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Abstract
Simulating water behaviour in coastal areas is an important tool when predicting sedimen-
tary processes over geological time. We implement a general lattice Boltzmann model for
shallow water flow, that can handle having dry areas in the simulated system. The lattice
Boltzmann model is a relative new numerical technique where direct computing between
dry and wet nodes was only achieved in the last three years. In this thesis we tried to
implement the model in a way that allows us to gain accurate results when working with
realistic systems.

We found our simulator to be accurate in one dimension when simulating with bed
friction and in two dimensions when simulating frictionless systems. We also observed
some unphysical slowing of the conversion dry nodes to wet nodes and vice versa.
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Sammendrag
Å kunne simulere vannbevegelser i kystområder er et viktig redskap når man prøver å
forutse sedimentære prosesser over geologisk tid. Vi implementerer en generell gitter
Boltzmann-modell for grunne vannstrømninger, som kan takle å ha tørre områder i det
simulerte systemet. Gitter Boltzmann modellen er en relativt ny numerisk teknikk, hvor
direkte beregning mellom tørre og våte noder først ble mulig i løpet av de siste tre årene.
I denne oppgaven har vi prøvd å implementere modellen slik at vi får høy nøyaktighet i
resultatet når vi simulerer realistiske systemer.

Vi fant at simulatoren var treffsikker i én dimensjon når vi simulerte med bunn-
friksjon og i to dimensjoner når vi brukte friksjonsløse systemer. Vi observerte også
ufysisk nedbremsing av overgangen fra tørre noder til våte, og omvendt.
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1 Introduction

Recently, there has been much work on developing tools to produce quantitative models
of a reservoir or a basin based on geologic knowledge at Schlumberger Limited (SLB). The
geologic process modeler (GPM) they developed models the structural and sedimentary
processes through geologic time and can also be used to understand the different physical
processes that worked in the past to create today’s environment. GPM consists of a
simulation module and of a pre- and postprocessor.

This allows the software to generate an initial system, send it forward to the simulator
that simulates a result before it gets sent to a postprocessor for further study. To simulate
over geological time, GPM runs through the simulation module several times. The module
first simulates how the water behaves, then changes in sediments, before this new system
is sent back to the water simulator for a new cycle. Each cycle is assumed to generate
the equivalent of 0.5 years of changes to the system. As GPM is created to model over
thousands and millions of years, this restricts the length each cycle can last.

The GPM is as of now single threaded, which causes the water simulator used to
run slower than what is wanted. As such, we are looking to develop a new and faster
water simulator that can take advantage of the recent improvements in multi threaded
computing. Studying the needs of the simulator, it was decided to develop a Lattice
Boltzmann (LB) simulation program as LB is inherently easy to parallelize.

The task of this thesis is thus to create a simulator that can solve steady state sediment
transport using LB formulation. As the simulation of sediments is considered complete,
the main task is to implement and verify the simulation of water.

1.1 Shallow Water Equations

All fluid flows need to obey Newton’s second law of motion. The result of implementing
conservation of mass and momentum for fluid flow is the Navier-Stokes equations (NSE).
These equations, however, are very hard to utilize in an efficient fashion and is as such
not very efficient to use in computational fluid dynamics (CFD). When working with
flows with much greater horizontal than vertical scale, the NSEs can be integrated over
their depth giving out the Shallow water equations (SWE). SWE are hyperbolic partial
differential equations (PDE), and are also known as Saint Venant equations. They de-
scribe a flow running under a pressure surface, like the water surface. A side effect of
operating under the condition of a small vertical scale compared to the horizontal scale is
that the vertical velocity must be small to conserve mass. This condition also makes SWE
inherently good for working with fluid flows in river and channel systems or in coastal
areas.

Sadly, SWE are not easy to solve numerically and much work has gone into solving
them. Different computational approaches like finite-difference method (FDM), finite-
element method (FEM) and finite-volume method (FVM) have been tried to solve this
with mixed results [1], [2] and [3]. The numerical complexity of those methods to correctly
calculate the source terms caused issues with the accuracy of the simulations.

The LB method was, because of its ease of implementing source terms, suggested as
an option to solve SWE. Several papers have also reported success with using LB method
to simulate wind driven ocean circulation with SWE [4] and [5]. In 2011, a study of
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the stability of using LB to solve SWE showed that as long as the model is stable and
consistent it should converge [6].

1.2 Lattice Boltzmann Method
The lattice Boltzmann method (LBM) we see today is the result of continual improvement,
beginning with the Cellular automata (CA) in the late 1940s. CA is a two-dimensional
grid of cells which all have the same rules for evolution and for which time moves discretely.
Each cell has its own boolean (alive or dead) initial state which it updates individually
each time-step based on the given evolutionary rules. One of the more famous uses of CA
is the Game of Life [7] which J. Conway created in 1970, which portrays how complex
behaviour can be simple numerical steps.

In 1973, the HPP model [8] was invented by Hardy, de Pazzis and Pomeau. The CA
then evolved into what is now referred to as lattice gas automata (LGA), when it was
attempted to make CA conserve mass and momentum. With the square lattice used, it
was impossible to fully implement NSE, which was the goal at the time. In 1987, the
FHP model [9] was created by Frisch, Hasslacher and Pomeau. It was the first LGA that
managed to simulate the NSE from a set of macroscopic equations, however, it suffered
largely from numerical noise. To improve the method, LBM was developed.

LBM can be derived directly from the Boltzmann equation resulting in a simulation
method where fluid flows are calculated from microscopic events. A side effect of this is
that it can easily calculate two phase systems and other complex systems, where other
methods derived from macroscopic events will face difficulties. Other important advan-
tages with the LBM is that it is local in space so parallel computing is easily achieved, all
the computational steps are simple to calculate, and it operates with only one unknown
variable, lessening the load per cycle.

1.3 Organization
This thesis contains the following chapters: Chapter 1 is where we introduce the back-
ground for this thesis. We also give some brief information on SWE and LBM which
are the primary subjects of this thesis. In chapter 2 we derive the SWE from the depth
averaged NSE. The resulting equations are then used as the governing equations in the
simulator. The third chapter is focused on deriving the LBM. We derive all the terms
used in the method and establish their inherent accuracy. In this chapter we also cover
how to apply boundary conditions, handle the wetting/drying front and proving that the
method simulate the SWE. In chapter 4 we present the test cases used and the simula-
tion results while computing these. In chapter 5 the results presented in chapter 4 are
discussed. The final chapter contains the conclusions we arrived at based on the results
in chapter 4 and discussions in chapter 5. It also contains suggestions for further work
based on the shortcomings of the present simulator.
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2 Shallow water equations

2.1 Introduction

Water, just like every other fluid flow, needs to obey conservation laws for momentum
and mass. In theory this means that a complete solution to any flow can be found by
solving the Navier-Stokes equations. Sadly, these equations are very costly to calculate,
so it is often advised to find simpler solutions. Water can in most situations be treated
as incompressible, which simplifies matters greatly. Further, as the horizontal scale in
coastal regions, which is of most value for this paper, is of much greater magnitude than
the vertical scale, the use of shallow water equations where deemed ideal. To derive the
useful SWEs we will in this chapter follow the derivation done by Zhou [10].

2.2 Navier-Stokes equations

The three-dimensional fluid flow version of Newton’s second law of motion for incom-
pressible fluids are the Navier-Stokes equations. In tensor form they are

∂uj
∂xj

= 0 (2.1)

and
∂uj
∂t

+
∂(uiuj)

∂xj
= fi −

1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

. (2.2)

For this we have used Einstein summation convention and t is time, ν is the kinematic
viscosity, p is pressure, fi is body forces and ρ is the density of the fluid. Hence Eq. (2.1)
becomes

∂uj
∂xj

=
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.3)

where u is the flow velocity in x-direction, v is the flow velocity in y-direction and w is
the flow velocity in z-direction. As the terms in NSEs have physical interpretations, they
are all named after their physical role. The left side of Eq. (2.2) is called the inertia term,
with the different parts on the right called respectively body force term, pressure term
and viscous term. These equations have very few situations where analytical solutions
are possible, which leaves numerical simulation needed to find stable solutions. This is
one of the major reasons why computational fluid dynamics (CFD) will continue to grow
as a field as we need to understand more and more complex flows.

2.3 Shallow water equations

Rivers and coastal regions are usually described more by horizontal motion rather than
vertical motion. This is usually because the vertical scale everything works on is very
small compared to the horizontal scale. With comparable small vertical motion it was
decided it is more efficient to use the assumption of hydrostatic pressure, meaning the
vertical acceleration can be ignored. This leads to SWEs of two and three dimensions,
where the former is based on the depth-averaged velocity of a flow and the latter directly
from Eq. (2.1) and (2.2). As both sets of equations suffer from inability to handle
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separation vertically in a flow and the two-dimensional equations demands one degree
less computing the general consensus has been to work with the two-dimensional SWEs.

