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Abstract

Well placement optimization is an important part of Petroleum Field Development.
However, in order to improve the optimization procedures, it can be important to
incorporate considerations like knowledge about the geology of the reservoir or
about existing or planned well paths. This leads to additional constraints that
have to be satisfied during the optimization. In this thesis we concentrate in
particular on constraints on the well lengths and the distance between the wells.

We suggest an alternating projections method to deal with both constraints
at the same time, and develop an efficient numerical method for the solution.
Although we cannot prove that the method is convergent, numerical results of
our implementation indicate that the approach works as intended.

An additional important contribution from this work is the implementation of
a well index calculator. In reservoir simulation, the well index relates the flow
rate and pressure of the wellbore to the pressure solution of the subsurface fluid
flow system, and is therefore an essential part in computing resulting production
volumes.

We also implement an algorithm that, given a slanted well and the physical state
of a reservoir, calculates the well indices for the well blocks that are intersected by
the well. In particular the well index calculation for deviated wells is a nontrivial
task that is important for well placement optimization research. This task is
already handled by some industry reservoir simulators, but the implementation is
hidden from the end-user.

All of the implementations are meant to be an addition to FieldOpt, a
petroleum field development optimization framework that is currently under
development by the Petroleum Cybernetics Group at NTNU.
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Chapter 1
Introduction

This chapter gives the reader an overview of our goals and the purpose of the
work. We wish to contribute to the work in petroleum field development by
implementing constraint handling routines and a well index calculator as an aid
to current well placement optimization methods. These implementation are made
so that in the future they can be integrated in FieldOpt [1], a petroleum field
development optimization framework that will aid in the operations of producing
hydrocarbons from the subsurface. The problem of placing wells is a substantial
part of petroleum field development, and because of its importance we should use
optimization procedures to augment the well placement decision-making. In this
effort it is important that we have a way to measure the oil field production and
its related costs, and that we are able to define good constraints, in the sense
that they are proper representations of petroleum engineering knowledge. After
we have defined the task as a mathematical problem with associated constraints,
we should try to develop and implement efficient methods to deal with these
constraints while maximizing income.

What is Petroleum Field Development(PFD). Petroleum Field Develop-
ment is mainly concerned with maximizing the return of the financial investment.
We can gain financial revenue by increasing the recovery of oil from the reservoir or
by reducing the costs associated, e.g., drilling, labor, injection and the production
of water.

1.1 The general well placement problem
What is the objective of well placement optimization. The problem of
well placement optimization is the following: Given some physical information
about a reservoir we wish to place one or several wells in such a way that an
objective is reached. The objective is usually to maximize the net present value,
which again is achieved by maintaining a high oil recovery while minimizing costs
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Chapter 1. Introduction

at the same time. This problem is one that has been studied extensively and
many methods for optimizing the placement of the well have been proposed [2],
both derivative based methods and derivative-free methods.

How wells are parametrized. In the specific problem we study in this thesis,
x represents the position of all wells in the system, but generally it may also include
other variables such as control settings, bottom hole pressure or shape coefficients
in the case of curved wells. A single straight well can be defined by the coordinates
of the heel and toe of the well. As an example, four wells in three dimensional space
can be defined by a vector x containing N = Nwells ·Nheelandtoe ·Ndimension =
4 · 2 · 3 = 24 real numbers, i.e., x ∈ R24.
The general problem can be formulated as an unconstrained optimization problem
in the following way

min
x∈RN

J (x) , (1.1)

where the objective function J : RN → R maps a point x ∈ RN to a real number.
J determines how well the objective is reached in the point x. In a scenario
of oil production J is typically be defined in such a way that oil production is
maximized and the related costs (e.g., the cost of drilling, well equipment etc.)
are minimized.

How is the objective computed, what is a reservoir model/simulation.
In order to evaluate the objective function in a point x a simulation is needed to
determine the pressure distribution in the reservoir system. This is typically done
by providing a reservoir simulator, such as Eclipse [3], the physical state of the
system which might include well block pressure, permeability and well indices.

What is the well index. The well index relates wellbore flow rate and pressure
to well block quantities [4], which is important for computing oil recovery. The
well index of a well block is uniquely determined by the well placement coordinates
and is either left as a job to the reservoir simulator or computed and given as input
by the user. The reservoir simulator then computes the pressure distribution in
the reservoir by numerically solving a set of partial differential equations (PDEs)
which then implicitly determines the oil production rate.
The wells in the well placement problem are treated as straight line segments or
as continuous chains of straight line segments inside a reservoir of blocks. The
blocks of the reservoir have six planar faces and every face of a block is either
shared with the face of another block or lies on the boundary of the reservoir
domain. It is possible to extend the model to not only consider the placement of
wells. One could also include things such as time dependent well control variables.
This would result in a more complex variation of the original problem (1.1), where
oil production is treated over a longer time span instead of being instantaneous.
Including the new variables could look like the following:

min
x∈RN

y∈Rk

∑
t

J (x,y, t) , (1.2)
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1.1. The general well placement problem

where x are the well placement coordinates, y are the well control variables and t
is a time variable.

How we solve for the well placement problem. Gradients of the objective
function with respect to well placement variables are not readily available and are
likely to be be discontinuous. As noted by Bellout et al. [2] the well placement
problem does not appear to be as amenable using gradient-based methods because
these approaches can get trapped in local minima. An alternative is to treat it
using derivative-free approaches such as genetic algorithms, stochastic perturbation
methods and particle swarm optimization.

Well placement constraints. It is important that the search for well configu-
rations is constrained by realistic petroleum engineering considerations for how
best to develop the field, e.g., knowledge about the geology and flow properties of
the reservoir and information about existing or planned well paths and facilities.
It is crucial for an efficient well placement optimization effort to articulate this
type of information into a properly defined objective function with constraints
that can be treated using mathematical programming. In order for our current
well placement model to be practically useful there are several limitations to the
placement of wells. These include, but are not restricted to, constraints on the
length of a well (well length constraint), how close two wells can be to each other
(inter-well distance constraint) and where a well is allowed to reside (well domain
constraint). All of these restrictions on the wells result in a number of constraints
on the well coordinates.

• Well length restrictions require that wells should not be too short but also
not too long. We require that the heel xh and toe xt of every well should
be separated by at least a distance Lmin but not more than Lmax.

• The restriction on how close wells can be to each other results in the inter-
well distance constraint. Essentially wells either interfere if they are placed
too close to each other or it makes drilling either dangerous or impossible
to perform. For all pairs of wells we require that every point of one well is
at least a distance d away from every point of the other well.

• A well location restriction gives a domain constraint, which demands that a
given well position be in some predefined feasible domain Ωwd. Although this
constraint looks simple enough, a domain Ωwd may be arbitrarily defined
and needs not be simple or convex, making projections on it difficult to find.

How do we solve for the constrained well placement problem. This
thesis aims to contribute to the well placement problem by taking well coordinates
from a single unconstrained optimization step and developing a way to project
coordinates that violate constraints back into feasible space in such way that
the coordinates of the wells are moved as little as possible. This process is
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Chapter 1. Introduction

then continued iteratively so that after every unconstrained optimization step
we project wells so that all constraints are satisfied. In addition an algorithm to
calculate the well index for deviated wells (i.e., not strictly vertical) described by
Shu in [5] is implemented. This calculation is currently not handled by FieldOpt
itself but by the reservoir simulators.

Tasks for this thesis

• Determine and implement constraints that are physically reasonable.

• Implement a routine to deal with the constraint handling as an optimization
problem. The routine projects non-feasible coordinates onto a feasible space.

• Implement well index calculation for deviated (i.e., not perfectly horizontal
or vertical) wells.

In Chapter 2 we will introduce the well placement problem and formulate the
well constraints in a more detailed manner, in addition we will explain some ideas
for how to handle multiple constraints. In Chapter 3 we will solve the individual
constraint problems and in Chapter 4 a method for computing the well index for
blocks is outlined.
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Chapter 2
Problem formulation

This chapter introduces the overall well placement optimization problem and how
we represent wells. Moreover, we introduce the different constraints more clearly
and indicate how we intend to handle several constraints at the same time. For
the rest of this thesis we will assume that a well connects its heel and toe in a
straight line. We describe well i with the coordinates of its heel and toe (xh

i ,xt
i)

∈ R3 × R3. If we have multiple wells we collect all N wells in a single variable
x ∈ (R3 × R3)N .

2.1 Well problem formulation

We define the overall well placement optimization problem as

min
x∈(R3×R3)N

J (x)

such that x ∈ Ω,
(2.1)

where J : (R3 × R3)N → R is a user-defined objective function that maps the
current well positions to a real number. The choice of J should maximize oil
production or the net present value while minimizing various costs such as well
drilling costs, well length costs and other factors. For now the exact definition of
J is left open, as we concentrate on satisfying the constraints.

