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Abstract

This thesis describes the effort of adapting Monte Carlo Tree Search (MCTS) to the game
of Hearthstone, a card game with hidden information and stochastic elements. The focus
is on discovering the suitability of MCTS for this environment, as well as which domain-
specific adaptations are needed.

An MCTS agent is developed for a Hearthstone simulator, which is used to conduct ex-
periments to measure the agent’s performance both against human and computer players.
The implementation includes determinizations to work around hidden information, and
introduces action chains to handle multiple actions within a turn. The results are analyzed
and possible future directions of research are proposed.

Sammendrag
Denne avhandlingen beskriver arbeidet ved å tilpasse Monte Carlo Tree Search til spillet
Hearthstone, et kortspill med skjult informasjon og stokastiske elementer. Fokuset settes
på å oppdage hvor passende MCTS er til dette miljøet, i tillegg til hvilke domenespesifikke
endringer som er nødvendige.

En MCTS agent blir utviklet i en Hearthstone simulator, som brukes til utføre eksperi-
menter for å måle agentens ytelse mot både mennesker og datamaskinspillere. Implemen-
tasjonen inkluderer determiniseringer for jobbe rundt skjult informasjon, og introduserer
handlingskjeder for å håndtere flere handlinger innenfor en tur. Resultatene analyseres og
mulige retninger for fremtidig forskning blir foreslått.
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Chapter 1
Introduction

This chapter is inspired by the work done in the specialization project [Andersson and
Hesselberg (2015)].

1.1 Background and Motivation

Video games are one of the quickest growing types of entertainment and is a popular
passtime across the world, representing a billion-dollar industry just in the US [Newzoo
(2014)].

Games will often include time constraints on a player’s actions. Creating an AI to play
these games therefore becomes a challenge, as they must be able to find solutions to prob-
lems quickly. This is why games are ideal to test applications of real-time AI research
[Buro and Furtak (2003)].

This is not only true now, but also from the beginning of the computer era; many computer
science pioneers have been using games like chess, checkers and others to research algo-
rithms. Examples of such luminaries can be found by looking at Alan Turing, John von
Neumann, Claude Shannon, Herbert Simon, Alan Newell, John McCarthy, Arthur Samuel,
Donald Knuth, Donald Michie, and Ken Thompson [Billings (1995)].

There are a number of difficult problems represented in board games, card games, other
mathematical games and their digital representations, and there are many reasons why
their study is desirable. Usually they have all or some of these properties:

• Well-defined rules and concise logistics – As games are usually well-defined it can
be relatively simple to create a complete player, which makes it possible to spend
more time and effort on what is actually the topic of scientific interest.
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• Complex strategies – Some of the hardest problems known in computational com-
plexity and theoretical computer science can be found in games.

• Specific and clear goals – Games will often have an unambiguous definition of suc-
cess, so that efforts can be focused on achieving that goal.

• Measurable results – By measuring either degree of success in playing against other
opponents, or in solutions for related sub-tasks, it is possible to see how well an AI
is performing.

Since a game can be looked at as a simplified situation from the real world, creating strong
computer players for these games might have potential when applied to real world prob-
lems [Laird and VanLent (2001)].

There are many games where computer players will either cheat by using access to the
game engine to obtain additional information, resources or units - or they won’t be a
match for an expert level human player. However, players usually enjoy games more when
they are presented with a challenge appropriate to their skill [Malone (1980); Whitehouse
(2014)]. Player enjoyment is easier to achieve when they perceive the game is played on
equal terms, instead of fighting an inferior computer opponent who is receiving an unfair
advantage.

Among the hardest problems known in theoretical computer science is the class of games
with stochastic, imperfect information games with partial observability. This class in-
cludes a lot of problems which are computationally undecidable, but easy to express [Shi
and Littman (2001); Gilpin and Sandholm (2006)].

A game which fits the above description well is Hearthstone: Heroes of Warcraft. It is
a digital strategic card game developed by Blizzard Entertainment. Two players compete
against each other with self-made decks, using cards specifically created for Hearthstone.
The game is easy to grasp, but complexity quickly arises because of the interaction be-
tween cards – each card has potential to subtly change the rules of the game. It is because
of this complexity that Hearthstone is an interesting area for AI research, especially for
search in imperfect information domains and general game playing.

1.2 Research Questions

In the specialization project Hearthstone was analyzed and compared to other games to
understand which techniques could be used to create a strong computer player [Andersson
and Hesselberg (2015)].

It was discovered that the key points to consider when when creating an AI for Hearth-
stone were the large game tree, the difficulty of node evaluation and the way the game is
constantly evolving. Monte Carlo Tree Search proved to be a viable solution. It can handle
large game trees by using random sampling, can be run without a heuristic function and as
such can deal with new elements being introduced.



This project is focused on further examining Monte Carlo Tree Search, implementing it to
create a Hearthstone computer player and analyze its playing strength. As such the high
level research questions are:

1. Can Monte Carlo Tree Search be implemented to create a strong Hearthstone com-
puter player?

2. Which parameters and implementation choices are important for the agent’s perfor-
mance?

1.3 Research Method

The research method for this project is to acquire a deep understanding of the Monte Carlo
Tree Search algorithm and implement it to create a strong Hearthstone computer player.
The work can be divided into three parts

• Research and understand the underlying principles and theories behind MCTS.

• Implement MCTS specific to Hearthstone.

• Perform experiments to figure out which parameter values give the best results.

1.4 Thesis Structure

Chapter two describes Hearthstone in detail and describes it formally.

Chapter three explains the theories leading up to Monte Carlo Tree Search together with
related research, and describes how MCTS works.

Chapter four describes the implementation of MCTS, which choices have been made and
why, as well as the simulator being used.

Chapter five describes the agents and parameters used and sets up experiments to test the
MCTS algorithm.

Chapter six describes the results of the experiments shown in the previous chapter and
analyses them.

Chapter seven concludes the thesis.

Chapter eight describes future work.





Chapter 2
What is Hearthstone

This chapter is inspired by the work done in the specialization project [Andersson and
Hesselberg (2015)].

2.1 Hearthstone Statistics
Developers Blizzard entertainment
Publishers Blizzard entertainment
Series Warcraft
Engine Unity
Platforms Windows

OS X
iPad
iPhone
Android

Release dates Windows, OS X
March 11, 2014
iPad
April 16, 2014
Android tablets
December 15, 2014
iOS, Android smartphones
April 14, 2015

Genre Collectible card game
Modes Multiplayer, single-player

Hearthstone: Heroes of Warcraft is a col-
lectible card game, which is online and
free to play. It was developen and pub-
lished by Blizzard Entertainment (2015).
The game was announced first at the Penny
Arcade Expo in March 2013 [Engadget
(2013)], and released on 11th of March,
2014 [IGN (2014)].

New content is regularly released by Bliz-
zard Entertainment in the form of new card
sets, gameplay and game modes, which is
usually an expansion pack or an adventure
focusing on single-player.

It was reported by GameSpot in Novem-
ber 2015 that 40 million Hearthstone
accounts had been created [GameSpot
(2015)].

The game has gotten generally favorable
reviews, receiving a score of 87.57% on
GameRankings [GameRankings (2014)] as well as 88% on Metacritic [MetaCritic (2014)]

5



which is based on reviews made by several major video game critics. Later content releases
have also received good ratings [GameInformer (2014a); PCGamer (2014); GameInformer
(2014b); Eurogamer (2015)].

Hearthstone has won several awards:

• Game Awards (2014) - Best mobile/handheld game.

• GameSpot (2014) - Mobile game of the year.

• GameTrailers (2014) - Best overall game and multiplayer game of the year.

• Academy of Interactive Arts and Sciences (2014) - Mobile game of the year and
strategy/simulation game of the year.

• BAFTA Video Games Award (2014) - Best multiplayer game.

2.2 Beginner’s Guide to Hearthstone

2.2.1 Gameplay

Figure 2.1: Hearthstone hero Jaina
Proudmoore

Adapted from Hearthstone Gamepedia (2015d).

Every battle in Hearthstone is played as a one-on-
one battle between two opponents. The gameplay
is turn-based, with each player alternating play-
ing cards to cast spells, summon minions to battle
on their behalf or equip weapons to be able to at-
tack.

The players are represented by their chosen ’hero’,
with different heroes being important characters
from Warcraft lore. The different heroes are as-
sociated with a particular class, which determines
what special cards and unique hero powers they
have available to them.



A hero has 30 ’health’, which is a system of points
used to reflecting the remaining survivability of a
character. A heroes health can be seen on the blood
drop on the character portrait, like with Figure 2.1 showing Jaina Proudmoore, the hero
representing the mage class. Once a hero’s health is reduced to zero, the controlling player
loses the game. The object of a Hearthstone game is simple, although often difficult to
achieve – Get the enemy hero’s health to zero before your opponent can do the same to
your hero.

With the beginning of every turn, a player draws a card from their deck, which is a collec-
tion of 30 cards assembled before the match begins. Players are offered to play with pre-
assembles ’basic’ decks, or make their own. Neutral cards are a large part of the available
cards, and can be used by any class. However, a substantial portion is limited to specific
classes, which is what gives each hero their own strengths and unique abilities.

In each player’s turn that player may attempt to use any of their cards, their hero power, at-
tack with their minions or use their hero to directly attack if they have equipped a weapon.
Most actions, however, require a player to spend mana crystals, and is often the limiting
resource which forces players to plan out each of their moves strategically. At the begin-
ning of the game a player has 1 mana crystal, and receives an additional crystal each turn
up to a maximum of 10. Any mana crystal used is regenerated at the beginning of that
players turn (all their crystals become filled). Any unspent mana does not carry over to the
next turn, and is wasted if not used. Since players get a larger and larger mana pool, later
rounds see increasingly expensive cards, which opens the game up to more impressive
moves and powerful abilities.

Hearthstone has multiple strategic elements a player has to master before being able to
compete at higher levels of play. Positioning and control of minions, assigning correct
strategic importance to various targets, utilizing complex card synergies and interactions,
as well as working with the unpredictable random elements and randomly selected cards
drawn each round, are some of the parts which combined make Hearthstone an intricate
game, where it is not always obvious which play is the best.

2.2.2 Battlefield

The game board, called the battlefield, is where the game takes place. An example of a
battlefield is shown in Figure 2.2. It contains various UI elements like the player’s hands,
decks and mana crystals, as well as the heroes and minions.

There are several different battlefields with their own design and interactive elements, but
these do not affect game play in anyway. A battlefield is chosen at random.

Your own hero is shown near the bottom of the battlefield, labeled in Figure 2.2 as Player.
The opponent’s hero is displayed on the opposite side, near the top, labeled opponent. To
the right of your hero is the hero power, and below and to the right of that are the mana
crystals. Below your hero are your cards. All of this is mirrored on your opponent’s side.
A history of the last few actions are shown to the left in the history panel, while each



Figure 2.2: Hearthstone battlefield

player’s deck is found all the way to the right. Both player’s minions are found in the
center of the battlefield, on opposing sides of the line in the middle.

Players always view themselves as placed at the bottom of the battlefield, while their
opponent is shown on the top. The battlefield is in effect an illusion, which allows each
player to experience a standard view of the game each time they are playing. The players
never find themselves playing on the opposite side of the screen. Minion placement is also
preserved between players’ screens; if a minion is placed on the left of the player’s screen,
it will be similarly placed to the left of the opponent’s screen, despite an apparent rotation
of the perspective.

2.2.3 Order of Play

The starting player is decided by a coin toss at the beginning of each game. Players are
then shown cards randomly drawn from their own decks (three cards for the player who is
going first, four cards for the player going second), which they can then choose to keep or
replace individually. This is called a mulligan, and is shown in Figure 2.3. New cards are
randomly drawn from the deck as replacements, and then the discarded cards are shuffled
back into the deck. In addition to getting one more card, the player going second receives
the coin itself as a special card, which can be used to grant the player an extra mana crystal
until the end of the turn. This is to offset the disadvantage of going second.

At the beginning of their turn, the players have their mana crystals refilled, and then draw
one card from their deck and add it to their hand. Players can have a maximum of 10 mana



Figure 2.3: Mulligan – Replacing starting cards

crystals, as well as a maximum of 10 cards in their hand. Drawing an 11th card will cause
the card to be revealed to both players, and then destroyed.

Provided you have enough mana, you can play any of your cards during your turn, us-
ing them to summon minions, casting spells or equip weapons. If you play a card, the
amount of mana shown in the top-left corner of the card is depleted from your mana crys-
tals.

You can command any viable minions to attack, use your hero’s hero power, or use your
hero to attack directly if your hero has a weapon equipped, or gotten an attack value
another way.

A player’s turn ends when they run out of time, or when they click on the End Turn button
seen on the right side of the battlefield. A turn lasts a maximum of 75 seconds, with some
additional time added to complete animations.

If players draw from their deck when there are no more cards remaining, they will take
fatigue damage. Fatigue initially deals only one damage to the player, but the damage
increases by one each time. Players can mouse over their own or their opponents deck to
see how many cards are remaining. It’s also possible to mouse over cards or hero powers
to get a detailed description, as well as to view any enhancements on the cards.