When applying Eq. (2.1) and (2.2) on Earth the only body forces experienced is the
Coriolis force and gravity. This leaves

fx = fcv, fy = fcu, fz = −g, (2.4)

where fc is the Coriolis parameter and g = 9.81m/s2 is the gravitational acceleration.
Given its weak influence on the systems, the Coriolis force will be neglected from the
simulations, but will be included in this chapter for completeness. The Coriolis parameter
is fc = 2ω sinφ, where φ is the latitude of the area and ω ≈ 7.3×10−5rad/s is the angular
velocity of the Earth’s rotation.

For us to get the mass continuity Eq. (2.1), to the wanted dimensional order we
integrate over depth and get,

h+zb∫
zb

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz = 0, (2.5)

which simplifies to
h+zb∫
zb

∂u

∂x
dz +

h+zb∫
zb

∂v

∂y
dz + ws − wb = 0, (2.6)

where the vertical velocity at surface and channel bed is ws and wb. zb is the bed elevation
in the chosen frame of reference and h is water elevation relative to zb, as shown in Fig.
2.1.

To further solve this we use Leibnitz rule [11],

b∫
a

∂f(x, y)

∂y
dx =

∂

∂y

b∫
a

f(x, y)dx− f(b, y)
∂b

∂y
+ f(a, y)

∂a

∂y
(2.7)

on Eq. (2.6) resulting in,

∂

∂x

h+zb∫
zb

udz +
∂

∂y

h+zb∫
zb

vdz

+[ws − us
∂

∂x
(h+ zb)− vs

∂

∂y
(h+ zb)]

−(wb − ub
∂zb
∂x
− vb

∂zb
∂y

) = 0.

(2.8)

This leaves the kinematic condition to be,

ws =
∂

∂t
(h− zb) + us

∂

∂x
(h+ zb) + vs

∂

∂y
(h+ zb) (2.9)

and
wb =

∂zb
∂t

+ ub
∂zb
∂x

+ vb
∂zb
∂y

(2.10)
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Figure 2.1: Sketch of water seen from the side.

at the free surface and channel bed. Inserting Eq. (2.9) and (2.10) into Eq. (2.8) results
in

∂h

∂t
+
∂(hū)

∂x
+
∂(hv̄)

∂y
= 0, (2.11)

which is the mass continuity equation for shallow water flows. Here ū and v̄ is the depth-
averaged velocity, defined as

ū =
1

h

h+zb∫
zb

udz, (2.12)

and

v̄ =
1

h

h+zb∫
zb

vdz. (2.13)

Integrating over the depth in the x-component of Eq. (2.2) leaves

h+zb∫
zb

[
∂u

∂t
+
∂(u2)

∂x
+
∂(vu)

∂y
+
∂(wu)

∂z

]
dz =

h+zb∫
zb

fcvdz

+

h+zb∫
zb

[
−1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)]
dz.

(2.14)
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Of the terms on the left side of Eq. (2.14), the last term is the only one that can be
evaluated by direct integration,

h+zb∫
zb

∂(wu)

∂z
dz = wsus − wbub. (2.15)

The three other terms of the left side of Eq. (2.14) must be evaluated by use of Leibnitz
rule (2.7),

h+zb∫
zb

∂u

∂t
dz =

∂

∂t

h+zb∫
zb

udz − us
∂(h+ zb)

∂t
+ ub

∂zb
∂t

, (2.16)

h+zb∫
zb

∂(u2)

∂x
dz =

∂

∂x

h+zb∫
zb

u2dz − u2
s

∂(h+ zb)

∂x
+ u2

b

∂zb
∂x

, (2.17)

h+zb∫
zb

∂(vu)

∂y
dz =

∂

∂y

h+zb∫
zb

vudz − vsus
∂(h+ zb)

∂y
+ vbub

∂zb
∂y

. (2.18)

The left side of Eq. (2.14) can now via Eq. (2.15), (2.16), (2.17) and (2.18) be written as

h+zb∫
zb

[
∂u

∂t
+
∂(u2)

∂x
+
∂(vu)

∂y
+
∂(wu)

∂z

]
dz =

∂

∂t

h+zb∫
zb

udz +
∂

∂x

h+zb∫
zb

u2dz +
∂

∂y

h+zb∫
zb

vudz

+us

[
ws −

∂(h+ zb)

∂t
− us

∂(h+ zb)

∂x
− vb

∂zb
∂y

]
−ub

(
wb −

∂zb
∂t
− ub

∂zb
∂x
− vb

∂zb
∂y

)
.

(2.19)

Inserting both ws and wb from Eq. (2.9) and (2.10), and ū and v̄ from Eq. (2.12) and
(2.13) into Eq. (2.19) results in

h+zb∫
zb

[
∂u

∂t
+
∂(u2)

∂x
+
∂(vu)

∂y
+
∂(wu)

∂z

]
dz =

∂(hū)

∂t
+

∂

∂x

h+zb∫
zb

u2dz +
∂

∂y

h+zb∫
zb

vudz

(2.20)

The second mean value theorem for integrals [12],

b∫
a

f(x)g(x)dx = f(ζ)

b∫
a

g(x)dx, (2.21)
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now allows us to rewrite

h+zb∫
zb

u2dz = ǔ1

h+zb∫
zb

udz = ǔ1hū, (2.22)

and
h+zb∫
zb

vudz = ǔ2

h+zb∫
zb

vdz = ǔ1hv̄. (2.23)

Using Eq. (2.21) is what causes the previously mentioned weakness of SWEs not being
able to handle changes in the direction the water is flowing between the surface and the
channel bed. This is because the second mean value theorem demands a continuous u
and v that never change sign in the region of integration.

Assuming ǔ1 = θ1ū and ǔ2 = θ2ū we can with help from Eq. (2.22) and (2.23) simplify
Eq. (2.20) into

h+zb∫
zb

[
∂u

∂t
+
∂(u2)

∂x
+
∂(vu)

∂y
+
∂(wu)

∂z

]
dz =

∂(hū)

∂t
+
∂(θ1hū

2)

∂x
+
∂(θ2hv̄ū)

∂y
.

(2.24)

Based on Eq. (2.22) and (2.23), we can also determine θ1 and θ2, the momentum correc-
tion factors, to be

θ1 =
1

hū2

h+zb∫
zb

u2dz, (2.25)

and

θ2 =
1

hv̄ū

h+zb∫
zb

vudz. (2.26)

Repeating Eq. (2.14) to (2.24), but this time in y-direction results in

h+zb∫
zb

[
∂v

∂t
+
∂(uv)

∂x
+
∂(v2)

∂y
+
∂(wv)

∂z

]
dz =

∂(hv̄)

∂t
+
∂(θ2hūv̄)

∂x
+
∂(θ3hv̄

2)

∂y
.

(2.27)

The third momentum correction factor θ3 is found to be

θ3 =
1

hv̄2

h+zb∫
zb

v2dz. (2.28)
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The Coriolis force term on the right side of Eq. (2.14) can easily be integrated to

h+zb∫
zb

fcvdz = fchv̄. (2.29)

To solve the pressure term of Eq. (2.14), we first look to the momentum equation (2.2).
By solving the momentum equation in z-direction we quickly get

∂p

∂z
= −ρg. (2.30)

This is a result of the vertical fluid acceleration being negligible compared to what is
experienced horizontally, leading to w ≈ 0. Integrating Eq. (2.30) results in

p = −ρgz + C, (2.31)

where C is an integration constant. At the surface p = pa and z = h+ zb where pa is the
air pressure, which allows us to determine C as

C = ρg(h+ zb) + pa. (2.32)

Inserting this into Eq. (2.31) gives

p = ρg(h+ zb − z) + pa. (2.33)

Following the standard for coastal and hydraulic engineering [13], we set pa = 0. As
the differences in pressure along the surface of the water is negligible for all situations of
interest, pa is for all purposes a constant already, resulting in

p = ρg(h+ zb − z), (2.34)

which is the hydrostatic pressure approximation used in shallow water flows. By differ-
entiating Eq. (2.34) with respect to x we now find that the pressure term in Eq. (2.14)
is

∂p

∂x
=
∂(h+ zb)

∂x
. (2.35)

