@NTNU

Norwegian University of
Science and Technology

Real-Time Snow Simulation

Integrating Weather Data and Cloud

Rendering

Thomas Martin Schmid

Master of Science in Informatics
Submission date: June 2016
Supervisor: Anne Cathrine Elster, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem Description

Over the years a snow simulator has been developed by several masters’ students at the
HPC-lab at NTNU. This thesis proposal focuses on improving and adapting this simulator.

The thesis would consider improvements to the terrain as well as the weather sim-
ulation. The terrain and weather data may be based on, but would not be restricted to,
real-world data.

The thesis may also investigate the adaptations needed for the simulator to be used in
more computationally constrained systems such as video games.

Abstract

Over the last decade the NTNU Heterogenous Computing Labratory (HPC-Lab) at the
Norwegian University of Science and Technology (NTNU) has had master students work-
ing on a real-time snow simulator. Evolving from a complex and highly parallel Central
Processing Unit (CPU) smoke simulation, the simulator now covers models for wind sim-
ulation, snow particle physics, and avalanche prediction all computed in parallel on both
CPU and Graphics Processing Unit (GPU) using Open Computing Language (OpenCL)
or Compute Unified Device Architecture (CUDA). The resulting simulation is rendered
using modern techniques and Open Graphics Library (OpenGL).

In this thesis, the wind and in-air snow simulation are improved by removing and re-
ducing simplifications and assumptions. By extending control of the boundary conditions
and 1initial distributions, simulations can be run with external context such as real-world
weather information.

The simulation boundary conditions are extended to support interpolation between
ground-truth points, and a simple, yet novel approach is introduced for selecting interpo-
lation weights. The interpolation cost is shown to be less than 2ms more than for constant
values in the worst case, for a frame time of 26ms, and at less than 1ms of additional load-
ing time. The neighborhood calculation time is smaller than the time to load ground truth
points from disk. Snow precipitation rates across the simulation domain are controllable
from animated data-sets or procedural functions, allowing the use of radar imaging as a
source of simulation data. The additional cost of the rejection sampling is shown to be
negligible for reasonable configuration values.

To help visualize the precipitation rates cloud rendering is introduced to the simula-
tor. While previous work focused on terrain and snow particles, the sky was simplified.
Animated clouds are shown to be a computationally costly, but affordable, addition to the
simulator, improving the quality of the rendered images. The run-time cost of high quality
clouds is shown to a frame time increase of less than 50% at typical camera positions,
and even last-generation mid-range GPUs maintain frame-rates of over 30HZ. High-end
consumer GPUs maintain over 30HZ even in worst-case scenarios and almost 60HZ in
normal use.

Finally, the choice of Pseudo-Random Number Generator (PRNG) on both the CPU
and GPU are re-evaluated. A change is made necessary to support varied precipitation
rates, but also improves the statistical properties of the simulation. The performance cost
of the improvement is shown to be negligible at less than a 5% increase in run-time of the
CUDA version of the snow particle update kernel.

iii

Sammendrag

Over det siste tiaret har master-studenter ved NTNUs HPC-Lab jobbet med en sanntids-
simulasjon av sng. Fra en kompleks rgyk-simulasjon som untnyttet parallellitet pA CPUer
har simulatoren blitt utvidet med modeller for vind, sngflak-fysikk, og sannsynlighet for
sngras. Beregninger skjer parallellt tvers av GPU- og CPU-er, ved hjelp av CUDA eller
OpenCL. Simulasjonen visualiseres med moderne teknikker giennom OpenGL.

I denne oppgaven forbedres bade vind- og sngflaksimulasjonene ved & redusere eller
fjerne forenklinger og antakelser. Ved a utvide brukerens kontroll over grenseverdier og
startforhold kan simulasjoner kjgres i sammenheng med eksterne data, som innsamlet vaer-
data.

Simulasjonens grenseverdier far stgtte for interpolasjon mellom verdier fra virtuelle
malestasjoner, og en ny, enkel teknikk for vekting av interpolasjonen introduseres. Kost-
naden av interpolasjonen vises & vere mindre enn 2ms mer enn for konstante verdier,
og total kostnad for virtuelle méalestasjoner ved oppstart er mindre enn 1ms. Kontroll
over nedbgrsmengden i simulasjons-omradet utvides til animerte datasett og matematiske
funksjoner, noe som tillater bruk av varradar som informasjonskilde. Tilleggskostnaden
for re-posisjonering av sngpartikler vises a veaere ubetydelig for fornuftige parametre.

For a hjelpe visualisering av sannsynligheten for nedbgr introduseres rendering av
skyer. Tidligere arbeide pa visualisering i simulatoren har fokusert pa terreng og sng, mens
himmelen har vert enkel og statisk. Et animert skylag vises & vere beregningstungt, men
kostnaden er akseptabel pa moderne maskinvare, og forbedrer kvaliteten pa simulasjonens
visualisering. Kjgretidskostnaden for skyer av hgy kvalitet fgrer til en gkning i beregn-
ingstid per bilde pa mindre enn 50% for vanlige kamera-posisjoner, og selv pa en 4 ar
gammel GPU holdes bilde-frekvensen over 30HZ. Moderne hgy-kvalitets forbuker GPUer
holder frekvensen over 30HZ selv i verst tenkelig scenario, og nesten 60HZ i vanlig bruk.

Simulatorens valg av generator for pseudo-tilfeldige tall re-evalueres ogsa. En utvek-
sling som ngdvendiggjgres av stgtten for variert sannsynlighet for nedbgr forbedrer ogsa
simulasjonens statistiske egenskaper. Kjgretidskostnaden vises a vere ubetydelig, ned
mindre enn 5% gkning i beregnings-tid for oppdatering av sngpartikler i CUDA-utgaven.

iv

Acknowledgements

First and foremost I would like to thank my supervisor for this thesis, Dr. Anne C. El-
ster, for her assistance, guidance, and the opportunity. I would also like to thank NTNU
and NVIDIA’s GPU Research Center programs for their support and research equipment
donations to the HPC-Lab at IDI. The HPC-Lab is lead by my advisor Dr. Elster, and is
where most of this work was done.

Gratitude is also extended to fellow HPC-Lab master student Inge Halsaunet, who
worked on the snow simulator in parallel, and without whom this work would have been
considerably harder. Finally, I would like to thank my parents, without whoms generous
support this thesis would never have been possible.

vi

Table of Contents

Problem Description i
Abstract iii
Sammendrag iv
Acknowledgements v
Table of Contents X
List of Tables xi
List of Figures xiv
1 Introduction 3
.1 Motivation e 3

1.2 Contribution L 4
1.2.1 Real-world dataintegration 4

1.2.2 Visual and miscellaneous improvements 4

1.3 Outline e e 4

2 Background 7
2.1 Computational fluid dynamics 7
2.1.1 Navier-Stokes 7

2.1.2 Numericalmethods 8

2.2 Meteorological measurements 10
221 Methods 10

2.2.2 Precipitation and cloud coverage 11

223 Wind 11

224 Publicdata 11

23 Terrainmodels 12
23.1 USGSDEMFormat 13

vii

2.4 Random number generation andnoise 13
2.4.1 Random Number Generators 13
2.4.2 Probability Density Functions and Distributions 18
243 NoiSe 18
2.5 Voronoi tessellation and theirduals, 19
2.6 Stereoscopicrenderingl 19
2.6.1 Anaglyph stereoscopy oL 20
2.6.2 Polarization Stereoscopyo e it e e 20
2.6.3 Active-shutter Stereoscopy 20
2.6.4 Multi-screen StereoSCopyY o e e u e e e 20
2.6.5 Performance implications 21
2.7 GPUand GPGPUcomputing 21
277.1 Hardwaremodel 22
272 OpenGL. e 22
273 CUDA 24
274 OpenCL e 26
2.7.5 Performanceanalysis 26
2.8 Cloudrendering 27
2.8.1 Ray-marching volumetrics 28
2.9 The HPC-Lab Real-Time Snow Simulator 28
2.9.1 History 28
29.2 Technicaloverview 29
Simulator improvements and extensions 35
301 Motivation L L 35
32 Wind. . ..o 36
3.2.1 Importingthevalues 37
3.2.2 WindSource representationonthe GPU 37
3.2.3 Spatial interpolation at boundary points 38
324 Settingthevalues 40
325 Visualization 40
33 Precipitation 41
3.3.1 Precipitation distribution Lo 41
3.3.2 Initialdistribution. 42
3.3.3 Re-positioning 42
334 PRNGS 45
34 Clouds e 45
34.1 Techniquechoice 46
342 Technicaldetails 46
34.3 Real-world data integration 49
35 Terrain. e 50
3.6 Other Snow Simulator improvements 51
3.6.1 3Drendering 51
3.6.2 OpenCL sampling improvements 52
3.6.3 Performance analysis, 53
3.64 Bindlesstexturesl 53

viii

3.6.5 Wind simulation stability problem

4 Results and Discussion

4.1 Performance analysiso
4.1.1 Toolanalysis
42 Wind.
4.2.1 Wind advection kernel implications
422 CPUimplications v v v v i
423 Memorypacking
43 Precipitation e e e e
43.1 RNGs
432 ReJectioncCost e e
433 Distributionmapo
44 Clouds o
4.4.1 Technique differences,
442 Visualartifacts o oo
443 Optimization e
4.4.4 Interaction with other systems
45 Terrain.
4.6 Miscellaneous improvements L.
4.6.1 3Drendering
4.6.2 OpenCL sampling improvements
4.6.3 Bindlesstextures oo
4.6.4 Wind simulation stability improvements

5 Conclusion and Future Work

5.1 Real-world data integration oL
5.2 Miscellaneous improvements
53 Futurework
53.1 Snowmelting o
5.3.2 Terrain model improvements
5.3.3 Wind simulation improvements
5.3.4 Extended Multi-GPU support
5.3.5 Raytracing
53.6 NEXRADsupport
Bibliography

A Procedural sphere generation
B WindSource neighborhood evaluation

C Wind interpolation advection kernels
C.1 Branchingversion,
C.2 Constantonly versiono
C.3 Nearest-Neighbor only version

57
57
58
58
58
62
62
63
64
65
66
69
69
71
71
74
75
75
75
77
79
79

81
81
82
82
83
83
83
84
84
84

85

91

95

C.4 Interpolationonly version 101

Snow redistribution 105
D.1 CUDA implementation, 105
D.2 OpenCL implementation 106
Cloud shader 109
Profiling system 115
F1 Automationscript 115
F2 TimingSystemclass 120
F3 wvulbenchmark 124
G Terrain pre-processing 133
H Stereo rendering 137
User Manual 141
L1 Wind. 141
L2 Precipitation L 142
I3 Clouds e 142
L4 Terrain. 143
L5 3Drendering 143
.6 OpenCL hardware sampling 144
L7 Performance analysis 144
1.8 Bindlesstextures 145
1.9 Wind simulation stability problem 145

List of Tables

2.1
2.2
23
24

3.1

4.1
4.2
43
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Analysis if Eidissen’s floating point RNG 16
RNG quality analysis 17
The corresponding terminology of CUDA and OpenCL 26
The HPC-Lab Snow Simulator’s particle representation 30
The HPC-Lab Snow Simulator’s GPU WindSource representation 38
Performance test machines, 57
Wind advection kernel statistics 59
Wind source pre-processing time 62
Wind source packing implications 62
GPU PRNG output visualization 67
GPU PRNG performance 68
Cloud technique performance 70
Cloud pre-marching timings 72
Cloud step length performance 74
3D rendering performance 78
OpenCL hardware vs. software sampling 78
Bindless texture performance 79
Wind simulation stability improvementcosts 80

Xi

Xii

List of Figures

2.1
2.2
23
24
2.5

3.1
32
33
34
3.5
3.6

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

I.1
1.2
I3
1.4
L5

The four steps of the Semi-Lagrangian method
Visual comparison of collocated and staggered grids

CPU vs. CPU performance . . .

Terrain mesh and obstacle representation

Terrain snow accumulation . . .

Wind Source contribution problem

Interpolation neighbors
Rainfront
Side redistribution issue
Distribution texture extent . . .
Wind simulation stability issue .

Boundary wind techniques . . .
Wind advection kernel statistics

Precipitation probability visualized

Precipitation probabilities at sides
GPU PRNG performance
Rejection method cost
Cloud rendering techniques . . .
Cloud artifacts
Cloud step length performance .
Imported terrain examples . . .

Terrain mesh vs. obstacle resolution
Wind simulation stability improvement

Wind type menu entry
Wind source menu entry

Precipitation distribution type menuentry
Precipitation distribution settings menu

Cloud rendering type menu entry

el

34
34

39
40
41
43
44
55

1.6 Cloud rendering settings menu

Xiv

XV

Xvi

Acronyms

2D Two dimensional. 19

AES Advanced Encryption Standard. 15
AMD Advanced Micro Devices, Inc.. 17
API Application Programming Interface. 10-12, 22, 26, 27, 37, 52

AVX Advanced Vector Extensions. 62

CPU Central Processing Unit. iii, 3, 14, 15, 22, 24-28, 37, 42, 45, 52, 58, 60, 62, 77, 79

CUDA Compute Unified Device Architecture. iii, 4, 17, 23-28, 30, 32, 44, 45, 51-54,
58,59, 64, 65,717,179, 82,97, 105, 144, 145

DEM Digital Elevation Model. 13, 50, 133

DirectX Microsoft DirectX. 22, 51
FBM Fractal Brownian Motion. 19, 28, 46, 48, 49, 70, 71, 74

GIF Graphics Interchange Format. 12
GPGPU General-Purpose Graphics Processing Unit. 3, 7, 21, 24, 26, 32, 36
GPS Global Positioning System. 37

GPU Graphics Processing Unit. iii, 3, 7, 13-17, 21-30, 35, 41, 45, 46, 58, 59, 67, 69, 70,
75,76,78,79, 81, 84, 143, 144

GUI Graphical User Interface. 36, 49, 51-53

HMD Head-Mounted Display. 20, 21, 52, 77

Xvii

HPC-Lab NTNU Heterogenous Computing Labratory. iii, 3, 7, 28, 29, 35, 36, 51, 53,
75, 81

HTML HyperText Markup Language. 12
IPD Inter-Pupilary Distance. 52, 143

LCD Liquid Crystal Display. 20
LCG Linear Congruential Generator. 1317, 32
LFSR Linear-Feedback Shift Register. 14, 15, 64

LiDAR Light Detection and Ranging. 12, 75, 76

MET Norway The Norwegian Meteorological Institute. 10-12, 49
MRG Multiple Recursive Generator. 14, 16, 64

NEXRAD Next-Generation Radar. 12, 49, 84

NMA The Norwegian Mapggin Authority. 12, 50

NORAD North American Aerospace Defense Command. 10
NSE Navier-Stokes Equations. 7, 8, 31

NTNU Norwegian University of Science and Technology. iii, 3

OpenACC Open Accelerators. 29

OpenCL Open Computing Language. iii, 4, 17, 23, 26-28, 30, 32, 44, 45, 51-53, 62, 64,
65,777,778, 82,97, 105, 106, 144

OpenGL Open Graphics Library. iii, 22-26, 28, 51-54, 77,79, 143
OpenMP Open Multi-Processing. 29

PCI-E Peripheral Component Interconnect Express. 22
PDF Probability Density Function. 18, 42, 43, 45
POSIX Portable Operating System Interface. 32, 52, 77

PRNG Pseudo-Random Number Generator. iii, 13-19, 28, 32, 42, 43, 45, 55, 58, 64, 65,
67, 68,717, 81, 105

RAM Random Access Memory. 22

REST Representation State Transfer. 12

Xviii

Acronyms

SOAP Simple Object Access Protocol. 12

SOR Successive Over-Relaxation. 9, 54, 55, 79, 80, 82, 145
SSBO Shared-Storage Buffer Object. 24

SSE Streaming SIMD Extensions. 62

UBO Uniform Buffer Object. 24

UK United Kingdom. 12

UKEA United Kingdom Environment Agency. 50
US NWS The US National Weather Service. 11, 12
USA United States of America. 10

USGS United States Geological Survey. 13, 50, 133

VR Virtual Reality. 77, 82

XML Extensible Markup Language. 12

Acronyms

Chapter

Introduction

The HPC-Lab snow simulator is a continuously evolving project at the NTNU HPC-Lab.
The complex numerical work of an early highly CPU-parallel smoke simulation has been
extended, improved upon and optimized into a full-fledged wind, snow-fall, and avalanche
simulation with high quality terrain and snow rendering. Simulations at this scale are
computationally expensive, and the use of General-Purpose Graphics Processing Unit
(GPGPU) computing is central to the simulator, due to the massive amount of particles
and wind simulation volume voxels. This enables the simulation to be run in parallel over
millions of invocations, making use of the massively parallel nature of GPUs to gain per-
formance multi-core CPUs. However, the models used for simulation and the visual pre-
sentation still contain numerous simplifications. This thesis extends upon previous work
by reducing the scope of simplifications, and adding visual representation of some missing
features.

1.1 Motivation

The simulation of weather conditions such as snow has practical applications in many
areas. By studying wind patterns and snow accumulation it may aid in infrastructure plan-
ning, or in predicting dangerous phenomenon such as avalanches, both on mountain and
rooftop scale.

The HPC-Labsnow simulator uses a number of techniques originally from the com-
puter graphics field, not from physical modelling. It is desirable to be able to compare the
quality of simulation using these techniques with real-world data, to evaluate if the quality
of simulation is sufficient. However, prior versions of the simulator contained numerous
simplifications on the input data; snow fell uniformly, and wind at the boundaries of the
simulation domain was assumed constant in direction and velocity.

Simultaneously, the simulator sees practical use as a demonstration tool for the HPC-

3

Chapter 1. Introduction

Lab, and as an experimental environment for students. For this purpose, any improvements
to visual quality, introduction of variety in rendering or simulation techniques, or new
technology is of interest. Care must be taken to maintain both the CUDA and OpenCL
versions of the simulator.

More realistic snow simualtion would one day allow for prediction of both mountain
scale and rooftop avalanches based on weather prediction and gathered data, as well as
help plan optimal routes for infrastructure such as roads and railways based on snow ac-
cumulation and wind and weather statistics. By improving the coupling with real-world
data the simulation may also be verified, enabling improvements to be measured against
ground-truth measurements.

1.2 Contribution

The thesis enables the use of real-world data for initial and boundary conditions, paving
the way for quality evaluation and improvements based on comparing simulation results
with ground truth values. It adds to the visual quality of the simulator with cloud rendering,
and includes minor performance improvements, optimization attempts, and suggests a fix
to a simulation quality problem.

1.2.1 Real-world data integration

This thesis will extend support to non-uniform precipitation rates across the domain from
both imported data sources, uniform data or generated patterns or noise. It will also update
the boundary conditions of the wind simulation to support non-uniform wind at the edges
of the domain, enabling the use of weather station data as a basis for the domain-internal
simulation. For this, a simple algorithm is introduced to map weather station contribution
to boundary voxel. Finally, support for high-resolution terrain models is maintained and
improved.

1.2.2 Visual and miscellaneous improvements
To help visualize the non-uniform precipitation, and to improve visual fidelity of the sim-
ulator, cloud rendering is introduced. Prior work to support stereoscopic rendering is ex-

tended to support the newest version of the simulator. Minor performance improvements
and suggestions to visual problems with simulation quality are also introduced.

1.3 Outline

The thesis is structured as follows:

4

1.3 Outline

Chapter 2 (Background) looks at background information on any fields the thesis touches
upon, research used as a basis for the work done, and a look at the snow simulator’s
history, inner workings and uses.

Chapter 3 (Implementation) describes the work done, with reasoning and discussion of
decisions made and alternative paths not taken.

Chapter 4 (Results and Discussion) analyzes performance and quality of the implemented
solutions and evaluates the decisions made in Chapter 3.

Chapter 5 (Conclusions and Future Work) sums up the important points from Chap-
ter 4, takes a birds-eye view of the thesis’ contributions, and discusses interesting
avenues for future improvement

Appendix A (Procedural Sphere Generation) Contains source code for generation of
sphere meshes of varying complexity and quality using subdivision.

Appendix B (Neighborhood Evaluation for Wind Sources) Contains source code for the
evaluation of wind source neighborhoods for interpolation purposes.

Appendix C (Wind interpolation advection kernels) Contains source code for the var-
ious boundary wind calculation techniques supported in the simulator.

Appendix D (Snow redistribution) Contains source code for snow redistribution with
respect to a non-uniform distribution map.

Appendix E (Cloud shader) Contains the source code for the cloud rendering ray-marching
shader.

Appendix F (Profiling system) Contains the source code for the automated profiling sys-
tem and related simulator-internal classes and library.

Appendix G (Terrain pre-processing) Contains the pre-processing program to convert
terrain models into height-maps.

Appendix H (Stereo rendering) Contains the source code related to the implementation
of stereoscopic rendering.

Appendix I (User Manual) Describes the use, configuration parameters, and default set-
tings of all new features of the simulator.

Chapter 1. Introduction

Chapter

Background

This chapter is an investigation of previous work and a short survey of fields of study
and material related to the thesis. Section 2.1 introduces computational fluid dynamics,
which is required to understand the core loop of the snow simulation. Sections 2.2 and
2.3 introduce meteorological measurements and terrain models to understand how real-
world data can be integrated, and what data is required. Section 2.4 introduces random
number generation and noise, constructs core to the implementations presented in Chapter
3. Section 2.5 introduces Voronoi tessellation briefly to help understand the discussion in
Section 3.2.3. Section 2.6 introduces stereoscopic rendering, and Section 2.8 introduces
cloud rendering techniques. Section 2.7 gives a wide introduction to the GPU and GPGPU
computing environment, before the chapter closes with an introduction to the history, uses,
and a technical overview of the HPC-Lab snow simulator in Section 2.9.

