


8 Results

revealed circulatory oscillations in the selected frequency band 0.004 - 2 Hz, with con-
stant power in the lower frequencies accompanied by distinct oscillatory peaks. The
CWTs for the HRV signals are shown in Figure 8.3 (c) and (d). In general the power was
higher in class A before surgery than in the classes after surgery, but still with exceptions.
The CWTs of the ABP signals are shown in Figure 8.4 (a) and (b). Here also the power
is clearly higher before surgery than after for lower frequencies. The CWTs of all the
LDF signals are shown in Figure 8.4 (c) and (d). Some CWT signals record HR frequen-
cies, but not all. Also the clear distinction between pre and post surgery power is not
as pronounced here as for the CWTs from the two other biomedical signals HRV and ABP.

(a) CWTs of ABP signals in 2-D (b) CWTs of ABP signals in 3-D

(c) CWTs of LDF signals in 2-D (d) CWTs of LDF signals in 3-D

Figure 8.4: CWTs of all ABP signals plotted in two dimensions (a) and three dimensions
(b), and all LDF signals plotted in two dimensions (c) and three dimensions (d).

8.2 PCA

PCA was computed on the CWT signals for each of the biomedical signals at a time.
The original input dimensionality was 283 features or frequency power samples, for
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36 observations. PCA was performed both as a preprocessing step for the input to the
supervised learning models, and for data visualization looking for clustering of the
different classes in lower dimensionality. For the HRV signal input, the first three PC
coefficient vectors explained over 95% of the total variance of the data, as can be seen in
Figure 8.5 (a). The associated PC scores, or rotation of the original data in maximum
variance directions, plotted in Figure 8.5 (b) show no clear clustering of the different
classes. But class A data tends to be to the right, with greater within-class variance, while
the other three classes for after surgery data are clustered together to the left, around
origo. The same analysis as just described was also performed on the HRV data using
only every tenth frequency power sample, in order to have fewer original features than
observations. Starting out with 283 CWT features, this meant using 28 features. This
result was almost identical compared with the previous HRV data, with only a slightly
increased explained variance from 95.72% to 96.11% for the two PCs, and with same
clustering, seen in Figure 8.5 (c) and (d).

(a) Explained variance (b) PCA score plot

(c) Explained variance (d) PCA score plot

Figure 8.5: PCA with PC explained variance of HRV (a) and HRV every tenth sample (c),
and PC score plot in two dimensions of HRV (b) and HRV every tenth sample (d).

64



8 Results

The HRV data was also normalized within each dimension. This however decreased the
performance slightly, with the first four PCs needed to explain over 95% of the variance,
seen in Figure 8.6 (a). The associated score plot was then done in three dimensions,
adding the third most principal vector, because the first two did not explain at least
90% of the variance. Again no clear clustering appeared, as can be seen in Figure 8.6
(b). The distinction between class A and the rest persisted, but to a lower extent. PCA
was also done on the two other biomedical signals. Results for the ABP signals showed
that six PC vectors were needed to explained at least 95% of the original data, visualized
in Figure 8.6 (c). The PC score plot was again done in three dimensions, indicating the
same as all the previous explained results. There were no clear clustering of the four
classes, but still a distinction between class A and the rest, illustrated in Figure 8.6 (d).
Finally PCA was performed for the LDF signals. As seen in Figure 8.7 (a), 95.62% of the
total variance in the LDF CWT input matrix was explained by the first six PCs. The PC
score plot in Figure 8.7 (b) showed no clear distinction between any of the classes, with
all data appearing in one big cluster.

(a) Explained variance (b) PCA score plot

(c) Explained variance (d) PCA score plot

Figure 8.6: PCA with PC explained variance of HRV normalized (a) and ABP, and PC
score plot in three dimension of HRV normalized (b) and ABP (d).
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(a) Explained variance (b) PCA score plot

Figure 8.7: PCA with PC explained variance (a) and PC score plot in three dimension (b)
of LDF.

8.3 Classification

The supervised classification process started with a continuation of feature extraction,
besides the PCA. Six features from six subbands per signal resulted in 36 new features.
This was computed for all three signals, with the resulting vectors concatenated for a
total of 108 features or dimensions, for each of the 36 observations. The H-test statis-
tical analysis of the power feature for the HRV and ABP signals are visualized by box
plots in Figure 8.8. The red line in the boxes are the median value of the population,
thus the power features from corresponding class. The blue line encloses the 25th
percentile1, the lower bound also called first quartile (Q1), and the upper 75th percentile
also known as the third quartile (Q3). The whiskers, or line through the boxes, extend
to the most extreme data point, not considered outliers which are the red crosses. The
chi-squared statistic score and probability of class A before surgery and the other classes
after surgery having equal means for power features, for HRV and ABP, are showed in
Table 8.1. A returned value of probability less than 0.001 indicates that the test rejects
the null hypothesis of equal means in the classes, at a 1% significance level. This is
observed for all bands but 6 for HRV, and for band 2, 3 and and 5 for ABP. This last
subband also indicate reversed trend, with power increasing after surgery.