2.2.4 Concluding the Game

A match ends when one of the following events happen:

• Either heroes’ health reaches zero, or is destroyed. The player remaining is the
winner.

• If a player concedes or leaves the game, the other player wins.

• If both heroes’ are destroyed or get zero health at the same time, the game is a draw,
although they will both see the screen showing defeat.

• When the turn limit of 90 turns is reached, the game ends in a draw. As before, both
players see the defeat screen.

2.2.5 Additional Information

This guide is a short introduction intended only to get a new player familiar with some of
the basic concepts of the game. A continuation of the guide is included in the appendix,
which further explains cards, decks, minions, spells and weapons in more detail.

2.3 Hearthstone Game Description

2.3.1 Formal Game Specification

There is currently no official rulebook for Hearthstone which explains the underlying me-
chanics of the game, although a group of players have worked together to create a detailed,
unofficial rulebook[Hearthstone Gamepedia (2015a)]. In addition to this there is no for-
mal definition of the game as a scientific problem. This paper will define Hearthstone with
the following properties, as used in the specialization project [Andersson and Hesselberg
(2015)]:

• Imperfect information – There are various forms of uncertainty, and players have
access to different types of information. This makes it necessary to both use and
deal with deception, and to plan without being sure of your opponent’s capabilities.

• Stochastic outcomes – There are significant amounts of chance in Hearthstone at
most stages of the game. This creates uncertainty and uncontrollable outcomes, and
it becomes difficult to make accurate assessments of performance due to the high
degree of variance.

• Partially observable – A player does not see the opponent’s hand or deck except
when cards are played or otherwise revealed due to game mechanics. In addition,
no cards are revealed at the end of the game. This makes it more difficult to learn of
an opponent’s strategy over the course of many games, as you won’t always know
what cards they chose not to play.



• Scaling complexity – Hearthstone is a card game with a large number of different
cards, and the game’s complexity can scale significantly based on which cards are
included in the simulations. In addition, new cards are continuously being released.
This makes it possible to test algorithmic performance at many levels.

• Zero-sum – The game is strictly competitive two-player, which means that one
player’s gain or loss is exactly balanced by the loss or gain of the other player.

• Turn-based – Game flow is partitioned into well-defined and visible parts. Hearth-
stone turns are sequential, with players alternating between whose turn it is until the
game results in a victory.

• Non-reactive – Players are not allowed to act on their opponents turn.

• Timed – A round in Hearthstone lasts for 75 seconds, with additional time added
to allow card animations to be completed. If a player runs out of time, their turn is
forcefully ended and passed to their opponent.

• Finite – Hearthstone has a limited number of turns and cards, coming to a draw after
90 turns, although this limit is rarely reached.

2.3.2 The Complexity of Hearthstone

Hearthstone is not a card game which uses a standard deck of 52 cards like Poker or
Bridge. Instead, Hearthstone uses cards made specifically for the game. As many of
the cards change the rules of the game in different ways, and this again creates varied
interactions between them, Hearthstone can quickly become complex.

Decks containing 30 cards are built by the players, and they choose from a pool of almost
one thousand cards. In addition, there are regular releases of new expansions and adven-
tures to keep the game fresh. Because of this, there is an enormous amount of possible
interactions, which means that developing a competent AI player for Hearthstone can in
some ways be looked at as creating an AI for general game playing. There can be great
differences in each game depending on which decks are played.

The complexity increases for each card added, since each new card must be considered in
relation to all other cards. As such, creating a rule-based AI can be difficult since it has
to be updated after every new release, especially since new releases can introduce entirely
new concepts to the game. This maintenance of a rule-based AI would grow exponentially
more difficult. Therefore, in order to deal with the increasing complexity of Hearthstone,
an algorithm that can deal with general game playing is preferred.



2.3.3 Estimate of Possible Moves

An estimate of the number of Hearthstone moves is found by looking at Oyachai (2014a).

A simple case to look at is to assume that each player has no cards in their hands, and that
the board has N friendly minions and M enemy minions. The number of different ways the
minions can attack is dependent on the Attack and Health values of the minions.

In the worst case scenario the player is not able to kill a single enemy minion, and each
of the N minions have M + 1 targets, including the enemy hero. As the orders the minion
attack in matters, the total number of moves is the number of permutations multiplied by
the number of different attacks.

The formula for the total number of moves V is

V = (M + 1)N +N !

This is a number which can grow quickly. A board with seven minions on each side (N =
7, M = 7) has 10,569,646,080 permutations, which is around 1010.

The table below contains the possible different moves with different N and M:

However, the above calculations are done when assuming no cards in each player’s hand.
By looking at the worst case scenario, where each player has K one-mana targetable spells
in their hand. For each of these cards there are N + M + 2 possible targets on which to use
the cards. The order of play matters, so there are K! different orders. Each of the cards
can be intertwined into a minion attack order in (N + 1)K ways.



The formula for the total number of moves V in this case is given by

V = (M + 1)NN !(N + 1)KK!

This number grows larger more quickly. With seven minions on each side and a full hand
of ten cards (N = 7, M = 7, K = 10), the number of possible permutations is approximately
5 ∗ 1030.

In addition to this there are also different card effects and interactions which are difficult
to calculate.

In a real game the number of possible permutations is considerably lower, and the calcula-
tions above are done to give an estimate of a possible upper bound. Minions will often die
during move sequences, and a lot of permutations are in practice identical. The number of
unique permutations is therefore much smaller. It’s important to note, however, that these
calculations do not take into consideration the different aspects of cards, and in certain
cases the number of permutations could rise higher.





Chapter 3
Theory and Background

3.1 Theoretical Foundation

The following section outlines the theories which have led to the development of MCTS
techniques, as well as describing research related to some of them. The key theories and
insights are found in decision theory, game theory, Monte Carlo methods and bandit-based
methods.

3.1.1 Decision Theory

Decision theory is a mathematical theory for choosing which rational decisions to make
when there is uncertainty. This is done by combining utility theory with probability theory
to create a framework where optimal choices can be made by looking at the consequences
of an action together with the chance of each outcome. The words utility and reward, as
well as event and outcome, will be used interchangeably.

A rational agent is defined as one which maximizes the expected utility, and can be for-
malized as follows [Wooldridge (2000)]:

• A = {α1, α2, ...} – The set of possible actions.

• Ω = {ω1, ω2, ...} – The set of all outcomes, which are the result of the performance
of an action.

• P (ω|α) – The probability of an outcome ω ∈ Ω given that the agent performs an
action α ∈ A.

• R : Ω→ R – The reward of an outcome ω ∈ Ω.
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E(α) denotes the expected reward of an action α ∈ A, which simply means that E(α)
represents the utility an agent can expect to obtain when performing action α.

E(α) =
∑
ω∈Ω

R(ω)P (ω|α)

A rational agent can then be said to be an agent which chooses to perform an action α to
maximize the expected utility E(α). In games it is normal to assume that all agents are
rational, which means they will attempt to maximize their expected utility.

Markov Decision Processes

This section is based on ”Markov Decision Processes in Artificial Intelligence” [Sigaud
and Buffet (2013)].

Using decision theory it is possible to make rational decisions, but the theory does not
capture sequential decisions, which are essential to most problem domains. To do this it
is possible to use a Markov Decision Process (MDP). MDPs are used to model sequential
decision problems in environments which are fully observable. MDPs are an extension of
Markov chains, where the extension comes from allowing choices and rewards.

Markov Chains are processes which can undergo a transition from one state to another in
a state space. In addition, these processes must have the property of no memory, meaning
that the probability distribution of the next state is only dependent on the current state,
not on the sequence of events which preceded it. This property of serial dependence only
between adjacent states is called a Markov property. MDPs expand on Markov Chains by
allowing choices with potential rewards in each state, while retaining the Markov property.
If only one action is available to each state, and the rewards are the same, an MDP is
reduced to a Markov Chain.

Markov Decision Processes are used to model sequential decision problems in environ-
ments which are fully observable, which means the new state resulting from choosing an
action is known to the system. The following components are used to model MDPs:

• S = {s0, s1, ...} - The set of possible states, where s0 is the initial state.

• A = {α1, α2, ...} – The set of possible actions.

• f : (S,A)→ S′ – The state transition function which determines the probability of
getting to state s′ if an action α is chosen while in state s.

• R(s) – The reward function for state s.

Decisions are modelled as (state, action) pairs, where the next state s′ is decided based on
a probability distribution depending on the current state s and the chosen action α. It is
assumed the states have the Markov property.

When using MDPs, a policy π specifies which action should be chosen in each state S,
and the aim is to find the policy which will yield the highest expected reward R(s), which



often has to be approximated. One way to solve for this is to use value iterations, starting
at the goal state and updating values backward to get the accumulated expected values for
each state.

Partially Observable Markov Decision Processes

The section above assumes that every state is observable. If the system state can’t be
determined, however, Partially Observable Markov Decision Processes (POMDP) can
be utilized instead. The components from MDPs still apply, but an additional point is
needed:

• O(s, o) – The observation model which defines the probability of seeing an obser-
vation o in the state s.

A key notion is a belief state, which is a distribution over system states representing the
state the system believes it is currently in. A POMDP retains the Markov property, and is
fully observable relative to the belief state. This means that a POMDP can be reduced to
an MDP for the corresponding belief state space [Russell and Norvig (2003)].

There are, however, difficulties with this approach. When the state space of the MDPs
become too large, it is not possible to explicitly represent belief states. As a consequence,
the conversion of POMDPs to MDPs can be impractical. Because of this, belief states
have to be represented approximately [Givan and Parr (2001)].

3.1.2 Game Theory

The theories explained so far have built the foundation on which to model a single agent’s
choices in sequence based on actions with different probabilities and utility scores. While
MDPs and POMDPs play against nature, game theory constitutes multiple rational agents
interacting with each other. The basic assumptions underlying the theory is that deci-
sion makers are rational, as well as reasoning strategically, which means using the ex-
pectations they have of other decision-makers’ behavior [Von Neumann and Morgenstern
(2007)].

A game is defined by established rules allowing interaction of one or several players to
produce a specific outcome. The following components are used to model a game:

• S = {s0, s1, ...} - The set of possible states, where s0 is the initial state.

• ST ⊆ S – The set of terminal states.

• A = {α1, α2, ...} – The set of possible actions.

• K = {k1, k2, ...} – The set of players.

• f : (S,A)→ S′ – The state transition function.

• Rk(s) – The reward function for state s, which can differ for each player k.



Games can be viewed as having discrete time steps starting at t0 and continuing over time
t = 1, 2, ..., n. The initial state s0 corresponds to t0, and n corresponds to a terminal state
sn. At each state st one or more players ki perform actions, sometimes known as moves,
which leads to another state st + 1, as is defined by the state transition function f . As
the transition function can vary between players, f is used rather than the transition model
explained in previous sections. The players then receive a score or a value based on their
choice of action, which is defined by the reward function R. These reward scores can
have different values for each player, and can take many forms such as points or monetary
gain, or may be opposite, giving negative values as costs. The reward function Rk is used
instead of the previous reward function R to indicate the possibly different rewards for
different players.

A players probability of selecting an action α in state s is given by that players policy π.
A Nash equilibrium is defined as no player being able to benefit by unilaterally switching
the strategies, and exists as the combination of all the players’ policies. There is always
a Nash equilibrium, but it’s often intractable to compute it for real games [Daskalakis
(2004)].

Combinatorial Games

The following are some of the properties which can be used to classify games:

• Zero-sum – A game is zero sum if one player’s gain or loss is exactly balanced by
the loss or gain of the other player(s). Whether the game is strictly competitive two-
player, which means that one players gain or loss is exactly balanced by the loss or
gain of the other player.

• Information – A game is said to be a complete information game if all players
are able to observe every state of the game. If one or more players have different
observation of one or more game states, the game is partially observable.

• Determinism – A game is deterministic if all outcomes are known. It is stochastic
if it contains elements of chance.

• Sequential – A game is sequential if the players perform their moves in sequence.
If players apply actions at the same time it is real-time.

• Discrete – A game is discrete if game flow is partitioned into well-defined parts,
otherwise it is continuous.

Combinatorial games are those which satisfy the following qualities: zero-sum, perfect
information, deterministic, discrete and sequential. Examples of combinatorial games are
Go, Chess and Tic Tac Toe, as well as many others. Simpler combinatorial games, like Tic
Tac Toe, are trivially solved. Other, more complex games, like Go, have shown themselves
as significant research challenges.

Games can be described in extensive form, which allow forming of models that fit dynamic
situations. Extensive form makes explicit the order in which players move, and what each



player knows when making each decisions. The extensive form can be viewed as a multi-
player generalizations of a decision tree [Fudenberg and Tirole (1991)].

A game tree can be used to model a sequence of actions and the corresponding conse-
quences, including chance event outcomes, resource costs and utility. Game trees have
three kinds of nodes and two kinds of branches. The edges extending from a node are
branches, where each branch represents one of the possible alternatives available at that
point. The set of alternatives must be mutually exclusive, meaning that if one is cho-
sen, the others can’t be chosen, and collectively exhaustive, which means that all possible
alternatives must be included in this set [Safavian and Landgrebe (1990)].