2.1 Computational fluid dynamics

The study of fluid dynamics is well covered in academia, and the Navier-Stokes Equations
(NSE) is a widely used model for the flow of fluid. There are many ways to compute a
numerical solution of the NSE, and this section covers the methods relevant to this thesis
and their trade-offs.

2.1.1 Navier-Stokes

The NSE is often simplified by assuming that the fluid in question is incompressible; its
density is uniform. This assumption rules out pressure waves, but holds well for fluids of
low mach numbers [1, Ch. 3]. Given this assumption, the NSE describe flow by operating
on two fields; a velocity field u and a pressure field p, both of which typically vary in both
time and space. The NSE for incompressible flow consists of Equations 2.1 and 2.2,

Chapter 2. Background

Vi =0 (2.1)
Ju 2
E:_(u-v)u—VuH—vV u+F (2.2)
1
-Vp =Vuw (2.3)
p

Equation 2.1 ensures the velocity field is divergence-free; the inward and outward
flux at any point in the velocity field is zero and flow in conserved. Equation 2.3 is the
simplification of incompressibility; if the density is uniform then the thermodynamic work
w 1is the partial derivative of the pressure field p divided by the density p. Equation 2.2 is a
partial differential equation in multiple dimensions. Here, V denotes the vector or spatial
partial derivatives, thatis V = (%, 3%, %) in three dimensions. The equation consists of
four terms, which can be broken down as follows, applying the simplification of equation

2.3.

Advection —(u - V)u The velocity self-advects, that is the velocity field transports its
values along its flow.

Internal stress —I%Vp Inter-molecular collisions lead to pressure in moving fluid. This
pressure leads to a natural acceleration of the fluid inversely proportional with the
density of the fluid, p.

Diffusion vV2?u This term decelerates flow due to inter-molecular attraction. The thick-
ness or viscosity — denoted v — determines the fluids resistance to flow.

External forces F' Any force that causes acceleration in the fluid not internal to the fluid
itself.

2.1.2 Numerical methods

Numerical solutions of the NSE traditionally employ a Eulerian — or implicit — method.
The velocity and pressure fields are represented at fixed points the terms of Equation 2.2
are calculated using finite difference schemes.

Foster and Metaxes [2] introduce an implicit approach where the fields are discretized
intro grids and updated using a finite difference approach.

Stam [3] [4] introduces and refines a semi-Lagrangian approach which can be de-
scribed in the four steps shown in Figure 2.1.

The important distinction is in the advection step; unlike Foster and Metaxes [2] who
use a finite difference approach for the advection step, this approach uses a Lagrangian
— or method of characteristics — approach. Each grid point is treated as a particle that

8

2.1 Computational fluid dynamics

addforce — advect — dif fuse — project

Figure 2.1: The four steps of the semi-Lagrangian approach described by Stam.

is traced backwards in time using the velocity field to find the velocity at its previous
location, advecting that velocity to the grid point.

The projection step, which solves for the effect of viscosity, requires a good numerical
solver. However, convergence in most solvers can be slow, so it is desired to reduce the
required accuracy in this step. The collocation of the velocity and pressure grids may lead
to a number of stability problems [5], and the suggested solution is the use of staggered
grids. Figure 2.2 shows the different approaches to grid representations.

v, p v, p v v

o<

(a) (b) (c)

Figure 2.2: Visual comparison of collocated and staggered grids. v denotes velocity values, p
denotes pressure values. (a) Collocated grid. (b) Partially staggered grid. (c) Fully staggered grid.

Boundary conditions

The simulation of flow using grids operates on a finite domain. This requires a model
for behaviour at boundaries, since neither a finite difference approach nor a backwards
interpolation handles values outside the domain. Typical boundary conditions include:

Dirichlet y(x) = f(x), Vx € 0Q The value y at the boundary is a defined by some
fixed function f(x) for all x in the boundary domain 2 C R™.

Von Neumann g—ﬂ (x) = f(x), Vx € 092 The normal derivative at the boundary is a de-
fined by some fixed function f(x) for all x in the boundary domain 2 C R™. The
normal derivative is defined by g—n = Vy(x) - n(x).

For a thourough overview of these, see the theses by Young [6] and Elster [7].

Successive Over-Relaxation

A variant of the Gauss-Seidel method, Successive Over-Relaxation (SOR) is a method
for solving linear equations that accelerates convergence. By decomposing the matrix,
A = D + L + U, the equation can be rewritten as in Equation 2.4, where w > 1 is
a constant called the relaxation factor. The left side is then solved for x using forward
substitution. The relaxation factor can be selected to significantly increase the speed of

9

Chapter 2. Background

convergence, but only for positive definite matrices, and 0 < w < 2 is it guaranteed to
converge. Press et. al. [8] is a practical introduction to the method.

(D+wl)x =wb — [wU + (w—1)D]x 2.4

2.2 Meteorological measurements

Many national meteorological institutes make gathered data publicly available. The Nor-
wegian Meteorological Institute (MET Norway) has multiple Application Programming
Interfaces (APIs) to pull this data from, providing raw data from ground measurement sta-
tions as well as historical data sets and averages. They also offer low-resolution radar
imaging as animations over limited time spans. North American Aerospace Defense
Command (NORAD) supplies higher resolution (and raw data) from radar imaging in
the United States of America (USA). This section will cover some of the data available
through these APIs and the formats they are supplied in.

2.2.1 Methods

There are two primary methods in use for gathering weather information. The simplest is
the ground station; a collection of stationary measurement equipment typically consisting
of a thermometer, a wind measurement device, a barometer and some means for determin-
ing precipitation (at least in liquid form). These stations provide raw data of weather as it
occurs on the ground, but may also be deployed in-air with balloons.

The second form is the use of radar pulses. These stations transmit low frequency
microwaves and analyze the reflections received back. A typical Doppler radar transmits
waves of roughly ten times the size of water and ice particles (1-10cm) in bursts of about
one microsecond. The occurrence of Rayleigh scattering — the scattering of light due to
molecules in the air — at these frequencies means some of these waves will be reflected
back towards the radar, and by analyzing the amount of reflection and the time between
pulse and reflection, the radar can build a model of coverage around itself. The pulses
spread the further from the station they travel, leading to diminishing resolution on the
collected data; at 150-200 km distance a single pulse may scan roughly a cubic kilometer.
Doviak and Zrnic [9] provide a thorough study on Doppler radar and weather observation
in general.

The output from weather radar as available to the public is a reflectivity map, where
values are in decibel. The reflectivity perceived by the radar Z, is given in Equation 2.5,
and is a function of the rain droplets’ diameter D, the dielectric constant K of the targets
and the droplet size distribution N. This function is the truncated Gamma function [10].

Dmax
Z, = / |K|?Noe P DSdD (2.5)
0

10

2.2 Meteorological measurements

From this the precipitation rate R can be calculated. It is additionally a function of the
droplets’ fall speed v, and is given in Equation 2.6

Dmax 3

D

R= / Noe*AD%fu(D)dD (2.6)
0

These equations have a simple relation, given in Equation 2.7, where a and b depend
on the type of precipitation (and thus the values of A, K, Ny and v).

Z =aR’ .7

2.2.2 Precipitation and cloud coverage

Precipitation data is available in two forms; radar imaging in the air and as water or snow
levels on ground measurement stations. The ground data is available in mm per time period
as water, while radar data is either available in raw reflectance as described in Equation 2.5
or in pre-processed precipitation data. Typically this is supplied in image form overlaid
a map, however The US National Weather Service (US NWS) supplies raw reflectance
values. The format of this data however is sufficiently complex that multiple tools are
supplied along it to decode the data, such as the TRMM Radar Software Library ' and The
Python ARM Radar Toolkit %

When working with image-based output, such as the data available from MET Norway,
the resolution of the available data is limited. A single value in these pictures corresponds
to roughly one square kilometer, and the precipitation in graded on a 6-stop scale from
“none” to “heavy”.

2.2.3 Wind

Wind is measured primarily at ground stations. Some information may be inferred from
radar imaging deltas, but the low resolution of such data is an issue.

2.2.4 Public data

There are a number of public data sources for weather information. This section introduces
the APIs of MET Norway and US NWS.

"http://trmm-fc.gsfc.nasa.gov/trmm_gv/software/rsl/ (last accessed: 2016-06-20).
’http://arm-doe.github.io/pyart/ (last accessed: 2016-06-20).

11

http://trmm-fc.gsfc.nasa.gov/trmm_gv/software/rsl/
http://arm-doe.github.io/pyart/

Chapter 2. Background

wsKlima & eKlima

MET Norways makes historical ground weather data available though a Web Services API.
The data is supplied as Extensible Markup Language (XML), and requested through Sim-
ple Object Access Protocol (SOAP). The historical data is also available through eKlima,
a web portal that makes access simpler. This data is returned as HyperText Markup Lan-
guage (HTML) web pages and formatted in tables. Historical data is available in samples
at 6-hour intervals.

MET weatherapi

In addition to the ground data, MET Norway supplies radar images, forecasts and any other
publicly available data through a Representation State Transfer (REST) API. This data is
returned either in XML form or as binary data. Radar is returned as Graphics Interchange
Format (GIF) images or animations.

NWS NEXRAD

The US NWS supply Next-Generation Radar (NEXRAD) data in binary format as dis-
cussed in Section 2.2.1. These requests must be made manually, and after some processing
time a link to the data is electronically mailed the user.

2.3 Terrain models

Capturing real-world terrain is usually done using Light Detection and Ranging (LiDAR),
which utilizes laser light to map distance to ground from some plane- or satellite-mounted
imaging device. Satellite-based scans typically suffer from slightly lower resolution than
their plane-based counterparts, but the cost amortizes as the covered area grows and they
are cheaper.

The Norwegian Mapggin Authority (NMA) — a governmental agency responsible for
geodesy, surveying, cadastre, cartography, and more — supplies terrain models of most of
the country in 5- and 10-meter resolution. Equivalently, the British government supplies
plane-based scans at 0.5-, 1- and 2-meter resolution of significant portions of the United
Kingdom (UK).

The scanned data is supplied as two-dimensional fields of heights, however due to warp
and absolute height values the formats require some pre-processing to turn into the height
maps traditionally used in computer graphics, which are simple single-channel images.

12

2.4 Random number generation and noise

2.3.1 USGS DEM Format

The United States Geological Survey (USGS)’s Digital Elevation Model (DEM) is a text-
based format defined in [11]. The format is comprised of three records types:

A-records contain meta-information about the elevation data, such as the area’s name,
zone numbers, resolution and elevation units, the quadrangle containing the area and
the resolution of the grid.

B-records contain the elevation data. Each describes a column of the quadrangle, and
missing data is denoted with a void value of -32767.

C-records contain quality control data in the form of root-mean squared error for the
data in the B-records.

Lien [12] implemented a utility to convert data in the USGS DEM format to 16-bit raw
integer height maps, and describes its workings in detail.

2.4 Random number generation and noise

Since computers are deterministic machines, generating true randomness is impossible.
However, randomness has many uses in simulation, statistical analysis, encryption and
many other fields of computer science. Particularly the uses in statistics and encryption
have led to a large selection of PRNGs. Knuth, Ch. 3 [13], provides an introduction to the
topic.

In this section, the term noise is taken to mean a non-uniform pattern generated from
randomness.

2.4.1 Random Number Generators

This section will examine some major categories of PRNG, explaining their strengths and
weaknesses with a particular focus on properties important for GPU implementation. Uni-
form values are a desired property of the generators discussed.

A typical PRNG has two parts: the state transition function and the output function.
Most of the PRNGs discussed in this section focus on the quality of only one of these
parts.

Linear Congruential Generators

The Linear Congruential Generators (LCGs) family of PRNGs generate sequences of num-
bers, X, of the form given in Equation 2.8.

Xp+1=(aX,+c¢) modm (2.8)

13

Chapter 2. Background

Three values are chosen by the author of the various LCGs; the modulus m which deter-
mines the range of the numbers output by the generator, the multiplier a and increment
¢, both in range [0, m). Given the sequential nature of the generator, a starting value X
often called the seed is also needed. The special case where ¢ = 0 is referred to as a
multiplicative congruential generator, or Lehmer RNG after Lehmer [14].

The name is obvious upon inspection of (2.8); the sequence is a linear function of the
three authored constants a, c and m, and the previous value X,,. A LCG has a fixed period
of at most m, since a single input X,, will always return the same X, ;. Knuth, Ch. 3.2.1
pp- 10-26 [13], showed that the full period can only be achieved if three conditions are
met: c is relatively prime to m, a — 1 is divisible by all prime factors of m, anda — 1 is a
multiple of 4 if m is a multiple of 4. The sequence remains unchanged, and the seed X is
set by the user to determine where in the sequence to start.

Selecting m is a question of performance. The range of X is non-negative, and arith-
metic overflow on unsigned integers truncates the most-significant bit thus providing free
modulo if m is the size of a machine word. Modern GPUs and CPUs typically implement
fused multiply-adders that have a throughput of one per cycle or better as documented in
[15], and the combination of these fact make LCGs very fast. This is the main strength of
these generators.

However, Gershenfeld, Ch. 5.3.2 [16], shows that not all bits in a generated number
of LCGs are equally random. This points to the weakness of LCGs, they do not produce
very good random numbers. Section 2.4.1 examines PRNG quality and references data
that supports this.

Multiple Recursive Generators
Multiple Recursive Generators (MRGs) of order k take the form given in Equation 2.9.
Xny1 = (@1 Xy + ...+ arX,) modm 2.9

They are superficially similar to LCGs but have significantly larger periods. L’Ecuyer [17]
introduces the MRG32k 3a PRNG which has a period of order 219,

Linear-Feedback Shift Register

In a Linear-Feedback Shift Register (LFSR) the state is constructed by shifting the previous
state over, adding some new bits to one end. The input bit (or bits) in a LFSR is a linear
function previous state. The initial state is typically set with a user-specified seed value.
The most commonly used linear function is a bit-wise exclusive-or.

The LSFR113 PRNG described in [18] has a 128-bit state where each 32-bit compo-
nent is self-shifted and exclusive-or’ed as well as exclusive-or’ed with a shifted version
of the previously treated component. The final number is a exclusive-or of the four 32-bit
components after these changes are made.

14

2.4 Random number generation and noise

The Xorshift family

Marsaglie [19] introduces the Xorshift PRNG, which generates the next number in its
sequence by repeatedly taking the exclusive-or of bit-shifted versions of itself; it is a spe-
cial form of LFSR. Bit-arithmetic like shifting and logical operations are typically fast on
modern CPUs but not as fast on GPUs, with large variances between vendors [20]. Straight
Xorshift produces better randomness than LCGs but do have statistical problems. A
few variations have been introduces that include a non-linear transformation to improve
upon them, as in the case of Xorshift « which introduces an invertible multiplication as
a final step [19].

Mersenne Twister

The Mersenne twister is worth a mention for historical reasons. Introduced in [21] it was
one of the first PRNGs to avoid major problems and has a very large period of 219937 — 1,
It grew popular, even though it also has problems, as seen in Section 2.4.1.

The algorithm has a large state (624 values in the typical implementation) that is ini-
tialized using an LCG. Whenever a value is retrieved, a tempering transform is applied to
the next value in the state. If the state is out of values to use, the complete state is changed
by applying a twisted generalized linear-feedback shift register.

The large state and initial generation cost indicate that the Mersenne Twister
does incur significantly higher memory and performance overhead than LCGs.

Matsumoto [22] introduces the Mersenne Twister for Graphics Processor
(MTGP) PRNG. While this version performs better on GPUs, the statistical issues of the
Mersenne Twister pertaining to linearity remain.

Ciphers

Cryptography requires a PRNG to stand up to adversarial analysis. Given the knowledge
of which PRNG and the absence of knowledge about the initial seed, the adversary should
have only a negligible advantage in distinguishing output from a random sequence. Typical
approaches are block and stream ciphers.

Particularly block ciphers are of interest even when cryptographic security is not re-
quired. Advanced Encryption Standard (AES), described in [23] and specified in [24], has
hardware support in some CPUs making its performance almost comparable to LCGs and
LFSRs while generating good random numbers. GPU support is however lacking.

The Philox PRNG is introduced in [25]. It is based on the Threefish block cipher —
introduced in [26] — but significantly reducing the number of rounds, taking advantage of
not needing to be cryptographically secure, only statistically good.

15

Chapter 2. Background

Eidissen’s PRNG

The HPC-lab snow simulator has previously used a custom made PRNG due Eidissen [27]
when re-positioning snow particles on the GPU. This uses the previous position of the
particles as its state, thus removing the need for extra state.

Particle re-positioning always generates a 3-vector (x, y, z), where y = 1 (particles are
inserted as the top of the simulation volume). The z and z values are generated from 12
bits of their previous values and 8 bits from the previous y-value. The 2 least significant
bits are zero. These bits are inserted directly into the mantissa of a floating point number
with a constant sign and exponent, producing uniform values in range [0, 1]

Entropy is introduced into these values by floating point rounding and instabilities in
the lower bits of the positions are the particles interact with wind and gravity on the way
to the ground. However, if the particle is immediately re-positioned repeatedly (thus no
entropy is introduced through intermediate operations on it), the output will not only be
predictably, but in fact constant after only 4 sequential calls. Table 2.1 shows the values of
z for sequential calls to this PRNG.

call | sign | exponent mantissa

0 0 01111110 | RRRRRRRRRRRRRRRRRRRRRRR
1 0 01111110 | OXXXXXXXXXXXXYYYYYYYYOO
2 0 01111110 | OXXYYYYYYYY001111111100
3-N | 0 01111110 01111111111001111111100

Table 2.1: The result of sequential calls to Eidissen’s RNG. R means the value is random, X and Y
mean bits from the original position’s X and Y values.

Permuted Congruential Generators

For completeness, the PCG generator family introduced in [28] is included. These gen-
erators attempt to combined both a strong state transition function and output function to
achieve better statistical performance. The state transition function may be a simple LCG
or a MRG, while the output function is a new technique dubbed permutation functions on
tuples.

Quality tests

To test the quality of PRNGs a number of large tests have been developed. The TestUO01
suite introduced in [29] implements a large number of these tests and has been used to
analyze most if not all PRNG in wide spread use. Table 2.2 is a collection of values from
[29], [25], and [28], that show the performance of some variations of the PRNGs discussed
in the previous sections on the various test suits within the TestU01 framework.

16

2.4 Random number generation and noise

PRNG logap | t32b | t 64b | SmallCrush | Crush | BigCrush
drand48 48 4.1 0.65 | 4 21 N/A
Xorshift (64-bit) 64 4.0 0.8 1 8 7
LFSR113 113 4.0 1.0 6 6
MRG32k3a 191 10.0 | 2.1

MT19937 19937 | 4.3 1.6 2 2

AES (Key counter mode) | 130 10.2 | 5.2

PCG XSL RR 128/64 126

Philox4x32-10 128

Table 2.2: Results of TextU01 test suites. Each row is results for a single generator over multiple
test suites, where each column denotes the number of p-values outside the range recommended by
L’Ecuyer [29]. The two PRNGs below the second line have no timings for the same hardware, how-
ever their respective papers claim PCG doubles Xorshift’s performance, and philox performs
similarly to MRG32k 3a.

Superficially it can also be useful to visually inspect the results to look for patterns in
the output.

GPU vs CPU

When working in highly parallel environments the naive approach is to have separate states
per thread. This can be 4 bytes per thread in the case of a 32-bit LCGs or 19337 bytes per
thread in the case of the Mersenne Twister (19337). This is a strong incentive
for a simple state transition in PRNGs for the GPU, to the point where the removal of the
state completely could be advantageous being replaced by a predicable seed such as the
system clock, potentially augmented by thread identifiers when used in parallel. Such an
approach requires a strong output function, and cryptographic ciphers deliver this, making
them prime candidates for GPU usage. philox is an examples of such a PRNGs.

There are libraries that simplify the use of some of the more GPU-suited PRNGs on
both the CUDA and OpenCL platforms.

cuRAND is a CUDA library that contains xorwow, mrg32k3a, mtgp32, and philox
4x32-10 implementations. The xorwow generator is a member of the Xorshift
family of generators.

cIRNG is a OpenCL library developed my Advanced Micro Devices, Inc. (AMD) that
contains mrg31k3p,mrg32k3a, 1fsrl1l3,and philox 4x32-10 implemen-
tations.

17

Chapter 2. Background

2.4.2 Probability Density Functions and Distributions

The PRNGs discussed above aim to generate uniform randomness, however it is often
desirable to have a non-uniform Probability Density Function (PDF), such as a normal
distribution. When producing random numbers given a PDF, a basic technique is the
rejection method [8, Ch. 7.3]. This technique works by generating uniform random sample
v in the domain, then generating an additional uniform random sample p that is compared
to the PDF f at v, rejecting v if f(v) < p.

The rejection method has simplicity as its primary advantage. The main drawback is
a potentially large number of rejected samples if the PDF is highly concentrated. It also
disqualifies Eidissen’s PRNG from use since it does not handle repeated calls nicely, as
discussed in Section 2.4.1.

2.4.3 Noise

In the context of computer graphics the term noise refers to a procedurally generated
pseudo-random texture. There are a variety of variations suited for different scenarios,
and this section describes two commonly used noise types. For further reading on the
subject, [30] covers a wide noise modelling in detail.

Perlin noise

Introduced by Perlin [31], this noise uses a combination of polygonal surflets to create
a smooth noise. A surflet is a sparse representation of a multidimensional function with
smooth disconuities [32], and in Perlin noise they are constructed by taking the product
of a gradient and a falloff function. The gradient has random orientation, and the falloff
function should be polynomial and separable. Perlin noise is defined in two dimensions
by centering surflets on the integer points of a two-dimensional lattice, each surflet having
an extent of 2 in both dimensions. The value of the noise at non-integer positions is a
summation of the value at the corners if the integer cell that contains it.

Perlin noise is a special type of a larger category of noise called value noise. In general,
value noise generates a lattice of points with random values and interpolates between these
points in the noise function.

