
Applikasjon for utmattingsberegninger av
ikke-proposjonale spenningshistorier

Amund Aasen

Master i ingeniørvitenskap og IKT

Hovedveileder: Bjørn Haugen, IPM

Institutt for produktutvikling og materialer

Innlevert: juni 2014

Norges teknisk-naturvitenskapelige universitet

1 Abstract

Fatigue calculation of non-proportional stress histories is currently an ongo-
ing research field at the Department of Engineering Design and Materials at
NTNU. These calculations tend to be quite extensive with large data sets
and are therefore most efficiently performed by computers. A software ap-
plication to execute the computations is therefore sought after as fatigue
calculation of this type has not been available for the public, but only for
those with quite expensive software or for those with fundamental program-
ming skills. There is however made several Matlab scripts that is used for
inspiration regarding implementation and for validation of the results from
this thesis.

The application created during the thesis is based on existing free to use
open-source libraries and frameworks. A stress based critical plane approach
was implemented to perform the fatigue calculations. For educational pur-
poses a visualization of the results is presented in a 3D widget built from
the Qt-framework and the Visualization Toolkit. The application is designed
to input comma separated value files containing stress histories, perform the
fatigue calculation and visualize the critical plane and stress histories.

The results are compared to a Matlab script from a thesis written by a
fellow student and the same element is found to be critical. The critical plane
is also found to be the same, and the application calculates at a more rapid
pace than the Matlab script.

1

2 Sammendrag

Utmattelsesberegning av ikke-proporsjonal spenningshistorier er for tiden en
pgende forskningsfelt ved Institutt for produktutvikling og materialer ved
NTNU. Disse beregningene har en tendens til vre svrt omfattende med
store datasett og er derfor mest effektivt utfrt av datamaskiner. Et program
for utfre beregningene er derfor ettertraktet ettersom beregninger av denne
typen har ikke vrt tilgjengelig for allmennheten, kun for de med relativt dyr
programvare eller for de med grunnleggende kunnskaper om programmer-
ing. Det er imidlertid gjort flere Matlab-skript som er brukt til inspirasjon
i gjennomfring av denne oppgaven og for validering av resultatene fra denne
avhandlingen.

Applikasjonen utarbedet i lpet av avhandlingen er basert p eksisterende
open-source-biblioteker og rammeverk. En stress basert kritiske plan metode
er implementert for utfre utmattelsesberegningene. For pedagogiske forml
er en visualisering av resultatene presentert i et 3D-widget bygget fra Qt-
rammeverket og The Visualization Toolkit. Applikasjonen er utformet for
ta inn komma separert verdi filer som inneholder spenningshistorier, utfre
utmattelsesberegning og visualisere dte kritiske planet og stresshistorien

Resultatene er sammenlignet med et Matlab skript fra en avhandling
skrevet av en annen student og samme element er funnet til vre kritisk.
Det kritiske planet er ogs funnet vre den samme, og programmet utfrer
beregningene i et raskere tempo enn matlab skriptet.

2

3 Acknowledgements

I would like to thank my supervisor, associate professor Bjrn Haugen, for
support and advice throughout the process of writing this theis. He has been
understanding and given great help in times when it was needed. I would
also like to thank Simen Riiser for a great Master thesis I found to be very
useful; especially the Matlab code and fatigue theory has been of big help.
Thanks also to my family for keeping my spirit up during this challenging
project and all my fellow classmates for a inspiring study which ended with
this thesis.

3

4

5

Contents

1 Abstract 1

2 Sammendrag 2

3 Acknowledgements 3

List of Figures 8

List of Tables 9

4 Introduction 10
4.1 Background . 10
4.2 Objective . 10
4.3 Scope . 10

5 Fatigue Theory 11
5.1 The stress tensor . 11
5.2 Three dimensional transformation of the stress tensor 13
5.3 Fatigue mechanisms . 16
5.4 The fatigue life . 17
5.5 Design against fatigue . 18
5.6 Proportional and non-proportional stress 19
5.7 Multiaxial fatigue . 21
5.8 Critical Plane approach . 21
5.9 The Findley Model . 22
5.10 The principal stress . 23

6 Visualization 26
6.1 Qt . 26
6.2 The Visualization Toolkit . 27
6.3 Integrating Qt and VTK . 28

7 System Description 30
7.1 Software requirements description 30
7.2 System Architecture . 32
7.3 Class Diagram . 34
7.4 Design layout . 36

6

8 Results 39
8.1 The Application software . 39
8.2 The Critical Plane approach calculation 40

9 Discussion 42
9.1 Fatigue calculation . 42
9.2 The Application . 42
9.3 Accomplished requirements 43

10 Conclusion 45

Appendices 46

A Source Code 46

B References 73

7

List of Figures

5.1 The stress tensor . 11
5.2 Plane stress transformation 13
5.3 Three dimensional stress transformation 14
5.4 Fatigue mechanism steps . 17
5.5 S-N curve . 19
5.6 Mohr’s circle in non-proportional stress 20
5.7 CPA plane . 22
5.8 Mohr’s circle - 3D stress . 24
6.1 Qt c++ library modules . 27
6.2 VTK architecture . 28
7.1 Application architecture . 33
7.2 Application class diagram . 34
7.3 Sphere with polar coordinates 37
8.1 Final Application . 39

8

List of Tables

5.1 Transformation matrix constants 16
7.1 Software requirements specification 31
7.2 main.cpp functions and classes 34
7.3 CPA Findley.cpp functions and classes 35
7.4 calculation.cpp functions and classes 36
8.1 CPA calculations . 40
9.1 Accomplished requirements 44

9

4 Introduction

4.1 Background

Fatigue calculation of non-proportional stress histories is an ongoing research
area at the Department for Engineering Design and Materials at NTNU.
When working with this topic contrary to traditional fatigue analysis the
approach is different as the non-proportional multiaxial loadings make tra-
ditional fatigue approaches invalid. Also, because of large data sets and
relatively advanced calculations a computers computation power become a
necessity.

Although methods and formulas already exist for handling the problem
there is no convenient way to perform them without a Matlab script or other
open-source or free software. For engineers who do not have fundamental
programming skills or do not have access to Matlab, performing the necessary
calculation is therefore difficult or at best extremely time consuming when
done by hand.

4.2 Objective

The objective of the thesis is to create an application to perform fatigue
calculations of non-proportional stress histories. The application should be
available for public use, in industry and should be usable as a tool in educa-
tion.

4.3 Scope

A critical plane approach method will be implemented as part of a software
application to perform a fatigue analysis of potentially large stress histories.
The application will then visualise different aspects of the result such as the
stress tensor, the principal stress and the critical plane. The calculations
will be compared to previous analytical results from the same data set and
manual calculations for validation.

10

5 Fatigue Theory

A material is weakened when it is subjected to repeatedly applied loads. The
damage which occur because of these loads will eventually change the quality
of the material and in some cases the damage will lead to failure. Fatigue
theory explain the process of material and structural damage caused by the
applied loads.

5.1 The stress tensor

Any structural component of any sort and material can be exposed to a
complicated stress and tension environment. Stresses have directions and
when multiple stresses are working on one component it can sometimes be
difficult to describe the nature of the component, more significantly how it
will respond to the forces of its environment. By looking at an element,
Figure 1), of a component it is by definition exposed to nine stresses, more
specifically three normal stresses and six shear stresses.

Figure 5.1: Showing the nine stresses working on an element.

The nine stresses are often described in a three by three matrix, known
as the stress tensor, Equation 1 [2, p.55].

11

σij =

σx τxy τxz
τyx σy τyz
τzx τzy σz

 (1)

In the equation above σij represents the stress tensor, σx, σy and σz the
normal stresses and the remaining variables represents the shear stresses.
The symbols i and j specify which plane they work along the directions of
the stresses. For example is τxy a shear stress working along the x-axis and
in the y direction.

For an element to stay in one place at an static equilibrium, the shear
stresses working in opposite directions must have the same value, otherwise
the element would rotate. This simplifies the picture as we now only have
three shear stresses to use for calculations. When by definition τxy = τyx, τxz
= τzx and τyz = τzy, the stress tensor is reduced to a matrix as shown below.

σij =

σx τxy τxz
− σy τyz
− − σz

 (2)

The directions these stresses work in are defined by the given coordinate
system, but this is not always the directions that are of interest. If one for
example would want to calculate the largest stress working on a element it
is not likely that it would have the same direction and value as is already
defined by the coordinate system. It is therefore sometimes necessary to
transform the stresses so that they point in other directions.

12

Figure 5.2: Plane stress. The stress is transformed with the angle θ.

In plane stress, when the stresses on one plane by definition is zero, it is
straight forward to see how the directions of the stresses can transform using
an angle θ, resulting in a new normal stress, σθ, and a new shear stress, τθ.
For the element to reach equilibrium, the new stresses must offset the three
stresses from before the transformation, σx, σy and τxy. We can now describe
the new stresses with the given equations [8, p. 3]:

σθ =
σx + σy

2
+
σx + σy

2
× cos(2θ) + τxy × sin(2θ) (3)

τθ =
σx − σy

2
× sin(2θ)− τxy × cos(2θ) (4)

5.2 Three dimensional transformation of the stress ten-
sor

Plane stress, as described in the previous chapter, is a two dimensional state
as the stresses on one plane are zero. The calculations needed to transform
these stresses are also quite trivial as shown in equation 3 and 4 with the
angle, θ. The three dimensional case occur when there are stresses working
on all three planes formed by the coordination system. To describe these
transformation it must be taken in to consideration that there now are six
stresses to be offset from the original coordination system, and that these are

13

working on three planes. Therefore one more angle, φ, is needed to describe
the new stresses. In figure 3, the transformed coordinate system is described
after two rotations with axes x′, y′ and z′. [8, p. 4-5]

Figure 5.3: Three dimensional stress transformation with the angles θ and
phi.

Mathematically a transformation matrix, T , can be used to decide the
new values for the resulting transformed stress tensor. By solving the equa-
tion [3, p. 190]

σ′
ij = T · σij · T t (5)

the new transformed stress tensor is calculated. T is defined from the
coordination system around the axes.x1y1

z1

 = T ·

xy
z

 (6)

As three dimensional transformation includes rotation about two axes
there must exist two transformation matrices. The product of these two

14

matrices give the total transformation matrix. If seen as two individual
rotations, one can say that the first rotation with angle theta happen around
the z-axis and that the second rotation with angle phi is around the y-axis.
In each case the axis of rotation remains and so does the value along this
axis, meaning that in the first case z1 = z and in the second case y1 = y.
This now gives us the two following transformation matrices

T1 =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 (7)

T2 =

 sinφ 0 cosφ
0 1 0

−cosφ 0 sinφ

 (8)

The total transformation matrix is a product of the two transformation
matrices.

