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Abstract

Recovering the true image, or true signal, from a corrupted one is by no means
a trivial task, and we will in this paper study some approaches to finding
good approximations to this unknown true image. The main focus will be
on a minimization method based on wavelet decompositions of images and
finding a solution which is sparse with respect to the wavelet basis. We then
argue that knowledge of the position of edges between objects in the image
could be utilized with the aim to improve the edge preserving capabilities
of the method. Therefore, we present an edge detection approach and a
subsequent edge dependent weighting of the coefficients in the minimization
method. If this method does in fact improve the appearance of the solution,
we shall seek a more sophisticated and efficient approach. Borrowing a phase
field approach used by Ambrosio and Tortorelli to approximate a solution to
the Mumford–Shah functional, we construct a modified functional where the
edge dependent weighting is found based on the phase field. After developing
an alternating minimization method, we test the different approaches on a
blurred image, and study the differences in the results.
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Sammendrag

Et kjent problem i signalbehandling er å rekonstruere det originale bildet,
eller et signal av en annen type, fra et som er uskarpt eller på en annen måte
ødelagt. Dette er er på ingen måte en triviell oppgave. Vi vil i denne opp-
gaven studere metoder for å finne gode approksimasjoner til dette ukjente,
virkelige bildet. Hovedfokuset vil være på en minimeringsmetode basert på
wavelet dekomponering av bilder, og å finne løsninger som har få koeffisien-
ter som er større enn null med hensyn til wavelet basisen. Vi argumenterer
deretter for at kunnskap om hvor kanter mellom objekter i bildet befinner seg
kan brukes med det mål å forbedre metodens evne til å bevare disse. Derfor
presenterer vi en metode for å detektere kanter, og innfører deretter kan-
tavhenging vekting av koeffisientene i minimeringsmetoden. Dersom dette
gir den ønskede effekten søker vi en mer elegant og effektiv metode. Vi låner
en tilnærming brukt av Ambrosio og Tortorelli for å finne en approksimasjon
til Mumford–Shah funksjonalen, og konstruerer en modifisert funksjonal hvor
den kantavhengige vektingen finnes fra et fasefelt. Vi utvikler en alternerende
minimeringsmetode, og tester den og de andre metodene på et uskarpt bilde,
før vi studerer forskjellene i resultatene.
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Chapter 1
Introduction

A lot has happened since the first attempts at photography in the early 19th
century that required days of exposure, through it becoming available to
the masses in the beginning of the 20th century and to the fast pace, never
ending production of digital images and videos happening today. Nowadays
we use photography in many forms to study anything from micro structures
to far away galaxies, and we expect the images to be of a certain quality.
This, however, is often hindered by apparatus imperfections or other exter-
nal factors. We therefore rely on image processing to help restore quality,
and extract and otherwise process the information contained in the image.

In image processing, input images are processed using mathematical opera-
tions to produce a specific type of output, that being another image with a
certain quality or other information extracted from the input. Two important
image processing tasks are the processes of removing blur and noise from cor-
rupted images. Noise and blur are unwanted errors naturally introduced in
most images due to equipment imperfections or limitations and external dis-
turbance such as camera motion, object motion or atmospheric disturbances.

In the problem of deblurring and denoising, the aim is to extract the true im-
age from the blurred and noisy recorded image. If the nature of the blurring
process is well known and defined, the process is called non-blind restora-
tion, as opposed to blind restoration where such information is not available.
In this paper, we will assume that this information is available, as blurring
often is a result of a known process. As for noise, we will assume that it is
additive, meaning it is independent of the input signal (the true image), and
the recorded image is a sum of the true image and the noise. The deblurring
and denoising problem now becomes the inverse problem of recovering the
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Chapter 1. Introduction

true image from the corrupted recorded image. This is however an ill posed
problem, so additional requirements on the solution has to be introduced.

In order to solve inverse problems, one can introduce mild assumptions on
the solution through regularization. The assumptions could be on the size
or smoothness of the solution, and solving a regularized problem should pro-
duce suitable approximations to the original problem. In 1989, Mumford and
Shah proposed [15] the idea of letting such an approximation be a segmen-
tation, or as they called it the “cartoon version” of the image. A segmented
image is one that has been separated into smooth areas, and is of interest in
many fields, such as medical imaging. The idea is to find areas that have ap-
proximately the same property, for example uniform color, and represent the
image as a collection of such areas. Assuming some regularity of the imaged
objects, Mumford and Shah claimed that an image can be segmented into
piecewise smooth regions separated by a finite set of edges. The resulting
approximation will look like a cartoon, with sharply drawn edges surround-
ing objects drawn without texture. Finding the approximation now becomes
an optimization problem, minimizing a functional with respect to the piece-
wise smooth representation and the collection of edges. The functional they
defined is, however, not easy to deal with in practice.Therefore, several ap-
proximations have been proposed, among them a phase field based approach
by Ambrosio and Tortorelli.

In recent years, the idea of sparsity requirements on the solution has be-
come popular. Instead of the previous Sobolev norm regularizations, this
method require the solution to be sparse with respect to some orthonormal
basis, that is: only a finite number of coefficients with respect to the or-
thonormal basis should be non zero. With this requirement, one could find
solutions with some of the same characteristics as the segmented images de-
scribed above. In order to achieve this, we will in this paper study problems
regularized by a weighted `p-norm of the solutions with respect to a Haar
wavelet basis. Wavelets provide an orthonormal basis well suited for decom-
posing images, and in addition, an equivalent norm with spaces well suited
for describing smoothness properties of functions, namely Besov spaces. An
iterative method to minimize a functional regularized by such a sparsity con-
straint has been proposed by Daubechies et al. [5], and we will study this
method’s reconstruction abilities on a blurred image. In addition we will try
to improve the method’s edge preservation abilities by incorporating an edge
detector and a subsequent edge dependent weighting of the coefficients. We
expect that this will in some sense allow us to favour nonzero coefficients in
the areas of the image that constitute edges between objects.
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Motivated by the similarities between the expected results of the Mumford–
Shah approximation and the sparsity constrained approximation, we will
propose a modified Mumford–Shah functional. Combining the phase field
approach of the Ambrosio and Tortorelli approximation and the `p penal-
ization of the wavelet coefficients, we hope to improve even further on the
edge preservation capabilities of the reconstruction. We will in the following
present, study and develop the methods needed to solve the mentioned prob-
lems. First, we will present some aspects of image processing, before we will
introduce wavelet decomposition and some related topics. We then move
on to the methods, introducing an iterative thresholding algorithm before
proposing a modified Mumford–Shah idea. After developing the numerical
methods, we test the implementations on a blurred image and study the
results.
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Chapter 2
Image processing

In signal processing, images are in some way processed to enhance or restore
properties or to extract information not readily available, We will in this
section introduce a few properties of images, two unwanted errors that can
occur, and explain why the task of removing such errors can be challenging.

2.1 Images, blur and noise

Images are an important part of most peoples lives. We see live images
through our eyes, capture images for the future with our cameras and rely
on our dentist to assess our dental health from x-ray images. Micro organisms
are studied through microscopes and far away galaxies through telescopes.
With the technology we have today, we expect images to be of a certain
quality.

What characterizes what we would call a “good” image, is among other
things, that pictured objects are easily told apart from other objects or ar-
eas in the image with different characteristics, such as color. However, in
the process of capturing and storing images, unwanted errors often occurs.
Imperfections of devices, such as camera lenses or chips, or mistakes such as
the camera moving can impact and diminish the quality of images. In image
processing, images are analysed and manipulated with the goal to improve
on such errors or otherwise extract information. In the following, a few types
of these unwanted errors are presented.
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Chapter 2. Image processing

2.1.1 Blur

We say that an image is blurred if part of, or the whole, image appears out of
focus. Edges can be unclear, details are lost and the photographs can appear
smudged. Blurring often occurs as a result of camera motion, defocus or lens
or mirror defects, to mention a few. One famous example of a mirror defect
causing blurry images comes from the Hubble Space Telescope [7].

In 1990 the Hubble telescope was launched into low Earth orbit. Its mis-
sion was to record images without some of the limiting factors that ground
based telescopes face, such as background light and turbulence in the at-
mosphere. Within weeks of the launch it was clear that the telescope was
not able to produce a sharp focus, and the image quality was much lower
than expected. The fault was identified as being a result of the main mirror
being ground to the wrong shape, so that parallel light rays reflected off the
mirror near the center focus at a different point than light rays reflected off
the mirror closer to its edges. This effect is known as spherical aberration,
and the multiple focal points produce a blurred image. This blurring effect is
well defined, and can be modelled by a convolution operator with a low pass
filter. In the following, we will consider such blur modelled by convolution.

2.1.2 Noise

Noise is unwanted, random variation of the intensity in an image. In digital
images, it appears as pixel level variation. Noise can occur during the process
of taking an image, for example due to chip noise in poor lighting conditions
or chip defects, or in digital post processing.

A common type of noise is Gaussian, additive and independent, meaning
that each pixel value is a sum of the true value and a random fluctuation
which is normally distributed and independent of the pixel value. This type
is called Gaussian noise, and can for example be sensor noise caused by poor
lighting conditions. In digital cameras, images are recorded by a chip that
registers photons. By nature, the density of photons are subject to random
fluctuation, so the recorded pixel value is always a sum of a true signal and
a random error, the noise. So, even though such noise is always present, it
is more noticeable in poor lighting conditions, meaning fewer photons, be-
cause the ratio between noise and the signal is higher that in good lighting
conditions.
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2.2 Ill posedness of the inverse problem

2.2 Ill posedness of the inverse problem
In this paper, we will consider an observed image g over a rectangular domain
Ω ⊂ R2. We assume that the image has been corrupted, or blurred, by some
process, and possibly disturbed by some kind of noise. Mathematically, we
can represent the observed image g as the sum of a convolution between a
blur kernel h and a “perfect world” image u and an additive noise n, namely

g = h ∗ u+ n. (2.1)

We will assume that the blur kernel h is known and symmetric. Also, we
will assume that n is white Gaussian noise, meaning that the noise is drawn
from an independent zero mean normal distribution with variance σ, so that
n ∼ N(0, σ2). Now, one could propose the idea of minimizing the functional∫

Ω
(g − h ∗ u)2dx

to find the “perfect world” image u. However, this problem is an inverse
problem, and turns out to be ill posed.

First, let us recall a few known facts. We say that a function f in in the
space L2 if the following holds ∫

f 2dx <∞,

and the sequence {ck} is in the space `2 if∑
k

c2
k <∞.

For simplicity, let us consider the one-dimensional setting, and try to solve
the minimization problem in the Fourier domain. We know that for a function
f the following holds

f ∈ L2(Ω)⇒ F(f) ∈ `2(Z). (2.2)

Now if f ∈ H1(Ω), this implies f (1) ∈ L2(Ω). Let fm be the m-th Fourier
coefficient of f , then we have

fm(im) ∈ `2(Z)

so
∞∑

m=−∞
|f 2
m||m|2 <∞.
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Chapter 2. Image processing

For our problem we are looking for a solution u inH1(Ω), we know h ∈ H1(Ω)
but n /∈ H1(Ω). If we take hm and nm to be the m-th Fourier coeffi-
cients of h and n respectively, this means that ∑∞m=−∞ h

2
m|m|2 < ∞ and∑∞

m=−∞ n
2
m|m|2 = ∞. Taking the Fourier transform of Equation (2.1), we

get
F(g) = F(h)F(u) + F(n).

Define y as the solution of h ∗ y = g, so that we can write

F(y)F(h) = F(g),

and
F(y) = F(g)

F(h) = F(u) + F(n)
F(h) .

Therefore
ym = gm

hm
= um + nm

hm
.

Let us consider the last term in the equation above. Since h is in H1 and n is
not, the coefficients hm must go to zero much faster than nm, and nm

hm
→∞.