The domain Ω is the set of all well coordinates x that satisfy a set of linear and
nonlinear constraints that enforce certain restrictions which we shall define below.
We need to select, develop and implement constraints with the physical objective
of drilling in mind. This means constraint types for the positioning of wells in
a reservoir should be reasonable representations of engineering restrictions and
priorities for how a petroleum field should be developed. To restrain overall well
configuration in field development, in this work we define three types of constraints:
a well length, an inter-well distance and a reservoir boundary constraint.
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Chapter 2. Problem formulation

2.1.1 Well length constraint
First we must define a metric or distance function g : R3 × R3 → R which takes
two points in three dimensional space and maps them to a real number. We use
the most natural choice, namely the Euclidean distance. For two points p,q ∈ R3

the distance between them is

g(p,q) := ‖p− q‖ =

√√√√ 3∑
i=1

(qi − pi)2. (2.2)

A well should not be longer than Lmax nor shorter than Lmin, or equivalently,
the length should be in the interval [Lmin, Lmax]. Note that we will also require
that Lmin > 0, i.e., we don’t allow wells of zero length. The well length constraint
can now be formulated as

‖xh
i − xt

i‖ ≤ Lmax, (2.3)

‖xh
i − xt

i‖ ≥ Lmin, (2.4)
for all i = 1, 2, . . . , N. (2.5)

2.1.2 Inter-well distance constraint
Every pair of wells should be at least some minimum distance d apart. This
means that every single point of one well needs to be at least a distance d from
all points of every other well. If a well is the straight line between the heel and
toe of the well then this is equivalent to requiring that

‖(xh
i + λ1(xt

i − xh
i ))− (xh

j + λ2(xt
j − xh

j ))‖ ≥ d, (2.6)

λ1, λ2 ∈ [0, 1], (2.7)
for all pairs (i, j) of wells with i 6= j. (2.8)

2.1.3 Reservoir bound constraint
The reservoir is made up of grid blocks which are convex polyhedra, but the reser-
voir itself is not necessarily convex. All wells can be required to lie in a feasible
domain, and heel and toe might have different feasible domains. Domain bounds
should reflect the geological situation and it might also be natural to assume some
restriction on heel position that is given by the drilling operator. If all wells lie
in a feasible domain we say that x is feasible, or simply that x ∈ Ωwd. Due to
lack of time we were not able to define and solve a reservoir bound constraint, so
for the rest of the thesis we will assume that all possible positions x satisfy the
reservoir bound constraint.

Collecting all constraints we can rewrite equation (2.1) as

min
x
J (x) (2.9)
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2.2. Projection of multiple constraints

such that

‖xh
i − xt

i‖ ≤ Lmax, (2.10)

‖xh
i − xt

i‖ ≥ Lmin, (2.11)

for all i = 1, 2, . . . , N,

‖(xh
i + λ1(xt

i − xh
i ))− (xh

j + λ2(xt
j − xh

j ))‖ ≥ d, (2.12)

λ1, λ2 ∈ [0, 1], (2.13)

for all pairs (i, j) of wells with i 6= j, .

2.2 Projection of multiple constraints
Given a set of well coordinates xk and an objective function J , an unconstrained
optimization step, O, is performed in order to achieve an improved position

O : xk 7→ x̃k+1. (2.14)

If a position x satisfies all constraints we say that x ∈ Ω. If the improved position
does not satisfy all constraints then the coordinates need to be projected back to
feasible space by some projection method P . Ideally we want to find a projection
method P

P : x̃k+1 7→ xk+1, (2.15)

that solves the problem

min
xk+1

‖x̃k+1 − xk+1‖, (2.16)

such that xk+1 ∈ Ω, (2.17)

i.e., a projection that moves a position back into feasible space by moving the
points as little as possible.

2.3 Simultaneous constraint projection
Even if an analytical solution to (2.16) exists, i.e., solving the well length constraint
and inter-well distance constraint at the same time, it is probably very difficult
because both (2.11) and (2.12) are non-convex.

Using numerical solvers for constrained optimization, such as fmincon() in
MATLAB [6], is problematic because of the implementation of the constraints.
Especially the well distance constraint is pretty difficult to implement because of
the piecewise definition of the closest points. Therefore we need to simplify our
approach and look for a possibly (and probably) suboptimal solution of (2.16) if
we wish find a working projection.

7



Chapter 2. Problem formulation

2.3.1 Method of alternating projections
Alternating projections is a standard approach for this kind of problem. If we
know how to project onto the two sets C and D with the projections PC and PD

respectively, then the alternating projection method is defined as

xk+1 = PC (PD(xk)) (2.18)

Moreover, if the sets C and D are convex and their intersection is non-empty,
then the sequence (2.18) will converge to some point in this intersection.

Although we have no idea how to compute the whole projection analytically,
we can still compute the individual projections onto the feasible sets for the well
length constraint (Pl), and the projection for the inter-well distance constraint
for two wells (Pd). The details will be discussed in Chapter 3.

Thus we can attempt to use the method of alternating projections to find
a feasible point. Neither the feasible points for the well length constraints nor
the feasible points for the inter-well distance constraint form convex sets, so we
cannot guarantee any global convergence of the method.

However, in a result [7] by Lewis, Luke and Malick, [7, Thm. 5.16] states the
following: If we have two sets, A and B, with A super-regular (see [7, Def. 4.3])
and B closed, and with non-opposing normal vectors to the sets at every point in
their intersection, it then follows that the alternating projection converges locally
R-linear to a point in A ∪B. From [7, Proposition 4.8] we have that amenability
implies super regularity, and the remark one line earlier states that if A is defined by
C1 inequality constraints and the Mangasarian-Fromowitz constraint qualification
[8, Def. 12.6] (or the stronger linear independence constraint qualification) holds,
then A is amenable. By calculating the gradient of the well length constraint
(2.11) we get that

∇
(

1

2
‖x− y‖2 − 1

2
L2

min

)
=

[
x− y
y − x

]
, (2.19)

which is non-zero for all x 6= y. Now since we require that wells have non-zero
length, this implies that x 6= y. This means that the well length constriction
satisfies the linear independence constraint condition which in turn implies that
the set of feasible points for the well length constraint is super-regular. Therefore
it follows that the alternating projection of the well length constraint and the
inter-well distance constraint is locally convergent. Note, however, that this result
for the projections Pl and Pd only holds for two wells.

2.3.2 Inter-well distance projection on more than two wells
The treatment of the inter-well distance constraint is particularly difficult for
multiple wells because it puts requirements on every pair of wells, and thus it
increases in complexity as the number of wells increases. In order to solve the
inter-well distance constraint problem in a system with more than two wells,
we apply the projection Pd to two wells at a time and hope that it eventually
converges. Call this projection process Pm.

8



2.3. Simultaneous constraint projection

2.3.3 Alternating projection pseudo code
Here we provide a pseudo code of the algorithm for the locally convergent alter-
nating projection method for two wells. Note that by replacing Pd with Pm the
code can also attempt to solve the projection problem for more than two wells.

Algorithm 1 Constraint handling
1: procedure Project coordinates to feasible space
2: Get initial coordinates y← x
3:
4: while xk not feasible do
5: y← Pl(y)
6: y← Pd(y)
7: end while
8: Return y
9: end procedure

The complete iterative optimization process can be done by using the opti-
mization step O and the projections Pl and Pd. Note again that the process
extends to handling multiple wells if we replace Pd with Pm.

Algorithm 2 Iterative optimization method
1: procedure Optimize constrained problem
2: Get initial coordinates x0

3:
4: k = 0
5: while J(xk) not optimal do
6: x̃k+1 ← O(xk)
7: while x̃k+1 not feasible do
8: x̃k+1 ← Pl(x̃k+1)
9: x̃k+1 ← Pd(x̃k+1)

10: end while
11: xk+1 ← x̃k+1

12: k = k + 1
13: end while
14: Return xk

15: end procedure

The solution for each individual projection will be handled in the next chapter.

9





Chapter 3
Constraint handling

Let x2k−1 and x2k be the coordinates of heel and toe of well k respectively, and
let ξ2k−1 and ξ2k−1 denote the initial coordinates (i.e., given as input) of heel
and toe of well k. E.g., x7 is the heel of well number four and ξ20 are the initial
coordinates of the toe of well number 10.

3.1 Well length constraint

Since the well length constraints for the different wells are independent of each
other, we may compute their projections separately. Thus without loss of generality
we may assume that N = 1, that is, we only deal with one well.

It is natural to assume that a well should have non-zero length and that the
total length of one well should be allowed to vary. The distance between the heel
and toe of a single well must be in the interval [Lmin, Lmax]. In other words they
must be at least Lmin apart but not further away from each other than Lmax.
From the previous assumptions we get the constraints

‖x1 − x2‖ ≥ Lmin,

‖x1 − x2‖ ≤ Lmax,
(3.1)

where the lengths Lmax and Lmin satisfy Lmax > Lmin > 0. If these conditions
are not met by the initial input coordinates, ξ1 and ξ2 need to be projected back
into feasible space by moving them as little as possible. This is done by solving

min
x1,x2∈R3

f(x1,x2) = min
x1,x2∈R3

(
1

2
‖x1 − ξ1‖2 +

1

2
‖x2 − ξ2‖2

)
(3.2)

11



Chapter 3. Constraint handling

subject to

h1(x1,x2) = +
1

2
‖x1 − x2‖2 −

1

2
L2

min ≥ 0, (3.3)

h2(x1,x2) =− 1

2
‖x1 − x2‖2 +

1

2
L2

max ≥ 0, (3.4)

where the constraints have been squared so they can be differentiated.
There are three kinds of solutions depending on the configuration of the initial
positions of the heel and toe of the well. The initial positions ξ1 and ξ2 must
either violate the Lmax constraint, violate the Lmin constraint or they satisfy both
constraints. The solution for each initial configuration is given below and the
proofs follow afterwards.

ξ1

ξ2

Lmin
2

x1x2 u

Figure 3.1: Minimum constraint violated. Initial points ξ1, ξ2 are identical and
solution points x and y lie on opposite sides of a circle with radius Lmin

2
. Note that

the solution shown in the figure is only one of the infinitely many solutions that
exist for this case.

If ‖ξ1 − ξ2‖ < Lmin there are two solution types. If ξ1 = ξ2 then solutions are

x1 = ξ1 +
Lmin

2
u,

x1 = ξ1 −
Lmin

2
u,

(3.5)

for any vector u of unit length. I.e., there is no unique solution and all solutions
are pairs of points that lie on opposite sides of the circle with center ξ1 and radius
Lmin

2 . One such solution is shown in Figure 3.1.
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3.1. Well length constraint

ξ1

ξ2

x1

x2

Lmin

Lmax

Figure 3.2: Minimum constraint violated. Initial points ξ1, ξ2 are too close and
the solution is to move the points away from each other along the line that passes
through them in opposite directions until the distance between them is exactly
Lmin.

If ξ1 6= ξ2 then the solution is

x1 = ξ1 +
λ∗

1− 2λ∗
(ξ1 − ξ2),

x2 = ξ2 −
λ∗

1− 2λ∗
(ξ1 − ξ2),

(3.6)

were λ∗ = 1
2

(
1− ‖ξ1−ξ2‖

Lmin

)
. Here both points are moved away from each other an

equal distance along the line that passes through ξ1 and ξ2 as shown in Figure
3.2.

