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Vortex-induced vibration (VIV) is a major design issue for all deep-water riser systems

operating in regions where severe sea currents can be expected. This highly complex

phenomenon has resulted in a great deal of experimental work that today’s empirical

models are based upon. These models are based on frequency domain dynamic solutions

and are therefore not directly applicable in a non-linear time domain model.

The purpose of the present work is to develop an approach to combine frequency domain

models with a time domain analysis software in order to predict VIV, and implement

this into a procedure named FEDEM-VIV. A force prediction algorithm is developed

to compute VIV response amplitudes with the Newmark time integration algorithm in

FEDEM Software.

A validation study is carried out to compare the results from FEDEM-VIV with VI-

VANA - a frequency domain code. Damping due to large amplitude is pragmatically

handled. Response shapes are for this reason not well captured, but maximum response

amplitudes are in some cases close to VIVANA estimates. High number of iterations

will in general over-estimate the response, and high amplitude damping is not predicted

well. Defining a lower limit of the excitation coefficient for damping, with a low iter-

ation limit showed feasible predictions of the excitation force distribution. Excitation

zone predictions in VIVANA and FEDEM-VIV are in good agreement.

With these simplifications in mind, the current approach represents a good solution for a

time domain VIV predictor when all the essential hydrodynamical effects are accounted

for in FEDEM-VIV.
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Et elementmetodebasert verktøy for beregning av virvelinduserte

vibrasjoner av stigerør

av George Lee

Virvelinduserte vibrasjoner (VIV) er en utfordring for dypvannsbaserte stigerør i havomr̊ader

som er utsatt for sterke strømninger. Dette komplekse naturfenomenet har gitt opphav

til flere eksperimenter som dagens empiriske modeller baserer seg p̊a. Disse modellene er

definert i frekvensdomenet til dynamiske løsninger og kan derfor ikke anvendes direkte

i en ikke-lineær tidsdomene.

Hensikten med denne oppgaven er å utvikle en metode som kombinerer modeller fra

frekvensdomenet med et analyseprogram som kjører i tidsdomenet. Dette skal imple-

menteres som et programvareverktøy kalt FEDEM-VIV. En algoritme for å forutsi kraft

er utviklet for å beregne responsamplitude ved hjelp av Newmarks tidsintegrasjonsalgo-

ritme i FEDEM Software.

En valideringsstudie er utført for å sammenligne resultater fra FEDEM-VIV med VI-

VANA - en frekvensdomenebasert kode. Dempninger som følge av store amplituder er

h̊andtert p̊a en pragmatisk m̊ate. Svingningsformer er ikke godt estimert, men maksimal

responsamplitude samsvarer i enkelte tilfeller godt med anslagene fra VIVANA. Generelt

vil mange iterasjoner overvurdere svingningene, og dempning som følge av stor ampli-

tude er ikke godt nok dekket. Ved å sette en nedre grense for eksitasjonskoeffisienten

ved dempning med f̊a iterasjoner, har dette gitt brukbare estimater av lastfordelingen

for eksitasjon. Beregnede eksitasjonssoner i VIVANA og FEDEM-VIV samsvarer godt.

Med tanke p̊a disse forenklingene er denne metoden en god løsning p̊a et tidsdomenebasert

verktøy for å beregne VIV, n̊ar alle essentielle hydrodynamiske effekter er inkludert.
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Chapter 1

Introduction

1.1 Background

As the search after oil and gas pushes offshore operators further out into deeper oceans,

several challenges emerge. One of them is vortex-induced vibrations (VIV) of offshore

structures such as marine risers due to ocean currents. A riser is a conduit that connects

a production platform with the well at sea bed and is often subjected to large forces,

due to currents and internal pressure. These vibrations are known to cause significant

fatigue damage to structures that are exposed to waves and currents, in addition to

increased drag load. Adjacent risers may also run the risk of colliding into each other

with devastating consequences. The main effects of VIV are dictating riser arrangement,

fabrication details, and thus have significant cost impacts at all stages. As water depth

increases, the design and operation of risers gets more complex and VIV presents one of

the biggest uncertainties facing riser engineers.

The methods for predicting VIV today are mostly based on empirical models from the

early ’80s. There is a long evolution from the simple two-dimensional cylinder section

tests to today’s models. However, as new riser configurations are developed to cope

with increasing depths, more effort must be put into understanding the complex nature

behind VIV as well as implementation and verification against experimental data.

1.2 Purpose

Fedem Technology AS desires a method to analyze VIV of risers in a more comprehensive

way with their simulation software. The vision is to find an approach that could describe

the essential effect behind VIV for practical engineering, and integrate such a model into

1



Chapter 1. Introduction 2

FEDEM Software to provide structural analyses as needed during design and verification

of structures. The purpose of this thesis is therefore to develop and implement a method

for predicting VIV of risers. With this, several domains of technology are relevant, such

as hydrodynamics, finite element methods and software development. The thesis work

is organized as follows:

1. Literature study on time and frequency domain analysis of VIV.

2. Code refactoring to improve efficiency.

3. Include structural response due to VIV.

4. Validation study.

Note that the scope of this thesis has been changed from the initial assignment text after

consulting my supervisors. This is mainly due to the extensive work behind developing

a VIV response analysis that must be validated through studies. A great effort has also

been made into software development. Fatigue calculations and GUI implementations

have been left out for this reason.

This report is therefore divided into an overview of the theoretical aspects of VIV,

following a presentation of different analysis models and the implemented procedure in

FEDEM Software, and ending with a validation study.



Chapter 2

Vortex-induced vibration

Vortex-induced vibration (VIV) is a phenomenon that occurs in many engineering situ-

ations that involves long flexible structures, such as cables, pipelines and risers. When

structures are exposed to a subsonic flow, vortices are shed and create a vortex street

behind the structure. The vortex shedding induces a motion to the structure, causing

it to vibrate. For the offshore industry, VIV is a major design issue for all deep-water

risers as they can potentially cause serious damage. A great deal of research work has

been done in the last forty years to develop different methods to predict VIV and more

is done to develop more accurate models.

2.1 Theoretical background

The classical case to illustrate VIV is a circular cylinder in constant current. As a

fluid particle flows towards a cylinder, we can observe three major components. At

the cylinder’s leading edge, there is a zone of relative stagnation as the pressure of the

upstream flow rises to stagnation pressure. The high pressure forces the fluid particle

about the cylinder’s lateral surfaces, in which the flow is laminar and smooth as boundary

layers develop about both sides. Finally, just behind the cylinder lateral phase is the zone

of separation, where turbulent vortices are generated as a laminar flow just upstream

separates from the cylinder as parcel of fluids in rotational motion. The separation

occurs in part because of the fluid behind the cylinder’s trailing edge actually is moving

in the opposite direction to the prevailing flow. When this retrograde flow encounters the

prevailing flow, this imparts rotational motion to the fluid which separates as a vortex,

known as a Kármán vortex street. These vortices interact with the cylinder, change the

pressure distribution behind the cylinder and create lift and drag forces on the body.

3



Chapter 2. Vortex-induced vibration 4

Vortex shedding are for this reason the source of the phenomenon called vortex-induced

vibration.

The vortex pattern generated by a cylinder with diameter D in a steady flow with

velocity U is characterized by two parameters: the Reynolds number and the Strouhal

number,

Re =
UD

ν
(2.1)

St =
Dfs
U

(2.2)

where ν is the kinematic viscosity of the fluid and fs is the vortex shedding frequency.

