
Explanation-Aware Army Builder for
Warhammer 40k

Nenad Zikic

Master of Science in Computer Science

Supervisor: Anders Kofod-Petersen, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

Explanation-aware army builder for
Warhammer 40k

Nenad Zikic

Master Thesis - Spring Semester 2016

Artificial Intelligence Group
Department of Computer and Information Science
Faculty of Information Technology, Mathematics and Electrical
Engineering
Norwegian University of Science and Technology

Supervised by Anders-Kofod Petersen

Abstract

The goal of this thesis is to design, implement and test the explanation-aware
case base reasoning system for Warhammer 40k as described in the project
of the same name.

The system uses object oriented case base reasoning, using JSON as case
bases and using general domain knowledge to simulate the Warhammer 40k
domain and create armies. Ground work has been laid in for the system to
be able to expand its own case base proactively, by learning and simulating
armies and battles. The policy was not fully automated due to time and
complexity constraints, and manual simulation is a necessary substitute at
this time. Explanations are used to to raise confidence in the system and to
provide a satisfactory justification of the systems actions. Explanations are
also used to instruct new and expert users about the system and the game,
both implicitly and explicitly.

The paper fully succeeds in fulfilling two out of the three goals it has set
out to do and presents the problems with the domain together with the so-
lutions concerning the uncompleted goal. The thesis follows the scientific
method and completes it, developing testable predictions, presenting their
results and the methods to replicate them. The paper evaluates and dis-
cusses the limitations of the domain and implementation, the contributions
of the thesis as a whole and the future work to be done.

Preface

This master thesis was written and developed during the spring semester of
2016, in the Computer Science (Datateknikk) programme of study, at the
Norwegian University of Sciency and Technology (NTNU). The thesis has
been conducted at NTNU, at the department of Computer and Information
Science (IDI), in the Artificial Intelligence (AI) department.

This thesis was supervised by Anders Kofod-Petersen. I would like to extend
my thanks to him first and foremost for helping me with the thesis as well
as for granting me the opportunity to work on the thesis and topic.

I would also like to extend my thanks to the other professors at the fac-
ulty and the department of AI for helping me with the procedure for writing
the master thesis, as well as providing motivation and knowledge sources for
the thesis.

Finally, I would like to thank my friends, Drikus Kuiper, Martin Ander-
sen, Olve Kroknes and Adrian Johansen Rinde, as well as all the helpful
people at the Wartrond gaming club, for their assistance with Warhammer
40k resources, development and testing.

Contents

1 Introduction 1
1.1 Goals . 2
1.2 Research Method . 3
1.3 Thesis Structure . 4

2 Background Theory 5
2.1 Theoretical Summary . 5
2.2 Warhammer 40k . 7

2.2.1 Army Creation . 7
2.2.2 Tactics and Heuristics for Army Creation 8

2.3 The MAC/FAC Retrieval Method 10

3 Design and Implementation 11
3.1 System Overview . 12
3.2 Case Base Reasoning . 13

3.2.1 Case Representation and Case Base 13
3.2.2 General Knowledge Representation and Implementation 17
3.2.3 Retrieval . 19
3.2.4 Retrieval Limitations 25
3.2.5 Reuse . 27
3.2.6 Reuse Limitations . 29
3.2.7 Revise . 30
3.2.8 Retain . 32

3.3 Maintenance Policies . 33
3.3.1 Utility Maintenance . 33
3.3.2 Consistency Maintenance 34
3.3.3 Metagame Maintenance 35

3.4 Explanation . 37
3.5 Other Technologies Used . 39

ii

4 Experiments and Results 41
4.1 Experiments . 41

4.1.1 Experiment 1 - CBR System for Army Creation 42
4.1.2 Experiment 2 - Evaluation of the usefulness of expla-

nations . 43
4.1.3 Experiment 3 - Application of maintenance policies . . 44

4.2 Results and Method . 46
4.2.1 Experiment 1 - Results and Method 46
4.2.2 Experiment 2 - Results and Method 48
4.2.3 Experiment 3 - Results and Method 50

5 Evaluation and Discussion 57
5.1 Evaluation . 57

5.1.1 Experiment 1 - CBR System 57
5.1.2 Experiment 2 - Usefulness of Explanations 59
5.1.3 Experiment 3 - Application of Maintenance policies . . 60

5.2 Discussion . 63
5.2.1 The Case-Base Reasoning System 63
5.2.2 Explanations . 65
5.2.3 Maintenance . 66

5.3 Contributions . 67

6 Conclusion and Future Work 69
6.1 Goals . 69
6.2 Conclusion . 71
6.3 Future Work . 71

Bibliography 73

Appendix 77
Appendix A - Glossary . 77
Appendix B - Software Used . 79
Appendix C - Interview With Experts 80
Appendix D - JSON Represenations of Objects 83
Appendix E - Additional Experiment Data 88
Appendix F - Personal Reflection 105
Appendix G - The Rating System 106

List of Figures

2.1 The MAC/FAC Retrieval (Adapted from Richter and Weber,
2013) . 10

3.1 System Architecture and Overview, (Adapted from specializa-
tion project (Zikic, 2015) . 12

3.2 Squad and Equipment objects, and Army Class 15
3.3 NOVA tournament results (Adapted from http://www.torrentoffire.com,

2015) . 27
3.4 Metagame Maintenance Flow (Revised from specialization project

(Zikic, 2015) . 35

D1 Equipment JSON representation 83
D2 No Armor Squad JSON representation 84
D3 Walker Squad JSON representation 85
D4 Vehicle Squad JSON representation 86
D5 Army JSON representation . 87
E1 Battle table used in the Maintenance Policy Experiment . . . 96

iv

List of Tables

2.1 Typical Point Limits for Warhammer 40k Armies 8

3.1 General Domain Knowledge (Adapted from specialization project
(Zikic, 2015) . 17

4.1 Experiment 1 - CBR System for Army Creation 43
4.2 Experiment 3 - Application of maintenance policies 45
4.3 Experiment 1 - Results . 47
4.4 Experiment 2 - Results . 49
4.5 Experiment 2 - Second Iteration 49
4.6 Experiment 3 - Utility Maintenance 50
4.7 Experiment 3 - Legend . 53
4.8 Experiment 3 - Evaluated Ratios Test 1 54
4.9 Experiment 3 - Predicted Scores And Outcome Test 1 54
4.10 Experiment 3 - Evaluated Ratios Test 2 55
4.11 Experiment 3 - Predicted Scores And Outcome Test 2 55
4.12 Experiment 3 - Evaluated Ratios Test 3 56
4.13 Experiment 3 - Predicted Scores And Outcome Test 3 56

5.1 Comparison of different player evaluations 58
5.2 Comparison of predictions against placement and initiative

advantages . 61

E1 E3 - Army 1 . 88
E2 E3 - Army 2 . 89
E3 E3 - Army 3 . 89
E4 E3 - Army 4 . 90
E5 E3 - Army 5 . 90
E6 E3 - Army 6 . 91
E7 E3 - Army 7 . 91
E8 E3 - Army 8 . 92
E9 E3 - Army 9 . 92

v

E10 E3 - Army 10 . 93
E11 E3 - Solution Army 1 . 93
E12 E3 - Solution Army 2 . 94
E13 E3 - Solution Army 3 . 95
E14 E3 - Solution Army 4 . 95
E15 E3 - T1M1 . 96
E16 E3 - T1M2 . 97
E17 E3 - T1M3 . 97
E18 E3 - T1M4 . 97
E19 E3 - T1M5 . 97
E20 E3 - T1M6 . 98
E21 E3 - T1M7 . 98
E22 E3 - T1M8 . 98
E23 E3 - T1M9 . 98
E24 E3 - T1M10 . 99
E25 E3 - T2M11 . 99
E26 E3 - T2M12 . 99
E27 E3 - T2M13 . 99
E28 E3 - T2M14 . 100
E29 E3 - T2M15 . 100
E30 E3 - T2M16 . 100
E31 E3 - T2M17 . 100
E32 E3 - T2M18 . 101
E33 E3 - T2M19 . 101
E34 E3 - T2M20 . 101
E35 E3 - T3M21 . 102
E36 E3 - T3M22 . 102
E37 E3 - T3M23 . 102
E38 E3 - T3M24 . 102
E39 E3 - T3M25 . 103
E40 E3 - T3M26 . 103
E41 E3 - T3M27 . 103
E42 E3 - T3M28 . 103
E43 E3 - T3M29 . 104
E44 E3 - T3M30 . 104

Chapter 1

Introduction

This thesis builds upon the work done in the Specialization Project of the
same name (Zikic, 2015). The project was focused on the fundamentals of
Case-Based Reasoning (CBR) and explanation aware computing, with an
extended focus in proactive Artificial Intelligence (AI), or in other words an
AI that can maintain and evolve its own case base and strategy. The project
represents one half of the Scientific method, and formulates a hypothesis,
which is the design for this master thesis. The thesis will focus on the part of
the scientific method that was not covered by the project, namely developing
testable predictions, gathering test data and evaluating the hypothesis.

Case-Based Reasoning first emerged from the study of human memorization
and understanding (Schank, 1982). CBR is a lazy learning method, which
means that it does not generalize until a query is made. As such it is particu-
larly suited for a domain such as Warhammer 40k, where the problem domain
constantly changes. At its simplest, a CBR system uses previous cases, which
are often called solutions, when presented with a problem (query). Since its
conception, it has been worked on in many different ways, and many branches
of CBR systems have emerged (de Mantaras et al. 2006).

Explanation-aware systems can reason about their actions. One sign of intel-
ligence is the ability to reason about ones own actions (Sormo et al. 2005).
Being able to reason about an action means that we have a purpose or a
meaning for that action. If a system can reason and explain its actions, it
then also has a purpose or a meaning and we can say that we are looking
at more than just an algorithm; we are then we are looking at an intelligent
system.

1

As we seek to build artificial intelligence, explanation-aware systems provide
a step forward in mimicking human intelligence. Furthermore, explanation-
aware systems can be used to teach and instruct novice users, as well as aid
expert users (Roth-Berghofer 2004).

The goals of the thesis are presented in Section 1.1, while the research
methodology is presented in Section 1.2. Section 1.3 gives a brief overview
on the structure of the thesis.

1.1 Goals

This section will present the three goals of the thesis:

Goal 1 Develop and test the CBR system for building an army in Warham-
mer 40k

The first goal of the thesis is to create and test the underlying CBR system
for building an army in Warhammer 40k. The system needs to be able to
present to the user a solution army when presented with a problem army,
such that the solution army has a good chance of winning. The aim of this
goal is to create a system that will win at least 50% of the games played.

Goal 2 Evaluate the usefulness of explanations in the system

The system that we are creating needs to reason about its choices to be
called an understanding system (Schank, 1986). To achieve this, we will use
explanations. The aim of the explanations is to both reassure, and potentially
instruct, novice users and to raise the confidence towards the system from
both novice and expert users. The goal is to evaluate the usefulness of the
explanations within the domain, so that we can better understand their role
and influence in this kind of a system.

Goal 3 Test the application of maintenance policies to the evolution and
maintenance of the system within the Warhammer 40k domain

The third and final goal is to create a system that will be able to evolve.
Warhammer 40k was created in 1987, and has so far undergone seven different
editions, the last was released in 2014, and the final iteration is yet to be
completed. Update packages are released regularly for the game, and it is
vital that our system is able to analyze new data and integrate it into the
system. It is also vital for our system to be able to maintain itself so that
it does not reach the utility problem. Furthermore, the metagame, or the
best strategy, can change even in between update releases, and therefore our
system needs to change as well. The goal with maintenance policies will be
to have the system evolve on its own, both in respects to the case base itself,
and to the parameters in the system, such as weights. A system that can
constantly evolve on its own is a proactive system. This kind of system can
think and learn even while the user is away from the system.

1.2 Research Method

From a high-level point of view, this master thesis will complete the scientific
method, by focusing on the implementation, experimentation, evaluation and
the expansion of the hypothesis presented in the Specialization Project (Zikic,
2015).

From a more low-level approach, we will be using the steps set out by Paul R.
Cohen and Adele E. Howe in their paper How Evaluation Guides AI Research
(1988). We will focus on the three latter stages of evaluation presented in
the paper: Building the Program, Designing the Experiments and Analyzing
their results. The evaluation and discussion of the work will be presented in
Chapter 5.

The two main reasons to follow this methodology is to finish the study al-
ready in place, and to be able to evaluate all stages of research. The sec-
ondary reason is to have a well documented solution to a unique instance of
a problem, which can hopefully be applied to other fields. As a whole, we are
not just attempting to create a solution for Warhammer 40k, but rather to
use Warhammer 40k as a domain for the overarching problem, which is the
division of resources to tackle a defined problem in a complex environment
that is subject to change.

1.3 Thesis Structure

It is recommended that this thesis is read in conjunction with the Specializa-
tion Project. The focus of the thesis will not be on the background knowledge,
but rather on the implementation, testing and evaluation. Some parts of the
thesis will expand upon or alter the Specialization Project, and that will be
reflected in the thesis. Where appropriate, a summary of the most important
parts of the Specialization Project will be presented.

Chapter 2 introduces some of the background theory for the thesis. Chapter
3 focuses on the design, model and implementation of the system. Chapter
4 presents the testing and results of the model and implementation, while
Chapter 5 will discuss and evaluate those results. Chapter 6 concludes the
project and discusses potential future work that can be done on the system.

Chapter 2

Background Theory

This chapter will introduce the additions to the theory presented in the
specialization project (Zikic, 2015). A brief summary of the most important
points discussed in the specialization project will be presented in Section 2.1.
Section 2.2 will introduce additional theory to army creation in Warhammer
40k, as well as briefly introducing some of the general tactics and heuristics
for army creation. Section 2.3 will introduce the Many Are Called/Few
Are Chosen (MAC/FAC) retrieval method, which will serve as the retrieval
method in the CBR system. The design choice to use the MAC/FAC retrieval
is presented in Section 3.2.3.

2.1 Theoretical Summary

Warhammer 40k

Warhammer 40k is a tabletop board game played with two or more people.
The game is competitive, involving both strategy and luck, in the form of
dice rolling. The players create an army chosen from one of the eighteen
factions, and then battle in a set amount of rounds. Achieving objectives
scores points, and the player with the highest points at the end of the game
is the winner.

5

The army creation is vital in this process. There is a plethora of units and
equipment to create an army with, and a good army can utilize combinations
of units, rules and equipment it provides to make sure that it can tackle any
obstacle. Units and equipment have a large amount of statistics, special rules
and options that can be applied to them and the points are the only limiting
factor to creating an army. This is further discussed in Section 2.2.

Case Based Reasoning

Case Based Reasoning is an AI method that utilizes past solutions to solve
new problems. It closely mimics the thought processes of humans. It is
consistent of four distinct steps: Retrieve, Reuse, Revise and Retain. In
the retrieval step a previous solution (called case) is retrieved from the case
base. This solution is the closest match to the problem presented to the
CBR system. The reuse steps applies changes to provide a better solution
to the new problem. The revise step revises the solution with respects to its
problem solving capability and the retention step saves the solution as a new
case in the case base.

Explanation-Aware Computing

For a system to be called a reasoning system it needs to be capable of explain-
ing its own actions. This can be achieved through explanations. However,
explanations can and do differ between different systems and different do-
mains. An explanation can be a justification of the actions that the system
took, or it can be the entire process of how the system has performed the
actions. It can also be the goals that the system is trying to achieve, or
even a combination of all of the types of explanations. Explanations have
a set of characteristics that they should follow in order for an explanation
to be considered a good explanation. These are fidelity, understandability,
sufficiency, low construction overhead and efficiency.

Maintenance Policies

Maintenance policies in CBR systems help maintain the case base, so that
it may perform with better efficiency. One of the goals of this thesis and
the project was to attempt to utilize maintenance policies so that the system

can not only improve its efficiency through performance, but also through
accuracy. This is not only a convenience, but also a necessity, as the domain
constantly changes, with new updates and editions released fairly frequently.

Most maintenance policies are reactive and require a user to be present.
The project and the thesis introduce a proactive maintenance policy that is
designed to be capable of improving the system without user interference.
This is done through simulation of the domain and is possible because the
domain can be simulated with certainty. This maintenance policy is called
the metagame maintenance policy and is used to improve the strategy of the
system directly.

2.2 Warhammer 40k

This section will introduce additional theory for army creation and some gen-
eral tactics and heuristics when creating an army in Warhammer 40k. This
is in addition to the theory already presented in the specialization project.

2.2.1 Army Creation

Every unit and piece of equipment in Warhammer 40k has a point cost.
Often, the units are presented in squads, which have a point cost, and a set
of options which can alter the squad. These options often include the addition
or replacement of equipment, the addition of extra units (or models) to the
squad, or the replacement of weaker units for stronger units. Every faction,
and many of the squads, have more specialized rules as well, allowing for
even more variance between units.

When creating an army, it is important to keep the point limit in mind. A
1000 point army is very different from an army consisting of 1500 points. In
the same light, an army of 1500 points is not an army of 1000 points with
500 points attached to it. The more points that are present, the more army
compositions tend to change. Some of the most common point limits are
included in Table 2.1.1

1These point limits were researched by talking to experts, visiting various tactics-
related webpages, such as http://1d4chan.org/wiki/Warhammer_40,000/Tactics, as
well as Warhammer 40k tournaments.

http://1d4chan.org/wiki/Warhammer_40,000/Tactics

Point Limit Description
200 Points Often called Kill Teams, this point limit is focused on a

single squad, or a group of up to four squads
1000 Points This is often played as a more casual, shorter encounter,

or as an introduction to newer players
1500 Points The lowest point total for tournaments, it often lends itself

to longer casual games.
1850 Points A fairly common point total for many tournaments in the

United States and a fairly large point pool for generally
serious players. This point limit lends itself to a lot of
creativity, as it allows for more varied armies and more
expensive singular units

2000 Points Some of the largest tournament armies. Games usually
last an entire day, or at least a large portion of the after-
noon

2500+ Points Fairly uncommon, these games are usually played for fun
or to bring out the most expensive units to show off the
miniatures

Table 2.1: Typical Point Limits for Warhammer 40k Armies

As we implement our system we need to be aware of these point limits. When
retrieving an army from the case base we not only have to pay attention to
armies that exceed the point limits, but also to the armies that are signifi-
cantly below the point limit. Adapting an army that is at the point limit,
or very close to it, will be substantially easier and faster than adapting one
that is substantially underneath the point limit. Therefore, understanding
point limit sizes is very important for our retrieval method.

2.2.2 Tactics and Heuristics for Army Creation

Understanding the point limits is only the first step in creating (and retriev-
ing) a good army in Warhammer 40k. There are some other general rules
that we need to adhere to. These rules are taken as an amalgamation from
the tactics found on the Internet, the rulebooks, as well as experts, with
additional weight being placed on expert responses.

In the specialization project we have discussed Unit Types, and we have split
them into Non-Vehicle and Vehicle unit types. Almost all of the armies in

Warhammer 40k fall in between Non-Vehicle, or Infantry focused, and Vehicle
focused armies. Good armies often have a mixture of infantry and vehicles,
as different equipment is useful against different kinds of units. Knowing and
understanding the ratios of these units is vital for an army to succeed.

Battle Forged and Unbound armies were also briefly discussed in the spe-
cialization project. An unbound army represents a selection of any squads,
without attention given to the squad type. Battle Forged armies have spe-
cific detachments that are formed by specific squad types. A combined arms
detachment for example, consists of a squad of HQ type and two squads of
Troop type. This detachment can be expanded by various other unit types,
but all units in the detachment gain some sort of bonus. These bonuses are
quite important and players always build battle forged armies. Furthermore,
each faction has a number of custom detachments which give further special-
ized bonuses. Understanding the detachments and the rules for battle forged
armies is vital for our system, and maintaining these detachments as well
as rewarding armies that have detachments will be the top priority of the
retrieval, reuse and revise steps of our system.

2.3 The MAC/FAC Retrieval Method

The MAC/FAC retrieval method is a two-level retrieval method. When a
query is presented, some nearest neighboring candidates are chosen, and
then retrieval is performed on these candidates.