ξ1

ξ2

x1

x2

Lmin

Lmax

Figure 3.3: Maximum constraint violated. Initial points ξ1, ξ2 are too far away
from each other and the solution is to move the points closer along the line that
passes through them until the distance between them is exactly Lmin.

If ‖ξ1 − ξ2‖ > Lmax the solution is given by

x1 = ξ1 −
µ∗

1 + 2µ∗
(ξ1 − ξ2),

x2 = ξ2 +
µ∗

1 + 2µ∗
(ξ1 − ξ2),

(3.7)

where µ∗ = 1
2

(
‖ξ1−ξ2‖
Lmax

− 1
)
. The geometric interpretation is that both points

are moved closer to each other along the line that passes through ξ1 and ξ2 as

13



Chapter 3. Constraint handling

indicated in Figure 3.3.

x1

x2

ξ1

ξ2

Lmin

Lmax

Figure 3.4: Constraints are satisfied by initial points and no movement of the
points is needed.

If Lmin ≤ ‖ξ1 − ξ2‖ ≤ Lmax the initial points satisfy both constraints and as
shown in Figure 3.4 we need not move them. The solution in this case is

x1 = ξ1,

x2 = ξ2.
(3.8)

To prove the formulae (3.5) – (3.8) consider the minimization problem (3.2) –
(3.4), which can be solved by the method of Lagrange multipliers. Define the
Lagrangian function

L(x1,x2, λ, µ) =
1

2
‖x1 − ξ1‖2 +

1

2
‖x2 − ξ2‖2

− λ
(

1

2
‖x1 − x2‖2 −

1

2
L2

min

)
− µ

(
−1

2
‖x1 − x2‖2 +

1

2
L2

max

)
,

(3.9)
where λ, µ ∈ R are the Lagrange multipliers for the constraints. Note that only
one of the constraints can be active at once, meaning that either λ or µ must be
zero.
A necessary condition for a local minimum x∗1,x∗2 is that it satisfies the first order
KKT conditions

∇x1,x2L(x∗1,x
∗
2, λ
∗, µ∗) = 0,

λh1(x∗1,x
∗
2) = 0,

µh2(x∗1,x
∗
2) = 0,

λ ≥ 0,

µ ≥ 0,

hi(x∗1,x
∗
2) ≥ 0, i = 1, 2.

(3.10)

Differentiating the Lagrangian and setting the gradient to 0 we obtain the system
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3.1. Well length constraint

of equations

∇x1L = x1 − ξ1 − λ(x1 − x2) + µ(x1 − x2) = 0,

∇x2L = x2 − ξ2 + λ(x1 − x2)− µ(x1 − x2) = 0.
(3.11)

The problem is solved by dividing the positions of the initial points, ξ1 and
ξ2 into three different cases and then considering different candidate solutions
(x∗1,x∗2, λ∗, µ∗). The three different categories for the initial position of the heel
and toe of the well must either violate exactly one of the constraints, or violate
none of them. The optimal solution of a configuration must satisfy the constraints,
i.e., Lmin ≤ ‖x∗1−x∗2‖ ≤ Lmax. A solution must satisfy exactly one of the following
equations

Lmin < ‖x∗1 − x∗2‖ < Lmax,

‖x∗1 − x∗2‖ = Lmin,

‖x∗1 − x∗2‖ = Lmax.

(3.12)

For each of the three cases for the initial positions of the well we will consider
each of the three possibilities for the solution.

3.1.1 Case 1. Initial points feasible

Assume that Lmin ≤ ‖ξ1−ξ2‖ ≤ Lmax. Then the initial points satisfy the distance
constraint and no movement of the points is needed. Because the objective function
f is non-negative and f(ξ1, ξ2) = 0 this solution is the global minimum.

3.1.2 Case 2. Initial points too close

Assume that ‖ξ1−ξ2‖ < Lmin. The distance between the initial points is too small
and must be increased. According to (3.12) there are three different possibilities
for the distance between the candidate solutions x∗1,x∗2. If

Lmax > ‖x∗1 − x∗2‖ > Lmin, (3.13)

i.e., the solution lies in the interior of both constraints. Then none of the
constraints are active, which gives λ∗ = µ∗ = 0 and therefore

x∗1 = ξ1,

x∗2 = ξ2.
(3.14)

But this results in the contradiction ‖x∗1 − x∗2‖ = ‖ξ1 − ξ2‖ ≤ Lmin, and thus the
solution cannot satisfy (3.13).
If ‖x∗1 − x∗2‖ = Lmin, the maximum constraint is inactive which means that µ = 0.
Inserting this into equation (3.11) gives

x1 − ξ1 − λ(x1 − x2) = 0,

x2 − ξ2 + λ(x1 − x2) = 0,
(3.15)

15



Chapter 3. Constraint handling

which is a linear system with respect to x1 and x2. Now if ξ1 = ξ2, which means
the initial well has zero length, then it follows that λ = 1

2 and we get

x1 + x2 = 2ξ1, (3.16)
‖x∗1 − x∗2‖ = Lmin. (3.17)

This equation has solutions

x1 = ξ1 +
Lmin

2
u, (3.18)

x1 = ξ1 −
Lmin

2
u, (3.19)

for all unit vectors u and they are all KKT points. So if the initial well has zero
length the solutions all lie on a circle with center ξ2 and radius Lmin

2 . Now if
ξ1 6= ξ2, then solving the system (3.15) gives

x1 =
1

(1− λ)2 − (λ)2
((1− λ)ξ1 − λξ2) = ξ1 +

λ

1− 2λ
(ξ1 − ξ2),

x2 =
1

(1− λ)2 − (λ)2
(−λξ1 + (1− λ)ξ2) = ξ2 −

λ

1− 2λ
(ξ1 − ξ2).

(3.20)

Combining this result with the condition that ‖x∗1 − x∗2‖ = Lmin we obtain

λ∗ =
1

2

(
1± ‖ξ1 − ξ2‖

Lmin

)
, (3.21)

where both candidates for λ∗ are positive and therefore yield KKT points. From
(3.15) we have

f(x1,x2) = λ2‖x1 − x2‖2, (3.22)

and thus the minimum is attained for the smaller candidate. The best KKT point
is therefore given by

x∗1 = ξ1 +
λ∗

1− 2λ∗
(ξ1 − ξ2),

x∗2 = ξ2 −
λ∗

1− 2λ∗
(ξ1 − ξ2),

(3.23)

where λ∗ = 1
2

(
1− ‖ξ1−ξ2‖

Lmin

)
.

The last possibility is that Lmax = ‖x∗1 − x∗2‖. The derivation is similar to the
previous case. The maximum constraint is active so therefore the other constraint
is inactive and hence λ = 0. If ξ1 = ξ2 then we get infinitely many solutions

x1 + x2 = 2ξ1, (3.24)
‖x∗1 − x∗2‖ = Lmax, (3.25)

16



3.2. Inter-well distance constraint

but since these all lie on a circle with center in ξ1 and radius Lmax

2 the solutions
are all worse than the ones in (3.19) so none of them can be a global minimum.

x1 =
1

(1 + µ)2 − (µ)2
((1 + µ)ξ1 + µξ2) = ξ1 −

µ

1 + 2µ
(ξ1 − ξ2),

x2 =
1

(1 + µ)2 − (µ)2
(µξ1 + (1 + µ)ξ2) = ξ2 +

µ

1 + 2µ
(ξ1 − ξ2).

(3.26)

Using the fact that Lmax = ‖x∗1 − x∗2‖ and solving for µ results in

µ = −1

2

(
1± ‖ξ1 − ξ2‖

Lmax

)
< 0, (3.27)

which are not solutions since the Lagrange multiplier in both cases is negative. Now
it follows that, since there are only two points that satisfy the KKT conditions,
the better one has to be the global optimum, and thus the solution for Case 2 is
given by (3.23)

3.1.3 Case 3. Initial points too distant
The initial condition is that ‖ξ1−ξ2‖ > Lmax, which means that the initial points
are too far away from each other and need to be moved closer to each other.
The solutions for this case are analogous to Case 2 and the calculations will be
omitted. The only valid solution is found when ‖x∗1 − x∗2‖ = Lmax which results
in µ∗ = 1

2

(
−1 + ‖ξ1−ξ2‖

Lmax

)
and λ∗ = 0. This gives the solution

x∗1 = ξ1 −
µ∗

1 + 2µ∗
(ξ1 − ξ2),

x∗2 = ξ2 +
µ∗

1 + 2µ∗
(ξ1 − ξ2).

(3.28)

3.2 Inter-well distance constraint
Minimize the movement of the endpoints of two line segments such that every
point on the first line segment is at least some distance d away from every point on
the other line segment. Let the initial positions of the two line segments be defined
by their endpoints ξ1, ξ2, ξ3, ξ4 ∈ R3 respectively. Minimizing the movement is
the solution to the problem

min
xi∈R3

F (x1,x2,x3,x4) = min
xi∈R3

4∑
i=1

1

2
‖xi − ξi‖2 (3.29)

under the conditions that

c(x1,x2,x3,x4, λ1, λ2) ≥ 1

2
d2 (3.30)
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Chapter 3. Constraint handling

for all

λi ∈ [0, 1], i = 1, 2, (3.31)

where

c(x1,x2,x3,x4, λ1, λ2) =
1

2
‖(x1 + λ1(x2 − x1))− (x3 + λ2(x4 − x3))‖2. (3.32)

Call a solution in which k points are moved a k-point solution. We will first try
to solve (3.29) – (3.31) by moving only two points, then by moving just three
points, and lastly, if a solution is not yet found, move all four points. The idea
is that, if the optimal solution for moving two or three points while temporarily
ignoring the other point(s) satisfies all the constraints in (3.31), then this must
be the optimal solution to (3.29).
To see why this is true, notice that in general if Ω1 ⊂ Ω2, then

min
x∈Ω1

f(x) ≥ min
x∈Ω2

f(x) (3.33)

holds for all real valued functions f . Thus if we have that

f(x∗) = min
x∈Ω2

f(x) and x∗ ∈ Ω1, (3.34)

then x∗ is feasible for the first problem and

f(x∗) ≤ f(x) ∀x ∈ Ω1, (3.35)

which means that x∗ is the solution to both minimization problems, i.e.,

min
x∈Ω1

f(x) = min
x∈Ω2

f(x) = f(x∗). (3.36)

Now ignoring one of the four points is the same as setting either λ1 or λ2 equal
to 1 or 0 in (3.31). E.g., if we wish to only consider the points x1,x2 and x4

but ignore x3 this is done by letting λ2 = 1. Call the set of feasible points for a
k-point problem Ω̃k. Clearly we must have Ω̃4 ⊂ Ω̃3 ⊂ Ω̃2 ⊂ Ω̃1. Then by (3.33)
– (3.36) we have that the k-point solution with the smallest value for k which is
feasible in the four point problem, must also be the solution to the four point
problem.