The flow regimes are defined by the Reynolds number, which is illustrated in figure 2.1.

Figure 2.1: Regimes of fluid flow for different Reynolds number (Lienhard, 1966).
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Most of the empirical models are derived from experimental work with Reynolds number

in the sub-critical flow regime, that is for 300 < Re < 300000. In real life however,

conditions related to VIV are more likely to occur at higher flow regimes. Still, it is

considered to be sufficient for our case of investigating riser VIV as experiments from

a lower flow regime provide a more conservative approach. The Strouhal number is

a dimensionless proportionality constant that is a function of Re. Even though this

parameter to a lesser extent depends on the surface roughness of the cylinder, we can

see that St is stable and close to 0.2 in the sub-critical flow regime. In addition, risers are

designed with a sufficient roughness to provide a small increase of the vortex shedding

frequency.

Figure 2.2: Strouhal number as a function of Reynolds number for circular cylinders
(Lienhard, 1966; Achenbach and Heinecke, 1981).

2.1.1 Lock-in

When the shedding frequency fs is close to an eigenfrequency f0 of a cylinder, so that

f0 ' fs =
St · U
D

, (2.3)

resonance is caused on the cylinder so that it ”locks in”[1]. The cylinder starts to

oscillate with the same frequency as the shedding frequency, and can move both in-line

and transverse to the flow direction. The latter is of greater concern as the cross-flow

response has higher amplitude. With this in mind, VIV may be split into three types of

motion:
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• Cross-flow vibrations with vibration amplitude in the order of 1 diameter

• Pure in-line vibrations with amplitudes in the order of 10− 15% of the diameter

• Cross-flow induced in-line vibrations with amplitudes of 30−50% of the cross-flow

amplitude

Since the cylinder is moving, the shedding process is no longer related to the Strouhal

number as opposed to a fixed cylinder case, but to the oscillation frequency. Hence, the

shedding frequency is different from the fixed cylinder case. This is understood by the

fact that the added mass in a free oscillating cylinder will vary such that the oscillation

frequency will dictate the shedding process.

When a cylinder oscillates, the non-dimensional amplitude A/D is in general measured in

the cross-flow direction. As the amplitude increases, at approximately one-half diameter

and beyond, the symmetry of the vortex street begins to break up. This indicates that

the vortex-induced forces on the cylinder is a function of the amplitude and furthermore,

that the response caused by VIV is of a self-limiting type. If the amplitude is high

enough, the fluid flow will no longer transfer energy to the cylinder but rather damps it.

2.1.2 Vortex-induced forces

The vortex-induced hydrodynamic forces on a cylinder can be decomposed into lift and

drag forces. The lift force FL per unit length is transverse to the oncoming flow direction

and is given as

FL =
1

2
ρU2DCL (2.4)

where CL is the lift coefficient. The lift force is considered to be in phase with the

cross-flow velocity of the cylinder which means that if CL is positive, FL will add energy

to the cylinder so it excites, while a negative coefficient will lead to damping. However,

the ideal lock-in condition occurs when CL = 0. No energy transmission between the

cylinder and the fluid yields no lift or damping forces and we have a case that is similar

to an undamped oscillator under steady state lock-in.

The drag force FD per unit length is given as

FD =
1

2
ρU2DCD (2.5)
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where CD is the drag coefficient. Objects subjected to VIV will have a drag amplification

CD,amp in addition to the local drag coefficient CD0 for a fixed object. That is

CD = CD0 · CD,amp (2.6)

Several empirical expressions for the drag amplification exist. The most common are

described in [1]:

Blevins (1990): CD,amp = 1 + 2.1

(
A

D

)
(2.7)

Vandiver (1983): CD,amp = 1 + 1.043

(
2

√
2A

D

)0.65

(2.8)

2.1.3 Added mass

Submerged body that undergoes unsteady motion is experiencing inertia because it has

to move some volume of the surrounding fluid as it moves through it. This effect is

called added mass and is a function of the mass of the displaced fluid and the added

mass coefficient Ca. In reality, the physical shape and mass of the submerged body

remain unaffected as the added mass is merely an effect that describes the change of

kinetic energy of the displaced fluid. For a cylinder, the added mass ma per unit length

is

ma = ρCaπr
2 (2.9)

where ρ is the fluid density and r is the radius of the cylinder. Ca is a function of the

local flow velocity normal to the cylinder axis, the oscillation frequency and the cross

section geometry. Depending on the direction of the flow of kinetic energy, Ca can be

negative and is equal to unity for bodies under steady motion.

2.1.4 Fluid damping

When energy is dissipated during oscillation, the system is damped by three phenomena:

fluid damping, internal material damping and structural damping. This subsection

develops analysis for fluid damping due to vibrations in different flow regimes. Fluid

damping is produced at the surface of the structure by viscous shearing of the fluid

when vibrations in the fluid are damped. Venugopal proposed a semi-empirical model

in 1996[2] as described in [3].
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For still water damping, the coefficient is given as:

csw =
ωρπD2

2

[
2
√

2√
Reω

+ Csw

(
A

D

)2
]

(2.10)

where the first part corresponds to the skin friction according to Stoke’s law for drag

forces and the second part is the pressure-dominated force. Reω = ωD2/ν where ω

is the angular frequency of the cross-flow oscillation. Experiments have estimated the

coefficient Csw through curve fitting to be 0.25.

Damping coefficient in low reduced velocity regions is given by the still water case and

a contribution from the incident flow velocity:

clv = csw + ρDUCvl (2.11)

where measurements have shown the coefficient Cvl to be 0.18. Reduced velocity is

defined as:

Ur =
U

Df0
(2.12)

Finally, damping coefficient in high reduced velocity regions is given as:

chv = ρ
U2

ω
Cvh (2.13)

where measurements have shown the coefficient Cvh to be 0.2. Notice that this damping

coefficient is independent of the non-dimensional amplitude.

For sufficiently large values of the amplitude ratio, the damping coefficient can be ex-

pressed with the lift coefficient by transforming the damping force FD = cf ẏ into a

equivalent lift force:

FL =
1

2

ρU2DCL
ωA

ẏ (2.14)

where ẏ is the cross-flow damping velocity. ẏ
ωA is non-dimensional. By imposing the

same energy loss per cycle, this implies that

cf = −1

2

ρU2DCL
ωA

(2.15)

where CL is negative.
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2.1.5 Morison equation

The Morison equation is an empirical model for calculating in-line oscillatory wave forces

on submerged bodies. For a moving body in oscillatory flow, the total in-line force per

unit length is the sum of an inertia and drag force contribution, and the Froude-Krylov

force respectively:

F (t) = ma(u̇− v̇) +
1

2
ρDCD(u− v)|u− v|+ ρπr2u̇ (2.16)

where ma is the added mass per unit length, u(t) is the flow velocity and v(t) is the

velocity of the moving body with circular cross-section. Combining cross-flow forces

with Morison forces describes the significant interaction between wave and structure.

2.2 Analysis of vortex-induced vibrations of risers

2.2.1 Equation of the free oscillating cylinder

The equation of motion for a rigid cylinder of single degree of freedom with linear springs

and damping can be described as a sinusoidal process [4]:

mÿ + 2mζωy ẏ + k y = FL sin(ωst) =
1

2
ρU2DCL sin(ωst), (2.17)

where

y = displacement of the cylinder in the vertical plane,

m = mass per unit length of the cylinder, including added mass,

ζ = structural damping factor,

k = spring constant,

ωy = 2πfy= angular natural frequency of cylinder,

ωs = 2πfs= angular shedding frequency,

and the overdots are notation for differentiation with respect to time.