The first part of the retrieval functions both as a filter, and as a performance
enhancer. As a filter, the MAC step is able to filter out not just cases that
are not useful, but also cases that have different, unwanted merits. This is
not achievable by just setting similarity to 0 on an attribute. This process
excludes cases entirely, without regarding similarity (Richter and Weber,
2013). As a performance enhancer the MAC step is a wide-net simple and
computationally cheap step, which leaves us with fewer cases to perform the
more expensive structural similarity retrieval on.

The FAC step uses more complex matching to determine similarity values,
and then produces the best case. In this way, the computationally expensive
retrieval is only performed on a relatively few cases. An illustration of the
process can be seen below, in Figure 2.1.

Figure 2.1: The MAC/FAC Retrieval (Adapted from Richter and Weber,
2013)

Chapter 3

Design and Implementation

In this chapter we will discuss the design and implementation of the system
in detail. This chapter represents a reflection and an improvement of the
design presented in the Specialization Project (Zikic, 2015). Each part of
the system will be presented in detail, and the reason behind the design and
implementation choices will be discussed. The design and implementation
will be further discussed and evaluated in Chapter 5.

The chapter is divided into four sections. The Section 3.1 will provide a brief
overview of the system as a whole. The remaining sections follow the goals
presented in Section 1.1 and describe the system in more detail. Section 3.2
will discuss the design and implementation of the case based reasoning part
of the system. The implementation of maintenance policies and the evolution
of the system will be discussed in Section 3.3. Finally, explanation design
and implementation will be discussed in Section 3.4.

11

3.1 System Overview

The system consists of three major parts. The first part is the CBR part,
which consists of the four steps of CBR (referred to as the CBR Method):
Retrieve, Reuse, Revise and Retain. The CBR part also includes the General
Knowledge, including the General Knowledge and Rules for Army Building,
as well as the Case Base. The explanation part consists of both the ex-
planation logic and the context of the explanations. The maintenance part
includes maintenance policies for utility and metagame. The maintenance
policy for updates has not been included, due to the nature of the system.
This is described more in detail in Section 3.4 The parts of the system can
be seen in the System Architecture diagram presented in Figure 3.1.

Figure 3.1: System Architecture and Overview, (Adapted from specialization
project (Zikic, 2015)

3.2 Case Base Reasoning

This section will present the case base reasoning part of the system. This
part of the system will be designed and implemented with three things in
mind. First, we are creating an army building system, not a system that
will be able to play the game. Therefore, we assume that the user of the
system, that is to say the player, will be able to play to the best of their
ability. Secondly, we will consider only the statistical average for dice rolls.
In discussions with the experts it has been determined that more often than
not luck in Warhammer 40k is indeed a statistical average, and therefore
this should not impose a limitation to the system. While Warhammer 40k is
technically dependant on luck and skill, a skillful player will be able to create
an army that minimizes the luck factor.

Lastly, we will not discuss the topic of balance within Warhammer 40k.
In discussion with the experts it has been determined that Warhammer 40k
suffers from balancing problems, or in other words, there are clear advantages
for playing with certain factions, as they get more advantageous rules or
cheaper armies that do as well as the costlier armies from other factions.
This system is created with the mindset that it is balanced and discussing
balance further would be outside of the scope of the thesis. Should balance
become an issue on the system as a whole, it will be discussed and evaluated
separately in Chapter 5.

3.2.1 Case Representation and Case Base

In the specialization project, the intention was to have three objects, the
equipment, unit, and squad objects, and the army class. This implementa-
tion, however, has evolved towards two objects, the squad and the equipment,
and the army class. In other words, the unit and the squad objects have been
merged together.

The cases are represented in the JSON1 object format. JSON stands for
JavaScript Object Notation and it is used as a data-interchange format.
JSON is constructed completely in strings and has a simple syntax, thus
it is easy to read and understand for humans. It is also easy for computers
to read and parse, and parsers for almost all programming languages exist.

1http://www.json.org/

http://www.json.org/

There are several reasons to represent the cases as JSON objects. The first
reason is the already mentioned ease of parsing for computers, which in
general means easier reading from and writing to cases. Secondly, a JSON
object is capable of holding other objects within itself, and even arrays of
objects. This is necessary in order to present the more complex variables of a
unit, such as special rules or squad options. While we could potentially store
these in a more traditional SQL, CSV or XML case base, we would need to
make a separate case base for every single array object, which would be very
difficult and time consuming, and not to mention that it would be difficult
to load and parse.

Furthermore, as JSON objects are consistent of strings they are is easy to
write by hand, so to speak, and users can generate their own custom made
case bases. Many automatic, user guided interfaces for JSON also exist,
making the process even simpler. If used responsibly, that is to say if the
system is not flooded by bad cases or exceptions that take advantage of the
system in some way, this can attribute to the teaching and learning aspects of
the system. It can also aid in adapting the system to other domains. Finally,
the author has a good deal of experience with using JSON as a database and
far less experience with other databases.

The format of the squad and equipment objects, alongside the army class,
are presented in Figure 3.2. The JSON representation of these objects can
be found in Appendix D.

The Equipment Object has not changed substantially from the Specialization
Project. The cost has been removed as an attribute, since different squads
can have different costs for equipment, and this can vary both within the
same faction and in between different factions. The name component has
been added, so that we may be able to identify the equipment in question.

The Army Class representation has not changed at all, except for the addi-
tion of the name and ID component. The ID component helps the system
understand which army to update after performing the CBR cycle. The
Army Class has an array of squads, which have a different representation
than the Squad Object, to make it easier to create armies. All that is needed
for the squad object in the Army Class is the squad name and any options
and parameters applied to the squad. If a squad is not present in the squad
case base, the squad needs to be entered once. After that it can be used
in any army composition. This eliminates the need to enter a lot of squad
statistics each time we enter an army.

Figure 3.2: Squad and Equipment objects, and Army Class

The Squad object has been merged with the unit object. This was done
because multiple units can have the same name, but not necessarily the
same statistics. Furthermore, a unit from one squad can have completely
different options, and even rules than a unit from another squad. In order
to keep track of all the units, it was easier to add the unit object to the
squad object. The Unit Array holds the Unit, which itself has changed. It
now contains a Unit Name variable, which is a string value. It also contains
a Boolean value called Unique, which denotes if the unit is unique or not.
There can be only one unique unit of one type in the army at all times. The
Count variable denotes how many units of this particular unit exist within
this squad. The squad object itself contains a Role variable, which denotes
the particular role this squad fulfills, when creating a battle-forged army.

The Base variable is a Boolean variable that denotes that this squad is a base
squad, taken directly from the codex. Base squads are pivotal squad cases,
and they can never be deleted from the case base. This is done to prevent the
system from forgetting the original squad. The original squad is necessary, as
without it, we could not create any squads based on that particular squad,
unless we directly entered them into the system. This would nullify any
advantage that we have made for creating the army class, and would make
entering armies into the system a much longer process.

Finally, the Options and Parameters values are the same values as they are
in the Squad component of the army. This is done so that the system under-
stands which options and parameters have been applied to an already saved
squad. It also enables easier saving of armies, without having to reverse-
engineer squads made by the reuse and revise steps.

There are two more representations of the Squad Object, or rather, the Unit
part of the Squad Object. Vehicles have different attributes, such as frontal,
side and rear armor, that normal infantry which is presented in Figure 3.2
does not have. There are two distinctions of vehicles, walkers, which behave
closer to infantry and have more similar attributes, and other vehicles, which
share only one attribute with infantry, the ballistics skill. Both of these
representations can also be seen in Appendix D.

From the equipment and squad objects, and the army class, the case bases
are created. There are two case bases, one for the Armies and one for the
Squads. The army case base is predominantly used in retrieval step, whereas
the squad case base is predominantly used in the reuse step. The equipment
object is stored in the same fashion, but it is a database not a case base, as
we have a complete listing of all of the equipment and no new equipment can
be created by the system.

Both the equipment database and the two case bases are loaded when the
implementation starts, and from then on out they are not used anymore. If
the case base is changed during system runtime, it will not affect the system.
Once the system is shut down, the cases that are determined to be useful by
the retention step are written into the case bases. It is important to note
that all of the Armies will impart their squads to the case base, should their
squads not be already located in the case base.

3.2.2 General Knowledge Representation and Imple-
mentation

Table 3.1 adapted from the Specialization Project (Zikic, 2015) depicts the
General Domain Knowledge in the Warhammer 40k domain and is presented
here for quick reference. In this subsection we will discuss how this knowledge
is implemented into the system, or the reason for its absence.

Knowledge of Description
Rules The rules of Warhammer 40k, including the

rules for constructing armies
Special Abilities Special abilities and rules of all units and

equipment
Options Extra options provided to squads for chang-

ing them
Missions Mission objectives and victory conditions for

missions
Terrain Terrain uses, types and heuristics for terrain

advantage
Strategy Heuristics gathered from experts which ad-

vise on general strategy for Warhammer 40k
army creation

Table 3.1: General Domain Knowledge (Adapted from specialization project
(Zikic, 2015)

The rules of the Warhammer 40k game are usually not implemented in the
system as a table or a base of knowledge, but rather they are implemented
where we need to use them. Some of the rules are not used in the game,
and these will be discussed in the limitations that follow within this chapter.
Other rules are used directly, while some rules are stored in the domain
knowledge as methods. This extends to the special abilities of equipment as
well.

The majority of the options for the Space Marine faction are fully represented
in the domain knowledge. The options that are not presented are the result
of system limitations, as they are very complex. If the system suffers due
to this representation, a discussion will follow in Chapter 5. Other factions
are not presented in the domain knowledge. The reason for this is two-fold.
First, the Space Marines faction is a very popular faction, and is considered
the baseline faction for Warhammer 40k. Secondly, there are around 250

options for the Space Marine faction alone. Many of the options are unique
to a specific squad, and have special prerequisites for that squad. Some
options are similar, like upgrading a unit or adding additional units to a
squad. However, a large amount of options are quite dissimilar, and require
a large amount of time-consuming work to implement into the system.

Missions are not fixed in the game and can be anything the players decide
they want them to be, from the missions from the rulebooks to player gen-
erated missions. As the missions can change the rules of the game as well
as being very arbitrary, they are not implemented in the system. Instead,
it is assumed that the mission played gives no one army a clear advantage
and that the army is the determining factor for victory. Due to this, it was
decided to focus on the general aspects that can help secure and perform
these missions indirectly of what the mission is. These aspects include the
maneuverability of the army, the effectiveness of the army in shooting and
assaulting, as well as the presence of detachments, which play a large part
in securing objectives.

Terrain is fully implemented in the system, as a ratio of buildings, difficult
terrain, dangerous terrain and impassable terrain. The percentages of the
terrain can be changed in the system by the user, as they are also completely
different from game to game, and are agreed upon by the players. Games
Workshop, the creators of Warhammer 40k, recommend using as much ter-
rain as possible, while the majority of the players seem to prefer having
roughly 20-30% of the battlefield covered by terrain. Therefore, the general
influence of terrain is captured in the system, but the ratio of terrain has to
be input by the user. Some terrain can have additional features or impart
additional rules and that terrain is not represented in the system, as it is the
players choice to use this special terrain and its use is not mandatory.

The strategy of the game is implemented in the system as weights and in the
reuse as the rules for adapting an army. The strategy is a combination of
Internet sources, such as guides, videos and battles, and the opinion of the
experts at the gaming club. Furthermore, as the system evolves and performs
proactive maintenance, these weights will slowly shift to accommodate better
accuracy of the system. The weights are implemented through a .txt file
called weights.txt, to allow for more global manipulation of weights that is
not particular to any instance of the system. Like the case bases, if the file
is manipulated while the system is running it will have no effect on that
instance of the system, and unless the instance of the system is terminated,
it will re-write the values for the weights that it acquires through its runtime.

3.2.3 Retrieval

As discussed in Section 2.3 the retrieval step is a two-level process. While the
early conceptualization of the implementation involved the structure map-
ping engine (SME), it became apparent that an implementation involving a
SME would be very time-consuming and require a good deal of creativity to
implement. Furthermore, it was not guaranteed that a SME would aid the
retrieval of the system. This was reflected upon and it was decided that the
MAC/FAC retrieval would be a simpler algorithm overall, but still complex
enough to capture the environment of Warhammer 40k.

Many Are Called - MAC Step

When the retrieval step is initiated, the MAC step analyzes the entire army
case base and retrieves a set k amount of nearest neighbours. The nearest
neighbours are determined by the total army point cost and the army rating
attributes. The step retrieves armies with the highest rating that are less
than the point cost. However, the cost is used as a filtration mechanic and
only armies within 100 points or less than the agreed point total of the game
are retrieved.

Adding units to fill up the point cost of the army is very difficult for humans,
and even more so for the AI. As mentioned in Subsection 2.2.1, an army of
2000 points is not made up of 1000 points of units stacked on top of a 1000
point army. Rather, the entire structure of the army changes. This means
that an entire army has to be built from the ground up, which requires our
reuse step to be very complicated. Instead, we only retrieve armies that are
close to the cost, so that we may use substitution with squad transformation
to both speed up and simplify the process for the Reuse stage. Finally,
the points usually represent army strengths and retrieving an army with a
high rating at 1500 points and comparing it to an army of 2000 points will in
almost all the cases give it a lower similarity result, and thus filter out armies
that we may have wanted in the system. This would lower the accuracy and
the performance of the entire system.

As was found in the discussion with the experts, unbound armies are never
used. The MAC step performs a filtration step where armies that are not
battle forged are eliminated from the k nearest neighbours. This further
assists in picking good armies in our filtration step and eliminating those
armies that would lower the accuracy of the system.

Finally, as discussed in the Specialization Project (Zikic, 2015), the MAC
step is also used to filter factions2 or races. If a user would prefer playing
with one faction over another, they can simply specify the faction in the MAC
step of retrieval. Should such a faction be unavailable, the system defaults
to a non specific faction retrieval. However, if a a faction is available in the
system, then the system retrieves armies from only that faction. With this,
the user can compromise with the system, and the system can explain its
choices in the MAC step more clearly, should the the faction the user wants
be unavailable in the system.

Few Are Chosen - FAC step

After the MAC step is performed, the system is left with up to a k amount
of armies for the FAC step. The FAC step analyzes the structures of both
armies using seven different methods/algorithms. These are then weighed
and added together to provide a similarity rating. Army Ratio (AR), Squad
Ratio (SqR), Strength Ratio (SR) and Favour Ratio (FR) are used in the
similarity calculation, and each will be briefly discussed.

The final similarity is calculated using the formula:

(AR + SqR + SR ∗ 6 + FR ∗ 3)

11
= Similarity

Army Ratio - AR and Squad Ratio - SqR

The Army Ratio is calculated in the same way as it is for chess rankings.
As can be seen from the Similarity formula, the Army Ratio weight is 1

11
of

the Similarity factor. While the Army Ratings are important in the MAC
step, the importance of army ratings is overshadowed by army composition
in the FAC step. Due to this, the Army Ratings are weighted far less, so
that they will not interfere as much when calculating the similarity between

2Faction and race in the text are interchangeable and refer to the same concept.

new armies and very highly or poorly rated armies already in the system. A
highly or poorly rated army in a system should still carry some weight as it
has managed to attain that rating. The exact formula for the Army Ratio is
shown below:

10SolutionArmyRating/400

10SolutionArmyRating/400 + 10ProblemArmyRating/400
= ArmyRatio

The Army Ratio will be closer to 1 when the solution army is rated much
more highly than the problem army, while it will be closer to 0 when the
opposite is true. At 400 or higher rating differences, the ratio is within 0.1
of either 1 or 0.

The Squad Ratio carries the exact same weight as the Army Ratio does, and
is calculated using the exact same formula. The ratings that are compared
are the average ratings of all of the squads combined on the solution side and
the problem side. Squad Ratings are important to consider, as newer armies
built up from very good squads should be higher rated, as we know those
squads perform well. Furthermore, the metagame maintenance policies will
adjust squad ratings based on the systems own observations, and this should
be reflected in both retrieval and later reuse.

Strength Ratio - SR

The Strength Ratio itself is made up of four different ratios, each representing
the four main phases of a player turn in Warhammer 40k. There is the start
of turn and the end of turn phases, but as they are more of an indication
when certain actions, such as scoring objectives, should be performed, they
are not useful to us. The four main phases are: Movement Phase (MP),
Psychic Phase (PP), Shooting Phase (SP) and Assault Phase (AsP). The
formula to calculate the Strength Ratio is:

(MP ∗ 1.1 + PP ∗ 0.9 + SP ∗ 1.1 + AsP ∗ 0.9)

4
= StrengthRatio

As the strength ratio of the armies is the main determining factor in re-
trieving a good army, it weighs 6

11
of the Similarity factor. The weights of

each individual phase was determined in discussions with experts. These are

subject to change, whether by the user or by the metagame maintenance
policy.

An important note to make for the calculations here is the player actions. It
is assumed that the players can take a full advantage of the active phases.
A simple example involves units with heavy weapons and movement. A unit
with a heavy weapon that moves can only fire what is known as a Snap Shot,
a shot that only hits on a roll of 6, regardless of the Ballistics Skill of the
unit. In this example, we assume that the player will not move the unit
unless the advantages of moving outweigh the disadvantages. The system
calculates the average for each phase, keeping in mind that the players take
the full advantage of each specific phase.

In the MP the two armies are compared by their maneuverability. An army
that can move faster is an army that can maneuver better on the battlefield,
get to objectives, cover, and important choke points faster, or move quickly
from one objective to another, or even from one enemy squad to another.
The movement of each unit type is stored in the general domain knowledge.

As expected, vehicles and transports greatly increase the maneuverability of
units, but so do quick units, and units that ignore certain terrain features.
Terrain features are another part of general domain knowledge that we use
here, and it is directly integrated in the movement calculations. Units can
also move through the shooting phase, which is often referred to as the run
action, and dice is usually rolled to determine their movement. This type of
movement is also included in the movement calculations, as some units have
an extra advantage while moving quickly around the battlefield, or can move
a consistent amount or gain more dice for their movement. The opposite is
true as well, and some units can not perform the run move action at all.

The two movement speeds, the normal and the run movement, are calculated
for the problem and solution armies and then compared. In discussions
with the experts, it is expected that units will use normal movement 90%
of the time, and thus it weighs appropriately when calculating the ratio of
movement. The remainder 10% is the Run movement.

The formulas for the movement phase are shown below:

Normal Movement:

0.9 ∗ (0.5 + 0.166 ∗ (NormalMovementDifference))

Run Movement:

0.1 ∗ (0.5 + 0.166 ∗ (RunMovementDifference))

The Normal and Run movements are added to form the similarity for the
movement phase. If the problem army is slower by 3 inches, the similarity
is 1, and if it is faster on average by 3 inches the similarity is 0. The speed
of 3 inches is chosen as it is half of the movement of a normal infantry unit,
which is the most common type of unit and therefore a good determining
factor.

In the PP the two armies are compared by their psychic strengths. Every unit
with psychic abilities generates their abilities before the game start, using a
table and random dice rolls. Some units also start with abilities before hand.
Furthermore, psychic abilities come from a few different tables, depending
usually on the faction of the unit. With all this in mind, we simply can
not predict what the psychic phase is going to look like, and some psychic
abilities may not be used at all during the game. Nonetheless, the psychic
phase is an important part of the game.

A unit that is a psyker has either the Psyker, Psychic Pilot or Brotherhood of
Psykers ability. The psyker abilities have different levels, from 1, which is the
most common, to 3 and even 4, which are extremely rare. In the game, all of
the Psyker levels in an army are added, and then a six-sided die is rolled to
determine the extra dice acquired on top of the combination of Psyker levels.
As the six-sided die result is the same for the defender and the attacker, we
can just simply compare the levels of the Psykers and draw a conclusion as
to who has the advantage in the psychic phase from there.

The formula becomes the difference of the Psyker levels:

0.5 + 0.166 ∗ (SPP − PrPP) = PsychicRatio

Where SPP stands for Solution Psychic Power and PrPP stands for Problem
Psychic Power. Similarly to movement, when the difference is three or more,

the ratio will be either 1 or 0, and if the levels are the same the ratio will be
0.5.