T =

 cosθ · sinφ sinθ · sinφ cosφ
−sinθ cosθ 0

−cosφ · cosθ −sinθ · cosφ sinφ

 (9)

To make use of equation 5 without the transposed transformation matrix
the right hand side of equation 4 can be calculated and one end up with one
transformation matrix. Further this can be simplified by eliminating τxy and
τyz, stresses which correspond to other stresses.

The result of these operations become a rather large matrix expression

σ′
x

σ′
y

σ′
x

τ ′xy
τ ′xz
τ ′yz

 =

a211 a212 a213 2a11a12 2a11a13 2a13a12
a221 a222 a223 2a21a22 2a21a23 2a23a22
a21 a232 a233 2a31a32 2a31a33 2a33a32

a11a21 a12a22 a13a23 (a11a22 + a12a21) (a13a21 + a11a23) (a12a23 + a13a22)
a11a31 a12a32 a13a33 (a11a32 + a12a31) (a13a31 + a11a33) (a13a32 + a12a33)
a21a31 a22a32 a23a33 (a21a32 + a22a31) (a23a31 + a21a33) (a22a33 + a23a32)

σx
σy
σx
τxy
τxz
τyz

 (10)

where the a values are defined as Table 5.1 shows below.

15

a11 = cosθ · sinφ
a12 = sinθ · sinφ
a13 = cosθ
a21 = −sinθ
a22 = cosθ
a23 = 0
a31 = −cosθ · cosφ
a32 = −sinθ · cosφ
a33 = sinφ

Table 5.1: The a values for the transformation matrix

Now, even though the expressions are quite long, transforming a stress
tensor in three dimensions become straight forward. All that is needed are
the values of the original stress tensor and the angles, φ and θ.

5.3 Fatigue mechanisms

As mentioned in the introduction to this section, structural failure often come
from a change in the quality of the material. This however is not always a
rapid process, but can gradually take place over a longer time period.

Failures due to cracking appear in four steps [7, p.58]: 1) Crack nucle-
ation 2) Stage I crack-growth 3) Stage II crack-growth 4) Ultimate ductile
failure. The nucleation step is where the crack initiate. In metals, strain
hardening and oxidation can occur on new surfaces caused by loading slips
on specifically oriented slip planes and the metal can become brittle. As slip
appear and as the load cycles continue the intrusion become a stage I crack.

Stage I cracks propagate over a few grains on the plane of maximum
shear and globally in the plane normal to the principle tensile stress. When
the cracks become large enough and reach a critical state, the structure will
fracture as it reaches the Ultimate failure step [11, p.58].

16

Figure 5.4: The figure shows the different stages regarding cracking. (a)
Crack nucleation (b) Stage I crack-growth (c) Stage II crack-growth (d) Ul-
timate ductile failure.

5.4 The fatigue life

It is normal to divide fatigue into high cycle and low cycle fatigue. The clas-
sification is relevant as it defines some differences between how eventually
failure, caused by fatigue, happens over a time and cycle span. Low cycle
fatigue is often known as less than 103 cycles [5, p. 392], and high cycle is
thereby known as more.

In other words, when mainly elastic strain and some plastic strain oc-
cur microscopically over many cycles the fatigue is high-cycle. If the nominal
strain is of a high plastic manner, the fatigue is low-cycle. High plastic strain,
meaning that the strain is much higher than the material’s yield strain, obvi-
ously has a higher impact on the material and therefore the number of cycles
is less than for the high-cycle fatigue.

Fatigue life, Nt describes how many cycles the structure can take before
it reaches failure. As Nt becomes large enough the fatigue is described as
high cycle fatigue. To calculate the expected lifetime of a structure, Nt is a
good benchmark. When looking at the equations of elastic and plastic strain
amplitudes, εae and εap we can calculate the transition fatigue life, and em-

17

brace the fact that both high-cycle and low-cycle strain contribute to ending
the final ultimate failure.

εae =
σ′
f

E
(2Nf)

b (11)

εap =
σ′
f

E
(2Nf)

e (12)

When εae = εap, Nt is given by

Nt =
1

2
(
σ′
f

ε′fE
)

1

(c− b) (13)

σ′
f , the fatigue strength of the material
ε′f , the fatigue ductility coefficient
b, the fatigue strength exponent
c, the fatigue ductility strength
E, the modulus of elasticity

5.5 Design against fatigue

The effort many have made in research on fatigue and failure is with the pur-
pose of stopping it from happen or to control it as well as possible. Popular
tools that are used to design against fatigue are strain-based and stress-based
approaches and the fracture mechanics approach.

The strain-based approach is a method that is appropriate when the cyclic
load is below and up to Nt. When the cyclic loading reaches beyond the
transition fatigue life the stress-based approach is often more useful. The
difference between the two, if they both are applied normally, is that the
strain-based approach analyses growing cracks by methods of fracture me-
chanics.

S-N curves are plots that describe how a sample of a material reacts to
subjected large cyclic stress. If the number of cycles is increased it is be-
cause of a decrease in stress. A logarithmic straight line approximation is

18

often used if the amount of test data is large enough.

Figure 5.5: An example of a S-N curve. As the number of cycles increase the
stress value must decrease. [9]

5.6 Proportional and non-proportional stress

The principal stress changes when a component is subjected to constant cyclic
loading. What is important to consider is not just the size of the stress factor,
but also the direction. When the principal stress direction remains constant,
the component is subjected to proportional loading. If the direction changes,
the loading is of a non-proportional nature. These are important aspects
to consider when dealing with a multiaxial loading state as it can lead to a
complicated state where standard S-N curves and stress-strain calculations
are inefficient.

Mohr’s circle is often used to describe the stress state of a component.

19

Figure 3 and 4 shows how Mohr’s circle changes axes because of the non-
proportional stress.

Figure 5.6: Mohr’s cycle for non-proportional stress [6]

20

5.7 Multiaxial fatigue

Multiaxial states, states where stress occur on several planes and directions,
are common and necessary in some structures for it to fulfil its means. Ex-
amples are tensile bars, crankshaft and other shafts that transmit torque.
However, testing of multiaxial states have not been as well documented over
the years as uniaxial loading. And when there is need for an analysis of
multiaxial fatigue a uniaxial method has often been carried out to give a
pinpoint of how the component will behave and eventually fail.

Given the large database of uniaxial test data it is possible to present a
good approximation for multiaxial cases. Most approaches are designed with
the thought that an equivalent stress-strain approach approximation is suf-
ficient. Examples of these methods are the maximum shear, the maximum
principle, the Tresca equivalent stress and the Von Mises equivalent stress.

When considering multiaxial fatigue the are some aspects that are dif-
ferent from the uniaxial and needs to be taken into account. First of all
there is the fact that fatigue is a directional process and that cracks grow
on particular planes. Also, neither of the uniaxial approaches considers the
median principle stress nor cares about the applied hydrostatic stress.

5.8 Critical Plane approach

Equivalent stress-strain approaches, as mentioned in the previous chapter,
does not take into consideration that fatigue is directional and that cracking
propagate along a plane. The Critical Plane approach does however exactly
so [8].

The critical plane approach take into account that both the shear stress
and the normal stress that are acting on a plane. Stress on a point in a
component can be resolved into an infinite amount of planes passing through
it. Remembering from a previous chapter about the stress tensor and how
it can be transformed to describe the stress states in new planes the critical
approach can be regarded as an extension.

The normal stress, σN , is perpendicular to the plane and the shear stress,
τ , is acting on the plane. On a cubic element the normal stresses σX , σY and

21

σZ are acting along the with six shear stresses. Considering equilibrium of
the element reduces the number of stress components to six, and these are
used to describe all stresses on a given plane through the point.

Figure 5.7: The left element is the state before the transformation. The right
element is transformed with the given angles θ and φ and new stresses are
calculated according to the new coordination system.

5.9 The Findley Model

The Findley model uses, as other critical approach methods, the matrix
transformation equations described in a previous chapter to find the critical
plane for shear and normal stresses. The damage criterion, which is different
for each fatigue models, is the reference value which is checked against at all
planes through a point. [12]

The linear influence of the normal stress on a shear plane has an alter-

nating shear stress,(
δτ

2
). The idea is that if

(
δτ

2
+ kσn)max <= f (14)

22

fatigue will not happen. In the equation above, known as the Findley model,
σn is the normal stress and k and f are material parameters. A critical plane
for crack initiation is dependent on alternating shear stress and maximum
normal stress.

The left side of equation BLA OBS is known as the Findley damage pa-
rameter. When searching all the planes through a point of a stress history,
the value with the highest Findley damage parameter will be the most vul-
nerable point on the structure, and the critical plane will appear with this
value, by the angles θ and φ.

The k constant is normally found through experiments and fatigue tests
for several stress states on the component. The parameter normally varies
between 0.2 and 0.3 for ductile parameters.

5.10 The principal stress

Remembering the stress tensor from previous chapters, it is known that the
state of an element of a structure is described by nine stresses, thereof three
normal stresses and six shear stresses. In the case where the tensor is trans-
formed such that the shear stresses all equal zero, the principal stress occur.
In other words, at these angles there only exists normal stress which is given
the name principal stress.

For the general case of plane stress the following equation give the prin-
cipal stress [2, p.56]

σ1, σ2 = 0, 5 · (σx − σy)± 0, 5 ·
√

(σx − σy)2 + 4τ 2xy (15)

The plane where shear stress is largest is oriented 45deg rotated relative to
the largest and smallest principal stress, calculated from the formula below.

τmax = 0, 5 ·
√

(σx − σy)2 + 4τ 2xy (16)

For each axis of the stress tensor it exist a maximum shear stress. Using
Mohr’s circle one can calculate the largest shear stresses using the following
formulas (Norton, 2002, p. 349)

23

τ13 =
|σ1 − σ3|

2
(17)

τ23 =
|σ2 − σ1|

2
(18)

τ32 =
|σ3 − σ2|

2
(19)

If the circle with the largest radius is given by the principal stress σ1 and
σ3, the largest shear stress will always be τ13. An example of a Mohr’s circle
for three dimensional states are also given below.