Minimax

This subsection is based on Artificial Intelligence: A Modern Approach – Stuart Russel
and Peter Norvig [Russell and Norvig (2003)]

The minimax algorithm is the traditional algorithm for attempting to find an optimal strat-
egy in combinatorial games.

Normally, the optimal solution would be to find a sequence of moves which leads to a
goal state. In combinatorial games, however, both players are attempting to reach their
own goal states, while trying to stop the opponent from reaching theirs. The players must
therefore consider alternative strategies, specifying the moves available in states resulting
from every possible response by the opponent, then the players’ moves in states resulting
from the responses to those moves and so on. Roughly speaking, an optimal strategy
leads to outcomes as least as good as any other strategy when playing against an infallible
opponent.

While in a game tree, an optimal strategy can be found by looking at the minimax value of
each node or state, written as M(s). For the player, the value of a node is the utility R(s),
assuming that both the player and the opponent play optimally from this point until the end
of the game. Upon reaching a terminal state, the minimax value is just the utility or reward
function R(sT ). Given a choice, the player will prefer a state of maximum value, while
the opponent will prefer a state of minimum value. This can be defined as follows:

M(s) =


R(s) if n ∈ ST

maxc∈CM(c) if s is a max node
minc∈CM(c) if s is a min node

C(s) = {c1, c2, ...} is the set of children from state s. A max node is where the current
player tries to maximize its own utility, while for a min node it is assumed that the opponent
tries to minimize the utility for the current player. The minimax algorithm will compute the
minimax decision from the current node s, using a recursive computation of all minimax
values of the successor states c ∈ C(s), using the defining equations. This recursion
proceeds down to the leaf nodes, then backpropagates the minimax values up through the
tree.



The minimax algorithm without any enhancements simply performs a complete depth-first
exploration of the game tree. If the tree depth is m with b legal moves from each point,
the time complexity of the algorithm becomes O(bm). This quickly becomes a time cost
which is impractical for real games.

To somewhat reduce the the time complexity of the minimax algorithm, pruning can be
implemented in order to eliminate large parts of the tree from consideration. The most
widely used pruning technique in relation to minimax is αβ pruning. Applied to a standard
minimax tree, the same moves are returned as normal, but branches which could in no way
influence the final decision are cut away.

The general principle can be described as follows: Considering a node n somewhere in
the tree so that the player can choose to move into this node. If there exists a better choice
m for the the player either at the parent node of n or further up in the tree, this means that
n will never actually be reached in play. Once there is enough information about n from
examining some of its descendants, it can be pruned.

The name αβ pruning comes from the following parameters used in the algorithm:

• α – The value of the best choice found so far in any choice along the path for the
current player.

• β – The value of the best choice found so far in any choice along the path for the
opposing player.

The search updates the αβ values as it goes along and prunes the remaining branches at a
node as soon as the values are known to be worse than the current α or β values for the
max or min player, respectively.

When pruning nodes, the minimax algorithm needs to examine onlyO(bm/2) nodes, effec-
tively reducing the branching factor from b to

√
b. This means that minimax with αβ prun-

ing can look ahead roughly twice as far as minimax in the same amount of time.

The enhancement of αβ pruning together with other powerful enhancements such as trans-
position tables (a hash table storing moves to avoid analysis of equal moves reached by
different paths) has allowed the construction of computer Chess players unbeatable by
humans. However, the biggest weakness of the minimax algorithm is its reliance on an
evaluation function to create a heuristic for a board state, as well as being limited to
”small enough” search spaces, which is why minimax has struggled with games such as
Go (where there are problems making a strong evaluation function, as well as having an
enormous search space).

To illustrate the difference, Chess has an estimated number of legal positions to be between
1043 and 1047, with a game-tree complexity of approximately 10123 [Chinchalkar (1996)],
which is defined as the number of leaf nodes in the solution search tree of the initial
position of the game. There is no definite number for the complexity of 19x19 Go, but
there are many suggestions. A typical game between experts lasts about 150 moves, with
an average of around 250 choices per move, which suggest a game-tree complexity of
10360 [Allis (1994)].



Expectimax

Expectimax is a variant of minimax which generalizes the algorithm to include stochastic
elements. The expected value can be computed by averaging the minimax values of all
possible chance events, looking at the probability of each of those outcomes occurring.
Essentially, this means adding chance nodes to the tree. The children of a chance nodes
are all the possible stochastic events which can occur according to the game rules. More
precisely, an expectimax tree is the game tree of an extensive-form game of perfect, but
incomplete information [Veness (2006)].

There are three different non-leaf node types; max, min and chance. The values for max
and min nodes are the defined as the highest value of it’s children for max nodes, and
the lowest value for min nodes. The value of a chance node is the weighted sum of its
children.

Given game state s, the set of possible outcomes Ω, sω as the state after an event ω ∈ Ω
has occurred and R(s) being the reward from state s, expectimax value of a node can be
described as:

Expectimax(s) =
∑
ω∈Ω

P (ω)R(sω)

Using expectimax it is possible to search trees with chance elements, assuming the evalu-
ation score is proportional to the likelihood of winning.

3.1.3 Monte Carlo Methods

Monte Carlo methods are the methods from which Monte Carlo Tree Search has been
named. They came originally from physics where they were used to find approximations
to intractable integrals, but have later been used in many domains, including research on
games:

• Abramson showed it was possible to use sampling from Monte Carlo methods to
also approximate the game-theoretic value of a game, using the games Othello, Tic-
Tac-Toe and Chess [Abramson (1990)].

• Brügmann uses Monte Carlo methods for Go, although without convincing results
[Brügmann (1993)].

• Monte Carlo methods have been successfully used for stochastic games:

– Backgammon [Tesauro and Galperin (1996)].

– Bridge [Smith et al. (1998)].

– Poker [Billings et al. (1999)].

– Scrabble [Sheppard (2002a)].



Gelly and Silver [Gelly and Silver (2011)] took the method further and calculated a Q-
value of an action, which is the expected reward of an action, defined by the following
formula:

Q(s, a) =
1

N(s, a)

N(s)∑
i=1

Ii(s, a)ωi

Where:

• N(s, a) – The amount of times an action a has been selected from the state s.

• N(s) – The number of times games have been played while going through state s.

• ωi – The results of the ith simulation which is played out from state s.

• Ii(s, a) – 1 if action a was selected from state s on the ith play-out from state s,
otherwise 0.

In Monte Carlo methods where the actions of a given state are uniformly sampled, the
approach is called flat Monte Carlo. Ginsberg [Ginsberg (2001)] and Sheppard [Shep-
pard (2002b)] have demonstrated the capabilities of flat Monte Carlo by using it to create
computer players at world champion level in both Bridge (Ginsberg) and Scrabble (Shep-
pard).

Use of Monte Carlo methods gives rise to two important questions:

1. How is the quality of the Monte Carlo evaluation compared to a positional evalua-
tion?

2. To provide a theoretically satisfactory evaluation, how many simulated games are
needed (Is it possible to reach the required number of simulations)?

Question 1: It can be observed that programs based on Monte Carlo methods have been
shown to be sufficiently accurate in several games, as have been cited in the list above.
These are games where heuristics have been difficult to generate successfully. As such, the
quality of Monte Carlo evaluation is able to match or surpass positional evaluation.

Question 2: Based on the work of Bouzy and Helmstetter [Bouzy and Helmstetter (2004)]
it appears that the number of simulations required to reach meaningful evaluation with
Monte Carlo methods is in the order of a few thousand for games like Go and Chess. This
makes it difficult to use Monte Carlo evaluations as the only method of evaluation, as the
required computation time could quickly become infeasible. An example would be the
time required to evaluate one million nodes in chess; around 28 hours using Monte Carlo
estimates when assuming 100,000 simulations per seconds, and using 10,000 simulations
per evaluation. When playing in tournament conditions this would prohibit the algorithm
from doing deep searches.

To bypass the time-consuming property and still reach a reasonable search depth, lazy
evaluations can used, combined with αβ search. Rather than analyzing a node completely,



the evaluations are stopped at a certain point, for instance when there is a 95% chance the
value is lower than the α, or opposite for the β value [Chaslot (2010)].

Bouzy suggested an alternative way of combining search and Monte Carlo evaluations;
growing a search tree by iteratively deepening and pruning unpromising nodes, while only
keeping promising nodes. Leaf nodes are evaluated by Monte Carlo Evaluations. A prob-
lem with this approach is that good branches can be pruned due to the variance in the
evaluations [Bouzy (2004)].

3.1.4 Bandit-Based Methods

A well-known class of sequential decision problems are bandit-based problems, and the
multi-arm bandit problem is formally equivalent to a one-state MDP, where each action
returns to the same state [Vermorel and Mohri (2005)]. A bandit-based problem is the
choice of action which attempts to get the best reward over multiple turns. This is done by
trying to choose the actions which maximize the cumulative reward.

However, the optimal action is rarely obvious, as the underlying reward structure is un-
known, and the only way to approximate it is to analyze actions from previous turns. The
policy deciding which action is best is based on the reward returned from each action in
the past.

This leads to an interesting dilemma in which a player has to balance exploring new op-
tions together with exploiting what currently appears optimal, so that superior strategies
can be found in the long run. More specifically, the algorithm has to balance the effect of
exploiting the action currently expected to give the highest reward, with exploring other,
assumed worse, actions to potentially find a better action.

A bandit is defined by the following variables:

• K – The number of arms on the bandit.

• Ri,n – Reward of playing arm i on the nth pull.

• µi – The unknown expected value of arm i.

When trying to create a policy for choosing the optimal action, each actions is measured
by regret of that action.

Regret

Regret is defined as the difference between the reward sum associated to an optimal strat-
egy and the sum of the collected rewards. A player’s policy should attempt to minimize
that player’s regret.



After n plays, the formula for regret is:

RN = µ∗n−
K∑
j=1

µjE[Tj(n)]

µ∗ denotes the optimal expected reward max(µi), i ∈ {1, 2, ...,K}, while E[Tj(n)|π]
are the expected number of plays for action j in the first n trials, given the policy π.
Another way to say this is that the regret is the expected loss when not choosing the
optimal action.

A strategy where the average regret after each play tends to zero with a probability of
1 for any bandit problem when the horizon tends to infinity is called a zero-regret strat-
egy. Zero-regret strategies converges to an optimal, but not necessarily unique, strategy if
enough plays are made [Vermorel and Mohri (2005)]. Without unlimited plays there is a
need for a policy which keeps the regret low. UCB1 has been shown to keep the regret
logarithmic O(lnn) in finite time, as well as being computationally efficient [Auer et al.
(2002)].

Upper Confidence Bounds

UCB1 is an allocation strategy that achieves logarithmic regret uniformly over n plays
without any preliminary knowledge about the reward distribution, apart from the fact that
their support is in range [0, 1]. UCB1 is defined as the sum of two terms – The first term
is the current average reward, and the second term is related to the size of the one-sided
confidence interval for the average reward within which the true expected reward lands
within with high probability [Auer et al. (2002)].

The policy dictates to play arm i that maximizes:

UCB1 = X̄i +

√
2 lnn

ni

where Xi is the average reward from i, ni is the number of times arm i was played and n
is the number of total plays so far. The first term encourages exploitation of high-reward
choices while the second term encourages exploration of less explored choices [Browne
et al. (2012)]. Xi is bound to the range [0, 1] to normalize the reward from any domain.
When ni = 0 the exploration value is arbitrarily high, ensuring each arm is visited at least
once. This assumes a finite number of arms. When ni is a low value, the exploration term
is large, and

lim
ni→∞

√
2 lnn

ni
= 0

shows that the exploration terms becomes insignificant at higher values of ni, showing that
accumulated reward is the deciding factor given a sufficient amount of plays.



3.2 Monte Carlo Tree Search

3.2.1 Overview

Monte Carlo Tree Search (MCTS) is a method for finding optimal decisions in a given
domain by taking random samples in the decision space and building a game tree according
to the results. MCTS is often used for move planning in combinatorial games, but its
application extends to any domain which can be described in terms of (state, action) pairs
and where simulation can be used to forecast outcomes. This means that MCTS is able to
approximate solutions to MDPs.

Since MCTS was first described it has become the focus of much AI research; a short
history can be seen in Figure 3.1. Monte Carlo methods have been known since around
1940, but it wasn’t until Bruce Abramson explored the idea further in 1987 that Monte
Carlo methods were first used in games like Tic-Tac-Toe, Othello and Chess [Abramson
and Korf (1987)]. In 1993 Bernd Brügemann developed a computer Go program with de-
cent playing strength, even with limited knowledge of the game. This created a new angle
on how to approach the game of Go, compared to the traditional algorithms [Brügmann
(1993)]. It was in year 2006 that Coulumb proposed Monte Carlo Tree Search and coined
the term [Coulom (2006)]. The same year, Kocsis and Szepesvri developed a tree guiding
algorithm which applied bandit-based methods [Kocsis and Szepesvári (2006)] and MoGo
was developed by Sylvain et al. using UCB1 based on Kocsis and Szepesvári’s research
[Sylvain et al. (2006)]. The following years computer Go programs became stronger, lead-
ing up to 2016 where AlphaGo, Google’s computer Go player, beat the world champion
[Silver et al. (2016)].