This form allows us to solve the integration of the pressure term given in Eq. (2.14), as
it is not dependent on the z direction. It thus becomes

h+zb∫
zb

1

ρ

∂p

∂x
dz =

h

ρ

∂p

∂x
, (2.36)

which with Eq. (2.35) inserted is

h+zb∫
zb

1

ρ

∂p

∂x
dz = gh

∂(h+ zb)

∂x
. (2.37)
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To further solve Eq. (2.14) we now need to introduce two approximations for the first
two parts of the viscous term as

h+zb∫
zb

ν
∂2u

∂x2
dz ≈ ν ∂

2(hū)

∂x∂x
, (2.38)

and
h+zb∫
zb

ν
∂2u

∂y2
dz ≈ ν ∂

2(hū)

∂y∂y
. (2.39)

As a result we now only need to calculate the last part of the viscous term to,

h+zb∫
zb

ν
∂2u

∂z2
dz =

(
ν
∂u

∂z

)
s

−
(
ν
∂u

∂z

)
b

. (2.40)

Practice shows that the terms on the right side of Eq. (2.40) can be approximated by the
shear stress inflicted by respectively the wind (former term) and the channel bed (latter
term), hence (

ν
∂u

∂z

)
s

=
τwx
ρ

(
ν
∂u

∂z

)
b

=
τbx
ρ
. (2.41)

Inserting into Eq. (2.40) we now have

h+zb∫
zb

ν
∂2u

∂z2
dz =

τwx
ρ
− τbx

ρ
. (2.42)

Reconstructing Eq. (2.14) with the results of Eq. (2.24), (2.29), (2.37) - (2.39) and (2.42)
gives us

∂(hū)

∂t
+
∂(θ1hū

2)

∂x
+
∂(θ2hūv̄)

∂y
=

−g ∂
∂x

(
h2

2

)
+ ν

∂2(hū)

∂x∂x
+ ν

∂2(hū)

∂y∂y

−gh∂zb
∂x

+ fchv̄ +
τwx
ρ
− τbx

ρ
,

(2.43)

which is the momentum equation for shallow water flows in x-direction. The y-direction
momentum equation can similarly be written as

∂(hv̄)

∂t
+
∂(θ2hūv̄)

∂x
+
∂(θ3hv̄

2)

∂y
=

−g ∂
∂y

(
h2

2

)
+ ν

∂2(hv̄)

∂x∂x
+ ν

∂2(hv̄)

∂y∂y

−gh∂zb
∂y
− fchū+

τwy
ρ
− τby

ρ
.

(2.44)
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Now we only need to determine the momentum correction factors, θ1, θ2 and θ3 to
have a fully functioning momentum equation. We could in theory determine them now
based on their definition in Eq. (2.25), (2.26) and (2.28) however, barring a few simple
situations, this is impossible as there is no correct universal velocity profile describing the
flow. The solution has been to use an approximation where θ1 = θ2 = θ3 = 1 which has
shown to deliver good numerical results in many situations [14], [15], [16].

Using this we can now write the momentum equations as

∂(hū)

∂t
+
∂(hū2)

∂x
+
∂(hūv̄)

∂y
=

−g ∂
∂x

(
h2

2

)
+ ν

∂2(hū)

∂x∂x
+ ν

∂2(hū)

∂y∂y

−gh∂zb
∂x

+ fchv̄ +
τwx
ρ
− τbx

ρ
,

(2.45)

and

∂(hv̄)

∂t
+
∂(hūv̄)

∂x
+
∂(hv̄2)

∂y
=

−g ∂
∂y

(
h2

2

)
+ ν

∂2(hv̄)

∂x∂x
+ ν

∂2(hv̄)

∂y∂y

−gh∂zb
∂y
− fchū+

τwy
ρ
− τby

ρ
.

(2.46)

We now have the governing shallow water equations, Eq, (2.11), (2.45) and (2.46),
and can write them in tensor form as

∂h

∂t
+
∂huj
∂xj

= 0 (2.47)

and
∂huj
∂t

+
∂huiuj
∂xj

= −g ∂

∂xi
(
h2

2
) + ν

∂2(hui)

∂xj∂xj
+ Fi, (2.48)

where the overbars are omitted for convenience. Fi is the force term, which is defined as

Fi = −gh∂zb
∂xi

+
τwi
ρ
− τbi

ρ
+ Ωi. (2.49)

Here the Coriolis term, Ωi, is determined to be

Ωi =

{
fchv, i = x,

−fchu, i = y.
(2.50)

The bed shear stress in direction i, τbi, is determined by the depth-averaged velocities as

τbi = ρCbui
√
ujuj , (2.51)

where the bed friction coefficient, Cb, is determined by

Cb =
g

C2
z

. (2.52)
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Cz is the Chezy coefficient, which in turn is decided by the Manning equation

Cz =
h

1
6

nb
, (2.53)

where nb is the Manning’s coefficient at the bed. This means Eq. (2.52) is

Cb =
gn2

b

h
1
3

. (2.54)

The stress caused by the wind, τwi is defined as

τwi = ρaCauwi
√
uwjuwj (2.55)

Where ρa is the air density, uwi is the speed of air in i-direction and Ca is the resistance
coefficient of the air.



12 2 SHALLOW WATER EQUATIONS



13

3 Lattice Boltzmann theory

3.1 Introduction
The lattice Boltzmann method is a numerical method that uses a few simple steps to
simulate real physical flows. The first step is an equation that explains how particles
move, which is the Boltzmann equation. The second step is to determine particle direction
based on the pattern of the lattice. The third and final step is to find the distribution
function based on the governing flow equations. The governing flow equations in this
thesis are the SWEs derived in chapter 2. With these three simple steps, LBM is capable
of simulating complicated flows where other CFD methods fail.

This chapter will fully explain each step of LBM and show how they came to be. To
derive the lattice Boltzmann equation we follow in large part of the work done by Zhou
[10].

3.2 Lattice gas automata
LGA is, as mentioned in the introduction of this thesis, historically the precursor of
LBM. The LGA is fundamentally a way to imagine particle interaction in a gas where
time, position and velocity is discrete. By fixing the positions available for a particle to
nodes on a grid and applying evolutionary rules it was successful at creating a model
where particles could collide based entirely on local nodes. To keep track of particle
occupation in nodes, a Boolean variable was defined as nβ(x, t), where β = 1, · · · ,M and
M is the number of possible velocity directions at any given node [17]. A generalized
LGA evolution equation would then be on the form of

nβ(x + eβ , t+ 1) = nβ(x, t) + Ωβ(n(x, t)), (3.1)

where Ω is a collision operator and eβ is the velocity vector to the nearest node in β
direction. The right side of the equation is now the collision step of the method while the
left side shows how particles stream to neighboring nodes. One major weakness of this
method was that no particle could ever stay in the same position as another particle. This
was done to increase memory efficiency and had the added benefit of having a universal
Fermi-Dirac local equilibrium distribution [9].

Another weakness of LGA was that it suffered from statistical noise. In 1988, it was
suggested to change the particle occupation variable, the Boolean, nβ into fβ = 〈nβ〉,
which is the real-valued particle distribution function. Combining this with ignoring
particle-particle correlation and individual particle motion allows the process to eliminate
the statistical noise [18].

By using the BGK collision operator [19], it was found that the resulting equation
had improved flexibility and efficiency [20]. The BGK collision operator is named after
Bhatnagar, Gross and Krook and is defined by

Ωβ = − 1

λ
(f − feq), (3.2)

where feq is the equilibrium distribution function and λ is a relaxation time.
Thus the LGA evolved into

fβ(x + eβ , t+ 1)− fβ(x, t) = − 1

λ
(fβ(x, t)− feqβ (x, t)). (3.3)
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Assuming the left side is a time derived function where ∆t is the time step, the left side
can easily be replaced with fβ(x+eβ∆t,t+∆t)−fβ(x,t)

∆t . Thus the LGA transformed fully into
the LBM,

fβ(x + eβ∆t, t+ ∆t)− fβ(x, t) = −1

τ
(fβ(x, t)− feqβ (x, t)), (3.4)

given τ = λ/∆t.