Figure 5.8: The Mohr’s circle for 3D stress.

When working with the critical approach method it is clear that the
stress tensor describes the stress at one point of a structure. What is worth
noticing is that the principle stress of a 3x3 matrix can be found by finding
the eigenvalues of the matrix. Applying this to the stress tensor one can then

24

find the largest principle stress at the critical plane for the critical element.
The eigenvectors will give the directions for the principle stress.

25

6 Visualization

This thesis seek to look at the mathematical side of the critical plane ap-
proach, but for the users to get a better understanding of it a visualization is
made to display the stress tensor and various data. This section will explain
some of the tools used for the visualization.

6.1 Qt

Qt is a framework built for C++ programming. It is a cross-platform UI
and application development framework and is growing in popularity by de-
velopers. It is mainly for developing 2D graphical interfaces, but also work
well with OpenGL and thus 3D graphics its within its scope. This project
mainly uses Qt for user interaction and and as a basis for visualization with
the Visualization Toolkit.

The framework consist of several small and large modular libraries which
form the building blocks for an application [1]. The fundamental module is
the Qt Core Module which handles file IO, objects, multi-threading, plug-ins
and the signal and slots communications mechanism. These are all functions
which are non-graphical and thereby justifiably serve the foundation in Qts
ground up architecture. For graphical purposes the GUI Module delivers
among other things a set of customizable widgets, fonts, graphics effects, a
2D graphics canvas and OpenGL integration. The building blocks make user
interface creation become an easy task, with few lines of code.

OpenGL is also a featured module in the Qt C++ framework library, and
introduce 3D graphics classes for the Qt application. OpenGL is by itself not
a permissive framework for building applications, but the widgets one can
incorporate with Qt is designed so that one only need to focus on the ren-
dering of OpenGL.

Other important modules in the framework are the 2D Graphics View
for fast graphics effects in view widgets, the Multi threading feature which
introduce parallel programming to the application, the Qt Script Module
based on a JavaScriptCore back-end and a Networking module for client
and server socket handling. There is also modules for building and handling
databases, webkit integration and XML.

26

Figure 6.1: The figure shows the building blocks of the Qt C++ framework
library.

When designing a Qt application there are several tools one can use for
creating the layout as the Qt framework is cross-platform compatible. In
this thesis native Windows 8.1 compilers and Visual Studio 2012 are used for
creating the c++ application and Qt integrate without problems. Because
a big part of the Qt tool-kit is the easy-to-use UI creation, a Visual Studio
plug-in has been designed by Qt Digia with the entire library of for instance
pre-made Qt GUI buttons and widgets. This allow for extremely efficient
application design because many files are auto-generated by the plug-in.

6.2 The Visualization Toolkit

The Visualization Toolkit (VTK) is a 3D computer graphics system which
consist of a C++ class library and several interface layers for other languages
such Java and Python. It is open-source and freely available for public use.
Kitware is the company behind the software which is mainly used for visual-
izing complex engineering problems, but it is also much used by people with
a medical background. [10]

Modelling, image processing, volume rendering, information and scientific
visualization are among the tasks VTK can perform. For this thesis the 3D
computer graphics, modelling and information visualization has mainly been
used to visualize polygonal data of spheres, planes and lines.

The architecture of VTK can be split into nine basic objects. At the

27

bottom, the most significant object, is the Render Master which creates
the rendering windows and coordinates methods. The Render Window is
what manages the window in the display device and adds Render objects
to the window. Then there is a Light object which illuminates the different
Actors on display. Actors are also a basic object and defines a figure to be
drawn by the renderer. The Camera object handles view positions, focal
points and other camera properties. A Property object, a Mapper and a
Transform objects are all Actor instances and are required for an Actor to
display properly. The property object handles the actors attribute such as
colouring and shading style, the mapper represent the geometric definition
of a actor and give the points or cells on an actor values from a lookup table
and finally the transform object specifies the position and orientation of all
the other basic objects.

Figure 6.2: This figure display the architecture of the Visualization Toolkit.

6.3 Integrating Qt and VTK

There are several guides on the Internet on how to integrate the two frame-
works, so that they together can form a powerful tool for 3D visualization

28

application development. As this thesis focus both on visualizing a scientific
result as much as the science behind it, Visual Studio 2012 was needed as a
tool in combination with QT and VTK. Integrating the two c++ librarires
with Visual Studio was done by building them both from source using the
CMake program. Then after installing some necessities such as Python and
a WebKit package, the Qt plug-in in Visual Studio integrated with the VTK
widget built from source. This widget, the QVTKWidget, is what truly
combines Qt and VTK as the input can be handled by both parties. The Qt
plug-in also come with a Qt Designer where a drag and drop function which
means that using the QVTKWidget is as efficient as any other Qt widget.

29

7 System Description

Programming a software application requires a structured plan. This section
will deal with the architecture of the application, the design and other aspects
which are relevant.

7.1 Software requirements description

When creating a software application it is important to thoroughly think
about what tasks the software should be able to perform and how. Often
this information is given by a employee or third party, in the case of this
thesis it is given partly by the project description, but mainly it has been up
to the author to decide.

When looking at the objectives for this thesis one can grasp a basic view
of the major tasks the software need to perform. It is however necessary to
take a closer look at what should be required of the software.

There are several templates one can use to create a software requirements
description, but since no two projects are the same it is made one specifi-
cally for this problem. The main focus is on what properties the software
should have, functional and non-functional. It is not an explicitly detailed
specification, but then again it should fit the size of the application and do
for further planning.

Name Type Description Solution

Performance Non-functionality The software should per-
form at a decent speed.
Can be compared to similar
Matlab-software.

Framework,
Eigen

Matrix transfor-
mations

Functionality For calculations necessary
to do the critical approach
method. A framework that
works well with matrices is
wanted.

Eigen,

30

Principle stress
calculations

Functionality Calculating the principal
stress for 3D systems can
be a challenge. A frame-
work which can handle this
is wanted.

Eigen

Calculate angles
and planes

Functionality To find the critical plane it
is important that the frame-
work used can supports cal-
culation with angles.

Eigen,
c++

Visualize 3D ob-
jects

Functionality The software should be able
to visualize a sphere with
colours, planes and data at-
tributes.

VTK

Different input
formats

Functionality The software should be able
to handle different input
formats such as excel files
and csv. Data sets could
come from several sources.

Recognition
of input
format
from file
type.

User interference Functionality The user should be able to
choose which stress to be
shown - shear or normal.

Qt and
VTK

Table 7.1: Software requirements specification

31

7.2 System Architecture

The use of Qt and VTK make this system relatively simple in a terms of
system architecture. A standard main() c++ function initiates a QApplica-
tion, which is a Qt object and the foundation of the entire application. Then
a QMainWindow instance is created which is what will bring some context
to the QApplication. From here all VTK objects and classes are initiated
and the Critical Plane Approach is calculated to give the visualization some
data. The VTK objects are then sent to a QVTKWidget, which is a Qt made
widget built especially to display VTK objects. Finally the widget and other
UI objects from the QMainWindow are sent back to the QApplication.

From figure 11 it is possible to recognize the VTK objects from the theory
section of this thesis, as you can see how the mapper, object and actor is
added to the render. The Qt framework provide the remaining parts for
VTK to work properly with the QVTKWidget. The Critical Plane Approach
calculation is not given a large role in this architecture, but it can however be
located in the function doCaluclation(). As this is just a function, although
important to the application, it is not a crucial part for the surroundings.
In fact if the function was to be replaced by another which return the same
type of object it would not matter for the application to work. It is therefore
fair to say that the mathematical part of this application is heavily separated
from the visualization part, which is more complex.

32

Figure 7.1: This figure display the architecture of the application - how the
communication flow between different classes.

33

7.3 Class Diagram

Many of the classes in this thesis is auto generated by Qt or VTK and most
of them serve the purpose of visualizing the output from the Critical Plane
Approach calculation. This class diagram therefore leave the auto generated
classes aside an focus on those which give this application a purpose.

Figure 7.2: This figure display the most important classes and functions of
the application.

To better explain the classes a table has been made to describe the output
and input variables, and what the main tasks are.

File name function name Input/Output Description

main.cpp main() Inputt: -
Output: -

The standard c++ function
which starts when the exe-
cutable file is started. Ini-
tializes a Qt application and
starts the rendering.

Table 7.2: main.cpp functions and classes

34

CPA Findley
.cpp

Render enklere
navn() - con-

structor

Constructs a Qt
application

This is where all graphics
are initiated and handled.
All VTK objects can be
found here.

CPA Findley
.cpp

convertInt() Input:
int number
Output:
string - con-
verted integer

A function which converts
an integer to a string. Used
to display number as text in
the widget.

CPA Findley
.cpp

slotsExit() void A Qt slot function which
makes sure the application
closes when the Exit-button
is pressed.

Table 7.3: CPA Findley.cpp functions and classes

calculation.cp
p

doCalculation() Input:
int input = 1
outputs
MatrixXd criti-
calStressTensor,
input = 2 out-
puts MatrixXd
criticalPlane, in-
put = 3 outputs
principalStress.
Also creates a
txt file with
detailed critical
stress tensor
information.

All main calculations are
done here, also all com-
munication between the
render enklere navn.cpp file
and this file is done through
this function.

35

calculation.cp
p

doTransformation()Input:
MatrixXd
stressTensor,
double Thet-
taAngle, double
PhiAngle, int
elementIndex
Output:
MatrixXd
transformed-
StressTensor

This function transforms a
chosen stress tensor from
the data set with the angles
thetta and phi. Used for
validation and easier out-
put for the doCalculation()
function.

calculation.cp
p

doAllCriticalTra
nsformation()

Input:
MatrixXd
stressTensor,
MatrixXd Ma-
trixofAngles, int
elementIndex,
int numberOfIn-
tervals
Ouput:
MatrixXd
criticalStressAl-
lAngles

This function delivers a
combination of transformed
stress values for all angles
from the wanted element.

Table 7.4: calculation.cpp functions and classes

7.4 Design layout

Displaying the scientific calculation from a large set of data offer a challenge.
The fundamental idea of the Critical Plane Approach, which researches the
entire data set for for all possible planes does however provide a solution.

By creating a sphere to display the stress components of the tensor one
should be able to understand the data set output on a figure. As all planes
are investigated, this naturally create a sphere where each point on the sphere

36

has a transformed value of the stress component. By giving these values color
from a look-up-table, the visualization is rather understandable.