MCTS uses Monte Carlo simulations to guide a best-first search through a game tree.
Unlike classic tree search algorithms like minimax with alpha-beta pruning, MCTS does
not require an evaluation function, and is therefore particularly interesting in domains
where it can be difficult to evaluate game states. Rather than using an evaluation function,
MCTS can base a node’s value on pseudo-random exploration of the search space. Then,
using knowledge gathered from previous explorations, the algorithm can build a game tree,
becoming increasingly more accurate in estimating the values of promising moves.

The MCTS algorithm has certain requirements due to its characteristics; at minimum, the
following criteria must be fulfilled before MCTS can be used [Chaslot (2010)]:

• Scores for winning or losing a game must be bounded – rewards must be finite.

• The algorithm must have access to complete information.

• The length of the game must be finite, so simulations can terminate.



Figure 3.1: Timeline showing the discovery and evolution of Monte Carlo methods into MCTS



Basic structure

MCTS consists of two strongly coupled parts: a relatively shallow tree structure and deep
simulated games. The structure of the game tree determines the first moves of the simu-
lated games, while the result of these simulations are what shapes the game tree.

MCTS performs the following four main steps in a loop as long as the algorithm is within
its computational budget, growing the tree with each iteration. The algorithm is shown in
Figure 3.2 [Browne et al. (2012)]:

1. Selection – Starting at root node R, recursively select optimal child nodes using a
selection policy π until a leaf node L is reached.

2. Expansion –If L is not a terminal node (i.e. it does not end the game), create one or
more child nodes and select one (C).

3. Simulation – Run a simulated playout from C until a result is achieved.

4. Backpropagation – Update the current move sequence with the simulation result.

After the tree is built, a final step is needed; the move selected for play will be the ’best’
child of the root node, where ’best’ is dependent on the implementation of the algo-
rithm.

Every node i in the game tree represents a different game state, while also holding two
essential pieces of information:

• Vi - The current value of the state i.

• ni - The number of times i has been visited.

The edges of the game tree represents actions. An action is done by a player to change the
game state. The actions have to follow the legal options of the current state according to
the rules of the game. Each node will generally have several edges corresponding to all
allowed actions from itself leading to subsequent nodes.



Figure 3.2: MCTS Algorithm



Pseudo-code

Listing 3.1 shows the pseudo-code of a simple MCTS implementation, without any en-
hancements.

Listing 3.1: MCTS pseudo-code

1 MCTS(node)
2 while(withinComputationalBudget):
3 # Traverse Tree with Select until leaf is reached
4 while(!node.isLeaf):
5 node = Select(node)
6

7 # Expand leaf node
8 node = Expand(node)
9

10 # Simulate game to get result r
11 r = Simulate(node)
12

13 # Backpropagate results ending on the root node
14 while(node.hasParent):
15 updateScore(node, r)
16 node = node.parent
17

18 return finalChildSelection(node)

3.2.2 Selection

Selection is the process of choosing which path to traverse in the tree and figure out which
areas are more promising to explore. This is done by starting at the root node, then re-
cursively selecting children using a selection strategy until reaching a node which is not
yet fully explored. A fully explored node is a node where all possible actions have been
expanded into children.

When traversing the game tree, the goal is to choose the optimal path or optimal way of
building the tree. To do this, nodes will have to be selected recursively according to the
approximated node values generated by the simulation part of the MCTS algorithm. There
are different types of selection strategies, but they are generally focused on balancing ex-
ploration versus exploitation, where exploration means weighing nodes higher if they have
been visited less, and exploitation means further utilizing promising nodes and strength-
ening their statistical significance. If this balance is done correctly, new nodes will have a
chance to be evaluated, while strong, known nodes will get more evaluation time. A com-
monly used node selection policy is Upper Confidence Bounds for Trees (UCT), which is
based on UCB described in Section 3.1.4 [Browne et al. (2012)].



The idea is to treat the choice of child nodes as a multi-armed bandit problem where
the value of the child is the approximation from the simulations, using a win and visit
score, and with the UCT formula select the child that is the most promising based on the
following formula:

Vi +B ×
√

lnN

ni

Kocsis and Szepesvári have shown that the probability of selecting the optimal play con-
verges to 1 as the number of samples grow to infinity. This implies that MCTS with UCT
converges to the optimal minimax tree given unlimited resources [Kocsis and Szepesvári
(2006)].

The first term of the formula, Vi, is the current value of the node, usually the win rate of
node i. Vi represent the exploitation term of the formula, as it is based on the strength of
the prior simulations in the branch, and in cases with high success rate it will continue to
explore that path. Depending on the reward function rs mapping wins, draws and losses
to an numerical value, Vi will be the average rs of all visits to that node, residing in the
range between the scores from only losses to only wins.

The second term in the function consists of two parts denoting the exploration part of
the formula; B, which is the constant bias parameter (which now includes the

√
2 seen

earlier) and
√

lnN/ni. lnN is the natural logarithm of the number of visits of the parent
of the node, and ni is the number of visits of the considered node. lnN promotes more
exploration by increasing the weight of the second term more if the current branch has been
visited often, making it more likely that new nodes are explored rather than exploiting win
rate. ni will differentiate between the children by increasing the value of nodes which
have been visited less.

The bias B is a constant which gives optimal results when set to
√

2 when looking at
regret, but should be tweaked to fit the current domain. Usually, with limited resources,
B <

√
2 should be chosen. By tweaking the bias the exploration term would be weaker or

stronger, and correctly tuning the bias is important to the overall strength of MCTS, as it
decides the exploration vs exploitation trade-off in the selection process.

If the selection strategy has a bias for exploitation it will focus on branches where the win-
rate is high. This will increase the the number of simulation in the same area of the tree and
give more accurate results on those branches, but on the other hand, the search might miss
other alternatives that would have shown more prominent given more simulations. On the
other hand, if the bias is too large, the exploration term will distribute the searches evenly
making it similar to a breadth first search, preventing deeper simulations in interesting
areas of the game tree.



3.2.3 Expansion

The expansion component of MCTS is where nodes are added to the game tree. After
the selection process terminates on a leaf node the expansion will generate or open a
node, then add it to the game tree. As game trees for most domains are too big to be
completely stored in memory, and also too large to fully search, the expansion step has to
use a policy to decide how a node will be expanded to store one or more of its children in
memory.

A popular expansion strategy by Rémi Coulom [Coulom (2006)] involves expanding one
node per simulated game, where the node corresponds to the first position encountered
during traversal which is not already stored. This is usually a randomly chosen child
node of the leaf node. The strategy has several benefits; it’s simple, efficient and easy to
implement, as well as being low in memory consumption.

There are alternatives, for instance full node set expansion, which expands all possible
children from a leaf node, or strategies involving expanding the tree to a certain depth
before starting the search. The former example is often only available when a large amount
of memory can be used, or it is possible to efficiently perform multiple simulations at
the same time. The latter example reduces the memory usage, and will only give slightly
reduced level of play. However, there is generally little effect of having different expansion
strategies, and the simpler implementation of one expansion per simulated game is usually
sufficient [Chaslot (2010)].

3.2.4 Simulation

The simulation process is a fast, approximated playout of the game from the current state.
Each playout has to reach a game resolution, by either playing randomly or selecting
pseudo-random moves following a simulation strategy.

A simulation strategy π is applied from node C to simulate playouts, until a result is
achieved. The result comes from the reward function rs which is determined by the game
result of a terminal node.

A random simulation strategy is rarely optimal, as it assumes the opponent is playing ran-
dom moves. As such, the use of a simulation strategy has been shown to significantly
improve the level of play in MCTS in some games [Sylvain et al. (2006); Bouzy et al.
(2008)]. Even so, a random simulation strategy will, with enough simulations, approxi-
mate strong play.

Such a policy is often based on domain specific knowledge that may be used to create a
heuristic that can find interesting moves. An example is for MCTS in GO where heuristics
can be based on pattern recognition, significance of captures and the proximity of the last
move.

There are two trade-offs which must be considered before applying a policy to the simu-
lations. First there is the trade-off between speed and accuracy. By applying knowledge



to the simulation policy the precision increases and variance of the results is reduced, giv-
ing more reliable simulations. However, the heuristic may be computationally expensive,
increasing the simulation time. As the simulation cost increases the overall number of
simulations per second will drop. This reduces the depth the MCTS can reach in the game
tree, making the search more shallow, which in turn reduces playing strength.

Secondly there is the trade-off between exploration vs exploitation in the simulations. If
there is no strategy or the strategy is too stochastic, it leads to more exploration. This can
cause the simulations to become unrealistic as obviously suboptimal plays are explored.
Therefore it will require a larger amount of total simulations to make up for lost thinking
time spent on avoidable branches. On the other hand, the simulation strategy may be too
deterministic and the same actions are always chosen from the same position, so the results
will be biased towards the predicted play style following the simulation policy.

An effective simulations strategy will balance the two trade-offs, and should insure that
sufficient playing strength is achieved while still being computationally effective. Creating
a heuristic may be a huge challenge for some tasks and be unfeasible, but even using
a simple heuristic has shown to increase playing strength [Browne et al. (2012)]. The
importance of heuristics is shown by all the top performing MCTS Go programs that use
domain specific knowledge, with the prime example being AlphaGo, recently beating the
Go world champion [Silver et al. (2016)].

3.2.5 Backpropagation

Backpropagation is used to update the game with the information gained from the sim-
ulation step, recursively updating from node C where the simulation started, up to each
parent until the root node R is reached. The reward score being propagated is dependent
on whether the simulation returned a win, loss or a draw. For two player zero-sum games
reward score would normally be counted positively rs = 1 for games won, rs = 0 for
games lost, and rs = 0.5 for draws, stemming from the utility scores most commonly
used in game theory.

For each node visited a backpropagation strategy is used to compute a value Vi for the

node. Usually Vi is the average of the scores for each node i, where Vi =

∑
rs
ni

. ni is the

number of visits [Coulom (2006)].

3.2.6 Final child selection

When the computational budget is reached, for instance a certain number of iterations
or a time limit, the search terminates and returns the game tree with the updated nodes.
From the rootnode R, one of the children or possible action will be selected based on their
number of visits ni and scores Vi.



The three most common child selection strategies are:

• Max child: Select the child with the highest reward Vi.

• Robust child: Select the child with the highest visit count ni.

• Max-Robust child: Select the child that has the highest Vi and ni.

The Robust child policy is the most common, as the selection process in MCTS will visit
the most promising node throughout the search as long as the bias is weighted correctly
[Browne et al. (2012)]. Max child should become the same as the Robust child during
the search because of the exploitation in UCT, however with low amounts of iterations,
Max child has been shown to be significantly weaker than the other options [Chaslot et al.
(2007)]. Max-Robust child is a strong contestant, but there is no guarantee that such a
child exists, and therefore require an uncertain amount of thinking time, which might be
unfeasible in some cases.

3.2.7 Characteristics

Aheuristic

MCTS has the benefit of being aheuristic in its natural form. As such it is applicable
to any domain which may be modelled using a tree, and doesn’t require domain-specific
knowledge. Although domain-specific knowledge is mentioned as an enhancement for a
simulation strategy, the fact that MCTS can be applied to complex domains is advanta-
geous for research on domains which are difficult to evaluate.

Anytime

As MCTS backpropagates to update the tree every cycle of the algorithm, it ensures that
the game tree is up to date after every iteration. This gives the benefit of being able to
stop anytime and use the current tree to make a decision. This enables the algorithm to
be flexible with time consumption, and task that needs more accurate predictions may be
given additional time.

Asymmetric

The selective sampling from UCT gives MCTS similarities to the human problem solving
approach, where good moves are evaluated more compared to those which seem worse.
This characteristic uniquely shapes the game tree for every game and each position the
game is currently in [Williams (2010)]. This asymmetric shape give MCTS the ability to
take advantage of high quality plays without exploring all possibilities in the tree to reach
that position.





Chapter 4
Implementation

This chapter describes the implementation of the Monte Carlo Tree Search algorithm for
Hearthstone together with the choices made, a heuristic based agent and the environment
where the testing takes place.

4.1 Simulator

It is not possible have a computer agent interface with the official Hearthstone client di-
rectly, as the game does not have an API, nor are players allowed to use bots or AIs for
playing. Additionally, it’s important to note that for playing hundreds or thousands of
games, using Hearthstone directly would be incredibly slow as it only allows play via the
GUI.

The simulator chosen for this project is HearthSim. It is open source, and can be found at
https://github.com/oyachai/HearthSim.

HearthSim is programmed in Java, and is made specifically for AI research. While incom-
plete (it does not yet have all the cards implemented), it is sufficiently developed to allow
testing of a significant number of cards. Another important reason for choosing HearthSim
is that it already has a simple board value heuristic AI incorporated, which can be used to
test the MCTS agent.
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4.2 Heuristic Brute Force AI

Description of how this AI is implemented is adapted from [Oyachai (2014b)].

The Heuristic Brute Force AI (HBF) is already implemented into the simulator by the
simulator’s creator, and will be used as one of the ways to measure the performance of the
MCTS agents.

The AI is a simple rudimentary score maximizing model. Each turn the AI looks at all
possible moves which can be played, and assigns a score to them based on the outcome.
Thus, the AIs performance is going to be determined mostly by the function used to as-
sign the scores. After searching as many moves as possible within a given computational
budget, the sequence of moves with the best score is chosen.