The general solution to this equation can be found as a steady-state response with

amplitude Ay and phase angle φ,

y = Ay sin(ωst+ φ) (2.18)
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Inserting 2.18 into 2.17 yields (Thompson W. T., 1988)

y

D
=

ρU2CL sin(ωst+ φ)

2k
√

[1− (ωs/ωy)2]2 + (2ζωs/ωy)2
(2.19)

where the phase angle can be expressed as

tanφ =
2ζωsωy
ω2
s − ω2

y

(2.20)

When the shedding frequency becomes nearly equal to the cylinders natural frequency,

fs ≈ fy, the response is at its maximum value and we get a state of resonance. Applying

2.18 with 2.19 and setting fy = (1/2π)
√
k/m gives an expression for the resonant

vibration amplitude:
Ay
D

∣∣∣∣
fy≈fs

=
CL

4πS2
t δr

(2.21)

with reduced damping,

δr =
2m(2πζ)

ρD2
(2.22)

Figure 2.3: Spring supported damped cylinder subjected to flow [5].

Notice also that the amplitude at resonance is independent of flow velocity. The reason

is that fixing Strouhal number, to yield flow velocity U , also constrains the relationship

between the shedding and the natural frequency of the cylinder.
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We review the mechanisms behind resonance and when the shedding frequency and

natural frequency lock on to each other. The cylinder’s natural frequency will be in-

fluenced by the added mass as it varies for a given flow condition, and the oscillation

itself will affect the shedding frequency. Therefore, the oscillation frequency is a natural

frequency and also a shedding frequency valid for the actual flow condition during a

state of resonance.

2.2.2 Forced oscillation

Obviously, there is a strong interaction between the lift force and amplitude. Several

empirical methods for approximating the lift coefficient exist in addition to an iterative

calculation model. What they share in common is that they do not come from free

oscillation tests, but rather from forced motion experiments. Blevins derives in [1] a

lift model based on several experimental response data from a cylinder. This model is

developed by considering the energy input on a structure in motion to be the same. The

lift curve can be determined by three coordinates, A, B and C, to plot two quadratic

equations, intersecting at point B, so that a CL can be obtained as a function of Ay/D

CL = A+B

(
Ay
D

)
+ C

(
Ay
D

)2

(2.23)

The lift force increases as the vibration and amplitude increase from zero to a maximum

value of around half a diameter before the cylinder begins to outrun the shedding vor-

tices, which is the self-limiting effect mentioned earlier. The lift force diminishes as the

amplitude increases to approximately 0.9 diameter and lift coefficient approaches zero.

The response here is at its maximum. If the amplitude exceeds this point, the phase of

the lift force will shift and the cylinder experiences damping.

Figure 2.4: The lift coefficient model [6].
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Blevins derived from experimental data from the ’60s that the coefficients in the curve

fit within a standard deviation of 0.07 to be

A = 0.35, B = 0.60, C = −0.93.

The interaction between different components of hydrodynamic forces, such as lift and

drag, is governed by a balance between energy input and dissipation to provide dynamic

equilibrium during VIV. This interaction is illustrated in figure 2.5 where there is an

energy balance between excitation and damping zones of a structure.

Figure 2.5: Energy balance for riser subjected to VIV in sheared current [7].

2.2.3 Decomposed lift forces

The total excitation force per unit length on a cylinder consists of two components that

are in phase with, respectively, the oscillation velocity and acceleration. At each time

step t, it is given as:

Ftot(t) = FL sin(ωt) +maω
2Ay cos(ωt) (2.24)

2.3 Engineering practices

The purpose of this subsection is to present some applied methodologies for predicting

VIV. A major role player of calculating risk in the maritime and energy industry is Det

Norske Veritas (DNV GL). DNV GL describe itself as an autonomous and independent

foundation with the objectives of safeguarding life, property and the environment, at sea

and onshore. Since a large part of the industry adapt to rules and standards developed

by DNV GL, it falls naturally to present some guidelines from it here.

DNV GL has developed several guidelines for analyzing VIV on marine risers. These

publications cover ’proven technology and solutions which have been found by DNV GL

to represent good practice’. Recommended Practice DNV-RP-C205 ’Environmental Con-

ditions and Environmental Loads’[8] gives an extensive guidance for modeling, analysis
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and prediction of environmental conditions. Rational design criteria and guidance for

assessment of loads due to wind, wave and current on marine structures are also covered.

It also describes three computational models that can be used to predict VIV. The first

is the Response based models where empirical models provide the steady state of VIV

amplitude. Cross-flow and in-line vibrations are considered separately here. Secondly,

is the Force based models where empirical data establish integrated force coefficients to

obtain excitation, inertia and damping force values. It is recommended to use these

models for strongly sheared flow, or flow where only parts of the structure are subjected

to current. Lastly, is the Flow based models which are based on CFD.

The simple cross-flow VIV model in RP-C205 assumes that vortex shedding excitation

may occur when 0.0625 ≤ St ≤ 0.333, and the maximum response is normally found

in the range 0.111 ≤ St ≤ 0.2. The maximum response amplitude can be found as a

function of the stability parameter Ks, which is also known as the damping factor δr

mentioned earlier. See figure 2.6

Figure 2.6: Amplitude as a function of Ks.

Furthermore, Offshore Standard DNV-OS-F201 ’Dynamic Risers’ suggest that the max-

imum response amplitude may be expressed as

Sarpkaya (1979):
Ay
D

=
0.32γ√

0.06 + (2πS2
t δr)

2
(2.25)

where γ is the mode participation factor and is dependent on the geometry of the

structure. Blevins lists in [1] different values of γ and is normally 1 for rigid cylinders.
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A simple screening procedure for prediction of VIV can therefore be done by comparing

the calculated eigenfrequencies of a riser with the shedding frequency, where St ≈ 0.2.

An approximation is that lock-in may occur if these frequencies matches a ±20% band-

with. If so, a closer investigation is needed. The main features of this procedure are

somehow similar to the procedure described in Recommended Practice DNV-RP-F204

’Riser Fatigue’. There are however some special conditions that apply for the latter.

That is, for top tensioned riser with constant diameter and it is particularly suitable for

risers responding at mode no. 3 or higher.

Figure 2.7: Map of vortex shedding frequency as a function of St, and eigenfrequencies
f1, f2, ..., f5.

With regards to drag, DNV GL recommends in DNV-RP-F203 ’Riser Interference’[9] to

apply Vandiver’s expression, at equation no. 2.8, for calculating drag amplification.



Chapter 3

Utilizing FEM software to

investigate riser VIV

The most common approach today for standard engineering tools to analyze VIV is to

apply an empirical model for hydrodynamic forces with a FEM based structural model.

Applying CFD to analyze VIV, especially for larger and more complex problem domain,

are hardly seen as it would require a vast amount of computational resources. Figure 3.1

displays some of the available models within the frequency and time domain. Developed

in 1999, ABAVIV remains as the only time domain program that is applied in practical

engineering today in an area mostly dominated by frequency domain models [6]. This

is because most of the empirical coefficients needed in a VIV analysis are available as

functions of frequency. Applying these coefficients in a time domain model can for that

reason not be done directly. Today, SHEAR7 describes itself as the offshore industry’s

leading software tool for the prediction of VIV [10].