Fractal Brownian Motion

By applying the Weyl integral to white noise a rougher smoother noise pattern can be
generated. The Weyl integral is an operator of order s defined on a Fourier series by
Equation 2.10.

oo

Z (in)*ane™ (2.10)

n=—oo

18

2.5 Voronoi tessellation and their duals

This is often simplified to the summation in Equation 2.11 in practice, where f(x) is a
simpler noise function that attempts to model white noise. c is a constant near 2, however
in practice, it is rarely exactly 2, to compensate for fast, but poor quality, PRNGs.

N
fom(z, N) :ZQL 2.11)

Fractal Brownian Motion (FBM) relies on successive iterations being dependent, mean-
ing an increasing pattern in one step means the next step is likely to also increase. This
leads to larger structures in the noise pattern, however the addition of lower amplitude high
frequency noise means this pattern is very suitable for visualizing clouds and fog.

2.5 Voronoi tessellation and their duals

A Voronoi tessellation is a decomposition of space X into a set of regions Ry, given a set
of seed points P}, for which equation 2.12 holds for some distance function d(z, P).

Ry =z € X|d(z, Py) < d(x, P))Vj #k (2.12)

This segments the space into regions in which every point is closer to the regions seed
point than any other seed point. Aurenhammer [33] provides a detailed survey of Voronoi
diagrams.

The dual of a Voronoi tessellation is known as the Delaunay triangulation, and is de-
fined as a triangulation of the set of seed points P such that no seed point in P is inside the
circumcircle of any triangle in the triangulation DT'(P). Connecting the center of these
circumcircles produces the Voronoi tessellation. The technique extends into n-dimensional
space. Berg et. al., Ch. 9 [34], discusses Delaunay triangulation and introduces an al-
gorithm to calculate it, while Shewchuk [35] describes Triangle, a mesh generator and
Delaney triangulator program written in C. The CGAL library * also support Delaunay
triangulation.

2.6 Stereoscopic rendering

Current consumer display technology is confined to Two dimensional (2D) surfaces. Cre-
ating the illusion of depth on such displays is accomplished by rendering the scene with
two cameras corresponding to the viewers two eyes. By then masking the image so each
eye sees the view corresponding to it, the brain can be fooled. This section reviews some
of the techniques used to accomplish this masking, particularly in respect to rendering
virtual worlds such as games or simulations.

3 Available from http://www.cgal.org/ (last accessed: 2016-06-20).

19

http://www.cgal.org/

Chapter 2. Background

2.6.1 Anaglyph stereoscopy

One of the oldest techniques uses color to mask the images and dates back to Rollmann
[36]. Using differently colored glass or plastic film between either eye and the display, the
content can of the left view can be encoded in the right eyes filter only, such that the filter
masks the left view’s content, and vice versa. This has the advantage that creating glasses
with such film is cheap, and that no special projection technology or display is required.
However, the color range of the image is drastically reduced.

2.6.2 Polarization stereoscopy

Instead of encoding the images in a single color channel, Kaiser [37] suggests the use of
glasses with lenses of different polarization. Two images are superimposed on the same
screen, but polarized using two orthogonal filters. The viewer wears linearly polarized
glasses that match the polarization filter for their corresponding eye. This allows the full
use of the color spectrum, but also requires specialized projection or display equipment
capable of polarizing the light differently for each eye’s view. The glasses, being passive
as the anaglyph ones, are relatively cheap to produce.

2.6.3 Active-shutter stereoscopy

NVIDIA [38] describe the use of active shutter glasses in Nvidia 3D vision. Active
shutter glasses’ lenses are crystallized Liquid Crystal Display (LCD) that block vision in
synchronization with the display. Left and right eye’s views are displayed in alternation,
and the lenses gate the eye so they can only see their respective images. While this does
allow for the full color spectrum usage, LCDs are not completely opaque, and their state
change is not instant, leading to a general darkening of the view. The alternation of images
also requires the display to refresh at double the frequency. Consumer implementations
of this techniques such as NVIDIA 3DVision work with any 120Hz display, however
consumer standard displays are only 60Hz-capable.

2.6.4 Multi-screen stereoscopy

All the techniques above use a single display surface that is gated from either eye with a
filter. However, by mounting the display close enough to the viewer’s eyes that the node
blocks view of the other display, multi-display techniques can eliminate the need for filters
all together. Devices using these techniques are called Head-Mounted Displays (HMDs).

HMDs require the displays to be so close to the retina that the individual pixels may
be discerned, a phenomenon known as the screen-door effect. Such devices need a much
higher pixel density than typical computer displays, and this specialized need has tradi-
tionally made them costly. As the smartphone and tablet market started taking interest in
high density displays however, this cost has reduced, and numerous HMD products aimed
at the consumer price range have launched or aim to launch in 2016 [39].

20

2.7 GPU and GPGPU computing

The illusion of depth in HMDs is significantly stronger than with traditional single-
display techniques, and introduce a wide range of technical challenges. As the viewer
has a stronger sense of presence * in the world being displayed, many users experience
motion sickness [41], which the HMD vendors attempt to alleviate by tracking the users
head movement and rotation and reflecting it in the virtual world. Input to display latency
has been shown to have a significant impact on the motion sickness problem [42], leading
the HMD vendors to use separate software paths to render to their devices and often re-
project the rendered images in post-processing to minimize head-tracking latency. These
problems have lead to a figurative arms race in HMD driver software as they got more
complex, which has limited support to Microsoft Windows only.

2.6.5 Performance implications

Most single-display techniques have very predictable performance implications; the final
view of the scene as seen by the camera must be rendered twice. However, these views
are not independent, and by accounting for this a doubling in frame render time should be
avoidable. Any scene culling performed can be shared for a slightly expanded version of
either camera’s frustum, and any view independent tasks such as shadow map rendering,
animation do not need to be duplicated. There may also be some overhead in additional
framebuffer swaps (in the case of active-shutter stereoscopy) or post-processing (in the
case of coloring the output for anaglyph viewing).

Multi-display techniques have more complex performance implications. Each eye’s
display may have a lower resolution than typical consumer displays® meaning the render-
ing overhead is less severe, however the HMD driver software will incur extra costs to
do head-tracking, re-projection to account for it, and apply post-process filters that warp
the image to compensate for lenses in the HMD devices. These allow for lower density
displays (by increasing the eye-display distance), as well as increasing the relative density
of the center of the eye’s view to the peripheral vision.

2.7 GPU and GPGPU computing

Ever since the early days of arcade games in the 1970s, dedicated hardware has been used
to accelerate the rendering of virtual worlds. As the video game industry progressed, the
GPU got more powerful; first with dedicated rasterization and filtering hardware to handle
three-dimensional worlds, and later with fully programmable shading pipelines. As the
hardware got programmable the term GPGPU surfaced, and modern GPUs are used in
many fields for compute-heavy applications, not just graphics.

4Presence in the field of virtual reality is defined as “the degree to which participants feel that they are some-
where other than where they physically are when they experience the effects of a computer-generated simulation
[40]

SThe Oculus Rift CV1 has a resolution of 1080 x 1200 per eye, while current consumer high end displays
are 3840 X 2160 and industry standard is 1920 x 1080

21

Chapter 2. Background

2.7.1 Hardware model

GPU come in many forms, from mobile and integrated devices that share a chip with the
CPU to dedicated hardware. This section primarily discusses high-performance GPUs,
which are dedicated cards due to the heat they generate requiring separate heat sinks and
cooling. These cards are highly parallel processing units that prioritize throughput over
latency. They excel at floating point arithmetic, and have very high bandwidth.

The card is connected to the CPU and general purpose memory through the Peripheral
Component Interconnect Express (PCI-E) bus. The latest available version of PCI-E — 3.0
— has a theoretical maximum bandwidth of 15.754 GB/s (the 4.0 version, expected in 2017,
doubles this), which is comparable to CPU to Random Access Memory (RAM) bandwidth,
but the latency is several orders of magnitude larger (comparing the the ~ 100ns reported
for CPUs RAM access in [43] with the ~ 10us reported for GPUs in [44]). The GPU itself
has dedicated memory to avoid round trips to the CPU. The internal theoretical maximum
memory bandwidth on the NVIDIA GTX 1080, a high-end GPU from 2016 is 320 GB/s.
This is an order of magnitude more than to 34 GB/s of the Intel 17 6770HQ, a high-
end CPU from 2016. Figure 2.3b shows the memory bandwidth of GPUs and CPUs over
time.

This high memory bandwidth it utilized by going very wide; the GPU is designed
around a large amount of threads working in parallel. The real strong point of the GPU
is its floating point operation performance. Figure 2.3a show the theoretical floating point
performance of high-end GPUs and CPUs over time. The performance does come with
some caveats, and these are discussed in Sections 2.7.3 and 2.7.3.

2.7.2 OpenGL

Given its history, the GPU has traditionally been accessed through the usage of graphics
APIs such as OpenGL or Microsoft DirectX (DirectX). The wide variety of GPU architec-
tures expose their features to the application by supplying entry points corresponding to
OpenGL functions in their drivers that the application calls.

Programming model

The modern graphics pipeline has multiple stages, but before these are addressed a few
things must be supplied to the pipeline. The pipeline assumes the rendering of some num-
ber of primitives given a buffer with vertex information and either implicitly or explicitly
defined indices. Modern versions also require explicitly defined shaders for each shading
stage. The result is written to a framebuffer, which may be the default back-buffer that is
displayed on any attached display, or a framebuffer-object; a writable texture. The stages
of the pipeline follow:

Input assembler Read or generates index data from either an index buffer or implicit
information in the draw call, such as when rendering a triangle strip. Also reads
vertex data.

22

2.7 GPU and GPGPU computing

Vertex shader Given per-vertex attributes read from the vertex buffer or buffers and uni-
form read-only parameters shared across all invocations, this programmable stage
outputs processed vertex data for the next stage.

Primitive assembly Assembles the vertices that make up primitives into a single unit; the
primitive. Also clips and culls the primitive if it falls outside the viewport.

Hull shader, tessellator stage, domain shader, geometry shader These four stages al-
low programmable transformations to the geometry, such as tessellation or instanc-
ing.

Stream out The output of the geometry shader may be streamed out to a buffer ending
the pipeline here.

Rasterizer Rasterizes the primitives; this computes barycentric coordinates and interpo-
lates the values. Generates the per-pixel input for the pixel shader stage.

Fragment shader Gets the interpolated vertex data from the rasterizer and generates out-
put pixel colors.

Output merger Performs alpha blending on the output pixels from the pixel shader and
writes the output to the attached framebuffer.

All shader stages may access texture memory. Textures are supplied to the GPU
through OpenGL as flat arrays of values, but are often laid out in tiled formats such as
Morton Order internally. These textures are accessed in the shaders through samplers,
which contain information about the layout, the address of the data and information about
how to filter the textures. GPUs support nearest-neighbor, bi- and tri-linear filtering as
well as varying quality-levels of anisotropic filtering in hardware. When requesting tex-
ture data in the shader, this filtering is performed completely transparently before the result
is returned.

OpenGL 4.3 introduces compute shaders, which are outside the pipeline. These read
and write directly from un-ordered access views, and have an execution model similar to
that of OpenCL and CUDA, discussed in Sections 2.7.3 and 2.7.4

Giessen [45] gives a thorough introduction to the modern graphics pipeline.

Memory model
Traditionally, OpenGL has a few different memory types. These include

Texture memory As described in Section 2.7.2, this memory is generally laid out differ-
ently on the GPU than it is received, and the creation of it used to implicitly create a
sampler. ARB_separate_shader_objects® introduced features that allow the
application to manually handle this. Individual values of a texture are referred to as
texels.

Shttps://www.opengl.org/registry/specs/ARB/separate_shader_objects.txt
(last accessed: 2016-06-20).

23

https://www.opengl.org/registry/specs/ARB/separate_shader_objects.txt

Chapter 2. Background

Pixel buffer objects and framebuffer objects Writable textures. It is important to note
that these may be either readable or writable in a shader invocation, but not both, as
no memory fencing primitives are available to the user in non-compute shaders.

Vertex, index and instance buffers These buffers are used to describe geometry. Vertex
and instance buffer in particular have additional information associated with them,
related to attribute types, sizes and strides, while the index buffer only has element
type as meta information.

Uniform buffers Traditionally uniform parameters and attributes for shaders where set
by value, but ARB_uniform buffer_object s’ introduced uniform buffers that
allow the user to pack the values into buffers themselves. By value is still used, but
it is likely that the driver packs this into buffers behind the scenes.

The inclusion of compute shaders in OpenGL 4.3 also introduces shared memory and
Shared-Storage Buffer Objects (SSBOs). The latter are similar to Uniform Buffer Objects
(UBOs), but may be significantly larger (at up to 16MB, compared to the 16kB of UBOs),
are writable from shaders and support atomic operations.

2.7.3 CUDA

To harness the tremendous parallel computing power of the GPGPU, NVIDIA launched
the CUDAS3. Its purpose was to provide a way to use the GPU for general-purpose com-
puting without necessarily using the graphics pipeline. CUDA supports inter-operability
with OpenGL, but does not require a OpenGL context.

Execution model

In CUDA, the programmable code that runs on the GPU is the called a kernel. Kernels are
written in an annotated version of C or C++ called CUDA C/C++, but support for other
languages such as FORTRAN exists. Unlike OpenGL shader which are compiled by the
driver at run-time, CUDA kernels are compiled at compile-time by a separate compiler,
the nvcc.

Kernels describe the execution as it happens on a single thread. Host code, running
on the CPU, executes a kernel by passing it its parameters, as well as a number of threads
invocations to run, and the block size to use. CUDA has synchronization primitives and
shared memory for threads within a block, but no support for this between blocks. During
execution, up to 32 threads from the same block are executed together in a warp.

While CUDA kernels may have branches in them, execution in a warp does not diverge.
This has the effect that both branches are executed fully — unless all threads in the warp

Thttps://www.opengl.org/registry/specs/ARB/uniform_buffer_object.txt (last
accessed: 2016-06-20).

8CUDA launched as an acronym but NVIDIA has subsequently dropped the expanded name, and CUDA is
not the full name of the product

24

https://www.opengl.org/registry/specs/ARB/uniform_buffer_object.txt

2.7 GPU and GPGPU computing

can be determined by the scheduler to take the same path — and only applying side-effects
after the fact with conditional moves. This is one of the caveats hinted at in Section 2.7.1.

CUDA makes no guarantees about the execution order of the threads. In practice,
the order will vary widely, as this is the primary way the scheduler hides the latency of
memory accesses. When all threads in a warp are guaranteed to execute the same code in
parallel, they can be run as far as they can before needing the result of a memory fetch,
only to suspend the entire warp until all those fetches have gotten returned. This way
the large bandwidth may be used by performing the memory requests in bulk, hiding the
latency by performing other work while waiting.

Memory model
The CUDA memory model consists of three categories:

Global This is memory in the GPUs global memory. It is large, but accesses incur signif-
icant latency. Texture memory is a special case; it is stored in global memory but
access through the filtering unit.

Shared A smaller block of memory is available near the execution units. This is shared
between all threads in a warp. It is significantly closer than global memory.

Local The fastest memory; the registers. Each execution unit has a limited amount, and
if threads use too much the warp may contain less threads to compensate.

If register contention is high, a warp may not be filled with the full amount of threads
because the register file is shared between all threads of a warp, leading to wasted compute
power. However, if register contention is low, registers may be used as cache to improve
performance, as described in [46].

Bindless textures

CUDA 7.5 introduced bindless textures. This is a feature primarily motivated by the graph-
ics community, where a large amount of draw calls are frequently made which access dif-
ferent textures. Since texture samplers is state in OpenGL and may not change during a
draw call, and the number of samplers bound at any given time was limited, this led to
splitting of large draw calls into smaller ones. Every draw call incurs CPU overhead, and
this was often a limiting factor in graphics applications. Bindless textures no longer binds
samplers to textures as state pre-invocation, but makes them both arguments of the sam-
pling function. This reduces the number of draw calls as the number of different textures
accessed in a single draw call no longer has an upper bound °. CUDA exposes this func-
tionality by changing the way textures are passed to the kernels. Where pre-7.5 versions
required accessing a symbol visible to the kernel (essentially a global cudaArray bound to
a texture), post-7.5 passes a small texture object as a parameter to the kernel.

9There are still limitations related to virtual pages and texture array sizes in OpenGL, but these are not relevant
to the CUDA discussion

25

Chapter 2. Background

The feature requires hardware support. For NVIDIA, any card beyond the GeForce 8
series is supported, while AMD supports it in all GCN based hardware and Intel does not
support it at all'®. The section “Interactions with NV_gpu_shader5” in ARB_bindless_texture!
indicate that AMD has an additional restriction on OpenGL bindless textures; all threads

in a warp must access the same resource (texture).

2.7.4 OpenCL

While CUDA is NVIDIAs proprietary GPGPU compute library, OpenCL is an open stan-
dard developed by the Khronos Group; the same body that governs OpenGL. Its function-
ality is similar to that of CUDA, but the terminology differs slightly, as summarized in

Table 2.3.

Table 2.3: The corresponding terminology of CUDA and OpenCL

OpenCL is supported on a wide range of hardware, not only on GPUs, but also on
CPUs. In part due to this, and in part due to API design choices, OpenCL setup code is
more verbose than CUDA, and while CUDA C/C++ is compiled at compile time, OpenCL

CUDA term

OpenCL term

GPU

Shared memory
Local memory
Kernel

Block

Thread

Device

Local memory
Private memory
Program
Work-group
Work-item

C is compiled at run-time by the driver.

OpenGL inter-operability

OpenCL also has OpenGL inter-operability, allowing OpenGL textures to be used in
OpenCL programs. This allows for use of hardware filtering to be used. The feature is
defined by OpenCL extension gl _khr_gl_sharing, and requires at least an OpenGL

3.1 context.

2.7.5 Performance analysis

Profiling CUDA or OpenCL code using the CPU clock is possible but inaccurate; kernel
dispatches are asynchronous and the scheduler may reorder operations. The application

10Naturally, this describes bindless textures in general (through OpenGL extensions) as neither AMD nor Intel

support CUDA

'https://www.opengl.org/registry/specs/ARB/bindless_texture.txt

cessed: 2016-06-20).

(last

ac-

26

1

https://www.opengl.org/registry/specs/ARB/bindless_texture.txt

2.8 Cloud rendering

can synchronize the GPU and CPU explicitly before and after a call, however this ensures
that all work in the GPU pipeline is flushed and stops the driver from performing some of
the latency hiding that makes the GPU fast. Both OpenCL and CUDA have event timers
for this purpose. In CUDA, two events are created surrounding the section of interest.
When the timing information is wanted, which may be immediately or significantly later,
the latter event is used as a synchronization barrier, and the elapsed time between them
can be queried. In OpenCL API calls take events as arguments, which may then be used
to query profiling information such as the start and end time of the event.

The CUDA framework also ships with both graphical and command-line profiling tools
that provide detailed information on kernel execution timers and counters.

2.8 Cloud rendering

The accurate rendering of light transport in participating media has seen extensive re-
search in the computer graphics research. Jarosz [47] provides a good overview of the
theory, while [48], [49], and [50] describe some of the advanced techniques used in offline
rendering, accounting for multiple scattering and anisotropy. Participating media is mod-
eled as a micro-particles. The change in radiance due to photons’ interactions with these
particles is considered not on individual photons, but along rays through the medium, and
is calculated as four individual terms:

Absorption covers the loss of photons due to abstorption into the micro-particles.
Emission covers the gain of photons due to excitation by the micro-particles.

Out-scattering covers the loss of photons due to reflection away from the ray by micro-
particles.

In-scattering covers the gain of photons due to reflection into the ray as photons tra-
belling along other rays collide with the micro-particles.

One rays out-scattering is another’s in-scattering. The net loss defined by out-scattering
and absorption is called exctinction. Chapter 4 in [47] includes formulae describing these
terms.

In real-time applications, clouds have traditionally been handled using simpler tech-
niques. It is usually known whether the camera can be inside the clouds or not, and Quilez
[51] describes a technique for the simpler case where it may not. In this case, the clouds
can be rendered as a layer on the skybox, and a simple accumulating ray-march can be per-
formed using noise or a texture generated offline. In the case that the camera may be close
to or inside the cloud layer, Harris [52] describes the use of translucent billboards. Here,
simple noise-textured primitives — typically a quad — are rendered in place of the clouds;
they are oriented towards the camera in the vertex shader and the GPU hardware support
for alpha blending is used to accumulate contribution over multiple quads. The problem of
varying cloud density becomes a problem of distributing these primitives such that when

27

Chapter 2. Background

blended together the color corresponds to the cloud density. While this approach creates
an illusion of volume in the cloud layer the skybox-based technique does not, it still suffers
from problems when the camera is inside the clouds, as Harris highlights in Ch. 3.1.1 of
[52].

The increasing arithmetic performance of GPUs have enabled the use of ray-marching
in volumetric textures or noise within a volume in real-time applications. Notably, Wron-
ski [53] describes ray-marching through a volumetric texture centered on the camera to
render fog in contemporary video games, while Quilez [54] generates FBM on the GPU
while ray-marching to render high quality clouds.

2.8.1 Ray-marching volumetrics

This technique consists of constructing a ray — an origin and a forward direction — and
stepping along the directional vector from the origin, adding the contribution of the volu-
metric data as it is encountered. In the context of cloud rendering, the ray is constructed
from the camera and a near-plane where the volumetric data starts. As the ray is marched,
the scattering of the participating media is evaluated and the resulting color contribution
to the ray is accumulated.

2.9 The HPC-Lab Real-Time Snow Simulator

This thesis improves on the previous work by former HPC-Lab students on the real-time
snow simulation initially presented by Saltvik [55]. This section provides a brief historical
overview of previous work on the simulator, a technical overview of the implementation
prior to this thesis, and an overview of the simulator’s current and potential uses and ap-
plications.