1Statistical measure indicating the value below chich a given percentage of samples in a group of samples
fall. For example the 50th percentile, or the second quartile (Q2), is the value below which 20% of the
samples may be found.
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(a) HRV (b) ABP

Figure 8.8: Power box plot for each class and each subband, for the signals HRV (a) and
ABP (b).

Table 8.1: Chi-squared statistic and probability of power observations in different sub-
bands, before and after CAGB surgery, having equal means.

Band HRV ABP

Chi-sq Pr >Chi-sq Chi-sq Pr >Chi-sq

1 13.4805 2.4106×10−4 2.4107 0.1206

2 13.7501 2.0881×10−4 8.2246 0.0041

3 13.2135 2.7793×10−4 8.8652 0.0029

4 15.1381 9.9924×10−4 3.4037 0.0650

5 7.4077 0.0065 6.6336 0.0100

6 0.0163 0.8983 2.4107 0.1206

When varying the K number of nearest neighbors in the ReliefF algorithm, the com-
puted weights for each feature also fluctuated before stabilizing. This was done for the
generated, or constructed features, calculated in the different subbands, and the PC
scores features from the PCA of CWT signals. For four different classes, the K value
stabilized at nine nearest neighbors. For two classes, the weights stabilized later with
K = 27. These results are visualized in Figure 8.9.
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(a) Generated features 2-class (b) Generated features 4-class

(c) PCA scores 2-class (d) PCA scores 4-class

Figure 8.9: ReliefF computed weights with varying values of K, for 2-class situation with
generated features (a) and PCA scores (c), and 4-class situation with generated features
(b) and PCA scores (d).

The total weight score for each feature, from each feature selection process building,
all the different classifiers, for two class situation, is displayed in Figure 8.10. In (a), the
first three features are the PC scores from HRV, the next six are from ABP, and the rest
are from LDF. As such the HRV and ABP signals had mostly positive weights, except the
second PC from ABP. The LDF signal obtained three positive weighted PC score, but
only one with a significant value, and the rest either close to zero or negative. From
the 15 original features, 13 were positive weighted. However, only nine had a higher
value, indicating discriminative property between the two classes. In (b), the first 36 are
from HRV, the middle 36 from ABP and the last 36 are from LDF. The order is features
mean, variance, skewness, kurtosis, power and max peak, for subband 1 up to subband
6, thus 36 features in total per signal. Also here, the features generated from the CWT of
the HRV and ABP signals obtained mostly positive weights, while the LDF signal obtain
lower and negative weights. Of 108 original features, only 72 features had final positive
weighted score. The total weight score for each feature, for the HRV and ABP signals
separately, is presented in Table 8.2.
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(a) PCA scores (b) Generated features

Figure 8.10: ReliefF computed weights for each feature, PCA scores (a) and generated
features (b), for 2-class situation and K=30, added for each feature selection when
building the different classifiers.

Table 8.2: Total weight score for each feature, for the HRV and ABP signals separately.

Feature HRV ABP

Mean 1212 270

Variance 932 174

Skewness 136 -19

Kurtosis 32 35

Power 1193 255

Max peak 754 399

The classification of the different classes was performed with different classifiers, each
with several distinct parameter tunings. For four classes, the results were very poor.
Performance accuracies went from slightly above 50% correct classification, and down
to 25%. However, the main classification was conducted for two classes, before and after
the surgery. Here the classifier parameters were tuned to optimize the performance.
All the performance accuracies are the expected performances from the K-fold cross
validation technique. Table 8.3 contains some of the results for classification with all
positive weighted generated features from the ReliefF algorithm. It includes the ten
highest correct classification rates. Also the highest specificity and sensitivity scores are
included. None of the classifiers obtained perfect classification, with the SVM algorithm
achieving overall best result. This classifier also obtained perfect score for the majority
class, i.e. the after surgery observations, but with lower score for the minority class.
The classifier’s specific parameters are included in the parentheses, in the order kernel
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function, kernel scaling, and box constraint. The KNN classifier achieved the same types
of results as the SVM classifier, only slightly less accurate. The specificity performance
were high, but at the same time resulting in lower sensitivity. The parentheses specifies
the distance measure, number of nearest neighbors and distance weighting used by
the classifier. The decision tree classifier had highest sensitivity score, still with some
minority class misclassifications. Also this classifier had relatively high specificity,
but not as good as SVM. The parentheses shows the maximum number of splits in
the tree. The LDA and QDA classifiers generally performed poorly, with low correct
classification rate. Trying to change the cost function in the different classifiers usually
did not improve the result. Some obtained perfect sensitivity, but at the price of lower
specificity, and thus overall performance.

