo=q3-qi; %Heavy phase out flow
31 ta=pi*(Roˆ2-Riˆ2)*Lsw/qo;
32

33 in=[q3,Ro,Ri,Vo 3,ta,rin,FS];
34 h=ta/10;
35 [T,X]=RK2(@swirl sep2,[0 ta],rin,h,in,element);
36 %options = odeset;
37 %[T,X]=ode45(@swirl sep2,[0 ta],rin,options,in,element);
38 rout=X(end,1);
39

40 [Vo LPO DO,Vo HPO DO]=DeOiler(q3,Vo 3,FS,rin,p2);
41

42 %Oil Product
43 qoil=qi DW+qi;
44 Vo oil=(Vo LPO DW*qi DW+Vo LPO DO*qi)/qoil;
45

46 %constraints
47

48 %In case of fixed flow splits:
49 FSzero=[FS g-0.33;FS DW-0.91;FS-0.15];
50

51 ExplEq=[qt;Vo t;qb;Vo b;qi DW;Vo LPO DW;...
52 qo DW;Vo HPO DW;q3;Vo 3;...
53 qi;Vo LPO DO; qo; Vo HPO DO; qoil; Vo oil]-x(6:21);
54 ceq=[(Ri DW-rout DW)/Ri DW;(rout-Ri)/Ri;ExplEq];
55 c=[0.7-Vo t;Vo 3-0.6;x(19)-0.01;0.0001-x(19)];%
56

57 %c=[0.7-Vo t;Vo 3-0.6];%
58 end

Integrator
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1 function [t,y]=RK2(ODEfile,tspan,yi,h,varargin)
2 %2nd-order Runge-Kutta
3 t=tspan(1):h:tspan(2);
4 if t(end)~=tspan(2)
5 t(end+1)=tspan(2);
6 end
7 d=diff(t);
8 yi=(yi(:).')';
9

10 y(:,1)=yi;
11 for i=1:length(t)-1
12 k1=d(i)*feval(ODEfile,t(i),y(:,i),varargin{:});
13 k2=d(i)*feval(ODEfile,t(i+1),y(:,i)+k1,varargin{:});
14 y(:,i+1)=y(:,i)+(k1+k2)/2;
15 end
16 y=y';
17 t=t';
18 end

A.2.3 Self optimizing Control Scripts
This section includes the files for self-optimizing control for the subsea case. Note
that there are two scripts called optimizer and optimizeru inside this main script,
these are the same script as the steady state optimizer script given in Appendix
A.2.2.

1 % Script for selfoptimizing control
2 % Calculates measurements through exact local method
3 clear all
4 clc
5 qin = 23/3600; % Define a nominal point, inflow
6 Vo in = 0.6; % Define a nominal point, oil fraction
7 % Nominal point
8 %[xnom, cost2] = optimizer(Vo in,qin);
9 load('xq23vo06.mat');% Using results from simulations as start points

10 %lambda = load('lambda1.mat');% Using lambda from simulation
11 xnom = x1;
12 lambda = 0.8817;
13 nu = 3; ny =16; nd = 2; nc=1;% Number of inputs, measurements, ...

disturbances
14 yc = 14; % Which y is linked to constrained u3?
15 nyc = ny-nc; %Total available measurements
16 nuc = nu-nc; %Total available inputs
17 %% Add 1% Disturbance to calculate F
18 di =1.01;
19 d1 = qin*di;
20 d2 = Vo in*di;
21 deltad1 = d1-qin;
22 deltad2 = d2-Vo in;
23 for i=1:2
24 if i == 1
25 [xd1, costd1] = optimizer(Vo in,d1,xnom);
26 else
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27 [xd2, costd2]= optimizer(d2,qin,xnom);
28 end
29 end
30 xd = squeeze([xd1 xd2])';
31 d = [deltad1 deltad2];
32 %% Calculates sensitivity matrix
33 F = zeros(ny,nd);
34 for j = 6:length(xnom)
35 for i = 1:length(d)
36 F(j-5,i) = (xd(j,i)-xnom(j))/d(i);
37 end
38 end
39 F(yc,:) = [];
40 %% Calculate Juu (Hessian)
41

42 costu = zeros(nu,nu);
43 %xud = zeros(nu,nu,nu);
44 udiff = [0.999 1 1.001];
45 unom = [xnom(1) xnom(2) xnom(4)];
46 x0 = squeeze(xnom);
47 teller = 0;
48 xud = zeros(21,9);
49 % Using small pertubations (+- 0.001) in three dimensions
50 for i=1:length(unom) %u1
51 for j =1:length(unom) %u2
52 %for k = 1:length(unom) u3 already constrained
53 %if i==2 | | j==2 % | | k==2
54 ceq= ['ceq=[(Ri DW-rout DW)/Ri DW;(rout-Ri)/Ri;ExplEq; ...

x(1)-' ...
55 ,num2str(unom(1)*udiff(i))...
56 ';x(2)-', num2str(unom(2)*udiff(j)),'];'];
57 filehandle(ceq); % Rewrite the constraint file
58 %if teller == 9
59 % x0 = squeeze(xud(:,8));
60 %end
61 x0(1) = ...

x0(1)*udiff(i);x0(2)=x0(2)*udiff(j);%x0(4)=x0(4)*udiff(k);
62 teller = teller +1 ;
63 %[xud(i,j,k), costu(i,j,k)] = optimizeru(Vo in,qin,x0);
64 %[xud(:,teller), costu(i,j,k)] = ...

optimizeru(Vo in,qin,x0) <-this one;
65 [xud(:,teller), costu(i,j)] = optimizeru(Vo in,qin,x0);
66 %else
67 % teller = teller + 1;
68 %end
69 %end
70 end
71 ceq = [''];
72 filehandle(ceq); % Reset the constraint file
73 x0 = squeeze(xnom);
74 end
75 % Calcualte the finite differences using central step method
76 Ju1u1 = (costu(3,2)-2*costu(2,2)+costu(1,2))/(0.001ˆ2);
77 Ju1u2 = (costu(3,3)-costu(3,1)-costu(1,3)+costu(1,1))/(4*0.001*0.001);
78 Ju2u2 = (costu(2,3)-2*costu(2,2)+costu(2,1))/(0.001ˆ2);
79 Ju2u1 = Ju1u2;
80 % Build Hessian matrix for the cost function
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81 Juu = [Ju1u1 Ju1u2;Ju2u1 Ju2u2];
82 %% Calculate Gain Matrix (Gy) = Jacobian of measurements/inputs
83

84 deltau = 0.001;
85 % Calculating differentials using finite differences
86 Gy1 = (xud(6:21,7)-xud(6:21,1))/(2*deltau); %deltay/deltau1
87 Gy2 = (xud(6:21,6)-xud(6:21,4))/(2*deltau); %deltay/deltau2
88 Gy = [Gy1 Gy2];
89 % Remove measurement correlated with u3 => x19 = y14
90 Gy(yc,:) = [];
91 %% Scaling Matrices, Y, M and H
92 noisevec1 = zeros(ny,1);%zeros(ny,1);
93 noisevec2 = zeros(ny,1);%zeros(ny,1);
94 % Insert measurement noise
95 % High accuracy: set w 1
96 for i=1:ny
97 if mod(i,2) == 1
98 noisevec1(i) = 0.01/3600; % Odd for q (UNIT: /3600 or NOT?)
99 else

100 noisevec1(i) = 0.001; % even for oilcut
101 end
102 end
103 % % Low accuracy: set w 2
104 for i=1:ny
105 if mod(i,2) == 1
106 noisevec2(i) = 0.4/3600 ;%0.1/3600; % Odd for q (UNIT: ...

/3600 or NOT?)
107 else
108 noisevec2(i) = 0.02;%0.01; % Even for oil-cut
109 end
110 end
111 % Keep u3 => y14
112 Wn14(1) = noisevec1(yc);
113 Wn14(2) = noisevec2(yc);
114 % Remove u3 => y14
115 noisevec2(yc) = [];
116 noisevec1(yc) = [];
117

118 % Insert disturbance noise here!!
119 Wd = diag([5/3600 0.2]); %[q alfa]
120 Wn1 = diag(noisevec1);
121 Wn2 = diag(noisevec2);
122 % Extend length of F and Gy
123 Y1 = [F*Wd Wn1];
124 Y2 = [F*Wd Wn2];
125

126 % H = Gy'*inv(Y*Y');
127 % M = ((Juu)ˆ(1/2))*inv(H*Gy)*H*Y;
128 % Lwc = (0.5*max(svd(M)))ˆ2;
129 % Lavg = 0.5*norm((Juuˆ(1/2)/(H*Gy))*H*Y,'fro')ˆ2;
130

131 % Test for convexity (positive semi definite)
132 posdef = find(eig(Juu) < 0);
133 if isempty(posdef) == false
134 disp('Hessian is not positive definite')
135 else
136 disp('Hessian is positive definite')
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137 end
138

139

140 %% Mesurement selection
141 Ydel1=Y1;
142 Ydel2=Y2;
143 for i=1:nu-1-nc
144 Ydel1=blkdiag(Ydel1,Y1);
145 Ydel2=blkdiag(Ydel2,Y2);
146 size(Ydel1);
147 size(Ydel2);
148 end
149 Fdel1=Ydel1*Ydel1';
150 Fdel2=Ydel2*Ydel2';
151 Fdel = blkdiag(Fdel1,Fdel2);
152

153 Juu12 = Juuˆ(1/2);
154

155 Gydel=[];
156 for i=1:nu-nc
157 Gydel=blkdiag(Gydel,Gy);
158 end
159 Gydel';
160 Gydel = [Gydel;Gydel];
161 Gyres = [Gy;Gy]; % For loss calculation only
162 Yres = [Y1;Y2]; % For loss calculation only
163 jdel=[];
164 for i=1:nu-nc
165 jdel=[jdel ; Juu12(:,i)];
166 end
167 Y = [Y1;Y2]; % For loss Calculation only
168 Gy1 = [Gy;Gy]; % For loss calculation only
169 % Create GUROBI model
170 %% Find the optimal number of measurements
171 M = 1e3; %Big-M
172 % Prices of measurements
173 Loss = zeros(1,ny-nc);
174 mprices = zeros(1,ny);
175 mprices2= zeros(1,ny);
176 for i = 1:ny
177 if mod(i,2) == 1
178 mprices(i) = 0.001; % Flow w1
179 mprices2(i) = 0.0005; %Flow w2
180 else
181 mprices(i) = 0.002; %Oil fraction w1
182 mprices2(i) = 0.001;% Oil fraction, w2
183 end
184 end
185 mprices(yc) = [];%removed constrained measurement
186 mprices2(yc) = [];
187 % Prices for the constraint
188 cprices = [mprices(2) mprices2(2)]; % w1 w2
189

190 %Define empty matrices
191 Hres=zeros(nuc,2*nyc,length(nuc:nyc));
192 Meas=zeros(2,nyc,length(nuc:nyc));
193 cmeas=zeros(1,2,length(nu-nc:ny));
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194 Hcons = zeros(2,2,length(nuc:nyc));
195 Hadj = zeros(nuc,2*nyc,length(nuc:nyc));
196 price = zeros(length(nuc:nyc),1); % price of measurements
197 loss = zeros(length(nuc:nyc),1); % Unconstrained loss
198 closs = zeros(length(nuc:nyc),1); % Constrained loss
199 cost = zeros(length(nuc:nyc),1); % price+loss+closs
200 ltot =zeros(length(nuc:nyc),1); % Total loss
201

202 subM = zeros(nyc*nuc*2,nyc*2);
203 % Selection criteria between each measurement set.
204 for i=1:nyc
205 subM(i,i+nyc) = 1;
206 subM(i+nyc,i+nyc)=1;
207 subM(i+2*nyc,i) = 1;
208 subM(i+3*nyc,i) = 1;
209 end
210 consumat = eye(nyc*nuc); %diag(helpvec)
211 sigma1Mconstr = -M*([repmat(eye(nyc),nu-1,1);zeros(nyc*nuc,nyc)]);
212 sigma2Mconstr = -M*([zeros(nyc*nuc,nyc);repmat(eye(nyc),nu-1,1)]);
213 tic
214 % MIQP Model for Gurobi starts here
215 for nm = nuc:nyc
216 Q=blkdiag(Fdel,zeros(nyc,nyc),zeros(nyc,nyc),0,zeros(4,4));
217 %H sigma w1 sigma w2 nm ...