Thus, we are left with a solution that is not in H1(Ω). To deal with this
problem, we will need to introduce regularization terms.
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Chapter 3
Wavelets

When working with signals it is sometimes desirable to extract information
that is not readily available by studying the signal as is, compress it for
more effortless storage or remove unwanted data, such as noise. One popular
approach is the Fourier transform. This takes a signal from its original, often
time or spatial, domain to the frequency domain. That is, after transforming
a signal, we are left with information on exactly what frequencies occur in
the signal. However, all information on when, or where, these frequencies
occur are not available in the transformed signal. This can be a non-issue
in certain cases, but quite problematic in others. To give an example, say
we are studying a musical piece and want to reproduce it on an instrument
of our choice. It would not help us much to know frequencies occurs in
the piece, if we do not know when and in which order. Even though there
are approaches to make such information available with Fourier transforms,
like the Short Time Fourier Transform, this sacrifices the resolution of the
solution. Another approach is to use the Wavelet transform [14].

3.1 Haar wavelets
To understand wavelets, we shall start with 1-dimensional signals and intro-
duce the theory through Multiresolution Analysis. Then we will use this to
extend the theory to the 2-dimensional case, which we need to study images.

3.1.1 The scaling function and wavelet
Wavelet analysis is similar to Fourier analysis in that it approximates a func-
tion as a sum of basis functions. Unlike the sin and cos base functions of the
Fourier analysis however, which is only localized in frequency, the wavelet
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Chapter 3. Wavelets

basis functions are localized both in frequency and time. To generate the
base functions, two prototype functions must be chosen. These are the scal-
ing function, also called averaging function, φ and its corresponding wavelet
ψ. The two functions must be compactly supported and satisfy the following
requirements ∫ ∞

−∞
φ (x) dx = 1,∫ ∞

−∞
ψ (x) dx = 0,∫ ∞

−∞
φ (x)ψ (x) dx = 0.

Given these two functions we use translations and dilations of them to gener-
ate the basis functions. We will talk about the scale of a wavelet, referencing
the size of its support, which is changed through the dilation of ψ. A large,
or coarse, scale wavelet gives the main feature of the signal over an interval,
while finer details will be showed by the small scale wavelets. There are
different wavelet transforms, but as we in this paper study discrete signals
in terms of images, we shall use the discrete wavelet transform (DWT). In
order to understand the methods of the DWT, we will first introduce the
Multiresolution Analysis (MRA).

3.1.2 Multiresolution analysis
The multiresolution analysis (MRA) is a framework suited to create basis of
scaling functions and wavelets, and to decompose a signal into successively
coarser approximations and details. We start with the space L2 (R), that is,
the space of all functions f for which∫

R
f 2dx <∞.

The MRA consists of a sequence of nested subspaces Vj that approximates
L2 (R), and satisfies a few other criterions, all of which are summed up below.

1. The spaces are nested: Vj ⊂ Vj+1,

2. The union of the spaces is dense in L2 (R), that is: ∪j∈ZVj = L2 (R),

3. ∩j∈ZVj = {0},

4. The following scaling relation holds: f (·) ∈ Vj ⇔ f (2−j·) ∈ V0,

10



3.1 Haar wavelets

5. There is an φ ∈ V0 such that the set {φ (x− k) , k ∈ Z} is an orthonor-
mal basis for V0.

If the above holds, we say that the collection {Vj, j ∈ Z} is a MRA with
scaling function φ.

The scaling function

We will now construct an orthonormal basis of the spaces Vj given the basis
of V0. The space V0 has an orthonormal basis {φ0k, k ∈ Z}, where

φ0k(x) = φ (x− k) .

In order to establish the orthonormal basis of Vj, we first use the scaling
relation. If f (2−jx) ∈ Vj, then we must have f (x) ∈ V0. That is, it can
be expressed as a sum of the basis functions {φ (x− k) , k ∈ Z}. Let us
substitute x with 2jx, which gives us that f (x) can be expressed as a linear
combination of {φ (2jx− k) , k ∈ Z}. To ensure orthonormality, we need

∫
φ
(
2jx− k

)
φ
(
2jx− l

)
dx = δkl =

1 if k = l

0 if k 6= l.

Let us calculate∫
φ
(
2jx− k

)
φ
(
2jx− l

)
dx = 2−j

∫
φ (x− k)φ (x− l) = 2−jδkl,

because the φ0k are orthonormal. Thus, we have that if Vj is a multiresolution
analysis with scaling function φ, the space Vj is spanned by the orthonormal
basis {

φjk (x) = 2j/2φ
(
2jx− k

)
, k ∈ R

}
.

The spaces Vj are called approximation spaces because any f ∈ L2 (R) can
be approximated to a precision of our choice by a function in Vj, as long as
we choose j large enough.

The wavelet

We have now established the basics of the scaling function, so let us bring
the wavelet into the picture. Because Vj ⊂ Vj+1, we know we can express the
scaling function φ (x) ∈ Vj as a sum

φ (x) =
∑
k∈Z

h (k)
√

2φ (2x− k) (3.1)

11



Chapter 3. Wavelets

where h (k) = 〈φ (x) , φ (2x− k)〉. However, the opposite is not necessarily
true, we are not guaranteed that a scaling function in Vj+1 can be expressed
as a sum of functions in Vj. With this in mind, we seek a space Wj which is
the orthogonal complement of Vj to Vj+1, so that

Vj+1 = Vj ⊕Wj.

If we can find basis functions for such a set, we can decompose a scaling
function in Vj+1 into a sum of coarser scale scaling functions and their or-
thogonal complements. We will therefore seek a set of basis functions for Wj

in accordance with the MRA.

As for the scaling function, we start with the case j = 0. We know ψ ∈ V1,
meaning we can express it as a sum

ψ =
∑
k

akφ1k.

Our goal now is to find the coefficients ak such that ψ is orthogonal to the
reference space V0,

ψ ⊥ V0,

and to its translates

ψ (x− k)⊥ψ (x) for {k ∈ Z\ {0}} .

It is possible to show, see for example [14], that these conditions are fulfilled
if we define

ak = (−1)k h (1− k) ,

with h(k) given by (3.1), so that

ψ (x) =
∑
k∈Z

(−1)k h (1− k)φ (2x− k) .

Further, the set
{ψ (x− k) , k ∈ Z}

is an orthonormal basis for the spaceW0. Similarly as for the scaling function,
we can use the scaling relation of the MRA to find that a orthonormal basis
for Wj is {

ψjk (x) = 2j/2ψ
(
2jx− k

)
, k ∈ Z

}
.
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3.1 Haar wavelets

Decomposing a signal

Let us now see how we use these sets of basis functions to decompose a
signal. Say we have a signal f ∈ L2 (R) that we wish to decompose. Then,
because of the density of ∪jVj, one can find a N such that ‖f − fN‖L2 < ε
for fN ∈ VN and a preassigned precision ε ≥ 0. Let us for ease of notation
assume now that f = fN . Then, we know that we can express the function
as the sum

f =
∑
k∈Z
〈f, φN,k〉φN,k.

Using the decomposition VN = VN−1 ⊕WN−1, we can write this as

f =
∑
k∈Z
〈f, φN−1,k〉φN−1,k +

∑
k∈Z
〈f, ψN−1,k〉ψN−1,k.

Continuing the decomposition of the φ’s to a desired coarsest level, here
chosen as j = 0, we finally arrive at the following wavelet expansion

f =
∑
k∈Z
〈f, φ0,k〉φ0,k +

N∑
j=0

∑
k∈Z
〈f, ψj,k〉ψj,k.

We have now established the wavelet decomposition of a signal.

3.1.3 The Haar wavelet

There are many pairs of scaling functions φ and wavelets ψ, but we will use
the oldest and simplest of them all, namely the Haar functions. The Haar
scaling function is a box function defined by

φ (x) =

1 if x ∈ [0, 1) ,
0 else,

(3.2)

while the wavelet is defined as

ψ(x) =


1 if x ∈

[
0, 1

2

)
−1 if x ∈

[
1
2 , 1

)
,

0 else.
(3.3)

13
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(a) Haar scaling function.
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(b) Haar wavelet.

Figure 3.1: Haar functions.

3.1.4 Two dimensional wavelets
We have now established sets such that L2 (R) = ∪jVj. However, this theory
can be extended to higher dimensions, and as we will work with images in
L2 (R2), we will introduce some theory for the 2-dimensional wavelet analysis.

The question now, is if we can approximate functions in L2 (R2) as a sum of
basis functions, and if yes, how do we find appropriate basis functions? Let’s
start with the relation

L2
(
R2
)

= L2 (R)⊗ L2 (R) ,

which basically means that any function u(x, y) in L2 (R2) can be represented
as a sum of products of two functions say fk and gk, in L2 (R2), namely

u(x, y) =
∑
k

fk(x)gk(y).

Using the Haar scaling functions defined in the previous section, this means
that every function in L2 (R2) can be approximated by characteristic func-
tions of rectangles.

Now, again using the relation stated above, we shall construct the two-
dimensional basis functions. We write

L2
(
R2
)

= L2 (R)⊗ L2 (R)

= (∪jVj)⊗ (∪jVj)
= ∪jVj ⊗ Vj.

Therefore, we define
V̂j = Vj ⊗ Vj

14



3.1 Haar wavelets

so that
L2
(
R2
)

= ∪jV̂j.

We then seek the orthogonal complement Ŵj of V̂j in V̂j+1, recalling the one
dimensional relation

Vj+1 = Vj ⊕Wj.

Using this and the definition of V̂j, we find

V̂j+1 = Vj+1 ⊗ Vj+1

= (Vj ⊕Wj)⊗ (Vj ⊕Wj)
= (Vj ⊗ Vj)⊕ (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj) .

We recognise the first tensor product as the already defined V̂j, so we define

Ŵj = (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj) .

Now we recall the fact that if uk(x) is a basis of U and vk(y) is a basis of V ,
then uk(x)vk(y) is a basis of U ⊗ V . Using this relation, we can now express
the 2 dimensional scaling function and wavelets in terms of the 1 dimensional
definitions we already have in equations (3.2) and (3.3). The scaling function
is defined as

Φ (x, y) = φ (x)φ (y) .
As for the wavelets there are now three of them, all arising from the different
tensor products in the definition of Ŵj, namely

Ψ (x, y) =


φ (x)ψ (y)
ψ (x)φ (y)
ψ (x)ψ (y) .

Haar wavelets

For the 2-dimensional Haar wavelets, this means that we have basis functions
that are non-zero over rectangular domains,and we represent the functions
in figure figure 3.2. We now have a framework we can use to decompose

(a) φ(x)φ(x) (b) φ(x)ψ(y) (c) ψ(x)φ(y) (d) ψ(x)ψ(y)

Figure 3.2: 2-dimensional Haar functions.

2-dimensional signals, and we will put this into perspective with image pro-
cessing in Section 3.2.

15



Chapter 3. Wavelets

3.1.5 Notation
In the following, the notation would become cumbersome and confusing if
we were to denote which of the tree versions of wavelets in the definition of
Ψ we are dealing with, which of its translates and at which scale j. We shall
therefore, for simplicity, abbreviate this full label by γ, and denote the full
set of wavelet number, translates and scales by Γ. We shall also move away
from the notations Φ and Ψ and simply use φ and ψ. Then we shall use the
following shorthand notation for a specific wavelet coefficient of a function

fγ = 〈f, ψγ〉 .

3.2 Wavelets and image processing
In the world of image processing, two-dimensional wavelet transformations
are widely used for compression, de-noising and other procedures. As an
example the JPEG 2000 image coding system [9] is a wavelet based technol-
ogy meant to supersede its discrete cosine based original JPEG standard. In
this section we will have a quick look at how images are decomposed using
two-dimensional wavelets.

3.2.1 Decomposing an image
Let us first study how a digital image is stored. For the sake of simplicity,
let us assume that we are dealing with quadratic images of size 2M by 2M ,
that is, an image is represented by 22M pixels, and gray scale images only
(extension into color images would simply be a matter of adding a dimension
for the RGB values). Each pixel is assigned a value, in computing the value
is commonly an integer in the range [0, 255], describing its intensity where 0
is black and 255 is white. Instead of storing each pixel value, decomposition
and compression methods are widely used to efficiently store and transmit
images. We have already defined the 2 dimensional scaling function and
wavelets, and below follows a simple description of how the decomposition is
applied to the image.