Table 8.3: Classification performance measures for the ten best classifiers, using all
positive weighted generated features from the ReleifF feature filtering,

Classifier (parameters) Correct rate Specificity Sensitivity

SVM (linear, auto, 10) 0.9444 1.0000 0.7778

SVM (linear, auto, 1) 0.9222 1.0000 0.6889

SVM (polynomial, auto, 10) 0.9167 0.9630 0.6889

SVM (linear, 5, 1) 0.9111 0.9926 0.6667

Tree (20) 0.9000 0.9259 0.8222

SVM (Gaussion, auto, 1) 0.8889 0.9259 0.7778

KNN (Euclidean, 12, equal) 0.8778 0.9630 0.6222

KNN (Minkowski, 5, squared inverse) 0.8778 0.9481 0.6667

Tree (4) 0.8722 0.8963 0.8000

KNN (Euclidean, 12, squared inverse) 0.8722 0.9407 0.6667

Classification was also obtained in lower dimensionality, for fewer positive weights than
all 72. This did not change much using either only three or ten features in total. The
results from three feature classifications are shown in Table 8.4, containing the five
highest correct classification rates. Also the overall highest specificity and sensitivity
scores are included. The results were generally worse than that from using more fea-
tures. All the classifiers showed the same tendencies, or ratio between specificity and
sensitivity, as previously explained, but with lower classification accuracy. However, the
QDA classifier improved, but still with low sensitivity score.
Table 8.5 shows the results from using the PCA scores as features. These were also ex-
posed to the ReliefF algorithm, using only those 11 features with positive weighted score.
The table contain the five highest correct classification rates, and the highest scores
for specificity and sensitivity. The results are worse than that from using all positive
weighted generated features, but slightly better than the other lower dimensionality case
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Table 8.4: Classification performance measures for the five best classifiers using only
the three best weighted generated features from the ReleifF feature filtering.

Classifier (parameters) Correct rate Specificity Sensitivity

SVM (Gaussian, 5, 1) 0.8778 0.9185 0.7556

QDA 0.8611 0.9259 0.6667

Tree (100) 0.8444 0.8519 0.8222

SVM (Gaussian, auto, 10) 0.8167 0.8370 0.7556

KNN (Euclidean, 12, squared inverse) 0.8111 0.8296 0.7556

using only the very best generated features. Again the SVM classifier get high specificity,
but at the expense of sensitivity. And also the QDA had increase performance for fewer
features.

Table 8.5: Classification performance measures for the five best classifiers using all
positive weighted PC score features from the ReleifF feature filtering.

Classifier (parameters) Correct rate Specificity Sensitivity

KNN (cosine, 9, squared inverse) 0.9111 0.9556 0.7778

QDA 0.9000 0.9481 0.7556

KNN (cosine, 9, equal) 0.8833 0.9333 0.7333

SVM (Gaussian, auto, 1) 0.8722 0.9259 0.7111

SVM (polynomial, auto, 10) 0.8722 0.9407 0.6667

KNN (Euclidean, 5, equal) 0.8333 0.8370 0.8222

SVM (Gaussian, 1, 1) 0.7500 1.0000 0.0000
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This chapter serves as the discussion and interpretation of all the findings presented in
the preceding chapter. Also suggestions for future work are included, presenting other
analysis methods that can be used to further scrutinize the biomedical signals analyzed
in this thesis, for deeper understanding of the circulatory system.

9.1 CWT

The CWT was computed on downsampled signals, with the only difference from the
original sampled signals being the loss of power amplitude, but with no relative change
between different peaks. Using the Morlet mother wavelet, CWT was able to extract
circulatory oscillations in the low frequency band 0.004−2 Hz in all the three biomed-
ical signals. The wavelet analysis proved constant power for lower frequencies and
distinct peaks for the different subbands, both in line with previous work on this subject.
For the ECG and ABP signals, the HR frequencies were visible, which by physiological
knowledge and empirical evidence are always present in these signals. When selecting
a mother wavelet, it is important that the wavelet represents the characteristics of the
signal to be analyzed, in order to extract the correct information. Slowly varying, simple
wavelets might not reveal all the frequency content of a complex signal. The Morlet
wavelet has been reported as a popular choice for complex signals, and usage in medical
settings. Together with the extraction of low frequency peaks and medical background,
the Morlet wavelet was therefore assumed to produce the correct frequency content to
be analyzed further with other methods.