3.2.1 Number of points moved and form of solutions
A line segment that connects the two solution line segments, S1, S2, over the
shortest distance will be called SD (Shortest Distance). If only one of the two
line segments is needed in a figure then, without loss of generality, we will refer
to this line segment as S1 with endpoints x1 and x2. Divide the solutions of the
problem into different categories depending on how many of the points have been
moved. Denote the smallest angle between the SD and Si by αi. Note that SD
is not unique if S1 and S2 are parallel, but the angles α1 and α2 are. We must
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3.2. Inter-well distance constraint

also have that αi ≥ 90◦. If one angle is below 90◦ then there exists a shorter
distance between the line segments by moving the SD along the line segment in
the direction of the angle as indicated by the arrow in Figure 3.5.

x1

x2

SD
S1

α < 90◦

Figure 3.5: Candidate for shortest distance (SD). A shorter distance between the
segments can be found by moving upwards along the line segment.

If one angle α is over 90 degrees, then the SD must connect to an endpoint of
the corresponding line segment (or else SD could be improved by moving it along
the line segment) as shown in Figure 3.6.

x1

x2

SD

S1

α > 90◦

Figure 3.6: One angle over 90 degrees. Moving x2 does not change the length of
SD.

Assume that this is the case. Without loss of generality we call this endpoint
x1 and the other endpoint of the line segment x2. Then moving x2 a small
distance does not change the shortest distance. It follows that x2 = ξ2 because no
constraints are active for x2 and this cannot be a solution where all four points
have been moved. Therefore, in a solution where all four points are moved, both
of the angles must be 90 degrees. If we have a case where both angles are over 90
degrees as shown in Figure 3.7, then the SD connects two endpoints,
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Chapter 3. Constraint handling

x1

x2

x3

x4

SD

S1

S2

α1 > 90◦

α2 > 90◦

Figure 3.7: One angle over 90 degrees

and by applying the same argument as above to both line segments we see this
is a solution where at most two points have been moved. Thus it cannot be a
three-point solution. Therefore a three-point solution must have one angle α equal
to 90◦ and the other one larger than 90◦. If we are left with both angles larger
than 90◦ then we must have moved either two points or no points.

3.2.2 Four-point solution

Denote the initial points ξ1, ξ2, ξ3 and ξ4 and the solution points x1,x2,x3 and
x4. In the solution the SD will be orthogonal to both line segments. This means
that in the solution the line segments will lie in two planes E1 and E2 that share
the same normal vector (namely SD). This means that E1 and E2 are parallel
and a distance d apart. Let

E0 = Es,t = {x : 〈s,x〉 = t} (3.37)

be the plane that lies between the two solution planes with s the normalized SD
vector (pointing towards the line segment with endpoints x1,x2) and t ∈ R.
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3.2. Inter-well distance constraint

E2

E1

E0 = Es,t

d
2

d
2

ξ1

ξ2

ξ3

ξ4

x1

x2

x3

x4

s

l1

l2

l3

l4

Figure 3.8: Four point solution. All four initial points have been moved and
the resulting shortest distance line is orthogonal to both solutions. Project initial
points down on planes to get the optimal solution.

If the two planes E1 and E2 are found, then the solution is simply the shortest
distance from the initial points to the planes, which is found by projecting x1 and
x2 onto E1 = Es,t+ d

2
and by projecting x3 and x4 onto E2 = Es,t− d

2
. Denote

l1(s, t) = 〈s, ξ1〉 − t−
d

2
,

l2(s, t) = 〈s, ξ2〉 − t−
d

2
,

l3(s, t) = 〈s, ξ3〉 − t+
d

2
,

l4(s, t) = 〈s, ξ4〉 − t+
d

2
,

(3.38)

then |li(s, t)| = ‖xi − ξi‖. Thus we can rewrite the minimization problem (3.29)
and solve for s and t by

min
xi∈R3

F (x1,x2,x3,x4) = min
s∈S2,t∈R

1

2

4∑
i=1

li(s, t)2. (3.39)
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Chapter 3. Constraint handling

Holding s fixed and minimizing F with respect to t gives the condition

∂F

∂t
(s, t) =〈s, ξ1〉 − t−

d

2
+ 〈s, ξ2〉 − t−

d

2
(3.40)

+ 〈s, ξ3〉 − t+
d

2
+ 〈s, ξ4〉 − t+

d

2
(3.41)

=

4∑
i=1

〈ξi, s〉 − 4t = 0, (3.42)

and therefore

t =
1

4

4∑
i=1

〈ξi, s〉. (3.43)

We simplify the problem by introducing the shifted variables

ξ̂i = ξi −
1

4

4∑
i=1

ξi. (3.44)

We then get the identity

〈s, ξi〉 = 〈s, ξ̂i〉+ 〈s, ξi − ξ̂i〉

= 〈s, ξ̂i〉+
〈
s,

1

4

4∑
i=1

ξi

〉
= 〈s, ξ̂i〉+

1

4

4∑
i=1

〈s, ξi〉.

(3.45)

For the shifted variables inserted into (3.38) the variable t is eliminated and
equation (3.39) can be rewritten as

min
s∈S2,t∈R

F (s, t) = min
s∈S2

1

2

4∑
i=1

l̂i(s)2 (3.46)

with
l̂1(s, t) = 〈s, ξ̂1〉 −

d

2
,

l̂2(s, t) = 〈s, ξ̂2〉 −
d

2
,

l̂3(s, t) = 〈s, ξ̂3〉+
d

2
,

l̂4(s, t) = 〈s, ξ̂4〉+
d

2
.

(3.47)

We differentiate F with respect to s to get

∂F

∂s
(s) =

4∑
i=1

(ξ̂i ⊗ ξ̂i)s−
d

2
(ξ̂1 + ξ̂2) +

d

2
(ξ̂3 + ξ̂4). (3.48)
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3.2. Inter-well distance constraint

Let

A =

4∑
i=1

ξ̂i ⊗ ξ̂i and b =
d

2
(ξ̂1 + ξ̂2 − ξ̂3 − ξ̂4). (3.49)

With the constraint ‖s‖2 = 1 we get the necessary KKT conditions

(A− µI)s = b,

‖s‖2 = 1,
(3.50)

where µ ∈ R is a Lagrange parameter. Either µ is an eigenvalue of A, or A−µI is
invertible. Assume first that µ is not an eigenvalue of A. This means that A− µI
is invertible and we can write

s = (A− µI)−1b. (3.51)

Since A is symmetric it can be diagonalized and written as A = QDQT with
orthogonal matrix Q and a diagonal matrix D containing the eigenvalues of A.
Inserting this into (3.50) gives

s = (A− µI)−1b = Q(D − µI)−1QT b. (3.52)

Take the norm (orthogonal matrices do not change the norm of a vector) of both
sides to get

‖(D − µI)−1QT b‖2 = 1, (3.53)

or equivalently
3∑

i=1

1

(Di − µ)2
(QT b)2

i = 1. (3.54)

The result is a sixth degree equation in µ which can have up to six distinct
solutions, all of which satisfy the KKT conditions.
If µ is an eigenvalue of A then A− µI is not invertible and

(A− µI)s = b (3.55)

has either no solutions or infinitely many solutions. If solutions exist assume that
s0 solves (3.55). Then ker(A− µI) + s0 is the space of all solutions to (3.55). So
if there exists solutions to (3.55) we only need to find a single solution s0 and
ker(A− µI). By requiring that

‖s‖2 = 1, (3.56)

we obtain that the solutions space is the intersection of S2 with either a line, a
plane or R3. The solution space depends on the multiplicity of the eigenvalues of
(A− µI) and the vector b. All solutions for µ are KKT points, but they need not
all be local minima. The vector s is found by substituting µ back into equation
(3.52), and then the best solution can be found by projecting the initial points to
the planes as shown in Figure 3.8 and comparing different values of F for each
configuration.
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3.2.3 Three-point solution

Assume that the initial coordinate ξ1 belongs to line segment S1 and that the
coordinates ξ2 and ξ2 belong to the other line segment S2. In the solution the
SD will start in x1 and be orthogonal to the line segment defined by x2 and x3.
The solution for this case is analogous to the four point case. Again we have the
two planes E1 and E2, and we also have that x1 ∈ E1 and x2,x3 ∈ E2 as shown
in Figure 3.9.