sigma c H c
218

219 A= [Gydel' zeros(nuc*nuc,nyc) zeros(nuc*nuc,nyc) ...
zeros(nuc*nuc,1) zeros(4,4) ;

220 zeros(1,nuc*nyc*2) ones(1,nyc) ones(1,nyc) ...
-1 zeros(1,4);

221 -blkdiag(eye(nuc*nyc),eye(nuc*nyc)) sigma1Mconstr ...
sigma2Mconstr zeros(nuc*nyc*2,1) zeros(nuc*nyc*2,4) ;

222 blkdiag(eye(nuc*nyc),eye(nuc*nyc)) sigma1Mconstr ...
sigma2Mconstr zeros(nuc*nyc*2,1) zeros(nuc*nyc*2,4);

223 zeros(1,nuc*nyc*2) zeros(1,nyc) zeros(1,nyc) ...
1 zeros(1,4) ;

224 eye(nuc*nyc*2) M*subM zeros(nyc*nuc*2,1) ...
zeros(nuc*nyc*2,4);

225 -eye(nuc*nyc*2) M*subM zeros(nyc*nuc*2,1) ...
zeros(nuc*nyc*2,4);

226 zeros(1,nuc*nyc*2+2*nyc+1) 1 1 0 0;
227 zeros(1,nuc*nyc*2+2*nyc+1) 1 0 0 1;
228 zeros(1,nuc*nyc*2+2*nyc+1) 0 1 1 0;
229 zeros(1,nuc*nyc*2) mprices mprices2 0 ...

cprices(1) cprices(2) 0 0;
230 ];
231

232 c = [zeros(1,nuc*nyc*2) mprices mprices2 0 cprices(1) ...
cprices(2) 0 0];

233 c(end-1) = lambda*Wn14(1); % Back-off loss
234 c(end) = lambda*Wn14(2); % Back-off loss
235 lb=[-inf(nuc*nyc*2,1); zeros(nyc,1); zeros(nyc,1) ;0;0;0 ; ...

-inf ;-inf];
236 ub=[inf(nuc*nyc*2,1); ones(nyc,1) ; ones(nyc,1) ;nyc;1;1 ...

;inf;inf];
237

238 b= [jdel;
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239 0
240 zeros(2*nuc*nyc,1);
241 zeros(2*nuc*nyc,1)
242 nm
243 M*ones(2*nuc*nyc,1)
244 M*ones(2*nuc*nyc,1)
245 1
246 1
247 1
248 M;%0.0048 % Insert budget constraint here!
249 ];
250

251 %try
252 clear model;
253

254 model.varnames = namescript(nuc,ny,yc);
255 for n = 1:nyc
256 model.sos(n).type =1;
257 model.sos(n).index=[(4*nyc+n) (5*nyc+n)];
258 model.sos(n).weight=[1 1];
259 end
260

261 %
262 model.Q = 0.5*sparse(Q);
263 model.A = sparse(A);
264 model.obj = c;
265 model.rhs = b;
266 model.lb = lb;
267 model.ub = ub;
268 model.sense = ...

[repmat('=',nuc*nuc+1,1);repmat('<',2*nuc*nyc,1);...
269 repmat('<',2*nuc*nyc,1);'=';repmat('<',2*nuc*nyc,1);...
270 repmat('<',2*nuc*nyc,1);'=';'=';'=';'<'];
271 model.modelsense='min';
272 model.vtype = ...

[repmat('C',2*nuc*nyc,1);repmat('B',2*nyc,1);'I';...
273 repmat('B',2,1);repmat('B',2,1)];
274 gurobi write(model, 'qp2.lp');
275 % Parameters for better solving of the MIQP
276 params.Presolve = 2;
277 params.MIPFocus = 3;
278 params.NumericFocus = 3;
279 params.FeasibilityTol=1e-9;
280 params.OptimalityTol=1e-9;
281 params.IntFeasTol = 1e-9;
282 results = gurobi(model, params)
283 Hres(:,:,nm-nuc+1) = [results.x(1:nyc)' ...

results.x(2*nyc+1:3*nyc)';...
284 results.x(nyc+1:2*nyc)' ...

results.x(3*nyc+1:4*nyc)';...
285 ];
286 H = Hres(:,:,nm-nuc+1);
287 %Selection matrix
288 Meas(:,:,nm-nuc+1) = [results.x(4*nyc+1:5*nyc)';...
289 results.x(5*nyc+1:6*nyc)'];
290

291 cmeas(:,:,nm-(nuc)+1) = [results.x(end-3:end-2)'];
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292 Hcons(:,:,nm-nuc+1)= ...
[results.x(end-3:end-2)';results.x(end-1:end)'];

293 %cost(nm-nuc+1)= results.x'*Q*results.x+model.obj*results.x;
294 loss1= 0.5*norm(Juu12/(H*Gyres)*H*Yres,'fro')ˆ2; % ...

Unconstrained loss
295 loss(nm-(nu-nc)+1)= ...

(results.x'*Q*results.x)/2;%+model.obj*results.x;
296 % Test for error in the loss calculation: Optimizer vs.
297 % Exact local method
298 if abs(loss(nm-(nu-nc)+1)-loss1) > 1e-3 && nm~=2
299 disp('Error in unconstrained loss calculation')
300 break
301 end
302

303

304 closs(nm-(nuc)+1) = c(end-1:end)*results.x(end-1:end);
305 price(nm-(nuc)+1) = c(1:end-2)*results.x(1:end-2);
306 ltot(nm-(nuc)+1) = loss(nm-(nuc)+1) + closs(nm-(nuc)+1);
307 cost(nm-(nuc)+1) = loss(nm-(nuc)+1)+closs(nm-(nuc)+1)...
308 +price(nm-(nuc)+1);
309 end
310 toc

Re-write the constraint file

1 function filehandle(ceq)
2 clear fin
3 fin = fopen('constraintsu.m','r+');
4 replaceline = 54;
5 newline = ceq;
6 %endfile = 'c=[0.7-Vo t;Vo 3-0.6;x(19)-0.03;0.001-x(19)];%';
7 endfile = 'c=[0.7-Vo t;Vo 3-0.6];%';% <- use this if unconstrained
8 %endfile = 'c=[0.7-Vo t;Vo 3-0.6;x(19)-0.01];'; %Use this if ...

constrained
9 endfile2 = 'end';

10 for k=1:(replaceline-1)
11 fgetl(fin);
12 end
13 fseek(fin,0,'cof');
14 fprintf(fin,'%s\n',newline);
15 fprintf(fin,'%s\n',endfile);
16 fprintf(fin,'%s\n',endfile2);
17 fclose(fin);
18 clear fin constraintsu endfile endfile2
19 %pause(2);

100



Appendix B
GUROBI Optimization Problem
Model Files

This appendix shows the optimization problems in a human readable format pro-
vided from the Gurobi solver. The file includes the cost functions with all bounds
and constraints.

B.1 Unconstrained Dummy Problem

1 Minimize
2 0.02 C16 + 0.02 C17 + 0.02 C18 + 0.02 C19 + 0.2 C20 + 0.2 C21 + ...

0.2 C22
3 + 0.2 C23 + [ 2.02 C0 ˆ2 + 4 C0 * C1 - 36 C0 * C2 + 36 C0 * C3
4 + 2.02 C1 ˆ2 - 36 C1 * C2 + 36 C1 * C3 + 162.02 C2 ˆ2 - 324 C2 * C3
5 + 162.02 C3 ˆ2 + 2.02 C4 ˆ2 + 4 C4 * C5 - 36 C4 * C6 + 36 C4 * C7
6 + 2.02 C5 ˆ2 - 36 C5 * C6 + 36 C5 * C7 + 162.02 C6 ˆ2 - 324 C6 * C7
7 + 162.02 C7 ˆ2 + 2.0002 C8 ˆ2 + 4 C8 * C9 - 36 C8 * C10 + 36 C8 ...

* C11
8 + 2.0002 C9 ˆ2 - 36 C9 * C10 + 36 C9 * C11 + 162.0002 C10 ˆ2
9 - 324 C10 * C11 + 162.0002 C11 ˆ2 + 2.0002 C12 ˆ2 + 4 C12 * C13

10 - 36 C12 * C14 + 36 C12 * C15 + 2.0002 C13 ˆ2 - 36 C13 * C14
11 + 36 C13 * C15 + 162.0002 C14 ˆ2 - 324 C14 * C15 + 162.0002 C15 ˆ2
12 ] / 2
13 Subject To
14 R0: 11 C0 + 10 C1 + C2 + 11 C8 + 10 C9 + C10 = 11.5965512114594
15 R1: 10 C0 + 9 C1 + C3 + 10 C8 + 9 C9 + C11 = 10.46518036156088
16 R2: 11 C4 + 10 C5 + C6 + 11 C12 + 10 C13 + C14 = 10.46518036156088
17 R3: 10 C4 + 9 C5 + C7 + 10 C12 + 9 C13 + C15 = 9.61665222413707
18 R4: C16 + C17 + C18 + C19 + C20 + C21 + C22 + C23 - C24 = 0
19 R5: - C0 - 100 C16 <= 0
20 R6: - C1 - 100 C17 <= 0
21 R7: - C2 - 100 C18 <= 0
22 R8: - C3 - 100 C19 <= 0
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23 R9: - C4 - 100 C16 <= 0
24 R10: - C5 - 100 C17 <= 0
25 R11: - C6 - 100 C18 <= 0
26 R12: - C7 - 100 C19 <= 0
27 R13: - C8 - 100 C20 <= 0
28 R14: - C9 - 100 C21 <= 0
29 R15: - C10 - 100 C22 <= 0
30 R16: - C11 - 100 C23 <= 0
31 R17: - C12 - 100 C20 <= 0
32 R18: - C13 - 100 C21 <= 0
33 R19: - C14 - 100 C22 <= 0
34 R20: - C15 - 100 C23 <= 0
35 R21: C0 - 100 C16 <= 0
36 R22: C1 - 100 C17 <= 0
37 R23: C2 - 100 C18 <= 0
38 R24: C3 - 100 C19 <= 0
39 R25: C4 - 100 C16 <= 0
40 R26: C5 - 100 C17 <= 0
41 R27: C6 - 100 C18 <= 0
42 R28: C7 - 100 C19 <= 0
43 R29: C8 - 100 C20 <= 0
44 R30: C9 - 100 C21 <= 0
45 R31: C10 - 100 C22 <= 0
46 R32: C11 - 100 C23 <= 0
47 R33: C12 - 100 C20 <= 0
48 R34: C13 - 100 C21 <= 0
49 R35: C14 - 100 C22 <= 0
50 R36: C15 - 100 C23 <= 0
51 R37: C24 = 4
52 R38: C0 + 100 C20 <= 100
53 R39: C1 + 100 C21 <= 100
54 R40: C2 + 100 C22 <= 100
55 R41: C3 + 100 C23 <= 100
56 R42: C4 + 100 C20 <= 100
57 R43: C5 + 100 C21 <= 100
58 R44: C6 + 100 C22 <= 100
59 R45: C7 + 100 C23 <= 100
60 R46: C8 + 100 C16 <= 100
61 R47: C9 + 100 C17 <= 100
62 R48: C10 + 100 C18 <= 100
63 R49: C11 + 100 C19 <= 100
64 R50: C12 + 100 C16 <= 100
65 R51: C13 + 100 C17 <= 100
66 R52: C14 + 100 C18 <= 100
67 R53: C15 + 100 C19 <= 100
68 R54: - C0 + 100 C20 <= 100
69 R55: - C1 + 100 C21 <= 100
70 R56: - C2 + 100 C22 <= 100
71 R57: - C3 + 100 C23 <= 100
72 R58: - C4 + 100 C20 <= 100
73 R59: - C5 + 100 C21 <= 100
74 R60: - C6 + 100 C22 <= 100
75 R61: - C7 + 100 C23 <= 100
76 R62: - C8 + 100 C16 <= 100
77 R63: - C9 + 100 C17 <= 100
78 R64: - C10 + 100 C18 <= 100
79 R65: - C11 + 100 C19 <= 100
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80 R66: - C12 + 100 C16 <= 100
81 R67: - C13 + 100 C17 <= 100
82 R68: - C14 + 100 C18 <= 100
83 R69: - C15 + 100 C19 <= 100
84 Bounds
85 C0 free
86 C1 free
87 C2 free
88 C3 free
89 C4 free
90 C5 free
91 C6 free
92 C7 free
93 C8 free
94 C9 free
95 C10 free
96 C11 free
97 C12 free
98 C13 free
99 C14 free

100 C15 free
101 C24 <= 4
102 Binaries
103 C16 C17 C18 C19 C20 C21 C22 C23
104 Generals
105 C24
106 End

B.2 Constrained Dummy Problem

1 Minimize
2 0.2 $y 1w 1$ + 0.2 $y 2w 1$ + 0.2 $y 3w 1$ + 0.2 $y 4w 1$ + 0.02 ...

$y 1w 2$
3 + 0.02 $y 2w 2$ + 0.02 $y 3w 2$ + 0.02 $y 4w 2$ + 0.2 $y 5w 1$
4 + 0.02 $y 5w 2$ + 0.1 H y5u1w1 + H y5u1w2 + [ 0.52 H y1u2w1 ˆ2
5 - 2 H y1u2w1 * H y2u2w1 - 5.3 H y1u2w1 * H y3u2w1
6 - 10.5 H y1u2w1 * H y4u2w1 + 2.02 H y2u2w1 ˆ2 + 10.6 H y2u2w1 * ...