In short terms, the wavelet decomposition process of an image is per-
formed in the following manner: The process is first applied to the rows of
the matrix, finding the average (the coefficient for the scaling function) and
difference (the coefficient for the wavelet) between pairs of pixels that lie on
the same row. This produces two new matrices of size 2M×2M−1, an average
matrix and a detail matrix. Then, the process is applied to the columns of

16
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(a) Average. (b) Horizontal. (c) Vertical. (d) Diagonal.

Figure 3.3: 2-dimensional Haar functions.

the two new matrices, producing four matrices of size 2M−1× 2M−1. The co-
efficients corresponding to the scaling function is now contained in one of the
smaller matrices, while the other three contain the coefficients of the three
different wavelets. We often say that the first wavelet, defined as φ(x)ψ(y)
represent horizontal details, the second, namely ψ(x)φ(y), represent vertical
details and the last one, ψ(x)ψ(y), represent diagonal details, see figure 3.3.
Figure 3.4 shows the averages and detail coefficients of the first step of a
decomposition of an image. The scaling function coefficients are averages,
and to continue the decomposition, the process can be applied again to the
average matrix, producing four new matrices of size 2M−2 × 2M−2. The pro-
cess can be continued until we are left with a single average value and 22M−1
wavelet coefficients. If any of the coefficients are 0, we have to store fewer
values, thus reducing the storage requirements of the image. We could also
argue that some of the wavelet coefficients are so small that setting them
equal to 0 would not change the appearance of the image visibly, and this
would further reduce the storage requirements. This leads us to the concept
of thresholding.

3.3 Thresholding
Have you ever uploaded an image to a social media website, and noticed
that its quality seems to have been drastically reduced? This is an artefact
due to a compression process the web site puts the file through, reducing its
file size, sometimes at the cost of appearance of the image. A part of this
compression process is a thresholding method. Despite the rather gloomy in-
troduction, thresholding is actually quite useful when working with wavelet
decompositions of signals.

After decomposing a signal into its scaling and wavelet coefficients, one could
ask the question whether all the details (contained in the wavelet coefficients)
are necessary, or if it could be sufficient to use just a few to reproduce an
approximation of the original signal. Thresholding is a method where coeffi-
cients that are considered “small enough”, in some chosen way, are removed.
The idea is that the small coefficients can be removed without affecting the

17
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(a) Approximation coefficients. (b) Horizontal detail coefficients.

(c) Vertical detail coefficients. (d) Diagonal detail coefficients.

Figure 3.4: First level wavelet decomposition of the monarch image, using Haar
wavelets.

general picture noticeably. In the setting of an image, thresholding could
be applied to the decomposed image with the idea that removing very small
variations in the image would not be noticeable to the human eye. In that
case, the file to be stored would be smaller than its original, a favourable
feature for storage purposes. There exist however, as we briefly mentioned, a
trade off between storage space and accuracy, in images manifesting itself as
a possible decrease of image quality. One must therefore choose a threshold-
ing approach suitable for the problem at hand. This is also the idea behind
the methods we shall study later on; finding approximations where many of
the coefficients are (near) zero, but the main features of the image preserved.
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3.4 Besov spaces

3.4 Besov spaces
From Fourier analysis we know that if φk is a Fourier basis, then we can
represent a function u ∈ L2 as

u =
∑
k

ckφk.

We also know, from Parsevals identity, that the following relation holds

u =
∑
k

ckφk ∈ L2 ⇔
∑
|ck|2 <∞,

that is
{ck}k ∈ `2.

In addition, we can write the first derivative

u′ =
∑
k

ikckφk,

so that, again using Parsevals identity,

u ∈ H1 ⇔
∑
k

|kck|2 <∞

As we have already seen, the decomposition with respect to the Fourier
bases is not always preferable, so it becomes natural that we ask ourselves if
there exists a similar characterization as the ones above, just with wavelets?
Also, instead of studying the properties of functions with, say, first or sec-
ond derivatives, could is it possible to say something about functions with
fractional derivatives, that is a derivative of order p > 0 of some function u
with p not necessarily being an integer? The answer is yes!

Besov spaces Bs
p,q

(
Rd
)
are well suited for describing smoothness properties of

functions, and consists of functions that have s derivatives in Lp
(
Rd
)
, with

the q providing some additional fine tuning. We shall focus our attention to
the case when p = q. In short, functions that are mostly smooth, but have
a few local irregularities, such as for example jump discontinuities, can still
belong to a Besov space. As it turns out, wavelets provide an equivalence
norm for the Besov spaces. As described in [17], this norm can be defined,
for s = 2 and d = 2, as

‖u‖p2,p =
∑
γ∈Γ

23pj−2j|〈u, ψγ〉|p (3.4)
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Let cγ = 23pj−2j|uγ|, then we then have the relation

u ∈ B2
p,p

(
R2
)
⇔
∑
γ

|cγ|p <∞

that is
{cγ}γ ∈ `p.

Motivated by this, the term defined in equation (3.4) will be used as a pe-
nalization term for a minimization method.
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Chapter 4
An iterative thresholding algorithm

In this chapter we will, as mentioned in the introduction, seek a approximate
solution to the problem defined in (2.1) by imposing a regularizing term based
on a weighted `p norm of the solution. In recent years, there has been a shift
of focus from studying solutions with certain differentiability requirements,
to sparsity requirement of the solution with respect to some basis. That is,
to approximate the solution of the problem

min ‖Ku− g‖2 , (4.1)

one imposes a regularizer such that only a finite number of coefficients of u
with respect to some orthonormal basis (ψγ)γ∈Γ can be non zero. We will let
the blurring kernel K be the convolution kernel studied previously, that is
Ku = h ∗ u. We will also assume that ‖K∗K‖ < 1, where K∗ is the adjoint
operator. In the following we will give the motivation behind the method,
introduce the regularizer and present an algorithm for solving the problem.

4.1 Motivation
Recall that we are considering the problem of finding an object u from a
blurred, noisy image g, in other words we wish to solve the problem

g = Ku+ n.

As we already know, this is an ill-posed problem, and we therefore wish to
seek an approximation thorough regularization techniques. We recall the
discussion on images from section 2.1, and how non-blurred images differ
from blurred ones. In a non-blurry image we expect rapid changes in inten-
sity between objects in the image, so that they are easy to tell apart, which
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Chapter 4. An iterative thresholding algorithm

usually is not the case for blurred images. This is where wavelets come in.
The idea is to use a regularization term that promotes few but large wavelet
coefficients, and we wish to ensure that the large wavelet coefficients appear
where there should be edges between objects in the image.

We start by defining an orthonormal basis of L2(R2): we will consider a
Haar-wavelet basis (ψγ)γ∈Γ. Assume that we are given a set of strictly posi-
tive weights w = wγ. Now, we will define a functional where a penalization
term is added to the discrepancy (Ku− g)2. Nothing new so far, but instead
of using a standard regularisation technique of, say, quadratic penalty, we
will use weighted `p-norm of the coefficients of u with respect to the wavelet
basis, letting 1 ≤ p ≤ 2. We now recall the brief discussion of Besov spaces
in section 3.4. As we already mentioned, mostly smooth functions with a few
discontinuities can still belong to a Besov space. In a sense, this is what we
expect from an image, slowly varying, that is mostly smooth, intensity within
objects in the image, and rapid changes, possibly discontinuities, at the edges
between them. This motivates the search for solutions u in the Besov space
B2
p (R2). We use the wavelet based equivalence norm of the Besov space as

the regularization term, and after incorporating the scaling factor 23pj−2j in
the weights wγ we can write this minimization problem as

min
u

1
2 ‖Ku− g‖

2 + β
∑
γ∈Γ

wγ
2 |〈u, ψγ〉|

p , (4.2)

where β > 0 is a regularization parameter. Now, consider the case where
the weights wγ are constant, and let us briefly discuss how the penalisation
depends on the parameter p. For p = 2, this is a standard quadratic penalty
problem, where small coefficients, |〈u, ψγ〉| < 1, are penalized less than larger
ones, the ones for which |〈u, ψγ〉| > 1 . However, if we keep the weights
fixed and decrease p from 2 to 1, we will increase the penalty on the small
coefficients, and decrease the penalty on the larger ones, favouring solutions
u with fewer but larger components with respect to (ψγ)γ∈Γ. For p < 2,
the minimization of (4.2) could promote a sparse representation of u in the
wavelet basis. We should note that for p > 1, it is unlikely that any wavelet
coefficients will be actually equal to zero, so we cannot expect real sparsity of
the solution with this method, unless p = 1. Nonetheless, we shall consider
also p > 1, hoping to find solutions with many near-zero coefficients.
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4.2 The iterative algorithm
We now wish to solve the unconstrained minimization problem defined in
(4.2). However, the variational equations that arise are coupled, and non-
linear in the case p 6= 2, and so it is not immediately clear how to solve them.
As proposed in [5], we shall therefore create a new optimization problem
that we solve making iterative Forward and Backward Euler steps. To ease
notation, let us define

Rw,p(u) = β
∑
γ∈Γ

wγ
2 |〈u, ψγ〉|

p (4.3)

We will now study the constrained optimization problem

min 1
2 ‖Ka− g‖

2 +Rw,p(u), s.t. a = u, (4.4)

which is obviously equivalent to (4.2). To solve (4.4), we construct a function
with a quadratic penalty term,

F (a, u) = 1
2 ‖Ka− g‖

2 +Rw,p(u) + 1
2 ‖a− u‖

2 . (4.5)

Let us assume that we have a pair of iterates (un, an). Then, to find a value
for the next iterate an+1, we make a Forward Euler step in the direction of
the negative gradient of F with respect to a, that is

an+1 = an −∇aF (an, un)
= an − [K∗(Kun − g) + (an − un)]
= un −K∗(Kun − g)

Next, we use an+1 in (4.5), and minimize F (an+1, u) with respect to u.

un+1 = arg minF (an+1, u),

which means
0 ∈ ∂

(1
2
∥∥∥an+1 − u

∥∥∥2
+Rw,p

(
un+1

))
,

where ∂f is the subgradient of f , see for example Chapter 3 in [3] for a formal
definition. Equivalently, we have

− un+1 + an+1 ∈ ∂
(
Rw,p

(
un+1

))
.

This gives us a formula for updating u, namely

un+1 = (I + ∂Rw,p)−1
(
an+1

)
= (I + ∂Rw,p)−1 (un −K∗ (Kun − g))

where I is the identity.
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4.2.1 The inverse map
Let us study the map (I + ∂Rw,p)−1. Define

Sw,p = (I + ∂Rw,p)−1 ,

so that un+1 = Sw,p (un −K∗ (Ku− g)), and let us see if this inverse exists.
There are two different cases that has to be treated separately due to the
differentiability of the functional. We will see what happens when p = 1 or
p > 1.

The case p = 1

Let us regroup. We want to find a formula for un+1 so that it solves

(I + ∂Rw,p)
(
un+1

)
= an+1,

which can be expressed as

un+1 + β
wp

2 sign
(
un+1

) ∣∣∣un+1
∣∣∣p−1

= an+1.

We note that the equations for the wavelet coefficients un+1
γ decouple, so that

we can solve for each one separately. For p = 1, the regularization term is
differentiable only for uγ 6= 0. For the non-zero coefficients, the equation
reduces to

un+1
γ + β

wγ
2 sign

(
un+1
γ

)
= an+1

γ .

Let us assume that un+1
γ > 0. Then we have the equation

un+1
γ + β

wγ
2 = an+1

un+1
γ = an+1 − βwγ2 .

Therefore, for un+1
γ > 0, we need to require an+1

γ > β wγ2 . If, on the other
hand we assume un+1

γ < 0, we solve

un+1
γ − βwγ2 = an+1

un+1
γ = an+1 + β

wγ
2 ,

and must have an+1
γ < −β wγ2 . Now we have two conditions on an+1

γ , and if it
does not satisfy either of the two, we let un+1

γ = 0. To summarize, we have
that

un+1
γ = Swγ ,1

(
an+1
γ

)
= Swγ ,1

(
unγ − [K∗ (Kun − g)]γ

)
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where the function Sw,1 is defined as

Swγ ,1 (x) =


x− β wγ2 if x > β wγ2 ,

0 if |x| ≤ β wγ2 ,

x+ β wγ2 if x < −β wγ2 .
(4.6)

The case p > 1

For p > 1, the functional is differentiable for all uγ, and the map reduces to

Swγ ,p(uγ) =
(
uγ + β

wγp

2 sign(uγ)|uγ|p−1
)−1

.