E2

E1

E0 = Es,t

2d
3

d
3

ξ1

ξ2

ξ3

x1

x2

x3

s

l1

l2

l3

Figure 3.9: Three point problem

We solve

min
s∈S2,t∈R

F (s, t) = min
s∈S2,t∈R

1

2

3∑
i=1

li(s, t)2, (3.57)

where the lengths of the projections, li, are given by

l1(s, t) = 〈s, ξ1〉 − t−
2d

3
, (3.58)

l2(s, t) = 〈s, ξ2〉 − t+
d

3
, (3.59)

l3(s, t) = 〈s, ξ3〉 − t+
d

3
. (3.60)
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3.2. Inter-well distance constraint

Again we minimize F with respect to t to get

t =
1

3

3∑
i=1

〈ξi, s〉. (3.61)

Introducing the shifted variables

ξ̂i = ξi −
1

3

3∑
i=1

ξi (3.62)

and using the value for t found in (3.61) and inserting these into (3.57) we obtain
the simplified problem

min
s∈S2,t∈R

F (s, t) = min
s∈S2

1

2

3∑
i=1

l̂i(s)2, (3.63)

where

l̂1(s, t) = 〈s, ξ̂1〉 −
2d

3
, (3.64)

l̂2(s, t) = 〈s, ξ̂2〉+
d

3
, (3.65)

l̂3(s, t) = 〈s, ξ̂3〉+
d

3
. (3.66)

We differentiate F with respect to s which gives

∂F

∂s
(s) =

3∑
i=1

(ξ̂i ⊗ ξ̂i)s−
2d

3
ξ̂1 +

d

3
(ξ̂2 + ξ̂3). (3.67)

A vector s vector satisfies the necessary KKT conditions if it solves (3.50) with

A =

3∑
i=1

ξ̂i ⊗ ξ̂i and b =
2d

3
ξ̂1 −

d

3
(ξ̂2 − ξ̂3). (3.68)

Solving (3.50) can be done in exactly the same way as described in the four-point
case.

3.2.4 Two-point solution

If the two points are too close to each other they need to be moved as little as
possible away from each other so that they are a minimum distance d apart. This
problem is identical to solving the well length constraint in equation (3.1) with
Lmin = d and Lmax =∞.
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3.2.5 Complete inter-well distance constraint solution
We have solved the two-, three-, and four-point problems individually and com-
bining them is the solution to the complete inter-well distance problem. Below
follows a pseudo code of the algorithm that solves the complete inter-well distance
problem. Note that by point we mean an endpoint of a line segment.

Algorithm 3 Inter-well distance projection
1: procedure Project line segments to feasible space
2: Get four initial points
3:
4: for all subsets with two points from different line segments do
5: Optimal projection of two points
6: if Four point configuration satisfies inter-well constraint then
7: Calculate movement cost and save configuration
8: end if
9: end for

10:
11: if any two point solution satisfies constraints then
12: return best two point solution
13: end if
14:
15: for all subsets with three points do
16: Optimal projection of three points
17: if Four point configuration satisfies inter-well constraint then
18: Calculate movement cost and save configuration
19: end if
20: end for
21:
22: if any three point solution satisfies constraints then
23: return best three point solution
24: end if
25:
26: Optimal projection of four points
27: return four point solution
28: end procedure
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Chapter 4
Well index calculation

The well index is an essential part of well placement optimization. In a reservoir
simulation, the flowing bottom hole pressure differs from the measured well block
pressure. In order to connect the two D. Peaceman introduced the well index,
or well transmisibillity factor, and suggested a way to calculate it. We refer
to Peaceman’s paper [9] for a more in-depth explanation on the topic. The
bottom hole pressure determines the rate of flow through the well, which again
determines the production rate of the well. So because the well index determines
the production rate, the objective function J greatly depends on it. This means
that, if we wish to develop a good algorithm for the well placement problem
optimization, it is essential to be able to calculate the well index for all well blocks.
Peaceman’s original paper only considered horizontal wells, but new algorithms
for slanted (i.e., not fully horizontal) wells have been developed, three of which
are described by Shu in his report [5].

4.1 Projection well index

In this thesis we will use the projection well index, originally developed by
Jonathan Holmes [10], which is described by Shu in Chapter 2 of his report. The
main assumptions of the model is a uniform Cartesian grid with single-phase
radial flow without interaction with boundaries or other wells. In the projection
well index method, the well trajectory is projected onto three orthogonal axes as
shown in Figure 4.1.
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Lx

Ly

Lz

∆x
∆y

∆
z

Well

Figure 4.1: Well trajectory in a single well block projected onto the three axes.
The projections have lengths Lx, Ly and Lz, and the well block has dimensions
∆x, ∆y and ∆z. This figure is a copy of the one used by Shu in his report [5]

The well index can now be calculated for slanted wells and non-square blocks
by first calculating the well index for each direction with

WIx =
2π
√
kykzLx

ln
r0,x
rw

+ s
, WIy =

2π
√
kxkzLy

ln
r0,y
rw

+ s
and WIz =

2π
√
kxkyLz

ln
r0,z
rw

+ s
, (4.1)

where ki is the permeability in direction i, rw is the wellbore radius, s is the skin
factor and

r0,x = 0.28

(
∆z2

(
ky

kz

) 1
2

+ ∆y2
(

kz

ky

) 1
2

) 1
2

(
ky

kz

) 1
4

+
(

kz

ky

) 1
4

. (4.2)

The functions r0,y and r0,y are defined in the same manner but with the indices
x, y and z shifted. At last we take the square root of the sum of the squares of
the directional well indices to get the well index for the block

WI =
√
WI2

x +WI2
y +WI2

z . (4.3)

For the rest of this thesis we will simplify the equation by setting s = 0, i.e.,
neglecting the skin factor.
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4.2. Computing well trajectory and projection

4.2 Computing well trajectory and projection

In order to compute the well index with (4.3) we need not only determine which
blocks are penetrated by the wells, but also determine the point of entry and exit.
This is done by first using a function called GetblockEnvelopingPoint(). This
function simply iterates over all the well blocks of the reservoir and returns the
first block that contains a given point. This is done by checking that the point
is on the correct side (i.e., towards the center of the well block) of every face of
the block. Using this function on the start point will give us the well block that
contains the starting point as shown in Figure 4.2.

start

exit

moved

ε

first block second block

Figure 4.2: Moving a small distance ε along the line segment towards the end of
the line segment will ensure that we are completely inside the next block. In the
new block we can perform the same steps as we did in the previous block.

We then find the intersection point between the well and this first block, which
we will call the exit point of the well. Now we have acquired the intersection points
for the first well block. After this we simply move a sufficiently small distance ε
from this exit point towards the end of the well, and call this new point moved
point. With sufficiently small we mean a small fraction (∼ 1

100 ) of the shortest
well side length. Note that this could lead to numerical errors as we might jump
over some blocks if the intersection between the well and the block is very short.
But if the length of the intersection is very short, then value of the corresponding
well index will be very small as well, thus we can neglect it. Now we can use the
same method as we did for the starting point to get the intersection points of
the second block, and this process can be repeated until we reach the end of the
well. Because the corner coordinates of the well block are known, we can compute
the lengths ∆x, ∆y and ∆z for each side of the block. Then we can find the unit
vector ui for the direction of the sides of the well block. Thus given a well block
and its two intersection points, p1 and p2, the projected well lengths Lx, Ly and
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Chapter 4. Well index calculation

Lz are given by

Li =
〈
(p2 − p1),ui

〉
. (4.4)

Supplying the permeabilities ki and wellbore radius rw and in the absence of skin
(s = 0), we can compute the well index of the block with (4.3).
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Chapter 5
Implementation

Here we briefly explain the implementations that were made and the most impor-
tant part of the code can be seen in the Appendix. For the full code we refer to
the author’s Github repository [11].

5.1 Software
All code was written in Qt 5.5, a cross-platform application and UI framework for
C++ developed by The Qt Company [12]. The code makes great use of the Eigen
library [13] which is a template library for linear algebra that includes matrix
and vector classes and algorithms for matrix decompositions. This is required in
the implementation of the inter-well distance projection for finding the eigenvalue
decomposition needed in (3.52). The vector class Vector3d of the Eigen library is
also used frequently throughout most implementations as it contains many useful
functions. In order to find the roots of polynomials we make use of the RPOLY
library [14], which is an implementation of the Jenkins-Traub algorithm [15]. This
is needed for solving the sixth degree equation (3.54) which is the most important
part of the inter-well distance projection.

5.2 Well length constraint projection
The function well_length_projection_eigen(), takes the initial coordinates
of the heel and toe of a well, and by calculating the distance between them it
determines which of the solutions (3.5) – (3.8) it should return.

5.3 Inter-well distance constraint projection
In the function interwell_constraint_projection_eigen() which was imple-
mented we take the initial coordinates of two wells and a distance d as input. Then
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we try to find solutions by moving as few points as possible. First we try to move
only two points by using well_length_projection_eigen(). If some two-point
solution is feasible for the complete problem we return the best one. If no two-
point solution is found we try the three-point solutions. This is done by building
A and b according to (3.68), and then running kkt_eq_solutions_eigen(A, b)
which returns all candidate solutions of (3.50). If one or more feasible solutions
are found we pick the best one. If no solution has been found yet we must have
a four-point solution. We build A and b according to (3.68) and pick the best
solution returned by kkt_eq_solutions_eigen(A, b).

5.4 Alternating projections
Now that both well length projection and inter-well distance projection are
available, the method of alternating projections is simply done by running one
projection after the other inside a while loop until the well positions are feasible.
Note that we can also change the order of the projections, which might impact
the solution. In our implementation the inter-well distance projection was done
first.

5.5 Well index calculation and intersecting blocks
In order to compute the well indices for the well blocks of a reservoir, we first
need to determine which blocks are penetrated by a well and what the entry and
exit points are. If these two steps are handled, then computing the well index for
each block is done by computing the well block projections as shown in Figure 4.1
and then supplying the block dimensions and permeabilities and using (4.3). Here
we describe the algorithm used to find the well blocks which are intersected by a
well and in which points the intersections occur. Well blocks will only be referred
to as blocks. Assume that GetblockEnvelopingPoint(p) returns a block that
contains the point p. Assume also that FindIntersectionPoints(block, line)
calculates the two intersection points between a line segment and a block.
A list of intersected blocks and their entry and exit points are created and returned
at the end of the algorithm.