Figure 7.3: A sphere with the steps theta and phi.

The figure above illustrates the idea. Where each line meet a point is
formed with two specific angles θ and φ. As each of the angles increment
they move to a new point to create a new plane where the stress tensor com-
ponent is tested. Finally when all points are investigated a complete sphere
with unique data is created.

The angles which finally become the critical plane is also of interest. As

37

these angles are given by the Critical Plane Approach it is a matter of cre-
ating a plane which intersect he sphere at the correct angles.

38

8 Results

8.1 The Application software

From the software requirements description it was created a perspective of
what functions and properties the application should have. The result is a
simple application where most of these functions and properties are realized.
The Appendix A show the source code for this application. There is also a
digital attachment to this thesis with the application software.

Figure 8.1: The final appearance of the application.

In the center of the application is the sphere, which can be rotaded with
a touchpad or computer mouse when dragged. Each point on the sphere
represent one value of a the stress component for the angles which create
this point. It is of course the stress tensor components of the critical element
which is at display. For interpreting the colors mapped on the sphere a
lookup table bar is showed on the right hand side of the widget.
On the right hand side of the application window it is possible to change the
desired input values for the sphere to another stress component. There is

39

also a toggle function for hiding or showing the critical plane.
The critical plane is shown by the the gray plane passing through the sphere.
The plane is fixed and rotate with the sphere as it the mouse is clicked and
dragged.
The text-box try to explain what the viewers see in the widget, an provide
some explanatory data such as the angles of the critical plane. Finally there
is an axis-system, showing the x, y and z-direction and cube edges around
the sphere for better visualization.

8.2 The Critical Plane approach calculation

The critical plane approach demand a large dataset for it to serve a purpose.
The data set used to test the application is retrieved from a previously written
thesis by Simen Riiser at NTNU [4]. The test data was in his thesis used to
calculate the expected life span of a coupler, made from a ductile material.
The thesis also used the critical plane approach with Findleys method to
investigate the data set. In addition a Excel script was created in this thesis
for manual calculation with given angles.

Program Critical Ele-
ment

Findely Crite-
rion

Critical Theta Critical Phi

Matlab 9509 251,089 90 100

CPA Applica-
tion

9509 251,09 90 100

Excel - 251,0088599 90 100

Table 8.1: Displaying the calculated results from the application compared to a matlab script

As the table above show, the values from all three scripts are the same.
Of course, in the Excel file only the angles vary and the stress tensor is col-
lected from the data set used in the matlab script and the application. That
the Findley criterion in reality is the same value is however a reassuring as
all calculations in the three programs are completely separated. That the
critical element in both the matlab script and the application is the same, as
well as the angles and the Findely criterion, is the true test. The excel file

40

does however function as a good test for the fundamental matrix transfor-
mation mathematics.

In addition to the Findely criterion and the critical element, the principal
stress has been calculated. This is not visualized in the final application, but
the application write this information to a txt file for engineers to investigate.

41

9 Discussion

9.1 Fatigue calculation

This thesis set out to calculate the fatigue of non-proportional stress histo-
ries. The information the application processes are most likely simulations
of structures of a material with a calculated ductile parameter, k for use in
the Findely model. The application created, successfully analyse the data set
and find the element where the most critical stresses occur at a given plane.
What is important to remember however is that there are more aspects to
take into consideration when using these findings to calculate presumed life
span or similar. First of all it is not always likely that the structure will
experience stresses on this plane, second the simulations used to create the
data set does not necessarily integrate all the necessary material properties
to calculate the correct stresses. In other words, this application must be
seen as a tool, a part of a larger picture for finding the weakest point on a
structure.

Even though the results from this calculation is compared to other similar
calculations and found to be consistent, the amount of test data is in reality
too small for any conclusions to be drawn about the reliability of the calcula-
tions. There has only been one data set available for testing the application,
but to further investigate the liability of this software, more tests must be
undertaken.

9.2 The Application

Building the application based on Qt and VTK result in a solid environment
for the fatigue calculation and visualization. Integrating the two is from the
beginning not a hassle free task, as it there are a total of three environ-
ment that is supposed to work together. It should be recommended for any
other programmer that wishes to set up a similar environment to allocate
a good amount of time for this process. However, when the environment is
functioning, it provides an excellent tool for GUI creation and 3D graphics
visualization taken into consideration the pre-made buttons and window ele-
ment of the Qt alongside the substantial amount of 3D objects available from
the VTK library.

42

This application uses a sphere to visualize the critical stress tensor for
the critical element. The critical plane is also displayed at the correct angels.
How this come across to the users of this application is not determined. It is
reasonable to believe that the amount of data provided by the application is
not enough to fully understand the complex underlying calculations. First of
all the sphere is not a intuitive way of relating to a stress tensor component.
It is first when the user understand the underlying mathematics, how each
point on the sphere is represented by a transformed stress value for the given
plane, that it become intuitive.

A visualization of the principle stress may help the users gain a clearer
view of what the calculations result to. Other items that might increase the
usability of this application are more data from the initial stress analysis. The
data set used in this thesis is a history made of only two stress tensors. If the
application had more stress tensors from an element it would be possible to
see how the stress on the element changed over time, which certainly would
be beneficial for educational purposes.

9.3 Accomplished requirements

Previously in this thesis there was created a table describing the require-
ments of the software. This section will determine how and whether they are
fulfilled.

Name Type Description Status

Performance Non-functionality The software should per-
form at a decent speed.
Can be compared to similar
Matlab-software.

The appli-
cation is
fast, but
not tested
properly.

Matrix transfor-
mations

Functionality For calculations necessary
to do the critical approach
method. A framework that
works well with matrices is
wanted.

Accomplished.
Use of the
Eigen c++
library.

43

Principle stress
calculations

Functionality Calculating the principal
stress for 3D systems can
be a challenge. A frame-
work which can handle this
is wanted.

Accomplished.

Calculate angles
and planes

Functionality To find the critical plane it
is important that the frame-
work used can supports cal-
culation with angles.

Accomplished.

Visualize 3D ob-
jects

Functionality The software should be able
to visualize a sphere with
colours, planes and data at-
tributes.

Partly
accom-
plished.
Some ob-
jects are
missing.

Different input
formats

Functionality The software should be able
to handle different input
formats such as excel files
and csv. Data sets could
come from several sources.

Not ac-
com-
plished.

User interference Functionality The user should be able to
choose which stress to be
shown - shear or normal.

Accomplished.

Table 9.1: Accomplished software requirements

44

10 Conclusion

The work completed in this thesis has resulted an application for fatigue cal-
culation of non-proportional stress histories and a visualization of the result.
A critical plane approach, the Findley model, was implemented for the fa-
tigue calculation and the open-source libraries Qt and Visualization Toolkit
was used for building the application.

An objective for this thesis was to make it free to use for the public,
for people in industry and for educational purposes. As all code is written
from open-source libraries or created separately this objective must be seen
as accomplished. If the application is of any value to potential users is yet
to be determined, but hopefully it is so.

Concerns regarding the quality of this application is however present.
Calculations performed on the data set prove to be consistent with other
results from matlab-scripts and excel files, but as there is only one data set
available for testing, this application should not be considered fully tested.

The application visualize the transformed stress tensor components, the
critical plane, and a look up table as the main components. The principal
stress is calculated and written to a text file for users to view and use for
further calculation. A Findley damage parameter for the critical element is
calculated from the data set and the result correspond to a Matlab-script
based on the same methods. The critical plane also correspond to these cal-
culations.

45

Appendices

A Source Code

Listing 1: main.cpp file

#include "cpa_findley.h"

#include <QtWidgets/QApplication >

int main(int argc , char *argv [])

{

// QT Stuff

QApplication app(argc , argv);

Render_enklere_navn Render_enklere_navn;

Render_enklere_navn.show();

return app.exec();

}

46

Listing 2: calculation.cpp file

#include <iostream >

#include <fstream >

#include <Eigen/Dense >

#include <Eigen/Eigenvalues >

#include <math.h>

#include <algorithm > // for copying

#include <locale >

#include "calculation.h"

#define PI 3.14159265

using namespace std;

using Eigen :: MatrixXd;

using Eigen :: EigenSolver;

template <class T>

T fromstring (std:: string s)

{

T result;

std:: stringstream str;

str << s;

str >> result;

return result;

}

class WithComma: public numpunct <char > // class for decimal

numbers with comma

{

protected: char do_decimal_point () const { return ’,’; } //

override the function that gives the decimal separator

};

MatrixXd doCalculation(int input)

{

MatrixXd test (2,2);

for(int ti=0; ti <2; ti++){

for(int tj=0; tj <2; tj++){

test(ti ,tj) =ti+tj;

}

}

//

47

///

////// Dealing with the angles and creating a set of angles

and planes that will be investigated ////

//

///

double degreeInterval = 5.0; // starting from 0 to 180 with

an interval of 5 degrees

double radianInterval = (PI /180)*degreeInterval;

int numbIntervals = ceil((PI+radianInterval)/radianInterval);

//How many intervals ??

MatrixXd intervalMatrix (1, numbIntervals); // the matrix which

contains the radian values for each step

intervalMatrix (0,0) = 0.0;

for(int i=0; i<numbIntervals -1; i++){

intervalMatrix (0,i+1) = intervalMatrix (0,i) +

radianInterval;

}

MatrixXd matrixTetta (1, numbIntervals*numbIntervals); //All

Tetta angles

MatrixXd matrixPhi (1, numbIntervals*numbIntervals); //All phi

angles

int k=0;

for(int i=0; i<numbIntervals*numbIntervals; i++){

if(k== numbIntervals){

k=0;

}

matrixTetta (0,i) = intervalMatrix(i/numbIntervals); //

filling the matrix with tetta angles

matrixPhi(0,i) = intervalMatrix (0,k); // filling the matrix

with phi angles

k++;

}

MatrixXd anglesMatrix (2, numbIntervals*numbIntervals); //

(0 ,0...n) for Tettas , (1 ,0...n) for Phis

// Finally the wanted set of angles in anglesMatrix

48

for (int j=0; j<numbIntervals*numbIntervals; j++){

anglesMatrix (0,j) = matrixTetta (0,j);

anglesMatrix (1,j) = matrixPhi(0,j);

}

// ///

//// Dealing with the input in this section ///////

// ///

locale myloc(locale (), new WithComma);// Own numeric facet

string readFromfile;

ifstream r_file_number("OperationTest.csv");

ifstream r_file("OperationTest.csv");

int numberoflines =0;

stringstream *temp;

double n;

//How many lines are there in the input file to be read?

while (getline(r_file_number , readFromfile , ’;’)) {

numberoflines ++;

}

std::cout << "numberOfLines " << numberoflines << "\n" << std

::endl;

std::cout << "(numberoflines -1)/6 " << (numberoflines -1)/6 <<

"\n" << std::endl;

int numbCols = 6; //one column for each stress component

int numbRows = ((numberoflines -1)/6); // on row for each

stress tensor

// Puting all the stresshistories from the the excel file

into a matrix where each row represents one stresstensor

// The first number on each line , the element number , in the

csv -file is negelected

/*

The format of inputData:

inputData(i,0) = sigmaX

inputData(i,1) = sigmaY

inputData(i,2) = sigmaZ

49

inputData(i,3) = tauXY

inputData(i,4) = tauXZ

inputData(i,5) = tauYZ

......