H y3u2w1
7 + 21 H y2u2w1 * H y4u2w1 + 14.065 H y3u2w1 ˆ2
8 + 55.65 H y3u2w1 * H y4u2w1 + 55.145 H y4u2w1 ˆ2 + 2.5 H y1u2w2 ˆ2
9 - 2 H y1u2w2 * H y2u2w2 - 5.3 H y1u2w2 * H y3u2w2

10 - 10.5 H y1u2w2 * H y4u2w2 + 4 H y2u2w2 ˆ2 + 10.6 H y2u2w2 * ...
H y3u2w2

11 + 21 H y2u2w2 * H y4u2w2 + 16.045 H y3u2w2 ˆ2
12 + 55.65 H y3u2w2 * H y4u2w2 + 57.125 H y4u2w2 ˆ2 ] / 2
13 Subject To
14 R0: H y2u2w1 + 2 H y3u2w1 + 3 H y4u2w1 + H y2u2w2 + 2 H y3u2w2
15 + 3 H y4u2w2 = 1
16 R1: $y 1w 1$ + $y 2w 1$ + $y 3w 1$ + $y 4w 1$ + $y 1w 2$ + $y 2w 2$
17 + $y 3w 2$ + $y 4w 2$ - nm = 0
18 R2: - H y1u2w1 - 500 $y 1w 1$ <= 0
19 R3: - H y2u2w1 - 500 $y 2w 1$ <= 0
20 R4: - H y3u2w1 - 500 $y 3w 1$ <= 0
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21 R5: - H y4u2w1 - 500 $y 4w 1$ <= 0
22 R6: - H y1u2w2 - 500 $y 1w 2$ <= 0
23 R7: - H y2u2w2 - 500 $y 2w 2$ <= 0
24 R8: - H y3u2w2 - 500 $y 3w 2$ <= 0
25 R9: - H y4u2w2 - 500 $y 4w 2$ <= 0
26 R10: H y1u2w1 - 500 $y 1w 1$ <= 0
27 R11: H y2u2w1 - 500 $y 2w 1$ <= 0
28 R12: H y3u2w1 - 500 $y 3w 1$ <= 0
29 R13: H y4u2w1 - 500 $y 4w 1$ <= 0
30 R14: H y1u2w2 - 500 $y 1w 2$ <= 0
31 R15: H y2u2w2 - 500 $y 2w 2$ <= 0
32 R16: H y3u2w2 - 500 $y 3w 2$ <= 0
33 R17: H y4u2w2 - 500 $y 4w 2$ <= 0
34 R18: nm = 4
35 R19: H y1u2w1 + 500 $y 1w 2$ <= 500
36 R20: H y2u2w1 + 500 $y 2w 2$ <= 500
37 R21: H y3u2w1 + 500 $y 3w 2$ <= 500
38 R22: H y4u2w1 + 500 $y 4w 2$ <= 500
39 R23: H y1u2w2 + 500 $y 1w 1$ <= 500
40 R24: H y2u2w2 + 500 $y 2w 1$ <= 500
41 R25: H y3u2w2 + 500 $y 3w 1$ <= 500
42 R26: H y4u2w2 + 500 $y 4w 1$ <= 500
43 R27: - H y1u2w1 + 500 $y 1w 2$ <= 500
44 R28: - H y2u2w1 + 500 $y 2w 2$ <= 500
45 R29: - H y3u2w1 + 500 $y 3w 2$ <= 500
46 R30: - H y4u2w1 + 500 $y 4w 2$ <= 500
47 R31: - H y1u2w2 + 500 $y 1w 1$ <= 500
48 R32: - H y2u2w2 + 500 $y 2w 1$ <= 500
49 R33: - H y3u2w2 + 500 $y 3w 1$ <= 500
50 R34: - H y4u2w2 + 500 $y 4w 1$ <= 500
51 R35: H y5u1w1 + H y5u1w2 = 1
52 R36: $y 5w 1$ + $y 5w 2$ = 1
53 Bounds
54 H y1u2w1 free
55 H y2u2w1 free
56 H y3u2w1 free
57 H y4u2w1 free
58 H y1u2w2 free
59 H y2u2w2 free
60 H y3u2w2 free
61 H y4u2w2 free
62 nm <= 4
63 Binaries
64 $y 1w 1$ $y 2w 1$ $y 3w 1$ $y 4w 1$ $y 1w 2$ $y 2w 2$ $y 3w 2$ ...

$y 4w 2$
65 $y 5w 1$ $y 5w 2$ H y5u1w1 H y5u1w2
66 Generals
67 nm
68 SOS
69 s0: S1 :: $y 5w 2$:1 H y5u1w1:1
70 End
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B.3 Subsea Case: Inactive Constraint and Budget
Constraint

1 Minimize
2 0.1 sigma y1w1 + sigma y2w1 + 0.1 sigma y3w1 + sigma y4w1 + 0.1 ...

sigma y5w1
3 + sigma y6w1 + 0.1 sigma y7w1 + sigma y8w1 + 0.1 sigma y9w1
4 + sigma y10w1 + 0.1 sigma y11w1 + sigma y12w1 + 0.1 sigma y13w1
5 + 0.1 sigma y15w1 + sigma y16w1 + 0.05 sigma y1w2 + 0.1 sigma y2w2
6 + 0.05 sigma y3w2 + 0.1 sigma y4w2 + 0.05 sigma y5w2 + 0.1 ...

sigma y6w2
7 + 0.05 sigma y7w2 + 0.1 sigma y8w2 + 0.05 sigma y9w2 + 0.1 ...

sigma y10w2
8 + 0.05 sigma y11w2 + 0.1 sigma y12w2 + 0.05 sigma y13w2
9 + 0.05 sigma y15w2 + 0.1 sigma y16w2 + 0.5 sigma y14w1

10 + 0.05 sigma y14w2 + 4.6876e-08 H y14u3w1 + 4.6876e-07 H y14u3w2 ...
+ [

11 2.05106e-06 H y1u1w1 ˆ2 - 0.0011758790300657 H y1u1w1 * H y2u1w1
12 - 2.2176e-07 H y1u1w1 * H y3u1w1
13 - 1.0784676742445517e-04 H y1u1w1 * H y4u1w1
14 + 3.4765e-06 H y1u1w1 * H y5u1w1
15 - 0.00112207174454022 H y1u1w1 * H y6u1w1
16 + 6.25246e-07 H y1u1w1 * H y7u1w1
17 - 0.00104639528555011 H y1u1w1 * H y8u1w1
18 + 4.03486e-07 H y1u1w1 * H y9u1w1 - 0.0001013 H y1u1w1 * H y10u1w1
19 - 5.46843e-07 H y1u1w1 * H y11u1w1
20 - 1.6862640249887278e-04 H y1u1w1 * H y12u1w1
21 + 9.50329e-07 H y1u1w1 * H y13u1w1 + 2.92965e-06 H y1u1w1 * ...

H y15u1w1
22 - 6.4005539531045608e-04 H y1u1w1 * H y16u1w1
23 + 0.2560617341559827 H y2u1w1 ˆ2
24 + 2.4487874710108203e-04 H y2u1w1 * H y3u1w1
25 + 0.1278197511216987 H y2u1w1 * H y4u1w1
26 - 0.000786141 H y2u1w1 * H y5u1w1
27 + 0.3936303332784352 H y2u1w1 * H y6u1w1
28 - 0.000389738 H y2u1w1 * H y7u1w1
29 + 0.9451428507673202 H y2u1w1 * H y8u1w1
30 - 1.4485927075530913e-04 H y2u1w1 * H y9u1w1
31 + 0.1337454565160713 H y2u1w1 * H y10u1w1
32 + 7.1829771912962576e-04 H y2u1w1 * H y11u1w1
33 + 0.1813111469841493 H y2u1w1 * H y12u1w1
34 - 0.000863157 H y2u1w1 * H y13u1w1 - 6.78433e-05 H y2u1w1 * ...

H y15u1w1
35 + 0.2331254765029068 H y2u1w1 * H y16u1w1 + 1.00094e-07 H y3u1w1 ˆ2
36 + 1.062113515606881e-04 H y3u1w1 * H y4u1w1
37 + 3.00931e-08 H y3u1w1 * H y5u1w1
38 + 1.3520449449874706e-04 H y3u1w1 * H y6u1w1
39 - 2.51853e-07 H y3u1w1 * H y7u1w1
40 + 7.2489481218670148e-04 H y3u1w1 * H y8u1w1
41 - 5.20508e-08 H y3u1w1 * H y9u1w1 + 0.00011394 H y3u1w1 * H y10u1w1
42 + 6.1125e-07 H y3u1w1 * H y11u1w1
43 + 1.468591868055178e-04 H y3u1w1 * H y12u1w1
44 - 6.63301e-07 H y3u1w1 * H y13u1w1 + 6.41343e-07 H y3u1w1 * ...

H y15u1w1
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45 + 8.60218e-05 H y3u1w1 * H y16u1w1 + 0.0282441149930041 H y4u1w1 ˆ2
46 + 2.51339e-05 H y4u1w1 * H y5u1w1
47 + 0.0693420227334188 H y4u1w1 * H y6u1w1
48 - 1.3298069215577417e-04 H y4u1w1 * H y7u1w1
49 + 0.3847118906703809 H y4u1w1 * H y8u1w1
50 - 2.67693e-05 H y4u1w1 * H y9u1w1
51 + 0.0606339992451147 H y4u1w1 * H y10u1w1
52 + 3.2527239935002455e-04 H y4u1w1 * H y11u1w1
53 + 0.078053131902459 H y4u1w1 * H y12u1w1
54 - 3.5204173994488654e-04 H y4u1w1 * H y13u1w1
55 + 3.5040632408146104e-04 H y4u1w1 * H y15u1w1
56 + 0.0443100304573928 H y4u1w1 * H y16u1w1 + 1.60005e-06 H y5u1w1 ˆ2
57 - 8.6448934890581382e-04 H y5u1w1 * H y6u1w1
58 + 2.76784e-07 H y5u1w1 * H y7u1w1
59 - 1.1097248953901862e-04 H y5u1w1 * H y8u1w1
60 + 3.06877e-07 H y5u1w1 * H y9u1w1 + 4.00665e-05 H y5u1w1 * H y10u1w1
61 + 2.11846e-07 H y5u1w1 * H y11u1w1 + 1.69959e-05 H y5u1w1 * ...

H y12u1w1
62 + 9.50305e-08 H y5u1w1 * H y13u1w1 + 3.41156e-06 H y5u1w1 * ...

H y15u1w1
63 - 0.000482794 H y5u1w1 * H y16u1w1 + 0.1682697096011319 H y6u1w1 ˆ2
64 - 2.5758239563441348e-04 H y6u1w1 * H y7u1w1
65 + 0.5514979461831324 H y6u1w1 * H y8u1w1
66 - 0.000122378 H y6u1w1 * H y9u1w1
67 + 0.0707589478282818 H y6u1w1 * H y10u1w1
68 + 0.000380456 H y6u1w1 * H y11u1w1
69 + 0.1007971916201678 H y6u1w1 * H y12u1w1
70 - 5.0283386692081644e-04 H y6u1w1 * H y13u1w1
71 - 4.8403338312081766e-04 H y6u1w1 * H y15u1w1
72 + 0.1955001364558541 H y6u1w1 * H y16u1w1 + 1.74424e-07 H y7u1w1 ˆ2
73 - 9.3542279601113699e-04 H y7u1w1 * H y8u1w1
74 + 9.66093e-08 H y7u1w1 * H y9u1w1
75 - 1.4136654198423814e-04 H y7u1w1 * H y10u1w1
76 - 7.5869e-07 H y7u1w1 * H y11u1w1
77 - 1.8562234891509341e-04 H y7u1w1 * H y12u1w1
78 + 8.55299e-07 H y7u1w1 * H y13u1w1 - 4.81906e-07 H y7u1w1 * ...