The CWT of some of the ECG signals were found to contain much low frequency power
concentrated around the center of the analyzed frequency band, exemplified in Figure
8.1 (b). The noise was in all likelihood due to motion artifact from patients’ inevitable
movements, since signals were recorded over an extended period of time. By inspecting
the ECG signals first, extracting only excerpts without apparent noise, the corresponding
CWTs instead had lower overall power, with clear HR frequencies. However, the HRV
signals were computed from the ECG signals with R peak detection. This proved to
work despite noise artifacts in the ECG signals, but not for vast noise distortion. As a
result, removing the noisy segments made sure the HRV calculations through R peak
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detection were valid. They could thus be used further in the other analyses in this
thesis. As mentioned, ECG noise removal was done mostly manually, not with advanced
filtering methods. A simple low pass filter was implemented, but only to eliminate high
frequency noise outside the analyzed frequency band, to make R detection easier. HRV
extraction was possible, even in instances with a reasonable amount of noise. Therefore
the HRV signal has the potential to be a good feature in analysis of the heart, circulatory
system or ANS, in recording settings involving movement. With simple detrending of
the signal, the R peaks can more easily be detected correctly, as long as the removed
frequencies are known to occur from movement noise. When recording the ECG signals
for this study, sampling frequency was set to 400 Hz based on previous reports on the
subject. However, new information has since been discovered. As reported by [119,
120], in ECG recordings of normal patients a 125 Hz sampling rate is sufficient. But for
recordings from heart transplant patients and different simulated RR intervals, these
signals should be digitalized at 1 kHz before being utilized for HRV signal extraction.
This is again due to the decomplexification and power reduction between healthy and
pathological patients. The reason for this not being researched earlier, was simply that
extraction of HRV was not decided until later in the study progress. The resulting HRV
signals still did resemble previous findings, with overall power clearly dropping from
before surgery to after surgery, and circulatory oscillations reduced and decomplexified.

The ABP signals were not preprocessed. Inspection of the waveforms showed no clear
noise artifacts, probably due to the recording of the signals. This was done invasive,
with a catheter placed inside an artery and pressure directly converted to electric pulses.
Thus the recording was not sensitive to movement artifacts. The CWT of the ABP signals
also showed loss of oscillations after surgery, but not over the whole analyzed frequency
band. The lowest frequency band, the respiratory frequencies and heart rate had power
for all classes. When computing the CWT of the signals, this was averaged for all the time
instances associated with different frequencies, visualized in the result for computation
of CWT for ABP. This plot clearly shows that there are temporal differences for some of
the frequency bands. While heart rate is persistent at all times, lower frequencies varies
greatly and thus this dimension is lost in the performed analyses.

The LDF, however, did contain a substantial amount of noise. As with the ECG signal,
excerpts with less noise were extracted by inspection. All the three signals were simulta-
neously recorded, and thus synchronous excerpts were used, finding segments with less
noise for both ECG and LDF in particular. For many of the LDF signals the HR frequency
peak was not present. This contradicts previous findings. The reason is probably be-
cause the signals contained much noise in the recordings. As can be seen in Figure 8.4
(c) and (d), there is extensive power in the lowest frequencies for many of the signals.
Further from Figure 8.2 (d), this power is reduced when outliers are erased. As such, this
power might be from noise not removed with the outliers detection and subsequent
erasure, but rather embedded in the signal itself. The CWT scalogram seems to be given
in relative power to the maximum. When the frequency band is divided in many voices,
power is concentrated in lower frequencies. Therefore low frequency noise will prohibit
any significant peak for the higher HR frequencies. LDF is known to be very sensitive
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to movement noise. Previously in [15], the HR frequency and lower frequencies were
detected as distinct power peaks with CWT using Morlet. But the analyzed signals were
only recorded for 20 minutes. In this study, signals have been recorded for several hours,
with much movement more likely to occur. Therefore, the movement sensitivity seems
to be a challenge for LDF, especially when recording for long periods of time. Contrary
to HRV and ABP, it seems to be no clear distinction between pre and post surgery CWT
signals. But due to the noise influence just explained, no conclusions should be based
merely on these results.

The CWT can be regarded as feature extraction from the original time domain samples
of the biomedical signals, to the time-frequency scalogram domain. Further using only
frequency information, by averaging the power coefficients over time, the resulting
transformation compresses the original data significantly. Resampling the original
data down to 4 Hz sampling rate, or four samples per second, by the Nyquist theorem,
frequencies below half this rate will be preserved, i.e. the frequency band 0- 2 Hz. For at
least 17 minutes signals, this requires at least 4 ·60 ·17 = 4080 samples. The resulting
CWT in this setting stores the frequency information in only 283 samples. The frequency
content from the CWT is thus new features of the circulatory system, which was first
assessed with the time-varying biomedical signals. CWT was performed based on
previous reported work, extracting circulatory oscillations to better explain changes in
the cardiovascular system after being put through challenges, e.g. diseases, medication
and surgery.