2.9.1 History

The HPC-Lab Snow Simulator was initially described by Saltvik in [55] and [56]. This
thesis introduced the snow model and based its wind simulation on a smoke simulation
by Vik [57] [58], and the work of Stam [3], [4]. It was implemented on the CPU using
hyper-threading for performance, with a software renderer. Eidissen [27] ported the sim-
ulator to the GPU using CUDA, introducing an OpenGL renderer and stereo rendering
component. The re-positioning of snow particles was changed to use Eidissen’s PRNG
discussed in Section 2.4.1. The GPU version could handle significantly higher resolution
wind fields. Vestre [59] ported the GPU version to OpenCL, effectively removing the GPU
vendor lock-in of CUDA. This thesis intended to make the simulator support mobile plat-
forms, however while the port to OpenCL help enable this, mobile GPUs typically support
OpenGL ES which differs from regular OpenGL and the simulator does not appear to
have every been tested on a more mobile device than a laptop computer. The thesis also

28

2.9 The HPC-Lab Real-Time Snow Simulator

attempted to improve performance by sorting particles on the GPU, and while this did not
have the intended performance enhancing effect, it is interesting research.

In 2013 Babington [60] and Nordahl [61] improved the simulator’s visualization. Snow
particle rendering using procedural noise instead of predefined sprites, tri-planar texture-
projection on terrain, shadow mapping, and dynamic level of detail of the terrain were
all added. In [59] complicated and undocumented code was mentioned as a hindrance,
and [61] covers a refactoring and documentation effort to alleviate this for future projects,
modularizing simulation and rendering for simpler replacement of components. Lien [12]
added the pre-processing tools to import real-world terrain data as discussed in Section
2.3.1. Mikalsen [62] ported the simulation to Open Accelerators (OpenACC), a directive-
based parallel programming standard similar to Open Multi-Processing (OpenMP) with
GPU support — as well as producing a sequential version of the simulator —, however since
this work was done in parallel to the work in [61], it was not properly merged back into
the main code-base built on by subsequent projects.

Following work by Krog [63] [64] on avalanche movement — implemented indepen-
dently of the HPC-Lab snow simulator — Boge [65] investigated avalanche prediction. The
snow accumulation was remodeled to use a fine-grained grid normal to the ground, which
is used to simulate fracture progression using a finite element method. The structure stores
snow temperature and humidity for use in the avalanche prediction, but due to time con-
straints these properties do not correctly propagate through the structure. Visualization of
the calculated probability of shear and powder avalanches were added to the renderer.

Prior to this thesis, Kerr [66] did some general documentation, code refactoring, added
CMake — a multi-platform build system — support, and fixed a large number of outstanding
bugs.

2.9.2 Technical overview

This section outlines the architecture and algorithms of the HPC-Lab Snow Simulator as
it was prior to the work in this thesis.

Snow model

In air, the snow is modeled as individual particles as described in Ch. 2.4.1 of [27]. Each
particle is influenced by four forces:

F 4 qvity The gravitational force on the particle, determined by its mass m, which is ran-
domized at simulator initialization, and the gravitational constant g, which is con-
figurable at run-time. It is directed down along the negative Y-axis.

Fy;r¢+ As the particles fall they interfere, and the resulting vorticity applies a chaotic force
on the particles. This leads to irregular motion. As this force is caused by turbulence
at a scale the simulator is unable to handle at real-time, it is modeled with a visually
pleasing replacement; V ;... This is a circular velocity component that diminishes

29

Chapter 2. Background

as the particle’s velocity increases, described by a radius R and an angular velocity
w.

F4rqag The particle does not fall in a vacuum, thus a drag force is applied. Eidissen [27]
shows that the drag force is a function of a particle’s mass, it’s terminal velocity
— Vinaz,y and the difference in velocity between the particle and its surrounding
fluid. The terminal velocity, like the mass, is randomized per particle at simulator
initialization.

Fyuoyancy The difference in density between objects and their surrounding medium causes
buoyancy, however Eidissen [27] argues the force for snow flakes is small enough
to be ignored.

A particle is then described by two fields of 4-wide floating point vectors, as described
in Table 2.4. In addition, two arrays of 32 radii R and angular velocities w are used to
calculate V.. These are indexed by the GPU thread index during particle update, and
filled with random values at startup (given the ranges described in [27]).

Float component | 0 1 2 3
Field 0 Vt Vy Vz Vmam,y
Field 1 P, | P, | P, |0

Table 2.4: V denotes velocity, P denotes position. 6 is the current angle around the center of
rotation for Vire.

The snow particles’ velocity and position are updated after the wind simulation step by
the integration described in Equations 2.13 and 2.14, where a = W The wind
value needed in both this integration and the advection step of the wind simulation take
advantage of GPU hardware sampling of texture memory for fast tri-linear interpolation of
values in the CUDA version, while the OpenCL version dies this manually in the kernels.

1
pt+At = pt + Vgnow + VZirc)At + 5aAt2 (213)
Vi:oAuf = Vinow +aAt (214)

When snow particles hit an obstacle, they are re-positioned to the top of the simulation
volume. The y-position is set to the height of the highest non-boundary voxel, while the
position in the xz-plane is randomly selected. The particle’s other properties (velocity,
terminal velocity, mass, rotation) are maintained. When particles hit the outer boundaries
of the simulation volume (any of the vertical planes bounding it), they wrap.

30

2.9 The HPC-Lab Real-Time Snow Simulator

Wind simulation

Eidissen [27] makes the assumption of zero viscosity, simplifying the NSE to the “incom-
pressible Euler equation with constant and uniform density”. Additionally, it is assumed
that the force of gravity on the fluid (the air) is negligible compared to the advection and
pressure forces. This leads to Equation 2.15.

g—: =—(v-V)v-Vp (2.15)

Following the work by Stam [4] and Vik [58], Eidissen [27] solves this in three steps:

Advection Calculate F(") = v(") — §t(v - V)v, the intermediate velocity field.
Solve Poisson Use the intermediate field F(™) to solve Ap("*+1) = LV . F(").

Projection Calculate the pressure force —Vp and modify the intermediate velocity field
F(™ to get the v+ which is divergence free.

Dirichlet boundary conditions are used at the world bounds, and the value set at the
boundary is constant for a single iteration step, but may vary between steps. Internal obsta-
cles, such as the terrain, have boundary condition v - n = 0, that is the velocity component
normal to the domain is zero. For the pressure field, Von Neumann boundary conditions
are applied by setting the pressure at a boundary equal to the value of a neighboring (non-
boundary) voxel.

Snow particles are not considered in the wind simulation

Terrain model

The simulator has three different but connected terrain models. Upon initialization, a
height-map (16-bit unsigned integer values) is used to create a terrain mesh. This mesh has
4-component vectors in its vertices — (x, y, z, h) — where h is the amount of snow buildup
at the vertex. This is the representation used for snow accumulation and rendering. For the
wind and pressure simulation, the voxel fields of velocity and pressure are accompanied
by an obstacle grid; a bit-field per cell that contains Boolean values for obstruction of
the cell itself and all 27-neighbors. This map is created from mesh representation and
is updated periodically. Finally, the avalanche prediction uses a fixed grid that uses the
normal vectors at the corresponding mesh vertices in its simulation. Figure 2.4 shows
the mesh vertices and corresponding simulation obstacle representation, while Figure 2.5
shows snow accumulation.

Avalanche prediction

Described in detail in [65], the avalanche layer in the simulator operates on a fixed grid
using a finite element method. The grid filled with initial values based on terrain and no

31

Chapter 2. Background

snow at the start of simulation, and each subsequent simulation step a single layer of the
grid is updated, propagating from top to bottom. Each voxel contains a 24-bit vector of the
forces applied to it, as well as a 5-bit temperature and a 3-bit humidity scaled to restrictive
ranges. These values are set similarly to the boundary conditions in the wind field; they are
constant in a time step but may vary across steps. Since only a single layer is evaluated per
step, the values may vary during the down-propagation of forces. A simple noise function
is used to vary the temperature and humidity given a range configurable at run-time.

Rendering

The rendering techniques used in the simulator are discussed in detail in [61], and it the
configuration system allows for fast switching between visualization styles and realistic
techniques.

Building and profiling

Kerr [66] added support for the CMake build system, and the GLFW library is used for
window management and input events. However, the simulator uses a few non-portable
features beyond the GPGPU libraries; the Portable Operating System Interface (POSIX)
PRNG drand48 — a simple LCG - is used in the snow particle initialization, and the
profiling code uses the POSIX clock_gettime function. The profiling code performed
full-frame timings of a limited number of frames if compiled with a specific pre-processor
flag. For more advanced timings, previous theses used CUDA or OpenCL specific tools or
specialized, and since removed, timing code.

32

2.9 The HPC-Lab Real-Time Snow Simulator

Theoretical GFLOP/s

5750
5500
5250
5000

4750
4500 s=s==|ntel CPU Double Precision

4250 emgam|ntel CPU Single Precision

4000
3750
3500
3250
3000
2750
2500
2250
2000
1750 Testa-K40
1500 Tesla K20X.
1250
1000 Tesla M2090
750 Tesla €2050

500 Tesla C1060

Harpertown
250 Woodcrest P
0 Pentium 4

Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08

NVIDIA GPU Single Precision
e NVIDIA GPU Double Precision

vy Bridge

Westmere

Bloomfield
Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

(a) Floating-point operations per second.
Theoretical GB/s

360

330 F—

300

angun(CPU Tesla K40

270 GeForce GPU
Tesla K20X

240 Tesla GPU _=

210

180 -

Tesla M2090
150 4

Tesla C2050

120

90 Tesla C1060

Ivy Bridge
60 Sandy Bridge

Bloomfield

30
GeForce FX 5900 Prescott Yvoodcrest

0

Westmere

Harpertown
Northwood ' ! T ! ! T T T T 1
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

(b) Memory bandwidth.

Figure 2.3: Comparison of GPU and CPU performance over time. Green lines are GPUs, blue lines
are CPUs. Figures ©NVIDIA, used with permission.

33

Chapter 2. Background

Figure 2.4: The terrain mesh of Mt. St. Helens terrain, at 7682 vertices (white), compared to the
obstacle map (voxel centers) at 128 x 32 x 128 voxels (red).

B
B
=
&
B
=
]

Figure 2.5: Snow accumulation on the Mt. St. Helens terrain after a period of uniform snowfall.
The red lines indicate the accumulation of snow at the vertices.

34

Chapter

Simulator improvements and
extensions

This chapter examines the improvements and extensions to the HPC-Lab snow simula-
tor made as part of this project. It begins with a short section describing motivating the
changes made, followed by 3 sections devoted to the integration of real-world weather
data and related work. Section 3.2 describes the methods and implementation of ground
truth wind sources for boundary data. Section 3.3 covers varied precipitation probabilities
across the simulation domain, and Section 3.4 details the related method and implemen-
tation of cloud rendering. In Section 3.5 the simulator’s handling of terrain models is
refreshed and updated. Finally, Section 3.6 examines various other improvements to the
simulator.

3.1 Motivation

To motivate the work in this thesis, this section examines the historical uses of the HPC-
Lab Snow Simulator, as well as the potential uses with certain attainable improvements.

The use of the wind simulation techniques described in Section 2.9.2, as well as the
constraint to real-time, have limited the uses of the simulator in the past. The fluid sim-
ulation technique is based on the work of Stam [4], which is primarily intended for use
in computer graphics and video games, and as such values believable visual results over
physical accuracy. The real-time constraint and the memory constraints of GPUs set an
aggressive upper bound on the resolution of the simulation. As a result, small scale turbu-
lence is lost, and the drag force F 4,4 is replaced with the visually pleasing but physically
inaccurate circular velocity component V ;...

However, the rendering quality improvements of Babington [60] and Nordahl [61] as

35

Chapter 3. Simulator improvements and extensions

well as the stereoscopic rendering capabilities have made the simulator a valuable demon-
stration and recruitment tool for the HPC-Lab. The porting to various libraries and the
heterogeneous compute environments supported make it a valuable tool to compare per-
formance on a real-world application. Work on improving it has also motivated interesting
results on GPGPU computing in general, such as Ch. 5 in [59].

It’s use as a simulation tool is however slightly limited by the lack of a few key features.
Random weather data such as boundary wind, temperature, and humidity not only limit
its power as a predictive tool, but also make it hard to validate the results obtained in
the simulator with real world results. The resolution of the simulation volume, currently
limited by memory requirements of the voxel grids, may be of too low granularity for large
scale terrain such as the mountain in which avalanches are common, and for such large
scale environments uniform snowfall may not be accurate enough. Rooftop avalanches
in populated areas could be handled, however city architecture is not adequately handled
by the two-dimensional world-view of a height-map. Simulation over longer time periods
may also want to take snow smelting into account.

It is important to note that the limitations above are not due to oversight or negligence,
but simplifications and optimizations made necessary by the immensely complex nature
of other ascpects of the simulator, the real-time requirement, and in some cases hardware
limitations. The work in this thesis builds upon the complex numerical models and work of
previous students to alleviate some of these missing features by addressing the integration
of real-world weather data, hoping to pave the way for a wider area of use in the future.
While this is the primary focus, significant effort is used to maintain current uses. The
visual quality of the rendering of the new features, as well as improvements to the per-
formance and demonstration capabilities of the existing features, are areas of significant
focus in the following.

3.2 Wind

Section 2.1.2 introduced typical boundary conditions, and Section 2.9.2 explains how these
relate to the HPC-Lab snow simulator. Internally in the volume, the wind is simulated,
however the wind at the boundary is set to a constant value across the domain; either a
user set value (selected in the configuration Graphical User Interface (GUI) or set in the
configuration file) or a periodic wind setting that linearly interpolated between a hard-
coded set of four values at 15 second intervals.

Wind measurements are primarily available at ground measurement stations, as cov-
ered in Section 2.2.1. The following sections cover a new boundary wind mode — inter-
polated measurement station values — and the changes made to the simulator to support
it.

36

3.2 Wind

3.2.1 Importing the values

As mentioned in Section 2.2.4, there are multiple APIs that offer weather data from ground
measurement stations to the public, and these are offered in varying formats. Supporting
all these formats in the simulator is neither feasible nor required; instead a simple text-
based file format is defined to supply only the values required. Internally in the simulator,
each ground measurement stations is called a WindSource, and it consists of a fixed
position, a time interval between samples and a list of samples; 3-vectors of wind velocity.
The number of samples is not known at compile time!, and instead of complicating the
individual WindSource input files, a meta-file lists the sources.

To explain this system, consider the meta-file winddata.txt, containing NV lines.
Each line is the path of aWindSource input file (relative to the running simulator or fully
qualified). When the simulator is asked to use this meta-file, it creates N WindSource
objects. For each of these, the file at the path listed in the corresponding line of the meta-
file is parsed. These files — the WindSource input files — have a leading line containing
constant values: the 3-vector describing its fixed position in the simulation domain (in
the wind simulation voxel fields’ coordinate system), the number of milliseconds between
samples, and the number of samples, S. This line is followed by exactly S lines, each
containing a single 3-vector describing the wind velocity at the WindSource at that
sample’s time.

The simulator internally uses a domain-relative coordinate system. Importing values
from a public data-set is likely to yield absolute location (in the form of Global Positioning
System (GPS) coordinates), however this must manually be converted into in-simulator
coordinates to match their location relative to the terrain. Thus, a pre-processing script
separate of the terrain pre-processing script still requires manual input, and for the test
data used to test performance, the values were manually copied over or generated from
random values.

3.2.2 WindSource representation on the GPU

The boundary value is set at the end of the wind_advect kernel to avoid a separate kernel
invocation for the small subset of voxels that lie on the boundary. Two new parameters are
passed to this kernel; a floating point array of 8 values per WindSource and an unsigned
integer containing the number of wind sources. The most significant bit of this unsigned
integer is used to switch interpolation modes, as discussed below. Table 3.1 describes the
packing of wind sources into the floating point array.

The neighbor information is a bit-mask and is expanded upon in Section 3.2.3; at time
of writing only 32 bits are used and thus the number of wind sources supported is capped
at 32, however the unused 32 bits in the last value may be used to expand this to 64
without additional memory cost. The wind velocity is temporally interpolated between the
sample values imported on the CPU before upload. This interpolation is performed every
simulation step.

IThere is a known upper bound, as explained below.

37

Chapter 3. Simulator improvements and extensions

Float | 0 1 2 3
0-3 P, | P, | P. | Neighborhood bit-mask
4-7 V. | Vy, | V. | Unused

Table 3.1: V denotes velocity, P denotes position.

The 4 unused bytes are included as padding for vector architectures, where having the
position and velocity vectors aligned on 16-byte boundaries may help performance, and as
Section 4.2.3 shows there is no significant performance cost on scalar architectures. The
capped source count ensures no more than 128 bytes are wasted as a result, and the space
for future expansion of neighbor count or other data is practical.

3.2.3 Spatial interpolation at boundary points

When setting the boundary value at any given point a decision has to be made about which
wind sources affect that point; not all wind sources’ values are relevant for a given point.
Figure 3.1 shows some configurations of wind sources relative to a boundary point in two
dimensions, and which samples are likely to contain relevant data for that point.

The simplest scheme is a nearest-neighbor approach; each boundary point is set to
value of the closest wind source to that point. This technique is implemented primarily for
debugging purposes. The next approach is to interpolate between the values of all wind
sources based on their distance from the source. However, as Figure 3.1 highlights, not all
wind sources are relevant. Instead, a smarter approach is suggested; only the wind source
closest to the point, and all wind sources that are direct neighbors of this source, are used
in the interpolation.

This requires a definition of direct neighbors. It is reasonable to base this on a Voronoi
segmentation of the domain; any boundary point falls into a volume, and for a wind source
to be considered in the interpolation no more than a single plane of separation in the
Voronoi segmentation may lie between the boundary point and the source. To compute the
Voronoi segmentation — or its dual — in three dimensions is non-trivial, as covered in Sec-
tion 2.5. Attempts were made to use the CGAL library, however the library is sizable and
complex, and while a Delaunay triangulation would provide the information desired, a full
triangulation is not needed. Only the information on which sources to use for interpolation
is sought, and a lot of work would go to waste.

A simpler approach

For the small number of wind sources the simulator may encounter (the space covered by
a simulation is typically on the order of a few kilometers squared, making it unlikely that
the upper bound of 32 measurement stations is exceeded) it may be possible that a simpler
approach with worse computational complexity proves acceptable. The information that is
sought is the neighborhood relationship between wind sources, and this is not required to

38

3.2 Wind

Figure 3.1: A problematic case of interpolation. A boundary cell (square) and multiple sources that
may give information about its true value. Green (+) sources are likely to contain good information
on the value at the sample point, yellow (?) may contain good information, while red (-) is unlikely
to contribute anything not already encoded in the other sources.

be defined like a Voronoi segmentation. Instead, definition 1 is proposed, and visualized
in Figure 3.2.

Definition 1. Two wind sources a, b are considered direct neighbors if and only if at no
point p on the straight line | between them there exists a third wind source ¢ ¢ (a,b) that
is closer to [than either a or b.

This definition leads to a very simple algorithm, the pseudo-code for which is included
in Listing 3.1. The C++ implementation is included in Appendix B.

Listing 3.1: Pseudo-code for neighbor-relations finding algorithm

for S in sources:
for N in sources where N != S:
Neighbor = True
for P in sources where P != N && P != S:
A = closest_point_on_line(P, line(S, N))
D = distance(P, A)
If D < distance(S, A) or D < distance(A, N):
Neighbor = False
Neighborhood_of_s = all N for which Neighbor is True

39

Chapter 3. Simulator improvements and extensions

(S
©
ap Co

ppb

Figure 3.2: Consider the neighborhood relationship of a towards b and c; c is a neighbor, while b is
not, because the distance cp is smaller than either of ap and pb.

This implementation of the algorithm is O(n?) in n wind sources, however the con-
stant factor is very small. Additionally, the neighborhood relationship commutes so only
half iterations of the second loop are required. Since the wind sources are spatially fixed,
this relation only has to be computed once at load time.

3.2.4 Setting the values

Given the wind source data and the boundary points in the kernel, the final value still needs
to be interpolated. The simulator now supports three different strategies; the value can be
fixed across the domain as in previous versions, it can be interpolated or it can be set to
the value of the nearest wind source. In the prior case, the wind source count is zero.
Otherwise the closest wind source is calculated by iterating over all sources calculating
the distance to them from the boundary voxel in question. These values are cached in local
storage. If the nearest-neighbor approach is to be used, the most significant bit of the wind
source count is 1, and the wind value is set to the value of the closest source.

In the case of interpolation, the distance from the boundary voxel to the closest source
and all neighbors of that source — dytq; — is summed by iterating over the wind sources,
skipping those with a zero bit in the neighbor bit-field and reusing the cached distances
to avoid re-computation. Finally, the velocities of these sources are accumulated in a
weighted sum, where the weight wsoyce Of @ source is given by Wspyrce = %, and
dsource 18 the distance to the source in question. These weights sum to 1, and the final value
is the wind velocity of all contributing sources linearly interpolated based on distance. The
complete source of the new wind_advect kernel is included in Appendix C.1.

3.2.5 Visualization

The wind sources can be rendered as spheres for visualization and debugging. These
spheres are generated at run-time by creating an equilateral tetrahedron and repeatedly
subdividing each face into 4 equilateral triangles, extruding vertices to radius distance
from the center of the sphere. This allows the generation of arbitrary accurate spheres,

40

3.3 Precipitation

however in practice, only 4 subdivisions are performed. The code to generate the spheres
is included in Appendix A.

3.3 Precipitation

When simulating areas of multiple square kilometers, treating precipitation as uniform
over the entire area is a significant simplification. Figure 3.3 shows a rain front, and
showcases how treating precipitation over the full area covered by the image would not
capture this weather phenomenon.

Figure 3.3: A weather front, showcasing the issue with the uniform precipitation simplifica-
tion. Image released under CCO (Public Domain) license by user sandid on website https:
//pixabal.com (last accessed: 2016-06-20).