H y15u1w1
79 - 1.572614535664045e-04 H y7u1w1 * H y16u1w1
80 + 1.322567291666435 H y8u1w1 ˆ2 - 0.000210528 H y8u1w1 * H y9u1w1
81 + 0.4118031201287415 H y8u1w1 * H y10u1w1
82 + 0.0022094002926212 H y8u1w1 * H y11u1w1
83 + 0.5331673263470015 H y8u1w1 * H y12u1w1
84 - 0.00241992827644428 H y8u1w1 * H y13u1w1
85 + 0.00209842780308302 H y8u1w1 * H y15u1w1
86 + 0.3462502596962378 H y8u1w1 * H y16u1w1 + 2.24722e-08 H y9u1w1 ˆ2
87 - 2.74266e-05 H y9u1w1 * H y10u1w1 - 1.4744e-07 H y9u1w1 * H y11u1w1
88 - 3.87632e-05 H y9u1w1 * H y12u1w1 + 1.91998e-07 H y9u1w1 * ...

H y13u1w1
89 + 1.59437e-07 H y9u1w1 * H y15u1w1 - 7.12397e-05 H y9u1w1 * ...

H y16u1w1
90 + 0.032571026112372 H y10u1w1 ˆ2
91 + 3.4943252974706013e-04 H y10u1w1 * H y11u1w1
92 + 0.0837117645940744 H y10u1w1 * H y12u1w1
93 - 3.7685910544789462e-04 H y10u1w1 * H y13u1w1
94 + 0.000389499 H y10u1w1 * H y15u1w1
95 + 0.0455012061103151 H y10u1w1 * H y16u1w1 + 9.3743e-07 ...

H y11u1w1 ˆ2
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96 + 4.4909076423386112e-04 H y11u1w1 * H y12u1w1
97 - 2.02191e-06 H y11u1w1 * H y13u1w1 + 2.08632e-06 H y11u1w1 * ...

H y15u1w1
98 + 2.4457940120790401e-04 H y11u1w1 * H y16u1w1
99 + 0.0539775445068836 H y12u1w1 ˆ2 - 0.000487854 H y12u1w1 * ...

H y13u1w1
100 + 4.6608671065024329e-04 H y12u1w1 * H y15u1w1
101 + 0.064022876007293 H y12u1w1 * H y16u1w1 + 1.10715e-06 ...

H y13u1w1 ˆ2
102 - 1.92688e-06 H y13u1w1 * H y15u1w1 - 0.000315819 H y13u1w1 * ...

H y16u1w1
103 + 2.74913e-06 H y15u1w1 ˆ2
104 - 2.3821454053607547e-04 H y15u1w1 * H y16u1w1
105 + 0.0569778797619619 H y16u1w1 ˆ2 + 2.05106e-06 H y1u2w1 ˆ2
106 - 0.0011758790300657 H y1u2w1 * H y2u2w1
107 - 2.2176e-07 H y1u2w1 * H y3u2w1
108 - 1.0784676742445517e-04 H y1u2w1 * H y4u2w1
109 + 3.4765e-06 H y1u2w1 * H y5u2w1
110 - 0.00112207174454022 H y1u2w1 * H y6u2w1
111 + 6.25246e-07 H y1u2w1 * H y7u2w1
112 - 0.00104639528555011 H y1u2w1 * H y8u2w1
113 + 4.03486e-07 H y1u2w1 * H y9u2w1 - 0.0001013 H y1u2w1 * H y10u2w1
114 - 5.46843e-07 H y1u2w1 * H y11u2w1
115 - 1.6862640249887278e-04 H y1u2w1 * H y12u2w1
116 + 9.50329e-07 H y1u2w1 * H y13u2w1 + 2.92965e-06 H y1u2w1 * ...

H y15u2w1
117 - 6.4005539531045608e-04 H y1u2w1 * H y16u2w1
118 + 0.2560617341559827 H y2u2w1 ˆ2
119 + 2.4487874710108203e-04 H y2u2w1 * H y3u2w1
120 + 0.1278197511216987 H y2u2w1 * H y4u2w1
121 - 0.000786141 H y2u2w1 * H y5u2w1
122 + 0.3936303332784352 H y2u2w1 * H y6u2w1
123 - 0.000389738 H y2u2w1 * H y7u2w1
124 + 0.9451428507673202 H y2u2w1 * H y8u2w1
125 - 1.4485927075530913e-04 H y2u2w1 * H y9u2w1
126 + 0.1337454565160713 H y2u2w1 * H y10u2w1
127 + 7.1829771912962576e-04 H y2u2w1 * H y11u2w1
128 + 0.1813111469841493 H y2u2w1 * H y12u2w1
129 - 0.000863157 H y2u2w1 * H y13u2w1 - 6.78433e-05 H y2u2w1 * ...

H y15u2w1
130 + 0.2331254765029068 H y2u2w1 * H y16u2w1 + 1.00094e-07 H y3u2w1 ˆ2
131 + 1.062113515606881e-04 H y3u2w1 * H y4u2w1
132 + 3.00931e-08 H y3u2w1 * H y5u2w1
133 + 1.3520449449874706e-04 H y3u2w1 * H y6u2w1
134 - 2.51853e-07 H y3u2w1 * H y7u2w1
135 + 7.2489481218670148e-04 H y3u2w1 * H y8u2w1
136 - 5.20508e-08 H y3u2w1 * H y9u2w1 + 0.00011394 H y3u2w1 * H y10u2w1
137 + 6.1125e-07 H y3u2w1 * H y11u2w1
138 + 1.468591868055178e-04 H y3u2w1 * H y12u2w1
139 - 6.63301e-07 H y3u2w1 * H y13u2w1 + 6.41343e-07 H y3u2w1 * ...

H y15u2w1
140 + 8.60218e-05 H y3u2w1 * H y16u2w1 + 0.0282441149930041 H y4u2w1 ˆ2
141 + 2.51339e-05 H y4u2w1 * H y5u2w1
142 + 0.0693420227334188 H y4u2w1 * H y6u2w1
143 - 1.3298069215577417e-04 H y4u2w1 * H y7u2w1
144 + 0.3847118906703809 H y4u2w1 * H y8u2w1
145 - 2.67693e-05 H y4u2w1 * H y9u2w1
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146 + 0.0606339992451147 H y4u2w1 * H y10u2w1
147 + 3.2527239935002455e-04 H y4u2w1 * H y11u2w1
148 + 0.078053131902459 H y4u2w1 * H y12u2w1
149 - 3.5204173994488654e-04 H y4u2w1 * H y13u2w1
150 + 3.5040632408146104e-04 H y4u2w1 * H y15u2w1
151 + 0.0443100304573928 H y4u2w1 * H y16u2w1 + 1.60005e-06 H y5u2w1 ˆ2
152 - 8.6448934890581382e-04 H y5u2w1 * H y6u2w1
153 + 2.76784e-07 H y5u2w1 * H y7u2w1
154 - 1.1097248953901862e-04 H y5u2w1 * H y8u2w1
155 + 3.06877e-07 H y5u2w1 * H y9u2w1 + 4.00665e-05 H y5u2w1 * H y10u2w1
156 + 2.11846e-07 H y5u2w1 * H y11u2w1 + 1.69959e-05 H y5u2w1 * ...

H y12u2w1
157 + 9.50305e-08 H y5u2w1 * H y13u2w1 + 3.41156e-06 H y5u2w1 * ...

H y15u2w1
158 - 0.000482794 H y5u2w1 * H y16u2w1 + 0.1682697096011319 H y6u2w1 ˆ2
159 - 2.5758239563441348e-04 H y6u2w1 * H y7u2w1
160 + 0.5514979461831324 H y6u2w1 * H y8u2w1
161 - 0.000122378 H y6u2w1 * H y9u2w1
162 + 0.0707589478282818 H y6u2w1 * H y10u2w1
163 + 0.000380456 H y6u2w1 * H y11u2w1
164 + 0.1007971916201678 H y6u2w1 * H y12u2w1
165 - 5.0283386692081644e-04 H y6u2w1 * H y13u2w1
166 - 4.8403338312081766e-04 H y6u2w1 * H y15u2w1
167 + 0.1955001364558541 H y6u2w1 * H y16u2w1 + 1.74424e-07 H y7u2w1 ˆ2
168 - 9.3542279601113699e-04 H y7u2w1 * H y8u2w1
169 + 9.66093e-08 H y7u2w1 * H y9u2w1
170 - 1.4136654198423814e-04 H y7u2w1 * H y10u2w1
171 - 7.5869e-07 H y7u2w1 * H y11u2w1
172 - 1.8562234891509341e-04 H y7u2w1 * H y12u2w1
173 + 8.55299e-07 H y7u2w1 * H y13u2w1 - 4.81906e-07 H y7u2w1 * ...

H y15u2w1
174 - 1.572614535664045e-04 H y7u2w1 * H y16u2w1
175 + 1.322567291666435 H y8u2w1 ˆ2 - 0.000210528 H y8u2w1 * H y9u2w1
176 + 0.4118031201287415 H y8u2w1 * H y10u2w1
177 + 0.0022094002926212 H y8u2w1 * H y11u2w1
178 + 0.5331673263470015 H y8u2w1 * H y12u2w1
179 - 0.00241992827644428 H y8u2w1 * H y13u2w1
180 + 0.00209842780308302 H y8u2w1 * H y15u2w1
181 + 0.3462502596962378 H y8u2w1 * H y16u2w1 + 2.24722e-08 H y9u2w1 ˆ2
182 - 2.74266e-05 H y9u2w1 * H y10u2w1 - 1.4744e-07 H y9u2w1 * H y11u2w1
183 - 3.87632e-05 H y9u2w1 * H y12u2w1 + 1.91998e-07 H y9u2w1 * ...

H y13u2w1
184 + 1.59437e-07 H y9u2w1 * H y15u2w1 - 7.12397e-05 H y9u2w1 * ...

H y16u2w1
185 + 0.032571026112372 H y10u2w1 ˆ2
186 + 3.4943252974706013e-04 H y10u2w1 * H y11u2w1
187 + 0.0837117645940744 H y10u2w1 * H y12u2w1
188 - 3.7685910544789462e-04 H y10u2w1 * H y13u2w1
189 + 0.000389499 H y10u2w1 * H y15u2w1
190 + 0.0455012061103151 H y10u2w1 * H y16u2w1 + 9.3743e-07 ...

H y11u2w1 ˆ2
191 + 4.4909076423386112e-04 H y11u2w1 * H y12u2w1
192 - 2.02191e-06 H y11u2w1 * H y13u2w1 + 2.08632e-06 H y11u2w1 * ...

H y15u2w1
193 + 2.4457940120790401e-04 H y11u2w1 * H y16u2w1
194 + 0.0539775445068836 H y12u2w1 ˆ2 - 0.000487854 H y12u2w1 * ...

H y13u2w1
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195 + 4.6608671065024329e-04 H y12u2w1 * H y15u2w1
196 + 0.064022876007293 H y12u2w1 * H y16u2w1 + 1.10715e-06 ...

H y13u2w1 ˆ2
197 - 1.92688e-06 H y13u2w1 * H y15u2w1 - 0.000315819 H y13u2w1 * ...

H y16u2w1
198 + 2.74913e-06 H y15u2w1 ˆ2
199 - 2.3821454053607547e-04 H y15u2w1 * H y16u2w1
200 + 0.0569778797619619 H y16u2w1 ˆ2 + 2.05164e-06 H y1u1w2 ˆ2
201 - 0.0011758790300657 H y1u1w2 * H y2u1w2
202 - 2.2176e-07 H y1u1w2 * H y3u1w2
203 - 1.0784676742445517e-04 H y1u1w2 * H y4u1w2
204 + 3.4765e-06 H y1u1w2 * H y5u1w2
205 - 0.00112207174454022 H y1u1w2 * H y6u1w2
206 + 6.25246e-07 H y1u1w2 * H y7u1w2
207 - 0.00104639528555011 H y1u1w2 * H y8u1w2
208 + 4.03486e-07 H y1u1w2 * H y9u1w2 - 0.0001013 H y1u1w2 * H y10u1w2
209 - 5.46843e-07 H y1u1w2 * H y11u1w2
210 - 1.6862640249887278e-04 H y1u1w2 * H y12u1w2
211 + 9.50329e-07 H y1u1w2 * H y13u1w2 + 2.92965e-06 H y1u1w2 * ...