4.2.1 Scoring Function

Variables with hat (ˆ) denote values associated with the opponent.

The scoring function can be written as follows:

S = Sb + Ŝb + Sc + Sh + Ŝh

where Sb is the friendly board score, Ŝb is the enemy board score, Sc is the hands score,
Ŝh is the enemy hero’ health score, and Sh is the own hero’s health score.

Sb – Friendly board score

The friendly board score is the sum of all attack and health values of friendly minions on
the battlefields. The formula is written as follows:

Sb =
∑
i

(waai + whhi)

where a is the attack value and h is the health value for all friendly minions i. The attack
and health values are weighted by wa and wh respectively. The reasoning behind this
scoring is the idea that the higher health and attack values your minions have, the better.
This is often the case, and the heuristic will usually perform well if the cards used are
relatively simple.

However, it is easy to find cases which makes this heuristic work against its intended
purpose. One such case is the card Ancient Watcher, seen in Figure 4.1. This card has
above average attack and health values, but it can not attack, and needs to be enabled by
other cards to be useful.



Figure 4.1: Ancient Watcher

Tuning wa higher means the heuristic puts a higher value on the attack of a minion, and
less value if it is tuned lower. This is also the case for the tuning of wh, with respect to
health. In general, an aggressive deck will want a higher wa tuning, to maximize damage
dealt, while a defensive or control oriented deck will want a higher wh tuning to absorb
damage and defend minions.

Ŝb – Enemy board score

The enemy board score is the opposite of the friendly board score; it subtracts the enemy
minion’s weighted attack and health value.

Ŝb = −
∑
j

(ŵaaj + ŵhhj)

where aj and hj are the for all attack and health values for all enemy minions j. The
higher the health and attack values of your opponent’s minions, weighted by ŵa and ŵh,
the lower the score.

The same strengths and weaknesses seen in the friendly board score are also found here.

Sc – Hand (card) score

Cards in the hand can be viewed as a resource waiting to be spent. A player is doing
better the more cards they have in their hand, as they will have more actions to choose
from.



The hand score is calculated as follows:

Sc = wm

∑
k

mk

where mk is the mana cost of card k, with the weight wm.

This is an extreme simplification, and it is debatable whether higher mana cost cards are
actually more valuable or not. When considering cards with no card text, the mana cost
will often match well with their attack and health values, and using these values will give
a rough estimate of the strength of a hand. However, the issue comes when more advanced
cards are analyzed, as they often have a mana cost based on their potential value for syner-
gies with other cards, so the heuristic can easily be misleading or provide incorrect values
of a players hand.

The weight mk decides how much each card is valued based on their mana cost, with a
higher mk giving a higher value.

Ŝh – Enemy health score

It is usually assumed a player is doing better the less health the enemy hero has. The
enemy health score captures this observation:

Ŝh = ŵHĤ

where Ĥ is the enemy hero’s health value, and the weight ŵH is the weight. If Ĥ is zero
or below, Ŝh is set to an arbitrarily large number to make sure the AI always picks the
winning move.

Although this score gives a good indication of a player’s status in the game, experienced
players know how to utilize health as a resource and know that depending on which deck
you are playing against, different health thresholds have different values. For instance,
playing against a class with a lot of direct damage spells, it’s beneficial to stay above a
certain health range so that you can’t be killed in a single turn. Another example is the
card Molten Giant, seen in Figure 4.2, which becomes stronger as your health becomes
lower (the card gets cheaper to play). As such, there are nuances beyond this heuristic that
have to be considered.

Ŝh – Your hero health score

Similar to the enemy health score being low, a player is often doing better the more health
the hero has.

Sh = wHH



Figure 4.2: Molten Giant

where H is the hero’s health value and wH is the weight. If H is zero or below, Sh is set
to an arbitrarily large negative number to make sure the AI never kills itself.

The strengths and weaknesses of this score is similar to those seen in enemy health score
above.

4.2.2 Move Generation

The Heuristic Brute Force AI attempt to look at all possible actions within it’s turn. The
number of possible moves scale exponentially with the number of minions on board and
cards in hand, so the AI is limited to 30 seconds of computation, after which it gives up
and plays the best sequence of moves that it has found thus far.

The HBF AI does not consider the possible moves beyond the current turn, as there are
too many possibilities, which prohibits brute-force search approach.

4.2.3 Summary

By looking at the information above it’s possible to give an overall assessment of the
Heuristic Brute Force AI, and look at it’s key strengths and weaknesses.

Strengths

• Simple board state evaluations – The AI is able to effectively analyze board states
with relatively simple cards and perform efficient minion trading.

• Fast – The AI can go through a large number of board states quickly.



Weaknesses

• No look-ahead – The AI does not look past the current turn, which stops the AI from
planning ahead. This means the AI can only consider how to optimize the current
turn, without any form of long-term goals.

• Advanced cards – The relatively simple heuristic prevents the AI from using com-
plex cards, which are generally needed for strong play.

• Predictability – The AI has a fixed scoring function, which makes it easy to predict.



4.3 Monte Carlo Tree Search Implementation

Although MCTS can be implemented without any changes or enhancements, it is benefi-
cial to tailor the algorithm to the specific domain.

Show in listing 4.1 is the code used for implementing the core of the MCTS used in
this project. The following subsections will go into the most important steps in depth,
explaining the reasoning behind the code, as well as which choices have been made and
what enhancements have been used.

Listing 4.1: Code implementing the skeleton of the MCTS algorithm.

1 private HearthTreeNode DoMonteCarlo(HearthTreeNode node) throws HSException {
2 int iterations = 0;
3 while(iterations < MAX ITERATIONS/DETERMINIZATIONS) {
4 node = Selection(node);
5 node = Expansion(node);
6 int score = Simulation(node);
7 node = Backpropagation(node, score);
8 iterations++;
9 }

10 return node;
11 }

4.3.1 Difference in Computational Budget

There are two options when deciding the computational budget:

• Number of iterations – The algorithm runs a specific number of times before return-
ing.

• Time – The algorithm runs as many iterations as possible within a time limit before
returning.

As the simulation part of the MCTS algorithm requires the game to be played out to a
terminal node, it takes a different amount of time to run depending on the stage of the
game simulated from; Simulating from a game state at the start of the game will take
longer than simulating from a state in the late game. This means that using a certain
number of iterations will benefit from longer thinking time in the early turns, while using
time will get an increased number of iterations in the later parts of the game.

In most of the experiments, number of iterations will be used as they are independent of
the capacity of different computers, and are easier to use for measuring.

4.3.2 Node Structure

The tree is made up of two different kinds of nodes: Action nodes, which are nodes gen-
erated from a player performing an action on their turn, and end turn nodes, which come



from a player passing the turn to the opponent. This node structure also allows adding
other node types, for instance chance nodes.

Both node types contain the following information:

• State representation – Information containing the current state of the game:

– The player’s decks.

– The player’s hands

– The player’s health values

– The player’s current and max mana.

– The player’s minions

• Wins – How many times a simulation from this or a descendant node has resulted
in a win.

• Visits – How many times this or a descendant node has been visited.

• Parent node – The node to which this node is a child.

• Children – The list of child nodes this node has.

• Possible actions – All the possible actions which can be done from the node.

Action nodes

Upon instantiating a new node, action nodes are generated as possible actions, which can
later be added to the list of children once they are explored in another iteration. There are
three different types of actions nodes:

• Attack children – A node where the action involves one character attacking another.

• Use card children – A node where the action involves using a card.

• Hero power children – A node where the action involves using a hero power.

These nodes differ in how they are created, but are functionally the same. They simply
represent the resulting state of a move.

End turn nodes

Hearthstone is a complex game in many respects, one of these being the possibility of
performing multiple moves each turn. Because of this, when possible actions for a new
node is created, an end turn node is always added as well, representing the action a player
can take to pass the turn to the opponent. This allows the MCTS algorithm to handle both
null-action turns as well as multi-action turns, since end turn nodes will function as leaf
nodes within a players turn.



When an end turn node is created, the end turn step is performed for the current player, then
the current player is swapped to the opponent, and the begin turn step is performed.

4.3.3 Selection

The selection strategy implemented is Upper Confidence Bounds for Trees (UCT), devel-
oped by Kocsis and Szepesvári [Kocsis and Szepesvári (2006)], and is described in Section
3.2.2. The method has been shown to balance exploration and exploitation, while giving
the option of tuning with a bias parameter.

The line numbers referred to in this paragraph are from Listing 4.2, showing the code used
for Selection. As long as the node is fully explored, and the node has children, selection
will be performed (line 3). The children of the node are compared to each other, and the
one with the highest score (based on calculateScore) is chosen (lines 9 to 13). Selection
is then recursively performed until a leaf node is reached (line 18). Once a leaf node is
reached, it is returned (line 21).

Listing 4.2: Code implementing the Selection part of MCTS.

1 private HearthTreeNode Selection (HearthTreeNode node) throws HSException {
2 // Check if there are no unexplored children (possible actions) and it’s not a leaf node
3 if(node.possibleActions.isEmpty() && !node.getChildren().isEmpty()) {
4

5 HearthTreeNode candidateNode;
6 double candidateNodeScore = Integer.MIN VALUE;
7

8 // Compare scores for all children, select the best one.
9 for (HearthTreeNode childNode : node.getChildren()){

10 double childScore = calculateScore(childNode);
11 if(childScore > candidateNodeScore){
12 candidateNodeScore = childScore;
13 candidateNode = childNode;
14 }
15 }
16

17 // Recursively select nodes until a leaf node is reached.
18 return Selection(candidateNode);
19 }
20

21 return node;
22 }

As selection is only performed on a fully explored node, it is ensured that every possible
action is explored from a node before a deeper search can be allowed. This relates to the
score of UCB1 as described in Section 3.1.4, where the exploration term will be arbitrarily
high for an arm where ni = 0, which is similar in MCTS to a child node which has not
yet been expanded. The way this relation has been implemented is to stop selection upon
reaching unexplored children, and move on to the expansion step, ensuring each child is
visited at least once.



The code in Listing 4.3 shows the implementation of the UCT formula. The implementa-
tion is straight-forward, with the exploitation score being Vi = wins/visits (line 2), and
the exploration score being B ∗

√
lnN/ni (lines 4 and 5).

Listing 4.3: Code implementing the exploration versus exploitation score for Selection.

1 private double calculateScore(HearthTreeNode node){
2 double exploitScore = node.wins/node.visits;
3

4 double exploreScore = Math.sqrt(Math.log(node.getParent().visits)/node.visits);
5 exploreScore = biasParameter ∗ exploreScore;
6

7 return exploitScore + exploreScore;
8 }

The selection policy can be used regardless of which player is performing a move, as the
results used for score calculation are always updated in relation to the player whose turn it
is. This is further explained in Simulation (Section 4.3.5).

The bias parameter is crucial for the performance of the UCT formula, especially since
multiple actions can be performed in a single turn. This will be discussed further in Final
Child Selection (Section 4.3.7).

4.3.4 Expansion

The expansion strategy used is the one created by Rémi Coulom [Coulom (2006)], de-
scribed in Section 3.2.3, as it is simple, efficient, easy to implement, relatively low on
memory consumption, and has been shown to be sufficient for most domains.

The line numbers referred to in this section are from Listing 4.4, showing the code used
for Expansion. From the list of possible actions not yet expanded, one is chosen randomly
(lines 8 and 9). The chosen action is removed from the list of possible actions (line 13),
and added to the node’s children (line 14). Possible actions are then created for the new
node depending on if it’s a leaf node or not (lines 18-22). Lastly, the new node is returned
(line 25).



Listing 4.4: Code implementing the Expansion part of MCTS.

1 private HearthTreeNode Expansion(HearthTreeNode node) throws HSException {
2

3 // If node is a leaf node − no expansion
4 if (node.possibleActions.isEmpty()){
5 return node;
6 }
7

8 // Randomly select an action
9 int randomNumber = random.nextInt(node.possibleActions.size());

10 HearthTreeNode newNode = node.possibleActions.get(randomNumber);
11

12 // Remove the new node from the node’s possible actions, and add it to the node’s children
13 node.possibleActions.remove(newNode);
14 node.addChild(newNode);
15

16 // Generate possible actions for the new node, unless it’s a leaf node
17 // True if no players are dead
18 if (!(newNode.data .isDead(PlayerSide.CURRENT PLAYER) ||

newNode.data .isDead(PlayerSide.WAITING PLAYER))) {
19 newNode.possibleActions = childNodeCreator.createChildren(newNode);
20 } else {
21 newNode.possibleActions = new ArrayList<>();
22 newNode.setChildren(new ArrayList<>());
23 }
24

25 return newNode;
26 }

It’s important to note the step for creating possible actions. The expansion process can be
utilized to prune child nodes by not allowing certain possible actions to be appended to
the newly expanded node. Doing this causes fewer moves to be considered by the MCTS
algorithm. The result of this is reduction in generality, but can have practical domain
specific enhancements if done correctly. It’s also possible to prune known bad moves
which exist merely because they are theoretically possible.