Introduced in this chapter is an approach for investigating riser VIV based on the com-

bination of applying hydrodynamical coefficients from modal analysis methods with a

non-linear, time domain based, FEM software. The main aspects behind the VIVANA

model[11] is presented as a basis for implementing the present VIV analysis procedure.

15
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Figure 3.1: Overview of empirical VIV analysis programs[7].

3.1 FEDEM Software

FEDEM, an acronym for Finite Element Dynamics in Elastic Mechanisms, is a software

for effective modeling, dynamic simulation and visualization of multi-body systems, i.e.

finite element assemblies, and is developed by Fedem Technology. It utilizes a non-linear

finite element formulation that predicts the dynamic response of elastic mechanisms

experiencing non-linear effects.

Simulation of structures subjected to water and waves can be done in FEDEM OffshoreTM.

Sea environment properties, such as wave and current functions, can be defined so that

hydrodynamical loads on marine structures can be calculated. The Morison equation

can be applied to produce inertia and drag forces on a structure. Risers can be modeled

as a beam string consisting of multiple beam elements. Cross-sectional properties may

be defined along with drag and added mass coefficients. In the following section, a brief

explanation of how the dynamic simulation in FEDEM works is presented.

3.2 Non-linear time domain analysis

In FEDEM, step-by-step time integration methods are applied to solve non-linear prob-

lems in structural dynamics. An expression for the equation of motion on incremental

form should be developed in order to use these numerical methods.
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3.2.1 Dynamic equation on incremental form

The equation of dynamic equilibrium in a time domain, with time t, may be written as

FI(t, r, ṙ, r̈) + FD(t, r, ṙ, r̈) + FS(t, r, ṙ, r̈) = Q(t, r, ṙ, r̈) (3.1)

where

FI = inertia forces,

FD = damping forces,

FS = elastic forces

Q = external loads and gravitational forces,

r = displacement,

and the overdots are notation for differentiation with respect to time.

Equation (3.1) can be used to express the equilibrium at time tk(= kh), with a time step

of length h, and tk+1 respectively. Subtracting them will produce the dynamic equation

on incremental form:

∆FI
k + ∆FD

k + ∆FS
k = ∆Qk (3.2)

Expanding each term on the left-hand side of the equation yields the general form of

the incremental (linearized) dynamic equation of motion

Mk∆r̈k + Ck∆ṙk + Kk∆rk = ∆Qk (3.3)

where Mk, Ck, Kk are the system mass, damping and stiffness matrix, respectively,

at the beginning of time increment k, and ∆r̈k, ∆ṙk and ∆rk represents the change

in displacement and its time derivative, during time increment k. By applying a time

integration method to equation (3.3), we can solve ∆r̈k, ∆ṙk and ∆rk. The total

solution at the end of the increment is therefore:

rk+1 = rk + ∆rk (3.4a)

ṙk+1 = ṙk + ∆ṙk (3.4b)

r̈k+1 = r̈k + ∆r̈k (3.4c)

The forces at time k + 1 can be calculated from this solution. However, due to the

linear approximation for the inertia, damping and stiffness relationship for each time

increment, there are unbalanced forces at the end of the time increment. To correct

this, the residual forces are added to the external load increment for the next step in
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equation (3.3). Equation (3.3) can finally be expressed as

Mk∆r̈k + Ck∆ṙk + Kk∆rk = Qk+1 − [FI
k + FD

k + FS
k ] (3.5)

3.2.2 Newmark integration algorithm

The Newmark β-family algorithm is applied in FEDEM to solve the dynamic equation

from previous section by a step-by-step time integration scheme. The method applies

Cauchy’s mean value theorem to express the velocity and the displacement terms of said

equation, such that the update scheme is as follows

ṙk+1 = ṙk + (1− γ)hr̈k + γhr̈k+1 (3.6a)

rk+1 = rk + hṙk +

(
1

2
− β

)
h2r̈k + βh2r̈k+1 (3.6b)

where β and γ are integration parameters that are chosen for controlling stability, accu-

racy and efficiency for the integration. Newmark [12] showed that γ = 0.5 is a reasonable

value and gives no artificial damping into the integration process. The same value is se-

lected in the algorithm in FEDEM in addition to β = 1/4 which yields constant average

acceleration and stability for linear systems.

3.3 VIVANA

VIVANA [11] is a response and FEM based model for calculation of VIV, fatigue damage

and drag amplification of slender marine structures in current, and is developed by

MARINTEK. Empirical coefficients are applied in the hydrodynamic model in VIVANA,

while the structural model is based on a three-dimensional finite-element beam. The

basic aspect and assumptions are:

• VIV is assumed to take place at discrete frequencies that are all eigenfrequencies,

but with an added mass that is given by the local flow. The resulting response

frequencies will therefore be an adjusted eigenfrequency.

• The current must be independent of time and act in the plane of the structure or

perpendicular to this plane. The current may vary along the structure.

• Later versions of VIVANA have included both pure in-line and combined cross-flow

and in-line VIV load in addition to the existing pure cross-flow load analysis.
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• VIV response frequencies can occur concurrent or consecutive in a time sharing

process.

• The main concept of energy balance as described earlier still applies, such that

the structure can be divided into excitation and damping zones depending on the

response frequency, local diameter and local flow velocity.

Before a brief outline of the VIVANA procedure is presented, an important parameter

in VIVANA that should be introduced is the non-dimensional frequency. Empirical

coefficients for the lift force, added mass and damping depend on this parameter. It is

given as

f̂ =
foscD

U
(3.7)

where fosc is the oscillation frequency, D is the local diameter and U is the local flow

velocity. The parameter can be seen as the inverse of reduced velocity. Since the coeffi-

cients for added mass and excitation force are found from experiments by Gopalkrishnan

(1993) at a given Reynolds and Strouhal number, a correction of f̂ must be done in or-

der to use these data for other flow conditions. The non-dimensional frequency can be

corrected for an actual Strouhal number, and expressed as:

f̂ =
foscD

U

St,e
St

(3.8)

where St,e is the Strouhal number from the flow condition of the experiments that the

coefficients are found from. In the newest version of VIVANA, St,e is set to 0.2.

Added mass as a function of the non-dimensional frequency is established from forced

motion tests of cylinder sections under an assumption that a constant amplitude of

A/D = 0.5 is followed. The curve in figure 3.2 is used in VIVANA to account for added

mass variation.
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Figure 3.2: Added mass as a function of non-dimensional frequency (Gopalkrishnan)

The lift coefficient model in VIVANA is based on the same principle proposed by Blevins.

The lift curve can be determined by three points, as a function of A/D. However,

instead of applying the coefficients found by Blevins, the coefficients used in VIVANA are

largely based on experimental works by Gopalkrishnan (1993) with some modifications

by Vikestad (1998).

Recalling the lift coefficient model in figure 2.4, a lift curve can be constructed by apply-

ing the coefficients found by Gopalkrishnan and Vikestad, for a given non-dimensional

response frequency. Figure 3.3 shows how these values can be found.

Figure 3.3: Definition of lift coefficients parameters.
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Point A gives the lift coefficient value for zero response amplitude, i.e. the green curve,

and point B is given by the response amplitude that gives maximum lift and the lift

coefficient itself, i.e. the blue and black curve respectively. Finally, point C is given by

the amplitude that gives zero lift, i.e. the red curve.

3.3.1 Method overview

A step-by-step procedure is given in the following.