H y15u1w2
212 - 6.4005539531045608e-04 H y1u1w2 * H y16u1w2
213 + 0.2561607341559827 H y2u1w2 ˆ2
214 + 2.4487874710108203e-04 H y2u1w2 * H y3u1w2
215 + 0.1278197511216987 H y2u1w2 * H y4u1w2
216 - 0.000786141 H y2u1w2 * H y5u1w2
217 + 0.3936303332784352 H y2u1w2 * H y6u1w2
218 - 0.000389738 H y2u1w2 * H y7u1w2
219 + 0.9451428507673202 H y2u1w2 * H y8u1w2
220 - 1.4485927075530913e-04 H y2u1w2 * H y9u1w2
221 + 0.1337454565160713 H y2u1w2 * H y10u1w2
222 + 7.1829771912962576e-04 H y2u1w2 * H y11u1w2
223 + 0.1813111469841493 H y2u1w2 * H y12u1w2
224 - 0.000863157 H y2u1w2 * H y13u1w2 - 6.78433e-05 H y2u1w2 * ...

H y15u1w2
225 + 0.2331254765029068 H y2u1w2 * H y16u1w2 + 1.00673e-07 H y3u1w2 ˆ2
226 + 1.062113515606881e-04 H y3u1w2 * H y4u1w2
227 + 3.00931e-08 H y3u1w2 * H y5u1w2
228 + 1.3520449449874706e-04 H y3u1w2 * H y6u1w2
229 - 2.51853e-07 H y3u1w2 * H y7u1w2
230 + 7.2489481218670148e-04 H y3u1w2 * H y8u1w2
231 - 5.20508e-08 H y3u1w2 * H y9u1w2 + 0.00011394 H y3u1w2 * H y10u1w2
232 + 6.1125e-07 H y3u1w2 * H y11u1w2
233 + 1.468591868055178e-04 H y3u1w2 * H y12u1w2
234 - 6.63301e-07 H y3u1w2 * H y13u1w2 + 6.41343e-07 H y3u1w2 * ...

H y15u1w2
235 + 8.60218e-05 H y3u1w2 * H y16u1w2 + 0.0283431149930041 H y4u1w2 ˆ2
236 + 2.51339e-05 H y4u1w2 * H y5u1w2
237 + 0.0693420227334188 H y4u1w2 * H y6u1w2
238 - 1.3298069215577417e-04 H y4u1w2 * H y7u1w2
239 + 0.3847118906703809 H y4u1w2 * H y8u1w2
240 - 2.67693e-05 H y4u1w2 * H y9u1w2
241 + 0.0606339992451147 H y4u1w2 * H y10u1w2
242 + 3.2527239935002455e-04 H y4u1w2 * H y11u1w2
243 + 0.078053131902459 H y4u1w2 * H y12u1w2
244 - 3.5204173994488654e-04 H y4u1w2 * H y13u1w2
245 + 3.5040632408146104e-04 H y4u1w2 * H y15u1w2
246 + 0.0443100304573928 H y4u1w2 * H y16u1w2 + 1.60063e-06 H y5u1w2 ˆ2
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247 - 8.6448934890581382e-04 H y5u1w2 * H y6u1w2
248 + 2.76784e-07 H y5u1w2 * H y7u1w2
249 - 1.1097248953901862e-04 H y5u1w2 * H y8u1w2
250 + 3.06877e-07 H y5u1w2 * H y9u1w2 + 4.00665e-05 H y5u1w2 * H y10u1w2
251 + 2.11846e-07 H y5u1w2 * H y11u1w2 + 1.69959e-05 H y5u1w2 * ...

H y12u1w2
252 + 9.50305e-08 H y5u1w2 * H y13u1w2 + 3.41156e-06 H y5u1w2 * ...

H y15u1w2
253 - 0.000482794 H y5u1w2 * H y16u1w2 + 0.1683687096011319 H y6u1w2 ˆ2
254 - 2.5758239563441348e-04 H y6u1w2 * H y7u1w2
255 + 0.5514979461831324 H y6u1w2 * H y8u1w2
256 - 0.000122378 H y6u1w2 * H y9u1w2
257 + 0.0707589478282818 H y6u1w2 * H y10u1w2
258 + 0.000380456 H y6u1w2 * H y11u1w2
259 + 0.1007971916201678 H y6u1w2 * H y12u1w2
260 - 5.0283386692081644e-04 H y6u1w2 * H y13u1w2
261 - 4.8403338312081766e-04 H y6u1w2 * H y15u1w2
262 + 0.1955001364558541 H y6u1w2 * H y16u1w2 + 1.75003e-07 H y7u1w2 ˆ2
263 - 9.3542279601113699e-04 H y7u1w2 * H y8u1w2
264 + 9.66093e-08 H y7u1w2 * H y9u1w2
265 - 1.4136654198423814e-04 H y7u1w2 * H y10u1w2
266 - 7.5869e-07 H y7u1w2 * H y11u1w2
267 - 1.8562234891509341e-04 H y7u1w2 * H y12u1w2
268 + 8.55299e-07 H y7u1w2 * H y13u1w2 - 4.81906e-07 H y7u1w2 * ...

H y15u1w2
269 - 1.572614535664045e-04 H y7u1w2 * H y16u1w2
270 + 1.322666291666435 H y8u1w2 ˆ2 - 0.000210528 H y8u1w2 * H y9u1w2
271 + 0.4118031201287415 H y8u1w2 * H y10u1w2
272 + 0.0022094002926212 H y8u1w2 * H y11u1w2
273 + 0.5331673263470015 H y8u1w2 * H y12u1w2
274 - 0.00241992827644428 H y8u1w2 * H y13u1w2
275 + 0.00209842780308302 H y8u1w2 * H y15u1w2
276 + 0.3462502596962378 H y8u1w2 * H y16u1w2 + 2.30509e-08 H y9u1w2 ˆ2
277 - 2.74266e-05 H y9u1w2 * H y10u1w2 - 1.4744e-07 H y9u1w2 * H y11u1w2
278 - 3.87632e-05 H y9u1w2 * H y12u1w2 + 1.91998e-07 H y9u1w2 * ...

H y13u1w2
279 + 1.59437e-07 H y9u1w2 * H y15u1w2 - 7.12397e-05 H y9u1w2 * ...

H y16u1w2
280 + 0.032670026112372 H y10u1w2 ˆ2
281 + 3.4943252974706013e-04 H y10u1w2 * H y11u1w2
282 + 0.0837117645940744 H y10u1w2 * H y12u1w2
283 - 3.7685910544789462e-04 H y10u1w2 * H y13u1w2
284 + 0.000389499 H y10u1w2 * H y15u1w2
285 + 0.0455012061103151 H y10u1w2 * H y16u1w2 + 9.38008e-07 ...

H y11u1w2 ˆ2
286 + 4.4909076423386112e-04 H y11u1w2 * H y12u1w2
287 - 2.02191e-06 H y11u1w2 * H y13u1w2 + 2.08632e-06 H y11u1w2 * ...

H y15u1w2
288 + 2.4457940120790401e-04 H y11u1w2 * H y16u1w2
289 + 0.0540765445068836 H y12u1w2 ˆ2 - 0.000487854 H y12u1w2 * ...

H y13u1w2
290 + 4.6608671065024329e-04 H y12u1w2 * H y15u1w2
291 + 0.064022876007293 H y12u1w2 * H y16u1w2 + 1.10773e-06 ...

H y13u1w2 ˆ2
292 - 1.92688e-06 H y13u1w2 * H y15u1w2 - 0.000315819 H y13u1w2 * ...

H y16u1w2
293 + 2.74971e-06 H y15u1w2 ˆ2
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294 - 2.3821454053607547e-04 H y15u1w2 * H y16u1w2
295 + 0.0570768797619619 H y16u1w2 ˆ2 + 2.05164e-06 H y1u2w2 ˆ2
296 - 0.0011758790300657 H y1u2w2 * H y2u2w2
297 - 2.2176e-07 H y1u2w2 * H y3u2w2
298 - 1.0784676742445517e-04 H y1u2w2 * H y4u2w2
299 + 3.4765e-06 H y1u2w2 * H y5u2w2
300 - 0.00112207174454022 H y1u2w2 * H y6u2w2
301 + 6.25246e-07 H y1u2w2 * H y7u2w2
302 - 0.00104639528555011 H y1u2w2 * H y8u2w2
303 + 4.03486e-07 H y1u2w2 * H y9u2w2 - 0.0001013 H y1u2w2 * H y10u2w2
304 - 5.46843e-07 H y1u2w2 * H y11u2w2
305 - 1.6862640249887278e-04 H y1u2w2 * H y12u2w2
306 + 9.50329e-07 H y1u2w2 * H y13u2w2 + 2.92965e-06 H y1u2w2 * ...

H y15u2w2
307 - 6.4005539531045608e-04 H y1u2w2 * H y16u2w2
308 + 0.2561607341559827 H y2u2w2 ˆ2
309 + 2.4487874710108203e-04 H y2u2w2 * H y3u2w2
310 + 0.1278197511216987 H y2u2w2 * H y4u2w2
311 - 0.000786141 H y2u2w2 * H y5u2w2
312 + 0.3936303332784352 H y2u2w2 * H y6u2w2
313 - 0.000389738 H y2u2w2 * H y7u2w2
314 + 0.9451428507673202 H y2u2w2 * H y8u2w2
315 - 1.4485927075530913e-04 H y2u2w2 * H y9u2w2
316 + 0.1337454565160713 H y2u2w2 * H y10u2w2
317 + 7.1829771912962576e-04 H y2u2w2 * H y11u2w2
318 + 0.1813111469841493 H y2u2w2 * H y12u2w2
319 - 0.000863157 H y2u2w2 * H y13u2w2 - 6.78433e-05 H y2u2w2 * ...

H y15u2w2
320 + 0.2331254765029068 H y2u2w2 * H y16u2w2 + 1.00673e-07 H y3u2w2 ˆ2
321 + 1.062113515606881e-04 H y3u2w2 * H y4u2w2
322 + 3.00931e-08 H y3u2w2 * H y5u2w2
323 + 1.3520449449874706e-04 H y3u2w2 * H y6u2w2
324 - 2.51853e-07 H y3u2w2 * H y7u2w2
325 + 7.2489481218670148e-04 H y3u2w2 * H y8u2w2
326 - 5.20508e-08 H y3u2w2 * H y9u2w2 + 0.00011394 H y3u2w2 * H y10u2w2
327 + 6.1125e-07 H y3u2w2 * H y11u2w2
328 + 1.468591868055178e-04 H y3u2w2 * H y12u2w2
329 - 6.63301e-07 H y3u2w2 * H y13u2w2 + 6.41343e-07 H y3u2w2 * ...

H y15u2w2
330 + 8.60218e-05 H y3u2w2 * H y16u2w2 + 0.0283431149930041 H y4u2w2 ˆ2
331 + 2.51339e-05 H y4u2w2 * H y5u2w2
332 + 0.0693420227334188 H y4u2w2 * H y6u2w2
333 - 1.3298069215577417e-04 H y4u2w2 * H y7u2w2
334 + 0.3847118906703809 H y4u2w2 * H y8u2w2
335 - 2.67693e-05 H y4u2w2 * H y9u2w2
336 + 0.0606339992451147 H y4u2w2 * H y10u2w2
337 + 3.2527239935002455e-04 H y4u2w2 * H y11u2w2
338 + 0.078053131902459 H y4u2w2 * H y12u2w2
339 - 3.5204173994488654e-04 H y4u2w2 * H y13u2w2
340 + 3.5040632408146104e-04 H y4u2w2 * H y15u2w2
341 + 0.0443100304573928 H y4u2w2 * H y16u2w2 + 1.60063e-06 H y5u2w2 ˆ2
342 - 8.6448934890581382e-04 H y5u2w2 * H y6u2w2
343 + 2.76784e-07 H y5u2w2 * H y7u2w2
344 - 1.1097248953901862e-04 H y5u2w2 * H y8u2w2
345 + 3.06877e-07 H y5u2w2 * H y9u2w2 + 4.00665e-05 H y5u2w2 * H y10u2w2
346 + 2.11846e-07 H y5u2w2 * H y11u2w2 + 1.69959e-05 H y5u2w2 * ...