*/

MatrixXd inputData(numbRows ,numbCols);

int count =0;

int numberOfLinesAfter =0;

while (getline(r_file , readFromfile , ’;’)) {

if(numberOfLinesAfter == 0){ // Skipping the first line in

every row

numberOfLinesAfter ++;

continue;

}

temp = new stringstream(readFromfile);

temp -> imbue(myloc);

temp ->operator >> (n);

inputData(numberOfLinesAfter -1, count) = n;

count ++;

if(count ==6){

count =0;

numberOfLinesAfter ++;

}

}

// Just to make sure the format is correct ... : printing to

a file example.txt

ofstream myfile ("inputFile.txt");

if (myfile.is_open ())

{

for(int wR=0; wR <numbRows; wR++){

for(int wC=0;wC <numbCols;wC++){

myfile << inputData(wR ,wC);

myfile << "\n";

}

myfile << "newline \n";

}

myfile.close();

}

//

//

50

// /////// Dealing with the transformation matrix (a-values)

//////////////////

//

//

MatrixXd a11(1, numbIntervals*numbIntervals); //

calculate the a values

MatrixXd a12(1, numbIntervals*numbIntervals);

MatrixXd a13(1, numbIntervals*numbIntervals);

MatrixXd a21(1, numbIntervals*numbIntervals);

MatrixXd a22(1, numbIntervals*numbIntervals);

MatrixXd a23(1, numbIntervals*numbIntervals);

MatrixXd a31(1, numbIntervals*numbIntervals);

MatrixXd a32(1, numbIntervals*numbIntervals);

MatrixXd a33(1, numbIntervals*numbIntervals);

MatrixXd stressTensor (2,6);

double sigmaXTransf , sigmaYTransf , sigmaZTransf ,

tauXYTransf , tauXZTransf , tauYZTransf;

MatrixXd transformedStressTensor (2,6);

double normalmax = 0.0;

double skjerXYmax = 0.0;

double skjerXYmin = 0.0;

double skjerviddeXY = 0.0;

double skjerXZmax = 0.0;

double skjerXZmin = 0.0;

double skjerviddeXZ = 0.0;

double resSkjervidde = 0.0;

double findleyCriterion = 0.0;

double findleyFactor =0.1362;

double critTetta = 0.0;

double critPhi = 0.0;

double findleyCriterionLast = 0.0;

double finalFindley = 0.0;

double critnormalmax= 0.0;

double critskjerXYmax = 0.0;

double critskjerXYmin = 0.0;

double critskjerXZmax = 0.0;

double critskjerXZmin = 0.0;

51

int nextline =0;

int which =0;

// findleys(numbRows , 4) isn’t really used yet.. It’s

supposed to be a "sum up" of all the elements with

critical findley values and angles.

MatrixXd findleys(numbRows , 4);

int progress =2;

while(nextline < numbRows){ //For each element , not each

stress tensor

// find the 2*six next stresses and put them in two

tensors !!! OBS - not the general case - needs

fixing

for(int is=0; is <12; is++)

{

if(is <6){

stressTensor (0,is)=inputData(nextline ,is);

}

else{

stressTensor (1,is -6)=inputData(nextline+1,is -6);

}

}

//For each set of possible angles from the anglesMatrix , to

calulcate the transformation matrix

for(int ia=0; ia <numbIntervals*numbIntervals; ia++){

a11(0,ia) = cos(anglesMatrix (0,ia))*sin(anglesMatrix (1,ia

));

a12(0,ia) = sin(anglesMatrix (0,ia))*sin(anglesMatrix (1,ia

));

a13(0,ia) = cos(anglesMatrix (1,ia));

a21(0,ia) = -sin(anglesMatrix (0,ia));

a22(0,ia) = cos(anglesMatrix (0,ia));

a23(0,ia) = 0;

a31(0,ia) = -cos(anglesMatrix (0,ia))*cos(anglesMatrix (1,

ia));

a32(0,ia) = -sin(anglesMatrix (0,ia))*cos(anglesMatrix (1,

ia));

a33(0,ia) = sin(anglesMatrix (1,ia));

// for each stress history - !!! OBS not the general case

52

- needs fixing

for(int ie=0; ie <2; ie++)

{

transformedStressTensor(ie ,0) =

a11(0,ia)*a11(0,ia)*stressTensor(ie ,0) +

a12(0,ia)*a12(0,ia)*stressTensor(ie ,1) +

a13(0,ia)*a13(0,ia)*stressTensor(ie ,2) +

2*a11(0,ia)*a12(0,ia)*stressTensor(ie ,3) +

2*a11(0,ia)*a13(0,ia)*stressTensor(ie ,4) +

2*a13(0,ia)*a12(0,ia)*stressTensor(ie ,5);

transformedStressTensor(ie ,1) =

a21(0,ia)*a21(0,ia)*stressTensor(ie ,0) +

a22(0,ia)*a22(0,ia)*stressTensor(ie ,1) +

a23(0,ia)*a23(0,ia)*stressTensor(ie ,2) +

2*a21(0,ia)*a22(0,ia)*stressTensor(ie ,3) +

2*a21(0,ia)*a23(0,ia)*stressTensor(ie ,4) +

2*a23(0,ia)*a22(0,ia)*stressTensor(ie ,5);

transformedStressTensor(ie ,2) =

a31(0,ia)*a31(0,ia)*stressTensor(ie ,0) +

a32(0,ia)*a32(0,ia)*stressTensor(ie ,1) +

a33(0,ia)*a33(0,ia)*stressTensor(ie ,2) +

2*a31(0,ia)*a32(0,ia)*stressTensor(ie ,3) +

2*a31(0,ia)*a33(0,ia)*stressTensor(ie ,4) +

2*a33(0,ia)*a32(0,ia)*stressTensor(ie ,5);;

transformedStressTensor(ie ,3) =

a11(0,ia)*a21(0,ia)*stressTensor(ie ,0) +

a12(0,ia)*a22(0,ia)*stressTensor(ie ,1) +

a13(0,ia)*a23(0,ia)*stressTensor(ie ,2) +

(a11(0,ia)*a22(0,ia) + a12(0,ia)*a21(0,ia))*stressTensor(

ie ,3) +

(a13(0,ia)*a21(0,ia) + a11(0,ia)*a23(0,ia))*stressTensor(

ie ,4) +

(a12(0,ia)*a23(0,ia) + a13(0,ia)*a22(0,ia))*stressTensor(

ie ,5);

transformedStressTensor(ie ,4) =

a11(0,ia)*a31(0,ia)*stressTensor(ie ,0) +

a12(0,ia)*a32(0,ia)*stressTensor(ie ,1) +

a13(0,ia)*a33(0,ia)*stressTensor(ie ,2) +

(a11(0,ia)*a32(0,ia) + a12(0,ia)*a31(0,ia))*stressTensor(

ie ,3) +

53

(a13(0,ia)*a31(0,ia) + a11(0,ia)*a33(0,ia))*stressTensor(

ie ,4) +

(a13(0,ia)*a32(0,ia) + a12(0,ia)*a33(0,ia))*stressTensor(

ie ,5);;

transformedStressTensor(ie ,5) =

a21(0,ia)*a31(0,ia)*stressTensor(ie ,0) +

a22(0,ia)*a32(0,ia)*stressTensor(ie ,1) +

a23(0,ia)*a33(0,ia)*stressTensor(ie ,2) +

(a21(0,ia)*a32(0,ia) + a22(0,ia)*a31(0,ia))*stressTensor(

ie ,3) +

(a23(0,ia)*a31(0,ia) + a21(0,ia)*a33(0,ia))*stressTensor(

ie ,4) +

(a22(0,ia)*a33(0,ia) + a23(0,ia)*a32(0,ia))*stressTensor(

ie ,5);

// just to make it a bit easier ...

sigmaXTransf = transformedStressTensor(ie ,0);

sigmaYTransf = transformedStressTensor(ie ,1);

sigmaZTransf = transformedStressTensor(ie ,2);

tauXYTransf = transformedStressTensor(ie ,3);

tauXZTransf = transformedStressTensor(ie ,4);

tauYZTransf = transformedStressTensor(ie ,5);

// Finding largest normal stress and shear stresses

for the findley criterion calculation

if(ie != 0)

{

if(sigmaXTransf > normalmax){

normalmax = sigmaXTransf;

}

if(tauXYTransf > skjerXYmax){

skjerXYmax = tauXYTransf;

}

if(tauXYTransf < skjerXYmin){

skjerXYmin = tauXYTransf;

}

if(tauXZTransf > skjerXZmax){

skjerXZmax = tauXZTransf;

}

if(tauXZTransf < skjerXZmin){

skjerXZmin = tauXZTransf;

}

54

} else

{

normalmax= sigmaXTransf;

skjerXYmax = tauXYTransf;

skjerXYmin = tauXYTransf;

skjerXZmax = tauXZTransf;

skjerXZmin = tauXZTransf;

}

// Finding max and min shear range

skjerviddeXY = skjerXYmax -skjerXYmin;

skjerviddeXZ = skjerXZmax -skjerXZmin;

// The resulting shear range

resSkjervidde = sqrt((skjerviddeXY*skjerviddeXY)+(

skjerviddeXZ*skjerviddeXZ));

// The findley criterion for the given element

findleyCriterion = ((0.5* resSkjervidde)+(

findleyFactor*normalmax));