There are three factors that determine precipitation levels in the simulator; the initial
distribution of snow particles, the redistribution of particles that hit the ground or leave the
domain, and the total number of particles. The latter is fixed for implementation reasons —
adding and deleting particles would require resizing GPU arrays which is costly — and can
be ignored if precipitation levels are considered as relative to this value.

3.3.1 Precipitation distribution

A non-uniform distribution of particles is required for varying precipitation. As the sim-
ulation is assumed to be entirely below the cloud layer — no snow particles are formed in
the simulation domain, they all enter from outside it — this can be described by providing a
probability of any point on the boundary to introduce a new particle. Maintaining the con-
straint that the snow particle count is fixed, this can be modeled with a p(z,y, z) € [0, 1]

41

https://pixabal.com
https://pixabal.com

Chapter 3. Simulator improvements and extensions

probability given a three dimensional boundary position. As described in detail in Sections
3.3.2 and 3.3.3, re-positioning can be limited to the top > plane of the simulation.

The PDF of the initial positioning and re-positioning of a snow particle then becomes a
two dimensional field of zero-to-one values; an ideal format for representation as a texture.
This also enables the use of hardware filtering to interpolate values at sub-texel granularity.
This texture is referred to as the distribution map in the following.

3.3.2 Initial distribution

Previous versions of the simulator have used drand4 8 for the initial distribution of snow
particles in all three dimensions. As soon as the simulations starts, any particle below
the terrain would be redistributed, leading to a large amount of particles reentering the
simulation at the very top of the domain in the second time step of simulation. The average
height of the terrain in the example scene seen in Figure 3.5 — the Mount St. Helens region
in Washington, USA — is ~ 38% of scene height, which implies that an initially uniform
distribution of particles leads to a re-positioning of ~ 38% of all particles in the first time
step of simulation.

The CPU-side PRNG is changed to the 32-bit reference implementation — pcg32 —
from [28], as part of an attempt to remove all usages of of the drand48 PRNG. This
includes the initial snow distribution, radii, terminal velocity, and rotation, as well as
the cloud noise texture initialization, and the temperature and humidity values used for
avalanche prediction.

Additionally, a change to the initial distribution domain is proposed; particle positions
below the terrain are rejected, effectively reducing the domain of valid initial positions
using the rejection method. A maximum number of rejections is introduced as a compile-
time constant, MAX_REPROJECTION_ATTEMPS, after which a position is accepted even
if outside the valid domain. This is acceptable due to the changes to re-positioning de-
scribed in Section 3.3.3, and motivated by the possibility of low precipitation levels across
the entire domain. Should the chance of precipitation be zero across the entire domain an
infinite loop is avoided using this concession.

3.3.3 Re-positioning

Once the simulation is running there are two ways in which a re-positioning can be trig-
gered; a particle hits the ground or leaves the domain. In the latter case, the particle has
previously wrapped the domain, that is its position in the direction it left the domain is
taken modulo the domain size. While giving a visually pleasing result, this is problematic
if the precipitation is not uniform, as it may wrap particles from high precipitation sections
into sections with no precipitation at all. Simply forcing a re-positioning of all particles
leaving the domain introduces an additional problem as re-positioning has previously en-
forced a fixed position along the axis of gravity; particles always enter the domain at the

2The plane at the opposite direction of gravity; in the simulator this is the maximum y-value in the domain

42

3.3 Precipitation

top when fully re-positioned. If no particles enter the domain at the side from which the
wind blows, this leads to sections of the ground getting very little to no snow accumulation,
as seen in Figure 3.4.

Main menu

Frames per second
Snow Particles
Windfield x
Windfield y
Windfield z
Screenshot —
- Wind
Simulate wind
Render obstacles
Render pressure
Render velocity lines
Periodic wind
Boundary wind strate..
& Wind direction

—_—

Figure 3.4: The lack of redistribution of particles at the sides leads to lack of snow on the side the
wind is coming from.

The proposed solution to this problem is an alteration of the old wrapping approach.
When a particle leaves the domain its position is wrapped as previously, however this new
position is not unconditionally accepted. A backwards interpolation of the position using
the current velocity of the particle is performed to find its zz-position in the re-positioning
plane. The probability of precipitation at this point is then looked up in the distribution
map; if valid the position is used, otherwise the particle is fully re-positioned. As this in-
terpolation may produce positions outside the domain, the distribution map should extend
beyond the domain’s x z-plane; the current implementation assumes it to be double the size
of the domain, centered over the domain center. Figure 3.5 shows how the distribution map
extends beyond the simulation domain.

Full re-positioinings are also applied to the case of snow particles hitting the ground.
In this case, previous simulator versions used Edissen’s PRNG to re-position the particle
into the top-most plane of the domain. As a non-uniform PDF must now be considered,
the rejection method is implemented. The reposition function is maintained, how-
ever its use in the particle update kernel is replaced with calls to a new redistribute

43

Chapter 3. Simulator improvements and extensions

Figure 3.5: The distribution texture, here as a flat cloud layer with color visualization, extends
beyond the simulation domain, which is the size of the terrain seen beneath.

function. The CUDA and OpenCL implementations of this function are included in Ap-
pendix D. The function performs an initial call to reposition before using the rejec-
tion method on it using the distribution map. It repeats this until either a valid position is
found or a maximum number of attempts, DISTRIBUTION_REJECTION_ATTEMPS, is
reached. Unlike the initial positioning, once this maximum number of attempts is reached,
the invalid value is not accepted. Instead, the particle is positioned far outside the do-
main, effectively marking it as inactive. To do this, the x-position is set to —10000; the
valid domain of x is non-negative, but a particle’s position may enter the negative during
simulation with the right wind conditions, so simply using the sign bit is insufficient. A
large enough value must be used that it is reasonable to assume that the particle cannot
have reached that position in a valid simulation step. As an inactive particle is outside
the domain, the next iteration of the simulation will attempt to re-position it, ensuring all
particles are considered at any iteration, even if not all particles are visible to the camera
or in the domain.

The visual effect of multiple re-positioning attempts is that the amount of snow par-
ticles in any cell of the top field of the domain given a fixed probability p..;; for that
cell may still vary, as the probability of any particle being in that cell is pgpny = %,
where pyotq; 1 the sum of probabilities for all cells. Thus, if it only snows in half the
domain (with a chance of 1.0 in all cells in that half) the amount of snow particles per
cell of that half is double the amount per cell if it snows (with chance 1.0 in all cells)
in the entire domain. If this effect is undesired — pq,, is wanted independent of pysq1 —
the DISTRIBUTION_REJECTION_ATTEMPS constant can be set to 1, however as p;otq;
becomes small this leaves a large amount of particles inactive in any given simulation
frame.

44

3.4 Clouds

3.3.4 PRNGs

As discussed in Section 2.4.1 Eidissen’s PRNG does not handle immediate reevaluations
on the same position well and a different PRNG must be used. A number of different
PRNGs of various quality and suitability to GPU implementation were discussed in Sec-
tion 2.4.1, which also mentions two libraries of interest. The libraries, cuRAND for the
CUDA back-end and c1RNG for the OpenCL back-ends respectively, have been imple-
mented into the simulator. Selecting PRNG is now performed using a selection of pre-
processor macros, enabling comparison of quality and performance of the various new
generators, as well as the old one. The use of the various PRNGs is implemented for
the reposition function only; the redistribute function also requires uniform
random numbers to reject against the PDF, but these are always supplied by a philox
generator. This is in part because the old generator cannot be used for this purpose at all
(it does not neatly generate a single value in the correct range, nor handle multiple sub-
sequent calls), and in part due to the issues some of these generators have, as discussed
in Section 2.4.1. The uniformity of these numbers are paramount to the validity of the
rejection method, and thus only the best PRNGs are suitable candidates. All the PRNGs
made available by the ones the libraries (except the cuRAND version of the Mersenne
Twister have been integrated into the simulator for testing and comparison, however
for reasons discussed in Section 4.3.1, the philox 4x32-10 generator is the preferred
default.

The generators are seeded per thread, with a combination of the GPU clock and thread
identifier in the CUDA implementation, and the CPU clock and thread identifier in the
OpenCL implementation, due to a lack of access to the GPU clock from within kernels.
This means the CUDA potentially has more variety in seed, as the clock value is likely to
vary at least between warps, whereas the CPU clock value passed to the OpenCL kernels
is invariant across all warps of a kernel invocation.

Issues

While CUDA kernels are compiled at program compilation time, the OpenCL programs
are compiled at run-time using the GPU driver’s internal compiler. This led to problems
with the c1RNG library, as some compilers did not support features in the pre-processor
that the library relies on. A debug print command had to be manually altered in every
included header (and the source for the compiled library, so as to match) to make the
library work on the test machined of Chapter 4. This complicates upgrading the library, as
the changes must be reapplied on every update.

3.4 Clouds

When dealing with non-uniform precipitation additional visualization techniques are re-
quired. It is desirable for the user of the simulator to quickly gain insight into the precip-
itation probabilities across the domain, and while the snow particles themselves provide

45

Chapter 3. Simulator improvements and extensions

a decent insight into recent trends, and the ground accumulation gives a good average
over time, inspecting instant values is difficult. Additionally, Section 3.1 highlights the
use of the simulator as a demonstration tool which motivates a visually pleasing technique
that is easily accessible. Clouds, while an imperfect indicator of precipitation, provide a
simple and intuitive visual indicator. This section describes the implementation of cloud
rendering in the simulator, both as a visualization tool and as a pleasing visual effect.

3.4.1 Technique choice

Section 2.8 introduces a number of techniques for cloud rendering that can be classified
into two categories; billboard-based and ray-marched techniques. The prior have a lower
computational cost, but have lower visual quality and may have artifacts if the camera
is inside the cloud layer. The simulator has a free-flying camera, and together with the
focus on GPU computing techniques central to the simulator history this motivated the
implementation of ray-marched clouds for visualization purposes.

When considering stereoscopic rendering, the billboarding technique may also present
as problematic. Billboards are flat primitives oriented to the camera. This causes two
issues with stereoscopic rendering: there are two cameras and the billboard must either be
oriented towards some third virtual camera between them so the geometry being rendered
is the same, or oriented towards each camera for their pass leading to different geometry
but simpler instancing. Either way, the flat surface has no depth information in the cloud,
leading to a loss of depth perception that the ray-marching does not have.

Finally, it is noted that the clouds are not taken into account in the shadow map ren-
dering, due to their high cost as discussed in Section 4.4

3.4.2 Technical details

Four different cloud visualization modes have been implemented:

Vanilla This is a pure visually pleasing rendering of clouds. The density is purely based
on FBM and the color is calculated using Equation 3.1.

Precipitation as color The density is FBM based, but the color is calculated using Equa-
tion 3.3, where blue is used to indicate the precipitation levels, and p is the precipi-
tation probability.

Precipitation as height The density is a mixed function of FBM for visually pleasing
detail and the precipitation probability p, where the density proportional to both p
and the height difference to the center of the cube. The color is calculated using
Equation 3.1.

Precipitation as threshold The density of the cloud is a pure function of the height dif-
ference to the center of the cube and the precipitation probability p. A threshold
Cihreshold 18 set by the user, and if p is below this threshold the density is zero. The
color is calculated using Equation 3.1.

46

3.4 Clouds

Rendering overview

The cloud layer is rendered as a cube of configurable height, spanning the full zz-plane
of the distribution map as described in Sections 3.3.1 and 3.3.3, and centered at the center
of the top plane of the domain. The ray-marching is based on [54]; in the fragment shader
of the cube a ray is constructed based on the world position of the rasterized point and
the camera position, which is then marched through the volume of the cube a maximum
number of steps or until it exits the cube. Special care must be taken in case the camera is
inside the cube to start marching at its position and not at the rasterized point of the cube
surface (which will be a back-face).

At each step of the march, the density of the cloud is evaluated, and this density com-
bined with the density difference between subsequent steps is used to update the accumu-
lated color of the ray. Fully evaluating light transport in participating media is costly, and
the color accumulation is not physically accurate; it is selected to give a visually pleasing
result at a very low computational cost (or simply to visualize precipitation probabilities
in certain visualization modes). The low cost is important, as this formula is evaluated at
every step of the ray traversal. The formula used is due Quilez [54], and is a linear com-
bination of a light gray with under-saturated blues and a darker gray with over-saturated
blues, with increasing saturation of blues as the ray marches deeper and a strong orange
hue added if the difference in density is large. This last term attempts to simulate the shim-
mer seen at the sun’s incident side of clouds. The density at a step is used to determine the
colour contribution at that point. The full formula for the RGBA color value at step k + 1
given a density d and a difference in density dd is listed in Equation 3.1.

Trgh = (C1% (1 —d)+Caxd) x C3 x 1.4+ Cy x §d) x d x 0.4 (3.1a)
D = (pgp d x 0.4) x (1—clb)) (3.1b)

Cy = (1.0,0.95,0.8), Co = (0.25,0.3,0.35),
C5 = (0.65,0.7,0.75), Cy = (1.0,0.6,0.3)

Step length

The step length s varies with the accumulated colour and is given in Equation 3.2. Itis a
function of the alpha value of the color and a minimum step distance s,,,;,. This step length
increases as the alpha approaches 1, that is the step size increases as the contribution of the
steps to the final color decreases, and is an important optimization as it avoids computation
in low-interest regions towards the back-end of the ray. At the front-end of the ray it
does not help however, and a lot of small steps may be preformed until the first non-zero
density part of the volume is encountered. Another optimization attempts to solve this by
performing a pre-march; the ray is marched in larger steps without evaluating the color
until the first non-zero density value is encountered, at which point the last step is rolled
back and that position is used as a starting point for the regular march.

47

Chapter 3. Simulator improvements and extensions

1

= mins 3.2

s =max(s = Ca) (3.2)
Trg=(1—-p)xdx04 (3.3a)

2y = (0.8 x (1.0 — d) + 0.35 x d) x (1.05+ 0.3 x 8d) x d x 0.4 (3.3b)
D = (g0, d % 0.4) x (1—)) (3.3¢)

Density function

The density functions for the various visualization modes are given in Equations 3.5, 3.6,
and 3.7, where f(z,y, z) is defined in Equation 3.4. Here fbm is a FBM function of
various number of octaves and p(z, z) is the probability of precipitation at a given position
of the distribution map. All values are forced into a [0, 1] domain. Cj.q. denotes the
scale of the noise pattern, and is eight times the cube’s size along the largest axis and
proportional along the others. C,¢f4c¢ is an offset into the noise function that is moved by
the wind and is coherent across frames. This creates the illusion of the cloud layer moving
with the wind. This offset is used in every density evaluation and must also be spatially
coherent, so the drift and additional cost of maintaining a texture of offsets is prohibitively
large. Instead, a single value is used, and it is moved by the wind value at the xz-center in
the top-most layer of the domain, interpolated as described in Section 3.2.3.

f(%y, Z) =0.8 x fbm((x,y, Z> X Cscale + Coffset) (34)
dyanitia(x,y,2) = 0.7 — /]y — 0.5| + 0.05/v0.5 + f(z,y, 2) 3.5
dheight = 0.7 = /|y = 0.5] + 0.05/\/p(z, 2) + f(x,y, 2) (3.6)

)07 - \/|y — 0.5+ 0.05/\/p(a:, z) if p(x, 2) > Cinreshotd
dthreshold - (37)

0.0 ifp(lﬁ Z) =< Cth?"eshold

The FBM function is implemented with 2, 3, 4, and 5 octaves. The noise function used
is due Quilez [67], and is included in Listing 3.2. It is a look-up table based value noise
that uses Hermite interpolation in the noise function. The lattice is a two-channel texture
containing one channel of white noise (generated using the PCG32 generator), while the
second channel is a replication of the first channel shifted by a constant amount (modulo
texture size). This saves a texture lookup at a different UV by amortizing both values into
one fetch.

48

3.4 Clouds

Listing 3.2: Values noise function used for FBM function

// Created by inigo quilez — iq/2013
// License Creative Commons Attribution -NC-SA 3.0 UP.
float noise(in vec3 x)
{
vec3d p = floor(x);
vec3 f = fract(x);
f = fxf%x(3.0—-2.0xf);

vec2 uv = (p.xy+vec2(37.0,17.0)xp.z) + f.xy;
vec2 rg = texture2D (iChannel0O ,(uv+0.5)/256.0,—-100.0).yx;
return mix(rg.x,rg.y,f.z);

When performing the ray marching in the shader, the number of octaves used in the
FBM function may gradually be reduced from five to two. This optimization aims to
reduce the cost of the density lookup as the contribution of the ray decreases, but may
cause artifacts as discussed in Section 4.4.2.

The complete cloud shader is included in Appendix E.

3.4.3 Real-world data integration

Using real-world precipitation data simplifies to supplying a precipitation texture in this
implementation. The simulator takes a series of single-channel images as input (or a con-
stant single texture) that is interpolated in time. The texel values are linearly interpolated,
leading to artifacts of the temporal resolution is low. The image series has a base name, a
shared extension, a image count, and a length in seconds per image. The files are names
[name] [index] . [extension], where index starts at O and is monotonically in-
creasing. When a texture series’ end is reached, the simulation may end or wrap the index,
depending on user selection in the GUI or configuration file.

The varying formats and resolutions of available radar data and weather images mo-
tivated the separation of conversion to this simple single-value texture format into pre-
processing steps. For testing, images from MET Norway were used. These radar images
have a 6-value color-scale with channels that overlap the background map, and instead of
writing a tool to separate out the data, the level and color curves feature of a typical image
editing suite — in this case GNU Image Manipulation Program® — were used to create the
image series.

An attempt was made to write a Python tool to convert NEXRAD binary data format
discussed in Sections 2.2.4 and 2.2.2, however multiple attempts at compiling and reading
the available data with the python arm radar toolkit failed, and a lack of documentation of
the format made writing a custom parser difficult.

Shttp://www.gimp.org (last accessed: 2016-06-20).

49

http://www.gimp.org

Chapter 3. Simulator improvements and extensions

3.5 Terrain

The format described in 2.3.1 — the de-facto standard for terrain models available from
public sources — is a text-based format. It is both spatially inefficient and slow to parse.
This motivates storage of simulation terrain in other formats, such as raw binary or image-
based height-maps. As the terrain is likely to be static between many simulation runs, it is
natural to perform a conversion offline before running the simulation.

A conversion script in Python due Lien [12] was found in the snow simulator source
code repository. This script did not work as intended; it struggled to parse the high-
resolution data-sets available via the United Kingdom Environment Agency (UKEA)*,
and on the data-sets it did read it produced garbage results. As the script was only a few
hundred lines of source code, and a full understanding of the format is required both to
debug and to implement, a re-implementation was conducted.

The re-implementation ignores the C-records, as the error has no practical implica-
tion on the conversion, and does not readjust the quadrangle defined in the A-records,
instead assuming that the data supplied in the B-records fit onto a grid. In the rare case
this is not true, adjusting the data would leave similar gaps in the resulting height-map,
and adjusting for orientation is not needed as the simulator currently has no concept of
absolute orientation”.

The re-implementation is included in full in Appendix G. It reads the raw data from the
USGS DEM file, scales the height to the full range of the 16-bit format, adjusts for a user
supplied minimum height if desired and writes the output to a square raw height-map. If
the data is not square or some data-points are missing, the missing data is set to minimum
height.

Available test data

The script was tested on data from the UKEA as well as data from NMA. The latter data
in some cases had formatting problems; the rows of B-records were not separated by
newlines but by varying amounts of spaces. Due to the size of these text files — the full
Dovre area SM data-set is ~ 1500 B — and the fact that all data is on a single line, even
minimal text editors such as vim and nano took multiple minutes to load and edit them.
A small, ad-hoc script was written that managed to fix those files in which the spacing was
constant —although is had to be adapted for each spacing, that is for each data-set—. Those
data-sets not fixed by this script were discarded due to the time cost of fixing these issues.

4LIDAR Composite DSM, Im datasets, avilable from https://data.gov.uk/dataset/
lidar-composite—dsm—-1ml (last accessed: 2016-06-20)
SThis may be useful if a dynamic day/night cycle is implemented in the future for sun simulation

50

https://data.gov.uk/dataset/lidar-composite-dsm-1m1
https://data.gov.uk/dataset/lidar-composite-dsm-1m1

3.6 Other Snow Simulator improvements

3.6 Other Snow Simulator improvements

During the work described above, the examination of the snow simulator history and uses
in Sections 2.9.1 and 3.1, and its use during demonstrations and at events, a number of
small issues and missing features were encountered and resolved. This section covers
these changes.

Subsection 3.6.1 covers support for stereoscopic rendering for demonstration purposes.
Subsection 3.6.2 investigates the use of hardware filtering in the OpenCL code path for
performance gain. To simplify performance analysis and automate longer testing runs,
a profiling automation system is integrated into the simulator, and is described in Sub-
section 3.6.3. Subsection 3.6.4 described the use of bindless textures in the CUDA code
path as an attempted optimization, while Subsection 3.6.5 investigates a stability problem
encountered in the wind simulation as the simulation volume’s resolution increased.

3.6.1 3D rendering

Babington [60] implemented stereoscopic rendering, however this version of the HPC-Lab
snow simulator was not used as a basis for later work, as covered in Section 2.9.1. This
section covers the re-implementation of stereoscopic rendering in the current version of
the simulator.

Hardware

The implementation targets NVIDIA 3D vision active shutter glasses as described in
Section 2.6.3. This limits support to NVIDIA hardware, and as the simulator uses OpenGL
it is further limited to the Quadro range of hardware®. Any 120hz-capable monitor or
projector suffices.

Software

Rendering in stereoscopic mode is a startup setting and can be enabled either through a
configuration file or in the startup GUI. The setting cannot be changed at run-time as it
requires a recreation of the OpenGL context — which in turn requires a recreation of the
application window — to select a stereoscopic framebuffer format. Recreating the context
is significantly complicated by sharing OpenGL resources with the OpenCL or CUDA
simulation and the 3D vision hardware supports switching between stereo and mono
externally. In light of this, it was deemed unnecessary to support run-time context recre-
ation.