3.3 Lattice Boltzmann equation

The LB equation can also be derived more analytically from the Boltzmann BGK equation
[19],

∂f

∂t
+ e · ∇f = − 1

λ
(f − feq), (3.5)

where the nabla operator is ∇ = ∂
∂x î+

∂
∂y ĵ and f

eq is the Maxwell-Boltzmann equilibrium
distribution function. It is defined as

feq =
ρ

(2π/3)D/2
exp

(
−3

2
(e−V)2

)
, (3.6)

with D as the spatial dimension, ρ as the fluid density, e the particle velocity and V the
fluid velocity. Both e and V are normalized by

√
3RT resulting in the speed of sound at

Us = 1√
3
[17]. The T mentioned in the normalization is the temperature, while R is the

ideal gas constant. Further ρ and V are both variables that can be recovered from the
distribution function as

ρ =

∫
fde, Vρ =

∫
efde. (3.7)

When |V| is much smaller than Us, we can Taylor expand Eq. (3.6) into

feq =
ρ

(2π/3)D/2
exp

(
−3

2
e2

)[
1 + 3(e ·V) +

9

2
(e ·V)2 − 3

2
V ·V

]
(3.8)

resulting in second order accuracy [21]. As LBM is a discrete model, we only wish to
handle a discrete amount of particle velocities reducing e to eβ where β = 1, · · · ,M and
M is the number of directions in the lattice. With discretization, Eq. (3.5) can be written
as

∂fβ
∂t

+ eβ · ∇fβ = − 1

λ
(fβ − feqβ ). (3.9)

Both fβ and feqβ now depend on eβ i.e. fβ = f(x, eβ , t). Since left side of Eq. (3.9) is a
Lagrangian time derivative we can rewrite it as

∂fβ
∂t

+ eβ · ∇fβ =
fβ(x + eβ∆t, t+ ∆t)− fβ(x, t)

∆t
(3.10)

With simple substitution and inserting the single relaxation time, τ = λ/∆t, we end up
with the lattice Boltzmann equation,

fβ(x + eβ∆t, t+ ∆t) = fβ(x, t)− 1

τ
(fβ(x, t)− feqβ (x, t)), (3.11)
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where the left side of the equation is the streaming term and the right side is the collision
term. Whenever we deal with outer forces that work on the flow, we add a force term to
the end of the equation [10],

fβ(x + eβ∆t, t+ ∆t) = fβ(x, t)− 1

τ
(fβ(x, t)− feqβ (x, t)) +

∆t

Nβe2
eβiFi(x, t), (3.12)

where Einstein summation convention is used. Fi is the i-component of the force and the
lattice size is e = ∆x/∆t. Nβ is a constant that is defined as

Nβ =
1

e2

∑
β

eβieβi. (3.13)

3.4 Lattice pattern

Choosing lattice pattern is important to both determining the particle velocities and
position of the grid points. It is also vital to calculating the constant Nβ . The two most
common two-dimensional patterns are the square lattice and the hexagonal lattice, both
of which have several different particle speed configurations possible to choose among.
However, careful analytical studies have shown that only the 9-speed square model and
the 7-speed hexagonal model contain sufficient lattice symmetry necessary to recover the
necessary flow equation [22].

Further study has shown that the square 9-speed model, later called D2Q9 [23], is
both more accurate [24] and easier to apply boundary conditions (BC) to [25] than the
hexagonal model. Because of this, the focus onward will only be on the D2Q9 model.

Figure 3.1: Sketch of the D2Q9 lattice pattern with eβ , the particle speeds, numbered.

With the D2Q9 model we now have 9 particle velocities in each node. The velocity
numbered 0, indicate zero particle speed, while 1 - 8 have velocity enough to move particles
one lattice unit in each direction as seen in Fig. 3.1. The particle velocity vectors are
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defined as

eβ =


(0, 0), β = 0,

e
[
cos( (β−1)π

4 ), sin( (β−1)π
4 )

]
, β = 1, 3, 5, 7,

√
2e
[
cos( (β−1)π

4 ), sin( (β−1)π
4 )

]
, β = 2, 4, 6, 8.

(3.14)

Using the inherent basic features of the D2Q9 lattice,∑
β

eβi =
∑
β

eβieβjeβk = 0, (3.15)

∑
β

eβieβj = 6e2δij , (3.16)

∑
β

eβieβjeβkeβl = 4e2(δijδkl + δikδjl + δilδjk)− 6e4∆ijkl (3.17)

with

∆ijkl =

{
1, i = j = k = l,

0, otherwise.
(3.18)

Using Eq. (3.14) when calculating Eq. (3.13) results in

Nβ =
1

e2

∑
β

eβxeβx =
1

e2

∑
β

eβyeβy = 6. (3.19)

Thus Eq. (3.12) becomes the most common variant of the LBM for simulation of fluid
flows, simply called the lattice Boltmzann equation (LBE),

fβ(x + eβ∆t, t+ ∆t) = fβ(x, t)− 1

τ
(fβ(x, t)− feqβ (x, t)) +

∆t

6e2
eβiFi(x, t). (3.20)

3.5 Local equilibrium distribution function

The determination of the local equilibrium function plays an integral role in the LBM.
With the right choice of feqβ it becomes possible to simulate different types of flow
equations. The standard equilibrium function inherited from LGA was the Maxwell-
Boltzmann equilibrium distribution function. However, the use of this function limited
the use of the solver to NSE only. To overcome this limitation, the equilibrium function
is treated as a power series in the macroscopic velocity u [26] on the form

feqβ = Aβ +Bβeβiui + Cβeβieβjuiuj +Dβuiui. (3.21)

As the equilibrium function has the same symmetry as the lattice used, we can state from
Fig. 3.1 that

A1 = A3 = A5 = A7 = Ā, A2 = A4 = A6 = A8 = Ã. (3.22)
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This principle also gives us equivalent relations for Bβ , Cβ and Dβ , which allow us to
rewrite Eq. (3.21) as

feqβ =


A0 +D0uiui, β = 0,

Ā+ B̄eβiui + C̄eβieβjuiuj + D̄uiui, β = 1, 3, 5, 7,

Ã+ B̃eβiui + C̃eβieβjuiuj + D̃uiui, β = 2, 4, 6, 8.

(3.23)

Considering that the equilibrium distribution function must obey the same laws as the
SWE, we can find the coefficients in Eq. (3.23) from mass and momentum conservation.
Thus we can state [10] ∑

β

feqβ (x, t) = h(x, t), (3.24)

∑
β

eβif
eq
β (x, t) = h(x, t)ui(x, t), (3.25)

∑
β

eβieβjf
eq
β (x, t) =

1

2
gh2(x, t)δij + h(x, t)ui(x, t)uj(x, t). (3.26)

We see directly from Eq. (3.25) that the macroscopic variable ui can be calculated via

ui(x, t) =
1

h(x, t)

∑
β

eβif
eq
β (x, t) (3.27)

and that the macroscopic variable h is found simply from Eq. (3.24).
By combining Eq. (3.23) and (3.24) we end up with

A0 +D0uiui

+4Ā+
∑

β=1,3,5,7

B̄eβiui +
∑

β=1,3,5,7

C̄eβieβjuiuj + 4D̄uiui

+4Ã+
∑

β=2,4,6,8

B̃eβiui +
∑

β=2,4,6,8

C̃eβieβjuiuj + 4D̃uiui = h

(3.28)

Evaluating this equation by inserting the particle velocities eβ from Eq. (3.14) while
separating the results based on h and uiui results in

A0 + 4Ā+ 4Ã = h (3.29)

and
D0 + 2e2C̄ + 4e2C̃ + 4D̄ + 4D̃ = 0 (3.30)

Further, by inserting Eq. (3.23) into (3.25) we get

A0eβi +D0eβiujuj

+
∑

β=1,3,5,7

(Āeβi + B̄eβieβjui + C̄eβieβjeβkuiuj + D̄eβiuiui)

+
∑

β=2,4,6,8

(Ãeβi + B̃eβieβjui + C̃eβieβjeβkuiuj + D̃eβiuiui) = hui,

(3.31)
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which we can separate based on ui and Eq. (3.15) into

2e2B̄ + 4e2B̃ = h. (3.32)

If we then insert Eq. (3.23) into (3.26) we get∑
β=1,3,5,7

(Āeβieβj + B̄eβieβjeβkui + C̄eβieβjeβkeβluiuj + D̄eβieβjuiui)

+
∑

β=2,4,6,8

(Ãeβieβj + B̃eβieβjeβkui + C̃eβieβjeβkeβluiuj + D̃eβieβjuiui)

=
1

2
gh2δij + huiuj .