The reason to choose the same formula in this case is due to a rule called the
Perils of the Warp. Each time a Psychic ability is invoked, a unit must meet
a set amount of psychic points by rolling dice and getting results of four or
more. Two or more sixes rolled on this roll, however, triggers the Perils of
the Warp, making something unpredictable (and usually quite bad) happen.
Furthermore, many armies simply have no Psykers, which means they skip
this phase entirely. Therefore, it is our belief that a fine-grained linear or
polynomial scale will not provide much of a difference when it comes to the
power in this phase.

In the SP we compare the effectiveness of each army when it comes to shoot-
ing. The effectiveness is measured in the amount of wounds they inflict on
the enemy army. To measure this, the Ballistics Skill of the unit is used to
calculate the hit chance, and each of the units ranged weapons is checked
to pick the most effective weapon to fight with. This is compared to the
average toughness of the enemy army, and in the case of vehicles the average
between the front and side armor, as this is the expected angle that a vehicle
will receive fire from. General domain knowledge is used to determine how
many shots a specific weapon gets, which will then add to its effectiveness.
The effectiveness is further augmented by range, and longer ranged equip-
ment gets an incremental bonus, up to 36 inches, which is the typical width
from the table edge to the deployment line of an army. Terrain is also taken
into account, and provides either cover saves or complete obstructions on the
battlefield. Finally, a ratio of both armies is produced, and the more effective
the solution army is against the problem army, the better its ratio, up to 1
for double the effectiveness.

The final phase, the ArP is very similar to the SP. We compare the efficiency
of the two armies in melee combat, using the characteristics of the units,
their weapons, as well as the environment. This is compared to the problem
army, and vice versa, to obtain the effectiveness ratio for the ArP. Again,
terrain can halt or hinder an army, which is represented in the calculations
as well. Both the SP and the ArP calculations are more fine grained, and
the formula to calculate them is:

0.5 ∗ SolutionEffectiveness

ProblemEffectiveness

Favour Ratio - FR

The Favour Ratio uses domain knowledge to check if the armies are using
detachments3 or not, or in other words, if they are battle-forged or unbound.
Battle-forged armies gain many advantages over unbound armies and are
always a better choice, even if they are stricter on the composition of the
armies. Furthermore, a presence or an absence of a warlord character is
checked, as the character and its warlord ability could be influential in the
battle, although not as much as the battle-forged and unbound difference is.

The ratio first checks the formations for each specific faction. Then it checks
for the core formations that are present in the main rulebook. This assures
that all the formations and detachments are correctly analyzed by the system.
The system uses the names of the squads, their individual characteristics if
necessary, and the roles of the squads to determine how much of an army is
battle-forged or in formation. This is then compared to the problem army,
and a ratio is produced.

The favour ratio is the final calculation of the similarity, and weighs 3
11

of
the similarity calculation. It is an important ratio to have, and while not
as impactful as the SR, it does separate the bound from unbound armies in
the similarity factor. The simplest explanation for the favour ratio is that it
punishes unbound problem armies.

3.2.4 Retrieval Limitations

The retrieval step is not without its limitations. As it was mentioned several
times, Warhammer 40k is a very complex game and capturing every element
is very difficult. In order to create a system that could represent the domain
and still be functional some limitations had to be made.

The first major limitation of the retrieval step is the average values. Many
of the steps use average values to determine some kind of ratio, which then
calculates the Similarity index. Using average values is not perfect by any
means, but it is a necessary limitation. We can not predict how a game
will develop, and therefore we can not afford ourselves to measure each unit
individually to each other. We must use an average value to represent the

3Detachments and formations represent the same concept, a formation is faction specific
whereas a detachment may or may not be faction specific.

statistical average of each unit, as otherwise we are simply unable to come
close to any kind of valuable result. Furthermore, even if performance is not
a goal of the system, comparing each unit to each other unit for each army
we retrieve will slow down the performance considerably.

The second limitation is the quantification of the complexity of the game.
To produce any kind of calculable value, we need to quantify elements of the
game. This means quantifying the squads, equipment and their properties
to ultimately produce a similarity index for the armies. Quantifying rules is
difficult and often quite precarious. There are many rules that have too many
variables, many of those based on dice rolls and a certain board position, that
we simply can not quantify them to a number that will be statistically sound,
at least not with the time and resources we have present. Over a long period
of time and after hundreds or thousands of games played and recorded, we
can begin quantifying these more special rules. Quantifying rules wrongly
would almost certainly lead to a drop in accuracy of the system. Therefore,
only the main rules, as well as any quantifiable rules are present in the system.
An example of a quantifiable rule is the twin-linked property on a weapon.
If a unit with a twin-linked property misses, it can re-roll the miss to see
if it could hit again. As we assume the dice are fair, this property is easily
quantified using statistics.

Even with quantifying the main rules only, we are still prone to certain
assumptions, which is the last limitation of the retrieval step. Some rules are
such that we can not ignore them, as doing so would not present the domain
fully. Therefore, we need to make assumptions for some rules. An example of
the assumptions in the system is the blast marker. The blast marker is a two
inch marker that is placed with its centre on top of a model. The weapon will
then hit all of the models underneath the blast marker. Knowing that your
opponent has blast weapons one may use maximum unit coherency, which
is also two inches, to spread out the models thus allowing only one hit on
a unit at a given time, even if the weapon is a blast type weapon. While
this can happen, the opposite is also true, and blast type weapons could
hit up to six models. By discussing with experts and looking at various
Internet sources as well as battle reports involving these weapons, it had
been found out that the average hit count for a blast weapon is 2. Other
similar examples include average strengths on Sniper Rifles and Graviton
Weapons, which have specific rules based on the situation in the game and
the opponent. These assumptions are the result of necessity and over time,
much like with quantification, these will reach a more stable average value
that will increase the accuracy of the system.

3.2.5 Reuse

The reuse step starts immediately after retrieving the best army. As the
majority of the important parameters are specified before retrieval starts,
such as point total and desired faction, there is no need to implement any
kind of user interaction between these two steps.

The reuse step is computationally more expensive than the retrieval step.
Therefore, the step is made out of two separate stages. The first stage serve a
similar purpose to the MAC step, in that it prevents the main reuse algorithm
from running if the winning percentage, or similarity, is above a threshold.
The second stage runs the costlier reuse algorithm.

The threshold for the first step in Reuse is 67.3% win rate, or 0.673 simi-
larity. This is based on the newest tournament results held at the NOVA4

tournament in the US in late summer in 2015. The results can be seen in
Figure 3.3.

Figure 3.3: NOVA tournament results (Adapted from
http://www.torrentoffire.com, 2015)

The percentage is acquired from the retrieval step, and it can easily be
changed to accommodate the metagame. If the similarity index is over 0.673,
0.1 or 10% higher than the best performing army in the tournament, the reuse
step is skipped, and the system moves on to the revise step.

4http://www.torrentoffire.com/7287/nova-2015-recap

http://www.torrentoffire.com/7287/nova-2015-recap

However, if the reuse step is not skipped, the reuse algorithm is started. The
algorithm consists of three parts: substitution, transformation and deletion.
Each of the steps takes precedence over the others as the algorithm runs.
Thus, substitution has a priority over transformation, and transformation
over deletion. At each step it is ensured that an army is legal, by making
sure that the army stays battle forged, or in detachments, and that there
are no illegal combinations of units in the army, such as two of the same
unique units. However, there are some very special rules that we will discuss
in Subsection 3.2.6, when we discuss reuse limitations.

In the first step of reuse, we run a similarity test of each of the squads in
the retrieved army individually, and compare this to the problem army, in
a similar manner that retrieval does. The efficiency is calculated for the
movement, psychic, shooting and assault of a specific squad, and the squad
rating calculation is incorporated as well, to provide a total effectiveness table
of each squad in the retrieved army. The formula for calculating the total is:

Total = Rank+Movement∗1.1+Psychic∗0.9+Shooting∗1.1+Assault∗0.9

The lowest squad from the total table is then checked by squad role to see
if any substitution can be made. This is done so that any detachments may
be preserved, and as well so that the squad fulfills the same role. A squad of
troops does not fulfill the same role as a squad of heavy support, and therefore
the two should not be substituted for one another. The total efficiency of all
the squads in the squad case base that meets the point value for substitution,
which is the value of the squad being substituted with the addition of any
leftover points, is then calculated. If a squad with a higher efficiency is found
it is substituted and the algorithm starts another iteration.

If there is no squad with higher efficiency within the point cost of the army
that can be legally substituted, the algorithm will attempt to use general
knowledge and squad options to change the lowest efficiency squad. This
could be anything from replacing equipment to replacing or adding squad
members. This usually costs less than the point cost for an entire squad, and
uses any leftover points, if any exist. For each such option, a new total is
calculated and compared, and the best option will be applied to the squad.
Again, we check for the legality of the army before we perform the transfor-
mation and after it is performed to make sure that we do not have an illegal
army.

If the substitution and transformation fail to produce any results, we can
assume we are at a maximum value for the army. This could either be a
local maximum or a global maximum for the army. To make sure we explore
the neighbouring maximums, we attempt to delete the squad from the army.
This will free up points that can be used in substitution and transformation.
With this we can explore the nearest maximums and find the best army
based on the retrieved army. Every single time a deletion is performed, the
army prior to deletion is stored as a new army in a temporary case base.
After the reuse step is fully finished, we perform the retrieval step again on
the temporary case base of all iterations of armies that we have. The best
army is finally retrieved, adapted from the originally retrieved army.

The reuse step is executed until all of the squads have been exhausted. A
squad is exhausted when it can not be substituted, as we can not find a better
squad with the points we have available; it can not be transformed, as we can
not find a transformation that will better the squad in the points we have
available; it can not be deleted, because we would destroy the formations
or detachments. Each squad, from the least to the most efficient squad is
exhausted in this manner, and should a squad receive a substitution, trans-
formation or be deleted, all of the squads are readied and the system starts
from the least efficient squad again. In this way, we ensure that the reuse
step considers every single option it has available.

3.2.6 Reuse Limitations

The reuse step, much like the retrieval step, has some limitations. In fact,
as the reuse step also uses the retrieval step at the end of its cycle, all of
the limitations of retrieval also apply to reuse as well. However, there are
additional limitations that are specific to the reuse step.

The first limitation is the very specific special rules of some unique squads.
Such an example is the Sergeant Chronus squad, consistent of the Sergeant
Chronus unit. The unit in this squad must start out with a vehicle joined
to this squad, paying the cost listed for that vehicle. This would mean that
for this particular squad, we would have to create an entire exception in
the algorithm, which would be both time consuming as well as influence
the performance of the system. These types of special rules are quite rare,
usually one per twenty squads, and it is not expected that they will impact
the system too much.

The second limitation of Reuse is its dependency on the general domain
knowledge. For the transformation step specifically, the reuse step depends
entirely on the implementation of the general domain knowledge. Every
squad option would need to be presented in the general domain knowledge,
which over the course of all factions, totals to 2000 to 4000 squad options.
As we have mentioned before, at least half of these would be fairly unique,
and thus they would require an extraordinary amount of effort and time
to implement and test, to make sure that each and every one of them is
correct. We will limit ourselves to the Space Marines options, as described in
Subsection 3.2.2 and therefore the majority of reuse for other factions of the
system will be either substitution, or substitution followed by deletion. An
expansion of the general domain knowledge in the future will greatly affect
the accuracy of the reuse step.

3.2.7 Revise

Revision is performed after Reuse, though not immediately. It is expected
that the actual game take place at this point, and the revision step will wait
until the game is finished. It is also the only part of the CBR cycle that
requires more input from the user than just the basic configuration changes.

The Revise step consists of two separate stages. The first stage is the input
from the user. The user is first asked what the outcome of the match was: S
if the solution army won, P if the problem army won or D if the match was
a draw. After the user inputs the outcome, the step calculates the ratings of
both armies, based on the formula for calculating the elo ratings.

The exact formula uses the Expected Rating formula. This is the formula we
use to calculate the Army Ratio, which is presented in the Army and Squad
Ratio paragraph in Subsection 3.2.3. The final rating is then calculated using
the following formula, with the K value of 40:

OldRating + K ∗ (Score− ExpectedRating) = NewRating

The K value determines the severity of change. The typical K values range
between 20, which represents a minor change in ratings for a win, draw or
loss, to around 40, which represents a substantial change in ratings. We use
the K value of 40 by default, however, this value can be changed at any time

should it not be found ideal in the long run. The Score is a representation
of a win, loss or draw, with the respective values of 1, 0 and 0.5. Appendix
G contains more information on the calculation of ratings.

Once the user enters the winning army, he or she will be tasked to enter the
performance of each squad. The original intent was to enter the total amount
of damage caused by the squad, in points, to the enemy army. However, this
faced two problems. The first problem was the inconsistency of battles and
ratings. For example, if we had three identical squads, two in one army and
one in the second, and the two squads killed the squad in the opposing squad
together, they would gain points based on the damage done. Since all the
squads are the same, the points could not exceed or equal the squad cost,
and thus all squads would be considered as defeated, or lost. This would
create inaccurate data over time that would hurt the systems accuracy. The
second problem was the tediousness of keeping track of the damage each
squad does. When discussing it with experts at the local gaming club, it
was quickly dismissed as tedious, time-consuming, and drawing away from
the fun of playing the game.

To preserve the system, but still solve these problems, we adapted a much
more streamlined, albeit subjective, way of entering squad performance. In-
stead of keeping track of damage, the users would simply type in w, d, or
l, indicating a win, draw or loss, respectively. This is the subjective per-
formance of the user towards a particular squad and how they performed.
This also allows us to capture squads that have held the objectives without
doing damage, squads that have performed special abilities, or even squads
that have sacrificed themselves for the win. If a user feels that a squad per-
formed well despite the annihilation of said squad, they are allowed to enter
a win into the system. Likewise, if the user is dissatisfied with a squads
performance, he or she could enter a loss into the system for that squad.

The squad ratings are then calculated for each squad as the percieved perfor-
mance is entered, using the same formula for calculating the Army Ratings.
The score is 1 for a win, 0.5 for a draw, and 0 for a loss. The Expected
Rating uses the average rating of the squads in the problem army, and the K
value is always half of what it is for Army Ratings, or 20 by default. The K
value is lower to provide a more granular approach to squads, because they
are harder to quantify, and make a larger impact on the system as a whole,
since Army Ratings are not used in any stage past retrieval.

The second stage of the Revision step is the revision of the solution army,
after the ratings have all been entered. This is simply another attempt at
adapting an army, in the same fashion as it is done in the Reuse step, with
the new ratings in mind. As the ranking of a squad represents 20% of the
total efficiency of a squad when performing adaption, there may be changes
to the army based on the new value of the squad rating.

The limitations of the revision step are inherited from the reuse step. While
it is a necessary drawback to keep track of perceived performance for each
squad, it is still a better solution then to meticulously keep track of each
damage point, and thus is considered a light limitation, but it is a limitation
nonetheless. It would be possible to simply input the winning or losing army,
but that would negate much of the accuracy that the reuse step could have,
and the system may never be able to evolve past the quantification of rules.
By having a varying variable, such as ranking, we are able to influence the
system past the rules, and then update the rules through updates when we
perform maintenance.

3.2.8 Retain

The Retention step is performed immediately after the Revision step. In the
retention step, the armies are saved to the case base, or if they already existed
in the case base their ratings are updated. For squads, the initial intention
was to not save squads that perform poorly. However, poorly performing
squads do help the system in Reuse, as the system knows which squads not
to pick. Through discussion with experts, and a review of the Specialization
Project, it has been decided to keep all of the squads in both of the armies,
regardless of their performance. Squads that are not used at all, such as those
squads that are created while performing reuse, and potentially revision, are
not saved. However, squads that have been used in the armies are saved.
Accuracy of the system is valued over its performance, which is why this
choice was made. Any squad that had existed in the system already and has
been directly reused instead has its rating updated.

The retention step saves the current work performed in the system. As such,
we could perform several Retrieve-Reuse-Revise cycles before retaining the
solution, and in some cases, such as a tournament, it may be more desirable
to insert all the data from an entire day worth of battles and not just one
particular battle. If we were to utilize this feature, we would need to perform

the retain function once for each cycle, as retain is performed on the solution
and problem armies of a specific cycle. By default the system will execute
the standard CBR cycle and then terminate. This also means that any
changes performed to the case base after the system is in runtime, but before
the system is finished, will be overwritten, unless the system is terminated
before the Retention step can take place.

3.3 Maintenance Policies

We have discussed three specific maintenance policies in the Specialization
Project: the utility maintenance, the update, or consistency maintenance,
and the metagame maintenance. In this section we will discuss the imple-
mentation, or lack of such, for each policy.

3.3.1 Utility Maintenance

The utility maintenance is performed after the retention stage, and it is only
performed if the system determines that it is necessary to perform it. The
determining factor is the ratio between the time it takes to perform the
filtered (MAC) retrieval step and the time it takes to perform the reuse step.
If this ratio exceeds 0.9, or 90% the maintenance policy will start.

The implementation of the MAC part of retrieval is by nature very cheap.
While we do have to iterate through the entire case base, iterating through
ratings is a simple comparison, and thus takes very little time. Therefore,
the bottleneck of MAC retrieval lies in the battle forged, or detachment,
function, which means that the bottleneck can mostly be controlled by the
size of K. Depending on how many army cases we have in the case base, the
worst case scenario is iteration through the entire case base with every next
case having a larger rating than the k cases already chosen. This is highly
unlikely to happen, and it is likely that the average worst case will be half
of the case base, due to no case base sorting.

When the maintenance policy triggers, it will collect and iterate through
both the armies and the squads in the case bases. Any army that has low
ranking is a candidate for deletion, but the system will always keep a mini-
mum amount of armies, denoted by n in the system, of a specific faction, and

will instead pick the lowest ranking armies from a more numerous faction.
This is done so that the system would not forget about a specific faction,
even if it is lower ranked than others. The same approach is taken to squads.
Squads with lower rankings are candidates for elimination, unless they are
considered base squads. As the system is used, the lower ranked squads will
be naturally eliminated from armies, through the process of reuse and revi-
sion, and therefore it is assumed most lower ranked squads will be removed
from any useful armies, so their deletion should not create any problems in
the system. Even if some armies are chosen that use these deleted squads,
they can be recreated by loading that army in the future without any issues.
Similarly to the armies, squads of a specific faction will only be deleted if
there are more than a minimum amount of non basic squads, denoted by m
in the system.

It is very unlikely that the utility will be of any kind of a problem in the
system for the duration of the thesis. We would require an extensive amount
of armies and squads stored in the database before the utility reached the
critical point, as the reuse step is far more expensive. Nonetheless, we need
to test the utility maintenance, and especially the k value and its role on the
performance. If we are to have a larger case base in the future, it is vital
that we understand the limitations of the implementation. Both accuracy,
in the FAC step of the retrieval, as well as performance, both in the MAC
and FAC steps, are effected by the k value. By inserting dummy cases, we
will be able to test the k value limitations, as well as test the correctness and
usefulness of the utility maintenance.

3.3.2 Consistency Maintenance

There is no firm reason for us to implement consistency maintenance. It is
untestable, as we would need to wait for a new edition of one of the codices
to be published, as well as implement that specific codex into the system.
Currently, the system is focused on implementing the Space Marines codex,
and as the Space Marines are updated to 7th edition, there is no need for
further updates. The consistency maintenance is something that the project
could focus on in the future, when there is a real need for it. Even so, the
system is fully modular and additions and changes in the system can be made
to parts of the system without the need to rewrite the entirety of the system.
This should aid any future work concerning updates made to the system.

3.3.3 Metagame Maintenance

Unlike the other two maintenance policies, which are reactive, the metagame
maintenance is a proactive maintenance policy. The metagame maintenance
is implemented as a separate method, and can be run at any time after
loading the case bases and before terminating the system. The intention
is to run it whenever the system is not in use, as indicated by the user.
The metagame maintenance flow is summarized in Figure 3.4. When a set
amount of completions is performed, the metagame maintenance will update
the weights. It can then start again, or it can be terminated.