32



5.5. Well index calculation and intersecting blocks

Algorithm 4 Input: reservoir(blocks), line(start point, end point)

1: procedure Find intersected blocks
2: first block ← GetblockEnvelopingPoint(start point)
3: last block ← GetblockEnvelopingPoint(end point)
4: Set current block = first block
5:
6: while current block ! = last block do
7: intersection points ← FindIntersectionPoints(current block, line)
8: add intersection points to list
9: add current block to list

10:
11: new point ← Move small distance out of current block in direction of

. end point
12:
13: current block ← GetblockEnvelopingPoint(new point)
14:
15: end while
16: Add last block to list
17: Return lists
18: end procedure
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Chapter 6
Results and numerical tests

In this chapter we present the results of the implementations of the well distance
projection and the inter-well distance projection and the alternating projection
method applied to the joint problem. We also include numerical results from the
computations of well indices and compare them to the results found using the
reservoir simulator RMS. Figures are also supplied whenever possible.

6.1 Well constraint projections
For all projections in this section we set the well length constraint (i.e., shortest
and longest wells allowed) and inter-well distance constraint (i.e., the minimum
distance required to be between all pairs of wells) parameters to the following
values:

Lmin = 5, (6.1)
Lmax = 10, (6.2)

d = 4. (6.3)

This means that in the final configuration all wells must have a length between 5
and 10, and no two wells are allowed to be closer than a distance 4 to each other.
The well length projection was tested on a single well and simultaneously on a set
of five wells. the inter-well distance projection was tested on two wells and then
as an alternating projection on five wells. Both projections were then applied
alternatingly on one set of two wells and one set of five wells until a feasible
solution was reached.

6.1.1 Well length projection
Well length constraint on a single well First consider the well with end-
points (− 1

2 , 0,
1
2 ) and ( 1

2 , 0,
1
2 ). This well has length 2 and its length is increased

as shown in Figure 6.1.
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2 −2
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2−2

0

2

Well1

(a) Initial well. The well has length 2
and violates the well length constraint
because it is too short.

−2
0

2 −2
0

2−2

0

2

Well1

(b) The well has been projected to sat-
isfy the well length length constraint.
The projected well has length 5 which
is equal to Lmin.

Figure 6.1: The well on the left that violates the well length constraint has been
projected to a feasible solution on the right.

Now consider the well with endpoints (−5,−5,−5), (5, 5, 5). This well has
length 10

√
3 and its length is decreased as shown in Figure 6.2.

−5
0

5 −5

0

5
−5

0

5

Well1

(a) Initial well. The well has length
10
√

3 and violates the well length con-
straint because it is too long.

−5
0

5 −5

0

5
−5

0

5

Well1

(b) The well has been projected to sat-
isfy the well length length constraint.
The projected well has length 10 which
is equal to Lmax.

Figure 6.2: The well on the left that violates the well length constraint has been
projected to a feasible solution on the right.

Lastly five wells were were created as shown in Figure 6.3.
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Well0
Well1
Well2
Well3
Well4

Figure 6.3: Initial positions of five wells. Both the well distance constraint and
the inter-well distance constraint are violated by one or more wells.

Note that since the well lenghts are independent from each other the well
lenght projection of multiple wells is eqivalent to sequential projection of single
wells. In Figure 6.4 we can see the five well length projections.
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Well3
Well4
Well5

Figure 6.4: Well length projection on five wells. Five wells have been moved so
that the well length constraint is satisfied for all wells. The inter-well distance
constraint however is not satisfied.
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6.1.2 Inter-well distance projection

The inter-well distance projection was first tested on two wells, Well1 and Well2,
with initial coordinates

Well1 = ((−1, 0, 0), (0, 1, 0)) and Well2 = ((0,−1, 0), (1, 0, 0)) .

Note that the wells in this case are parallel and, as mentioned in Section 3.2.1,
there is no unique shortest distance line between the two wells. Still the numerical
solution is found and the resulting four-point solution can be seen in Figure 6.5.

−2
0

2 −2
0

2−2

0

2

Well1
Well2

(a) Initial wells. The shortest distance
between the wells is

√
2 which is less

than d = 4, and thus the inter-well
distance constraint is violated.

−2
0

2 −2
0

2−2

0

2

Well1
Well2

(b) The wells have been moved so the
the shortest distance between them is
4.

Figure 6.5: The wells initial positions don’t satisfy the inter-well distance con-
straint. The wells are moved so that the shortest distance between them is exactly
equal to d = 4.

The inter-well distance projection was then tested on two wells Well3 and
Well4, with initial coordinates

Well3 = ((−2,−2, 0), (−2, 2, 0)) and Well4 = ((0, 0, 0), (3, 0, 0)) .

The point to the right on Well4 is exactly a distance 4 away from Well3, but
clearly the points of Well3 will be moved to the left, so we expect the right point
on Well4 to remain static. Indeed the projection, which is shown in Figure 6.6
only moves 3 points, and we have a three-point solution.
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Well3
Well4

(a) Initial wells. The shortest distance
between the wells is 1 which is less than
d = 4, and thus the inter-well distance
constraint is violated.

−2
0

2 −2
0

2−2

0

2

Well3
Well4

(b) The wells have been moved so the
the shortest distance between them is
4.

Figure 6.6: The wells initial positions don’t satisfy the inter-well distance con-
straint. The wells are moved so that the shortest distance between them is exactly
equal to d = 4. The point to the right on Well4 is not moved at all, which means
this is a three-point solution as discussed in Chapter 3.

We refer to Chapter 8 for discussion on a single projection that failed.

6.1.3 Alternating projections to joint problem

We start with alternating projections on two wells with initial coordinates
((−2,−2, 0), (−2, 2, 0)) and ((0, 0, 0), (3, 0, 0)) as seen in Figure 6.7a. The resulting
position in Figure 6.7b took 8 alternating iterations to be reached.
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(a) Initial wells. The shortest distance
between the wells is 1 which is less than
d = 4, and thus the inter-well distance
constraint is violated.
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(b) The wells have been moved so the
the shortest distance between them is 4
and the lengths of the wells have been
adjusted.

Figure 6.7: The wells initial positions don’t satisfy the inter-well distance con-
straint. The wells are moved so that the shortest distance between them is exactly
equal to d = 4. The point to the right on Well4 is not moved at all, which means
this is a three-point solution as discussed in Chapter 3.

Actually the constraints are never fully satisfied in this case because the
projections work against each other. We have implemented a tolerance for
accepting a position as feasible, but in this case we can get arbitrarily close to a
feasible solution given enough iterations.

Now the five wells seen in Figure 6.3 are projected using alternating projections.
Theoretically there is no guarantee that any of the projections will converge. First
we use the inter-well distance projection on pairs of wells until a feasible solution
is reached. After iterating four times over all pairs of wells the solution in Figure
6.8 was found.
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Figure 6.8: Inter-well distance projection on five wells. By running inter-well
projection on wells pairwise, the five wells have been moved so that the inter-well
distance constraint is satisfied for all pairs of wells. The Solution took four steps of
iterating over all pairs. The well length constraint is not satisfied for any of the
wells because they are all too short. This is not surprising because the inter-well
distance projection can only shorten the length of a well.

Finally both projections were done alternatingly until the five wells satisfied
both constraints. The final positions of the wells, which can be seen in Figure
6.9, was found after six iterations of each projection. Again the solution is not
feasible but the error is sufficiently small to stop the iterations.
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Figure 6.9: Alternating well length- and inter-well distance projection. By
alternating between well length projection and inter-well distance projection the
wells have been moved so that the well length constraint is satisfied for all wells
and the inter-well distance constraint is satisfied for all pairs of wells. The solution
took six steps of alternating projections.

6.2 Well index calculation

We use a reservoir containing 60 × 60 well blocks with dimensions ∆x = ∆y =
∆z = 24 and varying permeabilities. We ran the intersecting well blocks and well
index calculation algorithms on a well with wellbore radius rw = 0.1905

2 , which
runs from the middle of the block located in the bottom left corner and straight
to the block in the bottom right corner as indicated by Figure 6.10.

x

y

z

Figure 6.10: Well that goes from block 0 in the bottom left corner and ends up in
block 59 in the bottom right corner. For illustration purposes the figure has been
edited and every square actually contains 10 × 10 blocks
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6.2. Well index calculation

The calculated well indices from the first few well blocks of our implementation
and the results obtained from RMS can be seen in Table 6.1.

Table 6.1: Computed well indices compared to the well indices calculated by RMS
Block number Well index (Our algorithm) Well index (RMS)

0 0.213273 0.21327
1 0.328879 0.32888
2 0.328879 0.32888
3 0.501907 0.50191
4 0.471228 0.47123
5 0.593556 0.59356
6 0.924533 0.92453
7 1.287440 1.28744
8 0.905511 0.90551
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Chapter 7
Summary and discussion

We summarize the results of the projection methods and the well index calculator
and comment on the main points of them.

The main goal of the thesis was the solution of two sub-problems occurring
during the tackling of well-placement optimization, namely handling of well
constraints and well index calculations. These are important because they reflect
physical properties of the reservoir and are essential for a reliable and practical
way of solving the overall well placement problem.

7.1 Projection to feasible space

The first problem we discussed was the handling of well-placement constraints.
Here we introduced and implemented a method based on alternating projections,
where one of the projections could be solved analytically, while the other projection
had to be solved numerically.

The alternating projection method for satisfaction of inter-well distance and
well distance constraint was implemented. The well distance constraint was solved
and the analytical solutions were derived and implemented.

The main issue was the derivation of an accurate method for the projection
on the inter-well distance constraint. The idea of splitting up the problem into
k-point solutions leads to different cases. The main sub-case is finding the roots of
the sixth degree polynomial in (3.54), which can be done efficiently with arbitrarily
high precision. The implemented version preformed well overall and managed to
even solve cases where one would expect numerical issues, such as when all wells
are along the same line. However, the implementation was not able to solve one
case with parallel line segments which is presented in Chapter 8. The reason for
this is unknown.
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7.2 Well index calculation
The goal for the well index calculator was to implement an alternative method
capable of dealing with deviated and slanted wells. The method works by taking
weighted means of the well indices one would obtain for centered wells parallel to
the block axes, with weights depending on the projections of the well on these
axes. To do this we require computations of entry and exit points of each of the
blocks penetrated by the well.