An example of pruning unnecessary child nodes can come from situations where the dif-
ferent permutations of minion placements are in essence the same. If no cards are played
in either deck which rely on different positions on the board, like the card Alpha Wolf seen
in Figure 4.3, then it doesn’t matter where a minion is placed. Disallowing the different
permutations to be created as children, but for instance only placing minions to the far left,
can significantly reduce the size of the game tree. In a worst-case situation with 6 minions
being on a players side, there are 7 possible placements for a new minion. This means that
only using one of the possible permutations reduced the branching factor for this specific
move from 7 to 1, which again greatly reduces branching further down in the tree.



Figure 4.3: Dire Wolf Alpha



4.3.5 Simulation

For the implementation a random simulation strategy has been chosen. This is similar
to using flat Monte Carlo, discussed in Section 3.1.3, where actions are uniformly sam-
pled, as nodes will on average receive a uniform distribution from the random selection of
actions. Using this approach has led to world class computer players in Bridge and Scrab-
ble, showing the viability of a random simulation strategy [Ginsberg (2001), Sheppard
(2002b)].

Even though an informed simulation strategy has been shown to improve levels of play
[Sylvain et al. (2006); Bouzy et al. (2008)], a random simulation strategy was chosen for
the implementation, as Hearthstone is a game where creating an evaluation function to use
with a simulation strategy is itself a difficult problem.

The code used for the simulation implementation is shown in Listing 4.5. The node is
deep copied to ensure the simulations are independent from the tree (line 2). The while
loop (line 7) is run until the simulations reach a terminal node where the result is returned
(lines 9 to 16). All possible actions are created for the simulation node (line 19), then a
random one is chosen for further simulation (lines 22 and 23).

Listing 4.5: Code implementing the Simulation part of MCTS.

1 private int Simulation(HearthTreeNode node) throws HSException {
2 HearthTreeNode simulationNode = new HearthTreeNode(node.data .deepCopy());
3

4 // Remember whose turn it is
5 byte currentPlayerID = simulationNode.data .getCurrentPlayer().getPlayerId();
6

7 while(true){
8 // Check if either player is dead, return score based on whose turn it was originally
9 if (simulationNode.data .isDead(PlayerSide.CURRENT PLAYER)

10 || simulationNode.data .isDead(PlayerSide.WAITING PLAYER)) {
11 if (currentPlayerID == simulationNode.data .getCurrentPlayer().getPlayerId()) {
12 return 1;
13 } else {
14 return 0;
15 }
16 }
17

18 // Create every possible action from the simulation Node
19 simulationNode.possibleActions = childNodeCreator.createChildren(simulationNode);
20

21 // Choose one of these possible actions at random to simulate further
22 int randomNumber = random.nextInt(simulationNode.possibleActions.size());
23 simulationNode = simulationNode.possibleActions.get(randomNumber);
24 }
25 }

The returned results are 1 for a win and 0 for a loss. It’s not possible to get a draw. These
numbers are used directly later as the reward score in backpropagation.

Depending on whose player the initial node in the simulation is affiliated with, the result is



returned from this player’s perspective. This means that using the selection strategy on any
parts of the tree will play both players as rational agents, such as for minimax explained
in Section 3.1.2, but without using min and max nodes.

The generation of possible actions are the same as what is used when a new node is nor-
mally instantiated, as described in Node Structure (Section 4.3.2). This means that any
action available to the player, including ending the turn, will be randomly selected and
used for the next step of the simulation. The simulation is done as random self-play until
a terminal node is reached, and the result is returned for use in Backpropagation.

It is also possible to initiate a new game from the initial simulation state, and use two agents
which play randomly, but this was found to be too cost intensive to allow for a significant
number of simulations. While this means that the choice of AI for the simulations can be
used as a simulation strategy, a significant improvement must be made to offset the cost of
initializing a new game for each simulation.

4.3.6 Backpropagation

The implemented backpropagation strategy is straightforward, updating the visits as well
as the score up the game tree from the expanded node, as described in Section 3.2.5.

The code implementation for backpropagation can be seen in Listing 4.6. As in the sim-
ulation code, the current player’s perspective is being saved (line 3). As long as the root
node hasn’t been reached, the score is updated relative to the player’s perspective using
UpdateScore (lines 7 to 16). Then node is set to be the parent, to backpropagate further up
the tree (line 17). In the end the visits of the root node is incremented (line 20).

Listing 4.6: Code implementing the Backpropagation part of MCTS.

1 private HearthTreeNode Backpropagation(HearthTreeNode node, int score){
2 // Remember whose turn it is
3 byte currentPlayerID = node.data .deepCopy().getCurrentPlayer().getPlayerId();
4

5 // While the node has a parent, backpropagate the result of the simulation up the game tree
6 while(node.getParent() != null){
7 if (node.getParent().data .getCurrentPlayer().getPlayerId() == currentPlayerID) {
8 node = UpdateScore(node, score);
9 } else {

10 if (score == 0){
11 node = UpdateScore(node, 1);
12 }
13 if (score == 1){
14 node = UpdateScore(node, 0);
15 }
16 }
17 node = node.getParent();
18 }
19

20 node.visits++;
21

22 return node;
23 }



As mentioned in simulation, the reward score rs takes the values 1 for wins and 0 for
losses. This gives the exploitation score Vi a range of [0, 1], which is effectively the win
rate of the node.

The implementation code for the updateScore function is shown in listing 4.7. The code is
relatively simple, iterating upon visits (line 2) and increasing wins based on the score (line
3).

Listing 4.7: Code implementing update score for Backpropagation

1 private HearthTreeNode UpdateScore (HearthTreeNode node, double score){
2 node.visits++;
3 node.wins+= score;
4 return node;
5 }

4.3.7 Final Children Selection - Action Chain MCTS

Unlike most combinatorial games, Hearthstone allows the possibility of zero to multiple
actions for a player each turn. As a result, several issues must be addressed.

Unknown number of actions

As each turn in Hearthstone is different, it’s not always clear how many actions a player
can or should perform during a turn. The number of possible actions each turn grows as the
number of resources increases, like how much mana or how many cards are available. An
intuitive approach to this problem would be to run MCTS for the first action, performing it
and then running MCTS for the second action and so on, until the player decides to end the
turn. While this allows using the common method of child selection in MCTS, a problem
arises when deciding the computational budget which should be allocated to each run of
MCTS.

If a set computational budget was given to each action, the player receives more thinking
time for a turn where more actions are performed, and less for fewer actions. For instance,
a player using 10 seconds of thinking time for each move, would spend 10 seconds on a
turn with one action and 100 seconds on a turn with 10 actions. To stop the player from
going over the allowed thinking time, a harsh limit would have to be placed on the number
of iterations, so that all actions could be performed. However, this would greatly weaken
turns with fewer actions, as less thinking time would be used.

A solution to this problem is to allocate all available resources to constructing a single
MCTS tree, and selecting actions downward the tree until an end turn node is reached.
This is one of the reasons the end turn nodes were implemented, to function as a marker
for the action chain. This means there is no need to guess the number of actions which



will be performed per turn, and the computational budget is distributed across the tree in
accordance with the exploration versus exploitation balance.

Action Chain

An action chain is an ordered list of actions chosen in accordance with the child selection
policy from the root node until a leaf node is reached in a sub-tree bounded by nodes that
lead to the opponents turn. The action chain requires that there exist at least one branch
where the leaf node for the current player is accessible. The definition of the leaf nodes
has to be handled by the node structure of the tree, in this case by the end turn nodes. This
also implies that other events such as stochastic elements have to be handled by the node
structure as well, so that leaf nodes can be reached after nature events are explored.

Child Selection

The robust child policy, as described in Section 3.2.6, is applied to each step to determine
which action should be selected. This means the child node with most visits is added to
the chain. Robust child is chosen over Max child as turns with many actions can end up
with few visits lower down the branch.

Bias parameter

The bias parameter is an important part in balancing exploration versus exploitation. This
is especially so when considering an action chain, as there is a fall-off to the number of
iterations for each depth of the tree. For instance, given 300 iterations spread evenly over
three nodes will give only 100 iterations to further search below each of those nodes. If
too many iterations are spent exploring insignificant paths, a long action chain might not
receive enough iterations to find strong plays.

As mention in Section 3.2.2, a lower bias is needed when working with limited resources.
Action chains require an even lower bias to force a significant enough amount of iterations
so that the children of each step in the action chain can still receive statistical significant
results.

4.3.8 Determinizations

A difficulty with implementing a computer Hearthstone player is that the game does not
have perfect information, because the cards in the opponent’s hand and the ordering of
cards in both decks are unknown. This is an issue, since the agent finds itself in a set of
possible belief states, rather than dealing with a fully observable environment.



A single turn in Hearthstone is in essence a Partially Observable Markov Decision Process
(POMDP), which is described in Section 3.1.1. Given the set of belief states B(s) =
{b1, b2, ...} which are the different permutations of card combinations for a state s which
make up the hidden information, the number of belief states |B(s)| can be found by the
following formula:

|B(s)| = (ĥ+ d̂)!× d!

where ĥ is the amount of cards in the opponents hand, d̂ is the amount of cards in the
opponents deck and d is the amount of cards in your own deck. Even during the end of
the game, where deck and hand sizes tends to be low, an example using ĥ = 3, d̂ = 5
and d = 5 gives (3 + 5)! × 5! = 4838400 possible belief states. This is computationally
infeasible as the branching factor for a state increases proportionally to the number of
belief states. More specifically, it can be said that the number of branches B(s) from state
s is the product of the number of belief states B and the number of actions |A| available
from that state:

B(s) = |B(s)| × |A|

It can be seen that even with a low number of possible actions, the branching factor be-
comes unmanageable.

The solution implemented in this project is to use only a subset of the belief states D =
{d1, d2, ...} where D ⊆ B, perform the MCTS algorithm on these belief states and then
merge the resulting trees together [Cowling et al. (2012)].

These belief states, called determinizations, are chosen randomly. Each determinization
is given T/|D| thinking time, where T is the total computational budget for each turn.
MCTS is performed on each determinization, creating a tree for each of them. These trees
are then pruned to a sub-tree bounded by the end turn nodes. By looking at equal end turn
nodes for the different determinization, the trees are merged into one tree containing the
sum of scores for each node. If a determinization has not explored enough to reach an end
turn node, that branch in the final tree does not get updates from this determinization. The
reason some branches are not explored in certain determinizations is that for that belief
state those plays were not deemed strong enough by the selection policy.

The main advantage of using this method is that the problem is reduced to an MDP, which
makes it possible for MCTS to solve. Additionally, by only choosing a subset of the
belief state, it’s possible to work with the problem without taking every belief state into
consideration.

There are, however, certain drawbacks. Increased number of determinizations greatly re-
duces the number of iterations available for MCTS, creating a more shallow search. There
is also the chance that the determinizations don’t correctly reflect the actual game state,
which means the search will be lead into sub-par plays. It is necessary to consider the
trade-offs between having a more shallow search, versus avoiding bad plays by acting on
the wrong information.



4.3.9 Limitations

Although many Hearthstone cards are usable with the following implementation, there are
certain limitations using the simulator and the HBF agent. First of all, there are some
cards which have not yet been implemented in the simulator, and as such they can’t be
used. Secondly, the HBF agent does not handle hero powers, so a choice was made to not
include them. Third, random effects were not handled correctly by the simulator, so cards
including stochastic elements were excluded from the decks. Fourth, the mulligan stage
of the game was not used, as the HBF agent does not support it.

There is a limitation with the MCTS implementation as well. Because of the way deter-
minizations are implemented, it is currently not possible for the action chain to handle
cards which allow card draw in the middle of the turn. As such, cards with card draw have
been excluded.



Chapter 5
Experimental Setup

This chapter presents the different experiments which will be performed in order to eval-
uate the viability of the MCTS agent, as well as containing the description of the different
agents used.

5.1 Agent Description

Three different agents have been implemented to use in the experiments:

1. Heuristic Bruteforce Search Agent

2. Cheating MCTS Agent

3. Determinization MCTS Agent

5.1.1 Heuristic Bruteforce Search Agent

This agent is implemented as described in section 4.2, and is used as a benchmark to test
the other two agents. The variables are the ones used by the creator of the simulator and
will remain the same for all experiments. They are set as follows:

• wa = 0.9

• wh = 0.9

• ŵa = 1.0

• ŵh = 1.0

• wm = 0.1
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• wH = 0.1

• ŵH = 0.1

5.1.2 Cheating MCTS Agent

The cheating MCTS agent (CMCTS) agent is implemented as if it could see the opponents
hand as well as see each card in the decks, hence the name ’cheating’. It is used to show
the theoretically optimal play of the determinization MCTS agent, and should always play
better than the determinization agent which is playing with hidden information. In essence,
the cheating MCTS is set to have the correct belief state.

The different parameters which will be tested are:

• B - The bias parameter.

• T - The computational budget.

5.1.3 Determinization MCTS Agent

The determinization MCTS agent (DMCTS) works as described in the implementation,
without any knowledge of the opponents hand other than how many cards it contain, as
well as no information on the order of the cards remaining in the decks. The agent knows
the content of the opponents deck, as is often the case in tournament conditions, but not the
order of the cards. This knowledge is what is used to make the determinizations.

The different parameters which will be tested are:

• B - The bias parameter.

• T - The computational budget.

• d - The number of determinizations.