H y12u2w2
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347 + 9.50305e-08 H y5u2w2 * H y13u2w2 + 3.41156e-06 H y5u2w2 * ...
H y15u2w2

348 - 0.000482794 H y5u2w2 * H y16u2w2 + 0.1683687096011319 H y6u2w2 ˆ2
349 - 2.5758239563441348e-04 H y6u2w2 * H y7u2w2
350 + 0.5514979461831324 H y6u2w2 * H y8u2w2
351 - 0.000122378 H y6u2w2 * H y9u2w2
352 + 0.0707589478282818 H y6u2w2 * H y10u2w2
353 + 0.000380456 H y6u2w2 * H y11u2w2
354 + 0.1007971916201678 H y6u2w2 * H y12u2w2
355 - 5.0283386692081644e-04 H y6u2w2 * H y13u2w2
356 - 4.8403338312081766e-04 H y6u2w2 * H y15u2w2
357 + 0.1955001364558541 H y6u2w2 * H y16u2w2 + 1.75003e-07 H y7u2w2 ˆ2
358 - 9.3542279601113699e-04 H y7u2w2 * H y8u2w2
359 + 9.66093e-08 H y7u2w2 * H y9u2w2
360 - 1.4136654198423814e-04 H y7u2w2 * H y10u2w2
361 - 7.5869e-07 H y7u2w2 * H y11u2w2
362 - 1.8562234891509341e-04 H y7u2w2 * H y12u2w2
363 + 8.55299e-07 H y7u2w2 * H y13u2w2 - 4.81906e-07 H y7u2w2 * ...

H y15u2w2
364 - 1.572614535664045e-04 H y7u2w2 * H y16u2w2
365 + 1.322666291666435 H y8u2w2 ˆ2 - 0.000210528 H y8u2w2 * H y9u2w2
366 + 0.4118031201287415 H y8u2w2 * H y10u2w2
367 + 0.0022094002926212 H y8u2w2 * H y11u2w2
368 + 0.5331673263470015 H y8u2w2 * H y12u2w2
369 - 0.00241992827644428 H y8u2w2 * H y13u2w2
370 + 0.00209842780308302 H y8u2w2 * H y15u2w2
371 + 0.3462502596962378 H y8u2w2 * H y16u2w2 + 2.30509e-08 H y9u2w2 ˆ2
372 - 2.74266e-05 H y9u2w2 * H y10u2w2 - 1.4744e-07 H y9u2w2 * H y11u2w2
373 - 3.87632e-05 H y9u2w2 * H y12u2w2 + 1.91998e-07 H y9u2w2 * ...

H y13u2w2
374 + 1.59437e-07 H y9u2w2 * H y15u2w2 - 7.12397e-05 H y9u2w2 * ...

H y16u2w2
375 + 0.032670026112372 H y10u2w2 ˆ2
376 + 3.4943252974706013e-04 H y10u2w2 * H y11u2w2
377 + 0.0837117645940744 H y10u2w2 * H y12u2w2
378 - 3.7685910544789462e-04 H y10u2w2 * H y13u2w2
379 + 0.000389499 H y10u2w2 * H y15u2w2
380 + 0.0455012061103151 H y10u2w2 * H y16u2w2 + 9.38008e-07 ...

H y11u2w2 ˆ2
381 + 4.4909076423386112e-04 H y11u2w2 * H y12u2w2
382 - 2.02191e-06 H y11u2w2 * H y13u2w2 + 2.08632e-06 H y11u2w2 * ...

H y15u2w2
383 + 2.4457940120790401e-04 H y11u2w2 * H y16u2w2
384 + 0.0540765445068836 H y12u2w2 ˆ2 - 0.000487854 H y12u2w2 * ...

H y13u2w2
385 + 4.6608671065024329e-04 H y12u2w2 * H y15u2w2
386 + 0.064022876007293 H y12u2w2 * H y16u2w2 + 1.10773e-06 ...

H y13u2w2 ˆ2
387 - 1.92688e-06 H y13u2w2 * H y15u2w2 - 0.000315819 H y13u2w2 * ...

H y16u2w2
388 + 2.74971e-06 H y15u2w2 ˆ2
389 - 2.3821454053607547e-04 H y15u2w2 * H y16u2w2
390 + 0.0570768797619619 H y16u2w2 ˆ2 ] / 2
391 Subject To
392 R0: 0.002 H y1u1w1 - 0.5090991037076109 H y2u1w1 - 0.002 H y3u1w1
393 - 0.1489493216895732 H y4u1w1 + 0.00181598 H y5u1w1
394 - 0.4888618616206708 H y6u1w1 + 0.00018402 H y7u1w1
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395 - 0.7088079771181977 H y8u1w1 - 0.00181598 H y9u1w1
396 - 0.1523008720973329 H y10u1w1 - 0.00100428881865002 H y11u1w1
397 + 0.0663214671335344 H y12u1w1 - 8.11691181473468e-04 H y13u1w1
398 + 8.1169118131409028e-04 H y15u1w1 - 0.1498406426914123 H y16u1w1
399 + 0.002 H y1u1w2 - 0.5090991037076109 H y2u1w2 - 0.002 H y3u1w2
400 - 0.1489493216895732 H y4u1w2 + 0.00181598 H y5u1w2
401 - 0.4888618616206708 H y6u1w2 + 0.00018402 H y7u1w2
402 - 0.7088079771181977 H y8u1w2 - 0.00181598 H y9u1w2
403 - 0.1523008720973329 H y10u1w2 - 0.00100428881865002 H y11u1w2
404 + 0.0663214671335344 H y12u1w2 - 8.11691181473468e-04 H y13u1w2
405 + 8.1169118131409028e-04 H y15u1w2 - 0.1498406426914123 H y16u1w2
406 = 37.87087872548276
407 R1: 0.00181708916666677 H y5u1w1 - 0.4773620917672417 H y6u1w1
408 - 0.00181708916666677 H y7u1w1 - 0.0843350702927625 H y8u1w1
409 - 0.00181708916666677 H y9u1w1 - 0.1578454846379168 H y10u1w1
410 - 0.00165995414535771 H y11u1w1 + 0.2536437430674665 H y12u1w1
411 - 0.000157135 H y13u1w1 + 0.000157135 H y15u1w1
412 - 0.0255172204707832 H y16u1w1 + 0.00181708916666677 H y5u1w2
413 - 0.4773620917672417 H y6u1w2 - 0.00181708916666677 H y7u1w2
414 - 0.0843350702927625 H y8u1w2 - 0.00181708916666677 H y9u1w2
415 - 0.1578454846379168 H y10u1w2 - 0.00165995414535771 H y11u1w2
416 + 0.2536437430674665 H y12u1w2 - 0.000157135 H y13u1w2
417 + 0.000157135 H y15u1w2 - 0.0255172204707832 H y16u1w2
418 = 21.69049292750346
419 R2: 0.002 H y1u2w1 - 0.5090991037076109 H y2u2w1 - 0.002 H y3u2w1
420 - 0.1489493216895732 H y4u2w1 + 0.00181598 H y5u2w1
421 - 0.4888618616206708 H y6u2w1 + 0.00018402 H y7u2w1
422 - 0.7088079771181977 H y8u2w1 - 0.00181598 H y9u2w1
423 - 0.1523008720973329 H y10u2w1 - 0.00100428881865002 H y11u2w1
424 + 0.0663214671335344 H y12u2w1 - 8.11691181473468e-04 H y13u2w1
425 + 8.1169118131409028e-04 H y15u2w1 - 0.1498406426914123 H y16u2w1
426 + 0.002 H y1u2w2 - 0.5090991037076109 H y2u2w2 - 0.002 H y3u2w2
427 - 0.1489493216895732 H y4u2w2 + 0.00181598 H y5u2w2
428 - 0.4888618616206708 H y6u2w2 + 0.00018402 H y7u2w2
429 - 0.7088079771181977 H y8u2w2 - 0.00181598 H y9u2w2
430 - 0.1523008720973329 H y10u2w2 - 0.00100428881865002 H y11u2w2
431 + 0.0663214671335344 H y12u2w2 - 8.11691181473468e-04 H y13u2w2
432 + 8.1169118131409028e-04 H y15u2w2 - 0.1498406426914123 H y16u2w2
433 = 21.69049292750347
434 R3: 0.00181708916666677 H y5u2w1 - 0.4773620917672417 H y6u2w1
435 - 0.00181708916666677 H y7u2w1 - 0.0843350702927625 H y8u2w1
436 - 0.00181708916666677 H y9u2w1 - 0.1578454846379168 H y10u2w1
437 - 0.00165995414535771 H y11u2w1 + 0.2536437430674665 H y12u2w1
438 - 0.000157135 H y13u2w1 + 0.000157135 H y15u2w1
439 - 0.0255172204707832 H y16u2w1 + 0.00181708916666677 H y5u2w2
440 - 0.4773620917672417 H y6u2w2 - 0.00181708916666677 H y7u2w2
441 - 0.0843350702927625 H y8u2w2 - 0.00181708916666677 H y9u2w2
442 - 0.1578454846379168 H y10u2w2 - 0.00165995414535771 H y11u2w2
443 + 0.2536437430674665 H y12u2w2 - 0.000157135 H y13u2w2
444 + 0.000157135 H y15u2w2 - 0.0255172204707832 H y16u2w2
445 = 66.50518021113163
446 R4: sigma y1w1 + sigma y2w1 + sigma y3w1 + sigma y4w1 + sigma y5w1
447 + sigma y6w1 + sigma y7w1 + sigma y8w1 + sigma y9w1 + sigma y10w1
448 + sigma y11w1 + sigma y12w1 + sigma y13w1 + sigma y15w1 + ...

sigma y16w1
449 + sigma y1w2 + sigma y2w2 + sigma y3w2 + sigma y4w2 + sigma y5w2
450 + sigma y6w2 + sigma y7w2 + sigma y8w2 + sigma y9w2 + sigma y10w2
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451 + sigma y11w2 + sigma y12w2 + sigma y13w2 + sigma y15w2 + ...
sigma y16w2