9.2 PCA

The PCA and data visualization of the CWTs indicated the same results as the simple
inspection of the CWTs of all the biomedical signals for each class. For both the HRV
and ABP signals, the PC score plots indicated a distinction between pre and post surgery
data. But the different classes were not separated entirely into individual clusters. Fur-
ther, this meant that the information in the original 283 CWT samples were explained
by maximum variance, resulting in only three PCs for HRV and six PCs for ABP. How-
ever, no new information or a clearer separation of the classes was revealed, as hoped
when deciding to implement the analysis method. Still, the dimensionality reduction
exercised by the analysis made the new computed features interesting for further use.
These PC scores could be used as features in the supervised classification, hoping they
would provide enough differentiation property between the classes for before and after
surgery. Since the dimensionality was reduced, this could increase the performance
of classification, especially for classifier algorithms prone to overfitting. For the ABP
signal, a third PC was included to perform a scatter plot in three dimensions, since
the first two PCs did not explain 90% of the total original variance. This PCs also had
a relative high amount of variance, specifically 10%. As such, this dimension helped
to differentiate the classes, as seen in the aforementioned 3-D plot. The PCA of the
frequency content for the LDF signal showed no clear distinction between the classes,
not even between before and after surgery. But as explained in the discussion for the
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CWT result, the signals probably contained severe noise, and no conclusions should
be based on the analysis of this signal. An interesting observation is that both ABP and
LDF contained 95% of the original variance in the corresponding CWT signals, in the
first six PCs. However, only the ABP showed any distinction between class A and the
rest, suggesting differentiating power in PCA cannot be interpreted only by the amount
of variance explained by the PCs.

The PCA was also conducted on the normalized HRV data, as suggested upon reviewing
the analysis method. This did not improve the result, instead the performance decrease
with reduced explained variance in the most principal components, and even less
separation between the classes. This was probably because all the data had the same
scaling and same units. All samples in each dimension were power samples from the
CWT, and thus normalization did not improve the result. This should only be done to
reduce the importance of features with different large scaling compared to the other
features. Finally PCA was also done on a HRV signal containing only every tenth sample
of the original HRV signal. As such, this new signal had less features than samples,
since it has been suggested that PCA in HDLSS situations might not end in desirable
results. This did not change the result significantly, hence the original information was
still comprised in the downsampled signal. Also, it seems that PCA performance only
deteriorate for higher dimensions, as the 283 CWT features are still relatively low, even
for only 36 observations. Back to the PCA results in general, the mathematical transform
assumes distribution of the exponential family. By the CLT, real life data tends to normal
distribution for larger sample sizes. And larger number of observations will minimize
the probability of errors and maximizing population estimation accuracy. For the HRV
and ABP signal, PCA did resemble the information in the CWT of the two signals. The
PC scores differentiated, to some extent, between pre and post surgery observations
from only nine patients, and could be an interesting feature extraction technique for
circulatory oscillations.

9.3 Classification

The classification process started with feature selection, in search of an optimal feature
subset from the original feature set to improve classification performance. The power
feature from each subband from the HRV and ABP signals were further scrutinized after
the initial inspection of the CWT waveform. For the HRV signal, the box plots shows
that there is a clear loss of power from before to after surgery for lower frequencies. This
cooperate earlier findings, but has been further proved for several subbands. The H-test
also shows that there is a statistical difference at a 1% level in all but one subband. This
is the highest subband, but since HRV is sampled at approximately 1 Hz, the power in
this subband bear no meaning. It has also been showed that power drops in several
subbands for the ABP signal as well, with a statistical significance. This occurs in the
middle subbands 2 and 3. An interesting finding is that the power in subband 5 have
opposite trend, steady rising from class A before surgery to class D at least 12 hours
post surgery. The box plots shows the difference between the four original classes, while

75



9.3 Classification

the statistical test was calculated for class A against the rest. Class B , C , and D shows no
clear distinction, as anticipated due to previous findings stating power is not restored
until several months after CABG surgery. Due to the uncertainty in the LDF signal, this
signal was not used in the statistical test.