Figure 3.4: Metagame Maintenance Flow (Revised from specialization
project (Zikic, 2015)

Initially, the metagame maintenance will pick a random set of squads to-
talling to 200 points. As previously mentioned in Table 2.1, a 200 point
game is called Kill Teams, and focuses on a few squads, usually one to four,
depending on their point cost. The random selection is done twice, once for
the problem army and once for the solution army. The problem and solution

armies here are just a representation of the two collections of squads, and
are intended to be randomized set pieces from a greater army. As such, they
ignore rules for battle forged armies.

After the squads are created, but before they are collected into the army
class, they are further randomized by a set of options that the squads can
have. The options are also selected at random. If an option does not exist
in the domain knowledge, it is simply skipped. This is done through several
iterations, or until the cost is equal to two hundred points, in which case the
armies are finally created.

It was initially intended that the simulation be a part of the policy as well.
Unfortunately, implementing such a simulation is very time consuming, and
quite difficult. Rather than being a part of this system, it would be an entirely
different application, that would simulate a small time battle in different
phases, with randomly generated environments. Games Workshop, creators
of Warhammer 40k, currently have no such implementation5, and to create
one would also require their permission as well. Creating the simulation is
therefore considered to be outside of the scope of this thesis.

This does not mean that we can not implement and test the system. It means
that the system can not be fully automatized like it was conceptualized. We
are still able to test the system manually by playing the game and then
inputting the results in the system. Since we use kill teams, the games should
be finished much faster than regular battles, allowing us to test several of
them in a day.

The system will use a much lower value of K for the metagame maintenance
than it is usually used for the regular battles. It is intended for the metagame
maintenance to run multiple times and using a large K value would change
the ratings very quickly, which is undesirable. We want to slowly reach an
improvement by running the system over and over again and simulating the
results.

Given time, the maintenance will not only change the ratings of the squads,
but also the weights for the different similarity calculations. To do this, the
maintenance policy keeps a track of advantages and disadvantages in battles.
If squads with a disadvantage wins, or a squad with advantage loses, the
weight of that specific advantage will go down, indicating that it contributes
less to the accuracy of the system. If an advantage is correct most of the

5https://en.wikipedia.org/wiki/List_of_Games_Workshop_video_games

https://en.wikipedia.org/wiki/List_of_Games_Workshop_video_games

times, the weight will be increased, as the advantage contributes more to the
accuracy of the system.

The random generation is unfortunately prone to some errors. The order
in which options are applied may sometimes provide incorrect or weaker
squads, which humans are able to see, but the random generation is not able
to correctly predict. As the change in the system is fairly slow due to the
application of the metagame policies, as opposed to the manual use of the
system, such errors should be considered negligible in the long term, but
can still disrupt the database and force manual change of squads, which is
undesirable. The random generation is also unable to generate parameters.
As such it is limited to the options that do not use parameters. This does not
hurt the system, and there are still a large amount of options that the policy
can apply to generate a wide variety of squads. If the random generation
were to include parameters, we would need to split the general methods into
unique methods for many of the options.

This ties in with the previously mentioned problem with random generation
and brings us to a final limitation that can not be overcome: the method size
limitation of Java. The general domain method becomes so large that each
option requires its own specific method, which makes the generation process
much more complex. It may be possible to restructure the code in the future,
but care should be taken to preserve the accuracy of the system.

3.4 Explanation

Explanations in the system are implemented as strings. The explanations
consist of generated strings, written in easy to understand language and
parameters derived from the particular stage that the system is explain-
ing. The two types of explanations that the system focuses on are the why-
explanation, or the justification explanation, and the how-explanation, or the
transparency explanation. At each stage of the system runtime the user will
be shown the justification explanation and will be presented with a prompt
that asks them if they would like a more in-depth explanation, which repre-
sents the transparency explanation.

Each step of the CBR system has its own explanation table, that is written
out to the console window once the step is performed. It is assumed that
no users will interact with the system as a whole in the this development

stage and the developer can in this case assist the user with reading the
console, thus negating the need to build a complex user interface where it is
not necessary.

After the retrieval step is performed, the system will indicate the calculated
percentage chance to win for the best army picked from the case base. This
is the justification explanation for this step. This is further assisted by the
army composition, the name of the army and its rating, so that the explana-
tion provides context, or the what explanation. If the user agrees to, a more
in depth explanation is shown detailing every parameter of the retrieval pro-
cess, the basic formulas used, as well as the current scope of the system.
The explanation also aims to be instructive and teaches the user what is
important to have in an army, although the instruction is presented through
an explanation and thus is not explicit. The fine details of the retrieval
method are not included, as it is believed that they would only prolong the
explanation and confuse the user.

After the reuse step is performed, the system will once again indicate the win
percentage, and if there was no adaption, or at least none that increased the
winning percentage, this will be indicated as well. If the user agrees to, an
in depth explanation will be presented describing the process and changes of
each step of the iteration. The revision step produces nearly the same kinds
of explanations, as it uses the reuse step again to revise the army.

After the retention is performed, the system denotes that there were changes
in the system based on the rankings and that the rankings have all been
updated. If the user wishes, the rankings for both the armies and the squads
can be shown. As the user has manually input the point totals in the revise
step, as explained in Subsection 3.2.7, the user has an inherent grasp on the
situation and thus no further explanation is deemed necessary.

The utility maintenance explanations are combined justification and trans-
parency explanations and fulfill both roles at once, as there is little to explain
besides why an army or squad is deleted, for which the reason will always
be the rating of the said army or squad. A list of deleted armies and squads
will be displayed to the user, should the user agree to it, as an extension of
the explanation.

Rather than the previously conceptualized logs for the metagame mainte-
nance, the system uses few explanations besides the mandatory text input.
As the majority of maintenance will be performed by the developer, it is not

necessary for these explanations to be very verbose or instructive. Rather,
they are there to give the developer a simple indication of what should be
done at the simulation step. We feel that this is sufficient, as the explanations
need only be satisfactory for the developer.

Explanations are limited by the creativity of the developer, as well as the
scope of the thesis. The developer has to ensure that the generated strings
can satisfy the user, make them feel confident about the systems decisions, as
well as teach them. Explanations are also limited by the scope of the thesis
and we can not provide explanations on how to play the game, or what a
good move with a specific army is and it is expected that the system serve
as an assisting tool to create armies. Ultimately, the player may need to
make a final decision if an army suits them, even if the army is of the faction
that they wanted to play. By determining the usefulness of explanations and
fulfilling the second goal of the thesis, we should be able to learn how to
mitigate these limitations and if it is possible to do so.

3.5 Other Technologies Used

The CBR system is designed and implemented from the ground-up in Java.
It does not use or implement any existing CBR methods, algorithms or tech-
nologies, either partially or fully.

The storage of the case bases and the equipment database is performed in
MongoDB, a non-sql database solution. MongoDB, along with its drivers is
an open-source, free relational database that uses JSON to store documents.
While MongoDB supports their own BSON format for dynamic schemas, the
case bases are in written completely in JSON and can be stored in any JSON
database solution. MongoDB is run through a console locally and the system
connects to it when it is started. This is the default setting. It is also possible
to host the database on any kind of server, but connection information will
need to be entered in the system to connect to the correct server.

The use of JSON as a case base and database and the reasoning behind
it has already been discussed in Subsection 3.2.1. The use of the MongoDB
technology is to simplify testing for the developer, as well as provide a cleaner
interface that checks the validity of the syntax in the case bases before the
system is executed.

Battlescribe, a program that aids players in creating armies, is used to create
and ensure that experimentation data is correct. It enables the creation of
legal armies through an easy to use interface. It is also capable of exporting
these armies into an easy to read html file, which enables others to see the
armies clearly as well. The program is freely available (with advertisements),
and has a wide variety of knowledge bases, including Warhammer 40k. The
knowledge base is created by the user community and it offers no guarantee of
correctness. Each and every squad and army was therefore checked with the
rulebooks when using this program to ensure the correctness of the program
and the subsequent experiments. While armies can be created without the
aid of this program it significantly saved time and effort in experimentation.

Chapter 4

Experiments and Results

This chapter consists of two distinct sections. Section 4.1 will introduce the
experiments that will be performed in order to insure that the goals of the
thesis are fulfilled and to complete the scientific method. The results of those
tests will be presented in Section 4.2. The results will be presented as is, so
that others have an opportunity to attempt to replicate and compare the
results. The discussion, evaluation and analysis of the results, as well as the
thesis and the goals will be presented in Chapter 5.

4.1 Experiments

This section will introduce the three experiments that will be performed to
test the three goals presented in Section 1.1. The experiments here are related
directly to the goals. Additionally, tests related to functional requirements,
as presented in Chapter 3 of the Specialization Project (Zikic, 2015), are
considered to be performed internally and will not be documented, unless
they relate to the goals directly.

41

4.1.1 Experiment 1 - CBR System for Army Creation

The first experiment deals with testing if the CBR system is capable of cre-
ating an army that will have a higher than 50% chance at winning. To fully
perform this experiment we must have two or more players, excluding the
author so that the results are completely objective, play a game of Warham-
mer 40k. This game is to be played with the problem army on one side and
the solution army on the other side.

To get meaningful results, we should repeat this experiment multiple times.
A higher than 50% chance at winning statistically does not tell us much. As
the tests are statistically independent from each other an army that has, for
example, a 55% chance to win could still lose three matches before winning
four. However, playing each and every game is also quite time consuming,
both for the players and for the author, as the games tend to take at least
a couple of hours. On the other hand, we could play several different games
and aggregate all of the results and their percentages together. This would
allow us to test several different armies, which would be a more meaningful
test as well due to the variety of Warhammer 40k.

Unfortunately, while the local gaming club does host quite a few players that
have played Warhammer 40k, many of those players have decided to move
onto other gaming systems. In discussion with experts it has been determined
that Warhammer 40k is in a state of unbalance at the moment, which means
that many players can win simply due to rules and armies working in their
favour from the start. This has caused many players to migrate to other war
games.

This limitation, along with the requirements to correctly perform this experi-
ment leads us to a problem. We can not force players to play a system, and if
they do not enjoy playing it they may produce skewed results. Alternatively,
even if we find willing players, they may not wish to play more than a couple
of games. We do not have the resources, monetary or otherwise, to recruit
any players to test the game in a controlled environment.

The solution to this experiment becomes two-fold: We will attempt to find
as many players that are willing to play the game. Should this fail, we will
attempt to use the knowledge of the experienced Warhammer 40k players
to present their opinion on the accuracy of the system. Many experienced
players are able to judge whether or not one army has an advantage, and the
results, while somewhat subjective, would be the best results we can acquire

at this point of time. This search will not be limited to the local gaming
club, and will involve forums and other Internet related sources. Table 4.1
shows a brief summary of how the test will be executed.

Experiment Name Testing the CBR System for Army Creation
State of the system
before experiment:

The system must fully include the problem
army, as well as one or more solution armies
in the case base, which includes the relevant
equipment and all the squads.

Expected Results: The system will retrieve the best army, adapt
it and present it for the players. The system
will then await results and make adjustments
based on those results. It is expected that
the chance of winning for an army will be
correct, and it is expected that given several
solution armies it will be higher than 50%.

State of the system
after experiment:

The system will now include the new ratings
for the solution army and the solution army
itself, if it was adapted. The system will also
adjust the ratings for the problem army, and
for all the squads that participated in the
match.

Table 4.1: Experiment 1 - CBR System for Army Creation

4.1.2 Experiment 2 - Evaluation of the usefulness of
explanations

To evaluate the usefulness of explanations, we require two things: a set of
players, both novices and experts, who will evaluate the explanations, and a
set of metrics that those explanations will be evaluated by.

There are three metrics that we seek to evaluate: satisfaction, which in-
dicates how satisfied the user was with the explanation; confidence, which
indicates the users level of confidence that the system has chosen a correct or
meaningful answer; learning, which indicates how much the explanation has
helped the user learn about the system and the game. These metrics will be
evaluated on a 1 to 5 point scale, with 1 being a completely unsatisfactory
answer, and 5 being a fully satisfactory answer.

Each user will be presented with a set of explanations, and their skill level in
Warhammer 40k will be recorded. The set of explanations will be the same
for all users, and will encompass the explanations from the retrieval and the
reuse steps. These two steps are the most important steps to explain to the
user and the two remaining steps use explanations that are either largely
similar or very intuitive, and therefore do not need to be evaluated. A user
will be asked to rate both the justification and the transparency explanations
using the metrics. This process will be repeated with as many users that are
willing to participate as the author can find.

4.1.3 Experiment 3 - Application of maintenance poli-
cies

The application of maintenance policies includes the tests for the utility
maintenance and the metagame maintenance policy. The utility maintenance
will involve a test with dummy armies1 where we will adjust the value of k
so that we can measure its influence on performance and therefore on the
utility problem. As the armies are dummy armies, accuracy of the system
will not rise in this test, but it is expected that the accuracy of the system
will increase when using a real case base.

The metagame maintenance policy involves a simulation of the game, as
explained in Subsection 3.3.3. This experiment is quite similar to the first
experiment. However, it has two major benefits over the first experiment
that make the execution of it much easier. First, the experiments in the
metagame maintenance are a lot shorter, since the armies are a lot smaller.
Secondly, they can be performed by the author alone, since the armies are
only labeled as problem and solution armies, and the author can not be biased
towards one or another, as the victory of one over another does not influence
the system in a any negative way such that the system appears more or less
accurate than it actually is.

The simulation will have to be performed manually, and it will ignore the de-
tachment rules, as well as any deployment rules and any rules for an army as
a whole. All of the other rules are utilized, even those that are not quantified
in the system currently. While the main goal of the metagame maintenance

1Armies from the first Experiment will be duplicated by using different names and IDs.
The system does not run duplication checking when loading the case bases, only when
saving them.

is to see if the system can think by itself, by creating squads and updating
their ratings to find the best squad, a part of the test will also reflect the
accuracy of the system, since it uses the same underlying calculations as the
CBR part of the system does, only on the scale of squads, rather than armies.

Experiment Name Testing the Application of Metagame Main-
tenance and its usefulness

State of the system
before experiment:

The system will include all of the squads from
the Space Marine faction, as denoted in the
Space Marines Codex.

Expected Results: The system will generate squads that will be
evaluated based on their performance in the
simulation. It is expected that the squads
will be saved, alongside their new rating, or
that their ratings will be updated if they
already exist. Furthermore, it is expected
that this experiment will generate many new
squads, to allow better adaption of future
armies. It is also expected that the system
will change weights based on predictions, in
order to increase the accuracy of the system.

State of the system
after experiment:

The case base will contain new ratings for
squads, as well as new squads. The weights
will have potentially changed as well result-
ing in increased accuracy of the system.

Table 4.2: Experiment 3 - Application of maintenance policies

4.2 Results and Method

This section contains the results of the experiments, and is divided into three
subsections each relating to a specific experiment. Each section will also
contain the method to perform these experiments, so that the experiment
can be replicated as fully as possible.

4.2.1 Experiment 1 - Results and Method

The first experiment tests the underlying CBR method and the degree of
correctness and success. For this experiment we decided on ten separate
battles. This meant having ten different armies in the system. Ten armies
were created using the simplest and most common detachment presented in
the book, the Combined Arms detachment. These armies were added to the
case base, and can also be seen in Appendix E. To replicate this test on a new
system, these ten armies need to be added into the case base. Within the
CBR main method is a line that states which of these armies is considered
the problem army. The number indicates the ID in the army case base.

Army problemArmy = ArmyList.get(0); - Sets ID:0 as the problem army.

The system was executed ten times, each time increasing the ID by one
to encompass all the armies and the winning percentage of the reuse stage
was noted. Nothing else needs to be changed or added in the system to
replicate this test. It is important to note that different weights, as well as
other modifiers in the system, like rating of squads, will produce different
results. The weights in this experiment were set to 1.1, 0.9, 1.1, 0.9 for
movement, psychic, shooting and assault phases respectively. K was set to
10, to encompass all armies, and the terrain consisted of 15% buildings and
10% difficult terrain.

Finally, the ten battles were presented to three different players, two veteran
players and one skilled player, for evaluation. This was done by a survey,
which consisted of ten battles, each with the appropriate solution and prob-
lem army. For each battle the players would either agree or disagree with
the system in the calculation, as well as make additional comments. Players
could also be undecided.

The results of the survey are presented in Table 4.3. Solution army in the
table is abbreviated as SA, and Army is abbreviated as A. The win chance is
always presented from the side of the solution army. The Combined Agree-
ment (CA) is the degree to which all the players agree with the system.
Each undecided answer is worth 0.5, each agree answer is worth 1 and each
disagree is worth 0.

Battle Win
Chance

Skilled
Player

Veteran
Player

Veteran
Player

CA

SA1 vs. A1 60.45% Agree Undecided Agree 2.5/3
SA2 vs. A2 51.66% Undecided Undecided Undecided 1.5/3
SA3 vs. A3 55.90% Undecided Agree Undecided 2.0/3
SA3 vs. A4 54.86% Disagree Agree Disagree 1.0/3
SA3 vs. A5 56.23% Agree Undecided Undecided 2.0/3
SA3 vs. A6 60.53% Disagree Agree Undecided 1.5/3
SA3 vs. A7 53.11% Undecided Undecided Undecided 1.5/3
SA3 vs. A8 62.01% Disagree Disagree Undecided 0.5/3
A7 vs. A9 62.91% Agree Agree Agree 3.0/3
SA4 vs. A10 60.40% Undecided Undecided Disagree 1.0/3

Table 4.3: Experiment 1 - Results

Revision and Retention

We have applied revision and retention to three matches from Table 4.3. The
matches are SA1 vs. A1, SA2 vs. A2 and SA3 vs. A8. The first match was
counted as a win for the solution army, the second as a draw, and the third
as a loss. The matches were entered in the system in that order. The squads
all follow the resolution of the matches as well, so there are no draws for
the squads in a win or loss situation. For this part of the experiment all
maintenance functions have been turned off.

After inputting the data for the first match, no revision took place and all
the squads from both of the armies were saved into the squad case base, and
the SA1 was saved in the case base as the 11th army, with ID 10. The ratings
were set, as expected, to 1520 for SA1 and 1480 for A1.

After inputting the data for the second match, once again no revision took
place. Due to the previous match, the Kor’sarro Khan 2 Squad had its ratings
changed, which increased the winning chance for SA2 by 0.03%, to 51.69%.

The ratings were adjusted accordingly for the draw, with previously unrated
squads loosing or gaining small amounts of rating due to the ratings being
uneven from the previous match. The army ratings did not change, as they
were both even to start with.

After the third match, the army retrieved was the SA1 army, not SA3, due
to the higher rating. As we wanted to experience a loss, we tried to perform
a change to SA4 vs. A10, which also retrieved SA1. The last was the SA3 vs.
A4, which again retrieved SA1. As the winning chance was the lowest for this
instance, this instance was taken as a loss for SA1. No revision took place in
the revision step, and the army ratings were adjusted again. After running
the system one more time, SA3 was chosen instead of SA1 once again for the
SA3 vs. A4 match, however no further experimentation was executed.

4.2.2 Experiment 2 - Results and Method

The second experiment is the evaluation of the usefulness of explanations.
To perform this evaluation we picked the first army from the previous test
and presented the explanations to an expert and three novice users. The
explanations were written into the Java console from where they were copied
onto a more visible sheet. However, the integrity of the explanation was not
changed. Most of the explanations between different problems are similar,
varying only in variables and the path that the system takes to achieve an
answer. Therefore, any of the ten battles would suffice for our experiment.

Like in Experiment 1 a survey was created for the users to answer. The
users were first presented with a simple statement from the retrieval step
that states the winning chance of the solution army. They were tasked to
rate this statement in three categories previously mentioned: Satisfaction,
Confidence and Learning. This rating was scaled from 1 to 5, with 5 being
the most positive answer and consequently 1 being the most negative answer.