The OpenGL context is recreated once; when transitioning from the startup GUI to
the simulation. If stereoscopic rendering is enabled, the framebuffer is created with quad-

6The OpenGL driver only supports stereoscopic framebuffers on the professional range of hardware, while
the DirectX drivers on windows also support the consumer range, GeForce

51

Chapter 3. Simulator improvements and extensions

buffering instead of dual-buffering. Here, each eye has a dual-buffered framebuffer to ren-
der to. When selecting framebuffer to draw to with glDrawBuf fer, the usual GL_BACK
is replaced with GL_BACK_LEFT andGL_BACK_RIGHT. A new class — StereoCamera
— was implemented that extends the old Camera class. It features an additional parameter,
the Inter-Pupilary Distance (IPD), as well as a method advanceEye that selects the cor-
rect back-buffer to draw to. The rendering function now loops over the number of eyes — 2
in this case — and renders everything that is to be stereo twice. The shadow map rendering
is hoisted outside this loop, as it is independent of the viewer’s camera. As the GUI is
rendered at fixed depth of zero to always be visible it has no desirable depth information,
however it must still be rendered twice to be visible to both eyes. Appendix H contains the
relevant source code of the rendering function and stereo camera class.

Challenges

The creation of an OpenGL context is handled by the GLFW library, however creation
of a quad-buffered 3D framebuffer on Linux did not work in GLFW 2.8. The library
was updated to GLFW 3.1.2, however the major version change brought changes that
propagated into other dependencies; Ant TweakBar — the GUI library in use — is not
officially maintained for GLEFW3. An unofficial, updated version was integrated and is
statically compiled into the simulator.

Virtual reality support was briefly investigated, however at the time the simulator still
relied on POSIX functionality and the accessible hardware — a Oculus DK1 HMD -
only had Windows drivers.

3.6.2 OpenCL sampling improvements

Section 2.7.2 mentions hardware texture filtering. The CUDA back-end of the simulator
takes advantage of this when looking up wind velocity both in the snow particle update
kernels and the wind advection kernel, however the OpenCL version did not.

Previously, the wind velocity had been maintained in an OpenGL buffer that was
shared with OpenCL through the OpenCL-OpenGL inter-operability API. This buffer was
sampled with the manual tri-linear filtering function sample_trilinear in Appendix
A.1.1 of [59], which added this manual sampling code to the simulator. It also includes
a texture sampling version, however this is neither mentioned in the text itself, nor is the
code in there CPU-side code to use it in the snow simulator source code repository.

Instead of creating an OpenGL buffer to hold wind velocities, and sharing is with
clCreateFromGLBuffer, a texture is now created in the OpenGL context that is
shared with c1CreateFromGLTexture. In the OpenCL kernels, these are sampled
with a call to read_imagef, which takes both the texture memory and a sampler object
as a parameter; the latter is a set of parameters describing addressing mode, whether co-
ordinates are normalized, and filter mode. To use hardware sampling the corresponding
filter mode must be set; for tri-linear filtering this is CLK_FILTER_LINEAR.

The usage of software or hardware filtering is selected with a compile-time define,

52

3.6 Other Snow Simulator improvements

enabling both automated performance analysis as described in Section 3.6.3 and support
for OpenCL devices that lack OpenGL-inter-operability support or support for hardware
filtering.

3.6.3 Performance analysis

When analyzing the performance impact of a change to the simulator, it must be run with
various configurations and potentially recompiled with different pre-processor commands
between each run. Additionally, the kernels or sections of code that are of interest must
be timed and the timings must be analyzed. Conditions must otherwise be stable, and
when storing the results for later analysis or reproduction it is important to note all related
software and hardware information. Doing all this manually, as appears to have previously
been done on work related to the HPC-Lab snow simulator, is tedious.

Appendix F reproduces parts of an automated system built into the snow simulator as
part of this thesis. The system consists of the Python script in Listing F.1, a header-only
library previously written by the author included in Listing F.3, and the TimingSystem
class of the snow simulator, shown in Listings F.1 and F.2. The scripts defines differ-
ent test profiles, each consisting of a set of configuration permutations and pre-processor
commands for the C++-compiler, nvce, or the driver’s OpenCL compiler. The timing
class consists of a set of ’timing events”; named sections of the program that are timed
only if the configuration file specifies it. When the script re-compiles the program in
AUTOMATED_TEXT_VERSION-mode, a number of frames to run each test is specified.
The simulator is started without the startup GUI, runs for the specified number of frames,
then exits. The benchmarking library calculates mean, median and standard deviation
for all timings collected and prints these, which are then annotated by the script with the
configuration and pre-processor permutations of the run. Finally, the script also notes
hardware configuration, operating system, and driver versions, before returning the con-
figuration and compiled version to its previous state.

The implementation of new test profiles requires adding them to the script, and the
introduction of new timing sections in the code requires adding them to the timing system
and calling into that system in the code in question. While this is intrusive, it is simple and
still requires comparable amounts or less work than the old system of manually writing
the timing code for each such section. The primary benefit of this system is that a test
profile can be launched and left to run unsupervised, and the data can be collected as a text
file at any time after completion. Testing a large number of configuration permutations
is also made simple by specifying a default configuration and only enumerating the deltas
from this per permutation to test. As these permutations are given as arrays in python, they
could be generated automatically if desired.

3.6.4 Bindless textures

This section describes the implementation of bindless texture, as described in Section
2.7.3. As mentioned, support for bindless textures was introduced in CUDA 7.5, and

53

Chapter 3. Simulator improvements and extensions

the use of this feature requires compute capability 3.0 or higher’.

The simulator uses texture memory for the wind velocity field, in addition to a number
of textures are used in the OpenGL rendering pipeline. Only the wind velocity field is also
handled by CUDA and of primary interest in this section.

The wind velocity texture is created as a cudaTextureObject_t instead of a
texture. This object is a combination of a resource description — cudaResourceDesc
— which contains type and reference to the data storage buffer (in the wind velocity tex-
ture’s case this is a cudaArray), and a texture description — cudaTextureDesc —
which contains filtering, address, and read modes for the texture. This descriptor is then
passed to each kernel that uses it.

OpenGL also supports bindless textures on certain hardware through the ARB_bindless_texture
extension, but the textures in the rendering path were not moved to this feature for reasons
discussed in 4.6.3.

3.6.5 Wind simulation stability problem

Figure 3.6 contains a screenshot of stability problems related to the numerical method
discussed in Section 2.1.2. The simulator uses a partially staggered grid and performs 5
iterations of SOR in its Poisson solver, yet there are still visible patterns in both falling
and accumulated snow. This section discusses two simple solutions to this problem. All
figures in this section are generated on a 128 x 32 x 128 volume with uniform precipitation
probability.

Improve the Poisson solver

This problem was discovered before a demonstration of the simulator at a university re-
cruitment event. Strapped for time to get stereoscopic rendering working, the SOR solver
was moved from 5 to 8 iterations and the coefficients were tweaked until the problem was
no longer noticeable. The problem appeared due to increased wind simulation volume
resolution relative to solver accuracy, and the additional SOR iterations scale solver result
accuracy to make up the lost ground.

Stochastic sampling

The wind simulation stores wind velocity at voxel centers, where a sample is a point sam-
ple of the wind field. If the goal is a believable visual result — which is the basis for
[4] which Eidissen [27] and Vik [57] [58] based this simulator on — then some numeri-
cal accuracy of any given step in the simulation may be sacrificed as long as the results
is visually correct over time. By sampling at some randomized point within the volume
instead of the center, the amortized sampling position will still be the center of the voxel,

"The Kepler architecture is the first to support it

54

3.6 Other Snow Simulator improvements

Figure 3.6: A visible pattern in accumulated snow due to stability problems in the SOR solver.

while the jitter in sample position within a single frame completely removes the problem.
An implementation of this approach using the philox PRNG is presented in Listing 3.3.

Listing 3.3: Stochastic lattice sampling in wind advection

/1 PRNG setup

curandStatePhilox4_32_10_t state;

int id = z * dim.z + y * dim.y + Xx;

curand_init ((unsigned long long)clock() + id, 0, 0, &state);
// Select random offset

float dx curand_uniform(&state) * 0.5f — 0.5f;

float dy = curand_uniform(&state) * 0.5f — 0.5f;

float dz = curand_uniform(&state) x 0.5f — 0.5f;

!/l Self —advect backwards in time (reuse v for position)
vV—>X (float)x — dt *x v—>x — dx;

v—>y (float)y — dt = v—=>y — dy;

v—>z = (float)z — dt x v—>z — dz;

// Sample the wind texture at that position

v = wind_vel_sample(wind_vel_tex , xv);

55

Chapter 3. Simulator improvements and extensions

56

Chapter

Results and Discussion

In this chapter the quality, performance cost, and problems of the implementation choices
in Chapter 3 are presented and discussed. Section 4.1 presents the methodology of analy-
sis, and an evaluation of the quality of the tools presented in Section 3.6.3. Sections 4.2,
4.3,4.4 and 4.5 cover their respective weather-related sections in Chapter 3, while Section
4.6 collects the various minor changes discussed in Section 3.6.

4.1 Performance analysis

Table 4.1 lists the hardware and software configurations used for testing.

ID | CPU GPU CUDA ver.
(0N GPU driver

MO | Intel Xeon E3-1200 NVIDIA GeForce GTX 980 | 7.5.17
Linux 3.16.0-31-generic | 352.39

M1 | Intel Xeon E3-1200 NVIDIA Quadro 5000 7.5.17
Linux 3.16.0-31-generic | 352.39

M2 | Intel Core i7 3930K NVIDIA GeForce GTX 670 | 7.5.17
Linux 4.5.4-1-ARCH 364.16

Table 4.1: Characteristics of the performance test machines.

Kernel and frame timings were collected using the performance analysis tools de-
scribed in Section 3.6.3. Occupancy and register usage data was collected using the
NVIDIA NSight and NVIDIA Visual Profiler tools. Attempts were made to
use NVIDIA’s Linux Graphics Debugger tool to analyze rendering performance
at the sub-frame level, however this tool reliably crashes during the context recreation dis-

57

Chapter 4. Results and Discussion

cussed in Section 3.6.1. CPU timing of rendering calls only measure CPU overhead, as
they do not block until the operation completes on the GPU, so rendering performance is
analyzed based on full frame timings; time between first rendering operation (the rendering
of the shadow map) and framebuffer presentation (framebuffer swap).

4.1.1 Tool analysis

The tools presented in Section 3.6.3 output CPU, GPU, and software information, time of
the test, the configurations and permutations used and timings with average, median, mean,
and a simple histogram to console or file. Having this information automatically gathered
made the post-analysis of performance tests run months prior possible. The script also
enabled the running of a larger test battery — such as the performance comparisons GPU
of PRNGs presented in Section 4.3.1 — on a machine without constant manual operation;
the test battery could be started and left unsupervised! until completion.

The timing system does not enforce sync points for sub-frame timings in the render-
ing system, which means it cannot measure the cost of individual draw calls or passes.
Enabling this, by forcing a pipeline flush inside the CPU-side timing blocks, is possible,
but will poison full-frame timings. If added, it should be a configurable option, and noted
in the output of the profiling script. The tool does not perform the full analysis of kernel
register usage, occupancy and memory access efficiency that tools like NSight provide.
While some of this information may be available through CUDA at no extra cost, the ob-
served performance of the simulator when NSight performs such analysis is an order of
magnitude worse than under normal operation. Because this data is primarily used to un-
derstand performance observations, it makes sense to use it as a supplementary tool; first
kernel timings are observed with the automated script, second the result is analyzed and
more detailed kernel statistics are used to explain the observed timings.

4.2 Wind

Figure 4.1 shows the three different boundary wind techniques. The two techniques that
use wind sources use two sources, both visualized as pink spheres. The lines indicate wind
velocity values at voxels. The images are taken below the terrain so the non-boundary
voxels are obstructed and the velocity in these cells is zero. Since only the boundary cells
are of interest to this discussion, this eliminates visual clutter.

4.2.1 Wind advection kernel implications

Table 4.2 and Figure 4.2 contain run-times, register usage per thread, and GPU occupancy
— the proportion of active warps to maximum active warps possible — for the various tech-
niques on the two test machines M0 and M2. The kernels are listed in C; the top half
are separate kernels for the three techniques, while the bottom half use a shared kernel

UIn practice supervision is advised so interfering external factors can be identified

58

4.2 Wind

(a) Constant boundary wind (b) Nearest wind source (¢) Wind source interpolation

Figure 4.1: Boundary wind techniques. The lines indicate directionality of wind velocity, their
length the speed.

with branching. These values were collected on a wind field of size 128 x 32 x 128 us-
ing NVIDIA visual profiler for the CUDA code-path. Timings are absolute value
ranges for more than 100 invocations?. Both the minimum and maximum number of wind
sources are considered.

Kernel R Omaz‘ 02 032 tg/LS tgg/JS
Machine M0

Constant 27| 93.8 | 85.9—-87.6 197 — 210
Nearest-Neighbor | 29 | 93.8 | 78.6 —81.9 | 76.0 — 77.7 | 241 — 252 714 — 784
Interpolated 31| 938 | 77.6—-83.9 | 70.1 —77.5 | 263 —267 | 920 — 1117
Constant 31| 93.8 | 85.8—86.6 197 — 210
Nearest-Neighbor | 31 | 93.8 | 79.3 —824 | 76.5 — 779 | 241 — 254 | 719 — 783
Interpolated 31| 938 | 781 —84.1 | 73.1—75.9 | 2563 — 267 | 928 — 1098
Machine M2

Constant 25| 93.8 | 89.4—289.9 257 — 262
Nearest-Neighbor | 26 | 93.8 | 80.1 —82.9 | 50.6 — 55.6 | 347 — 452 | 1752 — 1995
Interpolated 33| 70.3 | 59.7 —60.8 | 50.6 —52.2 | 447 — 469 | 2289 — 2398
Constant 30 | 93.8 | 89.6 —89.9 243 — 279
Nearest-Neighbor | 30 | 93.8 | 80.1 —82.0 | 50.8 —54.4 | 345 — 439 | 1797 — 1992
Interpolated 30| 93.8 | 716.9—77.2 | 56.4 —56.8 | 384 —434 | 2113 — 2132

Table 4.2: Statistics on the various wind advection kernels. The top half of each machine are
separate kernels for the various techniques, the rest are a shared kernel with run-time branching on
the GPU. R denotes registers used per thread, Oy,q. denotes theoretical maximum occupancy, and
O, denotes achieved occupancy at wind sources. ¢, denotes time used per invocation at = wind
sources. Occupancy is given in percent. The constant boundary wind kernels are invariant of wind
source count.

When the different code paths are shared in a kernel with run-time branching, the
simpler techniques have higher register usage, as the compiler must be conservative and
assume the worst case. It is interesting that the interpolated version with no branching

2 actual invocation count varies, as the tests were manually run with NVIDIA visual profiler.

59

Chapter 4. Results and Discussion

uses more registers than the branching version on M2, and given the run-times this is
likely the compiler applying an optimization that ends up hurting performance due to the
significantly lowered occupancy it results in. From the run-times it is obvious that run-
time branching has no additional cost over separate kernels; performance is similar except
in the discussed case where occupancy drops for the interpolated technique. Due to the
similar performance, lack of CPU side branching into multiple kernel invocations, less
code duplication due to the other parts of the wind_advect kernel being shared across
techniques, and smaller overall code footprint the shared kernel is preferable.

The cost of the wind advection kernel increases up to an order of magnitude on M2 as
the number of wind sources reaches the upper limits of the implementation. This is due to
both more computation and more memory bandwidth needed to interpolate wind source
values. An alternative approach would be to pre-compute the interpolated values at every
boundary point at the fixed wind source sample timings, and only interpolate temporally in
the kernel. This would eliminate the need to calculate distances to each source every frame
— instead requiring this computation only when wind source sample times are reached —
at the cost of additional bandwidth. It may also benefit performance to cache wind source
data in shared memory, however this was not investigated further due to time constraints.

60

4.2 Wind

2000

(b) Warp occupancy.

Nearest-Neighbor
Nearest-Neighbor
Nearest-Neighbor

Nearest-Neighbor

z
3

H
=z
g
H

(c) Kernel run times.

Figure 4.2: Statistics for the various wind advection kernel implementations for test machines M0
and M2. For source-based kernels, the lighter bars are for runs with 2 sources, the darker for runs
with 32 sources. The green squares in (b) are theoretical maximum occupancy.

61

Chapter 4. Results and Discussion

4.2.2 CPU implications

The neighborhood calculation was run on two WindSource collections of 2 and 32
sources, each source containing 6 samples. Table 4.3 contains the timings for comput-
ing the neighborhood information for all sources with the algorithm described in Listing
3.1 on test machine MO. It is noteworthy that even with the upper limit of 32 sources, the
time required to calculate the neighbor relations is less than the time it takes to load the
sources. This indicates that the simple approach is sufficiently fast at realistic wind source
numbers even with a naive implementation.

Machine | Source count | Load | Neighborhood compute
Mo 2 685 < lus
MO 32 390us 299us
M2 2 468 s lus
M2 32 4918us 395us

Table 4.3: Time used to load wind source data from file, and computing the neighborhood relation-
ships of all the sources.

4.2.3 Memory packing

As discussed in Section 3.2.2, the memory packing of the wind sources includes 4 bytes
of unused padding. This was originally intended for future expansion of the neighborhood
information, but may also be useful if the avalanche prediction system is updated to use
temperature and humidity interpolated from wind sources instead of fixed values.

A test with tight packing (7-floats per wind source) versus the suggested packing was
performed: Table 4.4 contains run-times over 301 invocations of the wind_advect ker-
nel with 32 wind sources and 128 x 32 x 128 wind simulation volume, on test machine
MO.

Packing Avg Min Max
8-float | 978us | 902us | 1102us
7-float | 972us | 925us | 1099us

Table 4.4: Run-times for the wind_advect kernel using different memory packing strategies for
the wind sources.

Even on the scalar architecture tested, the performance difference is negligible (< 1%),
and the memory wasted is limited to 128 bytes under current constraints to wind source
count. As OpenCL may also run on vector architectures (such as CPUs with Streaming
SIMD Extensions (SSE) or Advanced Vector Extensions (AVX) instruction set support)
where 16-byte alignment for vectors is important, the 8-float packing is preferable.

62

4.3 Precipitation

4.3 Precipitation

Figure 4.3 shows the snow accumulation on the terrain given a checkerboard distribution
pattern and no wind. It can be observed that the pattern on the ground matches the input
distribution, validating the correct behavior of precipitation probability control.

(a) Side view (b) Top view

Figure 4.3: A checkerboard precipitation pattern visualized with cloud color (a) and height (b) and
the snow accumulation observed after running the simulator for some time.

Figure 4.4 shows similar results with uniform wind along the z-axis; this is intended
to show that the re-positioning along the simulation volumes vertical sides, described in
3.3.3, correctly accounts for distribution. The checkerboard pattern selected is larger, as
the variance in snow particle mass leads to spread in particles as the wind impacts them.
Making the pattern larger makes it more obvious in the face of the softer boundaries intro-
duced by this variance.

Figure 4.4: The snow accumulation along the side of the domain at which the wind enters snow
accumulation along the side of the domain at which the wind enters for a checkerboard precipitation
pattern.

63

Chapter 4. Results and Discussion

4.3.1 RNGs

The quality of the PRNGs implemented are evaluated with statistical models in the work
summarized in 2.4.1. This section investigates their suitability for use in the snow sim-
ulator, first by inspection of snow particle distribution printed to images, and finally by
comparing their performance implications.

Quality

Table 4.5 contains image sequences of snow particles distribution for the 3 first re-positioning
attempts of the various PRNGs supported by the simulator. To generate the images, the
snow particle update kernel was altered to re-position every particle every frame with a
uniform precipitation probability of 1.0 — that is every re-positioning attempt is successful
—, and the resulting snow particle distribution was printed. This simulates the behavior
of multiple re-positioning attempts in a single time step over multiple, simplifying the
printing of distributions to images. The images color is normalized, so the pixel with the
most particles is always of full brightness. Only the cuda version of Eidissen’s PRNGs is
included as the OpenCL implementation is identical.

Eidissen’s PRNG fails as expected, but notably the CUDA XORWOW, and to a lesser
extent the CUDA MRG32, results also exhibit visible patterns. This is likely due to the
strategy used to seed the state for the individual threads. The others have no visual prob-
lems.

Performance

Table 4.6 and Figure 4.5 show timing information for the snow particle update kernel using
the various PRNGs for re-positioning. The OpenCL versions use the same generators in
redistribution, while the CUDA versions all use philox for this. For these tests, the
particle count is set to 2 * 10242, and the scene has a uniform precipitation probability
0.5. There are no OpenCL results for test machine M2 due to a problem with the OpenCL
support on this machine. The PRNGs identified as problematic in the last section are
ignored in the follow, but it should be noted that in addition to showing light patterns the
CUDA mrg32k3a implementation is also slower than the others>.

Among the CUDA implementations, the philox generator stands out as both the sec-
ond fastest behind Eidissen’s and the only one that handled multiple re-positioning grace-
fully. Among the OpenCL candidates there are more candidates that exhibit the quality
desired. All c1RNG generators are notably slower than Eidissen’s. The two MRG varia-
tions and the LFSR generator exhibit similar performance (mrg32k3a is slightly faster),
while the philox implementation is slightly slower. It is worth noting that LFSR113 is
not crush-resistant, as discussed in Section 2.4.1.

3This difference is markedly bigger on MO than M2 over multiple test runs. This is likely a driver-related
problem as the drivers differ while the CUDA version, and thus cuRAND implementation, are the same.