For wγ ≥ 0, the function uγ + β wγp2 sign(uγ)|uγ|p−1 = aγ is a one-to-one
map, so the inverse Swγ ,p(a) exists. However, it does not in general have
an analytical expression. We must therefore use a numerical method to
approximate the solution. We will study such a method in section 4.4.

4.2.2 Algorithm
We arrive at the following iterative scheme: for u0, g ∈ L2 (Ω), K a bounded
operator and 1 ≤ p ≤ 2, given the orthonormal basis (ψγ)γ∈Γ and a set
of positive weights (wγ)γ∈Γ, we can approximate the solution of (4.4) by
iteratively updating

un+1 = Sw,p (un −K∗ (Kun − g)) . (4.7)

In [5] they prove that un+1 = Sw,p (an+1) is in fact a minimizer of F (u, an+1)
and that the iterative scheme in equation (4.7) approaches a minimizer of
the original problem (4.2).

4.3 Edge detection and weights
Let us now consider how to choose the weights wγ. The obvious initial choice
of letting the weights be only decomposititon-level dependent should produce
a result of smooth regions separated by jumps in intensity. We know however,
that these jumps should happen at the edges of the objects in the image, and
we could assume that not much important information would be lost if for
example textural components were lost. Therefore, one could argue that if
we could penalize the wavelets that correspond to edges in the image less
than the ones that do not, and thus favouring these being large, we might
enhance the algorithms edge preservation abilities. We will therefore present
a method for edge detection.
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4.3.1 Edge detection by wavelet size
Following an idea proposed in [6], we present a, as they call it, “not very
sophisticated” edge detector algorithm. The algorithm is based on the fol-
lowing idea: one would expect wavelet coefficients uγ of fine decomposition
scales to be large in the presence of an edge, but also for oscillating compo-
nents, like texture, which does not constitute edges. Texture components,
however, typically only appear as large wavelet components for fine scales,
while wavelet coefficients in a wider range of scales would be affected in the
presence of an edge. Therefore, to avoid assuming that oscillating compo-
nents are edges, the following approach is proposed.

First, we choose a set of decomposition scales {jfine, ..., jcoarse} in which we
want to search for edges. For each decomposition level in this set, and all ori-
entations of each level, compute the mean value of the absolute value of the
corresponding wavelet coefficients. Set a threshold parameter tγ proportional
to this mean value. Then, for all positions x, we test if the corresponding
wavelet coefficients |uγ| with x in the support of the wavelet for the decom-
position scales {jfine, ..., jcoarse} are larger than the threshold parameters tγ.
That is, if

x ∈ suppψγ
we check if the following holds

|uγ| > tγ. (4.8)

If (4.8) holds for x for all j ∈ {jfine, ..., jcoarse}, then we say that x is an
edge. Choosing level dependent weights wγ,e for edges and wγ,s for non-edge
coefficients, we define

wγ(x) =

wγ,e if j ∈ {jfine, ..., jcoarse} and x is an edge,
wγ,s else.

Using this edge detector to assign weights, we aim to improve the edge preser-
vation capabilities of the ITA.

4.4 Algorithmic details
To be able to implement the iterative algorithm (4.7), there are a few pro-
cedures that need to be studied. We must find a way to update un+1 =
Sw,p (an+1) for p > 1, and also choose a proper stopping criterion for the
ITA. We start by presenting Newtons method to find the inverse map.
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4.4.1 Newtons method for finding the map Sw,p
As we have seen, when p = 1, there is an analytical expression for the inverse
map Sw,p = (I + ∂R)−1, however this is in general not the case for p > 1.
Therefore, we need to approximate

un+1 = Sw,p
(
an+1

)
(4.9)

numerically in the case p > 1. That is, find an approximation to the un+1
γ

that solves the equation

un+1
γ + β

wγp

2 sign
(
un+1
γ

)
|un+1
γ |p−1 = an+1

γ . (4.10)

A well known approach for finding such a root is called Newtons method
(proper reference). Newtons method approximates the root of a function
f (x) = 0 from a well chosen first guess x0, by the iterative process

xi+1 = xi −
f (xi)
f ′ (xi)

. (4.11)

In short, what the method does, is to move along the tangent line to the
curve in the point (xi, f (xi)) and choose as xi+1 the point where this line
intersects with the x-axis.

Choosing the starting points

Let us for now omit the sub- and superscripts, and study the function in
question, namely

f(u) = u+ β
wp

2 sign (u) |u|p−1,

and quickly recall that we want to approximate the u∗ that solves f (u) = a.
To be sure the method converge towards the solution, we need to choose a
good starting point u0. Figure 4.1 shows a sketch of the function f (u). We
note that if a = 0, the solution is simply u∗ = 0. However, if a > 0, then
u∗ must also be positive, while if a < 0, so is u∗. Also, f (u) is a concave,
monotonically increasing function for u < 0 and a convex monotonically
decreasing function for u > 0. We will in the following look at these two
situations separately.

As mentioned, when u > 0 we f (u) is a convex, monotonically increasing
function, in fact it now reduces to

f (u) = u+ β
wp

2 up−1.
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u

f (u)

Figure 4.1: Sketch of the function f (u).

u∗

a

u

f (u)

Figure 4.2: Sketch of the function f (u) for u > 0.

Figure 4.2 shows a sketch of f (u), and a positive a with the corresponding
solution u∗. The newton method will, as described previously, move along
the tangent line of the function in the current point, until it crosses the line
a. Therefore, it seems reasonable to choose a starting value u0 that is smaller
than u∗, because the tangent line of the function lies above the function and
crosses the line a before it passes u∗. Thus, all following iterates un ≤ u∗.

To choose u0 < u∗, we use the test value 1. If f (1) = a, all is good and
we have found the exact solution u∗ = 1. If f (1) > a however, we know that
u∗ < 1, which in turn implies that u0 should be smaller than 1. We want to
find a u0 such that u0 + wp

2 u
p−1
0 < a, and observe that since 0 < u0 < 1, we

have up−1
0 > u0. Then it holds that

u0 + β
wp

2 up−1
0 < up−1

0 + β
wp

2 up−1
0 .
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Therefore, we choose the u0 that satisfies

up−1
0 + β

wp

2 up−1
0 = a,

namely

u0 =
(

a

1 + β wp2

) 1
p−1

.

If f (1) < a we know that u∗ > 1. So, let’s choose a starting point 1 < u0 <
u∗. Now we have that up−1

0 < u0, so

u0 + β
wp

2 up−1
0 < u0 + β

wp

2 u0.

Therefore, we choose u0 such that

u0 + β
wp

2 u0 = a

and find
u0 = a

1 + β wp2
.

Now, let us look at the case when a < 0, and thus u∗ < 0. Figure 4.3

u∗

a

u

f (u)

Figure 4.3: Sketch of the function f (u) for u < 0.

shows a sketch of the function and a sample a and corresponding u∗. Follow-
ing the same reasoning as for u∗ > 0, we now deduce that we need to choose
a starting point u0 larger than u∗.We now use the test value u = −1, so that
if f(−1) = a we know u∗ = −1, otherwise if f (u) > a then u∗ > −1 and if
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f (−1) < a we have u∗ < −1. We repeat the process from before and arrive
at the following initial guesses: if f (u) > a then

u0 = −
(
|a|

1 + β wp2

) 1
p−1

,

if f (u) < a then
u0 = a

1 + β wp2
.

All in all, we have the following scheme

f (sign (a)) = a, u∗ = sign (a) ,

|f (sign (a)) | > |a|, u0 = sign (a)
(
|a|

1 + β wp2

) 1
p−1

,

|f (sign (a)) | < |a|, u0 = a

1 + β wp2
.

(4.12)

The algorithm

All in all, for each wavelet coefficient un+1
γ we find the new value either

directly from the first equation in (4.12), or approximate it by the Newton
iterations presented as pseudocode in algorithm 1.

Algorithm 1 Newtons method
Given a, choose u0 in accordance with (4.12). Choose a tolerance τ and
maximum iterations imax.
i = 0
while f (ui)− a > τ and i < imax do

ui+1 = ui −
(
ui + β wp2 sign (ui) |ui|p−1 − a

)
·
(
1 + β wp2 (p− 1) |ui|p−2

)−1

i = i+ 1
end while
Set un+1

γ = ui

4.4.2 Stopping criterion for the thresholding algorithm
Let us now try to find a proper stopping criterion for the iterative threshold-
ing algorithm. Recall that we have the fixed point iteration

un+1 = Swp
(
an+1

)
= G (un)
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We would like to stop the iterations when we have an iterate un close enough
to the regularized solution uα. But what is “close enough”? To answer this,
let us take a step back.

Exact, regularized and approximate solutions

Our goal is to find an approximate solution to the problem

Ku = g, (4.13)

by solving a regularized problem

min ‖Ku− g‖2 +Rw,p (u) . (4.14)

However, we assume we are only given noisy data gδ, and that this satisfies∥∥∥g − gδ∥∥∥ ≤ δ. Let us call uδβ the solution of (4.14) with noisy data gδ, and
u∗ the exact solution of Ku− g = 0. One idea could therefore be to stop the
iterations when the distance between the iterate and the regularized solution
is smaller than the distance between the exact solution and the regularized
solution, that is when ∥∥∥uδβ − un∥∥∥ < ∥∥∥uδβ − u∗∥∥∥ . (4.15)

Let us therefore look for bounds for these two norms.

Bound for the norm
∥∥∥uδα − un∥∥∥

Since we are working with a fixed point iteration, we know from the Banach
fixed point theorem, see for example Chapter 5 in [2], that un satisfies the
following a-posteriori estimate∥∥∥un − uδα∥∥∥ ≤ C

1− C
∥∥∥un − un+1

∥∥∥ ,
where C < 1 is a contraction factor. As C ≈

∥∥∥DGwp

(
uδα
)∥∥∥ ≈ ∥∥∥DGwp

(
uδα
)∥∥∥,

we need to calculate this. We start by finding an expression for the derivative

DSw,p
(
an+1

)
= D

[
(I + ∂ (Rw,p))−1 (un −K∗ (Kun − g))

)
=
[
D (I + ∂Rw,p) ◦ (I + ∂Rw,p)−1

(
an+1

)]−1
◦ (I−K∗K)

=
[
D (I + ∂Rw,p)

(
un+1

)]−1
◦ (I−K∗K)

where we have used the relation

D
(
F−1

)
=
[
(DF ) ◦ F−1

]−1
.
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Then, using the relation

‖AB‖ ≤ ‖A‖ · ‖B‖ ,

and the requirement we put on K,

‖I−K∗K‖ ≤ 1,

we find an upper bound for the norm∥∥∥DSw,p (an+1
)∥∥∥ =

∥∥∥∥[D (I + ∂Rw,p)
(
un+1

)]−1
◦ (I−K∗K)

∥∥∥∥
≤
∥∥∥[D (I + ∂Rw,p)

(
un+1

)]∥∥∥ ‖(I−K∗K)‖

≤
∥∥∥[D (I + ∂Rw,p)

(
un+1

)]∥∥∥ .
So, let us try and find an expression for this norm. From the definition

Rw,p (u) = β

2
∑
γ

wγ |uγ|p

we know that

∂Rw,p(u) = β

2 diag
(
pwγ sign (uγ) |uγ|p−1

)
where diag(x) is a diagonal matrix with x as entries. From there find the
expression

D (∂Rw,p (u)) = β

2 diag
(
p(p− 1)wγ |uγ|p−2

)
Thus, we know that

D (I + ∂Rw,p)
(
un+1

)
= diag

(
1 + β

2 p(p− 1)wγ
∣∣∣un+1
γ

∣∣∣p−2
)

and must have

[
D (I + ∂Rw,p)

(
un+1

)]−1
= diag

(1 + β

2 p(p− 1)wγ
∣∣∣un+1
γ

∣∣∣p−2
)−1

 .
Finally, we arrive at an expression for the norm

∥∥∥∥[D (I + ∂Rw,p)
(
un+1

)]−1
∥∥∥∥ = max

γ
diag

(1 + β

2 p(p− 1)wγ
∣∣∣un+1
γ

∣∣∣p−2
)−1

 .
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Bound for the norm
∥∥∥uδα − u∗∥∥∥

We will not treat this bound in detail here, but refer to the results in [8], most
importantly Preposition 8 . The main result is that, assuming

∥∥∥g − gδ∥∥∥ ≤ δ

holds and uδβ is a regularized solution, then if β and δ are sufficiently small,
the following bound exists

1
2
∥∥∥uδβ − u∗∥∥∥2

.