5.2 Experiment Scheme

Each experiment will be described by the following:

• Objective – The goal of this experiment or what is the desired outcome.

• Motivation – Why this experiment is useful; how this can be used for creating a
stronger agent.

• Expected Outcome – A short description of which characteristics the expected re-
sults will have.

• Parameters – Which agents are part of the experiment and which variables they use.



The performance measure for the experiments will be the agent’s win-rates. In all experi-
ments each agent will play as the first player half of the time. The agents will all be playing
with equal decks, shown in Figure B.1 (included in the appendix).

The basic deck is designed to cater to the strength of the HBF agent, as it would be trivial
to include cards which make the agent fail. It is more interesting to measure the MCTS
agents against an opponent which is as competent as possible. The advanced deck includes
two extra cards which are considered more difficult to use properly to achieve maximum
value.

The experiments are presented in the order performed, and each new experiment takes into
account the data gathered from previous experiments.



5.3 Experiments

5.3.1 Bias Parameter

Objective

Establish a reasonable estimate of which bias parameter gives optimal balance of explo-
ration and exploitation. Different bias parameters will be tried from low to high with steps
in between to approximate a solution.

Motivation

As discussed in Section 3.2.2 and 4.3.7, having the correct bias parameter is important
to balance exploration vs exploitation. The computational budget will be limited, and as
the action chain requires a certain amount of exploitation to sufficiently evaluate nodes at
lower tree depths due to the iteration drop-off caused by the cost of exploring, the tuning
of the bias parameter is even more important than in regular MCTS.

Expected Outcome

Extreme low or high values will perform poorly. There will be a point where the bias
parameter will have the optimal performance, which becomes worse as the bias deviates
from that point. The value is expected to be below

√
2.

Parameters

• Agents used – CMCTS vs HBF.

• Decks used – Basic deck.

• T – As there is currently no upper bound on how much computational budget is
required, 60 seconds will be used as this is usually how much time a player normally
has to perform his turn. 10 and 30 seconds will also be tested to see if there is a
significant difference when using less computational time. All experiments will be
run on the same computer.

• B – The bias will be tested with the range [0.25, 1.5] with a step size of 0.25.



5.3.2 Computational Budget

Objective

Establish a reasonable estimate of how much time the MCTS agents need to approach
sufficient playing strength, as well as to see when it is no longer useful to provide the
agents with additional time. As CMCTS plays as a DMCTS guessing the correct belief
state, this experiment will be used to establish a lower bound of necessary iterations for
each determinization.

Motivation

It’s important to correctly balance finding a play in a reasonable amount of time, while
also making sure the play is strong enough. The CMCTS plays with perfect information,
and finding the required computational budget for the agent to play well indicates a lower
bound on iterations needed for each belief state in the DMCTS agent. Assuming DMCTS
approximates the correct belief state it would require at least this lower bound of iterations
to get a deep enough search to perform well.

Expected Outcome

Going from lower to higher computation times will see an increase in win-rate. The win-
rate will increase faster at first, but then see diminishing returns.

Parameters

• Agents used – CMCTS vs HBF.

• Decks used – Basic deck.

• B = 0.5.

• The different number of iterations which will be tested are:

– T = 1000 iterations

– T = 2000 iterations

– T = 3000 iterations

– T = 4000 iterations

– T = 5000 iterations

– T = 10000 iterations



5.3.3 Number of Determinizations

Objective

Figure out how many determinizations are optimal with a given computational time, to
balance the fact that information is hidden with getting a sufficient number of simulations.
Different computational budgets will be tested to see if the observations from the previous
experiment holds true.

Motivation

A determinization uses T/|D| computation time. Having too many determinizations will
leave each tree shallow, while too few determinizations will fail to accurately estimate the
opponent. Giving a determinization lower amount of iterations than a lower bound will
show poor performance.

Expected Outcome

A high number of determinizations relative to the number of iterations will give poor
results. There will be a point where the number of determinizations will have optimal
performance, which becomes worse the more the number of determinizations deviate from
this point. Longer computational time should increase overall performance relative to the
number of determinizations.

Parameters

• Agents used – DMCTS vs HBF.

• Decks used – Basic.

• B = 0.5.

• T = 5000 iterations

– d = {1, 2, 3, 4, 5, 10}

• T = 10000 iterations

– d = {1, 2, 3, 5}



5.3.4 Advanced Cards

Objective

Test if the optimal number of determinizations change based on which cards are used. Two
of the card Flamestrike (shown in Figure 5.1) are added to both player’s decks, as it is a
high impact card which requires planning over several turns to maximize it’s value. This
will be used to test if number of determinizations vary with card complexity. Only two
cards of the same type are changed from the basic to the advanced deck to only change a
single variable compared to the previous experiment.

Figure 5.1: Flamestrike

Motivation

It is interesting to see the performance of the DMCTS agent with a more advanced deck.
Flamestrike is an iconic Hearthstone card, which is often used to turn the tide of battle.
As Flamestrike is a card which can punish players who overextend, a higher number of
determinizations might be required to plan around this card.

Expected Outcome

A higher amount of determinizations might perform better than in the previous experiment,
as Flamestrike is an important card to play around. As the advanced deck has only changed
two cards out of thirty, the impact won’t be huge, but should show a noticeable change in
win-rate for either agent.



Parameters

• Agents used – DMCTS vs HBF.

• Decks used – Advanced.

• B = 0.5.

• T = 5000 iterations

– d = {1, 2, 3, 4, 5}

• T = 10000 iterations

– d = {1, 2, 3}

5.3.5 Humans vs DMCTS

Objective

Test if the AI is able to perform well against human players. The experiment will look
at who wins the games, as well as having the players answer a questionnaire about their
experience, which can be found in Appendix D.

Motivation

It has always been interesting to see how computers perform against human players for ev-
ery game. Hearthstone is still a game where the AI is far weaker than the best players, so it
is interesting to see what level the DMCTS agent is at compared to human players.

Expected Outcome

The DMCTS agent will win some matches, but it’s uncertain what the win-rate will
be.

Parameters

• Agent used – DMCTS vs Human players

• Decks used – Advanced

• B = 0.5

• T = 20000 iterations

• d = 2



Chapter 6
Experimental Results and
Analysis

6.1 Description scheme

Each experiment described in chapter 5.3 will be written in order, first showing the results,
then pointing out which data is more interesting, followed by analyzing the data. All
confidence intervals are calculated with a 95% confidence level.

6.2 Bias parameter

6.2.1 Results

Figure 6.1: Resulting win-rates depending on bias parameter and computational budget
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Figure 6.2: Bias results in graph form

6.2.2 Analysis

The goal of the experiment was to approximate an optimal bias parameter, which could be
used for further experimentation.

The bias parameter was expected to perform poorly at very low or high bias, which can be
seen in the bell curve of the graphs for 10 and 30 seconds, shown in Figure 6.2. 60 seconds
shows an outlier with a high win-rate with 1.5 bias, although at 60 seconds the win-rate
seems to be high for most bias parameters. It was also expected that the highest win-rates
would be found below

√
2, which is true for 10 and 30 seconds, while 60 seconds seems to

perform well with most values simply because of the large computational budget.

As can be seen in Figure 6.1. the data trends towards a higher win-rate around 0.5 to
0.75 bias, showing that a significant amount of exploitation is required, especially at lower
computational budgets. As the bias increases, the win-rates drop. This is because the
more exploration is performed, the less number of iterations are used for each step in the
action chain, resulting in poorer overall turns when the last actions in the sequence are
considered.

B = 0.5 showed the highest win-rate of 0.8, with a confidence interval of ±0.07, as well
as performing best for the lowest think time. This bias value will be used for the rest of
the experiments.



6.3 Computational Budget

6.3.1 Results

Figure 6.3: Resulting win-rates depending computational budget

Figure 6.4: Computational budget results in graph form



6.3.2 Analysis

The objective of this experiment was to establish the relationship between win-rate and
computational budget. As can be seen from Figure 6.4 there is a clear increase in win-rate
as more computational budget is added.

The win-rate seems logarithmically proportional to the computational budget, which means
that as long as more iterations are add, the win-rate will rise, although there will be dimin-
ishing returns. At 3000-4000 iterations the gradient decreases, showing lower increase in
win-rate when adding more iterations.

Using CMCTS, a lower bound can be determined to establish the minimum amount of
iterations required for each determinization. This bound can vary on the game environment
and the agent’s settings, but each determinization will not perform better than CMCTS
using the same computational budget.

The goal of the DMCTS agent is to approximate the CMCTS agent. This requires a num-
ber of determinizations which can together approach a representation of the correct belief
state. However, each determinization requires enough iterations to perform well enough.
The balance between determinizations and iterations varies, but of course, the more com-
putational budget is available, the better the performance. The correct balance for itera-
tions per determinization is expected to be higher than the lower bound.



6.4 Number of Determinizations

6.4.1 Results

Figure 6.5: Resulting win-rates depending on determinizations for T = 5000

Figure 6.6: Resulting win-rates depending on determinizations for T = 10000

6.4.2 Analysis

The point of the experiment was to look at the performance of different number of deter-
minizations, to establish the balance between deep searches versus accuracy in estimating
belief states.

Figure 6.5 shows that the win-rates for 5000 iterations are higher for a low number of
determinizations, especially for just a single determinization. This matches well with the
earlier prediction considering the lower bound required for each determinization. 2 and
3 determinizations are close to the lower bound, and still perform ok, but increasing the
number of determinizations further gives lower win-rates.

Figure 6.6 shows the win-rates for 10000 iterations. As expected the win-rates are higher
with a larger number of iterations. The same drop-off in win-rate when spreading out iter-
ations over several determinizations can also be seen. This shows that deep searches from
a higher computational budget is more impactful than number of determinizations.

Both 5000 and 10000 iterations have lower win-rates than the ones for CMCTS with the
same computational budget.



6.5 Advanced Cards

6.5.1 Results

Figure 6.7: Resulting win-rates using advanced cards depending on determinizations for T = 5000

Figure 6.8: Resulting win-rates using advanced cards depending on determinizations for T =
10000

6.5.2 Analysis

This experiment was similar to the previous one, but using two different cards, creating
more advanced game play options. The card added (Flamestrike, seen in Figure 5.1) was
specifically chosen as it is a card which often has to be played around if it is expected the
opponent has it in the hand.

By comparing 5000 iterations in number of determinizations and advanced cards (Figures
6.5 and 6.7 it can be seen that it is similar win-rates overall, but significantly lower for
1 determinization while using the advanced deck. The low win-rate is probably caused
by the inaccuracy from a single determinization, which may have made the DMCTS agent
play to passively when it predicted the opponent to possess the Flamestrike in hand. As for
the significant drop in win-rate from 2 to 3 determinizations shows that there is not enough
iterations to support more determinizations. More determinizations would be required to
accurately predict the true belief state, which is important when including cards such as
Flamestrike.

Figure 6.8 shows increased performance compared to Figure 6.7 which is because of the
increase of computational budget, again confirming that larger computational budget is the
parameter with highest impact.



6.6 Humans vs DMCTS

6.6.1 Results

Player 1 Player 2 Player 3
Number of wins 5 2 2
Number of games 9 3 3
Highest rank received 10 13 8
Usual amount of play time 1h/week Twice a month 3h/week or nothing
Expected level of play from the AI 3 3 5
Perceived level of play from the AI 4 5 4
Player enjoyment 4 4 4
Obvious misplays or weird behavior from the AI? 5 5 5
Similarity to human play 5 5 5

6.6.2 Analysis

By looking at Figure 6.9 it can be seen that the players are among the top 5%-15% of
Hearthstone players, which means the players are competent compared to the total player-
base.

The DMCTS agent won 6 out of 15 games giving it a win-rate of 0.4, with many of
the matches being close. This win-rate shows that the agent still has some way to go
to perform well within the given parameters, but is strong enough to take games off of
relatively skilled human opponents.

The players did not observe any obvious misplays or weird behavior from the AI, showing
the robustness of the DMCTS agent. The players reported that the agent played as they
would expect a human to play using these decks, as well as perceiving high level moves,
setting up the board correctly and planning several turns ahead.



Figure 6.9: Top % Hearthstone players based on rank



Chapter 7
Conclusion

The research questions raised in Section 1.2 were:

1. Can Monte Carlo Tree Search be implemented to create a strong Hearthstone com-
puter player?

2. Which parameters and implementation choices are important for the agent’s perfor-
mance?

To answer the first question, MCTS has been analyzed and implemented to create a Hearth-
stone computer player, which is able to handle multiple actions within a turn, deal with
hidden information and perform well against both human and computer opponents.

Several implementation choices were made in order to create this agent, beyond what is
considered the standard MCTS algorithm. A node structure adding end turn nodes was
used to make each turn bounded, allowing the generation of the action chain, which means
the algorithm can dynamically allocate computational time to the interesting part of the
game tree, and return a full turn worth of actions.

The choice of bias parameter, balancing exploitation versus exploration, proved signifi-
cant. This is because of the action chain, which required a certain amount of exploitation
to reduce drop-off for each step in the chain.

Another addition was the use of determinizations to handle hidden information. This cre-
ated a need to balance the computational budget against the number of determinizations to
get strong performance. It was established that although the balance can vary for different
parameters, a lower bound can be estimated for the amount of iterations per determiniza-
tion.