// Deciding which criterion is largest of the

stress tensors for the element

// Also finding the angles tetta and phi at the

largest criterion

if(ie != 0)

{

if(findleyCriterion > findleyCriterionLast)

{

critPhi = anglesMatrix (1,ia);

critTetta = anglesMatrix (0,ia);

finalFindley = findleyCriterion;

normalmax= sigmaXTransf;

critskjerXYmax = skjerXYmax;

critskjerXYmin = skjerXYmin;

critskjerXZmax = skjerXZmax;

critskjerXZmin = skjerXZmin;

which = nextline;

}

findleyCriterionLast = finalFindley;

}

}

55

// This isn’t really used ...

findleys(nextline ,0) = nextline;

findleys(nextline ,1) = findleyCriterion;

findleys(nextline ,2) = critTetta;

findleys(nextline ,3) = critPhi;

}

nextline = nextline +2; // OBS!! Not the general case -

needs some fixing

/// This isn’t really used either ...

if(nextline == progress *2){

//std::cout << "nextline = " << nextline << std::endl;

progress= progress + 2;

}

}

// At last! The largest findley criterion is found and the

critical angles (and plane) with it.

std::cout << "Final Findley criterion = " << finalFindley

<< "\n" << std::endl;

std::cout << "Final phi angle = " << critPhi *(180/ PI) << "\

n" << std::endl;

std::cout << "Final tetta angle = " << critTetta *(180/ PI)

<< "\n" << std::endl;

std::cout << "Final element (line nr..) = " << which << "\

n" << std::endl;

MatrixXd crticalStressTensorAllAngles(numbIntervals*

numbIntervals , 6);

crticalStressTensorAllAngles = doAllCriticalTransformation(

inputData , anglesMatrix , which ,numbIntervals);

ofstream myfile2 ("critStress1.txt");

if (myfile2.is_open ())

{

// for(int wi=0; wi<crticalStressTensorAllAngles.innerSize

(); wi++){

// myfile2 << crticalStressTensorAllAngles(wi ,0);

// myfile2 << "\n";

// }

myfile2 << "The Final Findley element: \n \n";

56

myfile2 << "PHI: " << critPhi *(180/ PI) << "\n";

myfile2 << "THETTA: " << critTetta *(180/ PI) << "\n";

myfile2 << "The findley riterion Value: " << finalFindley

<< "\n \n";

myfile2 << "the tensor history 1: \n" << inputData(which

, 0) << " " << inputData(which , 1) << " " << inputData

(which , 2) << " " << inputData(which , 3) << " " <<

inputData(which , 4) << " " << inputData(which , 5) << "

\n";

myfile2 << "the tensor histpry 2: \n" << inputData(which

+1, 0) << " " << inputData(which+1, 1) << " " <<

inputData(which+1, 2) << " " << inputData(which+1, 3)

<< " " << inputData(which+1, 4) << " " << inputData(

which+1, 5) << "\n";

myfile2 << "the transformed stresses: \n";

myfile2 << "ONE: \n";

myfile2 << doTransformation(inputData , critTetta , critPhi

, which) << "\n";

myfile2 << "TWO: \n";

myfile2 << doTransformation(inputData , critTetta , critPhi

, which +1);

myfile2 << "critvalues \n: " ;

myfile2 << "critskjerXYmax = " << critskjerXYmax << "\n";

myfile2 << "critskjerXYmin = " << critskjerXYmin << "\n";

myfile2 << "critskjerXZmax = " << critskjerXZmax << "\n";

myfile2 << "critskjerXZmin = " << critskjerXZmin << "\n";

myfile2 << "skjervidde = " << sqrt((critskjerXYmax -

critskjerXYmin)*(critskjerXYmax -critskjerXYmin) + (

critskjerXZmax -critskjerXZmin)*(critskjerXZmax -

critskjerXZmin)) << "\n";

myfile2 << "The crit = " << 0.5* sqrt((critskjerXYmax -

critskjerXYmin)*(critskjerXYmax -critskjerXYmin) + (

critskjerXZmax -critskjerXZmin)*(critskjerXZmax -

critskjerXZmin))+findleyFactor*normalmax;

// myfile << "min: " << min << "\n";

// myfile << "max: " << max << "\n";

myfile2.close();

}

std::cout << "Remsa = ferdig! \n" << std::endl;

MatrixXd criticalStressTensor (3,3);

MatrixXd transformedCriticalTensor (1,6);

57

transformedCriticalTensor = doTransformation(inputData ,

critTetta , critPhi , which);

criticalStressTensor (0,0) = transformedCriticalTensor (0,0);

criticalStressTensor (1,1) = transformedCriticalTensor (0,1);

criticalStressTensor (2,2) = transformedCriticalTensor (0,2);

criticalStressTensor (1,0) = transformedCriticalTensor (0,3);

criticalStressTensor (0,1) = transformedCriticalTensor (0,3);

criticalStressTensor (2,0) = transformedCriticalTensor (0,4);

criticalStressTensor (0,2) = transformedCriticalTensor (0,4);

criticalStressTensor (1,2) = transformedCriticalTensor (0,5);

criticalStressTensor (2,1) = transformedCriticalTensor (0,5);

EigenSolver <MatrixXd > es(criticalStressTensor);

std::cout << "The eigenvalues of criticalStressTensor are:"

<< endl << es.eigenvalues () << endl;

std::cout << "The matrix of eigenvectors , V, is:" << endl

<< es.eigenvectors () << endl << endl;

std::cout << "Final element = \n" << criticalStressTensor

<< "\n" << std::endl;

std::cout << "\n" << std::endl;

if(input == 1){

return crticalStressTensorAllAngles;

}

else{

return criticalStressTensor; // and eigenvalues ... need

to combine these into one matrix

}

// system (" pause");

}

//

// doTransformation does the transformation of a stress

tensor matrix (1,6) with given angles tetta and phi

// Used for transforming the critical element found and for

the visualization part of the application

//

58

MatrixXd doTransformation(MatrixXd stressTensor , double tetta

, double phi , int which){

MatrixXd transformedMatrix (1,6);

MatrixXd stressTensor2 (1, 6);

for(int i=0; i<6; i++){

stressTensor2 (0,i) = stressTensor(which , i);

}

double a11 = cos(tetta)*sin(phi);

double a12 = sin(tetta)*sin(phi);

double a13 = cos(phi);

double a21 = -sin(tetta);

double a22 = cos(tetta);

double a23 = 0;

double a31 = -cos(tetta)*cos(phi);

double a32 = -sin(tetta)*cos(phi);

double a33 = sin(phi);

transformedMatrix (0,0) =

a11*a11*stressTensor2 (0,0) +

a12*a12*stressTensor2 (0,1) +

a13*a13*stressTensor2 (0,2) +

2*a11*a12*stressTensor2 (0,3) +

2*a11*a13*stressTensor2 (0,4) +

2*a13*a12*stressTensor2 (0,5);

transformedMatrix (0,1) =

a21*a21*stressTensor2 (0,0) +

a22*a22*stressTensor2 (0,1) +

a23*a23*stressTensor2 (0,2) +

2*a21*a22*stressTensor2 (0,3) +

2*a21*a23*stressTensor2 (0,4) +

2*a23*a22*stressTensor2 (0,5);

transformedMatrix (0,2) =

a31*a31*stressTensor2 (0,0) +

a32*a32*stressTensor2 (0,1) +

a33*a33*stressTensor2 (0,2) +

2*a31*a32*stressTensor2 (0,3) +

2*a31*a33*stressTensor2 (0,4) +

2*a33*a32*stressTensor2 (0,5);;

transformedMatrix (0,3) =

59

a11*a21*stressTensor2 (0,0) +

a12*a22*stressTensor2 (0,1) +

a13*a23*stressTensor2 (0,2) +

(a11*a22 + a12*a21)*stressTensor2 (0,3) +

(a13*a21 + a11*a23)*stressTensor2 (0,4) +

(a12*a23 + a13*a22)*stressTensor2 (0,5);

transformedMatrix (0,4) =

a11*a31*stressTensor2 (0,0) +

a12*a32*stressTensor2 (0,1) +

a13*a33*stressTensor2 (0,2) +

(a11*a32 + a12*a31)*stressTensor2 (0,3) +

(a13*a31 + a11*a33)*stressTensor2 (0,4) +

(a32*a32 + a12*a33)*stressTensor2 (0,5);;

transformedMatrix (0,5) =

a21*a31*stressTensor2 (0,0) +

a22*a32*stressTensor2 (0,1) +

a23*a33*stressTensor2 (0,2) +

(a21*a32 + a22*a31)*stressTensor2 (0,3) +

(a23*a31 + a21*a33)*stressTensor2 (0,4) +

(a22*a33 + a23*a32)*stressTensor2 (0,5);

return transformedMatrix;

}

MatrixXd doAllCriticalTransformation(MatrixXd stressTensor ,

MatrixXd anglesMatrix , int which , int numbIntervals){

MatrixXd transformedStressTensor(numbIntervals*

numbIntervals ,6);

MatrixXd a11(1, numbIntervals*numbIntervals); // calculate

the a values

MatrixXd a12(1, numbIntervals*numbIntervals);

MatrixXd a13(1, numbIntervals*numbIntervals);

MatrixXd a21(1, numbIntervals*numbIntervals);

MatrixXd a22(1, numbIntervals*numbIntervals);

MatrixXd a23(1, numbIntervals*numbIntervals);

MatrixXd a31(1, numbIntervals*numbIntervals);

MatrixXd a32(1, numbIntervals*numbIntervals);