(
2β + δ2

2β

)
max
γ

∣∣∣〈uδβ, ψγ〉|2−p.
So, if we assume that un+1 ∼ uδβ, we have the bound

∥∥∥uδβ − u∗∥∥∥ .
((

4β + δ2

β

)
max
γ

∣∣∣un+1
γ

∣∣∣2−p)1/2

,

which is dependent on the current iterate.

Stopping criterion

All in all, choose to stop the ITA when the iterate is such that

max
γ

diag
(1 + β

2 p(p− 1)wγ
∣∣∣un+1
γ

∣∣∣p−2
)−1


≤
((

4β + δ2

β

)
max
γ

∣∣∣un+1
γ

∣∣∣2−p)1/2

. (4.16)
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Chapter 5
A modified Mumford–Shah functional

In 1989 Mumford and Shah proposed a functional used for simultaneous
image segmentation and restoration. Based on an idea of the relationship
between real world objects and their 2-dimensional projections onto images,
they constructed the functional, which measures the difference between an
image and an approximation consistent of sets of smooth regions and jumps.
In the following we shall introduce the original Mumford–Shah functional
and an approximation by Ambrosio and Tortorelli [1]. Then, we will propose
a modified functional based on the `p penalty approach we have already seen.

5.1 The Mumford–Shah functional

In their famous paper from 1989 [15], Mumford and Shah propose a functional
that measures the degree of match between a (possibly blurred and noisy)
input image g and a segmentation u. In the paper, they argue that since
images are 2-dimensional projections of our three dimensional world we can
make certain assumptions on the properties of the objects in the image. The
assumptions are that an object will have approximately the same color, or
gray scale, everywhere, and boundaries between objects will appear as rapid
changes in the color or intensity. Thus, one should be able to find a piecewise
smooth approximation of the image g as a collection of smooth regions u
separated by a jump set S. This is known as image segmentation. Mumford
and Shah described u as the cartoon version of the input g. Assuming some
regularity of the objects in the image, the size of the jump set S is finite.
With this in mind, we can introduce the Mumford–Shah energy.
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Chapter 5. A modified Mumford–Shah functional

5.1.1 The weak and strong Mumford–Shah energy
We define the strong Mumford Shah energy as

E (u, S) =
∫

Ω
(Ku− g)2 dx+ β

∫
Ω\S
|∇u|2 dx+ α · length(S ∩ Ω). (5.1)

The first integral measures the difference between the blurry input image
g and the blurred segmented approximation Ku, the second term measures
the size of the gradient of u within the regions separated by S, while the
third term measures the length of the edges. The idea is to find the best
piecewise smooth approximation of the sharp image, u, by minimizing (5.1)
with respect to u and S. The parameters α and β are positive and their
value controls the level of segmentation of the image, and they need both be
larger than 0. Otherwise, if β = 0, the size of the second integral becomes ir-
relevant, and we can choose S = {∅}. This means that the third term is also
equal to 0, and we are left with the problem of minimizing

∫
Ω (Ku− g)2 dx,

which we have already seen is ill-posed. If we on the other hand choose
α = 0, the size of length(S ∩ Ω) is irrelevant, so we can choose S = Ω. This
makes Ω\S = {∅}, so the second integral is equal to 0, and we are again
left with the ill posed problem of minimizing

∫
Ω (Ku− g)2 dx. Therefore,

we need α, β > 0, and note that if we let β become larger we require more
smoothness of u, and if we let α become larger we require the edge set S to
be smaller.

They continue with the definition of a weak functional, where a new edge set
Su dependent on u is defined, and its length measured by the one dimensional
Hausdorff measure H1 (Su).

E (u) =
∫

Ω
(Ku− g)2 dx+ β

∫
Ω\Su
|∇u(x)|2 dx+ αH1 (Su) . (5.2)

Neither the strong nor the weak functionals are practical, however, so several
methods of dealing with the problem has been proposed. In 1990 Ambrosio
and Tortorelli proposed an approximation based on a phase field approach
[1].

5.1.2 The Ambrosio and Tortorelli approximation
In the core of the phase field approach lies the replacement of the edge set
Su by a function, phase field, that takes two distinct values for the different
states: edge/not edge. Defining a function v that is close to 0 in the presence
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of an edge, and 1 otherwise, Ambrosio and Tortorelli proposed replacing the
last term of equation (5.2) by two new, competing terms

α
∫

Ω
ε |∇v|2 + (v − 1)2

4ε dx.

The first term |∇v|2 favours local homogeneity of the functional, while the
second term favours v ∼ 1. The scale parameter ε controls the “width” of
the phase field. Then, they replace the middle term of equation (5.2) by

β
∫

Ω
v2 |∇u|2 dx,

so that this term vanishes when v ∼ 0. Thus, this term measures the size
of the gradient of u away from the edges. We are left with the following
functional

Fε (u, v) =
∫

Ω
(Ku− g)2 dx+ β

∫
Ω
v2 |∇u|2 dx+ α

∫
Ω
ε |∇v|2 + (v − 1)2

4ε dx.

It can be shown, see for example Chapter 4 in [4], that this functional Γ-
converges to the Mumford–Shah functional.

5.2 Modification
The iterative algorithm studied in chapter 4 favours some of the same prop-
erties of u as the Mumford–Shah approach; the `p regularization term can be
utilized to produce approximations which are quite smooth in most regions,
because the method favour solutions with few but large wavelet coefficients.
This motivates the modified Mumford–Shah approach we will study in this
section. We replace the second term in (5.1) by the `p penalization term
Rw,p (u) defined in equation (4.3), and define a weight function dependent
on the phase field, wγ (v).

5.2.1 From quadratic to `p penalty
As we have discussed, the second term in the MS functional penalizes the
size of the gradient of u outside the edge set S with quadratic penalty. Let
us attempt replacing this by a `p penalization with 1 ≤ p ≤ 2. Assuming
the Ambrosio and Tortorelli approximation is still applicable, we define a
modified version

FMOD
ε (u, v) =

∫
Ω

(Ku− g)2 dx+β
∑
γ

wγ |〈u, ψγ〉|p+α
∫

Ω
ε |∇v|2+(v − 1)2

4ε dx.
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We here assume v (x) to be the phase field as in the original AT approxima-
tion, so we need to be able to construct a weight function dependent on v to
appropriately penalize the correct wavelets in the sum.

5.2.2 The weight function
To define the weight function, let us recall what we want to achieve: wavelet
that constitutes an edge should be penalized less than wavelets in smooth
regions of the image. In the phase field, edges are indicated by v(x) = 0.
Thus, if there is an edge in a pixel, or several pixels, contained in the support
of a wavelet, this wavelet should we weighted as an edge. Therefore, we
propose the following weight function

wγ (v) (x) = min
{
v(y)2 + κ : y ∈ suppψγ

}
· sγ, (5.3)

where sγ = 23pj−3j is the level dependent scaling parameter defined in section
3.4, and κ is some small parameter 0 < κ < 1 such that wγ 6= 0. Thus, if any
v(x) for x ∈ suppψγ is less than one, marking the presence of an edge, that
wavelet coefficient will be weighted less and thus preferred over those whose
wavelets have v (x) = 1 in all of its support.

5.3 Minimizing the modified functional
Having defined the modified functional, we shall now develop a procedure
for minimizing it with respect to u and v. The functional is separately
convex with respect to u and v, so this motivates us to develop an alternating
minimization approach. Keeping one variable fixed, we shall approximate a
minimizer of the functional in terms of the other variable. Having done this,
we shall switch, fixing the second variable and minimizing with respect to the
first. Continuing with this alternation, we wish to approximate minimizers
of the functional FMOD

ε (u, v).

5.3.1 Minimizing with respect to u

Assuming we have an approximation of v, for example an initial guess of,
say, v ≡ 1, we can minimize the functional with respect to u. In this case,
the third term of FMOD

ε (u, v), namely α
∫

Ω ε |∇v|
2 + (v−1)2

4ε dx is constant, so
we only need to minimize the first two terms. That is, the functional defined
by ∫

Ω
(Ku− g)2 dx+ β

∑
γ

wγ |〈u, ψγ〉|p .
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Since this is exactly the functional we minimized using the iterative thresh-
olding algorithm previously, we will apply this method here. Using the weight
function defined in (5.3), we approximate the solution with the ITA.

5.3.2 Minimizing with respect to v

If we keep u fixed, the first term of FMOD
ε (u, v) is constant, so we only need

to focus on the last two terms. To minimize FMOD
ε with respect to v, we

shall attempt a gradient descent algorithm.

Line search methods and gradient descent

Let us quickly introduce the gradient descent algorithm, which is a line search
method. Given a function f that we wish to minimize with respect to some
variable x, line search methods starts from a point xk, choose a search direc-
tion pk, decide how far along this direction to move, and updates the variable
as xk+1 = xk +λkpk. The main difference between different line search meth-
ods is how to choose the search direction and step size to ensure convergence.
We will in the following study the gradient descent and backtracking algo-
rithms.

Gradient descent, also called steepest descent, is a line search method in
which one searches for the minimum of a function f along the direction of its
negative gradient. Hence the name steepest descent, as the negative gradient
is the direction in which the function decreases most rapidly. Starting from
a point xk, we must be able to calculate the gradient ∇f (xk) = ∇fk, then
choose pk = −∇fk. After choosing a step length λk in some appropriate
manner, we update the value xk+1 = xk + λkpk.

To choose the step length λk, we face a tradeoff between accuracy and com-
putation time. The ideal choice for λk would be the one which minimizes
f (xk + λkpk), however for most practical purposes, computing this minimizer
would be too computationally expensive. Therefore, we search for a step size
that is not too small and reduces f “sufficiently”. To ensure that the process
makes reasonable progress along the search direction, we can choose the step
length λk using a so called backtracking approach, and make sure that the
step length fulfils the sufficient decrease condition, as defined in Chapter 3
in [16],

f (xk + λkpk) ≤ f (xk) + cλk∇fTk pk, (5.4)

for some small parameter c ∈ (0, 1).
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Finding the descent direction

As we have already mentioned, the search direction of the gradient descent
is the negative gradient of the function. We now assume u fixed, and define
a new v dependent functional

H (v) (x) = β
∑
γ

wγ |〈u, ψγ〉|p + α
∫

Ω
ε |∇v|2 + (v − 1)2

4ε dx

= β
∑
γ

wγcγ + α
∫

Ω
ε |∇v|2 + (v − 1)2

4ε dx.

(5.5)

Thus, we need to find the gradient of this function, so we calculate the
functional derivative

∇H (v) (x) = β
∑
γ

cγ∇wγ − αε∆v + α
v − 1

2ε . (5.6)

Let us study the derivative∇wγ of the weight function. To find an expression
for this, we first define

ex (y) =

1 if y = x

0 else,

then we formally have

∇wγ = d

dt

∣∣∣∣∣∣
t=0

wγ (v + tex)

= d

dt

∣∣∣∣∣∣
t=0

min
{

(v (y) + tex)2 + κ : y ∈ suppψγ
}
· sγ.

Let us first assume that there is a unique minimizer x′ of v in suppψγ. Then
we have

∇wγ =
∣∣∣∣
t=0

2 (v (x′) + tex (x′)) ex (x′) sγ,

so that

∇wγ (v) (x) =

2v (x) sγ if x′ = x

0 else.