(3.33)

To simplify this, we use Eq. (3.14) to get

2Āe2δij + 2C̄e4uiui + 2D̄e2uiui + 4Ãe2δij

+8C̃e4uiuj + 4C̃e4uiui + 4D̃e2uiui =
1

2
gh2δij + huiuj ,

(3.34)

which can be separated to four different relations,

2e2Ā 4e2Ã =
1

2
gh2, (3.35)

8e4C̃ = h, (3.36)

2e4C̄ = h (3.37)

and
2e2D̄ + 4e2D̃ + 4e4C̃ = 0. (3.38)

From Eq. (3.36) and (3.37) it is obvious that

4C̃ = C̄ (3.39)

which implies, because of lattice symmetries, that we can reasonably assume

4Ã = Ā, 4B̃ = B̄ and 4D̃ = D̄. (3.40)

Solving Eq. (3.29), (3.30), (3.32) and (3.35)-(3.38) with these assumptions results in

A0 = h− 5gh2

6e2
, D0 = − 2h

3e2
(3.41)

Ā =
gh2

6e2
, B̄ =

h

3e2
, C̄ =

h

2e4
, D̄ = − h

6e2
, (3.42)

Ã =
gh2

24e2
, B̃ =

h

12e2
, C̃ =

h

8e4
, D̃ = − h

24e2
. (3.43)

By inserting the above equations into Eq. (3.23) we get,

feqβ =


h− 5gh2

6e2 −
2h
3e2uiui, β = 0,

gh2

6e2 + h
3e2 eβiui + h

2e4 eβieβjuiuj −
h

6e2uiui, β = 1, 3, 5, 7,
gh2

24e2 + h
12e2 eβiui + h

8e4 eβieβjuiuj −
h

24e2uiui, β = 2, 4, 6, 8,

(3.44)

which is the equilibrium distribution function used when solving SWEs.
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3.6 Recovery of the Shallow Water Equations
To prove that the macroscopic variables found in Eq. (3.24) and (3.27) for velocities and
height are in fact the solutions to the SWEs, we use a Chapman-Enskog expansion of
LBE. Our goal is to recover the SWEs Eq, (2.47) and (2.48). We start by expressing Eq.
(3.20) as

fβ(x + eβε, t+ ε)− fβ(x, t) = −1

τ
(fβ(x, t)− feqβ (x, t)) +

ε

6e2
eβiFi(x, t) (3.45)

where it is assumed ∆t = ε and that ε is small.
Taylor expansion around (x, t) for the first term on the left hand side results in

ε

(
∂

∂t
+ eβj

∂

∂xj

)
fβ +

1

2
ε2
(
∂

∂t
+ eβj

∂

∂xj

)2

fβ +O(ε3)

= −1

τ

(
fβ − f (0)

β

)
+

ε

6e2
eβjFj .

(3.46)

We now expand fβ around feqβ while setting f (0)
β = feqβ , getting

fβ = f
(0)
β + εf

(1)
β + ε2f

(2)
β +O(ε3). (3.47)

Inserting Eq. (3.47) into (3.46) gives

ε

(
∂

∂t
+ eβj

∂

∂xj

)(
f

(0)
β + εf

(1)
β + ε2f

(2)
β +O(ε3)

)
+

1

2
ε2
(
∂

∂t
+ eβj

∂

∂xj

)2 (
f

(0)
β + εf

(1)
β + ε2f

(2)
β +O(ε3)

)
+O(ε3)

= −1

τ

(
εf

(1)
β + ε2f

(2)
β +O(ε3)

)
+

ε

6e2
eβjFj .

(3.48)

When we separate this equation with respect to ε and ε2 while ignoring all ε3 terms we
get (

∂

∂t
+ eβj

∂

∂xj

)
f

(0)
β = −1

τ
f

(1)
β +

1

6e2
eβjFj (3.49)

and (
∂

∂t
+ eβj

∂

∂xj

)
f

(1)
β +

1

2

(
∂

∂t
+ eβj

∂

∂xj

)2

f
(0)
β = −1

τ
f

(2)
β . (3.50)

When we now insert Eq. (3.49) into (3.50) we end up with(
1− 1

2τ

)(
∂

∂t
+ eβj

∂

∂xj

)
f

(1)
β = −1

τ
f

(2)
β − 1

2

(
∂

∂t
+ eβj

∂

∂xj

)
1

6e2
eβkFk (3.51)

If we now calculate the sum over Eq. (3.49) and ε multiplied with Eq. (3.51) we get

∂

∂t

∑
β

f
(0)
β

+
∂

∂xj

∑
β

eβjf
(0)
β

 = − ε

12e2

∂

∂xj

∑
β

eβjeβkFk

 . (3.52)
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When solving this equation using Eq. (3.44) and (3.14), and applying first order accuracy
for the force term, we get

∂h

∂t
+
∂huj
∂xj

= 0, (3.53)

which is the continuity SWE, (2.47), derived in section (2.3).
To find the momentum equation for SWE, we start by taking

∑
eβi [3.49 + ε× 3.51]

which is

∂

∂t

∑
β

eβif
(0)
β

+
∂

∂xj

∑
β

eβieβjf
(0)
β


+ε

(
1− 1

2τ

)
∂

∂xj

∑
β

eβieβjf
(1)
β


= Fjδij − ε

1

2

∑
β

eβi

(
∂

∂t
+ eβj

∂

∂xj

)
1

6e2
eβjFj

(3.54)

If we simplify this equation the same way as we did when going from Eq. (3.52) to (3.53),
we end up with

∂(hui)

∂t
+
∂(huiuj)

∂xj
= −g

2

∂(h2)

∂xi
− ∂Λij
∂xij

+ Fi. (3.55)

Here Λij is defined as
Λij =

ε

2τ
(2τ − 1)

∑
β

eβieβjf
(1)
β , (3.56)

which with Eq. (3.44) and (3.14), some algebra and referencing Eq. (3.49) can be sim-
plified to

Λij ≈ −ν
[
∂(hui)

∂xj
+
∂(huj)

∂xi

]
. (3.57)

By inserting this expression into (3.55) we recover Eq. (2.48), the momentum equation
for SWE,

∂huj
∂t

+
∂huiuj
∂xj

= −g ∂

∂xi
(
h2

2
) + ν

∂2(hui)

∂xj∂xj
+ Fi. (3.58)

It is also worth noting that the kinematic viscosity is defined as by

ν =
e2∆t

6
(2τ − 1). (3.59)

As we used only the first order force term to derive SWE from LBE the solution is only
accurate to first order in time.

3.7 Stability
The Lattice Boltzmann method is, like all numerical methods, stable under some condi-
tions and unstable under others. While the theoretical conditions are not entirely estab-
lished, a few general conditions are known. When simulating actual water it is necessary
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to simulate some kind of diffusion. Thus the kinematic viscosity can never have a negative
value, i.e.

ν =
e2∆t

6
(2τ − 1) > 0. (3.60)

As a result the single relaxation constant must be

τ >
1

2
. (3.61)

Another condition that limits the LBM is that streaming only goes between nodes im-
mediately beside each other. This limits the velocity to values smaller than the lattice
propagation (size divided by the time step used),

ujuj
e2

< 1 given e =
∆x

∆t
. (3.62)

All shallow water flows have a wave speed of
√
gh which also cannot be faster than the

propagation of information in the lattice, hence

gh

e2
< 1. (3.63)

Inserting Eq. (3.62) into (3.63) and finding the square root of the result lets us find

Fr =

√
ujuj√
gh

< 1, (3.64)

where Fr is called the Froude number. Froude number is a tool to see if we are dealing
with a supercritical flow (Fr > 1), a critical flow (Fr = 1) or a subcritical flow (Fr < 1).
Hence LBM is only usable for subcritical flows. The LBM is mostly of use in coastal,
river or channel systems where low Froude numbers are the norm allowing this condition
to mostly be satisfied. The conditions in Eq. (3.60) to (3.62) on the other hand can all
be satisfied with appropriate choice of variables.

3.8 Force Terms
To be able to accurately simulate any actual flow it is important to be able to calculate
the force terms. Without force terms one can no longer accurately simulate systems that
contain friction with the ground, seabed with any inclination, wind shear effect on water,
or that contain the Coriolis effects. In this thesis we have ignored both wind shear stress
and the Coriolis effects as they are very dependent on system location and was deemed
not relevant.