For efficiently evaluating all the features, and their discriminative property, the Reli-
efF feature filter method was employed. This was used to ensure that only important
features were used to training the classifiers, to reduce the dimensionality and avoid
curse of dimensionality and overfitting. To optimize the performance of this technique,
the K parameter for number of nearest neighbors in the algorithm was varied. From
this the value was found when the computed weights stabilized. K = 30 was used in all
the classifications. For each training of a classifier, conducted several times because
of the repeating nature of the cross validation scheme, the computed weights for each
feature were continuously added. As such, the total weight score for each feature was
calculated. From this, the importance of the features could be assessed. The bar plot of
all the PC scores shows that the three first scores from HRV achieve positive weights,
with decreasing value correlating with lesser explained variance. The middle six comes
from ABP, with five positive weights of value well above zero. The last six from LDF are
generally poor, with low and negative weights, The bar plot of all the 108 generated
features shows that the latter 36, for each subband in the LDF signal, has low or nega-
tive weights. Again, this means that the features differentiate poorly between pre and
post surgery data. But as pointed out several times, the LDF signal had considerable
amount of noise, and the validity of this result is questionable. The 36 features in the
middle represents the ABP signal. This shows high value for the features of the middle
subbands, as seen from the CWT waveforms and box plots of the power feature. The
first 36 represents the HRV signal, with generally high weight values, except the last
subband. This however should not be considered, as HRV had almost no oscillations for
the heart rate frequencies. The weights for each feature in each subband were summed
for HRV in the lower five subbands, and for ABP in all the subbands. This shows that
mean, variance, power and max peak are the features that generally discriminate well.
Skewness and kurtosis, however, obtain low scores and should not be used in future
work classifying circulatory oscillation changes.

The classification of the four original classes resulted in very poor accuracy, with perfor-
mance equal of and worse than a trivial classifier, randomly classifying classes with an
expected accuracy correct rate of 50%. This was understandable from the inspection of
the CWT signals and the feature analysis, showing low variation between after surgery
classes B , C and D. The main classification of two classes, before and after surgery,
achieved generally high classification for some of the classifier algorithms. The SVM
classifier obtained highest correct classification rate. This was because of the high
specificity score, i.e. the classification accuracy of the majority class after surgery with
most observations. The sensitivity score, i.e. the classification accuracy of the minority
class for observations before surgery, was on the other hand much lower. This was the
general result for all the classifiers, regardless of parameter tunings. Some experiments
trying to change the cost function in the classifiers achieved a higher sensitivity score,
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but at the expensive of specificity, and thus overall correct classification rate decreased.
The decision tree algorithm obtained the highest sensitivity score, but not with perfect
specificity, thus an overall lower performance accuracy than SVM. The discriminant
analysis, both LDA and QDA, and the only parametric methods, performed poorly
compared to the other more flexible nonparametric methods with less assumptions of
the data.

The number of features were reduced further to train the classifiers using only the very
best discriminating features according to the ReliefF method. As such, the number of
features were lower than the number of observations, to ensure the curse of dimen-
sionality was avoided. The number of features were varied between only the three best,
and up to ten features, with no significant difference. However, this resulted in lower
overall performance for all the classifiers, except the QDA model. This indicates that this
classifier works better in lower dimensionality. Further, it shows the other classifiers, es-
pecially the SVM, work reasonable well in higher dimensions. The dimensionality is still
relatively small, but must be seen in light of the number of observations, which is much
lower. The classifiers were also tested in lower dimensionality for the PCA computed
features, obtaining generally the same results as the previous low dimensionality case,
and thus worse than using more features. This was reasonable, considering the visual
display of the PC scores, and the computed weights with the ReliefF filter method. Still,
the results are decent considering the low number of observations, and PCA does cap-
ture, to some extend, the difference in the circulatory system from before to after surgery.

The evaluation of the classifiers were performed using the K-fold cross validation. Be-
cause of the low number of observations, the value was set to K = 6. As such, the 36
observations were divided into equally sized folds of six observations. This method
is recommended for classifier validation when data is scarce, as the case was for this
study. Cross validation computes the expected classification performance, and not
the true test accuracy. The K-fold loop is often itself repeated, to further average the
performance. This was also employed here, mostly due to the great variance in the
performance measures between each training. This was probably due to the differ-
ent test observations used in each validation, randomly assign by the cross validation
method. Even though the mean of the power feature was significantly different in the
five lowest subbands for the HRV signal, there were outliers present from inspecting the
CWT signals and the PC score plot. With few observations, only nine for the pre surgery
class, the observations overlapping with the other class is hard to classify correctly. The
ADASYN algorithm was implemented to overcome the imbalance between the classes,
but this still did not improve the results significantly. This synthetic observations were
introduced in the cross validation loop, and only used to train the classifiers. They
were not used for training, since this would bias the classifier, with almost identical
observations potentially being in the training and test sets at once. The variance in the
classification results also gave no clear pattern for which classifiers were best suited
for this data. The SVM mostly produced the best results, with the KNN and decision
tree algorithms slightly behind, and the discriminant analysis being the worst. But the
different results for the various parameters tunings gave no clear answers for which one
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were the better. This seemed more dependent of the training and test sets division in
cross validation.