Even though using a well-estimated bias and number of determinizations was important,
the biggest factor contributing to the agent’s performance was the number of iterations.
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This was partly because increasing computational budget allows for deeper search, but
also because more iterations allows for more determinizations.

It was shown that the DMCTS agent was able to perform well against a heuristic-based
agent, as well as taking games off of strong human opponents, showing strong performance
when using Monte Carlo Tree Search. Even though the agent is not able to play every
aspect of Hearthstone, the work done in this thesis gives a strong indication of future
possibilities.



Chapter 8
Future Work

This chapter describes future work which can be done either to improve the playing
strength of the algorithm, or add functionality to make the agent more complete.

8.1 Handling of Stochastic Elements

An important aspect of Hearthstone is stochastic elements. As such, a necessary step
towards making an agent which can handle all cards is to implement a way to handle
randomness. One approach to this would be to add Chance nodes, which would branch into
every possible outcome, and have a value similar to what is seen in expectimax, described
in Section 3.1.2.

8.2 Mulligan

Another necessary step towards making a complete Hearthstone agent would be to include
the mulligan step, described in Section 2.2.3. An approach to this could be to make an
evaluation function for the mulligan step, relative to the opponent’s hero, which is simpler
than creating an evaluation function for a board state, or simply run Monte Carlo Tree
Search based on the opening hand.

8.3 Duplicate Node Pruning

In Hearthstone, different sequences of moves can lead to equal board states. Pruning
duplicate board states would reduce unnecessary branching. One way to do this would be
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to create a hash which could uniquely identify a board state, and check each board state
against a hash table whenever a new node is added to the tree.

There are issues with this approach, however, as duplicate nodes can exist in different parts
of the tree, and backpropagation would have to account for this.

Another possibility for pruning nodes would be to look at nodes which are similar, but
not equal. There are many situations in Hearthstone where states are in effect equal, and
could potentially be merged. An example is dealing 4 damage to a minion with 3 health
compared to dealing 4 damage to a minion with 4 health. The initial states are different,
but the action chosen is the same.

8.4 Thread Optimization

Monte Carlo Tree Search is an algorithm where it is relatively easy to run different parts
on multiple threads. There are several areas where this can be applied:

• Run MCTS on separate branches from the root node on different threads, then merge
the resulting tree together.

• Run determinizations on different threads before merging them together.

• Instead of running a single simulation after expansion, multiple simulations could
be run on different threads.

There are many possibilities to choose from when it comes to thread optimization, but the
goal is either to increase the number of simulations or to increase the statistical significance
of a node’s value.

8.5 Simulation Strategy

As written in Section 3.2.4, having a simulation strategy can significantly increase level
of play. Using a simulation strategy to approximate the opponent’s play would give more
accurate results. However, there is a need to balance the cost of a simulation strategy with
the increase accuracy in rewards.
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Appendix A
Beginners guide to Hearthstone
continuation

This section is inspired by the work done in the specialization project [Andersson and
Hesselberg (2015)].

A.1 Cards

Adapted from Hearthstone Gamepedia (2015b).

Cards are basic pieces which make up Hearthstone. There are three categories of cards:
spells, weapons and minions, which all represent actions a player can take.

A typical Hearthstone card can be seen in Figure A.1. In the top left of the card, the mana
cost is displayed, indicating how much mana a player must spend to play this card. The
mana cost of a card is usually in the range from 0 to 10 mana. There are special cases
though, like Molten Giant seen in Figure 4.2, which has an initial mana cost which is
higher, but gets lower the less health the hero has.

Every card features a portrait and card text. The card text varies for each card, and can
also be left blank. When it comes to minion and weapon cards, the card text will describe
abilities or special effects the card possesses, while spell cards will have a description of
the spells effect when played. Card text can be removed from a minion with a ”silence”
effect. Seen in the bottom left corner of the minion card is the attack value, while in
the bottom right is the health value. Weapons show similar values, displaying the attack
strength of the weapon, and the durability. Spell cards do not have any values here.

79



Figure A.1: A typical Hearthstone card
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A.2 Decks

Figure A.2: A Hearthstone decklist

Adapted from Hearthstone Gamepedia (2015c).

A deck is a set of 30 cards. In a game, the cards drawn
by the players come from the deck they choose be-
forehand. There are pre-made basic decks available,
or the players can make their own decks.

Figure A.2 shows how a deck list might look like. On
the left side of the figure the mana costs are displayed,
while on the right side are the number of copies in-
cluded of that card. The name is displayed in the
middle. There can only be two copies of each nor-
mal card in a deck, and only one copy of legendary
cards.

Deck is a term which refers not only to the collection
of cards the players bring into the game, but also to
the stack of cards which is shown to the right hand
side of the battlefield shown in Figure 2.2. In this
context, the word deck is used to refer to the cards
which a player has not yet drawn. Card draw and
certain spells exhaust a player’s deck, and when they
run out of cards they begin taking fatigue damage. A
player can mouse over the decks to see how many
cards are remaining in each. The deck is randomly
shuffled at the start of a match, after the mulligan step
is performed.

Creating a custom deck is generally recommended,
as a player can learn more about the game’s deeper
strategic elements. It is also usual for players to copy
decks found online. A player is free to change their
decks as often as they wish, outside the game.

Making decks is an important aspect of Hearthstone. There are many types of deck, with a
huge amount of possible variations. Common archetypes include control decks, aggressive
decks, and decks which try to balance the two, or use different strategies. As different
classes have different cards, in addition to the neutral cards which can be used by all
classes, certain classes synergize well with certain deck types.

An important detail to consider while building a deck is the size limit of 30 cards. Players
are forced to cut down all the possible cards into a smaller set which synergize well and
focus upon the player’s chosen strategy.
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A.3 Minions

Adapted from Hearthstone Gamepedia (2015e).

A.3.1 Overview

Figure A.3: A Hearthstone card affect-
ing adjacent cards

A minion is a creature which persists on the bat-
tlefield, controlled by a player. A minion is con-
trolled by the player who summoned it, and is usu-
ally used to attack the opponent’s minion or the
enemy hero. Minions are an important aspect of
Hearthstone, and is often responsible for most of
the damage dealt in a game.

A.3.2 Summoning

A minion on the battlefield is summoned by playing
a minion card. To summon a minion, the mana cost,
displayed in the top left corner of the card, must be
payed. If all criteria is met, the minion card is trans-
formed into a creature on the game board where the
player chose to play it, and is represented by a por-
trait. After being summoned the minion persists on
the board until it is destroyed or other cards interact
with it to transform it or return it to the owners hand.
A minion dies when it’s health is reduced to zero, or
a destruction effect is used to kill it directly.

It’s important to note that if a minion is returned
to the hand or shuffled into the deck, any enhance-
ments gained while being on the board are lost, and
the attack and health is set to the original values. However, a card which has been trans-
formed into something else will not return as the original card, but as a new card repre-
senting the transformation.

It is sometimes important to place minions correctly on the board, as some cards have
effects which depend on positioning. An example is Dire Wolf Alpha, shown in Figure
A.3, which gives adjacent minions a buff to attack. Minions generally don’t change their
position once placed, but if a minion is destroyed, it’s neighbour minions become adjacent
to one another. If a minion is taken over by a spell or effect, or summoned through a
special ability, they will always appear on the furthermost right position available.

Both player can have a maximum of seven minions played at the same time, and can’t
play more minions once the maximum is reached. Cards and effects which summon
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more minions will not be usable, and effects which take control over enemy minions are
wasted.

A.3.3 Actions

When a minion enters the battlefield they are considered exhausted. This is indicated
by a ”zzz” above the card, and lasts for one turn. If a minion has the Charge descriptor
they do not enter the battlefield exhausted, and can attack immediately. Unless a minion
has Charge they are considered exhausted no matter how they are put onto the battlefield.
Another term for exhaustion is summoning sickness.

Minions can attack once a turn. Minions with the Windfury description can attack two
times. A minion can attack enemy minions or the opposing hero.

When one minion attacks another, it doesn’t matter who attacked. Both minions will
have their health values reduced by a number equal to the opposing minions attack value.
Damage is dealt simultaneously. If a minion’s health reaches zero it is destroyed and
removed from the game board.

In combat between minions and heroes the order matters. If a minion attacks a hero, only
the hero takes damage, but a heroes weapon will not have it’s durability reduced. If a hero
attacks a minion, both take damage. If the minion deals damage to a hero greater than the
remaining health, the hero is destroyed and the other player wins.

Most minions have the abilities to attack, unless their card text specifically indicates oth-
erwise, their attack value is 0, or the minion has been affected by a Freeze effect. A frozen
minion can’t choose to attack, but will participate in minion combat as normal if it is
attacked.

Some minions have other abilities beyond normal attacks, giving them additional powers
or having effects which trigger in response to some events.

A.3.4 Special properties

Following is a list of some of the most common types of minion abilities or proper-
ties:

• Taunt – This minions has to be attacked before other minions or the hero can be
attacked.

• Triggered effects – This minion causes something to happen as a response to a
certain event

• Deathrattle – An effect triggers when this minion dies.

• Poison – Any damage dealt by this minion destroys the opposing minion. This does
not work on heroes.

• Spell damage – Improves the damage dealt by spells the controlling player casts.
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• Stealth – This minion can’t be targeted. Stealth is removed if the minion attacks or
deals damage in some way.

• Windfury – This minion can attack twice.

• Silence – This minion has it’s card text removed.

• Enrage – After taking damage, this minion provides a boon to the controlling player,
or deals more damage

• Freeze – This minion is unable to attack.

• Divine Shield – The first damage this minion takes is blocked.

A.3.5 Minion types

Figure A.4: A Hearthstone card with a
creature type

Some minions belong to a specific type or tribe, as
can be seen with the Murloc Warleader in Figure
A.4, which belongs to the Murloc tribe. Tribe cards
usually possess synergy, allowing powerful decks
to be built around them. The Murloc Warleader
provides all other murlocs with +2 attack and +1
health. A minion type is not removed if it is si-
lenced.
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A.4 Spells

Adapted from Hearthstone Gamepedia (2015f).

A spell card is used to activate a one-time effect or ability, which is described in the card’s
text. Spells do not have attack or health values, only mana costs. A spell can only be cast
on your turn.

Certain minions have synergy with spells, providing additional damage or effects when a
spell is cast.

(a) A ’secret’ card (b) A normal Spell

Figure A.5: Hearthstone spell cards

A special kind of spell, available only to certain classes, are secrets. They are the same as
normal spells, except they have a delayed, hidden effect, which is only triggered when a
specific event occurs. The opponent can see that a secret has been played, but not which
secret it is. Secrets can only be activated on the opponent’s turn, preventing a player from
triggering it.
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A.5 Weapons

Figure A.6: A Hearthstone weapon

Adapted from Hearthstone Gamepedia (2015g).

Weapons are cards which can be used to give heroes
attack values. They are only available to certain
classes. A weapon has an attack value and a dura-
bility value. Every time an attack is made, the dura-
bility of the weapon is reduced by one. If no dura-
bility is left, the weapon is destroyed. A hero can
only have one weapon equipped at a time.

There are different ways to equip a weapon, al-
though the most common method is by playing a
weapon card. Other alternatives are from minions
with battlecries or deathrattles with weapon effects,
as well as the rogue hero power. There are also
cards which synergize with weapons, or counter
them.
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Appendix B
Decks

(a) Deck with basic cards (b) Deck with advanced cards

Figure B.1: Decks used for experiments
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Appendix C
Raw Data

The following subsections present the raw data gathered from running the experiments
described in Chapter 5.

Note: As some experiments were run on multiple computers for different lengths of time,
the number of games don’t always match up perfectly. However, all simulations are dis-
played here for completeness.

C.1 Bias Parameter

Result of the bias parameter experiments (Section 5.3.1)

Figure C.1: CMCTS vs HBF, Basic decks, T = 10
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Figure C.2: CMCTS vs HBF, Basic decks, T = 30

Figure C.3: CMCTS vs HBF, Basic decks, T = 60
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C.2 Computational Budget

Figure C.4: CMCTS vs HBF, Basic decks, B = 0.5
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C.3 Number of Determinizations

Figure C.5: DMCTS vs HBF, Basic decks, B = 0.5, T = 5000

Figure C.6: DMCTS vs HBF, Basic decks, B = 0.5, T = 10000
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C.4 Advanced Cards

Figure C.7: DMCTS vs HBF, Advanced decks, B = 0.5, T = 5000

Figure C.8: DMCTS vs HBF, Advanced decks, B = 0.5, T = 10000
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C.5 Humans vs DMCTS

Figure C.9: Humans vs DMCTS results part 1
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Figure C.10: Humans vs DMCTS results part 2
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Figure C.11: Humans vs DMCTS results part 3

Figure C.12: Humans vs DMCTS results part 4
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Appendix D
Humans vs DMCTS
Questionnaire

Following is the questionnaire given to the players after playing against the DMCTS
agent:
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Figure D.1: Human player vs MCTS page 1
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Figure D.2: Human player vs MCTS page 2
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Figure D.3: Human player vs MCTS page 3
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Figure D.4: Human player vs MCTS page 4
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