The force term as seen in Eq. (2.49) is

Fi = −gh∂zb
∂xi

+
τwi
ρ
− τbi

ρ
+ Ωi. (3.65)

When calculating this, the first term on the right hand side contain a derivative. This is
not practical for efficient computing and as such one other way for calculating this was
developed by Zhou [27],

gh̄

6e2
[zb(x + eβ∆t)− zb(x)] = gh

∂zb
∂xi

. (3.66)
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Which means the LBE Eq. (3.20), now can be written as,

fβ(x + eβ∆t, t+ ∆t) = fβ(x, t)− 1

τ
(fβ(x, t)− feqβ (x, t))

− gh̄
6e2

[zb(x + eβ∆t)− zb(x)] +
∆t

6e2
eβiFi(x, t),

(3.67)

where h̄ = 1
2 [h(x, t) + h(x + eβ∆t, t+ ∆t)] and the force term is redefined to

Fi =
τwi
ρ
− τbi

ρ
+ Ωi. (3.68)

To make sure this is accurate, we perform a Chapman-Enskog analysis of Eq. (3.67)
where we start by assuming ∆t = ε and that it is small. Thus we get

fβ(x + eβε, t+ ε) = fβ(x, t)− 1

τ
(fβ − feqβ )

− gh̄
6e2

[zb(x + eβ∆t)− zb(x)] +
ε

6e2
eβiFi,

(3.69)

which allows us to use Taylor expansion in time and space around (x, t), on the left hand
side which turns into

ε

(
∂

∂t
+ eβj

∂

∂xj

)
fβ +

1

2
ε2
(
∂

∂t
+ eβj

∂

∂xj

)2

fβ +O(ε3) (3.70)

Using the Chapman-Enskog procedure allows us to expand fβ around f (0)
β = feqβ , getting

Eq. (3.47). By Taylor expanding the third term in Eq. (3.69) we find that it becomes

g

6e2

[
h+

ε

2

(
∂h

∂t
+ eβj

∂h

∂xj

)](
εeβj

∂zb
∂xj

+
ε2

2
eβieβj

∂2zb
∂xi∂xj

)
+O(ε3). (3.71)

The last term in Eq. (3.69), the force term, should be used with the centered scheme, as
Zhou proved it is second order accurate [10],

Fj = Fj

(
x +

1

2
eβε, t+

1

2
ε

)
. (3.72)

This again can be Taylor expanded into

Fj +
ε

2

(
∂Fj
∂t

+ eβi
∂Fj
∂xi

)
+O(ε3). (3.73)

If we now insert Eq. (3.47), (3.70), (3.71) and (3.73) into Eq. (3.69) we end up with

(
∂

∂t
+ eβj

∂

∂xj

)
f

(0)
β = −

f
(1)
β

τ
− gheβj

6e2

∂zb
∂xj

+
eβjFj
6e2

, (3.74)
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to order ε1 and (
∂

∂t
+ eβj

∂

∂xj

)
f

(1)
β +

1

2

(
∂

∂t
+ eβj

∂

∂xj

)2

f
(0)
β =

−
f

(2)
β

τ
− geβj

12e2

(
∂h

∂t
+ eβj

∂h

∂xi

)
∂zb
∂xj

−gheβieβj
12e2

∂2zb
∂xi∂xj

+
eβj
12e2

(
∂Fj
∂t

+ eβi
∂Fj
∂xi

)
,

(3.75)

to order ε2. If we now insert Eq. (3.74) into (3.75) we get the more compact expression

(
1− 1

2τ

)(
∂

∂t
+ eβj

∂

∂xj

)
f

(1)
β = −

f
(2)
β

τ
. (3.76)

By evaluating
∑
β [3.74 + ε× 3.76] we find

∂

∂t

∑
β

f
(0)
β +

∂

∂xj

∑
β

eβjf
(0)
β = 0, (3.77)

which with the equilibrium function from Eq. (3.44) easily reduces to the continuum
equation of the SWE, Eq. (2.47), and is accurate to second order.

If we now evaluate
∑
β eβi[3.74 + ε× 3.76] we end up with

∂

∂t

∑
β

eβif
(0)
β +

∂

∂xj

∑
β

eβieβjf
(0)
β

+ε

(
1− 1

2τ

)
∂

∂xj

∑
β

eβieβjf
(1)
β = −gh∂zb

∂xi
+ Fi,

(3.78)

which with the equilibrium function from Eq. (3.44) can be rewritten into the momentum
equation of the SWE, Eq. (2.48), and is also accurate to the second order.

Thus we know that avoiding the differentiation when there are forces resulting from
elevation differences of the seabed is both possible and second order accurate. In practice
this is of no use considering it is implicit in time, however a semi-implicit form,

h̄ =
1

2
[h(x, t) + h(x + eβ∆t, t)], (3.79)

has shown to provide accurate solutions [27]. This form is numerically quick and easy to
use and thus is for all intent preferred in practice.

Tests during this thesis have shown that writing the LBE on the form of

fβ(x + eβ∆t, t+ ∆t) = fβ(x, t)− 1

τ
(fβ − feqβ )

−gh̄Pβ
6e2

[zb(x + eβ∆t)− zb(x)] +
∆tPβ
3e2

eβiFi,

(3.80)
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leads to stable and accurate results given

Pβ =


0, β = 0,

1, β = 1, 3, 5, 7,
1
4 , β = 2, 4, 6, 8.

(3.81)

To calculate a more realistic flow when using the no-slip BC mentioned in section 3.10
we can include an extra friction vector in the force term,

Fi =
τwi
ρ
− τbi

ρ
− τfi

ρ
+ Ωi, (3.82)

where
τfi = −ρCf |Vτ |Vτ . (3.83)

Vτ is the velocity parallel to the wall and since there should be no velocity component
normal to the wall we can write

Vτ ≈ V. (3.84)

Cf is found by Manning’s equation to be

Cf = g
n2
f

h
1
3

f

, (3.85)

where nf is Manning’s coefficient of the wall and hf is the distance from wall to node.
Thus wall friction is

τfi = −ρg
n2
f

h
1
3

f

ui
√
ujuj . (3.86)

3.9 Wet and dry boundary

Until recently, LBM has had issues with computing how and when a dry node becomes wet
as a result of the flow developing to cover dry areas. In a paper [28], Liu and Zhou derive
how they accomplished this by use of Chapman-Enskog analysis and Taylor expansion.
They find that the unknown distribution functions at dry nodes that become wet can be
calculated from

fβ = −ghτPβ
6e2

[zb(x + eβ∆t)− zb(x)]− ∆tτPβ
3e2

eβiCbui
√
ujuj

−τ
(
feqβ (x + eβ∆t)− feqβ (x)

)
,

(3.87)

given the particle direction is toward a wet node. If the direction is toward a dry node or
is β = 0 the distribution function becomes the average of neighbouring nodes

fβ =
1

8

8∑
α=1

fβ(x + eβ∆t). (3.88)
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3.10 Boundary Conditions
One of the reasons for choosing D2Q9 model over the hexagonal 7-speed model was its
simplicity in dealing with BC. Using the correct BC easily influences the accuracy of the
solutions acquired as can be seen in Zou’s article [29].

The BC used in this thesis was proposed by Zhou in [10]. When dealing with a solid
boundary, like going from wet to dry node, no-slip or slip scheme was used. The no-slip
BC works by implementing a full bounce-back scheme where the edge between wet and
dry is in the middle of the two nodes.

The slip condition, on the other hand, works by implementing a zero gradient for the
distribution function across the boundary. Thus we achieve that all flow goes along the
boundary and not across it.

When dealing with an open boundary, that is a flow between the outside of the sim-
ulation area and the inside of the simulation area, there are two ways to implement BC.

If the velocity and height of the flow are known, we can calculate the distribution
functions streamed in from the boundary directly. From [30], we find that given open
boundary on the left side of the simulation area, the distribution functions become

f1 = f5 +
2hu

3e
,

f2 = f6 +
hu

6e
+
hv

2e
+
f7 − f3

2
,

f8 = f4 +
hu

6e
− hv

2e
+
f3 − f7

2
,

(3.89)

where the choice of fβ is decided from Fig. 3.2.
The other way to implement an open boundary is to assume that nothing changes

outside of the boundary. Then we can simply assume

f1(x) = f1(x + e1∆t),

f2(x) = f2(x + e2∆t),

f8(x) = f8(x + e8∆t),

(3.90)

which is very fast and simple to implement.

3.11 Algorithm
The core routine the simulator goes through can be visualized in Fig. 3.3. The procedure
can be described as following:

1. It starts by generating input by defining the macroscopic variables h and U. From
these it can then generate the equilibrium distribution function from Eq. (3.44)
before it sets fβ = feqβ . This way to generate the particle distribution function has
been shown to be very efficient.

2. Creates/updates controls that know where the dry and wet areas are.

3. Calculates body forces for each node.

4. Calculates collision from Eq. (3.80).
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Figure 3.2: Figure of lattice showing unknown distribution functions when dealing with
open boundary.

5. Checks if the collision will cause some dry nodes to become wet.

6. Performs the streaming as seen in Eq. (3.80).

7. Calculates fβ for the unknown fβ if nodes become wet, then updates unknown fβ
in the newly wet node. If nodes did not become wet, applies proper boundary
condition.