This machine learning classification of observations from circulatory variables are a
novel approach to study the differences from before and after cardiac surgery. Previous
work is based on statistical tests of data from the time and frequency domain. This thesis
extends previous work, extracting several features from the frequency band computed
with the CWT. These are exposed to feature processing, and classified with several
different algorithms to analyze the changes occurring in the circulatory system from
CAGB surgery. The results show no perfect classification between observations in the
two classes. When extracting the data, at lest 17 minutes of continuous recording had to
be extracted. Some of these still included some noise artifact, which could be the reason
for outliers in class A that overlap with class B ,C , and D . However, results are promising
for further testing. Obtaining more data is always better than further optimizing the
current classification algorithms [6]. Training with small numbers of observations has
been investigated in [121], with 5-25 independent observations per class. Although
the classification models achieve acceptable performance, the learning curve can be
completely masked by the random testing uncertainty due to the equally limited test
observations. A learning curve displays a certain performance measure by varying
the number of observations. Results from the aforementioned paper determined that
75-100 observations are usually needed to test a good, but not perfect classifier.

9.4 Future Work

Throughout the progress of this thesis, several choices of analyzing methods have been
made. As a result, the are still many more ways in which the data from the medical study
can be analyzed. First of, DWT can be employed when extraction frequency information
from the biomedical signals. DWT supports many other wavelets, which might perform
better than the Morlet wavelet for feature extraction. Also, DWT is not redundant, with
high concentration of energy. Thus less frequency samples would be needed for each
frequency subband, maybe eliminating the use of extensive dimensionality reduction.
Both the CWT and DWT extract time localization of frequency variations. As seen in the
computed scalogram for ABP in Section 8.1, lower frequencies varies greatly at different
time instances. This dimension is an interesting property for further analysis of the
circulatory system. By monitoring subject with ECG during different perturbations, the
HRV can be extracted, and frequency changes with time localization can be mapped
back to the different perturbations.

PCA was used in this study for feature extraction. This finds the maximum variance in
the original data, which reduces the dimensionality and can be employed as features
in supervised learning. The method did separate observations from different classes
to some extend, but should be repeated on a greater number of observations. Also,
adding Gaussian noise to the PC scores, as proposed in [122], could improve the perfor-
mance of subsequent classification of small and unbalanced data sets. A special case
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of PCA is the ICA, instead searching for independent components in the original data.
This method could be used to extract features in medical signals for further classifica-
tion. Also, using this method for different biomedical signals, hidden common features
present in the signals could be extracted, for further knowledge of the circulatory system.

The use of machine learning has huge potential in medical settings, and is already a
growing field. This is probably the future standard analysis method for finding patterns
in medical signals, and subsequent implementation for supervised diagnosis of diseases.
The classification performed in this thesis and the calculated features, has the potential
to diagnose cardiovascular diseases associated with loss off complexity, and follow up
CABG surgical patients to see if circulatory oscialltions are back to normal. Before this
is a reality, work in this thesis needs to be repeated, but as stressed repeatedly, including
more observations from new cardiac patients. In machine learning, usually more data
beats clever algorithms. Also, more tuning parameters are possible, as well as testing
other classifiers. The SVM generally performed best. This could be used further, with
other feature selection methods as well. A wrapper method could be implemented
together with the SVM classifier, to optimize performance.
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The purpose of this thesis was to assess circulatory variables with different biomedical
signals in 10 cardiac surgical patients, and investigate changes in low frequency oscilla-
tions from before CABG surgery and in the hours after. The HRV signal was extracted
from the ECG recordings. Also, ABP and LDF signals were recorded. The CWT of the
signals were obtained in the frequency range 0.004-2 Hz. But time localizations were
omitted, instead computing the average frequency information over all time instances,
to be further analyzed. Initial inspection of the CWT waveform showed HRV oscillations
heavily decreasing after surgery. This was also observed in the ABP signal, but to a lesser
extend, with oscillations steadily increasing for the respiratory frequencies after surgery.
LDF gave no clear difference between pre and post surgical recordings. Excerpts of all
signals were extracted in order for the recordings to obtain the least amount of noise.
However, the LDF signals contained considerable amount of movement artifacts. The
signals were included in the further analyses, but reveal no information of any impor-
tance.

PCA was performed on the CWT data of the three biomedical signals, in order to inves-
tigate the information in lower dimensionality. For the HRV and ABP signals, a small
difference between pre and post surgical observations could be seen, but with no clear
distinction and still overlapping data point. This was inspected by scattering the very
most principal components, which included most of the variance in the original data.
To further assess the discriminate power in these new extracted features, PC scores were
used in the supervised classification.