Then, the more In-depth explanation was presented and again the same
categories were evaluated. This was repeated for the reuse step as well.
As mentioned before, we have skipped the revision and the retention steps.
Another reason for skipping these two steps is the confusion that may arise
if a user does not know why or how an army won. This would entail an
explanation outside of the system and might not produce correct feedback.
Finally, users were asked to rate the situation where no explanation was
provided and only the adapted army was presented.

The results of the experiment can be seen in Table 4.4. The answers were
averaged over the four users, with the expert answer presented additionally
in brackets.

Explanation Satisfaction Confidence Learning
Retrieval - Simple Explanation 3.5 (3) 2.5 (2) 1.5 (2)
Retrieval - In-depth Explanation 4.5 (4) 3.25 (3) 4 (4)
Reuse - Simple Explanation 3.75 (3) 2.75 (3) 2 (3)
Reuse - In-depth Explanation 3.75 (4) 3 (2) 2.75 (3)
No Explanation 3 (3) 2.5 (2) 1 (1)

Table 4.4: Experiment 2 - Results

Experiment 2 - Second Iteration

While performing the experiment a specific comment was noted from almost
all the users. The in-depth explanation of the reuse step was not found very
instructive, and the users felt they learned little from it. The explanation
was restructured to resemble the in-depth explanation for retrieval and was
put to a new test in a new survey. The results of the test are summarized in
Table 4.5, alongside the previous results and the difference between the two.

Explanation Satisfaction Confidence Learning
New in-depth Explanation 4.25 (4) 3.75 (3) 4 (4)
Old in-depth Explanation 3.75 (4) 3 (2) 2.75 (3)
Change +0.5 +0.75 +1.25

Table 4.5: Experiment 2 - Second Iteration

4.2.3 Experiment 3 - Results and Method

Experiment 3 - Utility Maintenance

The first part of this experiment is the utility maintenance application. It is
executed on incrementally larger case bases, to check the limitations of the
k value, as well as the standard reuse time. To replicate the test, one would
need to fill in the case base with any valid army, and then duplicate that
army multiple times. The system should be then run with different values
of k once there are a sufficient number of armies in the case base. For this
experiment we have created 160 armies in the case base.

Depending on the specific machine, the time for execution will vary and
exactly the same results should not be expected. However, the ratio between
reuse and retrieval should remain constant, which is our main concern. The
results of the test can be seen in Table 4.6. Each test has been performed
three times, and an average of the performance was registered.

For the reuse step we have taken an average between two executions for each
enemy army in the system, totalling 20 executions. It is expected that the
reuse step will vary from army to army, which is the reason for measuring
it in this fashion. The mean execution time of the reuse step was 399.05
milliseconds, with the shortest execution time being 251 milliseconds, and
the longest being 480 milliseconds. The mean is very important to consider,
as it is a rough estimate of when the utility maintenance will trigger, with
the shortest execution time being the lowest threshold.

K-Value Time (In milliseconds) Mean (In milliseconds)
10 11, 9, 8 9.33
20 20, 20, 15 18.33
40 31, 42, 28 33.66
80 66, 55, 76 65.66
160 118, 157, 180 151.66

Table 4.6: Experiment 3 - Utility Maintenance

Experiment 3 - Metagame Maintenance

The second part of this experiment is the metagame maintenance application.
It is executed in three sets of ten matches, after which the weights were
updated if they needed to be. Due to the random generation of squads, it is
impossible to replicate the exact results by running the maintenance policy
by default. To replicate the results, one will have to manually enter each
squad, with the options, in the same order as they are performed in the test,
by following the IDs of the matches. The simulation for replication of results
needs not be performed, and the outcome can be entered immediately if it is
desired.

Each match of the metagame maintenance was randomly generated by the
policy, and then simulated by the Author. The matches were played on a 90
by 60 centimetre table area2. The table had four deployment zones, one on
each side, that were rolled randomly for each squad on a four sided dice. If
the dice rolled the same number for the second squad, the roll was repeated
until two different deployment zones were generated. The deployment was
performed in the centre of the table side, in a line for miniatures larger
than infantry, or a circle for infantry sized miniatures3. A 6 sided die was
rolled for each side, and the higher dice won the first round. In the case
of a tie the roll was done over. The playing field consisted of two obstacles
that were 20 centimeters (8 inches) long, and were tilted 60 and 30 degrees
respectively towards the long table edge. The first one contained a 4+ cover
save, whereas the second one was debris and represented difficult terrain. The
exact composition of armies, initiatives, placement, the new ranks acquired
after the match, as well as the sketch of the playing field can be found in
Appendix E.

It is important to note that during this test, any illegal squad was ignored
and the policy was tasked with randomly generating a new set of squads. We
were able to do this due to manual simulation. There were a total of 4 new
matches generated out of 30, giving the metagame policy a 13.3% fail rate.
This ties in with the limitation that was already discussed in Section 3.3.3.

2In the imperial system this is 36 by 24 inches, half the size of the regular 6 by 4 foot
playing field.

3This is the smallest miniature in Warhammer 40k, measuring 25mm, or roughly 1
inch.

Each match was played to the authors best abilities to understand all the
rules of each squad. The author attempted to utilize the every squad fully,
maximizing the gains wherever possible, with one limitation. A squad will
not attempt to fish4 for a dice roll more than twice. In other words, squads
that were extremely fast, like Land Speeders or Bikes, could in some cases
just run away to their maximum distance and shoot, and never be caught by
the slower units. They were allowed to do this for two rounds, before being
forced to stand and fight. This was done to speed up the tests, as in some
cases a unit could only be hurt with a very small chance, and this would
make the tests last for well over half an hour to an hour of just dice rolling
and probability checking. Furthermore, it is not a good way to simulate
an actual combat scenario, and in the real world it would most likely be
considered very unsportsmanlike.

After each set of ten matches was finished, the weights were adjusted. The
weights at the start of the test were 1.1 for shooting and movement, and 0.9
for psychic and assault. For each ten accurate predictions, the weight would
go up by 0.01, and for each ten inaccurate predictions down by 0.01. Each
prediction is made on the level of a single squad, which means that the more
squads were involved the more correct or incorrect predictions were acquired.
The summation at the end of each table makes it easy to see, at a glance, if
any changes occurred after the ten matches. For example, in Table 4.9 we
can see that the weight after these ten matches was changed by -0.01 for the
Shooting Phase and +0.01 for the Assault Phase.

All of the results can be seen in Tables 4.8-4.13. A legend of what each
column means can be seen in Table 4.7.

4A common term used for trying to get a specific dice roll that is usually statistically
difficult to get, such as getting three sixes in a row on a six sided die.

Acronym Meaning
ID Match ID. This matches up to the extended results in

Appendix E.
SR Squad Ratio. This is the strength of the two army

squads compared. It ranges from 0-1, and it is presented
from the Army 1 standpoint. The second armies squad
ratio is 1 - squad ratio in the table.

MP/MP2 Movement Phase for Armies 1 and 2. This is their re-
spective strength weighted in the movement phase.

PP/PP2 Psychic Phase for Armies 1 and 2. This is their respec-
tive strength weighted in the psychic phase.

SP/SP2 Shooting Phase for Armies 1 and 2. This is their respec-
tive strength weighted in the shooting phase.

AP/AP2 Assault Phase for Armies 1 and 2. This is their respec-
tive strength weighted in the assault phase.

pMP The number of accurate predictions in this match that
were made for the movement phase. If a unit does poorly
but the movement score is higher than half of the max-
imum weighted predicted movement phase it will get -1
and vice versa. The other predictions also follow the
same calculations

pPP The number of accurate predictions in this match that
were made for the psychic phase.

pSP The number of accurate predictions in this match that
were made for the shooting phase.

pAP The number of accurate predictions in this match that
were made for the assault phase.

pExpected The expected win chance / strength ratios between
the armies. This is modified not just by the ratios of
strengths, but also by the total point strengths of the
armies.

Outcome This is the outcome of this specific match for Army 1
and 2 respectively. A w denotes a win, a d denotes a
draw, and an l denotes a loss. The losing side all gets
losses. Any squad on the winning side that does not
survive until the end is marked as a draw.

Table 4.7: Experiment 3 - Legend

ID SR MP PP SP AP MP2 PP2 SP2 AP2
1 0.5 0.5 0.45 0 0.9 0.65 0.45 1.1 0
2 0.5 0.88 0.3 1.1 0.59 0.2 0.6 0 0.34
3 0.501 0.73 0.45 1.1 0.9 0.33 0.45 0 0
4 0.501 0.55 0.45 0.52 0 0.55 0.45 0.57 0.9
5 0.5 0 0.45 0 0.25 1.1 0.45 1.1 0.78
6 0.5 0.55 0.45 0.85 0.57 0.55 0.45 0.36 0.35
7 0.487 0.97 0.45 1.1 0.46 0.03 0.45 0 0.44
8 0.5 0.93 0.45 1.1 0.5 0.13 0.45 0 0.4
9 0.499 0.33 0.45 0 0.68 0.75 0.45 1.1 0.3
10 0.502 0.18 0.45 0 0.48 0.86 0.45 1.1 0.42

Table 4.8: Experiment 3 - Evaluated Ratios Test 1

ID pMP pPP pSP pAP pExpected Outcome
1 -4 0 -4 +4 0.494/0.504 w,w/l,l
2 +5 -5 +5 +5 0.773/0.229 w,w,w/l,l
3 +5 0 +5 +5 0.674/0.318 w,w/l,l,l
4 -3 0 -5 -5 0.405/0.594 d,d,w/l,l
5 +1 0 +1 +1 0.211/0.817 l/w, d
6 -1 0 -3 -3 0.621/0.406 l,l/w
7 -3 0 -3 -3 0.723/0.258 l,l/w
8 +3 0 +3 +3 0.694/0.298 d,w,w/l,l
9 -5 0 -5 +5 0.391/0.618 w,w/l,l,l
10 -6 0 -6 +4 0.317/0.675 w,d,w/l,l,l
Sum -8 -5 -12 16 N/A N/A

Table 4.9: Experiment 3 - Predicted Scores And Outcome Test 1

ID SR MP PP SP AP MP2 PP2 SP2 AP2
11 0.496 0.83 0.45 1.1 0 0.25 0.45 0 0.91
12 0.501 0.31 0.45 0.48 0 0.77 0.45 0.61 0.91
13 0.505 1.0 0.45 0.71 0.6 0.05 0.45 0.41 0.34
14 0.507 0 0.45 0.68 0.41 1.1 0.45 0.43 0.5
15 0.497 0.57 0.45 0.68 0.63 0.52 0.45 0.44 0.33
16 0.501 0 0.45 0.77 0 1.1 0.45 0.38 0.91
17 0.501 0.2 0.45 0 0 0.83 0.45 1.09 0.91
18 0.498 0.17 0.45 0.45 0.51 0.89 0.45 0.66 0.4
19 0.498 0.55 0.6 0.98 0 0.55 0.3 0.3 0.91
20 0.489 1.1 0.45 0.35 0.39 0 0.45 0.85 0.53

Table 4.10: Experiment 3 - Evaluated Ratios Test 2

ID pMP pPP pSP pAP pExpected Outcome
11 -3 0 -3 +3 0.611/0.388 l,l/w
12 +5 0 +5 +5 0.351/0.647 l,l,l/w,w
13 +2 0 +2 +2 0.651/0.354 d,w,d/l,l,l
14 -5 0 +3 -5 0.421/0.584 w,d,w/l,l
15 +4 0 +4 +4 0.578/0.436 w,d,w/l,l,l
16 -4 0 +4 -4 0.351/0.660 w,w/l,l
17 +3 0 +3 +3 0.230/0.758 l,l/d,w,w
18 -5 0 -5 +5 0.426/0.571 w,w,w/l,l
19 +1 +3 +3 -3 0.538/0.499 w,w/l
20 -5 0 +3 +3 0.564/0.461 l,l/w.d.w
Sum -7 3 19 16 N/A N/A

Table 4.11: Experiment 3 - Predicted Scores And Outcome Test 2

ID SR MP PP SP AP MP2 PP2 SP2 AP2
21 0.487 1.1 0.45 0.43 0.70 0 0.45 0.7 0.3
22 0.489 0.55 0.45 0 0.41 0.55 0.45 1.1 0.52
23 0.488 0.83 0.45 1.1 0 0.23 0.45 0 0.92
24 0.489 0.16 0.45 0 0.92 0.92 0.45 1.1 0
25 0.507 0.55 0.45 1.1 0.92 0.55 0.45 0 0
26 0.49 0.28 0.45 1.1 0 0.83 0.45 0 0.92
27 0.504 0.24 0.6 0.52 0.84 0.88 0.3 0.59 0.25
28 0.498 0.2 0.45 0.37 0.92 0.91 0.45 0.81 0
29 0.482 1.1 0.6 0.35 0 0 0.3 0.86 0.92
30 0.493 0.11 0.45 1.1 0.31 0 0.45 0 0.68

Table 4.12: Experiment 3 - Evaluated Ratios Test 3

ID pMP pPP pSP pAP pExpected Outcome
21 +1 0 -5 +1 0.636/0.386 d,w,d/l,l
22 +1 0 +3 +3 0.366/0.637 l/w,w
23 -5 0 -5 +3 0.542/0.453 l,l/w,d,w
24 -4 0 -4 +4 0.380/0.615 w/l,l,l
25 0 0 +2 +2 0.678/0.321 w/l
26 -4 0 +2 -4 0.450/0.552 w,d/l,l
27 +5 -5 +5 -5 0.539/0.502 l,l/w,w,w
28 -4 0 -4 +4 0.460/0.557 w/l,l,l
29 +3 +3 -3 -3 0.499/0.522 w,w/l
30 +2 0 -4 +4 0.514/0.304 l,l,l/w
Sum -5 -2 -13 9 N/A N/A

Table 4.13: Experiment 3 - Predicted Scores And Outcome Test 3

After the test was completed 34 new, unique squads were generated in the
system. This has increased the number of squads in the system from 54
to 88, effectively increasing the case base by 63%. These squads can be
seen in Appendix E, alongside the other squads in the system and are easily
recognizable by the options or additional numbering applied to them.

Chapter 5

Evaluation and Discussion

This chapter consists of three sections. Section 5.1 will present the evaluation
and analysis of results. Section 5.2 will discuss these results further, focusing
on the limitations and the implementation and the thesis. Finally, the main
contributions to the field will be presented in Section 5.3.

5.1 Evaluation

In this section we analyze and evaluate the results based on the three exper-
iments performed. The evaluation is divided into three parts, much like the
experimentation is, and is presented in the same order.

5.1.1 Experiment 1 - CBR System

From Table 4.3 we can see that the experts have overall agreed with the
system in 40% of the cases, disagreed in 30% of the cases and were undecided
in 30% of the cases.

If we take a look at the players on an individual level, we can see that there
is, on average, no discrepancy between the Skilled Player evaluation and the
Veteran Players evaluation and this can be seen in Table 5.1. The veteran
players are in this case more experienced than the skilled player.

57

Player Agreements Undecidedness Disagreements
Skilled Player 3 4 3
Veteran Player 4 5 1
Veteran Player 2 6 2

Table 5.1: Comparison of different player evaluations

From Table 5.1 we can conclude that the domain is truly difficult to evaluate
and in many cases we can not make a certain evaluation, especially not
without playing the matches many times. What we can state from this
experiment is that in 70% of the cases the system was capable of producing
an army that would not definitively lose.

As there are cases where the winning chance is quite high for both agree-
ments (62.91%) and disagreements (62.01%), as well as quite low, 55.90% for
agreements and 54.86% for disagreements, we can also state that the winning
percentage seems to vary substantially and can not be considered a good in-
dication of winning or loosing. A more thorough discussion of this problem
will be presented in Section 5.2.

One result that is not clearly presented is the influence of the k number. We
have set k to 10 to encompass the entire case base and in the majority of the
cases in the experiment it did not make a difference. However, one case was
based of off Army 7 and Army 7 in that case was also the best choice. If we
had set k to 6 or lower, we would not have been able to reach Army 7, as all
of the armies are equally rated, so the system will choose the first six armies
in order from the case base.

When performing the experiment with k=6 instead, the system chooses Army
4 in the retrieval stage with a 61.22% chance of winning. The army is not
adapted, as no better solution can be found. Comparing it to the winning
chance of Army 7, which is 62.91%, we can see that there is a fairly substantial
change in accuracy. While the accuracy may not be a great indicator of
winning, it is clear that if we improve the accuracy we need to be aware
of what the value of k in the system is. Setting it too low will impede
accuracy, but setting it too high will impede performance. In this particular
experiment, setting k to 10 was considered acceptable, as we wanted to test
the full potential of the CBR system, and performance was not considered
an issue. This may only play a part in creating a large case base, but it is
something we need to be aware of.

The revision and retention parts of the experiment have for the most part
performed as expected, but another issue has been raised, namely: should
armies inherit their previous ratings, or should they have default ratings when
being adapted. In other words, does the accuracy of the system suffer more
if we inherit the rating of the base army in adaption, or if the default rating
should be enforced whenever we change anything within an army. This will
require an extended period of testing with a control group and a test group,
and would be part of the future work done on the topic.

5.1.2 Experiment 2 - Usefulness of Explanations

Table 4.4 shows the results for the explanations experiment. An immediate
result to notice is the learning aspect of an explanation. For all the expla-
nations, the more a user feels they have learned, the better their satisfaction
and confidence levels. On average, an increase in the learning score by 2 will
increase satisfaction and confidence by 1. This is noticeable in the second
part of the experiment as well, and in the comparison between the first in-
depth reuse and the second one. The former had a learning score increase
of only 0.75 from the simple explanation, and no increase in satisfaction and
a minor increase in confidence. The latter had an increase of 2 points, with
the increase in satisfaction by 0.5 and in confidence by 1.

This tells us that learning about the system and making an explanation
instructive is very important for new users. Users that are not familiar
with the domain will be more inclined to believe the domain if they know
something about it, thus their confidence and satisfaction will increase. For
the skilled player, the learning was almost always higher on average than
for the new users. A skilled player is most likely able to recognize patterns
in the context and draw knowledge past what is explicitly stated in the
explanations, which is expected.

Another analysis to make is that in all the cases of in-depth explanations, the
users were more satisfied and confident than in simple justification. This can
be attributed to two things. First, the aforementioned learning increases the
confidence and satisfaction in the system. Second, the nature of the users.
All of the participants of the experiment have hobbies in playing games, be
it board games, role-playing games or computer games. They are used to
reading rule books in-depth to grasp game mechanics of the game they are
playing.

This is not necessarily a bad thing. After all, most of the people attracted
to Warhammer 40k most likely have an interest in it, and thus have more
motivation to read and understand the in-depth explanation. However, it
is possible that the in-depth explanation would be overwhelming for those
without the same kind of motivation. As a certainty, however, we can say
that those that are motivated to play the game, be it new or skilled users,
will enjoy the in-depth explanations more than the simpler explanations.

Finally, in the comparison of no explanation to explanations, it is clear that
most users prefer to have an explanation. However, it seems like most users
would still be somewhat satisfied and confident without having an explana-
tion. This will be further discussed in Section 5.2.

5.1.3 Experiment 3 - Application of Maintenance poli-
cies

The utility maintenance policy indicates that the mean performance is slightly
below the k-value in milliseconds. This means that the performance decrease
is roughly linearly proportional to the k-value. This, coupled with the reuse
step needing between 251 to 480 milliseconds, with a mean of 399.05 millisec-
onds, indicates that the maximum k value for the system lies approximately
at k = 359 (due to the 0.9 ratio trigger between retrieve and reuse), with a
minimum of k = 225. This means that up to 225 armies at the minimum
can be selected in the MAC step, which is most likely a sufficient amount to
find a good solution army.