8. Finds new h and U from Eq. (3.24) and (3.27).

9. Computes feqβ again from Eq. (3.44).

10. Returns to step 2 until solution is found.

At the time of writing this thesis, the simulator is written as a single thread. However,
parallelization of every component of the method is possible without much issue. If the
author had managed to solve every issue faced in this thesis, the final step would have
been to make the code parallel and as such increase the efficiency of the code.
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Figure 3.3: Flowchart of main components of the simulation algorithm.
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4 Results
In this chapter we will present the results of simulating several test cases that are designed
to portray the accuracy of the different terms of the lattice Boltzmann method. By doing
these tests, we aim to find out which parts of the simulating module are running correctly
and which parts need further improvement before it can be used as a universal steady
state lattice Boltzmann simulator.

4.1 Still water over flat seabed
In this test we wish to show that the solver is fundamentally stable. By choosing to
simulate still water over a flat seabed we can easily establish whether the governing LBM
is stable without interference from any force terms. As can be seen from Fig. 4.1, the flow
is stable over the region. By observing Fig. 4.2, we can also establish that the method
does not generate artificial currents. Considering that the total velocity U =

√
u2
x + u2

y

is less than the machine precision, this is a good conclusion.

Figure 4.1: Cross section of still water over flat seabed, portraying altitude.

Figure 4.2: Cross section of still water over flat seabed, portraying total velocity.
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4.2 Still water over regular bed
In this test, we have still water resting over a seabed with a bump in it. The goal of this
test is to showcase the validity of the term that applies seabed changes to the LBM. In
Fig. 4.3 we have a two-dimensional surface that can be projected down to one dimension
showing the flat water surface resting over the seabed. Had there been any issues with
the weighting of different terms against the changes of the seabed, it would have been
readily apparent here. For further confirmation, we see that the total velocity of the flow,
observed in Fig. 4.4, is still in the same magnitude as the machine precision.

Figure 4.3: Cross section of still water over bumpy seabed, portraying altitude.

Figure 4.4: Cross section of still water over bumpy seabed, portraying total velocity.

4.3 Steady flow over a bump
With confirmation that the basic algorithm is stable, the next test is to make sure it is
stable with some initial velocity in the system. When a stable subcritical flow goes over a
bump, the surface will drop in the area above the bump. As all flows must stay subcritical
for LBM to stay stable, this was not an issue. The simulated flow is, for all intents and
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purposes, a one-dimensional flow, which can be achieved with slip BC on the northern
and southern sides of the simulated areas, while keeping the western and eastern open.

In this test we have used no friction, as the analytical answer is derived for a frictionless
flow. The seabed, zb is defined as

zb(x) =

{
0.2− 0.05(x− 10)2, when 8 < x < 12,

0, otherwise,
(4.1)

while the rest of the initial conditions are

uinitial(x) = 2.21m/s hinitial = 2m− zb(x). (4.2)

We used a 25m long simulation area with lx = 500 (number of nodes in x direction),
τ = 1.5 and e = 15m/s when performing this simulation.

This is a common test for new simulators, as it has a distinct shape and a clearly
defined analytic altitude over the bump. The shape can be observed in Fig. 4.5 where
the flow surface has dropped down to h = 1.7074m. Compared to the analytical solution
[31], the water depth has a relative error of 0.0029% at the lowest point.

In the initial conditions, we had decided on an initial velocity and water depth. This
means we have an initial discharge, Q = 4.42m3/s since discharge is volume water per
second. Theoretically this value should stay constant, which is what we experienced in
Fig. 4.6.

Figure 4.5: Cross section of steady flow over bump, portraying altitude.

4.4 Tidal flow over uneven bed

Here we consider a one-dimensional tidal flow where the water comes in from the left side
and acts as if the right side is closed. This is fairly similar to something that can happen
in coastal regions even though we have ignored friction with the seabed. The test case was
used by Bermudez and Vázquez [1] to verify their solution of the bed slope source term
by use of upwind discretization. In our case we use it to make sure the test can handle
large areas of changing currents and that the currents generated by water surface altitude
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Figure 4.6: Cross section of steady flow over bump, portraying discharge over the area.

Figure 4.7: Analytic and simulated free surface of tidal flow at t = 9117.5s.

difference are computed properly. This is also another test to verify the implementation
of bed slope source term in the simulator.

The topography of the test can be observed in Fig. 4.7 and is defined as

H(x) = 50.5− 40x

L
− 10 sin

[
π

(
4x

L
− 1

2

)]
, (4.3)

where L = 14000m is the length of the simulation system. H(0) is the surface height of
the flow over a reference level. Since the water is level at the start of the system, the
seabed is defined as

zb = H(0)−H(x), (4.4)

and the initial flow surface has a height and velocity of

hinitial(x) = H(x) uinitial(x) = 0. (4.5)
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As mentioned above, the right side of the simulated area has a closed boundary forcing
u(L, t) = 0m/s. To simulate the proper tidal flow we include an open boundary with a
forced surface height of

h(0, t) = H(0) + 4− 4 sin

[
π

(
4t

86400
+

1

2

)]
, (4.6)

which simulates a 24 hour tidal wave. Under these conditions, the analytical solution [1]
is found to be

h(x, t) = H(x) + 4− 4 sin

[
π

(
4t

86400
+

1

2

)]
(4.7)

and

u(x, t) =
π(x− L)

5400h(x, t)
cos

[
π

(
4t

86400
+

1

2

)]
. (4.8)

After simulation to t = 9117.5s we find the flow surface as seen in Fig. 4.7, which has
a maximum relative error of 0.17% as can be observed in Fig. 4.8. In the simulation, we
used the parameters e = 200m/s, lx = 800 and τ = 0.6 as Zhou [10] suggested.

Figure 4.8: Relative error of the free surface of tidal flow at t = 9117.5s.

The simulated velocity at that time can be seen in Fig. 4.9 which follows very closely to
the analytic velocity. The maximum relative error measured for the velocity is 0.26% for
x < 13116m. As the boundary condition u(L, t) = 0 forces the velocity to go toward zero,
the relative error will rapidly increase, making relative error not usable as a measurement
of accuracy. The absolute error however, is at no point higher than 0.00021m/s at x >
13116m, showing that the velocity is highly accurate.

The calculation of the accuracy of the discharge also suffers from the same problem
as the velocity. The discharge is highly accurate as observed in Fig. 4.10, with maximum
relative error of 0.43% for x < 13116m, and maximum absolute error of 0.0049m3/s for
x > 13116m.
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Figure 4.9: Analytic and simulated flow velocity of tidal flow at t = 9117.5s.

Figure 4.10: Analytic and simulated discharge of tidal flow at t = 9117.5s.

4.5 Still water over two-dimensional bump
In this test we check if any flow velocities are generated in a system where still water rests
over a two-dimensional bump. The bump is defined as

zb(x, y) =

{
0.2 exp

[
−25(x− 1)2 − 50(y − 0.5)2

]
, 1

2 < x < 3
2 ,

1
4 < y < 3

4

0, otherwise.
(4.9)

Considering all previous tests have shown good accuracy in one dimension, this test is
designed to show if the basic algorithm and bed slope term are accurate in two dimensions.
The fluid surface is resting at h = 2− zb and the parameters used is lx = 200, ly = 100,
τ = 1.1, e = 15m/s with a two meter long and one meter wide simulation area.

The resulting fluid surface after simulation is resting a distance less than computer
precision from the theoretical height. A cross section of the surface in one dimension can
be observed in Fig. 4.11.

Similarly, the total velocity generated by the system is less than the computer precision
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Figure 4.11: Cross section of simulated surface resting over a two-dimensional bump. The
graph follows along the y = 0.5m line

and can thus be safely ignored. A cross section of the velocity in one dimension can be
observed in Fig. 4.12.

Figure 4.12: Cross section of simulated fluid velocity over a two-dimensional bump. The
graph follows along the y = 0.5m line

4.6 Steady flow down a slope

In this test we have a one-dimensional flow streaming down a slope. This is a typical
example of an open channel flow where we can calculate the stable velocity of the flow
based on the Manning’s coefficient, water depth and slope rate. The goal is to let the flow
stabilize around a velocity where the bed friction and gravity assisted acceleration down
the slope reaches an equilibrium. To achieve this, we use h = 1m, n = 0.013s/m

1
3 and a

slope rate of 0.001m/m. The seabed and the simulated water depth can be observed in
Fig. 4.13. The maximum relative error of the water depth was measured to 3.82×10−12%.

From Dr. Xing Fang’s calculator [32], we find that the analytic velocity should stabilize
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at u = 2.4325m/s. We see in Fig. 4.14 that the simulated velocity is very close to the
theoretical velocity, which is calculated to have a maximum relative error of 9.52×10−5%.