Step 1. Static analysis A static equilibrium condition of the structure is performed

by RIFLEX, an external analysis program.

Step 2. Eigenvalue analysis An eigenvalue analysis is done for the structure in still

water.

Step 3. Identification of possible and dominating response frequencies Since

added mass under VIV conditions is different from still water conditions, an it-

eration process is performed for each eigenfrequency found in step 2 to find new

set of possible response frequencies. f̂ is computed for each new frequency and

chosen as a possible response frequency if it is within a user-defined range. In

VIVANA 3.4, this is by default set to [0.125 − 0.2], but newer versions, such as

VIVANA 3.7, have extended this to [0.125 − 0.31]. The range selection is based

on studies done by Gopalkrishnan (1993) where it can be shown that ideal lock-in

occurs within a limited frequency bandwidth defined by CL = 0. The dominating

frequency is determined by the frequency that maximizes the excitation parameter

γexc, defined as

γexc =

∫
LE

U3D2

(
A

D

)
CL=0

dl (3.9)

where (A/D)CL=0 is the amplitude that gives zero lift and can be found from figure

3.3, and LE is the excitation length.

Step 4. Response calculation at the dominating frequency The frequency

response method is used to calculate the dynamic response. Iteration is needed

to solve the dynamic equilibrium equation and converges when the response is in

accordance with the non-linear models for excitation and damping.

Step 5. Response calculation for other frequencies than the dominating Ex-

citation may take place at other frequencies in zones outside the identified ’dom-

inating’ excitation zone. A similar calculation as for step 4 is done. Excitation

zones already taken by more dominating frequencies are not recalculated.
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Step 6. Fatigue analysis and post-processing Post-processing includes fatigue

analysis and calculations of drag forces.

3.4 Procedure for VIV analysis: FEDEM-VIV

The procedure presented here, hereafter called FEDEM-VIV, is mainly based on the

VIVANA model with the same lift coefficient parameters from figure 3.3. The response

analysis is carried out in the time domain by the dynamics solver in FEDEM and a force

prediction algorithm. Reuse of existing logic and routines in the FEDEM source code

has been emphasized in order to avoid redundancy.

Algorithm 1 FEDEM Solver

Main driver for the FEDEM Dynamics Solver

1: Establish the initial configuration

2: for each time step do // Start of time integration loop

3: Compute eigenvalues Ω

4: if time = start time then

5: Run FEDEM-VIV // Main driver for the VIV analysis

6: end if

7: Do one step of Newmark time integration

8: end for

The framework for the dynamic response analysis in FEDEM is shown in algorithm 1.

It consists mainly of the time integration method as described earlier. Additional solver

features, such as quasi-static analysis, is not described in this pseudocode.

FEDEM-VIV is implemented in Fortran 90 into FEDEM Software’s source code as a

module capable of analyzing FEDEM model files. The module is invoked during the

first time step of the response analysis, as shown in line no. 5, when a set of eigenvalues

are computed.

3.4.1 Space sharing between response frequencies

Since each response frequency will be associated to an excitation zone, it is necessary to

determine which frequency that actually will become active when zones overlap. Results

from model testing in [13] suggest that even though several response frequencies could

become active, only one frequency, the dominating one, will be seen. This leads to
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simultaneous active frequencies not having overlapping zones. The same principle is

applied in FEDEM-VIV.

The set of response frequencies are sorted in increasing order of γexc values before a

pruning process is applied to allocate frequencies to separate excitation zones. By loop-

ing through the set in such order, the frequency with smaller excitation parameter than

the next frequencies in order will have its zone reduced if they are overlapping. The

excitation zone of the dominating frequency will therefore not change.

Figure 3.4: Excitation zones for space sharing frequencies

Figure 3.4 illustrates how the excitation zones for frequency 1, 2, 3 and 4 are allocated

with this method. Frequency number 3 is the dominating response frequency and will

keep its entire excitation length. Other frequencies will have their zones reduced.

3.4.2 Identifying the dominating response frequency

A pseudocode of the implemented procedure is shown in algorithm 2. It expects the

eigenvalue analysis to calculate a set of eigenfrequencies to be given as input. Initially,

the response frequency for each eigenmode is assumed to be the respective eigenfre-

quency. The corrected non-dimensional frequency for actual Strouhal number is calcu-

lated for each beam element along the riser, such that the added mass for each element is

calculated and applied to the hydrodynamic mass matrix. When the total mass matrix

of the riser is updated by calling the Morison forces routine, a new eigenvalue analysis

is performed.
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Algorithm 2 FEDEM-VIV - Compute dominating VIV response frequency

Input: Eigenfrequencies Ω.

Output: Dominating frequency ωDom.

1: f̂min = 0.125

2: f̂max = 0.31

3: ωDom = 0

4: for each eigenfrequency ω ∈ Ω do

5: for each beam element b do

6: Assume that the response frequency is identical to ω:

fosc = ω

7: Compute non-dimensional frequency:

f̂(b) = foscD(b)
U(b)

St,e

St

8: Find added mass coefficient ca as a function of f̂

9: Update beam inertia and damping forces ⇒ FI ,FD

10: end for

11: Compute eigenvalues Ωa

12: for each eigenfrequency ωa ∈ Ωa do

13: Accept ωa as a possible response frequency:

fosc = ωa

14: for each beam element b do

15: f̂(b) = foscD(b)
U(b)

St,e

St

16: if f̂min ≤ f̂(b) ≤ f̂max then

17: Compute and increment excitation parameter:

γexc = U3D2
(
A
D

)
CL=0

∆L

18: end if

19: end for

20: end for

21: ωDom ⇒ max({Ωa(γexc)})
22: Compute excitation zones for simultaneous acting frequencies.

23: end for

As seen, this process is done for each of the initially calculated eigenfrequencies, so that

the procedure already runs in Θ(n2) space. A new set of frequencies are calculated and

the procedure recalculates the non-dimensional frequency to determine whether the new

frequency is a possible response frequency. This is done in line no. 16. An energy

criteria calculation is done to find the dominating response frequency. The dominating

frequency is calculated from the non-dimensional frequencies that yields the largest value

of γexc, see equation no. 3.9.
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Once the dominating frequency has been identified, a dynamic response analysis is per-

formed. In part 2 of the procedure, a lift coefficient curve is established for each non-

dimensional frequency by solving three unknown points with three equations. Curve

fitting is done for the imported data points in figure 3.3. The response amplitudes are

calculated according to Sarpkaya. Finally, each beam element of the riser can be assigned

a lift coefficient or a damping coefficient depending on the non-dimensional frequency.

3.4.3 VIV response analysis

VIVANA applies the frequency response method to perform dynamic response analysis.

Nonetheless, it is a disadvantage that such methods cannot fully capture local non-linear

behavior such as tension variation and endpoints interactions can cause [14]. In FEDEM

however, the time domain analysis as implemented in the simulation software can take

these nonlinearities into consideration. Excitation forces are applied as constant in time.

Figure 3.5: Update scheme of the force prediction algorithm

Recapturing the lift coefficient model of Blevins in chapter 2, where forced oscillation

tests have given an empirical model for the lift force as a function of the amplitude.