The implemented algorithm for finding well indices compared well to industry
standards for well index calculations.
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Chapter 8
Further work

There were several things that we were not able to do due to either lack of time
or simply because we were not able to solve the problem. Here we list the most
important things and provide some information for further work.

8.1 FieldOpt integration

All functions need to be slightly adjusted so they can be included into FieldOpt
and integrated for the optimization problem. The main reason is that FieldOpt
uses its own well and coordinate classes, so we have to adjust the input and output
format of our code.

8.2 Well length constraint projection

The well length constraint projection only handles wells that consist of a single
straight line segment. There is no obvious extension of the current solution for
non-straight wells. In the case of wells consisting of several connected straight
lines there is an extension of our current algorithm which is to only move the heel
and toe along the trajectory of the initial well. Extending the lines beyond the
initial lenght of the well doesn’t have a unique solution, since all directions are
feasible. This works perfectly well for wells consisting of multiple line segments as
long as the angles between the line segments are less than 45◦.

8.3 Inter-well distance constraint projection

Note first that we were able to find one case where our algorithm was not able
to solve the inter-well distance problem. This is a simple case with two parallel
shifted line segments as shown in Figure 8.1.
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Figure 8.1: Well length projection on five wells. Five wells have been moved so
that the well length constraint is satisfied for all wells. The inter-well distance
constraint, however, is not satisfied.

Several very similar cases were tried and solutions were found for all of them.
We did not have time to resolve the problem for this exact case, but we believe
that the problem is due to numerical errors. Every time we solve equation (3.52)
there might be numerical issues when computing the eigendecomposition of A.
Mathematically speaking there are no problems involved in solving (3.52), but
some care should be taken in these computations to guarantee that a solution is
found.

8.4 Alternating projections
The convergence of the alternating projection of well length projection and inter-
well distance projection was not proven. From the results obtained for several
wells it is reasonable to expect that the alternating projection will always converge.
The inter-well distance projection always moves pairs of wells away from the
average coordinate of their endpoints, whilst the well length projection always
leaves the average of the heel and toe of a well unchanged. Because there was
no spatial restriction in our work, we hypothesize that the inter-well distance
projection will simply move points away from the average of all the points until a
solution is found. Possible alternatives to the method of alternating projections,
which might be worthwhile looking into, could be averaged projections [16] or
Dykstra’s projection algorithm.
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Appendix A
Code

A.1 Code for well constraint projection

well_length_projection_eigen()

QList<Eigen : : Vector3d> Wel lCons t ra in tPro j e c t i ons : :
↪→ wel l_length_project ion_eigen (
Eigen : : Vector3d hee l , Eigen : : Vector3d toe , double max , double

↪→ min , double ep s i l o n )
{

QList<Eigen : : Vector3d> pro jec ted_po ints ;
Eigen : : Vector3d moved_heel ;
Eigen : : Vector3d moved_toe ;

// Need the vec to r going from hee l to toe to p r o j e c t po in t s
Eigen : : Vector3d heel_to_toe_vec = toe−hee l ;
// Distance between hee l and toe .
double d = heel_to_toe_vec . norm ( ) ;

// hee l and toe same poin t .
// A l l d i r e c t i o n s e qua l l y good .
i f (d==0){

Eigen : : Vector3d unit_vector ;
unit_vector << 1 , 0 , 0 ;
moved_heel = hee l + (min/2) ∗unit_vector ;
moved_toe = hee l − (min/2) ∗unit_vector ;
pro j ec ted_po ints . append (moved_heel ) ;
p ro j ec ted_po ints . append (moved_toe ) ;
return pro jec ted_po ints ;

}

// Normalize vec to r to ge t co r r e c t d i s t ance
heel_to_toe_vec . normal ize ( ) ;

// Tr i v i a l case
i f (d<=max && d>=min) {

pro jec ted_po ints . append ( hee l ) ;
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pro jec ted_po ints . append ( toe ) ;
}

// Distance too long
else i f (d>max) {

double move_distance = 0 . 5∗ ( d−max+( ep s i l o n /2) ) ;
moved_heel = hee l + move_distance∗heel_to_toe_vec ;
moved_toe = toe − move_distance∗heel_to_toe_vec ;
pro jec ted_po ints . append (moved_heel ) ;
p ro j ec ted_po ints . append (moved_toe ) ;

}

// Distance too shor t
else {

double move_distance = 0 . 5∗ ( d−min−( e p s i l o n /2) ) ;
moved_heel = hee l + move_distance∗heel_to_toe_vec ;
moved_toe = toe − move_distance∗heel_to_toe_vec ;
pro jec ted_po ints . append (moved_heel ) ;
p ro j ec ted_po ints . append (moved_toe ) ;

}

return pro jec ted_po int s ;
}

A.2 Code inter-well distance projection

interwell_constraint_projection_eigen()

QList<Eigen : : Vector3d> Wel lCons t ra in tPro j e c t i ons : :
↪→ i n t e rwe l l_cons t ra in t_pro j e c t i on_e igen (QList<Eigen : : Vector3d>
↪→ coords , double d)

{
/∗ I f the two l i n e segments a l ready s a t i s f y
∗ the i n t e rw e l l d i s t ance cons t ra in t ,
∗ s imply re turn the same coord ina te s
∗/

i f ( We l lCons t ra in tPro j e c t i ons : : shor te s t_di s tance_e igen ( coords )
↪→ >=d) {
std : : cout <<" I n i t i a l ␣ po in t s ␣ s a t i s f y ␣ c on s t r a i n t s " << std : :

↪→ endl ;
return coords ;

}

QList<Eigen : : Vector3d> so lut ion_coords ;
QList<Eigen : : Vector3d> moved_coords ;
QList<Eigen : : Vector3d> temp_coords ;
/∗ I t e r a t e through moving po in t s . F i r s t t r y moving 2 points ,

↪→ then 3 po in t s
∗ then 4 po in t s . I f problem can be so l v ed moving k points ,

↪→ moving k+1 po in t s
∗ w i l l be a worse s o l u t i on . Return the b e s t k po in t s o l u t i on .
∗/

double co s t = INFINITY ;

50



A.2. Code inter-well distance projection

// Try moving 2 po in t s
std : : cout <<" I n i t i a l ␣ po in t s ␣not␣ f e a s i b l e . ␣Try␣moving␣2␣ po in t s "

↪→ << std : : endl ;
int two_point_index [ 4 ] [ 2 ] = { {0 , 2} ,

{0 , 3} ,
{1 , 2} ,
{1 , 3} } ;

for ( int i i =0; i i <4; i i ++){
moved_coords = coords ;
temp_coords = Wel lCons t ra in tPro j e c t i ons : :

↪→ wel l_length_project ion_eigen ( coords . at (
↪→ two_point_index [ i i ] [ 0 ] ) , coords . at ( two_point_index [ i i
↪→ ] [ 1 ] ) , INFINITY , d ,10 e−5) ;

moved_coords . r ep l a c e ( two_point_index [ i i ] [ 0 ] , temp_coords . at
↪→ (0 ) ) ;

moved_coords . r ep l a c e ( two_point_index [ i i ] [ 1 ] , temp_coords . at
↪→ (1 ) ) ;

i f ( We l lCons t ra in tPro j e c t i ons : : shor te s t_di s tance_e igen (
↪→ moved_coords ) >=d && Wel lCons t ra in tPro j e c t i ons : :
↪→ movement_cost_eig ( coords , moved_coords ) < cos t ) {
// I f s e v e r a l moves o f two po in t s work , save the one

↪→ with l o v e s t movement cos t
co s t = Wel lCons t ra in tPro j e c t i ons : : movement_cost_eig (

↪→ coords , moved_coords ) ;
so lut ion_coords = moved_coords ;

}
}
// I f t he re were any s u c c e s f u l con f i gura t i ons , re turn the b e s t

↪→ one .
i f ( co s t < INFINITY) {

std : : cout <<"Found␣2−point ␣ s o l u t i o n " << std : : endl ;
return so lut ion_coords ;

}

// ################## 3 POINT PART ############################
// I f no 2 po in t movements were succe s f u l , t r y moving 3 po in t s .
std : : cout <<"No␣2␣ po int ␣ s o l u t i o n . ␣Try␣moving␣3␣ po in t s " << std : :

↪→ endl ;
int three_point_index [ 4 ] [ 3 ] = { {2 , 0 , 1} ,

{3 , 0 , 1} ,
{0 , 2 , 3} ,
{1 , 2 , 3} } ;

for ( int i i =0; i i <4; i i ++){
// Reset moved coords to i n i t i a l s t a t e
moved_coords = coords ;

// Choose which 3 po in t s to move . ( order i s important ,
↪→ second and t h i r d entry shou ld be long to same l i n e
↪→ segment )

QList<Eigen : : Vector3d> input_cords_3p ;
for ( int j j =0; j j <3; j j++){

input_cords_3p . append ( coords . at ( three_point_index [ i i ] [ j j
↪→ ] ) ) ;

}
Eigen : : Matrix3d temp_A = Wel lCons t ra in tPro j e c t i ons : :

↪→ build_A_3p_eigen ( input_cords_3p ) ;
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Eigen : : Vector3d temp_b = Wel lCons t ra in tPro j e c t i ons : :
↪→ build_b_3p_eigen ( input_cords_3p , d) ;

/∗ The kkt_eg_solut ions s o l v e r hand les some numerical i s s u e s
∗ l i k e A having some va lue s c l o s e to machine ep s i l on and
∗ e i g enva l u e s be ing c l o s e to 0 . Just assume tha t any

↪→ s o l u t i on
∗ must be among the ones g iven in s o l u t i on candida tes . we

↪→ check
∗ a l l o f them .
∗/

QList<Eigen : : Vector3d> so lut ion_cand idate s =
↪→ Wel lCons t ra in tPro j e c t i ons : : kkt_eq_solutions_eigen (
↪→ temp_A, temp_b) ;