MatrixXd a33(1, numbIntervals*numbIntervals);

for(int ia=0; ia <numbIntervals*numbIntervals; ia++){

60

a11(0,ia) = cos(anglesMatrix (0,ia))*sin(anglesMatrix (1,

ia));

a12(0,ia) = sin(anglesMatrix (0,ia))*sin(anglesMatrix (1,

ia));

a13(0,ia) = cos(anglesMatrix (1,ia));

a21(0,ia) = -sin(anglesMatrix (0,ia));

a22(0,ia) = cos(anglesMatrix (0,ia));

a23(0,ia) = 0;

a31(0,ia) = -cos(anglesMatrix (0,ia))*cos(anglesMatrix

(1,ia));

a32(0,ia) = -sin(anglesMatrix (0,ia))*cos(anglesMatrix

(1,ia));

a33(0,ia) = sin(anglesMatrix (1,ia));

transformedStressTensor(ia ,0) =

a11(0,ia)*a11(0,ia)*stressTensor(which ,0) +

a12(0,ia)*a12(0,ia)*stressTensor(which ,1) +

a13(0,ia)*a13(0,ia)*stressTensor(which ,2) +

2*a11(0,ia)*a12(0,ia)*stressTensor(which ,3) +

2*a11(0,ia)*a13(0,ia)*stressTensor(which ,4) +

2*a13(0,ia)*a12(0,ia)*stressTensor(which ,5);

transformedStressTensor(ia ,1) =

a21(0,ia)*a21(0,ia)*stressTensor(which ,0) +

a22(0,ia)*a22(0,ia)*stressTensor(which ,1) +

a23(0,ia)*a23(0,ia)*stressTensor(which ,2) +

2*a21(0,ia)*a22(0,ia)*stressTensor(which ,3) +

2*a21(0,ia)*a23(0,ia)*stressTensor(which ,4) +

2*a23(0,ia)*a22(0,ia)*stressTensor(which ,5);

transformedStressTensor(ia ,2) =

a31(0,ia)*a31(0,ia)*stressTensor(which ,0) +

a32(0,ia)*a32(0,ia)*stressTensor(which ,1) +

a33(0,ia)*a33(0,ia)*stressTensor(which ,2) +

2*a31(0,ia)*a32(0,ia)*stressTensor(which ,3) +

2*a31(0,ia)*a33(0,ia)*stressTensor(which ,4) +

2*a33(0,ia)*a32(0,ia)*stressTensor(which ,5);;

transformedStressTensor(ia ,3) =

a11(0,ia)*a21(0,ia)*stressTensor(which ,0) +

a12(0,ia)*a22(0,ia)*stressTensor(which ,1) +

a13(0,ia)*a23(0,ia)*stressTensor(which ,2) +

(a11(0,ia)*a22(0,ia) + a12(0,ia)*a21(0,ia))*

stressTensor(which ,3) +

(a13(0,ia)*a21(0,ia) + a11(0,ia)*a23(0,ia))*

stressTensor(which ,4) +

(a12(0,ia)*a23(0,ia) + a13(0,ia)*a22(0,ia))*

61

stressTensor(which ,5);

transformedStressTensor(ia ,4) =

a11(0,ia)*a31(0,ia)*stressTensor(which ,0) +

a12(0,ia)*a32(0,ia)*stressTensor(which ,1) +

a13(0,ia)*a33(0,ia)*stressTensor(which ,2) +

(a11(0,ia)*a32(0,ia) + a12(0,ia)*a31(0,ia))*

stressTensor(which ,3) +

(a13(0,ia)*a31(0,ia) + a11(0,ia)*a33(0,ia))*

stressTensor(which ,4) +

(a13(0,ia)*a32(0,ia) + a12(0,ia)*a33(0,ia))*

stressTensor(which ,5);;

transformedStressTensor(ia ,5) =

a21(0,ia)*a31(0,ia)*stressTensor(which ,0) +

a22(0,ia)*a32(0,ia)*stressTensor(which ,1) +

a23(0,ia)*a33(0,ia)*stressTensor(which ,2) +

(a21(0,ia)*a32(0,ia) + a22(0,ia)*a31(0,ia))*

stressTensor(which ,3) +

(a23(0,ia)*a31(0,ia) + a21(0,ia)*a33(0,ia))*

stressTensor(which ,4) +

(a22(0,ia)*a33(0,ia) + a23(0,ia)*a32(0,ia))*

stressTensor(which ,5);

}

return transformedStressTensor;

}

//

//

// //////////////////////////////////** Pensjonert Kode

**/////////////////////////////////////

//

//

/*

/////

//////// Code for solving a transformation of a matrix with

angles tetta and phi

////

62

// angles for transformation

int tettaDeg = 10;

int phiDeg = 20;

// Degrees to radians

double tetta = tettaDeg*PI /180;

double phi = phiDeg*PI /180;

// Constants for transformation matrix

double a11 = cos(tetta)*sin(phi);

double a12 = sin(tetta)*sin(phi);

double a13 = cos(phi);

double a21 = -sin(tetta);

double a22 = cos(tetta);

double a23 = 0;

double a31 = -cos(tetta)*cos(phi);

double a32 = -sin(tetta)*cos(phi);

double a33 = sin(phi);

std::cout << "a11 = " << a11 << "\n" << std::endl;

std::cout << "a12 = " << a12 << "\n" << std::endl;

std::cout << "a13 = " << a13 << "\n" << std::endl;

std::cout << "a21 = " << a21 << "\n" << std::endl;

std::cout << "a22 = " << a22 << "\n" << std::endl;

std::cout << "a23 = " << a23 << "\n" << std::endl;

std::cout << "a31 = " << a31 << "\n" << std::endl;

std::cout << "a32 = " << a32 << "\n" << std::endl;

std::cout << "a33 = " << a33 << "\n" << std::endl;

//The stress tensor to be transformed

stressTensor (0,0) = 30;

stressTensor (0,1) = 60;

stressTensor (0,2) = 0;

stressTensor (0,3) = 10;

stressTensor (0,4) = 0;

stressTensor (0,5) = 0;

double sigmaXTransf , sigmaYTransf , sigmaZTransf , tauXYTransf ,

tauXZTransf , tauYXTransf;

sigmaXTransf = transformedStressTensor (0,0);

sigmaYTransf = transformedStressTensor (0,1);

63

sigmaZTransf = transformedStressTensor (0,2);

tauXYTransf = transformedStressTensor (0,3);

tauXZTransf = transformedStressTensor (0,4);

tauYZTransf = transformedStressTensor (0,5);

std::cout << "\nThe transformed stress tensor: " << std::endl

;

std::cout << transformedStressTensor << std::endl;

*/

/*

// Just to make sure the format is correct ... : printing to

a file example.txt

ofstream myfile (" example.txt");

if (myfile.is_open ())

{

for(int wR=0; wR <numbRows; wR++){

for(int wC=0;wC <numbCols;wC++){

myfile << inputData(wR ,wC);

myfile << "\n";

}

myfile << "newline \n";

}

myfile.close();

}

// double numbStories = numberoflines/numberOfLinesAfter;

TESINGTESING

// std::cout << "numberoflines = " << numberoflines << "\n"

<< std::endl;

// std::cout << "numberOfLinesAfter = " << numberOfLinesAfter

<< "\n" << std::endl;

// std::cout << "numbStories should be 2 = " << numbStories

<< "\n" << std::endl;

*/

64

Listing 3: main.cpp file

#define vtkRenderingCore_AUTOINIT 4(vtkInteractionStyle ,

vtkRenderingFreeType ,vtkRenderingFreeTypeOpenGL ,

vtkRenderingOpenGL)

#define vtkRenderingVolume_AUTOINIT 1(

vtkRenderingVolumeOpenGL)

#include "cpa_findley.h"

#include "calculation.h"

// This is included here because it is forward declared in

// RenderWindowUISingleInheritance.h

#include "ui_render_enklere_navn.h"

#include <vtkArrowSource.h>

#include <stdlib.h>

#include <vtkPolyDataMapper.h>

#include <vtkAxesActor.h>

#include <vtkPolyData.h>

#include <vtkDataSet.h>

#include <vtkDataArray.h>

#include <vtkPoints.h>

#include <vtkPolyData.h>

#include <vtkPointData.h>

#include <vtkDoubleArray.h>

#include <vtkFloatArray.h>

#include <vtkTextActor.h>

#include <vtkTextProperty.h>

#include <vtkDataSetAttributes.h>

#include <vtkDataSetMapper.h>

#include <vtkPolyDataAlgorithm.h>

#include <vtkRenderer.h>

#include <vtkProperty.h>

#include <vtkPoints.h>

#include <vtkRenderWindow.h>

#include <vtkSphereSource.h>

#include <vtkCellArray.h>

#include <vtkSmartPointer.h>

#include <vtkUnsignedCharArray.h>

#include <vtkGlyph3D.h>

#include <vtkFloatArray.h>

#include <vtkOrientationMarkerWidget.h>

#include <vtkTransform.h>

#include <vtkCellLocator.h>

#include <vtkKdTreePointLocator.h>

65

#include <vtkLineSource.h>

#include <stdio.h>

#include <string >

#include <sstream >

#include <vtkPlaneSource.h>

#include <vtkCubeSource.h>

#include <vtkScalarBarActor.h>

#include <vtkExtractEdges.h>

#include <vtkLookupTable.h>

#include <Eigen/Dense >

using Eigen :: MatrixXf;

using namespace std;

std:: string convertInt(int number);

// Constructor

Render_enklere_navn :: Render_enklere_navn ()

{

MatrixXd stressTensorsAll;

stressTensorsAll = doCalculation (1);

double min = 0.0;

double max = 0.0;

double tempMax = 0.0;

double tempMin = 0.0;

for(int i=0; i<stressTensorsAll.innerSize (); i++){

if(i==0){

min = stressTensorsAll(i,0);

max = stressTensorsAll(i,0);

}

if(stressTensorsAll(i,0) > tempMax){

max = stressTensorsAll(i,0);

tempMax = max;

}

if(stressTensorsAll(i,0) < tempMin){

min = stressTensorsAll(i,0);

tempMin = min;

}

}

66

ofstream myfile ("example.txt");

if (myfile.is_open ())

{

for(int wR=0; wR <stressTensorsAll.innerSize (); wR

++){

myfile << stressTensorsAll(wR ,0);

myfile << "\n";

}

myfile << "min: " << min << "\n";

myfile << "max: " << max << "\n";

myfile.close ();

}

this ->ui = new Ui_Render_enklere_navn;

this ->ui ->setupUi(this);

// Create a sphere

vtkSmartPointer <vtkSphereSource > sphere =

vtkSmartPointer <vtkSphereSource >::New();

sphere ->SetCenter (0,0,0);

sphere ->SetThetaResolution (38);

sphere ->SetPhiResolution (38);

sphere ->SetRadius (1);

sphere ->Update ();

// Create scalar data to associate with the vertices

of the sphere

int numPts = sphere ->GetOutput ()->GetPoints ()->

GetNumberOfPoints ();

MatrixXf sigmaXvalues (1, numPts);

for(int j=0; j<numPts; j++){

sigmaXvalues (0, j) = stressTensorsAll(j,0);