Based on this model, a force prediction algorithm is developed to predict the force

needed to displace a body for a given amplitude. An illustration of the update scheme

for the algorithm is shown in figure 3.5. An assumed initial force value Fprev is applied

to a body to cause a displacement r. The force is updated with the actual force value

Fnext for the measured displacement according to the lift coefficient curve. ∆F is the

residual force that deviates from the actual lift function value. This iterative process is

limited by the iteration step size as defined by the user. The algorithm then chooses the

lift force that yields the smallest residual force value, and computes the resulting VIV

response.



Chapter 3. Utilizing FEM software to investigate riser VIV 26

For sheared current profiles, a lift coefficient curve must be established for each discrete

data of the current velocity. Hence, each node of a riser subjected to different current

velocities must have its own lift curve. The residual force is now considered as an

accumulation Σ∆F of every nodal force prediction.

The force prediction algorithm is described in algorithm 3. The initial force vector Fprev

is 0, which means that the force prediction iteration starts at point A from figure 2.4.

For every force prediction iteration, the Newmark time integration routine is called to

perform the response analysis. When a new lift coefficient is found for the resulting

displacement r, depending whether we have large amplitude damping or not, a new

force value is computed and the residual force is incremented. Large amplitude damping

occurs when CL is negative such that A/D > (A/D)CL=0 (cf. point C in figure 2.4) .

The force vector with the lowest accumulated residual force is kept as σ∆F and is the

best prediction for an excitation force distribution.

The running time of the algorithm is asymptotically dependent on the number of time

steps n in the Newmark time integration algorithm. On average, the algorithm runs in

linear time O(n) for each iteration limit i.
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Algorithm 3 FEDEM-VIV Force Prediction - Compute VIV response for ωDom

Input: Dominating frequency ωDom and its excitation parameters.

Output: Cross-flow response amplitude and lift coefficient distribution.

1: for each node n ∈ excitation zone do

2: Initialize equations of lift coefficient curve.

3: Initialize new force component Q(n)

4: end for

5: Fprev = 0

6: Σ∆F = 0

7: for i = 1 to nIterations do

8: t = tstart

9: for each node n ∈ excitation zone do

10: Set value to force component:

Q(n) = Fprev(n)

11: end for

12: Update external forces ⇒ Q

13: while t < tend do

14: Do one step of Newmark time integration

15: Update maximum response amplitude ⇒ r

16: Increment t

17: end while

18: for each node n ∈ excitation zone do

19: Find CL as a function of r

20: if CL > 0 then

21: Compute excitation force:

Fnext(n) = 1
2ρU

2DCL∆L

22: else

23: Compute damping force:

Fnext(n) = 1
2
ρU2DCL∆L
ωDomr ẏ

24: end if

25: Increment Σ∆F :

Σ∆F = Σ∆F + abs(Fprev(n)− Fnext(n))

26: end for

27: if i = 1 or Σ∆F < σ∆F then

28: Update σ∆F = Σ∆F

29: end if

30: Fprev = Fnext

31: end for



Chapter 4

Verification study

4.1 Benchmark case

The benchmark case is reused from the initial project work[15] with some modification to

the properties of the riser. The scenario is an oil field located northwest of Hammerfest

in the Barents Sea with a mean water depth of 352 meters. A top tensioned riser (TTR),

with no strakes, is subjected to a sheared current profile, called 2/3 current distribution

because the first 1/3 of the water column has a constant velocity of 0.5 m/s, where the

the remaining 2/3 of the water depth is linearly sheared to 0 m/s at sea floor. The

verification study will analyze the TTR applied with two different tensions: (1) T = 440

kN and (2) T = 510 kN.

Figure 4.1: System overview of benchmark model

28
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4.2 FEDEM model

In FEDEM, the system is simply modeled as a beam string with 176 beam elements

subjected to the 2/3 current distribution. The total length of the riser is 352 meters.

The bottom of the riser, at the wellhead, is fully fixed in all six degrees of freedom,

and the top is constrained for translations in the horizontal plane and rotations in all

directions. Hence, the top of the riser can only move vertically along z axis.

Figure 4.2: Riser model sketch and associated boundary conditions

The material property of the riser is given as

ρsteel = 7 850 Kg/m3

E = 210 GPa

ν = 0.3125

G = 80 GPa

where ρsteel is the density of the casing material. In this case, there are no fluid, such

as mud, in the riser.
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The cross-section properties are

Do = 0.533 m

Di = 0.495 m

A = 0.03068079 m2

Ix = 0.00101460 m4

Iy = 0.00101460 m4

Ip = 0.00202920 m4

A tension force T = 440 kN is applied to the riser top, resulting in a tension force of

roughly 400kN at the wellhead, according to [16]. The corresponding wellhead force is

approximately 470 kN for T = 510 kN. The frequency bandwidth is set to [0.125− 0.31]

and a total of 10 natural modes are calculated. The finished model in FEDEM can be

seen in figure 4.3.

Figure 4.3: Riser modeled as beam elements in FEDEM

4.3 RIFLEX and VIVANA model

The input files to RIFLEX and VIVANA are configured to represent the same model

as in FEDEM, with 176 elements and identical material properties. The same linear
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axial force due to tension is applied in addition to rest of the boundary conditions. The

hydrodynamical parameters are default data as given by VIVANA[11]. The kinematic

viscosity is interpolated by VIVANA to be 1.56 · 10−6m2/s. All other parameters have

default settings, such as relative structural damping being 1% and frequency response

iteration is done with the fixed-point method.

4.4 Results: T = 440 kN

In the following will present the results from the analysis and a validation will be done.

The main findings of the response frequency analysis are presented in the first subsection

followed by the results of a thorough dynamic response analysis.

4.4.1 Response frequency results

The initial eigenvalue analysis for the TTR in still water gives the following natural

frequencies in which added mass is applied to yield a new set of response frequencies.

The computed excitation zones under the assumption that the response frequencies act

concurrently are given in figure 4.5. It shows that each response frequency is allocated

at different parts of the riser. VIVANA excitation zones are illustrated on the upper side

of the axis, facing FEDEM-VIV zones below. Excitation zones for frequency number 1

and 2 corresponds well with each other, while FEDEM-VIV slightly underestimates the

length of the fourth zone. Table 4.1 displays the result of the eigenvalue computation

and γexc is the excitation parameter for each response frequency. We can observe that

the dominating frequency appears to be 0.2627 Hz as it has the largest value of γexc.

VIVANA: T = 440 kN

Freq. no. Natural freq. [Hz] Response freq. [Hz] γexc Length [m]

1 0.0693 0.0756 0.1373 56

2 0.1462 0.1484 0.5269 38

3 0.2368 0.2200 3.1021 16

4 0.3450 0.2627 3.9333 184

5 0.4730 0.3069 3.4738 0

Table 4.1: T = 440 kN, response data as computed by VIVANA

From table 4.1, we notice that frequency no. 5 has not been allocated an excitation zone.

This is because the excitation zone of the dominating frequency overlaps completely no.
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5’s zone. Other frequencies have also had their lengths partly reduced as a consequence

of the dominating frequency.

A set of 10 natural frequencies are computed, which resulted in 100 potential response

frequencies as each natural frequency yields another 10 frequencies. Table 4.2 presents

the results from the FEDEM-VIV analysis. The comparison between the natural fre-

quencies from VIVANA and FEDEM-VIV are in good agreement, suggesting that the

boundary conditions for both TTR models to be the same. However, the response fre-

quencies computed here are slightly different from VIVANA, especially for frequency

no. 4. VIVANA estimated this frequency to be 0.2627 Hz in contrary to 0.3109 Hz in

FEDEM-VIV. Several factors might affect why the response frequency from these two

disagree, but a verification in FEDEM-VIV should be limited to how the system mass

matrix is defined. Damping forces should be neglected in an eigenvalue analysis and the

elastic forces (stiffness matrix) should be unchanged. Since FEDEM-VIV applies the

same added mass coefficient database as VIVANA, the difference in response frequencies

can be found by investigating the subroutine in FEDEM that updates the Morison forces

in line 9 of algorithm 2. The resulting excitation lengths will also be an effect of the

differences we see for the response frequencies.