However, if a unique minimizer does not exist, the above argument does not
work. It should be possible to compute directional derivatives which won’t
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be linear, but for simplicity we will use the formal gradient with a weighting
factor µ ∈ (0, 1). Thus, we express the gradient of the weight function as

∇wγ (v) (x) =


0 if x 6∈ suppψγ,
0 if v (x) > wγ (v) (x) ,
2v(x) · sγ if x is a unique minimizer of v2 in suppψγ,
2v(x)µ · sγ if x is a non-unique minimizer of v2 in suppψγ.

(5.7)

Choosing the step length

The backtracking line search, see Chapter 3 in [16] for more details, searches
along the direction pk and iteratively decrease step size until the sufficient
decrease condition is fulfilled. It does so by choosing an initial step size and
iteratively decreasing this by a factor τ until the sufficient decrease condition
(5.4) is fulfilled. In algorithm 2 we show the backtracking algorithm for our
problem.

Algorithm 2 Backtracking
Choose λ > 0, τ ∈ (0, 1) , c ∈ (0, 1)
while H (vk − λfk) > H (vk)− cλ∇fTk ∇fk do

λ← τλ
end while
Set λk = λ
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Chapter 6
Implementations

For the implementation of the different numerical processes in this thesis,
the programming language MATLAB [13] has been used. Mainly a language
intended for numerical computing, MATLAB provides, for example, easy
handling of multidimensional array operations and, in this case most impor-
tantly, the Image Processing Toolbox [11]. This toolbox contains efficient
functions and algorithms for a wide range of different image processing pro-
cesses, such as convolutions and visualizations. We will in this section study
and present some elements of the implementations of the numerical methods
we use to solve the minimization problems presented in the previous chapters.

6.1 The iterative thresholding algorithm
We start with the iterative thresholding algorithm. Being a simple iterative
process, the main issues include the implementation of the blur kernel and
how to impose this on u, how to do the wavelet decomposition and the
implementation of the edge detector.

6.1.1 The blur kernel K
When implementing the ITA, we need to be able to define the operator K
and apply it to u. In the Image Processing Toolbox, we find the functions
fspecial [10] and imfilter [12]. The fspecial function creates a two
dimensinal filter of a specific type, for example an averaging filter or a lowpass
Gaussian filter, the latter of which we will use in the following. To create the
Gaussian filter, we need to define the size and standard deviation and pass it
to fspecial, which creates the Gaussian filter suitable to use with imfilter.
The function imfilter takes the multidimensional array u and filters it with
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the multidimensional array K, giving an output of the same size as u. In
addition to the input signal and the filter, we can specify the boundary option
and filtering type. Passing the flags ‘conv’ and ‘symmetric’, the function
performs multidimensional filtering using convolusion, computing input array
values outside the bounds of the array using reflection across the border.

6.1.2 Wavelet functions
We also need to calculate the wavelet coefficients of the image. MATLAB
provides functions for multilevel 2-dimensional wavelet decomposition, re-
construction, and coefficient extractions. Using the function wavedec2 we
get the scaling and wavelet coefficients of an input signal with respect to a
wavelet basis and to a level of our choice. We will use the Haar-wavelet and
decompose the image as much as possible, that is to the maximum level.
The deconstruction function produces two arrays, one containing the coeffi-
cients and the other is a bookkeeping matrix. Having these two matrices, the
detcoef2 function allows us to extract the detail coefficients for a specific
orientation (horizontal, vertical, diagonal or all) at a certain scale. The de-
composition counterpart is the function waverec2, which takes the coefficient
array, the bookkeeping matrix and wavelet type as input, and reconstructs
the signal.

6.1.3 The edge detector and assigning weights
To find the edges, we define a function find_edges. This takes the wavelet
coefficients, the bookkeeping matrix, jfine and jcoarse, and a threshold param-
eter as input. It returns a boolean array of the same size as the array with
wavelet coefficients, indicating which wavelet coefficients should be weighted
as edges. The function calculates the threshold value for each level and ori-
entation, and checks which of the corresponding coefficients are larger. Then
it checks if there, for a position x in the image, is a “path”, through the scales
{jfine, ..., jcoarse} and wavelets with x in their support, of coefficients larger
than their threshold. If so, the positions corresponding to these coefficients
are marked as true in the boolean output matrix. The implementation of the
edge detector can be found in the Appendix.

Given the boolean output array of find_edges, we can create a function
assign_scaledep_weights that takes this array as an input, together with
two different values we and ws that indicates weighting, and return a weight
array to be used in the ITA. The function simply iterates through the scales
and assigns weights appropriately, see the Appendix for the MATLAB code.
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6.1.4 The algorithm

Having all these functions available in MATLAB makes the implementation
straight forward, and what is left is to properly implement the function S1,p,
the Newton iterations and properly impose stopping criterions. We present
the pseudocode for the ITA in algorithm 3. The Appendix contains a MAT-
LAB code for the ITA and the Newton method.

Algorithm 3 ITA
Given g, K, u0, β, w, p and maximum decomposition level.
n = 0
while not converged do

an+1 = un −K∗(Kun − g)
if p == 1 then

un+1 = Sw,1(an+1) as defined in (4.6)
else

Approximate un+1 with Newtons method as defined in algorithm 1
end if
Test convergence in accordance with equation (4.16)
n = n+ 1

end while
return un

6.2 The phase field approach of the modified
functional

For the minimization of the modified MS functional, we will iteratively al-
ternate between minimizing with respect to u and v. For the minimization
with respect to u, we will use the ITA from the previous section, albeit with
a different weighting function. Similarly as for the other functions, the im-
plementation of the weight function defined in equation (5.3) can be found
in the Appendix. For the minimization with respect to v, we will present a
gradient descent algorithm. Note that we choose v to be half the size of u in
both the x and y directions, so that one pixel in v corresponds to a square
of four pixels in u, or rather, one coefficient of the finest decomposition scale
of u.
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6.2.1 Gradient descent for v
We recall the functional defined in equation (5.5)

H(v) = β
∑
γ

wγcγ + α
∫

Ω
ε |∇v|2 + (v − 1)2

4ε dx.

and its gradient defined in (5.6)

∇H (v) (x) = β
∑
γ

cγ∇wγ − αε∆v + α
v − 1

2ε ,

which we need for the descent direction pv = −∇H(v). For the implemen-
tation of the gradient descent algorithm for v, we need to discretize the
functions, so we first make some definitions. For a v of size M × N , we let
vi,j be the value of v at the position (i, j) and define the grid spacing as

h = 1/max{M,N}.

For the derivatives we use forward finite differences

δ+
x vi,j = 1

h
(vi+1,j − vi,j)

and
δ+
y vi,j = 1

h
(vi,j+1 − vi,j) .

Using this approximations, we can find discretized function for both the |∇v|2
in the expression for H and the ∆v in the function for pv. To calculate the
function H(v) we use a sum of the indices, and scale by h2. However, to
deal with the boundary conditions, we shall let the sum only go to M − 1
and N − 1. We use simple matrix multiplications to calculate the functional
value and the descent direction pv. The implementation can be seen in the
MATLAB code GD_v in the Appendix.

6.2.2 Alternating minimization
Having the minimization approaches with respect to the two variables sepa-
rately, we can implement the alternating approach. Given initial values, the
method minimizes with respect to u and then v until some requirements are
met. In the implementation of modified_AT included in the Appendix, we
require the L2 norm of the difference between the old and new u and the max
norm of the difference between the old and new v to be smaller than given
tolerances.
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Chapter 7
Numerical Results

To run tests on the implementations, we will use a standard test image [18] of
a monarch. The monarch image is of size 512× 768, and will be decomposed
into a 8 level Haar wavelet decomposition for the different procedures in
this section. Figure 7.1a shows the greyscale version of the image, while
figure 7.1b shows the same image blurred by a convolution with a 15 × 15
Gaussian blur kernel with variance σ = 5. This blurring is quite strong, so

(a) Original monarch image. (b) Blurred monarch image.

Figure 7.1: Test image.

the blurred image is very different from the original image, and the blurring
operator is very ill-conditioned, but this makes it a good problem to test our
implementations on. Thus, our goal is to find an approximation to figure
7.1a using the reconstruction algorithms on the input image in figure 7.1b.
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Chapter 7. Numerical Results

7.1 The iterative thresholding algorithm
We will in this section study some results of reconstructing the monarch im-
age using the ITA. We start with the constant (but level dependent) weight-
ing approach, before studying the results when applying the edge dependent
weighting of the wavelet coefficients.

7.1.1 Restoration with constant weights

Figure 7.2: Constant penalty reconstruction with p = 1.1.

We study the result u found using the iterative thresholding algorithm with
scale dependent weights, that is, we set wγ = 23pj−2j. We set β = 1, and
p = 1.1 thus searching a solution with few, but large, wavelet coefficients.
We note that the original image, seen in figure 7.1a consists of sections of
near constant intensities, at least apart from the section of flowers on the left
hand side of the image. That is, there is not much variation in intensity in
the black regions of the monarchs wing, nor in the white spots. Thus, we
could expect a small p value to yield a good solution for this image, or at least
the monarch. Figure 7.2 shows the reconstructed image with p = 1.1. We
note that the reconstructed image does in fact seem clearer than the blurred
image in figure 7.1b, the change in intensities seem to be more rapid between
sections of different values, details are in short easier to tell apart. We also
note that the solution seems to be “blocky”, meaning that for example the
lines that should be straight, but diagonal, in the moths wing have jagged
edges. The blockyness is also apparent in the white spots on the wings that
should be round, see the section of the approximation in figure 7.4b.
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7.1 The iterative thresholding algorithm

The blockyness of the solution should however not come as a surprise, as
we are trying to approximate the circles, and diagonal lines, using square
shaped basis functions. For finer decomposition levels, there are more co-
efficients than for the coarser scales. So to achieve a sparse representation,
it is not beneficial for the method to allow the fine decomposition wavelet
coefficients to be large. Thus, the coarse scale coefficients are used to pro-
duce the change in intensity, and we get the blocky appearance. This is the
main motivation behind the edge detection and edge dependent weighting
we test in the following, that we can favour the fine scale wavelet coefficients
on edges to improve on the appearance of the solution.

7.1.2 Restoration with edge-dependent weights
We now run the procedure with edge dependent weighting of the coefficients.
After running the ITA once using constant weights, we use the edge detector
on the solution u to attain the wavelet coefficients that constitute edges and
assign edge dependent weights. Then we use these weights to run the iterative
process again. For the tests in the following, we search for edges in the set of
the 6 finest wavelet decomposition levels. We say that a wavelet coefficient
is an edge if its absolute value is twice as large as the average of the absolute
values of all coefficients of the same level and orientation (horizontal, vertical
or diagonal, recall figure 3.3). We set the edge weighting as

wγ =

23pj−2j if uγ is part of an edge,
0.01 · 23pj−2j else.

Running the procedure, we get the image shown in figure 7.3. At first glance,
the difference between the images in figure 7.2 and figure 7.3 is not very
apparent, so let us zoom in and have a closer look. Figure 7.4 show a section
of the reconstructed image for both the constant and the weighted penalty
methods. We notice that the weighted penalty increases the resolution of the
edges. Moreover, this decreases the blocky appearance of the solution that
we observed previously, which was our goal. We argued earlier that a value
for p close to 1 should produce good results for the approximation. Let us
see what happens if we increase the value to p = 1.5. We must zoom in on
the picture for the differences to be visible, and in figure 7.5 we see sections
of the reconstructions for p = 1.1 and p = 1.5. As the larger p promotes a
smoother solution, we see that the edges are not as well defined for p = 1.5
as it is in the solution with p = 1.1.
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Chapter 7. Numerical Results

Figure 7.3: Weighted penalty reconstruction with p = 1.1.

(a) Blurred image. (b) Constant penalty. (c) Weighted penalty.

Figure 7.4: Sections of the reconstructed monarch image.

(a) Weighted penalty with p = 1.1. (b) Weighted penalty with p = 1.5.