}

vtkSmartPointer <vtkFloatArray > scalars =

vtkSmartPointer <vtkFloatArray >::New();

scalars ->SetNumberOfValues(numPts);

67

for(int i = 0; i < numPts; ++i)

{

scalars ->SetValue(i,sigmaXvalues (0,i));

}

vtkSmartPointer <vtkPolyData > poly = vtkSmartPointer <

vtkPolyData >:: New();

poly ->DeepCopy(sphere ->GetOutput ());

poly ->GetPointData ()->SetScalars(scalars);

vtkSmartPointer <vtkPolyDataMapper > mapper =

vtkSmartPointer <vtkPolyDataMapper >::New();

#if VTK_MAJOR_VERSION <= 5

mapper ->SetInput(poly);

#else

mapper ->SetInputData(poly);

#endif

mapper ->ScalarVisibilityOn ();

mapper ->SetScalarRange(min ,max);

mapper ->SetScalarModeToUsePointData ();

mapper ->SetColorModeToMapScalars ();

vtkSmartPointer <vtkActor > actor = vtkSmartPointer <

vtkActor >:: New();

actor ->SetMapper(mapper);

vtkSmartPointer <vtkScalarBarActor > scalarBar =

vtkSmartPointer <vtkScalarBarActor >::New();

scalarBar ->SetLookupTable(mapper ->GetLookupTable ());

scalarBar ->SetTitle("lut");

scalarBar ->SetNumberOfLabels (4);

// Create a lookup table to share between the mapper

and the scalarbar

vtkSmartPointer <vtkLookupTable > hueLut =

vtkSmartPointer <vtkLookupTable >::New();

hueLut ->SetTableRange (min , max);

hueLut ->SetHueRange (0, 1);

hueLut ->SetSaturationRange (1, 1);

hueLut ->SetValueRange (1, 1);

hueLut ->Build();

mapper ->SetLookupTable(hueLut);

scalarBar ->SetLookupTable(hueLut);

68

vtkSmartPointer <vtkCubeSource > box = vtkSmartPointer <

vtkCubeSource >:: New();

box ->SetXLength (2);

box ->SetYLength (2);

box ->SetZLength (2);

vtkSmartPointer <vtkExtractEdges > edges = vtkSmartPointer <

vtkExtractEdges >::New();

edges ->SetInputConnection(box ->GetOutputPort ());

vtkSmartPointer <vtkPolyDataMapper > cubeMapper =

vtkSmartPointer <vtkPolyDataMapper >::New();

cubeMapper ->SetInputConnection(edges ->GetOutputPort ());

vtkSmartPointer <vtkActor > cubeEdgeActor = vtkSmartPointer

<vtkActor >::New();

cubeEdgeActor ->SetMapper(cubeMapper);

cubeEdgeActor ->GetProperty ()->SetColor (0,0,0);

cubeEdgeActor ->GetProperty ()->SetAmbient (1);

vtkSmartPointer <vtkPlaneSource > planeSource =

vtkSmartPointer <vtkPlaneSource >::New();

planeSource -> SetNormal(-tan (1.5708) ,-tan (2.094) ,1.0)

;

// planeSource -> SetOrigin (3.0, 0.0, 0.0);

planeSource -> SetPoint1 (3.0, 0.0, 0.0);

planeSource -> SetPoint2 (0.0, 3.0, 0.0);

planeSource ->SetCenter (0,0,0);

planeSource -> SetXResolution (10);

planeSource -> SetYResolution (10);

planeSource -> Update ();

// Create a mapper and actor.

vtkSmartPointer <vtkPolyDataMapper > planeSourceMapper

= vtkSmartPointer <vtkPolyDataMapper >::New();

planeSourceMapper ->SetInputData(planeSource ->

GetOutput ());

vtkSmartPointer <vtkActor > planeSourceActor =

vtkSmartPointer <vtkActor >::New();

planeSourceActor ->SetMapper(planeSourceMapper);

planeSourceActor ->GetProperty ()->SetColor (0.5, 0.3,

0.5);

planeSourceActor ->GetProperty ()->SetOpacity (0.5);

69

vtkSmartPointer <vtkTransform > transform =

vtkSmartPointer <vtkTransform >::New();

transform ->Translate (-1.5, -1.5, -1.5);

vtkSmartPointer <vtkAxesActor > axes = vtkSmartPointer <

vtkAxesActor >:: New();

// The axes are positioned with a user transform

axes ->SetUserTransform(transform);

axes ->SetTotalLength (0.5, 0.5, 0.5);

// Number of points on the sphere

int numberofpoints = (int) sphere ->GetOutput ()->

GetNumberOfPoints ();

std:: string numb = convertInt(min); //

stressTensorsAll.outerSize ()

const char * c = numb.c_str ();

vtkSmartPointer <vtkTextActor > textActor =

vtkSmartPointer <vtkTextActor >::New();

textActor ->GetTextProperty ()->SetFontSize (24);

textActor ->SetPosition2 (5, 30);

textActor ->SetInput(c);

textActor ->GetTextProperty ()->SetColor (1.0 ,0.0 ,0.0

);

// VTK Renderer

vtkSmartPointer <vtkRenderer > renderer =

vtkSmartPointer <vtkRenderer >::New();

/*

// Setup the text and add it to the window

vtkSmartPointer <vtkTextActor > textActor =

vtkSmartPointer <vtkTextActor >::New();

textActor ->GetTextProperty ()->SetFontSize (24);

textActor ->SetPosition2 (5, 30);

textActor ->SetInput(c);

textActor ->GetTextProperty ()->SetColor (1.0 ,0.0 ,0.0

);

// Setup the text and add it to the window 2

vtkSmartPointer <vtkTextActor > textActor2 =

vtkSmartPointer <vtkTextActor >::New();

textActor2 ->GetTextProperty ()->SetFontSize (24);

70

textActor2 ->SetPosition (5, 20);

textActor2 ->SetInput(c3);

textActor2 ->GetTextProperty ()->SetColor (1.0 ,0.0 ,0.0

);

*/

// VTK/Qt wedded

this ->ui ->qvtkWidget ->GetRenderWindow ()->AddRenderer(

renderer);

renderer ->GradientBackgroundOn ();

renderer ->SetBackground (1,1,1);

renderer ->SetBackground2 (0,0,0);

renderer ->AddActor(actor);

renderer ->AddActor(cubeEdgeActor);

renderer ->AddActor(axes);

renderer ->AddActor(planeSourceActor);

renderer ->AddActor2D(scalarBar);

renderer ->AddActor2D(textActor);

// Set up action signals and slots

connect(this ->ui ->actionExit , SIGNAL(triggered ()),

this , SLOT(slotExit ()));

}

void Render_enklere_navn :: slotExit ()

{

qApp ->exit();

}

std:: string convertInt(int number)

{

std:: stringstream ss;// create a stringstream

ss << number;//add number to the stream

return ss.str();// return a string with the contents of the

stream

}

/*

71

*/

/* **************** PENSJONERTE DELER

************************** */

/* ***

*/

/* vtkSmartPointer <vtkCellLocator > cellLocator =

vtkSmartPointer <vtkCellLocator >::New();

cellLocator ->SetDataSet(sphereSource ->GetOutput ());

cellLocator ->BuildLocator ();

double testPoint [3] = {2.0, 2.0, 0.0};

//Find the closest points to TestPoint

double closestPoint [3];// the coordinates of the closest

point will be returned here

double closestPointDist2; //the squared distance to the

closest point will be returned here

vtkIdType cellId; //the cell id of the cell containing the

closest point will be returned here

int subId; //this is rarely used (in triangle strips only ,

I believe)

cellLocator ->FindClosestPoint(testPoint , closestPoint ,

cellId , subId , closestPointDist2);

int cel = (int) cellId;

std:: string numbCellId = convertInt(cel);

const char * c3 = numbCellId.c_str ();

*/

72

B References

[1] Qt Digia. Qt digia qt framework c++ modular library.
http://qt.digia.com/Product/Qt-Framework/modular-library/, Jan-
uary 2014.

[2] Thaulow C. & Valberg H. TMM4140 Plastisk deformasjon og brudd.
Norges Teknisk Naturvitenskapelige Universitet, Trondheim, Norway,
2012.

[3] Lee Y-L. & Barkey M.E. & Kang H-T. Metall Fatigue Analysis Hand-
book: Practical problem-solving techniques for computer aided engineer-
ing. Elsivier, -, 2011.

[4] kelsrud Riiser S. Fatigue analysis and testing of SX-22 couplers. Norges
Teknisk Naturvitenskapelige Universitet, -, 2013.

[5] Dowling N.E. Mechanical Behavior of Materials (Third Edition). Pear-
son Education International, -, 2007.

[6] University of Waterloo. Fatigue stress analysis lab.
https://uwaterloo.ca/fatigue-stress-analysis-lab/research-areas/energy-
based-fatigue-life-model-proportional-and., January 2014.

[7] R.H.M.B.Y.-L.Lee. Fatigue testing and analysis: Theory and Practice.
Volume 1. Elsivier, -, 2005.

[8] G.B. Socie D.F. & Marquis. Multiaxial Fatigue. SAE International, -,
2000.

[9] Solidworks. S-n curve. http://help.solidworks.com/2012/English/SolidWorks/cworks/S-
NCurve.htm, January 2014.

[10] Visualization Toolkit. About visualization toolkit.
http://www.vtk.org/VTK/project/about.html, January 2014.

[11] Wood W. Recent observations on fatigue fracture metals. Volume 1.
1958.

[12] Findley W.N. A Theory for the effect of mean stress on fatigue of metals
under combined torsion and axial load or bending. Journal of Engineer-
ing for Industry, -, 1959.

73

	Abstract
	Sammendrag
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	Objective
	Scope

	Fatigue Theory
	The stress tensor
	Three dimensional transformation of the stress tensor
	Fatigue mechanisms
	The fatigue life
	Design against fatigue
	Proportional and non-proportional stress
	Multiaxial fatigue
	Critical Plane approach
	The Findley Model
	The principal stress

	Visualization
	Qt
	The Visualization Toolkit
	Integrating Qt and VTK

	System Description
	Software requirements description
	System Architecture
	Class Diagram
	Design layout

	Results
	The Application software
	The Critical Plane approach calculation

	Discussion
	Fatigue calculation
	The Application
	Accomplished requirements

	Conclusion
	Appendices
	Source Code
	References