452 - nm = 0
453 R5: - H y1u1w1 - 1e+06 sigma y1w1 <= 0
454 R6: - H y2u1w1 - 1e+06 sigma y2w1 <= 0
455 R7: - H y3u1w1 - 1e+06 sigma y3w1 <= 0
456 R8: - H y4u1w1 - 1e+06 sigma y4w1 <= 0
457 R9: - H y5u1w1 - 1e+06 sigma y5w1 <= 0
458 R10: - H y6u1w1 - 1e+06 sigma y6w1 <= 0
459 R11: - H y7u1w1 - 1e+06 sigma y7w1 <= 0
460 R12: - H y8u1w1 - 1e+06 sigma y8w1 <= 0
461 R13: - H y9u1w1 - 1e+06 sigma y9w1 <= 0
462 R14: - H y10u1w1 - 1e+06 sigma y10w1 <= 0
463 R15: - H y11u1w1 - 1e+06 sigma y11w1 <= 0
464 R16: - H y12u1w1 - 1e+06 sigma y12w1 <= 0
465 R17: - H y13u1w1 - 1e+06 sigma y13w1 <= 0
466 R18: - H y15u1w1 - 1e+06 sigma y15w1 <= 0
467 R19: - H y16u1w1 - 1e+06 sigma y16w1 <= 0
468 R20: - H y1u2w1 - 1e+06 sigma y1w1 <= 0
469 R21: - H y2u2w1 - 1e+06 sigma y2w1 <= 0
470 R22: - H y3u2w1 - 1e+06 sigma y3w1 <= 0
471 R23: - H y4u2w1 - 1e+06 sigma y4w1 <= 0
472 R24: - H y5u2w1 - 1e+06 sigma y5w1 <= 0
473 R25: - H y6u2w1 - 1e+06 sigma y6w1 <= 0
474 R26: - H y7u2w1 - 1e+06 sigma y7w1 <= 0
475 R27: - H y8u2w1 - 1e+06 sigma y8w1 <= 0
476 R28: - H y9u2w1 - 1e+06 sigma y9w1 <= 0
477 R29: - H y10u2w1 - 1e+06 sigma y10w1 <= 0
478 R30: - H y11u2w1 - 1e+06 sigma y11w1 <= 0
479 R31: - H y12u2w1 - 1e+06 sigma y12w1 <= 0
480 R32: - H y13u2w1 - 1e+06 sigma y13w1 <= 0
481 R33: - H y15u2w1 - 1e+06 sigma y15w1 <= 0
482 R34: - H y16u2w1 - 1e+06 sigma y16w1 <= 0
483 R35: - H y1u1w2 - 1e+06 sigma y1w2 <= 0
484 R36: - H y2u1w2 - 1e+06 sigma y2w2 <= 0
485 R37: - H y3u1w2 - 1e+06 sigma y3w2 <= 0
486 R38: - H y4u1w2 - 1e+06 sigma y4w2 <= 0
487 R39: - H y5u1w2 - 1e+06 sigma y5w2 <= 0
488 R40: - H y6u1w2 - 1e+06 sigma y6w2 <= 0
489 R41: - H y7u1w2 - 1e+06 sigma y7w2 <= 0
490 R42: - H y8u1w2 - 1e+06 sigma y8w2 <= 0
491 R43: - H y9u1w2 - 1e+06 sigma y9w2 <= 0
492 R44: - H y10u1w2 - 1e+06 sigma y10w2 <= 0
493 R45: - H y11u1w2 - 1e+06 sigma y11w2 <= 0
494 R46: - H y12u1w2 - 1e+06 sigma y12w2 <= 0
495 R47: - H y13u1w2 - 1e+06 sigma y13w2 <= 0
496 R48: - H y15u1w2 - 1e+06 sigma y15w2 <= 0
497 R49: - H y16u1w2 - 1e+06 sigma y16w2 <= 0
498 R50: - H y1u2w2 - 1e+06 sigma y1w2 <= 0
499 R51: - H y2u2w2 - 1e+06 sigma y2w2 <= 0
500 R52: - H y3u2w2 - 1e+06 sigma y3w2 <= 0
501 R53: - H y4u2w2 - 1e+06 sigma y4w2 <= 0
502 R54: - H y5u2w2 - 1e+06 sigma y5w2 <= 0
503 R55: - H y6u2w2 - 1e+06 sigma y6w2 <= 0
504 R56: - H y7u2w2 - 1e+06 sigma y7w2 <= 0
505 R57: - H y8u2w2 - 1e+06 sigma y8w2 <= 0
506 R58: - H y9u2w2 - 1e+06 sigma y9w2 <= 0
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507 R59: - H y10u2w2 - 1e+06 sigma y10w2 <= 0
508 R60: - H y11u2w2 - 1e+06 sigma y11w2 <= 0
509 R61: - H y12u2w2 - 1e+06 sigma y12w2 <= 0
510 R62: - H y13u2w2 - 1e+06 sigma y13w2 <= 0
511 R63: - H y15u2w2 - 1e+06 sigma y15w2 <= 0
512 R64: - H y16u2w2 - 1e+06 sigma y16w2 <= 0
513 R65: H y1u1w1 - 1e+06 sigma y1w1 <= 0
514 R66: H y2u1w1 - 1e+06 sigma y2w1 <= 0
515 R67: H y3u1w1 - 1e+06 sigma y3w1 <= 0
516 R68: H y4u1w1 - 1e+06 sigma y4w1 <= 0
517 R69: H y5u1w1 - 1e+06 sigma y5w1 <= 0
518 R70: H y6u1w1 - 1e+06 sigma y6w1 <= 0
519 R71: H y7u1w1 - 1e+06 sigma y7w1 <= 0
520 R72: H y8u1w1 - 1e+06 sigma y8w1 <= 0
521 R73: H y9u1w1 - 1e+06 sigma y9w1 <= 0
522 R74: H y10u1w1 - 1e+06 sigma y10w1 <= 0
523 R75: H y11u1w1 - 1e+06 sigma y11w1 <= 0
524 R76: H y12u1w1 - 1e+06 sigma y12w1 <= 0
525 R77: H y13u1w1 - 1e+06 sigma y13w1 <= 0
526 R78: H y15u1w1 - 1e+06 sigma y15w1 <= 0
527 R79: H y16u1w1 - 1e+06 sigma y16w1 <= 0
528 R80: H y1u2w1 - 1e+06 sigma y1w1 <= 0
529 R81: H y2u2w1 - 1e+06 sigma y2w1 <= 0
530 R82: H y3u2w1 - 1e+06 sigma y3w1 <= 0
531 R83: H y4u2w1 - 1e+06 sigma y4w1 <= 0
532 R84: H y5u2w1 - 1e+06 sigma y5w1 <= 0
533 R85: H y6u2w1 - 1e+06 sigma y6w1 <= 0
534 R86: H y7u2w1 - 1e+06 sigma y7w1 <= 0
535 R87: H y8u2w1 - 1e+06 sigma y8w1 <= 0
536 R88: H y9u2w1 - 1e+06 sigma y9w1 <= 0
537 R89: H y10u2w1 - 1e+06 sigma y10w1 <= 0
538 R90: H y11u2w1 - 1e+06 sigma y11w1 <= 0
539 R91: H y12u2w1 - 1e+06 sigma y12w1 <= 0
540 R92: H y13u2w1 - 1e+06 sigma y13w1 <= 0
541 R93: H y15u2w1 - 1e+06 sigma y15w1 <= 0
542 R94: H y16u2w1 - 1e+06 sigma y16w1 <= 0
543 R95: H y1u1w2 - 1e+06 sigma y1w2 <= 0
544 R96: H y2u1w2 - 1e+06 sigma y2w2 <= 0
545 R97: H y3u1w2 - 1e+06 sigma y3w2 <= 0
546 R98: H y4u1w2 - 1e+06 sigma y4w2 <= 0
547 R99: H y5u1w2 - 1e+06 sigma y5w2 <= 0
548 R100: H y6u1w2 - 1e+06 sigma y6w2 <= 0
549 R101: H y7u1w2 - 1e+06 sigma y7w2 <= 0
550 R102: H y8u1w2 - 1e+06 sigma y8w2 <= 0
551 R103: H y9u1w2 - 1e+06 sigma y9w2 <= 0
552 R104: H y10u1w2 - 1e+06 sigma y10w2 <= 0
553 R105: H y11u1w2 - 1e+06 sigma y11w2 <= 0
554 R106: H y12u1w2 - 1e+06 sigma y12w2 <= 0
555 R107: H y13u1w2 - 1e+06 sigma y13w2 <= 0
556 R108: H y15u1w2 - 1e+06 sigma y15w2 <= 0
557 R109: H y16u1w2 - 1e+06 sigma y16w2 <= 0
558 R110: H y1u2w2 - 1e+06 sigma y1w2 <= 0
559 R111: H y2u2w2 - 1e+06 sigma y2w2 <= 0
560 R112: H y3u2w2 - 1e+06 sigma y3w2 <= 0
561 R113: H y4u2w2 - 1e+06 sigma y4w2 <= 0
562 R114: H y5u2w2 - 1e+06 sigma y5w2 <= 0
563 R115: H y6u2w2 - 1e+06 sigma y6w2 <= 0
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564 R116: H y7u2w2 - 1e+06 sigma y7w2 <= 0
565 R117: H y8u2w2 - 1e+06 sigma y8w2 <= 0
566 R118: H y9u2w2 - 1e+06 sigma y9w2 <= 0
567 R119: H y10u2w2 - 1e+06 sigma y10w2 <= 0
568 R120: H y11u2w2 - 1e+06 sigma y11w2 <= 0
569 R121: H y12u2w2 - 1e+06 sigma y12w2 <= 0
570 R122: H y13u2w2 - 1e+06 sigma y13w2 <= 0
571 R123: H y15u2w2 - 1e+06 sigma y15w2 <= 0
572 R124: H y16u2w2 - 1e+06 sigma y16w2 <= 0
573 R125: nm = 15
574 R126: H y1u1w1 + 1e+06 sigma y1w2 <= 1e+06
575 R127: H y2u1w1 + 1e+06 sigma y2w2 <= 1e+06
576 R128: H y3u1w1 + 1e+06 sigma y3w2 <= 1e+06
577 R129: H y4u1w1 + 1e+06 sigma y4w2 <= 1e+06
578 R130: H y5u1w1 + 1e+06 sigma y5w2 <= 1e+06
579 R131: H y6u1w1 + 1e+06 sigma y6w2 <= 1e+06
580 R132: H y7u1w1 + 1e+06 sigma y7w2 <= 1e+06
581 R133: H y8u1w1 + 1e+06 sigma y8w2 <= 1e+06
582 R134: H y9u1w1 + 1e+06 sigma y9w2 <= 1e+06
583 R135: H y10u1w1 + 1e+06 sigma y10w2 <= 1e+06
584 R136: H y11u1w1 + 1e+06 sigma y11w2 <= 1e+06
585 R137: H y12u1w1 + 1e+06 sigma y12w2 <= 1e+06
586 R138: H y13u1w1 + 1e+06 sigma y13w2 <= 1e+06
587 R139: H y15u1w1 + 1e+06 sigma y15w2 <= 1e+06
588 R140: H y16u1w1 + 1e+06 sigma y16w2 <= 1e+06
589 R141: H y1u2w1 + 1e+06 sigma y1w2 <= 1e+06
590 R142: H y2u2w1 + 1e+06 sigma y2w2 <= 1e+06
591 R143: H y3u2w1 + 1e+06 sigma y3w2 <= 1e+06
592 R144: H y4u2w1 + 1e+06 sigma y4w2 <= 1e+06
593 R145: H y5u2w1 + 1e+06 sigma y5w2 <= 1e+06
594 R146: H y6u2w1 + 1e+06 sigma y6w2 <= 1e+06
595 R147: H y7u2w1 + 1e+06 sigma y7w2 <= 1e+06
596 R148: H y8u2w1 + 1e+06 sigma y8w2 <= 1e+06
597 R149: H y9u2w1 + 1e+06 sigma y9w2 <= 1e+06
598 R150: H y10u2w1 + 1e+06 sigma y10w2 <= 1e+06
599 R151: H y11u2w1 + 1e+06 sigma y11w2 <= 1e+06
600 R152: H y12u2w1 + 1e+06 sigma y12w2 <= 1e+06
601 R153: H y13u2w1 + 1e+06 sigma y13w2 <= 1e+06
602 R154: H y15u2w1 + 1e+06 sigma y15w2 <= 1e+06
603 R155: H y16u2w1 + 1e+06 sigma y16w2 <= 1e+06
604 R156: H y1u1w2 + 1e+06 sigma y1w1 <= 1e+06
605 R157: H y2u1w2 + 1e+06 sigma y2w1 <= 1e+06
606 R158: H y3u1w2 + 1e+06 sigma y3w1 <= 1e+06
607 R159: H y4u1w2 + 1e+06 sigma y4w1 <= 1e+06
608 R160: H y5u1w2 + 1e+06 sigma y5w1 <= 1e+06
609 R161: H y6u1w2 + 1e+06 sigma y6w1 <= 1e+06
610 R162: H y7u1w2 + 1e+06 sigma y7w1 <= 1e+06
611 R163: H y8u1w2 + 1e+06 sigma y8w1 <= 1e+06
612 R164: H y9u1w2 + 1e+06 sigma y9w1 <= 1e+06
613 R165: H y10u1w2 + 1e+06 sigma y10w1 <= 1e+06
614 R166: H y11u1w2 + 1e+06 sigma y11w1 <= 1e+06
615 R167: H y12u1w2 + 1e+06 sigma y12w1 <= 1e+06
616 R168: H y13u1w2 + 1e+06 sigma y13w1 <= 1e+06
617 R169: H y15u1w2 + 1e+06 sigma y15w1 <= 1e+06
618 R170: H y16u1w2 + 1e+06 sigma y16w1 <= 1e+06
619 R171: H y1u2w2 + 1e+06 sigma y1w1 <= 1e+06
620 R172: H y2u2w2 + 1e+06 sigma y2w1 <= 1e+06
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621 R173: H y3u2w2 + 1e+06 sigma y3w1 <= 1e+06
622 R174: H y4u2w2 + 1e+06 sigma y4w1 <= 1e+06
623 R175: H y5u2w2 + 1e+06 sigma y5w1 <= 1e+06
624 R176: H y6u2w2 + 1e+06 sigma y6w1 <= 1e+06
625 R177: H y7u2w2 + 1e+06 sigma y7w1 <= 1e+06
626 R178: H y8u2w2 + 1e+06 sigma y8w1 <= 1e+06
627 R179: H y9u2w2 + 1e+06 sigma y9w1 <= 1e+06
628 R180: H y10u2w2 + 1e+06 sigma y10w1 <= 1e+06
629 R181: H y11u2w2 + 1e+06 sigma y11w1 <= 1e+06
630 R182: H y12u2w2 + 1e+06 sigma y12w1 <= 1e+06
631 R183: H y13u2w2 + 1e+06 sigma y13w1 <= 1e+06
632 R184: H y15u2w2 + 1e+06 sigma y15w1 <= 1e+06
633 R185: H y16u2w2 + 1e+06 sigma y16w1 <= 1e+06
634 R186: - H y1u1w1 + 1e+06 sigma y1w2 <= 1e+06
635 R187: - H y2u1w1 + 1e+06 sigma y2w2 <= 1e+06
636 R188: - H y3u1w1 + 1e+06 sigma y3w2 <= 1e+06
637 R189: - H y4u1w1 + 1e+06 sigma y4w2 <= 1e+06
638 R190: - H y5u1w1 + 1e+06 sigma y5w2 <= 1e+06
639 R191: - H y6u1w1 + 1e+06 sigma y6w2 <= 1e+06
640 R192: - H y7u1w1 + 1e+06 sigma y7w2 <= 1e+06
641 R193: - H y8u1w1 + 1e+06 sigma y8w2 <= 1e+06
642 R194: - H y9u1w1 + 1e+06 sigma y9w2 <= 1e+06
643 R195: - H y10u1w1 + 1e+06 sigma y10w2 <= 1e+06
644 R196: - H y11u1w1 + 1e+06 sigma y11w2 <= 1e+06
645 R197: - H y12u1w1 + 1e+06 sigma y12w2 <= 1e+06
646 R198: - H y13u1w1 + 1e+06 sigma y13w2 <= 1e+06
647 R199: - H y15u1w1 + 1e+06 sigma y15w2 <= 1e+06
648 R200: - H y16u1w1 + 1e+06 sigma y16w2 <= 1e+06
649 R201: - H y1u2w1 + 1e+06 sigma y1w2 <= 1e+06
650 R202: - H y2u2w1 + 1e+06 sigma y2w2 <= 1e+06
651 R203: - H y3u2w1 + 1e+06 sigma y3w2 <= 1e+06
652 R204: - H y4u2w1 + 1e+06 sigma y4w2 <= 1e+06
653 R205: - H y5u2w1 + 1e+06 sigma y5w2 <= 1e+06
654 R206: - H y6u2w1 + 1e+06 sigma y6w2 <= 1e+06
655 R207: - H y7u2w1 + 1e+06 sigma y7w2 <= 1e+06
656 R208: - H y8u2w1 + 1e+06 sigma y8w2 <= 1e+06
657 R209: - H y9u2w1 + 1e+06 sigma y9w2 <= 1e+06
658 R210: - H y10u2w1 + 1e+06 sigma y10w2 <= 1e+06
659 R211: - H y11u2w1 + 1e+06 sigma y11w2 <= 1e+06
660 R212: - H y12u2w1 + 1e+06 sigma y12w2 <= 1e+06
661 R213: - H y13u2w1 + 1e+06 sigma y13w2 <= 1e+06
662 R214: - H y15u2w1 + 1e+06 sigma y15w2 <= 1e+06
663 R215: - H y16u2w1 + 1e+06 sigma y16w2 <= 1e+06
664 R216: - H y1u1w2 + 1e+06 sigma y1w1 <= 1e+06
665 R217: - H y2u1w2 + 1e+06 sigma y2w1 <= 1e+06
666 R218: - H y3u1w2 + 1e+06 sigma y3w1 <= 1e+06
667 R219: - H y4u1w2 + 1e+06 sigma y4w1 <= 1e+06
668 R220: - H y5u1w2 + 1e+06 sigma y5w1 <= 1e+06
669 R221: - H y6u1w2 + 1e+06 sigma y6w1 <= 1e+06
670 R222: - H y7u1w2 + 1e+06 sigma y7w1 <= 1e+06
671 R223: - H y8u1w2 + 1e+06 sigma y8w1 <= 1e+06
672 R224: - H y9u1w2 + 1e+06 sigma y9w1 <= 1e+06
673 R225: - H y10u1w2 + 1e+06 sigma y10w1 <= 1e+06
674 R226: - H y11u1w2 + 1e+06 sigma y11w1 <= 1e+06
675 R227: - H y12u1w2 + 1e+06 sigma y12w1 <= 1e+06
676 R228: - H y13u1w2 + 1e+06 sigma y13w1 <= 1e+06
677 R229: - H y15u1w2 + 1e+06 sigma y15w1 <= 1e+06
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678 R230: - H y16u1w2 + 1e+06 sigma y16w1 <= 1e+06
679 R231: - H y1u2w2 + 1e+06 sigma y1w1 <= 1e+06
680 R232: - H y2u2w2 + 1e+06 sigma y2w1 <= 1e+06
681 R233: - H y3u2w2 + 1e+06 sigma y3w1 <= 1e+06
682 R234: - H y4u2w2 + 1e+06 sigma y4w1 <= 1e+06
683 R235: - H y5u2w2 + 1e+06 sigma y5w1 <= 1e+06
684 R236: - H y6u2w2 + 1e+06 sigma y6w1 <= 1e+06
685 R237: - H y7u2w2 + 1e+06 sigma y7w1 <= 1e+06
686 R238: - H y8u2w2 + 1e+06 sigma y8w1 <= 1e+06
687 R239: - H y9u2w2 + 1e+06 sigma y9w1 <= 1e+06
688 R240: - H y10u2w2 + 1e+06 sigma y10w1 <= 1e+06
689 R241: - H y11u2w2 + 1e+06 sigma y11w1 <= 1e+06
690 R242: - H y12u2w2 + 1e+06 sigma y12w1 <= 1e+06
691 R243: - H y13u2w2 + 1e+06 sigma y13w1 <= 1e+06
692 R244: - H y15u2w2 + 1e+06 sigma y15w1 <= 1e+06
693 R245: - H y16u2w2 + 1e+06 sigma y16w1 <= 1e+06
694 R246: H y14u3w1 + H y14u3w2 = 1
695 R247: sigma y14w1 + sigma y14w2 = 1
696 R248: 0.1 sigma y1w1 + sigma y2w1 + 0.1 sigma y3w1 + sigma y4w1
697 + 0.1 sigma y5w1 + sigma y6w1 + 0.1 sigma y7w1 + sigma y8w1
698 + 0.1 sigma y9w1 + sigma y10w1 + 0.1 sigma y11w1 + sigma y12w1
699 + 0.1 sigma y13w1 + 0.1 sigma y15w1 + sigma y16w1 + 0.05 sigma y1w2
700 + 0.1 sigma y2w2 + 0.05 sigma y3w2 + 0.1 sigma y4w2 + 0.05 ...