Figure 7.5: Sections of the reconstructed monarch image with different values
for p.
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7.1 The iterative thresholding algorithm

7.1.3 Reconstructing a noisy image
Let us now add some noise to the blurred image and study the reconstruction
abilities of the ITA on such a noisy image. We add a Gaussian noise with
mean 0 and a standard deviation 10−3 (max(g)−min(g)) to the blurred im-
age g, and the resulting image can be seen in figure 7.6. The blur and noise
is more apparent in the section shown in figure 7.8a.

Figure 7.6: Blurred and noisy image.

Figure 7.7: Reconstruction of blurred and noisy image with scale dependent
weights and p = 1.1.

In order to reduce the noise in the reconstruction, we require more smooth-
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Chapter 7. Numerical Results

ness of the function by increasing the value of β. For the reconstruction
shown in figure 7.7, we have used the values p = 1.1 and β = 10. We observe
that the reconstructed image still appears to piecewise smooth. However,
the noise has introduced some slow variations particularly visible in the sec-
tions of the approximation which should be near constant, see for example
the background above and to the right of the monarch’s wing. The finer de-
tails are however well preserved, as we observe in the section shown in figure
7.8b. We also notice that blocky wavelet artefacts in the solution are more
prominent now, this is a result of the larger β which makes the weights of
the wavelet coefficients larger.

(a) Noisy image. (b) Constant penalty. (c) Weighted penalty.

Figure 7.8: Sections of the reconstructions of the blurred and noisy image

A reconstruction with edge dependent weights are also computed. The result
is not noticeably different from the scale dependent reconstruction in figure
7.7 before we zoom in and have a look at the details. Therefore, we have in-
cluded a section of the reconstruction with edge dependent weights in figure
7.8c . We observe that, as before, this approach increases the resolution of
the edges and therefore decreases the blocky appearance of the solution. As
a result of the noise in the input image, the approximation is not as smooth
as for the image which was only blurred.

7.2 Modified Mumford–Shah
We now move to the modified functional. We first run the implementation
with the parameters

α = 7000, β = 1, p = 1.1, ε = 10−3

and the result can be seen in figure 7.9. The parameter choice for ε is
due to the scaling of the image to area approximately equal to 1 in the
numerical implementation. The ε represents the width of the edges, and
with this scaling, 10−3 is approximately the pixel size. The α is chosen to
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7.2 Modified Mumford–Shah

appropriately balance the wavelet term and phase field term in the modified
functional. The reconstruction in figure 7.9a appear to be a mostly smooth

(a) Reconstructed image. (b) Phase field.

Figure 7.9: Deblurred image and phase field.

approximation of the original image. We see that the lines in the phase field
in figure 7.9b clearly defines the edges separating areas of approximately the
same grey scale in the reconstructed image. We can say that the phase field
represents the segmentation of the image. Again, we zoom in to see details.

(a) Constant weight re-
construction.

(b) Edge dep. weight re-
construction.

(c) Phase field based re-
construction.

Figure 7.10: Section of reconstructed image with different weighting.

In figure 7.10, we see again the section of the reconstructed image with
constant weight, with edge dependent weighting and with phase field based
weighting. This time we observe that the increase in resolution of the edges
for the phase field based reconstruction seem to be even more prominent than
what we achieved with the edge detection based weighting. The blocking is
also much less noticeable, again because we are increasing the resolution and
not trying to approximate the circular shapes using only the coarse scale
wavelets. We can conclude that we have been able to reduce some wavelet
artefacts of the reconstruction by imposing the phase field based weighting
of the solution.
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Chapter 7. Numerical Results

7.2.1 Noisy image
Let us test the modified Ambrosio and Tortorelli approach on the blurred
and noisy image. We use the parameters

α = 7000, β = 10, p = 1.1, ε = 10−3,

and run the alternating algorithm. Figure 7.11 shows the reconstructed im-

(a) Reconstruction. (b) Phase field.

Figure 7.11: Reconstruction and phase field of noisy and blurred image.

age and phase field. We observe that the phase field is 0 in some points where
there shouldn’t be any edges in the image. This is due to the noise in the
input. Figure 7.12 shows a section of the reconstructed image both for the

(a) Constant weight re-
construction.

(b) Edge dep. weight re-
construction.

(c) Phase field based re-
construction.

Figure 7.12: Section of reconstructed image with different weighting.

constant weighted ITA approach and the phase field approach. As for the
no-noise problem, the phase field approach removes most of the blocky ap-
pearance of the approximation, producing a solution with smoother edges.
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Chapter 8
Conclusions

We have in this paper proposed a modified Mumford–Shah idea. This was
done combining the segmentation idea and minimizing functional by Mum-
ford and Shah with the regularization method of requiring sparse represen-
tation of the solution with respect to a orthonormal basis. Using the phase
field approach by Ambrosio and Tortorelli and defining the weighting of the
wavelet coefficient dependent on the phase field, we developed an alternat-
ing minimization process using the iterative thresholding algorithm for the
minimization with respect to the wavelet coefficients, and a gradient descent
method for the phase field. The resulting solution showed a substantial re-
duction of the blocking artefacts compared to the solution obtained with the
ITA only.

For further work, the efficiency of the implementation could be of interest,
also making it applicable to images of larger size than the (rather small) test
image used in this thesis. Also, we used a gradient descent method for the
minimization of the modified functional with respect to v, but alternative
methods could be examined. Because of the improvement on wavelet arte-
facts and increase in resolution of the edges one could consider applications
in other areas of imaging, for example computed tomography (CT).
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Appendix
ITA

1 function u = iterative_thresholding(g,u0,K,p,beta,weights,level,
delta)

2 %ITERATIVE_THRESHOLDING
3 % Input parameters:
4 % g: blurred/noisy input image
5 % u0: initial guess for solution
6 % K: blur kernel
7 % p: p = [1,2]
8 % beta: regularization parameter
9 % weights: penalty weights
10 % level: wavelet decomposition level
11 % delta: noise level. Default value of 0 if not given
12 %
13 % Output parameters:
14 % u: reconstructed image
15
16 if p < 1 || p > 2
17 error('Error: p must be in the interval [1,2].')
18 end
19
20 if nargin == 7
21 delta = 0;
22 end
23
24 u = u0;
25 [u_wavelet, index] = wavedec2(u,level,'haar');
26
27 weights = weights*beta;
28
29 it = 0;
30 converged = false;
31 while ~converged
32 temp = imfilter(g−imfilter(u,K,'symmetric','conv'),K','

symmetric','conv');
33 [temp_wavelet,~] = wavedec2(temp,level,'haar');
34 a = u_wavelet + temp_wavelet;
35 if p == 1
36 u_wavelet = S_w1(a,weights);
37 u_new = waverec2(u_wavelet,index,'haar');
38 else
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39 u_wavelet = newton(a,weights,p);
40 u_new = waverec2(u_wavelet,index,'haar');
41 end
42
43 C = max(1./(1+p*(p−1)*((abs(u_wavelet)/max(size(u))).^(p

−2))));
44 convergence_check = (C/(1−C))*norm(u_new−u,2);
45 C2 = (2/(p*(p−1)))*3^(2−p)*(max(abs(u_wavelet)))^(2−p);
46 convergence_val = sqrt(4*beta*C2 + ((delta^2)/beta)*C2);
47 if convergence_check< convergence_val
48 converged = true;
49 end
50 it = it+1;
51
52 u = u_new;
53 fprintf('Thresholding iteration nr. %d. Stopping value

is %4e,current value is %4e.\n',it,convergence_val,
convergence_check)

54 end
55 end
56
57 function u_new = S_w1(u, weights)
58 [M,N] = size(u);
59 u_new = zeros(M,N);
60 for i = 1:M
61 for j = 1:N
62 if u(i,j) >= weights(i,j)/2
63 u_new(i,j) = u(i,j)−weights(i,j)/2;
64 elseif u(i,j) <= −weights(i,j)/2
65 u_new(i,j) = u(i,j)+weights(i,j)/2;
66 else
67 u_new(i,j) = 0;
68 end
69 end
70 end
71 end
72
73 function u_new = newton(a,weights,p)
74
75 %for matrix: loop through and find starting values
76 [M,N] = size(a);
77 u_new = zeros(M,N); %this is the solution matrix
78
79 nit = 5; %maximum number of iterations of newton method
80 tol =10^−3; %error tolerance for convergence check of
81 %newton method
82
83
84 signum = sign(a); %the sign of the rhs values.
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85 F = signum + (weights.*p./2).*signum.*abs(signum).^(p−1);
86
87 %loop through the elements, find soltion values
88 for i = 1:M
89 for j = 1:N
90 sign_val = signum(i,j);
91 if sign_val == 0 %f must also be 0
92 u_new(i,j) = 0;
93 elseif F(i,j) == a(i,j)
94 u_new(i,j) = sign_val;
95 else%find start point and run newton iterations
96 b = a(i,j); %rhs for this element
97 if abs(F(i,j)) > abs(b)
98 un = sign_val*(abs(b)/(1+(weights(i,j)*p)/2)

)^(1/(p−1));
99 else
100 un = b/(1+(weights(i,j)*p)/2);
101 end
102 % Start of newton iterations
103 it = 0;
104 err = inf;
105 while ((it < nit) && (err > tol))
106 un = un − (un + ((p*weights(i,j))/2)*

sign_val*(abs(un)^(p−1))−b)/(1+((p*
weights(i,j))/2)*(p−1)*sign_val*un*(abs(
un)^(p−3)));

107 err = abs(un + ((p*weights(i,j))/2)*sign_val

*(abs(un)^(p−1))−b);
108 it = it+1;
109 end
110 u_new(i,j) = un;
111
112 end
113 end
114 end
115 end
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Edge detector

1 function mask = find_edges(w_coeffs,w_index,j_coarse,...
2 j_fine, threshold_parameter)
3 %FIND_EDGES function that finds and marks all wavelet
4 % coefficients that corresponds to an edge in
5 % the image.
6 % input: w_coeffs: array of wavelet coefficients
7 % w_indices: corresponding blockkeeping matrix
8 % j_coarse: coarsest level to check
9 % j_fine: finest level
10 % threshold_parameter: parameter to include
11 % when establishing the threshold for wavelet
12 % coefficients
13 %
14 % output: mask: a boolean one dimensional array of the
15 % same size as w_coeffs, indication whether the
16 % corresponding wavelet coefficient is part of an
17 % edge (=1) or not (=0);
18
19 w_coeffs = abs(w_coeffs);
20 %M is the level of wavelet decomp
21 M = size(w_index,1)−2;
22 mask = zeros(1,w_index(M+2,1)*w_index(M+2,2));
23
24 for j = j_fine:j_coarse
25 [cH, cV, cD] = detcoef2('all',w_coeffs,w_index,j);
26 siz = w_index(M+2−j,1)*w_index(M+2−j,2);
27 % Find threshold
28 thresholdH = (threshold_parameter*sum(sum(cH)))/siz;
29 thresholdV = (threshold_parameter*sum(sum(cV)))/siz;
30 thresholdD = (threshold_parameter*sum(sum(cD)))/siz;
31 % Check if the corresponding coefficients are larger
32 % than the threshold
33 mask(siz+1:2*siz) = (w_coeffs(siz+1:2*siz)>thresholdH);
34 mask(2*siz+1:3*siz) = (w_coeffs(2*siz+1:3*siz)>

thresholdV);
35 mask(3*siz+1:4*siz) = (w_coeffs(3*siz+1:4*siz)>

thresholdD);
36 end
37
38 for orientation = ['h','v','d']
39
40 %first we go from the finest scale to the coarsest scale
41 curr_mask = detcoef2(orientation,mask,w_index,j_fine);
42 rows = 1:2:size(curr_mask,1)−1;
43 cols = 1:2:size(curr_mask,2)−1;
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44 downscaled = curr_mask(rows,cols)+curr_mask(rows+1,cols)
+curr_mask(rows,cols+1)+curr_mask(rows+1,cols+1);

45 recursive_down(mask,j_fine+1,j_coarse,'h',downscaled,
w_index);

46 recursive_down(mask,j_fine+1,j_coarse,'v',downscaled,
w_index);

47 recursive_down(mask,j_fine+1,j_coarse,'d',downscaled,
w_index);