64

4.3 Precipitation

OpencL | OpenCL | OpencL

OpencL

OpencL

Cuda Cuda Cuda Cuda Cudz

Eidissen | mrgsik3p | mrga2k3a | ffsril3 |philox 4x32-| Eidissen | XORWOW | mrg32k3a |philox 4x32-| Eidissen | XORWOW | mrg32k3a |philox 4x32-
10 10 10

MO Mo Mo Mo Mo Mo M2

Figure 4.5: Run times for the snow update kernel with std. deviation for the various PRNGs used
for re-positioning. Blue are OpenCL, red are CUDA for the two test machines M0 and M2

For the CUDA code path, the philox generator is the obvious choice. It has sta-
tistically good quality and its performance is almost on par with the specialized PRNG
previously used. An argument could be made for the mrg32k3a implementation to be
used in the OpenCL back-end, as it is the fastest of the high quality generators. However, it
is desirable that the two compute back-ends produce similar results. Sharing the generator
between the implementation back-ends is seen as more valuable than the relatively small
performance gain of using mrg32k3a over philox.

While all generators are accessible to the user through pre-processor defines, the sim-
ulator defaults to using the philox generator regardless of back-end.

4.3.2 Rejection cost

Redistribution with rejection has as performance cost; multiple positions must be gener-
ated and the precipitation probability texture (the distribution map) must be sampled at
these positions and compared to a random value. As the number of re-positioning attempt
increases and the probability of precipitation decreases, the performance deteriorates, how-
ever the effect is only significant when the probability is very close to zero and for large
numbers of repositioning attempts.

This is observable in Figure 4.6, which plots the performance of the snow particle
update kernel for various combinations of re-positioning attempt counts and and uniform
precipitation probabilities (the probability of rejection of a generated position). These
tests use the same settings as the ones in Section 4.3.1, but all use the philox PRNG.
Timings are for the first 1000 frames, and this matters as with time the probability of

65

Chapter 4. Results and Discussion

0,0078125 TTTTe—
0,03125 TTTe——

Figure 4.6: Frame times (vertical) of the snow particle update kernel in ms for 4 million particles

with various precipitation probabilities (horizontal, range [0, 1]) and rejection attempts (depth, range
[64, 4096]).

inactive particles increases (when precipitation probability is less than 1), which increases
the number of re-positioning that take place over time, in turn degrading performance.

4.3.3 Distribution map

The radar data publicly available is of low temporal resolution, on the range of multi-
ple minutes. When coupled with the simple linear interpolation used between distribution
maps, the distribution does not appear to move “with the wind” when inspected. To appear
as if in motion, the movement of features in the map needs to no more than a few texels per
map. Kim et. al. [68] present a technique that uses feature detection to describe motion and
use this motion for better interpolation between frames in video. Similar approaches can
be used to generate better distribution maps between the available data, however the pro-
cessing time for the algorithm presented is on the order of seconds per frame for required
resolutions. This reinforces the decision to keep interpolation simple within the simulation
and allow for better interpolation as a pre-processing step; computation is expensive, but
the additional storage space for more distribution maps on disk is cheap.

66

4.3 Precipitation

OpenCL
PRNG mrg31lk3p erg32k3a 1fsrll3 philox
Ist . .
2nd ..
3rd
CUDA
PRNG XORWOW erg32k3a
Ist . .
2nd ..
3rd ..

Table 4.5: Immediate redistribution attempts for the various GPU PRNG implementations. Brighter
pixels indicate the part of the domain it maps to contains more particles. Pixel color is normalized.

67

Chapter 4. Results and Discussion

Machine M0
PRNG Back-end | Average time | Std. Dev.
Eidissen OpenCL 3.87Tms 0.55ms
mrg31k3p OpenCL 5.23ms 0.53ms
mrg32k3a OpenCL 5.14ms 0.43ms
1fsrll3 OpenCL 5.23ms 0.51ms
philox 4x32-10 | OpenCL 5.91ms 0.71ms
Eidissen Cuda 4.58ms 0.76ms
XORWOW Cuda 4.94ms 1.02ms
mrg32k3a Cuda 11.56ms 2.25ms
philox 4x32-10 Cuda 4.84ms 0.88ms
Machine M2
PRNG Back-end | Average time | Std. Dev.
Eidissen Cuda 6.92ms 0.17ms
XORWOW Cuda 7.32ms 0.10ms
mrg32k3a Cuda 8.12ms 0.28ms
philox 4x32-10 Cuda 7.24ms 0.09ms

Table 4.6: Run-time of snow update kernels with various PRNGs used for re-positioning.

68

4.4 Clouds

4.4 Clouds

The ray-marching approach, while widely used in offline rendering on volumetric data
[48], is not yet widely used in real-time applications due to its cost. The results presented
in this section show that while the cost is still large, high-end consumer GPUs may be able
to handle it if the cloud rendering is allowed to take up a large portion of the frame time.

4.4.1 Technique differences

Figure 4.7 shows the various techniques implemented on a 128 x 128 distribution map
over the Mt. St. Helens terrain.

(a) Vanilla; only for show

(b) Distribution as color

(c) Distribution as height (d) Thresholded distribution

Figure 4.7: The four cloud visualization techniques implemented with precipitation probability
(distribution) from Perlin noise. For (d) the threshold is set to 0.19.

Table 4.7 shows frame timings for the various cloud techniques implemented. Two
runs per technique are performed with the camera placed for typical scenarios (close to
the ground) and worst case performance (at one end of the cloud layer box, looking into

69

Chapter 4. Results and Discussion

it parallel with the edge of the cloud)*. Pre-marching was used (128 steps), and the step
lengths and counts for the varying octaves of FBM were fbms = (32,0.4), fbmy =
(32,0.4), fbms = (24,0.6), and fbmy = (64, 1.0). Distribution probability was constant
across the scene, and set to 0.5. Rendering resolution was 1680 x 1050, simulation volume
128 x 32 x 128 and the Perlin terrain shader setting was used, on the Mt. St. Helens terrain
at 7682 vertices.

Worst-case camera placement
Style MO: Avg. | MO: Std. Dev. | M2: Avg. | M2: Std. Dev.

No clouds 11.15ms 0.25ms 16.88ms 0.49ms
Vanilla 24.06ms 0.66ms 47.0ms 1.4ms
Colour vis. 24.51ms 0.42ms 43.9ms 3.1ms
Height vis. | 24.75ms 0.57ms 46.2ms 2.5ms
Thresholded | 15.66ms 0.27ms 24.84ms 0.46ms

Typical camera placement
Style MO: Avg. | MO: Std. Dev. | M2: Avg. | M2: Std. Dev.

No clouds 12.12ms 0.28ms 19.71ms 0.45ms
Vanilla 17.61ms 0.42ms 28.61ms 0.50ms
Colour vis. 17.72ms 0.35ms 28.37Tms 0.49ms
Height vis. | 17.68ms 0.36ms 28.53ms 0.56ms
Thresholded | 13.52ms 0.28ms 21.99ms 0.33ms

Table 4.7: Performance of the implemented cloud visualization styles in milliseconds over 1000
frames.

It is noteworthy that in the worst case, with these settings, the performance on test
machine M2 is no longer real-time. The performance is highly GPU bound, and the GPU
in M2 is a mid-range consumer device. In typical camera situations, where the camera is
near the ground and the clouds cover ~ % of the screen, performance is real-time even on
this device, however by looking at the difference of frame times with clouds and without,
a cost of ~ 9ms per frame may still be prohibitive for use in domains such as games.
For the snow simulator, the cost of other parts of the rendering is low enough that this is
acceptable.

Another thing to note is the difference in performance between the thresholded height
visualization, and vanilla versions. These differ only in their density function, where the
thresholded version has no FBM evaluation and the vanilla version has no distribution
texture lookup, and the height visualization version has both. Notably, the vanilla and
height visualization versions have very similar performance, while the thresholded version
is significantly faster, indicating that the shader is heavily bound by FBM evaluation, and
the additional texture lookup to look up distribution values is not prohibitive.

4Worst-case camera coordinates are (38, 25, 63), typical case coordinates are (38, 3, 63)

70

4.4 Clouds

4.4.2 Visual artifacts

Figure 4.8 shows some visual artifact that occurs due to optimizations on the ray-marching
step length, compared to an image of intended behavior. A large step length will prevent
the high-frequency noise from being adequately sampled, leading to a visually uninterest-
ing cloud. However, a smaller step size increases the required number of steps. In order
for the shader to be optimized (and potentially in-lined) properly by the compiler, a fixed
number of steps in the loop is preferred, with potential for early outs in cases where not
all iterations are needed. If the step size is small enough that the end of the volume is
not reached, artifacts may occur. As discussed in Section 3.4.2, variable step length is
used to improve performance, and care must be taken to ensure that the step length is
large enough that these artifacts are minimized. The problem is most common at local
extremes of cloud height encountered early in the march, when viewed along the cloud top
or bottom. In these cases, the pre-march (at large step length) ends and the color becomes
non-zero, but because the ray only spends a small mount of steps inside non-zero density,
the color is still close to zero, and the step length remains small. This leads to the march
terminating before the end of the cloud is reached, and a jarring black outline can be seen
if the ray would reach non-zero density further along if not terminated.

4.4.3 Optimization

Due to the costly nature of ray-marching a volume that spans more than the entire simula-
tion domain, some optimizations were implemented in the shader. This section evaluates
the performance versus quality trade-off of varying step length, and the performance gain
from the pre-marching optimization described in Section 3.4.2.

Pre-marching

The pre-marching optimization has no impact on visual quality in itself, but allows for
more aggressive step length increases and FBM octave decreases by increasing the prob-
ability that the high frequency sampling of the ray is not wasted outside the cloud. Table
4.8 includes timings without pre-marching and with various step lengths and maximum
step counts. In these test, the density map is set to 0.5 across the entire domain, and the
ray is marched 256 steps of no less than 0.5 length through 5 octave FBM. Pre-marching
must always be performed on the highest octave noise to guarantee correct results, which
in this case is the same 5 octave FBM. The timings are over 1000 frames, and the camera
was set to the same position as in the worst case timings in Section 4.4.1; all other settings
are shared with these tests, for vanilla clouds.

From these values, there is a small observable pure performance benefit to pre-marching
if the step length is larger than that of regular marching. In the case where the step length
is the same as with the regular march, performance degrades. This is more significant than
the one extra marching step (the final pre-marching step that is inside is undone before
regular marching is performed) should indicate, and likely explained by threads in a warp
staying synced to the worst thread of the wrap. However, if the step size is increased for

71

Chapter 4. Results and Discussion

(a) Under-sampling due to large marching step (b) Darkening artifacts due to early termination

(c) Expected result

Figure 4.8: Artifacts and issues related to ray-marching step length

Step count | Step length | Avg. time | Std. dev.

0 24.75ms 1.6ms
128 0.5 25.65ms 2.0ms
128 1.0 22.63ms 1.7ms
128 2.0 23.09ms 2.0ms
256 0.5 25.25ms 2.5ms
256 1.0 22.84ms 2.1ms
256 2.0 22.04ms 2.0ms

Table 4.8: Full frame times at various levels of pre-marching granularity and length on test machine
Mo

the pre-marching step, a performance improvement is observed.

Increasing the number of steps does not appear to have an impact, given that total step
length — steplength x stepcount — is large enough that the first non-zero density part of
the cloud, or the end of the cloud volume, is reached. In these tests, the cloud volume

72

4.4 Clouds

along the camera is 126 units long, so all but the (128, 0.5) case are guaranteed to be large
enough. Due to the camera placement in the cloud, reaching the end of the pre-marching
loop without a non-zero density value is unlikely even in this case.

Step length

Table 4.9 and Figure 4.9 contain timings for a number of different step length configura-
tions. The settings are as for the pre-marching discussion above, however pre-marching
is enabled at step length 1.0 and 192 steps. Higher octave noise is always sampled before
lower octave noise, that is if multiple octaves are used, these manifest in code as multiple
loops placed sequentially from highest octave to lowest octave.

30

Figure 4.9: Timings of the full rendering frame for the various test settings in Table 4.9.

The performance observed is very similar for all combinations of values, and except
cases 1 and 2 they all exhibit some degree of artifacts. Case 2 handles this test only due
to the camera placement; the worst-case ray distance in the test scene requires a total
marched distance of 182 units. However as the tested values all cover similar ranges —
with the exception of the first —, quality and performance comparisons on the test scene
are fair. These values indicate that the optimization of using cheaper noise and longer
(minimum) step lengths as the ray is traversed do not have a significant impact on per-
formance, while they do introduce minor artifacts compared to sampling at small steps
along the complete ray. The different noise functions in fact introduce a popping artifact
between frames when the first non-zero density of the ray moves, as different sections of
the ray density values change frequency. However, if the system is constrained the per-

73

Chapter 4. Results and Discussion

ID Step counts Step lengths Avg time | Std. dev. | Artifacts
I | (512,0,0,0) {0.4,0,0,0) 24.78ms | 2.2ms
2 (256,0,0,0) (0.4,0,0,0) 23.82ms 2.1ms
3 | (256,0,0,0) (0.7,0,0,0) 21.27ms | 1.8ms | minor
4 (256,0,0,0) (1.0,0,0,0) 20.58ms 1.5ms minor
5 | (128,0,0,0) (0.4,0,0,0) | 23.66ms | 1.7ms | major
6 | (128,64,0,0) (0.4,0.4,0,0) | 25.44ms | 1.9ms | minor
7 (128,64,0,0) (0.4,0.7,0,0) 23.52ms | 1.4ms minor
8 | (128,64,0,0) (0.4,1.0,0,0) | 24.46ms | 2.8s major
9 (64,64, 0,0) (0.4,0.4,0,0) 23.41ms | 2.3ms major
10 | (64,64,0,0) (0.4,0.7,0,0) | 23.47ms | 2.78ms | major
11| (64,64,64,0) | (0.4,0.4,0.7,0) | 23.52ms | 2.1ms | minor
12 | (64,64,32,0) (0.4,0.4,0.7,0) | 23.71lms 1.7ms minor
13 | (64,64,64,64) | (0.4,0.5,0.6,0.7) | 24.21ms 1.8ms minor
14 | (64,64,64,32) | (0.4,0.5,0.6,0.7) | 24.22ms | 1.9ms | minor
15 | (128,32,32,32) | (0.4,0.6,0.8,1.0) | 24.33ms | 2.0ms minor
16 | (32,24,16,128) | (0.4,0.4,0.7,1.0) | 21.95ms | 1.6ms | minor
17 | (128,0,0,128) | (0.4,0,0,0.4) | 23.06ms | 1.6ms | minor
18 | (192,0,0,64) (0.4,0,0,1.0) 23.7lms | 2.0ms minor

Table 4.9: Timings for various combinations of minimum step lengths and counts, and FBM octave
counts on test machine M0. Step lengths and counts are given as { fbms, fbma, fbms, fbms) tuple.
The Artifacts column is a subjective measure; it describes the severity the visual artifacts described
in Section 4.4.2, if present

formance requirements for sampling at maximal frequency along the entire ray cannot be
met, a concession must be made in quality. Either the sampling distance must be increased
(at the cost of under-sampling artifacts), the noise octaves decreased (at the cost of visual
fidelity) or the combined approach used (at the cost of popping and darkening artifacts).
If the camera is placed inside the clouds, as in these test, the prior two mentioned artifacts
are less obnoxious, but if the camera is placed at a greater angle to the cloud surface, both
popping and darkening artifacts are less likely to occur, and a combined approach with in-
creasing step count and length as octaves decrease prove useful. Test case 16 is an example
of such a configuration, and along with cases 3 and 4 (which exhibit under-sampling), it
sets itself apart by being faster than the rest.

4.4.4 Interaction with other systems

Shadow maps rendering as performed in the simulator uses a depth comparison to deter-
mine if a pixel is in shadow or not. This is only performed in the complex and Perlin
ground shaders. In shadow is a binary state, but clouds are not either fully opaque or fully
transparent. Due to this, clouds are not accounted for in the terrain shading.

If a shadow mapping technique that handles partial transparency is introduced in the

74

4.5 Terrain

future, rendering the clouds at full quality may still be too costly. Lower octave noise
may be good enough for this purpose however, and under-sampling should also prove less
of an issue, so it my be possible to include the clouds in a shadow mapping pass with
significantly lower performance cost than in the final rendering pass.

4.5 Terrain

Figure 4.10 contains images of the simulator running on three terrain models created from
Google Maps? height-map images, and 1m and 0.5m granularity LiDAR scans respec-
tively. The high resolution data-sets highlight problems with a height-map representation
in high-frequency areas such as forests and cities; while trees and buildings are captured,
the vertical nature of buildings or layer nature of trees cannot be accurately represented
with a height-map. This is being addressed in parallel to this thesis by Halsaunet [69].

Another issue is highlighted in Figure 4.11. Here the resolution of the terrain mesh
can be compared to the resolution of the wind simulation voxels (red marks obstructed
voxels).

The pre-processing script introduced in Section 3.5 takes 5.25s to convert the London
Heathrow terrain above into a raw height-map on test machine M0, indicating that pre-
processing this data is still beneficial to reduce loading times of the simulator itself.

4.6 Miscellaneous improvements

This section discusses the implications of the various implementations described in Section
3.6. These changes are primarily performance-related.

4.6.1 3D rendering

The performance implications of quad-buffered stereoscopic rendering are fairly predictable;
the scene must be rendered twice, with the exception of the reuse of the shadow map. As
can be seen in Table 4.10, the frame times double when the simulation is turned off (but
snow particles are still rendered). By comparing the performance of cases with and with-
out shadow maps but other settings identical (f.ex. 3 and 4), it is evident that the shadow
map pass costs so little it fails to register on these benchmarks, so the double frame times
is perfectly in line with expectations. The cloud rendering is prohibitively expensive on
the slightly older GPU in test machine M1 at the test resolution of 1680 x 1050. However,
as the 3D implementation is motivated by demonstration session for the HPC-Lab, the
performance must be evaluated in this perspective, and these demonstrations are typically
performed using an external processor of the lower resolution 10242768. While this is
only 45% of the pixels of the test setup, the target of 120Hz — or 8.33ms — is unlikely to

Shttps://maps.google.com (last accessed: 2016-06-20)

75

https://maps.google.com

Chapter 4. Results and Discussion

O [

(c) Heathrow, London, UK — 20482 vertices

Figure 4.10: Terrains imported from (a) Google Maps height-maps, (b) 1m-, and (c) 0.5m-
resolution LiDAR scans.

be met by all but the lowest fidelity settings tested, with significantly less particles than
tested here (2 million). GPUs can be upgraded, and in this eventuality the performance
is dominated by the vast majority of rendering time being spent in the cloud rendering.
While this is problematic, the alternative to the costly ray-marching is to use billboarding,
which has its own issues with stereoscopic rendering, as discussed in Section 3.4.1. The
optimizations mentioned for low-performance systems in Section 4.4.3 may be applied
with success in a controlled environment such as a demonstration booth, as the camera can
be set to a position where the artifacts are unlikely to be problematic.

76

4.6 Miscellaneous improvements

i

Figure 4.11: The terrain mesh of Lake District terrain, at 10242 vertices, compared to the obstacle
map at 128 x 32 x 128 voxels.

Hardware support

The lack of OpenGL 3DVision support on consumer hardware is limiting to current
implementation. The primary issue is that a high-end professional range card must be used
to render the clouds at full fidelity and high screen resolutions, while the usual advantages
of such cards (such as better double precision support) are not needed. This hardware
is significantly more expensive than the equivalent performance (on this simulation) in
consumer hardware.

Additionally, the lack of Linux drivers for high-end consumer HMDs are currently
the primary deterrent to implementing Virtual Reality (VR) support. Windows support in
the simulator has been brought nearer by the replacement of the POSIX-only PRNG used
on the CPU-side of the simulation, but there are still issues to overcome with the timing
system and incompatible versions of CUDA Microsoft’s C++ compiler®.

4.6.2 OpenCL sampling improvements

Due to incompatibilities in OpenCL and CUDA support on test machine M2, and OpenCL
kernel compilation errors on M1 likely due to hardware support issues, this performance

SMicrosoft’s newest compiler suite — Visual Studio 2015 — is not supported by CUDA 7.5, the latest
release. While the simulator should compile with older versions, repeated attempts to downgrade to the previous
(and supported) version Visual Studio 2012 on test machine M2 (which also has Microsoft Windows
installed) did not prove successful.

77

Chapter 4. Results and Discussion

ID | Terrain shader | Shadows | Clouds | Avg. Time | Std. Dev.
With simulation
2D rendering
1 Simple 16.77ms 0.27ms
2 Complex 33.33ms 0.27ms
3 Perlin 32.97ms 0.31ms
4 Perlin Y 32.97ms 0.28ms
5 Perlin Y Vanilla | 55.28ms 0.53ms
3D rendering
6 Simple 22.91ms 0.29ms
7 Complex 56.17ms 0.36ms
8 Perlin 55.41ms 0.34ms
9 Perlin Y 55.39ms 0.36ms
10 Perlin Y Vanilla | 101.72ms 2.0ms
Without simulation
2D rendering
11 Simple 5.72ms 0.026ms
12 Complex 22.36ms | 0.043ms
13 Perlin 22.17ms | 0.044ms
14 Perlin Y 22.15ms | 0.046ms
15 Perlin Y Vanilla | 44.41ms 0.071ms
3D rendering
16 Simple 11.80ms | 0.062ms
17 Complex 44.83ms 0.20ms
18 Perlin 44.68ms 0.11ms
19 Perlin Y 44.66ms 0.11ms
20 Perlin Y Vanilla | 90.63ms 0.16ms

Table 4.10: Full frame times with and without stereoscopic rendering for a variety of settings on test

machine M1, for the Mt. St. Helens terrain.

was only compared on machine M0.

Filtering strategy Particle update Wind advection
Avg. Std. Dev. | Avg. | Std. Dev.
Hardware 10.09ms | 0.091ms | 161us dus
Software 15.85ms | 0.19ms | 161us 4ps

Table 4.11: Comparison of kernel times for the affected kernels using hardware and software tri-
linear filtering of the wind velocity texture in the OpenCL simulation.