// s td : : cout << " there are " << so lu t ion_cand ida tes . l en g t h ()
↪→ << " so l u t i on candida tes " << std : : end l ;

for ( int sol_num = 0 ; sol_num < so lut ion_cand idate s . l ength ( ) ;
↪→ sol_num++){
// So lu t i on o f th ree po in t problem
temp_coords = Wel lCons t ra in tPro j e c t i ons : :

↪→ move_points_3p_eigen ( input_cords_3p , d ,
↪→ so lu t ion_cand idate s . at ( sol_num) ) ;

i f ( temp_coords . l ength ( ) <1){temp_coords = input_cords_3p
↪→ ; }

for ( int j j =0; j j <3; j j++){
moved_coords . r ep l a c e ( three_point_index [ i i ] [ j j ] ,

↪→ temp_coords . at ( j j ) ) ;
}

/∗ s t d : : cout << " sho r t e s t d i s t ance unmoved 3p = " <<
↪→ shortest_distance_3p_eigen ( input_cords_3p ) << std
↪→ : : end l ;

s t d : : cout << " sho r t e s t d i s t ance 3p = " <<
↪→ shortest_distance_3p_eigen ( temp_coords ) << s td : :
↪→ end l ;

s t d : : cout << " sho r t e s t d i s t ance 4p = " <<
↪→ shor tes t_dis tance_eigen (moved_coords ) << s td : :
↪→ end l ;

s t d : : cout << "movement cos t = " <<
↪→ Wel lCons t ra in tPro jec t ions : : movement_cost_eig (
↪→ coords , moved_coords ) << s td : : end l ; ∗/

i f ( We l lCons t ra in tPro j e c t i ons : : shor te s t_di s tance_e igen (
↪→ moved_coords ) >=d−0.001 &&

Wel lCons t ra in tPro j e c t i ons : : movement_cost_eig (
↪→ coords , moved_coords ) < cos t ) {

// I f s e v e r a l moves o f two po in t s work , save the one
↪→ with l o v e s t movement cos t

co s t = Wel lCons t ra in tPro j e c t i ons : : movement_cost_eig (
↪→ coords , moved_coords ) ;

so lut ion_coords = moved_coords ;
}

}

}
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// I f t he re were any s u c c e s f u l con f i gura t i ons , re turn the b e s t
↪→ one .

i f ( co s t < INFINITY) {
std : : cout <<"Found␣3−point ␣ s o l u t i o n " << std : : endl ;
return so lut ion_coords ; }

// ################## END 3 POINT PART ########################

// ################## 4 POINT PART ############################
std : : cout <<"Found␣no␣3−point ␣ s o l u t i o n . ␣Try␣4␣ po in t s " << std : :

↪→ endl ;

// Get a l l cand ida tes f o r vec to r s
/∗ The kkt_eg_solut ions s o l v e r hand les some numerical i s s u e s
∗ l i k e A having some va lue s c l o s e to machine ep s i l on and
∗ e i g enva l u e s be ing c l o s e to 0 . Just assume tha t any s o l u t i on
∗ must be among the ones g iven in s o l u t i on candida tes . we check
∗ a l l o f them .
∗/

Eigen : : Matrix3d temp_A = Wel lCons t ra in tPro j e c t i ons : :
↪→ build_A_4p_eigen ( coords ) ;

Eigen : : Vector3d temp_b = Wel lCons t ra in tPro j e c t i ons : :
↪→ build_b_4p_eigen ( coords , d ) ;

QList<Eigen : : Vector3d> so lut ion_cand idate s =
↪→ Wel lCons t ra in tPro j e c t i ons : : kkt_eq_solutions_eigen (temp_A,
↪→ temp_b) ;

// Go through candida tes s and p ick the b e s t one
for ( int sol_num = 0 ; sol_num < so lut ion_cand idate s . l ength ( ) ;

↪→ sol_num++){

moved_coords = Wel lCons t ra in tPro j e c t i ons : :
↪→ move_points_4p_eigen ( coords , d , so lu t i on_cand idate s . at (
↪→ sol_num) ) ;

i f ( We l lCons t ra in tPro j e c t i ons : : shor te s t_di s tance_e igen (
↪→ moved_coords ) >=d−0.001 && Wel lCons t ra in tPro j e c t i ons
↪→ : : movement_cost_eig ( coords , moved_coords ) < cos t ) {
// I f s e v e r a l cand ida tes f o r s work , save the one with

↪→ l o v e s t movement cos t
co s t = Wel lCons t ra in tPro j e c t i ons : : movement_cost_eig (

↪→ coords , moved_coords ) ;
so lut ion_coords = moved_coords ;

}
}

i f ( so lut ion_coords . l ength ( ) >0){ std : : cout <<"Found␣4−point ␣
↪→ s o l u t i o n " << std : : endl ; }

else std : : cout <<"Found␣no␣ s o l u t i o n ␣ to ␣problem" << std : : endl ;

return so lut ion_coords ;
}

kkt_eq_solutions_eigen()

QList<Eigen : : Vector3d> kkt_eq_solutions_eigen ( Eigen : : Matrix3d A,
↪→ Eigen : : Vector3d b)

{
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QList<Eigen : : Vector3d> cand idate_so lut ions ;

/∗ Fi r s t assume tha t A−\mu I has an inve r s e .
∗ We can f ind the inve r s e o f i t and s o l v e
∗ a s i x t h degree equat ion fo r \mu.
∗/

// Remove va lue s t ha t are c l o s e to zero . Mostly caused by
↪→ i n i t i a l i z a t i o n .

A = Wel l IndexCalcu lator : : We l lCons t ra in tPro j e c t i ons : :
↪→ rm_entries_eps_matrix (A,10 e−12) ;

Eigen : : Se l fAd jo in tE igenSo lve r<Eigen : : Matrix3d> A_es(A) ;

// Need to remove e i g enva l u e s which are c l o s e to zero
Eigen : : Vector3d e i g enva lu e s = Wel lCons t ra in tPro j e c t i ons : :

↪→ rm_entries_eps (A_es . e i g enva lu e s ( ) ,10 e−12) ;

// Ca l cu la t e the c o e f f i c i e n t s o f the s i x t h degree polynomial
Eigen : : VectorXd c o e f f s = Wel lCons t ra in tPro j e c t i ons : :

↪→ coe f f_vector_e igen
( e igenva lue s , A_es . e i g env e c t o r s

↪→ ( ) . i n v e r s e ( ) , b ) ;

/∗ There i s an i s su e where c o e f f i c i e n t s shou ld be zero but are
↪→ not

∗ but because o f numerical i s s u e s the se need to be handled
↪→ manually .

∗ Simply s e t a l l whose f a b s ( x )<10−e12 to zero .
∗/
c o e f f s = Wel lCons t ra in tPro j e c t i ons : : rm_entr ies_eps_coef fs ( c o e f f s

↪→ , 10 e−12) ;

// Compute roo t s o f polynomial wi th RPOLY l i b r a r y
Eigen : : VectorXd r e a l r o o t s (6 ) ;
Eigen : : VectorXd comproots (6 ) ;
rpoly_plus_plus : : FindPolynomialRootsJenkinsTraub ( c o e f f s ,&

↪→ r e a l r o o t s ,&comproots ) ;

// Loop through a l l roo t s o f polynomial
for ( int i i =0; i i <6; i i ++){

// Root may not be complex or an e i genva lue o f A
i f ( comproots [ i i ]==0 && e i g enva lu e s [ 0 ] != r e a l r o o t s [ i i ] &&

e i g enva lu e s [ 1 ] != r e a l r o o t s [ i i ] && e i g enva lu e s [ 2 ] !=
↪→ r e a l r o o t s [ i i ] ) {

// We have found a v a l i d root . Get vec to r s .
double cur_root = r e a l r o o t s [ i i ] ;
Eigen : : Vector3d cur_root_vec ;
cur_root_vec << cur_root , cur_root , cur_root ;
Eigen : : Matrix3d invmatr = ( e igenva lue s−cur_root_vec ) .

↪→ asDiagonal ( ) ;

// Get vec to r candidate vec to r s
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Eigen : : Vector3d s = A_es . e i g env e c t o r s ( ) ∗ invmatr . i n v e r s e
↪→ ( ) ∗A_es . e i g env e c t o r s ( ) . i n v e r s e ( ) ∗b ;

cand idate_so lut ions . append ( s ) ;
}

}

/∗ Now for the second par t assume tha t A−\mu I i s not
∗ i n v e r t i b l e , i . e . \mu i s an e i genva lue o f A. Then
∗ we e i t h e r have an i n f i n i t e amount o f s o l u t i o n s o f
∗ (A−\mu I ) s = b . Require s have l eng t h 1 to f i nd
∗ at most two s o l u t i o n s as long as a l l po in t s are
∗ not on the same l i n e .
∗/

// Loop through a l l 3 e i g enva l u e s o f A
for ( int i =0; i <3; i++){

QList<Eigen : : Vector3d> e ig enva lue_so lu t i on s ;

// Create l i n e a r system (A−\my I ) s = b
Eigen : : Matrix3d A_eig = A− e i g enva lu e s [ i ]∗ Eigen : : Matrix3d : :

↪→ I d en t i t y ( ) ;
Eigen : : Vector3d b_eig = b ;

// Check f o r e x i s t en c e o f s o l u t i o n s
i f ( We l lCons t ra in tPro j e c t i ons : : s o l u t i on_ex i s t enc e (A_eig , b_eig

↪→ ) ) {

// So l ve s non−i n v e r t i b l e case and returns , i f any , the
↪→ f e a s i b l e v e c t o r s s

e i g enva lue_so lu t i on s = Wel lCons t ra in tPro j e c t i ons : :
↪→ non_inv_solution (A_eig , b_eig ) ;

}

// I f any s o l u t i o n s e x i s t , add them to so lu t i on_vec to r s
for ( int j j = 0 ; j j < e i g enva lue_so lu t i on s . l ength ( ) ; j j++){

cand idate_so lut ions . append ( e i g enva lue_so lu t i on s . at ( j j ) ) ;
}

}

return cand idate_so lut ions ;
}
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