48 end
49 for orientation = ['h','v','d']
50 %then, go from coarsest scale to finest scale
51 curr_mask = detcoef2(orientation,mask,w_index,j_coarse);
52 rows = 1:2:2*size(curr_mask,1)−1;
53 cols = 1:2:2*size(curr_mask,2)−1;
54 upscaled = zeros(size(curr_mask,1),size(curr_mask,2));
55 upscaled(rows,cols) = curr_mask;
56 upscaled(rows+1,cols) = curr_mask;
57 upscaled(rows,cols+1) = curr_mask;
58 upscaled(rows+1,cols+1) = curr_mask;
59 recursive_up(mask,j_coarse−1,j_fine,'h',upscaled,w_index

);
60 recursive_up(mask,j_coarse−1,j_fine,'v',upscaled,w_index

);
61 recursive_up(mask,j_coarse−1,j_fine,'d',upscaled,w_index

);
62 end
63 end
64
65 function recursive_down(mask,j,j_coarse,orientation,downscaled,

w_index)
66 M = size(w_index,1)−2;
67 if orientation == 'h'
68 o = 1;
69 elseif orientation == 'v'
70 o = 2;
71 else
72 o = 3;
73 end
74 curr_mask = detcoef2(orientation,mask,w_index,j);
75 curr_mask = ((downscaled.*curr_mask) >0);
76 siz = w_index(M+2−j,1)*w_index(M+2−j,2);
77 indices = (o)*siz+1:(o+1)*siz;
78 mask(indices) = curr_mask;
79 if j < j_coarse
80 rows = 1:2:size(curr_mask,1)−1;
81 cols = 1:2:size(curr_mask,2)−1;
82 downscaled = curr_mask(rows,cols)+curr_mask(rows+1,

cols)+curr_mask(rows,cols+1)+curr_mask(rows+1,
cols+1);
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83 recursive_down(mask,j+1,j_coarse,'h',downscaled,
w_index);

84 recursive_down(mask,j+1,j_coarse,'v',downscaled,
w_index);

85 recursive_down(mask,j+1,j_coarse,'d',downscaled,
w_index);

86 end
87 end
88
89 function recursive_up(mask,j,j_fine,orientation,upscaled,w_index

)
90 M = size(w_index,1)−2;
91 if orientation == 'h'
92 o = 1;
93 elseif orientation == 'v'
94 o = 2;
95 else
96 o = 3;
97 end
98 curr_mask = detcoef2(orientation,mask,w_index,j);
99 curr_mask = ((upscaled.*curr_mask) >0);
100 siz = w_index(M+2−j,1)*w_index(M+2−j,2);
101 indices = (o)*siz+1:(o+1)*siz;
102 mask(indices) = curr_mask;
103 if j > j_fine
104 rows = 1:2:2*size(curr_mask,1)−1;
105 cols = 1:2:2*size(curr_mask,2)−1;
106 upscaled = zeros(size(curr_mask,1),size(

curr_mask,2));
107 upscaled(rows,cols) = curr_mask;
108 upscaled(rows+1,cols) = curr_mask;
109 upscaled(rows,cols+1) = curr_mask;
110 upscaled(rows+1,cols+1) = curr_mask;
111 recursive_up(mask,j−1,j_fine,'h',upscaled,

w_index)
112 recursive_up(mask,j−1,j_fine,'v',upscaled,

w_index)
113 recursive_up(mask,j−1,j_fine,'d',upscaled,

w_index)
114 end
115
116 end
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Assigning weights

1 function weights = assign_scaledep_weights(mask,mask_index,
is_edge,is_not_edge,p)

2 M = size(mask_index,1)−2;
3 weights = is_not_edge*ones(size(mask));
4 weights(mask==1) = is_edge;
5 for j = 1:M
6 scaling_factor = 2^(−3*p*j+2*j);
7 siz = mask_index(M+2−j,1)*mask_index(M+2−j,2);
8 indices = siz+1:4*siz;
9 weights(indices) = scaling_factor*weights(indices);

10 end
11 end
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Minimization of the modified AT functional

1 function [u,v,u1] = modified_AT(g,K,p,alpha,beta,epsilon,it_max)
2 max_level = wmaxlev(size(g),'haar')−1;
3 [M,N] = size(g);
4 %% initializations
5 u0 = g;
6 u = g;
7 v_init = ones(M/2,N/2);
8 v_new = v_init;
9 [~,u_w_index] = wavedec2(u,max_level,'haar');

10 %% iterate
11 it_counter = 1;
12 u_change = inf;
13 v_change = inf;
14 u_tol = 10;
15 v_tol = 0.01;
16 while (u_change > u_tol || v_change > v_tol) && it_counter

<= it_max
17 v = v_new;
18 weights = find_AT_weights(v,u_w_index,max_level,p);%

better choice for level
19 u_old = u;
20 u = iterative_thresholding(g,u0,K,p,beta,weights,

max_level);
21 if it_counter == 1
22 u1 = u;
23 end
24 v_new = GD_v(v,u,max_level,v_tol,alpha,beta,epsilon,p);
25 v_change =max(max(abs(v−v_new)))
26 u_change = norm(u−u_old,2)
27 it_counter = it_counter + 1
28 end
29 fprintf('Algorithm ended after %d iterations\n',it_counter);
30 end
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Gradient descent

1 function v = GD_v(v,u,decomp_level,tol_v,alpha,beta,epsilon,p)
2
3 [M,N]= size(v);
4 if M > N
5 h = 1/M;
6 else
7 h = 1/N;
8 end
9

10 Dx = −diag([ones(M−1,1);0]) + diag(ones(M−1,1),1);
11 Dy = −diag([ones(N−1,1);0]) + diag(ones(N−1,1),−1);
12
13 Lx = −2*diag([1/2;ones(M−2,1);1/2]) + diag(ones(M−1,1),1) +

diag(ones(M−1,1),−1);
14 Ly = −2*diag([1/2;ones(N−2,1);1/2]) + diag(ones(N−1,1),1) +

diag(ones(N−1,1),−1);
15
16 %This matrix is used in the computation of the functional,

which only
17 %sums up to N−1, M−1
18 R = ones(M,N);
19 R(:,N) = 0;
20 R(M,:) = 0;
21 [u_w_coeffs,u_w_index] = wavedec2(u,decomp_level,'haar');
22
23 %trenger å finne funksjonalverdien
24 change_v = inf;
25 cg_it = 0;
26
27 %decomp_level = decomp_level −2;
28 while change_v > tol_v
29 cg_it = cg_it + 1;
30 FUNC_VAL = h^2*sum(sum(R.*(...
31 (alpha*epsilon/(h^2))*((Dx*v).^2 ...
32 + (v*Dy).^2)...
33 + (alpha/(4*epsilon))*(v−1).^2 )))...
34 + beta*find_AT_weights(v,u_w_index,decomp_level,

p)*(abs(u_w_coeffs).^p)'; %%ERR???
35
36 pv = −(h^2*(−2*(alpha*epsilon/(h^2))*(Lx*v+v*Ly) + ...
37 (alpha/(2*epsilon))*(v−1))+...
38 beta*find_grad_J(v,u_w_coeffs,u_w_index,decomp_level

,p));
39 lambda_v = 0.1; tau = 0.1; c = 0.01;
40 %lambda_v = 1; tau = 0.1; c = 0.1;
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41 t = c*sum(sum(pv.*pv));
42
43 v2 = v+lambda_v*pv;
44 FUNC_VAL_NEW = h^2*sum(sum(R.*(...
45 (alpha*epsilon/(h^2))*((Dx*v2).^2 ...
46 + (v2*Dy).^2)...
47 + (alpha/(4*epsilon))*(v2−1).^2 )))...
48 + beta*find_AT_weights(v2,u_w_index,decomp_level

,p)*(abs(u_w_coeffs).^p)';
49
50 it = 0;
51 % backtracking until stepsize is small enough
52 while FUNC_VAL−FUNC_VAL_NEW < lambda_v*t && it < 10
53 lambda_v = lambda_v*tau;
54 v2 = v+lambda_v*pv;
55 FUNC_VAL_NEW = h^2*sum(sum(R.*(...
56 (alpha*epsilon/(h^2))*((Dx*v2).^2 ...
57 + (v2*Dy).^2)...
58 + (alpha/(4*epsilon))*(v2−1).^2)))...
59 + beta*find_AT_weights(v2,u_w_index,decomp_level

,p)*(abs(u_w_coeffs).^p)';
60
61 it = it + 1;
62 end
63 v = v2;
64 change_v = max(max(lambda_v*abs(pv)));
65 fprintf('Gradient descent step nr. %d used %d

backtracking steps. ||v−v_new|| = %f\n',cg_it,it,
change_v);

66 end
67 end
68
69 function grad_J = find_grad_J(v,u_w_coeffs,u_w_index,j_coarse,p)
70 %UNTITLED2 Summary of this function goes here
71 % Detailed explanation goes here
72 grad_J = zeros(size(v));
73 z = v.^2;
74 for j = 1:j_coarse
75 [cH, cV, cD] = detcoef2('all',u_w_coeffs,u_w_index,j);
76 u_coeffs = abs(cH).^p+abs(cV).^p+ abs(cD).^p;
77 supp_size = 2^(j−1); %size of supprt of wavelet in v

scaling
78 scaling_factor = 2^(−3*p*j+2*j);
79 rows = u_w_index(end−j,1);
80 cols = u_w_index(end−j,2);
81 %% find matrix with minimum values, zj
82 if j == 1
83 grad_J = grad_J + scaling_factor*u_coeffs;
84 else
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85
86 temp = zeros(rows,cols*supp_size);
87 for r = 1:rows %calculate the minimum in each row
88 temp(r,:) = min(z(supp_size*(r−1)+1:supp_size*r

,:));
89 end
90 zj = zeros(rows,cols);
91 for c = 1:cols
92 zj(:,c) = min(temp(:,supp_size*(c−1)+1:supp_size

*c),[],2);
93 end
94 %% create a mask with 1 if z == the min, 0 else
95 maskj = (kron(zj,ones(supp_size)) == z);
96 %% TEST TO CHECK IF UNIQUE MINIMIZER
97 %temp = zeros(rows,cols*supp_size);
98 for r = 1:rows %calculate the minimum in each row
99 temp(r,:) = sum(maskj(supp_size*(r−1)+1:

supp_size*r,:));
100 end
101 unique = zeros(rows,cols);
102 for c = 1:cols
103 unique(:,c) = sum(temp(:,supp_size*(c−1)+1:

supp_size*c),2);
104 end
105 unique = (unique == 1);
106 maskj = 0.1*maskj + 0.9*kron(unique,ones(supp_size))

.*maskj;
107 %% update gradient
108 grad_J = grad_J + scaling_factor*(kron(u_coeffs,ones

(supp_size))).*maskj;
109 end
110 end
111 grad_J = 2*grad_J.*v;
112 end
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Phase field weight function

1 function weights = find_AT_weights(v,u_w_index,j_coarse,p)
2 kappa = 0.01;
3 weights = zeros(1,u_w_index(end,1)*u_w_index(end,2));
4 for j = 1:j_coarse
5 rows = u_w_index(end−j,1);
6 cols = u_w_index(end−j,2);
7 supp_size = 2^(j−1); %size of the support of the

wavelets in v scale
8 scaling_factor = 2^(−3*p*j+2*j);
9 siz = rows*cols;

10
11 %% find matrix with minimum values,
12 z = v.^2;
13 if j == 1
14 weights(siz+1:4*siz) =([z(:);z(:);z(:)]+kappa)*

scaling_factor;
15 else
16 temp = zeros(rows,cols*supp_size);
17 for r = 1:rows %calculate the minimum in each row
18 temp(r,:) = min(z(supp_size*(r−1)+1:supp_size*r

,:));
19 end
20 zj = zeros(rows,cols);
21
22 for c = 1:cols
23 zj(:,c) = min(temp(:,supp_size*(c−1)+1:supp_size

*c),[],2);
24 end
25 zj = zj(:);
26 weights(siz+1:4*siz) = ([zj;zj;zj]+kappa)*

scaling_factor;
27 end
28 end
29
30 end
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