The metagame policy had managed to create 34 new squads after 30 itera-
tions, increasing the squad case base by 63%, from 54 to 88 squads. This is
an excellent result for the system, as it shows that the policy is able to create
new cases without user interference, assuming a simulation was indeed cre-
ated and not manually performed. The generation of squads was 15 through
the first ten iterations, 10 through the second ten iterations, and 9 through
the last ten iterations. Therefore, we can state that the system generates less
squads as more iterations are performed, which is expected, as the generation
is random. As the number of squads in the system increases, the chances of
the system picking a squad it had made increases, and thus the chances of
creating a new squad decreases. Naturally, it is possible to further adapt a
new squad or choose a squad that can fit another squad combinations to force
a permutation, and thus an adaption, on the squads. There are many adap-

tions and permutations we can perform, however performing them randomly
with the point limit limits the selection of new permutations. Assuming this
progression continues, with one less squad created per ten iterations, the
system could create at least 70 new squads from the 54 base squads, before
creating one new squad every once in a while. This is an increase of 129.62%
on the main case base. Furthermore, if the systems are able to exchange
case bases it is statistically certain that another system will follow a different
random pattern and be able to create different squads. Therefore, we can
state that the metagame policy is successful, and if a simulation is applied
to it that can simulate the battles without manual interference, the system
will be able to think and create cases on its own.

Another important part of the metagame policy is the strategy, and with it
the accuracy of the system. Tables 4.8-4.13 show the results of the metagame
policy application. From the tables we can see that the system had 12 good
predictions, and 18 bad predictions. In other words, the system predicted
the outcome correctly 12/30 times, or 40% of the time. However, there are
two other important factors that can impact this: initiative and placement.
Initiative means an army gets to play first, which can lead to a significant
advantage. Placement can also hinder and help armies. There are four
placement pairings (1,2),(1,4),(3,4),(2,4) that favour assault heavier armies,
as the initial deployment is within 21 inches or less.

Following the rules of deployment armies could sometimes deploy as close as
12 inches apart, which is easily reachable for any unit within 1 round. The
other two placements (2,4) and (1,3) start at about 22 and 34 inches apart
respectively after deployment, making it more suited for shooting armies.

Table 5.2 shows the advantages in initiative and placement for correct pre-
dictions and for incorrect predictions, as well as the number of matches both
advantages were present.

Prediction Initiative Placement Both
Correct Prediction 6 / 50% 11 / 91.6% 6 / 50%
Incorrect Prediction 9 / 50% 11 / 61.1% 5 / 27.7%

Table 5.2: Comparison of predictions against placement and initiative ad-
vantages

From Table 5.2, we can see that in the percentage values for initiative are
exactly the same, however the values for placement and both values favour the
correct predictions somewhat. This can be contributed to a small sample size,
but from the results at hand we can conclude that the advantages favoured
the correct predictions.

Another factor we can consider is even games, or games that were within
0.1 similarity. In other words, how many incorrect and correct predictions
would we have considered to be close matches. Out of the 30 matches, 5
matches were within 10% difference in predicted win chance. Of those, 4
were incorrect predictions and 1 was a correct prediction. In these 5 matches
the advantages were split evenly, with both the correct and one of the incor-
rect predictions having both advantages, and the other incorrect predictions
having 1 advantage. Therefore, the only determining possible factor statisti-
cally could have been luck, again due to the smaller sample size. Assuming
that (even though impossible), 2.5 matches were correctly predicted and 2.5
matches incorrectly predicted, we would arrive at 13.5 correct and 16.5 incor-
rect predictions, which means that in the best case scenario, assuming that
the small sample size is the reason for the percentage values of advantages
being in favour of the correct predictions, the system was only accurate 45%
of the time. It should be noted, however, that no draw conclusion was possi-
ble from this test, unlike in regular 40k games. This means that we may have
to rethink our approach to assigning ratings in the metagame maintenance
policy.

The final part of accuracy is the adjustment of weights and with it the strat-
egy. The first ten iterations had 4 correct predictions. The second ten itera-
tions, after adjusting the weights, had 5 correct predictions. After adjusting
the weights once more, the number of correct predictions fell to 3. We can
not ascertain the scope that the change in weights has had on the system,
and many more iterations will need to be performed in the future to acquire
a conclusive answer.

5.2 Discussion

This section will discuss the limitations of the system, both those that were
made and how they impacted the results, as well as those that were found
after performing experiments. The section will also discuss the shortcomings
of the system as well.

5.2.1 The Case-Base Reasoning System

The quantification and generalization of the domain has had a clear impact
on the accuracy of the system. The winning percentage seems to make little
difference in our experiments, indicating that the accuracy of our system
definitively needs to be increased. We should first produce a much larger set
of results to see the extent of the deviation in accuracy, before attempting
to integrate more rules.

A clear result that can be seen from the data is the armour values of units,
the armour penetration values of equipment, and their combined influence
on the match. As it is now, the system generalizes armour from infantry and
armour from vehicles into a general statistic. This is done, because we can not
predict whether or not an army will shoot at a vehicle or not. This does lead
us into a problem where certain sets of units are practically invincible, since
their armour is very tough and nothing in the enemy army can penetrate
it. At the same time, the army as a whole is still weaker, leading to a
flawed calculation. This is one of the limitations that we have discussed in
Section 3.2.4, where we had to quantify a rule that would take away from
the game if it was not quantified. Clearly, it has had a negative impact on
the accuracy of the system and needs to be rethought and re-implemented,
so that it has a more positive impact on the accuracy.

We had expected that the generalization and quantification of the domain
would be a limitation to accuracy. However, one more limitation was found
while performing the experiment, which is the matchup against other fac-
tions. Some of the armies that the system created would be considered bad
when matched up against some other factions. The players commented that
many of the factions have a possibility of shutting down multiple special abil-
ities from another faction. This means that we must also impose penalties
and bonuses for different factions as well.

This limitation, alongside the limitations previously discussed in Sections
3.2.1-3.3 lead us to a conclusion that creating a system that can accommodate
all the variables of the domain is a very difficult task.

During the evaluation the users also reported that some of the armies would
do much poorer in some missions in comparison to others. This was ex-
pected, as the system was designed to have a general approach to missions.
However, the degree of feedback was such that this approach may have to be
re-evaluated. The tactics and the army composition seem to vary far more
than it was originally anticipated and in some cases the tactics are completely
reversed, with what was once bad a bad strategy becoming a good strategy.
Therefore, we need to be more aware of what kind of mission we are going
to play and impose maluses on armies that do not meet those requirements
and bonuses on those that do.

Alliances have not been implemented in the system despite the experts agree-
ing that they are consistently used. As explained in the specialization project,
alliances have four different levels: blood brothers, allies of convenience, des-
perate allies and come the apocalypse. Blood brothers need not be imple-
mented separately, as they do not impose any new rules on the game. All
of the other levels impose new rules. These rules are always present in the
game and alongside many of the rules can not be easily quantified. They
always pose some kind of penalties, but intelligent deployment can rid the
army of many of these penalties, as they are mostly based on the distance
between the units. However, as we can not anticipate the mission, terrain or
in general the setting for the game, we can not quantify these rules to increase
the accuracy of the system and to represent alliances besides battle brothers
correctly. Moreover, alliances may be seen as somewhat advanced and new
players may not have the miniatures or the knowledge of two factions enough
to create an alliance that would be beneficial. Finally, we would also need
to represent multiple functions for an alliance to actually be active and we
currently only represent one faction in the system. Therefore, we have chosen
not to implement any alliance rules in the system. If we seek to expand the
system to multiple factions, these rules will need to be implemented.

Instead of approaching the domain globally, it would perhaps be better to
continue the focus on one faction and implement general domain knowledge
tactics and strategies, with appropriate bonuses and penalties for the one
faction. This would be achieved by introducing parameters that are specific
for the game, such as mission types, night-fighting, special objectives and
more before and doing the introduction of the enemy army. This will also

require us to understand how the units of the faction perform under these
condition, as well as which tactics to employ, and thus how the system weighs
the different factors. Limiting the choice to one faction will make this en-
deavour more probable, as capturing the data for all the factions will be a
very lengthy, if not impossible, process, due to the fairly frequent domain
changes. However, this process can be performed completely in parallel and
as such it is possible to do should enough manpower be available.

Finally, the last issue discovered targets the entire domain and influences both
the CBR part of the system as well as the explanation part of the system.
The experimentation was performed on only a handful of people, but this was
not due to the lack of trying. Help was requested from both the Warhammer
40k Reddit pages, which is frequented by hundreds of people per day and has
over 23 thousand registered members, and the main page of the DakkaDakka
forums, which is frequented by thousands of users per day and has over 100
thousand registered users. It was found that the majority of the users are
satisfied with painting and collecting the models and playing within their own
gaming club when they wish to, and few have responded to the request for
help. None of those have answered any questions about the system, though
in most cases they have provided other valuable information. It had become
clear that to test this domain fully, monetary or other incentives would be
necessary. Due to this limitation the results became quite limited. A part of
this discussion is also reflected in Appendix F.

5.2.2 Explanations

While performing the experiment to evaluate the usefulness of explanations,
two important points were discovered. Every user that had participated in
the experiment had been, on average, satisfied with every explanation, even
the lack of explanations. In contrast, the learning and confidence aspects
were more varied. This may have been influenced by the system: the users
were told the purpose of the system, and since the system fulfilled that
purpose (creating an army in Warhammer 40k) the users were satisfied with
the purpose, rather than the explanation.

It is clear that the level of satisfaction rose with increased learning and subse-
quently confidence, indicating that satisfaction has a base level, where a user
is simply satisfied with the system. This in turn indicates that satisfaction
may be a difficult metric to measure, as opposed to confidence and learning.

Secondly, the context of the explanations made the participants score the
explanation higher overall. Providing more context in an explanation, as
evident from the two different iterations of the second experiment (Sec-
tion 4.2.2), increases the confidence, and more importantly, learning aspect
for the users. While it can be overwhelming to put too much context, it is
believed that in this specific domain context will only improve the explana-
tion as the majority of those interested in the domain are motivated to read
the lengthier explanations.

5.2.3 Maintenance

The utility maintenance result is excellent, as it shows that, at the very least,
around 225 armies can be considered for in-depth retrieval. This has excellent
implications for the accuracy of the system, as the number of armies largely
increase the chance of selecting a successful solution army. However, selecting
that many armies can be rather expensive, as the FAC step is about 10-15
times more expensive than the MAC step. This means that selecting 225
armies would take about 2.2 - 3.3 seconds at this stage, but much more if we
expand and quantify more rules. Therefore, we should be wary about setting
the k value too high in the future, as it may severely impede performance.
In the state that the CBR system is in now, however, the performance is
acceptable even with the k value set to 225.

For very large case bases the implementation allows both the MAC and the
FAC steps of retrieval to be parallelized. Both of the steps require syn-
chronization, however. In the case of the MAC step, the armies need to be
synchronized correctly, so that the accuracy is completely preserved. For
the FAC step, the similarity variable needs to be correctly synchronized be-
tween the threads or cores, depending on the choice of parallel programming.
Otherwise, the armies are independent of each other and there is little other
overhead, save for the need to copy the enemy army over in the FAC step
should the parallel programming not utilize shared memory. This process
should only be applied to case bases that have a large amount of cases and
we need the system to be as accurate as possible. In this fashion, we could
potentially increase the k threshold to very large values and allow our system
to be very accurate in respects to its own case base.

While it is true that we may reach the utility problem, we will only reach it
if we set the k-value to a high number. In fact, we can control the utility

problem, or even allow a decrease in performance for an increase in accuracy.
As the filtering process is very cheap, it would take a significant amount of
armies (in the thousands, or perhaps tens of thousands of cases) to decrease
the performance. Thus, utility maintenance is of no true need. In the future,
an option to manually or automatically delete cases could be present, to allow
the user more control over the case base, but a triggered maintenance policy
is not necessary. Furthermore, allowing the user to choose the k value may
be a good solution to the performance versus accuracy problem and may
increase the overall satisfaction with the system.

Finally, we must be cautious about the metagame maintenance, and the
adjustment of strategy. The maintenance experiment was executed in three
instance of ten matches each, which adjusted the weights from {1.1, 0.9, 1.1,
0.9} to {1.1, 0.9, 1.09, 0.92} for movement, psychic, shooting and assault
respectively. If the experiment was instead executed in one instance of thirty
matches, the weights would instead be adjusted to {1.08, 0.9, 1.1, 0.93}. As
it is expected that the metagame maintenance policy will run hundreds of
times while the user is away, this strategy adjustment must be taken into
account and carefully balanced, so that the system ends up with a strategy
adjustment that helps accuracy instead of hindering it.

5.3 Contributions

The system as a whole is the main contribution of the thesis. Together
with the Specialization Project, the thesis completes the scientific method
and creates a documented and reproducible work, which is often overlooked
(Cohen and Howe, 1988). The architecture of the system should be applicable
to any similar systems, and we have shown that it is possible to utilize the
architecture to create the system. Any domain, where the main task is to
divide a set number of resources to solve a presented problem can utilize
parts or the full design and implementation that is presented in this thesis.

We have shown that JSON is capable of being used as a notation for cases.
This is a significant step up from SQL, XML and CSV databases, as it allows
us to model objects that have arrays of objects within them. In a simple
example, a car can be black, red and white, and a number of colours greater
than three could immediately in the CBR system indicate that a car is a
sports car, instead of needing to have another variable that indicates such.
While we have used a external solution (in the form of the Mongo Database)

to create an effective testing environment, in essence JSON requires nothing
more than text files, eliminating the need for external resources.

We have shown that a maintenance policy can be used to evolve the system,
by using a simulation. Any domain in which the cases can both be predicted
and simulated could use the maintenance policies to fill the case base with
more data. Thus it can not only solve problems more accurately, but also
capture nuances that could be difficult for humans to see when dealing with
the said domain.

The metagame maintenance policy is also capable of adjusting the strategy
and accuracy of the domain, matching it to the users environment and results.
Moreover, it is a proactive method of maintaining the CBR system and can
produce results without the user specifically asking for them.

Finally, we have shown that in this domain instructive explanations have a
larger merit than non-instructive explanations, and that a users satisfaction
of an explanation may not be the best metric to measure the usefulness of
it. This is in agreement with the explanation goals presented by Sormo et
al. (2005), and may be an indication to approach complex domains from a
contextual and learning aspect first, and satisfaction and confidence second.

Chapter 6

Conclusion and Future Work

This chapter concludes the thesis, both in respects to the goals of the thesis
and as a whole, as well as outlines some of the possibilities to expand the
thesis in the future. Section 6.1 discusses the goals of the thesis again, as pre-
sented in Section 1.1, and their completion or lack of. Section 6.2 concludes
the thesis while Section 6.3 outlines the future work that can be performed
to expand the thesis further.

6.1 Goals

Section 1.1 stated and described the goals of the thesis. Here we will look
at and discuss if we have met the goals, and what were the significant short-
comings in relation to each goal.

Goal 1 Develop and test the CBR system for building an army in Warham-
mer 40k

We have developed a CBR system that is capable of picking an army that
will in 70% of the cases not lose. While this does not correlate with the goal
that we have set out with, it does show the somewhat unpredictable nature
of the game. The system is also somewhat inaccurate, but it is capable of
utilizing many of the basic rules of the game, and some advanced rules. It
is clear that many of the rules will need to be quantified in order to improve
the accuracy of the system.

69

Goal 2 Evaluate the usefulness of explanations in the system

We have managed to create explanations within the system and to evaluate
their usefulness. Explanations were found to be very useful overall, and
contrary to normal theory, transparency explanations have been found to be
the most satisfactory. However, these explanations also hold a large amount
of context and instructiveness and teach the user about the system. Learning
about the system through explanations has raised both the confidence and
satisfaction of the users using the system. Both novice users and expert users
benefited from the explanations generated by the system in comparison to
having no explanations generated by the system.

Goal 3 Test the application of maintenance policies to the evolution and
maintenance of the system within the Warhammer 40k domain

We have created two out of the three maintenance policies, as there was
no need to implement the update maintenance. The utility maintenance
performed its function correctly, however, as it is fully tied with the k-value
of the new retrieval step, it is not a necessary maintenance policy for the
system. Instead, the user should be able to dictate how many armies they
would like retrieved and through that indicate the levels of accuracy and
performance they are willing to accept.

The metagame maintenance successfully expanded the squad case base by
63%, from 54 to 88 squads. This was done with manual simulation substitut-
ing automatic simulation, as automatic simulation was found to be impossible
to implement accurately within the time frame of the thesis. The accuracy
of the metagame maintenance was somewhat lacking, much like it was of the
CBR part of the system, and improving the CBR part of the system will
also improve the metagame policy as well. If automatic simulation is applied
in the future, the system will be able to expand the case base on its own.
Furthermore, we have shown that the maintenance is capable of adjusting
the weights, and therefore the strategy, of the system.

6.2 Conclusion

This thesis has set out to create an explanation aware CBR system for army
creation in Warhammer 40k, as well as attempt to utilize maintenance poli-
cies to proactively improve the system. It has succeeded in two out of three
goals it has set out to do, and the problems with the third goal were iden-
tified and documented. It has done this by following the scientific method,
allowing for replication of results as well as the reuse of ideas. While the final
results of the thesis are not ideal, this thesis is a first pass at this domain in
this fashion.

The thesis served to identify problems and present solutions, not only for this
domain, but also for similar instances of the problem. While the case base,
explanation system and the maintenance policies are not applicable directly
to another domain, the methods that they use can be re-calibrated to another
domain. We can not say with certainty that the system will work in other
domains, as replication will be necessary to prove it, but we can say that
the system can be re-purposed to work with other domains. Furthermore,
CBR and explanation aware computing have been used in many applications
already, as we have already discussed and we do not expect the same amount
of bias when it comes to re-purposing those parts of the system to the class
of problems. As for the metagame maintenance policy, we have insured that
the selection of results was absolutely random, and that there could be no
bias due to performing the experiment. Thus, it should also be possible to
re-purpose the metagame maintenance to other systems, provided that the
system can be simulated, as per the limitations.

6.3 Future Work

There are several next steps that the work presented here can head to. If
the goal is to increase the accuracy of the system, work must be performed
involving the Warhammer 40k game. Specifically, data needs to be collected
about the various complex rules of the game, quantified and parametrized to
provide a more robust view of the domain. Care should be taken to quantify
variables above a threshold of certainty, as that could have an averse effect
on the accuracy.

If the goal is to try to capture more of the domain, the general knowledge
should be expanded with more factions, and the faction balance should be
quantified. Care should be taken to not deteriorate the accuracy, as including
new factions will also entail includes new rules.

If the goal is to complete the automation of the maintenance policies, a
simulation will need to be created. This work is quite separate from the
main CBR system and due to the modular nature of the architecture, it will
be easy to integrate. The simulation must be accurate and have an AI of its
own to control it, so that it may accurately replicate the game, and therefore
not lower the accuracy of the system.

Replication of the system on another domain is external to the ideas and
goals represented in this thesis, but is vital to the expansion of the scien-
tific contribution of the system. Another domain could be another tabletop
game, such as Warhammer 30k or Warmachine. These domains would be
preferable as they are fairly similar and if the system can not be replicated
in these domains, then it most certainly can not be replicated in more distant
domains.

Finally, even though performance is still not considered a main issue, the
system will need to be constantly optimized if we are to move to any of these
goals. For very large case bases, one of the possible ways to achieve this
would be to utilize parallel programming in retrieval.

Bibliography

[1] Schank, R.C. 1982 Dynamic Memory: A Theory of Reminding and
Learning in Computers and People, New York, NY: Cambridge Uni-
versity Press.

[2] Ramon Lopez de Mantaras et al, May/June 2006 Retrieval, reuse, revi-
sion, and retention in case-based reasoning, IEEE Intelligent Systems,
pp. 39-49.

[3] Thomas R. Roth-Berghofer, 2004 Explanations and Case-Based Rea-
soning: Foundational Issues, P. Funk and P.A. Gonzales Calero (Eds.):
ECCBR 2004, LNAI 3155, pp. 389-403. Copyrighted by Springer-Verlag
Berlin Heidelberg 2004

[4] Richter and Weber, 2013 Case-Based Reasoning, eBook, Springer Hei-
delberg New York Dordrecht London Copyrighted by Springer-Verlag
Berlin Heidelberg 2013

[5] Cohen and Howe, 1988 How Evaluation Guides AI Research. AI Maga-
zine Volume 9 Number 4 (1988), Copyrighted by AAAI.

[6] Schank, R.C 1986 Explanation Patterns: Understanding Mechanically
and Creatively, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

[7] Johanna D. Moore and William R. Swartout 1988 Explanation in expert
systems: A survey, Research Report RR-88-228, University of Southern
California, Marina Del Rey, CA.