sigma y5w2
701 + 0.1 sigma y6w2 + 0.05 sigma y7w2 + 0.1 sigma y8w2 + 0.05 ...

sigma y9w2
702 + 0.1 sigma y10w2 + 0.05 sigma y11w2 + 0.1 sigma y12w2
703 + 0.05 sigma y13w2 + 0.05 sigma y15w2 + 0.1 sigma y16w2
704 + 0.5 sigma y14w1 + 0.05 sigma y14w2 <= 1e+06
705 Bounds
706 H y1u1w1 free
707 H y2u1w1 free
708 H y3u1w1 free
709 H y4u1w1 free
710 H y5u1w1 free
711 H y6u1w1 free
712 H y7u1w1 free
713 H y8u1w1 free
714 H y9u1w1 free
715 H y10u1w1 free
716 H y11u1w1 free
717 H y12u1w1 free
718 H y13u1w1 free
719 H y15u1w1 free
720 H y16u1w1 free
721 H y1u2w1 free
722 H y2u2w1 free
723 H y3u2w1 free
724 H y4u2w1 free
725 H y5u2w1 free
726 H y6u2w1 free
727 H y7u2w1 free
728 H y8u2w1 free
729 H y9u2w1 free
730 H y10u2w1 free
731 H y11u2w1 free
732 H y12u2w1 free
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733 H y13u2w1 free
734 H y15u2w1 free
735 H y16u2w1 free
736 H y1u1w2 free
737 H y2u1w2 free
738 H y3u1w2 free
739 H y4u1w2 free
740 H y5u1w2 free
741 H y6u1w2 free
742 H y7u1w2 free
743 H y8u1w2 free
744 H y9u1w2 free
745 H y10u1w2 free
746 H y11u1w2 free
747 H y12u1w2 free
748 H y13u1w2 free
749 H y15u1w2 free
750 H y16u1w2 free
751 H y1u2w2 free
752 H y2u2w2 free
753 H y3u2w2 free
754 H y4u2w2 free
755 H y5u2w2 free
756 H y6u2w2 free
757 H y7u2w2 free
758 H y8u2w2 free
759 H y9u2w2 free
760 H y10u2w2 free
761 H y11u2w2 free
762 H y12u2w2 free
763 H y13u2w2 free
764 H y15u2w2 free
765 H y16u2w2 free
766 nm <= 15
767 Binaries
768 sigma y1w1 sigma y2w1 sigma y3w1 sigma y4w1 sigma y5w1 sigma y6w1
769 sigma y7w1 sigma y8w1 sigma y9w1 sigma y10w1 sigma y11w1 sigma y12w1
770 sigma y13w1 sigma y15w1 sigma y16w1 sigma y1w2 sigma y2w2 sigma y3w2
771 sigma y4w2 sigma y5w2 sigma y6w2 sigma y7w2 sigma y8w2 sigma y9w2
772 sigma y10w2 sigma y11w2 sigma y12w2 sigma y13w2 sigma y15w2 ...

sigma y16w2
773 sigma y14w1 sigma y14w2 H y14u3w1 H y14u3w2
774 Generals
775 nm
776 SOS
777 s0: S1 :: sigma y1w1:1 sigma y1w2:1
778 s1: S1 :: sigma y2w1:1 sigma y2w2:1
779 s2: S1 :: sigma y3w1:1 sigma y3w2:1
780 s3: S1 :: sigma y4w1:1 sigma y4w2:1
781 s4: S1 :: sigma y5w1:1 sigma y5w2:1
782 s5: S1 :: sigma y6w1:1 sigma y6w2:1
783 s6: S1 :: sigma y7w1:1 sigma y7w2:1
784 s7: S1 :: sigma y8w1:1 sigma y8w2:1
785 s8: S1 :: sigma y9w1:1 sigma y9w2:1
786 s9: S1 :: sigma y10w1:1 sigma y10w2:1
787 s10: S1 :: sigma y11w1:1 sigma y11w2:1
788 s11: S1 :: sigma y12w1:1 sigma y12w2:1
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789 s12: S1 :: sigma y13w1:1 sigma y13w2:1
790 s13: S1 :: sigma y15w1:1 sigma y15w2:1
791 s14: S1 :: sigma y16w1:1 sigma y16w2:1
792 End

120



Appendix C
Finite Difference Method

MATLAB’s fmincon solver could in theory provide Hessian matrices. However,
these are based on Hessian of the Lagrangian [28] and is therefore not a good
representation of the Hessian of the cost function based on inputs. Due to this,
finite differences are used to calculate the Hessian. The finite difference method is a
method for approximation of derivatives. Finite differences can be given as forward
differences, backward differences and central differences. In this work, only central
differences was used[29]. Equations are given in (C.1) to (C.5). An illustration
showing how each step relate to each other are presented in Figure C.1.

fu1(u1, u2) ≈ f(u1 + h, u2)− f(u1 − h, u2)
2h (C.1)

fu2(u1, u2) ≈ f(u1, u2 + k)− f(u1, u2 − k)
2h (C.2)

fu2u2(u1, u2) ≈ f(u1, u2 + k)− 2f(u1, u2) + f(u1, u2 − k)
k2 (C.3)

fu1u1(u1, u2) ≈ f(u1 + h, u2)− 2f(u1, u2) + f(u1 − h, u2)
h2 (C.4)

fu1u2(u1, u2) ≈ f(u1 + h, u2 + k)− f(u1 + h, u2 − k)− f(u1 − h, u2 + k) + f(u1 − h, u2 − k)
4hk

(C.5)
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(u1 + h, u2)

(u1, u2 + k) (u1 + h, u2 + k)

(u1 + h, u2 − k)

(u1 − h, u2)

(u1 − h, u2 + k)

(u1 − h, u2 − k) (u1, u2 − k)

u1

u2

Figure C.1: Illustriation of a grid for finite differences
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