FEDEM-VIV: T = 440 kN

Freq. no. Natural freq. [Hz] Response freq. [Hz] γexc Length [m]

1 0.0693 0.0811 0.1585 50

2 0.1462 0.1496 0.5418 38

3 0.2368 0.2141 2.9610 32

4 0.3449 0.3109 3.3991 171

5 0.4728 0.3270 3.1201 0

Table 4.2: T = 440 kN, response data as computed by FEDEM-VIV

Figure 4.4 illustrates the setup for the TTR under the assumption that the dominating

response frequency fosc = 0.2627 Hz. The corrected non-dimensional frequency f̂ is

shown and defines the excitation and damping zone for the system. The transition from

excitation to damping occurs at 168 m. The lower part of the TTR, where f̂ > f̂max,

experiences low reduced velocity damping.

Response freq. [Hz] Length [m]

VIVANA 0.2627 184

FEDEM-VIV 0.3109 171

Table 4.3: T = 440 kN, comparison of dominating VIV response
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Figure 4.4: Damping and excitation zone for riser with fosc = 0.2627 Hz

Figure 4.5: Comparison of excitation zones, T = 440 kN
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For verification purposes, the rest of the VIV analysis of T = 440 kN TTR in FEDEM-

VIV will apply the results from VIVANA such that viable comparisons can be made.

The dominating response frequency to be further investigated is henceforth fosc = 0.2627

Hz with an excitation length of 184 m. The distribution of added mass coefficients along

the TTR is identical on both analysis and is given in figure 4.6.

Figure 4.6: Added mass coefficient for response frequency 0.2627 Hz, T = 440 kN

4.4.2 Dynamic response results

As part of the verification study, a set of test cases for FEDEM-VIV is developed to see

how many iterations of the force prediction algorithm is necessary to yield a converged

force distribution. Large amplitude damping in excitation areas is differentiated by

defining two set of criteria: (1) where CL = −0.05 for any A/D > (A/D)CL=0, such

that the damping force is constant, and (2) where we introduce a lower limit of the

excitation coefficient, CL,floor = −0.1. For CL > CL,floor, the actual value is applied to

calculate the damping. This pragmatic approach can be explained by the self-limiting

response of VIV. Carlsen explains in [7] that the response amplitude of circular cylinders

in general will not exceed A/D = 1.2. In addition, SHEAR7 version 4.4 has implemented

CL,floor = −0.1 as default setting. Table 4.4 gives an overview of the test cases.
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Case Iteration limit Criteria for CL < 0

1 64 fixed: CL = −0.05
2 200 fixed: CL = −0.05
3 256 fixed: CL = −0.05
4 64 CL,floor = −0.1
5 200 CL,floor = −0.1

Table 4.4: T = 440 kN, FEDEM-VIV test cases

Each test simulation is set to run for 4 seconds with a time step of 0.1 seconds. 4

seconds is assumed to be sufficiently long enough for the system to reach steady-state

vibration for the given response frequency. Figure 4.7 illustrates the oscillation shapes

for each time series as computed by VIVANA, confirming that maximum amplitude can

be observed after 3.81 seconds. A longer simulation length will also ensure potential

initial instability effects of the system to disappear, as the excitation forces are constant

and applied instantly to the system.

Figure 4.7: Snapshot for different time step, T = 440 kN

Results from case 1, and a comparison of case 2 and case 3 are presented in figure 4.8

and 4.9. In case 1, the minimal residual force distribution is found after 30 iterations.
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However, further increments can improve the prediction as the dynamic response after

30 iterations, shown in figure 4.8, suggests a rather undervalued response compared to

oncoming VIVANA results. The force distribution for a fixed CL seems to converge after

166 iterations as figure 4.9 shows close to same response shape as after 227 iterations.

Figure 4.8: Case 1 - Max. nodal displacements after 30 iterations, T = 440 kN

A comparison of the response shape between FEDEM-VIV and VIVANA is shown in

figure 4.10. The location of the large peaks on the TTR are somehow offset, but have

slightly the same maximum values as computed in VIVANA. The response frequency

corresponds to mode 4, in which four local extreme points are observed in the VIVANA

response shape, as opposed to the three local peaks found in FEDEM-VIV. This may

be explained by the constant excitation force in FEDEM-VIV that lacks periodic vari-

ation and phase shift, whereas these effects are accounted for in VIVANA through the

frequency response method. The excitation force in FEDEM-VIV is applied as constant

in terms of time and direction as a pragmatic way to measure maximum amplitude in

a time domain. A deviation of approximately 8% is found for the local maximal ampli-

tudes between these two analysis. Absolute maximum amplitude according to VIVANA

is 0.47 m, or A/D = 0.88.

Figure 4.11 and 4.12 show the excitation force distribution for each iteration limit in

case 1, and case 2 compared with case 3. As mentioned, the converged force distribution
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Figure 4.9: Case 2 and case 3 - Comparison of max. nodal displacements, T = 440
kN

can be seen after 166 iterations. Negative value of the lift force implies damping and

acts in the opposite direction.

Setting a fixed CL = −0.05 for all values of CL < 0 has an effect of reducing the total

energy added to the system, since the contribution from damping is significantly smaller.

The excitation force distribution after 166 and 227 iterations can therefore be considered

as an underestimation of what it would be in reality since the force needed to oscillate

a riser is smaller in order to obtain dynamic equilibrium.

Moving onto the next lift force criteria, the resulting force distribution with CL,floor =

−0.1 from case 4 and 5 are illustrated in figure 4.14 and 4.16. After 19 iterations in

case 4, the excitation force distribution agrees better with the result from VIVANA

than the previous force distributions with fixed CL. A comparison between the force

distribution from case 4 and VIVANA is shown in figure 4.14. VIVANA seems not to

differentiate between lift and damping forces in the graphical presentation, but FEDEM-

VIV indicates that large amplitude damping is seen between 168 and 188 meter mark of

the riser. This is consistent with the response shape at the same area. From the same

figure, a maximum peak can be found acting at the same beam element of the TTR
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Figure 4.10: Comparison of responses for frequency 0.2627 Hz, T = 440 kN

as in VIVANA, and the same nodal forces can be seen close to sea level. The resulting

maximum amplitude of 0.45 m, or A/D = 0.84 can be seen in figure 4.13. Again, the

response shape in case 4 is not well captured, but the location of maximum amplitude

seems to be close to VIVANA.