[8] McSherry, D. 2003 Similarity and Compromise. In proceedings of
the Fifth International Conference on Case-Based Reasoning, Berlin:
Springer, pp. 291-305.

73

[9] Wizards of the Coast 2014, Warhammer 40k, 7th Edition, Games Work-
shop Ltd. Willow Road, Lenton, Nottingham, NG7 2WS, Copyrighted
by Wizards of the coast and associates.

[10] Aamodt A. and Plaza E. 1994 Case-based reasoning, foundational issues,
methodological variations, and system approaches, AI Communications
7(1), 39-59

[11] Aamodt A. 2004 Knowledge-intensive case-based reasoning in
Creek. In Proceedings of the Seventh European Conference on Case-
Based Reasoning, Berlin: Springer, pp. 1-15

[12] Peter Spieker. 1991 Naturlichsprachliche Erklarungen in technischen Ex-
pertensystemen, Dissertation, University of Kaiserslautern.

[13] Anders Kofod-Petersen, October 8 2004, How to do a Structured Liter-
ature Review in computer science.

[14] Tintarev N. and Masthoff J. 2012, Evaluating the effectiveness of
explanations for recommender systems, copyrighted by Springer Sci-
ence+Business Media B.V.

[15] Vig J. and Sen S. and Riedl J. 2009, Tagsplanations: Explaining Rec-
ommendations Using Tags, IUI’09, Sanibel Island, Florida, USA.

[16] Cleger S. and Fernandez-Luna J.M and Huete J. F. 2014, Learning from
explanations in recommender systems, Elsevier Inc. All rights reserved.

[17] Smyth B. and Keane M. T. 1995, Remembering to forget: A
comptence-preserving case deletion policy for case-based rea-
soning systems. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence San Mateo, CA: Morgan Kauf-
mann, pp. 377-383.

[18] Smyth B. and McClave P. 2001 Similarity vs. diversity. In Pro-
ceedings of the Fourth International Computational Intelligence 17(2),
196-213.

[19] Glinz M. 2007 On Non-Functional Requirements, 15th IEEE Interna-
tional Requirements Engineering Conference, New Delhi, India.

[20] Tidemann A. and Bjornson O. and Aamodt A. 2011 Case-Based Reason-
ing in a System Architecture for Intelligent Fish Farming, a joint work of
SINTEF Fisheries and Aquaculture AS Trondheim, Norway and the De-
partment of Computer and Information Science, Norwegian University
of Science and Technology, Trondheim, Norway

[21] Sormo, F. and Cassens, J. and Aamodt, A. 2005 Explanation in Case-
Based Reasoning–Perspectives and Goals, Artificial Intelligence Review
(2005) 24: 109–143.

[22] Bass, L. and Clements. P, and Kazman, R. 2013 Software Architecture
in Practice: Third Edition, Copyrighted by Pearson Education, Inc.

[23] Zhang, Z. and Yang, Q, 1998 Towards lifetime maintenance of case base
indexes for continual case based reasoning, Volume 1480 of the series
Lecture Notes in Computer Science pp 489-500.

[24] Leake, D. B. and Wilson, D. C, 1998 Categorizing case-base mainte-
nance: Dimensions and Directions, Volume 1488 of the series Lecture
Notes in Computer Science pp 196-207.

[25] Roth-Berghofer, T. and Iglezakis, I. 2001 Six Steps in Case-Based Rea-
soning: Towards a maintenance methodology for case-based reasoning
systems, Includes the Proceedings of the 9th German Workshop on Case-
Based Reasoning.

[26] Roth-Berghofer, T. and Cassens, J. 2005 Mapping Goals and Kinds
of Explanations to the Knowledge Containers of Case-Based Reasoning
Systems, Volume 3620 of the series Lecture Notes in Computer Science
pp 451-464.

[27] Cunningham, P. and Doyle, D. and Loughrey, J. 2003 An Evaluation of
the Usefulness of Case-Based Explanation, K.D. Ashley and D.G. Bridge
(Eds.): ICCBR 2003, LNAI 2689, pp. 122–130, 2003. c© Springer-Verlag
Berlin Heidelberg.

[28] Diaz-Agudo, B. and Gonzales-Calero, P.A. 2000 An Architecture for
Knowledge Intensive CBR Systems, E. Blanzieri and L. Portinale (Eds.):
EWCBR 2000, LNAI 1898, pp. 37–48, 2000. c© Springer-Verlag Berlin
Heidelberg.

[29] Aamodt, A. 1994 Knowledge-Intensive Case-Based Reasoning and In-
telligent Tutoring.

[30] Aamodt, A and Nygard, M. 1995 Different roles and mutual dependen-
cies of data, information, and knowledge — An AI perspective on their
integration, c© 1995 Elsevier Science B.V. All rights reserved

[31] Park, C.S and Han, I. 2002 A case-based reasoning with the feature
weights derived by analytic hierarchy process for bankruptcy prediction,
c© 2002 Elsevier Science Ltd. All rights reserved.

[32] Watson, I. 1999 Case-based reasoning is a methodology not a technology,
c© 1999 Elsevier Science B.V. All rights reserved

[33] Aamodt, A. 1994 Explanation-driven case-based reasoning.

[34] Aamodt, A. 1990 Knowledge-Intensive Case-Based Reasoning and Sus-
tained Learning, Published in ECAI-90, Proceedings of the 9th European
Conference on Artificial Intelligence, edited by Luigia Aiello, Stockholm,
August, 6-10,1990. Pitman Publishing, London, 1990. Pages 1-6.

[35] Zikic, N. 2015 Explanation-aware army builder for Warhammer 40k,
Specialization Project performed in the Autumn Semester of 2015 at
the IDI department at NTNU.

Appendix

Appendix A - Glossary

AI - Artificial Intelligence
CBR - Case Based Reasoning
MAC/FAC - Many are called/Few are chosen retrieval method.
SQL - Structured Query Language. Used in relational databases for com-
munication.
CSV - Comma Separated Values. Commonly used for simple case bases or
databases.
XML - Extensible Markup Language. Much like CSV, commonly used for
simple case bases or databases.
SME - Structure Mapping Engine. It is an implementation of an algorithm
based on psychological theory of Dedre Gentner, used to calculate similarity
when performing retrieval.
JSON - JavaScript Object Notation. A Non-SQL database solution written
in purely string format.
BSON - Binary JSON. A format specific to MongoDB.
AR - Army Ratio. Used in Retrieval as one of the components for calculat-
ing the similarity index.
SqR - Squad Ratio. Used in Retrieval as one of the components for calcu-
lating the similarity index.
SR - Strength Ratio. Used in Retrieval as one of the components for calcu-
lating the similarity index.
FR - Faction Ratio. Used in Retrieval as one of the components for calcu-
lating the similarity index.
MP - Movement Phase. Used in calculating the Strength Ratio in the re-
trieval step.

77

PP - Psychic Phase. Used in calculating the Strength Ratio in the retrieval
step.
SPP - Solution Psychic Power. Used in calculating the Psychic Phase in the
retrieval step.
PrPP - Problem Psychic Power. Used in calculating the Psychic Phase in
the retrieval step.
SP - Shooting Phase. Used in calculating the Strength Ratio in the retrieval
step.
AsP - Assault Phase. Used in calculating the Strength Ratio in the retrieval
step.
hbc - has a better calculated, used in explanations.
NTNU - Norwegian University of Science and Technology/Norges teknisk-
naturvitenskapelige universitet
Warhammer 40k - Warhammer 40000, often referred to in text as Warham-
mer 40k, as it is easier to read

Appendix B - Software Used

Latex, a word processor and document markup language used to write this
document. www.sharelatex.com was used to write the document. First ac-
cessed on Janury 19, 2016.

IntelliJ IDEA, a Integrated Developer Environment (IDE) for JAVA. First
accessed on January 19, 2016.

MongoDB, a Non-SQL database. First accessed on January 19, 2016.

Mongo Plugin by David Boissier, a plugin to allow usage of MongoDB in
the IDEA IDE. First accessed on January 20, 2016.

draw.io to draw flowcharts, from https://www.draw.io/. First accessed on
January 25, 2016.

Battlescribe, used to create armies, as well as test their validity. Used in
the first and second experiment. First accessed on April 2, 2016.

Appendix C - Interview With Experts

The interview with the experts was conducted by email and the questions
are presented here. The combined answers are also presented below each
question, though specific or contradicting answers are presented as well. The
experts that were asked are all members or frequent visitors of the local
wargaming club, Wartrond. They in no way refer to themselves as experts,
but are rather players with experience with the game over a course of several
months or years.

What is better in your opinion: An army prepared for (nearly)
everything, or a specialized army?

For a tournament format, it is better to be prepared for everything. For
casual gameplay both are fine.

In your experience, is a balance of vehicles and infantry better
than more infantry/vehicle focused armies?

A balance is usually the best.

Alliances - How often are they used, and does anyone use any-
thing besides battle brothers1?

Alliances are often used, even outside of Battle Brothers.

Would you say that some factions have advantages over other fac-
tions? For example Orks are better than Tau, etc. And is this
consistent between factions or are there only a few examples?

There is a large unbalance between factions in Warhammer 40k.

I think that’s a huge problem with 40k these days, and one of the reasons
so many people are transferring over to 30k/Horus Heresy setting instead.

This is what turned me away from 40k. The imbalances are so clear, that two
friends agreeing to have a friendly, balanced game, may have real problems
with it. If friend A plays with his Eldar against friend B, who plays Orks, A

1Battle brothers is an alliance rule that imposes on penalties on the armies.

will almost always win, even if they make the lists together for balance. It’s
horrible!

How often do you do the run move in shooting? Is it very im-
portant/not so important?

Depends on the army, but usually not often. Some factions may have excep-
tions.

What are the most important phases of a player turn from top
to bottom? Excluding start of turn and end of turn phases, so
shooting, psychic, movement and assault.

Movement, Shooting, Assault and Psychic, in that order. Of course it de-
pends on armies, and some armies can have great advantages in other phases.

Movement, shooting, assault, psychic, in my opinion. In 40k I think the psy-
chic would be more important than the assault phase though, since they have
more opportunities to make ”stacking” buffs and rules to make the dreaded
”deathstar” units. (Effectively un-killable units due to poorly thought out
rules that stack with psychic buffs).

How often do you customize your squads using squad options? Is
this very common for most factions or just for some?

It is common to customize all the time for all factions.

Would you say that the advantages of detachments (battleforged
armies) are worth having in comparison to unbound armies that
have none of those advantages? Things like objective secured, etc.

Tournaments usually do not usually allow unbound armies. Unbound armies
have a major disadvantage over battleforged armies.

Nobody plays unbound. It’s an abomination.

Generally speaking, how much terrain is usually present in a nor-
mal battle?

Generally, this depends on the players. Many like more, but the majority
agree that 20% to 30% is a rough average.

Finally, in your experience, how often did you lose just because
of bad rolls on the dice? And vice versa, how often did you win
because of good rolls?

Rarely if ever. Most people make up a strategy that does not revolve on
luck, but rather on statistical probability.

Appendix D - JSON Represenations of Ob-

jects

A sample of all the JSON representations of objects in their raw format is
presented here.

A piece of equipment is represented as:

Figure D1: Equipment JSON representation

An infantry, bike, artillery, or in general a squad without armor is represented
as:

Figure D2: No Armor Squad JSON representation

Note that it is not possible to fit the entirety of the representation on an A4
sized page. For example, the equipment array for the Chaplain Grimaldus
Squad is:

”Equipment”:[{”Name”:”Master-crafted Plasma Pistol”, ”Count”:1}, {”Name”:”Crozius
Arcanum”, ”Count”:1}, {”Name”:”Frag Grenade”, ”Count”:1}, {”Name”:”Krak
Grenade”, ”Count”:1}, {”Name”:”Rosarius”, ”Count”:1}]

A walker unit is represented as:

Figure D3: Walker Squad JSON representation

Again, some of the unit may not be fully representable on an A4 sized page.

Finally, any vehicle unit other than a walker and special cavalry-like units
(such as bikes) are represented as:

Figure D4: Vehicle Squad JSON representation

Parts of the Army Class can be seen in the figure below.

Figure D5: Army JSON representation

Appendix E - Additional Experiment Data

Additional data from the experiments can be found here. The subsections
here share the names of the experiments, as can be seen in Section 4.2. The
information here is additional information that provides context, but is too
lengthy to be placed in the thesis.

CBR system for Army Creation

All of the army compositions used in the testing of the system can be found
here. There are a total of fourteen armies, the first ten are the armies in the
case base, and the last four (denoted as Solution Armies) are the armies the
system retrieved and then adapted when presented with the first ten armies
as problem armies. Each table entry represents one of the squads of the army,
and their equipment, as well as their number. No special rules are presented
unless they have been somehow changed from the original rules, via. squad
options for example. Similarly, no extra equipment is presented unless it too
differs from the equipment presented in the rule books.

Army Composition - Army 1 - Cost = 1840 points
Captain
Chapter Master
Power Armour [Bolt Pistol, Chainsword]
Dreadnoughts [3x Dreadnought]
Ironclad Dreadnoughts [3x Ironclad Dreadnought]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Rhino [Storm Bolter]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Rhino [Storm Bolter]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Rhino [Storm Bolter]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Rhino [Storm Bolter]
Attack Bike Squad [2x Attack Bike]
Predators [3x Predator]

Table E1: E3 - Army 1

Army Composition - Army 2 - Cost = 1840 points
Captain
Chapter Master
Power Armour [Bolt Pistol, Chainsword]
Terminator Squad [9x Terminator, 1x Terminator Sergeant]
Terminator Squad [9x Terminator, 1x Terminator Sergeant]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Razorback [Twin-linked Heavy Bolter]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Razorback [Twin-linked Heavy Bolter]
Land Speeders
Land Speeder [Heavy Bolter, Multi-melta]
Land Speeders
Land Speeder [Heavy Bolter, Multi-melta]
Stormraven Gunship
Thunderfire Cannons [3x Thunderfire Cannons, 3x Techmarine
Gunner]

Table E2: E3 - Army 2

Army Composition - Army 3 - Cost = 1850 points
Pedro Kantor
Centurion Assault Squad [5x Centurion, 1x Centurion Sergeant]
Scout Squad [6x Scouts, 1x Scout Sergeant]
Tactical Squad [9x Space Marines]
Rhino [Storm Bolter]
Space Marine Sergeant [Bolt Pistol, Boltgun, Melta Bombs]
Tactical Squad [9x Space Marines]
Rhino [Storm Bolter]
Space Marine Sergeant [Bolt Pistol, Boltgun, Melta Bombs]
Tactical Squad [9x Space Marines]
Rhino [Storm Bolter]
Space Marine Sergeant [Bolt Pistol, Boltgun, Melta Bombs]
Assault Squad [9x Space Marine, 1x Space Marine Sergeant]
Rhino [Storm Bolter]
Bike Squad [7x Space Marine Bikers, 1x Biker Sergeant, 1x Attack
Bike]
Centurion Devastator Squad [5x Centurion, 1x Centurion Sergeant]

Table E3: E3 - Army 3

Army Composition - Army 4 - Cost = 1850 points
Librarian [Mastery Level 2]
Terminator Squad [9x Terminator, 1x Terminator Sergeant]
Venerable Dreadnoughts
Drop Pod [Storm Bolter]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Assault Squad [9x Space Marine, 1x Space Marine Sergeant]
Stormtalon Gunship
Devastator Squad [9x Space Marine, 1x Space Marine Sergeant]
Devastator Squad [9x Space Marine, 1x Space Marine Sergeant]

Table E4: E3 - Army 4

Army Composition - Army 5 - Cost = 1850 points
Chaplain
Librarian [Mastery Level 2]
Sternguard Veteran Squad [9x Veteran, 1x Veteran Sergeant]
Sternguard Veteran Squad [9x Veteran, 1x Veteran Sergeant]
Tactical Squad [9x Space Marines, 1x Veteran Sergeant]
Razorback [Twin-linked Heavy Bolter]
Tactical Squad [9x Space Marines, 1x Veteran Sergeant]
Razorback [Twin-linked Heavy Bolter]
Tactical Squad [9x Space Marines, 1x Veteran Sergeant]
Rhino [Storm Bolter]
Tactical Squad [9x Space Marines, 1x Veteran Sergeant]
Rhino [Storm Bolter]
Land Raider
Predators
Predator [Twin-linked Lascannon]
Predator [Twin-linked Lascannon]

Table E5: E3 - Army 5

Army Composition - Army 6 - Cost = 1850 points
Captain
Chapter Master
Power Armour [Bolt Pistol, Chainsword]
Sternguard Veteran Squad [9x Veteran, 1x Veteran Sergeant]
All 9x Veterans have [Bolt Pistol, Storm Bolter]
Razorback [Twin-linked Heavy Bolter]
Sternguard Veteran Squad [9x Veteran, 1x Veteran Sergeant]
All 9x Veterans have [Bolt Pistol, Storm Bolter]
Razorback [Twin-linked Heavy Bolter]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Rhino [Storm Bolter]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Rhino [Storm Bolter]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Rhino [Storm Bolter]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Rhino [Storm Bolter]
Vindicators [3x Vindicator]

Table E6: E3 - Army 6

Army Composition - Army 7 - Cost = 1845 points
Chief Librarian Tigurius
Legion of the Damned [9x Legionnaire, 1x Legionnaire Sergeant]
Terminator Squad [8x Terminator, 1x Terminator Sergeant]
Venerable Dreadnoughts [3x Venerable Dreadnought]
Tactical Squad [9x Space Marines, 1x Veteran Sergeant]
Rhino [Storm Bolter]
Tactical Squad [9x Space Marines, 1x Veteran Sergeant]
Rhino [Storm Bolter]
Devastator Squad [9x Space Marines, 1x Veteran Sergeant]
Rhino [Storm Bolter]
Devastator Squad [9x Space Marines, 1x Veteran Sergeant]
Rhino [Storm Bolter]

Table E7: E3 - Army 7

Army Composition - Army 8 - Cost = 1845 points
Vulkan He’stan
Dreadnoughts [3x Dreadnought]
Dreadnoughts [3x Dreadnought]
Scout Squad [9x Scouts, 1x Veteran Scout Sergeant]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Attack Bike Squad [3x Attack Bike]
All 3x Attack Bikes have [Bolt Pistol, Multi-melta, Twin-Linked
Boltgun]
Attack Bike Squad [3x Attack Bike]
All 3x Attack Bikes have [Bolt Pistol, Multi-melta, Twin-Linked
Boltgun]
Land Speeders
Land Speeder [Assault Cannon, Multi-melta]

Table E8: E3 - Army 8

Army Composition - Army 9 - Cost = 1825 points
The Emperor’s Champion
Ironclad Dreadnoughts [1x Ironclad Dreadnought]
Drop Pod [Storm Bolter]
Terminator Assault Squad [9x Terminator, 1x Terminator Sergeant]
Terminator Assault Squad [9x Terminator, 1x Terminator Sergeant]
Crusader Squad [5x Initiate, 5x Neophyte]
Rhino [Storm Bolter]
Crusader Squad [5x Initiate, 5x Neophyte]
Rhino [Storm Bolter]
Crusader Squad [5x Initiate, 5x Neophyte]
Rhino [Storm Bolter]
Devastator Squad [9x Space Marines, 1x Space Marine Sergeant]
Rhino [Storm Bolter]
Devastator Squad [9x Space Marines, 1x Space Marine Sergeant]
Rhino [Storm Bolter]

Table E9: E3 - Army 9

Army Composition - Army 10 - Cost = 1844 points
Kor’sarro Khan [Bolt Pistol, Moonfang]
Moondrakkan [Twin-linked Boltgun]
Ironclad Dreadnoughts [1x Ironclad Dreadnought]
Drop Pod [Storm Bolter]
Vanguard Veteran Squad [9x Veteran, 1x Veteran Sergeant]
Rhino [Storm Bolter]
Vanguard Veteran Squad [9x Veteran, 1x Veteran Sergeant]
Rhino [Storm Bolter]
Bike Squad [6x Space Marine Biker, 1x Biker Sergeant
Bike Squad [6x Space Marine Biker, 1x Biker Sergeant
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Rhino [Storm Bolter]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Rhino [Storm Bolter]
Attack Bike Squad [3x Attack Bike]
Attack Bikes have [Bolt Pistol, Multi-melta, Twin-Linked Boltgun]
Predators [3x Predator]
Predators [3x Predator]