Figure 4.13: Water flowing down a slope with a slope rate of 0.001m/m.

Figure 4.14: Simulated and analytic steady flow velocity of water flowing down a slope.

4.7 Steady flow down a two-dimensional slope
This test is a repeat of the previous test, however, this time it is computed for a two-
dimensional surface. This slope is the same slope as the previous, although this time, it is
turned 45◦. By utilizing the same surface as previously, we already know the theoretically
accurate flow velocity, giving us a clear target to aim for. From Fig. 4.15 we see that
the calculated velocity, utotal = 2.0482m/s, is lower than the theoretical velocity. The
maximum relative error in the velocity was calculated to 15.80%.

4.8 Sloshing
This test is created to test the implementation of wetting and drying of nodes. Since
the LBM can only directly handle wet nodes, it is important to check that the boundary
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Figure 4.15: Simulated and analytic steady flow total velocity of water flowing down a
two-dimensional slope.

between dry and wet nodes is handled correctly. In this test we recreate a scheme where
there is a perturbed flow in a parabolic one-dimensional container. This was used by
Sampson et al. in [33]. The bed topography is defined by

zb(x) = h0

(
x2

a2

)
, (4.10)

with h0 = 10m and a = 3000m chosen as constants. The bed friction coefficient is set to

Cb =
hτb
|u|

, (4.11)

where τb = 0.001s−1. To calculate the analytic water surface we need p =
√

8gh0/a,
which is the hump amplitude parameter. The hump amplitude parameter is then used in
s =

√
p2 − τ2

b /2. This is then used to calculate the analytic water surface [33],

h(x, t) = h0 +
a2B2 exp(−τbt)

8g2h0

(
−sτb sin(2st) +

(
τ2
b

4
− s2

)
cos(2st)

)
−B

2 exp(τbt)

4g
− exp(τbt/2

g

(
Bs cos(st) +

τbB

2
sin(st)

)
x,

(4.12)

where B = 5m/s is a constant. The boundary between wet and dry nodes can be found
from

x = −a
2 exp(−τbt/2)

2gh0

(
Bs cos(st) +

τb
2

sin(st)
)
± a. (4.13)

By setting the initial water depth value to

hinitial = h(x, 0) (4.14)

and
u(x, 0) = 0 (4.15)
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we can now simulate the system and compare the simulated and analytical results. To
do this we use a 10000m long system with lx = 200 and e = 100m/s. Studying Eq.
(4.12) and (4.13) when t → inf we see that the flow will go to rest at h(x, inf) = h0 and
with wet/dry boundary at x = ±a. This is the result of bed friction slowing the sloshing
movement down until it is at rest.

From Fig. 4.16 we observe the analytical and simulated water surface quickly reaching
diverging results. The flow velocity can be observed from Fig. 4.17 where we see some
unphysical velocity changes.
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(a) t = 500s (b) t = 1000s

(c) t = 1500s (d) t = 2000s

(e) t = 3000s (f) t = 6000s

Figure 4.16: The simulated and analytical flow surface of sloshing motion.
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(a) t = 500s (b) t = 1000s

(c) t = 1500s (d) t = 2000s

(e) t = 3000s (f) t = 6000s

Figure 4.17: The simulated flow velocity of sloshing motion.
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5 Discussion
We will here discuss the results gathered in chapter 4.

In section 4.1 to 4.6 we got highly accurate results when we tested the basic method
with and without the bed slope source term. From this we can establish that the basic
equation and the bed slope term are accurate in both one and two dimensions. By testing
the bed force term in one dimension, we also find the friction term to be very accurate.

When we checked the bed friction term in two dimensions however, our simulation
returned a large error in the velocity compared to the analytical result. This means there
is something incorrect with the way bed friction is implemented. As the resulting velocity
is lower than what it should be, we can conclude that the faulty implementation results in
increased diagonal friction. When we consider the fact that this is not a known problem
for LBM, we can state with a high degree of certainty that this flaw comes from poor
implementation of LBM and not from flaws of the LBM itself.

The drying/wetting process observed in section 4.8 shows that the wetting mechanism
used in this thesis is slowing down the front. This issue was not observed when Liu and
Zhou worked on the same problem in [28]. This highly implies that the way this process
was implemented in this thesis was faulty. It is worth noting, however, that this test does
not include a steady state flow like the one the simulation module is intended to be used
with.

With a steady source providing water, the slowing of the water at the front should
theoretically not influence the resulting flow to any large degree. Our target is the flow
after it has converged to a solution, which leaves the slowing of the dynamics to be
assumed unimportant.

An issue that can cause greater problems, however, is the slow movement of water when
water depth becomes sufficiently low. This problem can be spotted in Fig. 4.16a. On
the left side of the figure, we can spot areas where the water slows behind the theoretical
solution. We assume that this is caused by the increasing bed friction as the water depth
decreases, resulting in a local slowing effect.

At this time, we are not certain how to correct this issue as it seems to be a fundamental
issue with the method. This was, however, not experienced by Liu and Zhou [28] when
they implemented the same test scenario.

Another issue that showed itself in section 4.8 is the unphysical spikes in the velocity
observed in Fig. 4.17a and 4.17b. These spikes are the result of the model being unstable
at high Froude numbers. The simulator actively suppresses the velocity to make sure it
never goes past Fr > 0.97, which is what we observe happening in those two cases.

During the development of this thesis, we faced issues while implementing dry areas
into the systems. These issues caused the boundaries between the dry and wet areas to
create false velocities. At that time we used a slightly more complex bounce-back scheme
which better simulated the distribution functions at the boundary layer. To solve the
recurring issue we chose to implement the simplest bounce-back scheme to handle these
problems.

One possible worry of this situation is that the simplest bounce-back scheme is too
simple. If this is the case, then it can cause lower accuracy at the borders and thus be
the root cause of both issues observed for the drying/wetting process.

All the problematic areas faced in this thesis have been correctly implemented previ-
ously by the leading scientists in this field, proving that the issues can be fixed. However
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we did not manage to correctly implement these solutions within the limits of this thesis.
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6 Conclusion
The goal of this thesis was to create a general lattice Boltzmann simulator that can solve
the shallow water equations for steady flows. This module should be able to handle dry
areas in the module as well as wet areas. The work in this thesis has only been toward
building a functioning steady state water transport simulator, as the sediment simulation
code is done in a separate module which is already deemed complete.

To accomplish this task, we created a simulator using the lattice Boltzmann method,

fβ(x + eβ∆t, t+ ∆t) = fβ(x, t)− 1

τ
(fβ − feqβ )

− gh̄

6Pβe2
[zb(x + eβ∆t)− zb(x)] +

∆t

3Pβe2
eβiFi,

(6.1)

with

Pβ =


0, β = 0,

1, β = 1, 3, 5, 7,

4, β = 2, 4, 6, 8,

(6.2)

and h̄ = 1
2 [h(x, t) + h(x+ eβ∆t, t)] and Fi = − τbiρ . Lattice Boltzmann method is proved

stable for all systems where the fluid has a Froude number lower than 1, single time
relaxation constant larger than 0.5 and a Mach number lower than 1.

The simulator proved to be highly accurate when handling frictionless wet systems
in two dimensions. It also proved accurate at simulating bed friction in one-dimensional
systems.

In two-dimensional systems we faced an issue where the diagonal friction term was
too large. When simulating the converting of dry nodes to wet nodes, the simulator did
not manage to achieve the analytic speed of conversion and instead slowed down. The
same issue is evident when converting wet nodes to dry, resulting in a flow that trails the
analytic solution. These three areas are likely caused by imperfect implementation of the
wetting/drying process and of the bed friction term.

The wetting/drying issues might be unproblematic when the solver is used as intended
with steady state flows, however this needs further testing to be determined.

6.1 Future work
To create a complete general steady state solver, the force term must be correctly imple-
mented. By correcting this issue, the simulator should be able to handle every system
where all nodes in the system is wet.

Similarly, by fixing the wetting/drying process, the simulation module can begin sim-
ulating the correct transitions of nodes from dry to wet and opposite. This will allow
the module to be useful for dynamic systems where the state of the system at any given
time might be wanted. A common example of this is calculating and simulating tides on
beaches.

Thirdly, the implemented bounce-back scheme is the simplest available, however, there
is some uncertainty as to whether this causes some small errors in the distribution function
at the boundaries. A study on the effect of utilizing a more complex bounce-back scheme
is therefore advised.
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When these issues have all been corrected, it is advised that the module is updated
to handle parallel threads. This will create a significant speedup per cycle, allowing for
much more efficient simulations. As all parts the general method are local in space, this
should not prove too challenging.
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