Feature selection was performed prior to supervised classification. The frequency band
computed for the original time-varying signals was divided into six subbands. In each
band, several new features were computed. The power feature from the HRV and ABP
signals were used in the statistical H-test. For HRV, this proved statistical significant
difference in power from before to after surgery, with oscillations decreasing in all sub-
bands, but the highest HR frequency range. The ABP also had statistical significant
decrease in power for the middle subbands, and with opposite trend for the respiratory
frequencies. ReliefF feature filtering were conducted on all the constructed features
computed for each biomedical signal. Positive weighted features indicated discrim-

80



10 Conclusions

inate properly between the class for observations prior to surgery, and the class for
observations post surgery. This was showed for most of the generated features from the
CWT of the HRV and ABP signals. Mean, variance, power and max peak achieved high
total weight score, and can be used for future classification of changes in circulatory
oscillations.

Using these features, supervised classification with the decision tree, LDA, QDA, KNN
and SVM was conducted. Performance measures were assessed using 6-fold cross val-
idation, iterated 5 times. Correct classification rates were generally high, however no
perfect classification was recorded. PCA was also used as features, obtaining decent
results, but worse than the generated features from each subband. Overall, the SVM clas-
sifier obtained highest performance accuracy. But the decision tree and KNN algorithms
resulted in highest sensitivity score, which were generally low. Sensitivity measured the
classification accuracy of the minority class of observations before surgery, and the low
accuracy is probably due to the low number of observations for this class. Furthermore,
this very reason is also the most likely explanation for the modest accuracy results. With
more observations of the discriminative features found in this thesis, higher performing
classification of changes in circulatory oscillations should be possible.
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MATLAB files with filename extension .m are included in the attached ZIP file
MATLAB_mathias_falk_master_thesis_2016.zip. This contain an identically named
folder with MATLAB functions and scripts used to performed the analysis presented
in this thesis. All the files includes explanatory descriptions, accessible using the
help function in MATLAB followed by the file name. First the script initialize.m is
run to clear the workspace, command window and close figures, and also initialize
global constants for the further analysis. The ten dataextXX.m files in the folder
dataext are run for data extraction for each patients. This folder needs to contain all
the MAT-files with data for each patients, obtainable from the shared folder online
found at https://studntnu-my.sharepoint.com/personal/mathiafa_ntnu_-
no/Documents/Master2016_mathiasfalk. This data is also obtainable directly in the
MAT-file patientdata.mat, in the same folder, with precalulated data. Then the script
dataProc.m is run. This performs HRV extraction of ECG with the function HRV.m,
downsampling of ABP and LDF signals, and noise removal of the latter signal with
function deloutliers.m. From these three new signals, CWT is calculated with the
function CWTscalogram. The new HRV signal and the resampled ABP and LDF signals
are stored in the patientdata.mat file for future use. CWT signals are also stored, in the
the CWTdata.mat file, which can also be obtain directly from the shared folder with
precomputed data. For the main analysis, featProc.m constructs the new features in
each subband, for each signal. The new features, and the CWT data for each signal is
organized in matrices containing all observations. Here rows are observations, and
columns are features or dimensions, thus the transpose mode compared to notation
used in this thesis. Also the PCA is performed with the call of function PCAcalc.m,
performing plotting and saving scores as feature in a matrix. The PC score plotting in
3-D is done with the function gscatter3.m. For classification, the script classifications.m
are used. Here variables can be specified for the analysis. Variable featureHyperSub
contain a matrix with all generated features per observation. scoresPCA contain all
PC scores. Variables classNum2 and classNum4 contain vectors with integer number
for two and four classes, respectively, used for class labels in supervised settings. The
classifications are performed on all classifier combinations stated in the script, using
the function classify.m. This function again uses the function ADASYN.m to perform
oversampling in the two-class situation. The feature weights from feature selection are
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then plotted.

For the other analyses, the remaining scripts and functions are used. siganalyis.m plots
excerpts of all the signals, the R detection in ECG, and the CWT results with and without
noise in ECG and LDF. wavanalysis.m plots the time and Fourier domains of the Morlet
and Mexican hat wavelets. featanalysis.m plots the ReliefF analysis for several values of
nearest neighbors in the feature weighting importance ranking, using function rffplotK.
The power feature is box plotted in each subbands, and further statistical testing of
this feature is done with the function stattest.m, itself checking normality of the feature
with swtest.m. Finally plotCWT plots all the CWT signals for each observation, for each
signal, in 2-D and in 3-D.
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