Results from case 5 are shown in figure 4.15 and 4.16 and is a rather unlikely response

with A/D > 2. However, this case is included in the results as it shows the effect of

high number iterations where damping forces are contributing in a larger scale than for

the fixed coefficient case. Further work into controlling negative lift coefficients as a

parameter is necessary. This is reflected by SHEAR7 setting the negative lift coefficient

as a user-defined parameter. FEDEM-VIV suggests in case 5 damping and lift forces

exceeding 100 N per beam element length, a rather conservative estimation.
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Figure 4.11: Case 1 - Excitation force distribution after 30 iterations, T = 440 kN

Figure 4.12: Case 2 and case 3 - Comparison of excitation force distributions, T =
440 kN
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Figure 4.13: Case 4 - Response amplitude after 19 iterations, T = 440 kN

Figure 4.14: Comparison of excitation force distribution after 19 iterations, T = 440
kN
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Figure 4.15: Case 5 - Response amplitude after 200 iterations, T = 440 kN

Figure 4.16: Case 5 - Excitation force distribution after 200 iterations, T = 440 kN
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4.5 Results: T = 510 kN

The following will present the results from the T = 510 kN analysis.

4.5.1 Response frequency results

As expected, increasing the tension will also increase the natural frequency of the TTR.

The dominating response frequency according to VIVANA belongs to mode number 4

as previously seen and is fosc = 0.2653 Hz, which is a small increase from before.

VIVANA: T = 510 kN

Freq. no. Natural freq. [Hz] Response freq. [Hz] γexc Length [m]

1 0.0739 0.0785 0.1486 56

2 0.1548 0.1549 0.5680 38

3 0.2487 0.2277 3.2917 14

4 0.3593 0.2653 4.0490 182

Table 4.5: T = 510 kN, response data as computed by VIVANA

Comparing the the frequencies found by FEDEM-VIV in table 4.6 with table 4.5, the

dominating frequency identified by FEDEM-VIV corresponds better with VIVANA now.

This might be an effect of the increased elastic forces overshadowing potential uncer-

tainties caused by added mass as the stiffness is increased.

FEDEM-VIV: T = 510 kN

Freq. no. Natural freq. [Hz] Response freq. [Hz] γexc Length [m]

1 0.0739 0.0825 0.1672 50

2 0.1548 0.1548 0.5697 32

3 0.2486 0.2170 3.0443 16

4 0.3592 0.2377 3.3552 185

Table 4.6: T = 510 kN, response data as computed by FEDEM-VIV

However, the dominating excitation lengths agrees well within two beam element lengths,

as shown in figure 4.17. Applying the same methodology of validation as before, the

dominating frequency fosc = 0.2653 Hz with an excitation length of 182 meters will be

further investigated in the next section.
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Figure 4.17: Comparison of excitation zones, T = 510 kN

Response freq. [Hz] Length [m]

VIVANA 0.2653 182

FEDEM-VIV 0.2377 185

Table 4.7: T = 510 kN, comparison of dominating VIV response

4.5.2 Dynamic response results

In the dynamic response analysis of the TTR with T = 510 kN, the response frequency

to be investigated is fosc = 0.2654 Hz, as computed by VIVANA. A similar testing

framework based on the previous validation work is applied here, as shown in table 4.8.

Case Iteration limit Criteria for CL < 0

6 200 fixed: CL = −0.05

7 200 CL,floor = −0.1

Table 4.8: T = 510 kN, FEDEM-VIV test cases
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VIV response from case 6 with fixed CL is shown together with the response from

VIVANA in figure 4.18. The algorithm found the smallest accumulation of residual

forces after 198 iterations. As seen, the FEDEM-VIV response is clearly overestimated

with A/D ≈ 1, in contrast to A/D ≈ 0.8 in average in VIVANA. The corresponding

excitation force distribution for case 6 in figure 4.19 shows in addition little resemblance

with the prediction from VIVANA, except for a downscaled similarity between 200 and

240 meters of the TTR.

Figure 4.18: Case 6 - Comparison of responses for frequency 0.2653 Hz, T = 510 kN

Case 7 yields the best prediction after only 30 iterations. Comparing the VIV response

with VIVANA in figure 4.20 shows different response shapes. However, it shows that the

maximum amplitude is similar to the predicted value in VIVANA. With a lower limit of

the lift coefficient, the excitation force distribution for case 7 in figure 4.21 shows good

agreement with VIVANA, although not capturing the damping forces entirely. The

force peak at around 230 meters, and the rest of the TTR to sea level, is predicted by

FEDEM-VIV to be in good agreement VIVANA.
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Figure 4.19: Case 6 - Comparison of excitation force distribution after 198 iterations,
T = 510 kN

Figure 4.20: Case 7 - Comparison of responses for frequency 0.2653 Hz, T = 510 kN



Chapter 4. Verification study 46

Figure 4.21: Case 7 - Comparison of excitation force distribution after 30 iterations,
T = 510 kN



Chapter 5

Conclusion and future

perspectives

An analysis tool for prediction of VIV on marine risers has been developed in FEDEM.

The methodology behind the tool is a combination of frequency and time domain models

that is able to handle non-linear effects. Empirical models and its hydrodynamic coef-

ficients as needed in a VIV analysis are adopted into FEDEM-VIV. A force prediction

algorithm has been implemented in order to calculate amplitude-dependent excitation

forces, allowing a time domain analysis to apply frequency domain-based models. In

addition, a pragmatic approach to capture hydrodynamic damping forces is introduced

to easily obtain maximum response amplitudes.

Validation studies have been carried out for a 352 meter top tensioned riser subjected

to sheared current, and a great effort was made to validate FEDEM-VIV against VI-

VANA. Seven test cases were developed with different number of iterations and criteria

for capturing damping forces. For the cases where the lift coefficient was fixed, the pre-

dicted maximum amplitudes were within a range of 8% from VIVANA, although case 6

showed somehow overvalued amplitudes. The overall response shape is however not well

captured. For the cases with a lower limit of the lift coefficient, the predicted excitation

force distribution by FEDEM-VIV was in better agreement with VIVANA than for the

former cases.

The validation studies show that further tuning of damping forces in FEDEM-VIV

should be carried out to obtain same response shape as found in VIVANA. The lift

forces should be applied as sinusoidal to capture the phase shifts. This will significantly

improve the capture of the response shape envelope. More accurate response frequencies

can be obtained by further investigation into how the procedure for Morison forces affects

the system mass matrix in FEDEM, especially for risers with low tension.

47



Chapter 5. Conclusion and future perspectives 48

However, with these uncertainties and simplifications in mind during development, the

current approach represents a good solution for a time domain VIV predictor when all the

essential hydrodynamical effects are accounted for in FEDEM-VIV. The force prediction

algorithm, as its name suggests, is force-oriented. A tuning of the algorithm to predict

displacement could improve the procedure. In addition, the algorithm tends to suggest

higher displacements as the iteration limit increases. A different start value for the initial

force or implementing a search pattern algorithm could yield more iteration consistent

results. Nonetheless, a comparison of the excitation force distribution between FEDEM-

VIV and VIVANA in case 7 showed good agreement, when high amplitude damping is

disregarded.

Further research into applying frequency domain based models into a transient time

domain simulation should be carried out to capture the response shape of a riser. Ana-

lyzing VIV in a non-linear time domain model is needed, especially since fatigue damage

generally occurs in non-linear areas of a structure. The validation study has shown that

FEDEM-VIV has the potential to be a feasible procedure, but more efforts, in addi-

tion to extensive validation studies, are needed for this approach to be used in practical

engineering.

FEDEM-VIV differs from existing software solutions such as VIVANA and SHEAR7

by analyzing in the time domain instead of the common frequency domain approach.

The presented approach introduces a more powerful and accurate analysis model. Non-

linear boundary conditions and axial interactions can be accounted for in addition to

currents being able to vary in both magnitude and direction with time. Risers with VIV

suppression devices such as strakes can be included by importing empirical data from

experiments.
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