Table E10: E3 - Army 10

Army Composition - Solution Army 1 - Cost = 1850 points
Kor’sarro Khan [Bolt Pistol, Moonfang]
Moondrakkan [Twin-linked Boltgun]
Terminator Assault Squad [9x Terminator, 1x Terminator Sergeant]
Terminator Assault Squad [9x Terminator, 1x Terminator Sergeant]
Tactical Squad [9x Space Marines, 1x Veteran Sergeant]
Razorback [Twin-linked Heavy Bolter]
Tactical Squad [9x Space Marines, 1x Veteran Sergeant]
Razorback [Twin-linked Heavy Bolter]
Attack Bike Squad [2x Attack Bike]
1x Attack Bike has [Bolt Pistol, Multi-melta, Twin-Linked Boltgun]
Predators [2x Predator]
Both Predators have [Twin-linked Lascannon]
Thunderfire Cannons [3x Thunderfire Cannons, 3x Techmarine
Gunner]

Table E11: E3 - Solution Army 1

Army Composition - Solution Army 2 - Cost = 1831 points
Kor’sarro Khan [Bolt Pistol, Moonfang]
Moondrakkan [Twin-linked Boltgun]
Centurion Assault Squad [5x Centurion, 1x Centurion Sergeant]
Scout Squad [9x Scouts]
One Scout has [Heavy Bolter], One other Scout has [Space Marine
Shotgun]
Scout Sergeant [Bolt Pistol, Boltgun, Melta Bombs]
Tactical Squad [9x Space Marines]
Razorback [Twin-linked Heavy Bolter]
Space Marine Sergeant [Bolt Pistol, Boltgun, Melta Bombs]
Tactical Squad [9x Space Marines, 1x Veteran Sergeant]
Rhino [Storm Bolter]
Tactical Squad [9x Space Marines]
Rhino [Storm Bolter]
Space Marine Sergeant [Bolt Pistol, Boltgun, Melta Bombs]
Attack Bike Squad [3x Attack Bike]
Attack Bikes have [Bolt Pistol, Multi-melta, Twin-Linked Boltgun]
Bike Squad [7x Space Marine Bikers, 1x Biker Sergeant, 1x Attack
Bike]
Centurion Devastator Squad [5x Centurion, 1x Centurion Sergeant]

Table E12: E3 - Solution Army 2

Army Composition - Solution Army 3 - Cost = 1840 points
Sergeant Telion
Terminator Squad [9x Terminator, 1x Terminator Sergeant]
Terminator Squad [9x Terminator, 1x Terminator Sergeant]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Razorback [Twin-linked Heavy Bolter]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Razorback [Twin-linked Heavy Bolter]
Attack Bike Squad [3x Attack Bike]
Attack Bikes have [Bolt Pistol, Multi-melta, Twin-Linked Boltgun]
Attack Bike Squad [1x Attack Bike]
Attack Bike has [Bolt Pistol, Multi-melta, Twin-Linked Boltgun]
Stormraven Gunship
Thunderfire Cannons [3x Thunderfire Cannons, 3x Techmarine
Gunner]

Table E13: E3 - Solution Army 3

Army Composition - Solution Army 4 - Cost = 1840 points
Kor’sarro Khan [Bolt Pistol, Moonfang]
Moondrakkan [Twin-linked Boltgun]
Terminator Assault Squad [9x Terminator, 1x Terminator Sergeant]
Terminator Assault Squad [9x Terminator, 1x Terminator Sergeant]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Razorback [Twin-linked Heavy Bolter]
Tactical Squad [9x Space Marines, 1x Space Marine Sergeant]
Razorback [Twin-linked Heavy Bolter]
Attack Bike Squad [1x Attack Bike]
Attack Bike has [Bolt Pistol, Multi-melta, Twin-Linked Boltgun]
Attack Bike Squad [1x Attack Bike]
Attack Bike has [Bolt Pistol, Multi-melta, Twin-Linked Boltgun]
Predators [2x Predator]
Both Predators have [Twin-linked Lascannon]
Thunderfire Cannons [3x Thunderfire Cannons, 3x Techmarine
Gunner]

Table E14: E3 - Solution Army 4

Application of maintenance policies

Each match here follows the same ID as presented in Subsection 4.2.3. Each
Army has a dash and a number next to it to showcase deployment on the
playing field. A star indicates that this army had won the initiative and had
acted first. The numbers within the brackets show what options the system
has applied to the squad. These are stored numerically in the case base
to allow easier implementation with the general domain knowledge, since
writing each option in text is considerably lengthier and the only advantage
it provides is already reflected in the detailed army composition.

The battle table is shown in Figure E1. Following that, the thirty individ-
ual army compositions generated by the maintenance policy are shown in
individual tables.

Figure E1: Battle table used in the Maintenance Policy Experiment

ID Army 1 - 1 * Outcome New Rank
1 Vanguard Veteran Squad (97) Win 1505
1 Dreadnoughts Win 1505
ID Army 2 - 2 Outcome New Rank
1 Land Speeders (189,195) Loss 1495
1 Vindicators Loss 1495

Table E15: E3 - T1M1

ID Army 1 - 2 * Outcome New Rank
2 Drop Pod Win 1502
2 Tactical Squad (38, 40) Win 1502
2 Techmarine (23) Win 1502
ID Army 2 - 3 Outcome New Rank
2 Chaplain Loss 1498
2 Librarian Loss 1498

Table E16: E3 - T1M2

ID Army 1 - 2 * Outcome New Rank
3 The Emperor’s Champion Win 1503
3 Drop Pod Win 1505
ID Army 2 - 3 Outcome New Rank
3 Sergeant Telion Loss 1497
3 Scout Squad (45) Loss 1497
3 Honour Guard (75) Loss 1497

Table E17: E3 - T1M3

ID Army 1 - 2 Outcome New Rank
4 Scout Squad 2 (45) Draw 1497
4 Assault Squad Draw 1500
4 Techmarine 2 (23) Win 1508
ID Army 2 - 3 * Outcome New Rank
4 Honour Guard 2 (75) Loss 1490
4 Vanguard Veteran Squad (83, 97) Loss 1494

Table E18: E3 - T1M4

ID Army 1 - 1 * Outcome New Rank
5 Terminator Squad (156) Loss 1497
ID Army 2 - 2 Outcome New Rank
5 Venerable Dreadnoughts Win 1502
5 Scout Bike Squad (168) Draw 1497

Table E19: E3 - T1M5

ID Army 1 - 4 Outcome New Rank
6 Honour Guard Loss 1494
6 Sternguard Veteran Squad (102) Loss 1494
ID Army 2 - 2 * Outcome New Rank
6 Pedro Kantor Win 1506

Table E20: E3 - T1M6

ID Army 1 - 2 Outcome New Rank
7 Sternguard Veteran Squad 2 (102,

106, 120)
Loss 1486

7 Bike Squad (176, 180) Loss 1493
ID Army 2 - 1 * Outcome New Rank
7 Pedro Kantor Win 1513

Table E21: E3 - T1M7

ID Army 1 - 2 * Outcome New Rank
8 Scout Bike Squad (173) Draw 1498
8 Dreadnoughts Win 1508
8 Rhino Win 1503
ID Army 2 - 4 Outcome New Rank
8 The Emperor’s Champion Loss 1500
8 Razorback Loss 1497

Table E22: E3 - T1M8

ID Army 1 - 3 * Outcome New Rank
9 Devastator Squad Win 1506
9 Chaplain Cassius Win 1506
ID Army 2 - 2 Outcome New Rank
9 Vanguard Veteran Squad (93) Loss 1493
9 Rhino Loss 1496
9 Razorback Loss 1490

Table E23: E3 - T1M9

ID Army 1 - 4 Outcome New Rank
10 Command Squad Win 1507
10 Scout Squad (45, 46) Draw 1501
10 Sergeant Chronus Win 1507
ID Army 2 - 3 * Outcome New Rank
10 Captain Loss 1493
10 Attack Bike Squad Loss 1493
10 Land Speeders 2 (189,195) Loss 1488

Table E24: E3 - T1M10

ID Army 1 - 3 Outcome New Rank
11 Razorback (201) Loss 1485
11 Sternguard Veteran Squad (102, 106) Loss 1494
ID Army 2 - 4 * Outcome New Rank
11 Terminator Assault Squad 2 (156) Win 1504

Table E25: E3 - T2M11

ID Army 1 - 3 * Outcome New Rank
12 Scout Bike Squad Loss 1496
12 Honour Guard 2 (75) Loss 1490
12 Sergeant Telion Loss 1493
ID Army 2 - 1 Outcome New Rank
12 Honour Guard 2 (75) Win 1490
12 Bike Squad (176, 181) Win 1504

Table E26: E3 - T2M12

ID Army 1 - 1 Outcome New Rank
13 Bike Squad 7 (176,180,181) Draw 1502
13 Sergeant Chronus Win 1510
13 Attack Bike Squad Draw 1491
ID Army 2 - 3 * Outcome New Rank
13 Tactical Squad (40) Loss 1496
13 Bike Squad 5 (176, 180) Loss 1489
13 Scout Squad (45, 46) Loss 1496

Table E27: E3 - T2M13

ID Army 1 - 3 Outcome New Rank
14 Tactical Squad 3 2 (35, 40) Win 1502
14 Land Speeders (190,192) Draw 1500
14 Sergeant Chronus Win 1516
ID Army 2 - 1 * Outcome New Rank
14 Chaplain Loss 1492
14 Scout Bike Squad (168,168,171,173) Loss 1491

Table E28: E3 - T2M14

ID Army 1 - 4 Outcome New Rank
15 Tactical Squad 3 2 (35, 40) Win 1506
15 Tactical Squad 3 (40) Draw 1495
15 Rhino Win 1501
ID Army 2 - 2 * Outcome New Rank
15 Assault Squad (157,159,160,166) Loss 1496
15 Sergeant Telion Loss 1488
15 Drop Pod Loss 1501

Table E29: E3 - T2M15

ID Army 1 - 2 Outcome New Rank
16 Legion of the Damned Win 1506
16 Predators Win 1506
ID Army 2 - 3 * Outcome New Rank
16 Venerable Dreadnoughts Loss 1495
16 Scout Bike Squad 2 (168) Loss 1490

Table E30: E3 - T2M16

ID Army 1 - 1 * Outcome New Rank
17 The Emperor’s Champion Loss 1498
17 Scout Squad (45, 53) Loss 1498
ID Army 2 - 3 Outcome New Rank
17 Devastator Squad Draw 1504
17 Drop Pod Win 1504
17 Honour Guard 2 (75) Win 1493

Table E31: E3 - T2M17

ID Army 1 - 3 * Outcome New Rank
18 Command Squad Win 1513
18 Scout Squad 3 (43,45,46) Win 1502
18 Attack Bike Squad Win 1497
ID Army 2 - 2 Outcome New Rank
18 Bike Squad 7 (176,178,180,181) Loss 1498
18 Tactical Squad 3 (40) Loss 1490

Table E32: E3 - T2M18

ID Army 1 - 1 * Outcome New Rank
19 Kor’sarro Khan Win 1505
19 Librarian Win 1502
ID Army 2 - 3 Outcome New Rank
19 Shadow Captain Shrike Loss 1495

Table E33: E3 - T2M19

ID Army 1 - 1 Outcome New Rank
20 Scout Bike Squad 4 (168, 168, 168,

171, 173)
Loss 1485

20 Razorback 2 (201) Loss 1482
ID Army 2 - 2 * Outcome New Rank
20 Rhino Win 1506
20 Razorback 2 (201) Draw 1482
20 Techmarine (23, 25) Win 1505

Table E34: E3 - T2M20

ID Army 1 - 1 * Outcome New Rank
21 Scout Bike Squad 4 2 (168, 168, 171,

173)
Draw 1489

21 Drop Pod Win 1507
21 Scout Squad (45, 53) Draw 1499
ID Army 2 - 2 Outcome New Rank
21 Tactical Squad 2 3 (35,35,40) Loss 1503
21 Techmarine 2 (23, 26) Loss 1504

Table E35: E3 - T3M21

ID Army 1 - 2 * Outcome New Rank
22 Terminator Assault Squad 2 (156) Loss 1496
ID Army 2 - 1 Outcome New Rank
22 The Emperor’s Champion Win 1502
22 Sergeant Chronus Win 1520

Table E36: E3 - T3M22

ID Army 1 - 2 * Outcome New Rank
23 Scout Bike Squad 4 (168, 168, 168,

171, 173)
Loss 1494

23 Whirlwinds Loss 1483
ID Army 2 - 1 Outcome New Rank
23 Scout Bike Squad Win 1502
23 Command Squad Draw 1513
23 Scout Squad (45, 45, 46, 53) Win 1505

Table E37: E3 - T3M23

ID Army 1 - 4 * Outcome New Rank
24 Vulkan He’stan Win 1506
ID Army 2 - 2 Outcome New Rank
24 Scout Squad 3 2 (43,45,46) Loss 1496
24 Sergeant Chronus Loss 1514
24 Scout Bike Squad (168, 171) Loss 1496

Table E38: E3 - T3M24

ID Army 1 - 1 * Outcome New Rank
25 Captain Sicarius Win 1503
ID Army 2 - 3 Outcome New Rank
25 Shadow Captain Shrike Loss 1492

Table E39: E3 - T3M25

ID Army 1 - 3 Outcome New Rank
26 Thunderfire Cannons Win 1506
26 Honour Guard 2 (75) Draw 1494
ID Army 2 - 1 * Outcome New Rank
26 Centurion Assault Squad (78) Loss 1494
26 Drop Pod Loss 1502

Table E40: E3 - T3M26

ID Army 1 - 1 * Outcome New Rank
27 Sternguard Veteran Squad 4 (102,

103, 106)
Loss 1489

27 Librarian Loss 1497
ID Army 2 - 3 Outcome New Rank
27 Scout Squad (43, 45, 46) Win 1505
27 Scout Squad 3 2 (43, 43, 45, 46) Win 1501
27 Razorback Win 1496

Table E41: E3 - T3M27

ID Army 1 - 2 Outcome New Rank
28 Terminator Squad (151, 152) Win 1505
ID Army 2 - 1 * Outcome New Rank
28 Tactical Squad (40) Loss 1494
28 Scout Squad 6 (43, 45, 46, 47, 51) Loss 1499
28 Land Speeder Storm Loss 1494

Table E42: E3 - T3M28

ID Army 1 - 2 * Outcome New Rank
29 Scout Bike Squad 4 (168, 168, 168,

171, 173)
Win 1494

29 Librarian Win 1502
ID Army 2 - 3 Outcome New Rank
29 Terminator Squad 2 (151, 152) Loss 1500

Table E43: E3 - T3M29

ID Army 1 - 2 * Outcome New Rank
30 Scout Bike Squad (173) Loss 1497
30 Dreadnoughts Loss 1503
30 Land Speeder Storm Loss 1489
ID Army 2 - 4 Outcome New Rank
30 Vulkan He’stan Win 1513

Table E44: E3 - T3M30

Appendix F - Personal Reflection

While I would not say that this thesis was too much for one person, it is
my opinion that it would be greatly improved by the addition of one or two
people. My supervisor (Anders Kofod-Petersen) had initially stated that
the project (Specialization Project, 2015) and thesis are more suited for two
people and at the end of the thesis I wholeheartedly agree with him. I
believe that many of the limitations that were caused by complexity and
time constraints could be avoided. I can not say if this would lead to more
problems or limitations, but the implementation itself, as well as performing
the experiments, did take a significant amount of time. A major part of
the work on the implementation could have been performed in parallel, and
a more creative case base could have definitively been made. Furthermore,
experimentation would have been more robust and easier to perform. I do not
regret working on the thesis, however, as I feel I have expanded my knowledge
substantially and I have been very motivated throughout the length of the
project and the thesis.

Another important point to reflect on is the experimentation. I believe that
I should have discussed the experimentation plan with those involved at the
beginning of the project, and begun my search for participants much sooner
than I have. I had looked for participants at the start of the Master Thesis,
and I feel that the few extra months that I had to work on the Specialization
Project would have helped me get acquainted with a few more participants,
and have a more varied set of result data. Any external resources (such
as money), would have been a great help at securing more participants for
experimentation and I encourage those that attempt to reproduce the results
or attempt a different approach to seek out participants earlier rather than
later should the external resources not be available.

Finally, even though I was aware of this from before, setting milestones for
the thesis was of the utmost importance. Being able to gauge whether or not
the implementation would be finished and what kind of limitations needed
to be placed on the implementation was most likely the sole reason why I
was able to finish the thesis in good time. Planning out the project was,
I believe, as important as writing and implementing it, with regards to the
time constraints.

Appendix G - The Rating System

This section is mostly present in the Appendix C of the Specialization Project
(Zikic, 2015), and is only included here for convenience and minor updates.

The rating attribute of armies and squads is calculated using the same
method that is used for chess players and the calculation of elo ratings. The
K number in this particular explanation is 40, but it usually varies between
20 and 40.

Armies and Squads are introduced into the system at an even rating. This
rating is a number that equals 1500. The ratings are adjusted identically for
the squads and the armies but with different K values, as described in the
thesis.

The rating goes up if a win is recorded. Consequently, the rating goes down
if a loss is recorded. If a draw is recorded the rating will either stay the same,
go up or down, depending on the ratings. If an army draws with an army
higher rated than it, it will go up in ratings.

Due to the fact that a squad is very likely to engage other, varied rated
squads, the squads rating is taken as an average across all squads in an army.
Therefore, there may be some individual miscalculations in the rating system,
however as a whole and over time, these number of these miscalculations
should approach zero as the system rates squads closer and closer to their
actual worth.

The rating system does not increase linearly. The bigger the difference is
in between the armies, the less points are gained for the winning army if
that army was the higher rated army. At equal rating, a win is considered
20 rating points, a loss is considered -20 points, and a draw is considered 0
points. A rating that differs by 400 points is the maximum difference that
the system calculates. Any larger rating differences are set back to 400. At
this rating, a win for the higher rated army is only 3.2 points, while a loss
is 36.8 points. This is done to prevent any army from reaching incredible
ratings by fighting only weak rated armies.

	Introduction
	Goals
	Research Method
	Thesis Structure

	Background Theory
	Theoretical Summary
	Warhammer 40k
	Army Creation
	Tactics and Heuristics for Army Creation

	The MAC/FAC Retrieval Method

	Design and Implementation
	System Overview
	Case Base Reasoning
	Case Representation and Case Base
	General Knowledge Representation and Implementation
	Retrieval
	Retrieval Limitations
	Reuse
	Reuse Limitations
	Revise
	Retain

	Maintenance Policies
	Utility Maintenance
	Consistency Maintenance
	Metagame Maintenance

	Explanation
	Other Technologies Used

	Experiments and Results
	Experiments
	Experiment 1 - CBR System for Army Creation
	Experiment 2 - Evaluation of the usefulness of explanations
	Experiment 3 - Application of maintenance policies

	Results and Method
	Experiment 1 - Results and Method
	Experiment 2 - Results and Method
	Experiment 3 - Results and Method

	Evaluation and Discussion
	Evaluation
	Experiment 1 - CBR System
	Experiment 2 - Usefulness of Explanations
	Experiment 3 - Application of Maintenance policies

	Discussion
	The Case-Base Reasoning System
	Explanations
	Maintenance

	Contributions

	Conclusion and Future Work
	Goals
	Conclusion
	Future Work

	Bibliography
	Appendix
	Appendix A - Glossary
	Appendix B - Software Used
	Appendix C - Interview With Experts
	Appendix D - JSON Represenations of Objects
	Appendix E - Additional Experiment Data
	Appendix F - Personal Reflection
	Appendix G - The Rating System