A significant improvement in performance of the snow particle update kernel can be
observed from the timings in Table 4.11 when hardware sampling is used. This is likely
partially because the filtering does not use compute unit time, but also because the GPU

78

4.6 Miscellaneous improvements

scheduler can better coalesce the texture fetches. The use of texture memory means the
data may be stored in a filtering- friendly tiled layout instead of linearly. This would in
turn reduce the number of cache lines read per fetch from the kernels as well.

4.6.3 Bindless textures

Bindless texture in the CUDA kernels was tested on test machines M0 and M2 only, as
the GPU in test machine M1 does not have support for the feature. Table 4.12 contains
kernel timings with and without the feature. The test is run at similar rendering settings
(1680 x 1050 resolution) and for 2 x 10242 particles.

Machine & Strategy | Particle update | Wind advection

Avg. | Std. Dev. | Avg. | Std. Dev.
MO Bindless 7.26 0.087 0.33 0.68
MO State-full 7.25 0.079 0.39 0.95
M2 Bindless 7.29 0.097 0.43 1.13
M2 State-full 7.30 0.10 0.47 1.23

Table 4.12: Time measurements of the relevant textures and full frame using bindless and state-full
textures. All times are in ms.

There was no significant change in performance between the settings, indicating that
the simulator does not have sufficient state changes in sampler and texture bindings to
cause significant CPU overhead; the feature primarily helps reduce overhead when the
driver validates state changes to texture or sampler bindings, and the number of such
changes in the cuda part of the simulation is very low, as only a single texture is used.

The rendering pipeline uses a more textures, depending on which techniques are se-
lected in the configuration, but the number of texture-related state changes is still in the
low double-digits. Everitt et. al. [70] shows that the problem the feature addresses is
prevalent in situations orders of magnitude larger by showing marked improvements in
a test case with 10000 quads using different textures. Since the OpenGL extensions re-
quired are not widely supported, and after observing the lack of performance impact on
the CUDA kernels, bindless support for the rendering pipeline was not implemented.

4.6.4 Wind simulation stability improvements

Section 3.6.5 describes two potential solutions to the wind simulation stability problem.
Figure 4.12 shows the visual result of the solutions, and Table 4.13 contains kernel timings
for the affected kernels over 1000 frames compared to the old implementation.

Increasing the SOR iteration count alone did no improve on the old version. It is likely
that a different (decomposition based) solver would need to be implemented, and it is
possible that performance improvements on GPUs in recent years make this feasible in
real-time, unlike when Eidissen [27] originally chose the SOR solver.

79

Chapter 4. Results and Discussion

(a) Increasing SOR solver iteration count (b) Stochastic sampling

Figure 4.12: The effect of the proposed solutions to the wind simulation stability problem. The
coefficients are in (a) are (1.7,1.5,1.2,1.1,1.1,1.05,1.02,1.01).

Solution Wind advect kernel | Poisson solver kernels
ol1d 0.22 & 0.12ms 0.58 = 0.14ms
SOR iteration increase 0.25 £0.073ms 1.09 & 0.40ms
Stochastic sampling 0.22 £0.071ms 0.59 £ 0.23ms

Table 4.13: The stability problem solutions’ effect on the wind simulation kernel run times.

The stochastic approach completely alleviates the problem, and as a visually pleasing
solution it is perfect, as it does not even affect performance noticeably. No attempt was
made to prove its physical validity however, and as such it is a band-aid solution only rec-
ommended for visual applications, such as demonstrations of video games. For simulation
runs where the snow accumulation accuracy is of primary interest, it is not recommended
to use this solution without first showing that it produces valid results.

80

Chapter

Conclusion and Future Work

As the processing power of GPUs increase, more and more complex real-time simulations
are made possible. Accurate snow simulations that include real weather data are of interest
for scientific, engineering, and entertainment purposes. The work performed as part of this
thesis to enhance the HPC-Lab snow simulator can be separated into two parts: the work
to enable use of real-world data as a basis for simulation, and the numerous minor changes
made to the simulator in an effort to improve it’s performance and visual quality, as well
as simplify future work on it.

5.1 Real-world data integration

The support for varied precipitation probability not only enables the use of interesting
source data for snow fall, but also motivated the change of the PRNG used in the simulator
to ones of higher quality. While the precipitation data available is of low resolution —
temporally and spatially — compared to the terrain models supported, the future may bring
more detailed data, or pre-processing may be used to infer or insert detail. The simulation
handles scaling resolution of this data seamlessly. Adding cloud rendering both improves
the visual quality of the sky, as the upper edge of the simulation volume is now less visually
jarring, and proved useful as a visualization tool for the precipitation probabilities. The use
of ray-marching shows that high-end consumer GPUs are capable of using this technique
in real-time — with the high-end test machine (M0) maintaining frame-rates of over 30HZ
even in the worst-case scenario —, however the cost may still be prohibitive for use in
applications where volumetric data only comprises a smaller part of the overall rendering
budget, such as most video games.

Prior work to support high-resolution terrain data was re-integrated into the simulator
tool chain, and as new terrain models of up to half-meter accuracy were tested, a number
of problems with the terrain representation emerged.

81

Chapter 5. Conclusion and Future Work

The wind simulation’s only inputs are the boundary wind and the terrain. To enable the
simulation to reproduce real-world conditions, uniform boundary wind is insufficient. The
integration of wind sources enables varied wind to better account for obstacles and varia-
tions in wind outside the simulation domain. The algorithm introduced to map boundary
voxels to contributing wind sources is shown to be sufficiently fast for the small number
of wind sources that may be expected, although the computational complexity is likely to
be problematic for larger numbers. For the current limitation of 32 wind sources, the cost
of calculating neighborhood relations is less than the time it takes to load the source data
from a solid state disk. The interpolation technique, as well as the data format for wind
sources, can be extended to support temperature and humidity for use in the avalanche
prediction model. The in-kernel interpolation of neighbor samples is shown to be at at
best 1.2x and at worst 4x the cost of using a constant value, however even in this case the
kernel in question amounts to < 10% of the total frame time.

5.2 Miscellaneous improvements

The OpenCL version’s performance is brought significantly closer to the CUDA version
by the introduction of hardware filtering when sampling the wind velocity texture. On
average, the snow particle update kernel is shown to have a speedup of 1.57.

Attempts to improve performance by using bindless textures yielded no gains. This
is attributed to the low number of texture state changes in the simulator; the problem the
technique solves simply is not present.

Stereoscopic rendering is re-introduced into the latest version of the simulator. The
performance cost of the new cloud rendering is an issue on the older hardware available
for testing which was unable to maintain the required frame-rate to be considered real-
time, however the visual performance is good, and as hardware performance scales ray-
marching should prove superior to the alternatives discussed. Limited driver support and
hardware access prevented the support of VR integration.

Issues related to the quality of the SOR solver used in the wind simulation were at-
tempted solved. Increasing the iteration count proved unsuccessful, while using stochastic
sampling points as a basis for interpolation in the wind advection appears to solve the
problem. This solution is sufficient for uses where visual quality is important and simu-
lator accuracy may be sacrificed, however it is not guaranteed to be accurate. Enabling
lower quality simulation while still yielding good visual results suggests it may be useful
for computer graphics and video game applications.

5.3 Future work

This section suggests some improvements to the simulator suggested by the work in this
thesis, or by problems encountered along the way.

82

5.3 Future work

5.3.1 Snow melting

Chang and Ryoo [71] use shadow mapping to simulate snow melting. The accumulated
snow in the simulator and existing support for shadow mapping make this an interesting
avenue of research. The cloud layer is currently not taken into account when rendering the
shadow map, and the density of clouds may not map cleanly to precipitation values, so a
separate cloud density map may be of interest. This data can be extracted from radar data.

To properly handle melting in the avalanche prediction model, temperature and hu-
midity should be interpolated from ground truth points similarly to the boundary wind,
and vary with light contribution based on the shadow map. If further accuracy is wanted,
phase change to water, and transport of water along the terrain under the snow may be
simulated, however this complicates the simulation, as another fluid simulation must be
performed in or under the snow layer to transport the water, and this water must be taken
account for as a source of temperature change in the avalanche prediction model. To vi-
sualize water transport, river rendering may prove useful as well, which would further
improve the visual quality of the simulator.

5.3.2 Terrain model improvements

The height-map based terrain is shown to be problematic in Section 4.5. The parallel work
of Halsaunet [69] may solve this problem by supporting arbitrary geometry, however the
terrain models available from public sources are still constrained to grid-based approaches.
It is likely that manual labor must be used to separate the geometry that can be represented
using the current terrain rendering approach (with tri-planar blending), and geometry that
needs different rendering techniques, such as trees and buildings. By supporting arbitrary
geometry the avalanche prediction model may prove useful in city-scape terrains to predict
roof avalanches.

5.3.3 Wind simulation improvements

The current wind simulation volume is a uniform grid, but not all regions of a simula-
tion contain features at the same scale. Along geometry, fine-grained vorticity may cause
vortexes that lead to important features such as snow cornices. To support small-scale vor-
ticity the current uniform grid approach would require the entire domain to be simulated
at that scale, which has both computational and memory requirements current hardware
does not support. Multi-resolution approaches are an interesting approach to this problem.

Balme et. al. [72] present an approach in which the simulation domain is an octree
that is subdivided in interesting regions, spending the majority of computational power
and memory on those regions that are deemed interesting. They use wavelet analysis to
determine which regions will have interesting features. This approach should integrated
decently with the terrain model introduced in [69], which use should be investigated for
the simulation domain.

83

Chapter 5. Conclusion and Future Work

5.3.4 Extended Multi-GPU support

The simulator has support for separate simulation and rendering GPUs, as is required
to work with certain scientific GPUs that don’t have display output ports. By dividing
the simulation work between multiple GPUs the simulation volume resolution may be
increased further. The current limitation of the simulation volume size is a combination of
memory requirements and computational cost of the wind simulation, and as the work of
Spampinato et. al. [73] shows, multi-GPU solutions may be well suited to alleviate these
issues.

5.3.5 Raytracing

The cloud rendering introduced in this thesis uses ray-marching, a performance optimiza-
tion of full ray-traced rendering. Ludvigsen [74] investigates the use of NVIDIA’s OptiX
ray-tracing platform for real-time use. As GPUs get faster, and potentially with use of
multi-GPU solutions, moving the entire rendering to ray-tracing may be feasable for im-
proved quality even under real-time constraints.

5.3.6 NEXRAD support

NEXRAD makes radar data available in binary form, and while, for reasons detailed in
Section 3.4.3, this thesis does not cover support for such data, it should be considered for
future addition. A pre-processing script using the available tools could convert the data,
and any other formats that may be available in the future, into the distribution textures the
simulator now supports with little to no changes to the core simulator code.

84

Bibliography

[1] D.J. Acheson, Elementary fluid dynamics. Oxford University Press, 1990.

[2] N. Foster and D. Metaxas, “Realistic animation of liquids,” Graph. Models Image
Process., vol. 58, pp. 471-483, Sept. 1996.

[3] J. Stam, “Stable fluids,” in Proceedings of the 26th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH *99, (New York, NY, USA),
pp. 121-128, ACM Press/Addison-Wesley Publishing Co., 1999.

[4] J. Stam, “Real-time fluid dynamics for games,” in the Game Developers Conference,
2003.

[5] M. Lieb, “A full multigrid implementation on staggered adaptive cartesian grids
for the pressure poisson equation in computational fluid dynamics,” Master’s thesis,
Technische Universitiat Miinchen, 2008.

[6] J. David M. Young, Iterative Methods for Solving Partial Difference Equations of
Elliptic Type. PhD thesis, Harvard University, Mathematics Department, Cambridge,
MA, USA, May 1950.

[71 A. C. Elster, Parallelization Issues and Particle-in-cell Codes. PhD thesis, Ithaca,
NY, USA, 1994. UMI Order No. GAX95-11889.

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in C (2Nd Ed.): The Art of Scientific Computing. New York, NY, USA: Cambridge
University Press, 1992.

[9] R. J. Doviak and D. S. Zrnic, Doppler radar and weather observations: Second
edition. Dover books on engineering, Dover publications, 2006.

[10] M. K. Yau and R. R. Rogers, A short course in cloud physics. Butterworth-
Heinemann, 1989.

85

[11] USDOI, “Standards for digital elevation models: Part 2 specifications,” Jan-
uvary 1998. http://nationalmap.gov/standards/pdf/2DEM0198.
PDF (last accessed: 2016-06-20).

[12] H. Lien, “Procedural generation of road for use in the snow simulator,” 2011. Mas-
ter’s thesis pre-project.

[13] D.E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1997.

[14] D. H. Lehmer, “Mathematical methods in large-scale computing units,” in Proceed-
ings of the Second Symposium on Large Scale Digital Computing Machinery, (Cam-
bridge, United Kingdom), pp. 141-146, Harvard University Press, 1951.

[15] A. Fog, “Instruction tables: List of instruction latencies, throughputs and micro-
operation breakdowns for intel, amd and via cpus,” January 2016. http://www.
agner.org/optimize/instruction_tables.pdf (last accessed: 2016-
06-20).

[16] N. A. Gershenfeld, The nature of mathematical modeling. Cambridge, New York:
Cambridge University Press, 1999.

[17] P.L’Ecuyer, “Good parameters and implementations for combined multiple recursive
random number generators,” Operations Research, vol. 47, pp. 159-164, 1998.

[18] P. L’Ecuyer, “Tables of Maximally-Equidistributed Combined LFSR Generators,”
Mathematics of Computation, vol. 68, no. 225, pp. 261-269, 1999.

[19] G.Marsaglia, “Xorshift rngs,” Journal of Statistical Software, vol. 008, no. 114, 2003.

[20] J. Hruska, “Amd destroys nvidia at bitcoin mining, can the gap ever

be bridged?,” 2013. http://www.extremetech.com/computing/
153467-amd-destroys-nvidia-bitcoin-mining (last accessed: 2016-
06-20).

[21] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator,” ACM Trans. Model. Comput.
Simul., vol. 8, pp. 3-30, Jan. 1998.

[22] M. Saito, “A variant of mersenne twister suitable for graphic processors,” CoRR,
vol. abs/1005.4973, 2010.

[23] J. Daemen and V. Rijmen, The design of Rijndael: AES — the Advanced Encryption
Standard. Springer-Verlag, 2002.

[24] “Specification for the advanced encryption standard (aes).” Federal Informa-
tion Processing Standards Publication 197, 2001. http://csrc.nist.gov/
publications/fips/fipsl97/fips—-197.pdf (last accessed: 2016-06-
20).

86

http://nationalmap.gov/standards/pdf/2DEM0198.PDF
http://nationalmap.gov/standards/pdf/2DEM0198.PDF
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.extremetech.com/computing/153467-amd-destroys-nvidia-bitcoin-mining
http://www.extremetech.com/computing/153467-amd-destroys-nvidia-bitcoin-mining
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[25] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, ‘“Parallel random numbers:
As easy as 1, 2, 3, in Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC 11, (New York, NY,
USA), pp. 16:1-16:12, ACM, 2011.

[26] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,
and J. Walker, “The skein hash function family.” Submission to NIST (Round
3), 2010. http://www.skein-hash.info/sites/default/files/
skeinl.3.pdf (last accessed: 2016-06-20).

[27] R. Eidissen, “Utilizing gpus for real-time visualization of snow,” Master’s thesis,
Norges teknisk-naturvitenskapelige universitet, 2009.

[28] M. E. O’Neill, “Pcg: A family of simple fast space-efficient statistically good
algorithms for random number generation.” Unpublished, http://www.
pcg-random.org/pdf/toms—-oneill-pcg-family-v1.02.pdf (last
accessed: 2016-06-20), 2015.

[29] P. L’Ecuyer and R. Simard, “Testu01: A c library for empirical testing of random
number generators,” ACM Trans. Math. Softw., vol. 33, Aug. 2007.

[30] J. K. Helsing and A. C. Elster, Noise Modeler: An Interactive Editor and Library for
Procedural Terrains via Continuous Generation and Compilation of GPU Shaders,
pp. 469-474. Cham: Springer International Publishing, 2015.

[31] K. Perlin, “Improving noise,” ACM Trans. Graph., vol. 21, pp. 681-682, July 2002.

[32] V. Chandrasekaran, M. B. Wakin, D. Baron, and R. G. Baraniuk, “Surflets: a sparse
representation for multidimensional functions containing smooth discontinuities,” in
Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on,
pp- 563—, June 2004.

[33] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental geometric
data structure,” ACM Comput. Surv., vol. 23, pp. 345-405, Sept. 1991.

[34] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational Geometry:
Algorithms and Applications. Santa Clara, CA, USA: Springer-Verlag TELOS, 3rd
ed. ed., 2008.

[35] J. R. Shewchuk, “Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator,” in Applied Computational Geometry: Towards Geometric Engineer-
ing (M. C. Lin and D. Manocha, eds.), vol. 1148 of Lecture Notes in Computer
Science, pp. 203-222, Springer-Verlag, May 1996. From the First ACM Workshop
on Applied Computational Geometry.

[36] W. Rollmann, “Zwei neue stereskopische methoden,” Annalen der Physik, vol. 166,
no. 9, pp. 168-187, 1853.

[37] J. B. Kaiser, Make your own stereo pictures. Macmillan, 1955.

87

http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.pcg-random.org/pdf/toms-oneill-pcg-family-v1.02.pdf
http://www.pcg-random.org/pdf/toms-oneill-pcg-family-v1.02.pdf

[38] NVidia, “Nvidia 3d vision pro and stereoscopic 3d.” Whitepaper, http://www.
nvidia.com/docs/I0/40505/WP-05482-001_v01l-final.pdf (last
accessed 2016-06-20), 2010.

[39] C. Hall and E. Betters, “Best vr headsets to buy in 2016, whatever
your budget,” 2016. http://www.pocket-1lint.com/news/

132945-best-vr—-headsets-to-buy-in-2016-whatever-your-budge

(last accessed: 2016-06-20).

[40] K.-E. Bystrom, W. Barfield, and C. Hendrix, “A conceptual model of the sense
of presence in virtual environments,” Presence: Teleoper. Virtual Environ., vol. 8,
pp. 241-244, Apr. 1999.

[41] J. LaViola and J. Joseph, “A discussion of cybersickness in virtual environments,’
SIGCHI Bull., vol. 32, pp. 47-56, Jan. 2000.

[42] J. Carmack, “Latency mitigation strategies,” 2013. Original article has been removed,
link to third party reproduction https://www.twentymilliseconds.com/
post/latency-mitigation—-strategies/ (last accessed: 2016-06-20).

[43] P. Norvig, “Teach yourself programming in ten years,” 2014. http://norvig.
com/21-days.html#answers (last accessed: 2016-06-20).

[44] R. J. Hovland, “Latency and bandwidth impact on gpu-systems,” Master’s thesis,
Norges teknisk-naturvitenskapelige universitet, 2008.

[45] F. Giessen, “A trip through the graphics pipeline 2011,”
2011. https://fgiesen.wordpress.com/2011/07/09/
a-trip-through-the-graphics—-pipeline-2011-index/ (last
accessed: 2016-06-20).

[46] T. L. Falch and A. C. Elster, “Register caching for stencil computations on gpus,’
in Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2014 16th
International Symposium on, pp. 479—-486, IEEE, 2014.

[47] W. Jarosz, Efficient Monte Carlo Methods for Light Transport in Scattering Media.
PhD thesis, UC San Diego, September 2008.

[48] A. Bouthors, F. Neyret, N. Max, E. Bruneton, and C. Crassin, “Interactive multiple
anisotropic scattering in clouds,” in Proceedings of the 2008 Symposium on Interac-
tive 3D Graphics and Games, 13D ’08, (New York, NY, USA), pp. 173-182, ACM,
2008.

[49] O. Elek, T. Ritschel, A. Wilkie, and H.-P. Seidel, “Interactive cloud rendering using
temporally coherent photon mapping,” Computers & Graphics, vol. 36, pp. 1109—
1118, 2012.

[50] O.Elek, T. Ritschel, C. Dachsbacher, and H.-P. Seidel, ‘“Principal-ordinates propaga-
tion for real-time rendering of participating media,” Computers & Graphics, vol. 45,
2014.

88

http://www.nvidia.com/docs/IO/40505/WP-05482-001_v01-final.pdf
http://www.nvidia.com/docs/IO/40505/WP-05482-001_v01-final.pdf
http://www.pocket-lint.com/news/132945-best-vr-headsets-to-buy-in-2016-whatever-your-budge
http://www.pocket-lint.com/news/132945-best-vr-headsets-to-buy-in-2016-whatever-your-budge
https://www.twentymilliseconds.com/post/latency-mitigation-strategies/
https://www.twentymilliseconds.com/post/latency-mitigation-strategies/
http://norvig.com/21-days.html#answers
http://norvig.com/21-days.html#answers
https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/

[51] I. Quilez, “Dynamic clouds,” 2005. Interactive demo, http://www.
iquilezles.org/www/articles/dynclouds/dynclouds.htm (last-
accessed: 2016-06-20).

[52] M. J. Harris, “Real-time cloud rendering for games,” in Proceedings of Game Devel-
opers Conference, pp. 21-29, 2002.

[53] B. Wronski, “Volumetric fog: Unified compute shader based solution to atmospheric
scattering,” in ACM Siggraph, 2014.

[54] I. Quilez, “Volumetric clouds,” 2013. Interactive demo, https://www.
shadertoy.com/view/Xs1GRr (last accessed: 2016-06-20).

[55] I. Saltvik, “Parallel methods for real-time visualization of snow,” Master’s thesis,
Norges teknisk-naturvitenskapelige universitet, 2006.

[56] 1. Saltvik, A. C. Elster, and H. R. Nagel, “Parallel methods for real-time visualiza-
tion of snow,” Applied Parallel Computing. State of the Art in Scientific Computing,
Lecture Notes in Computer Science ,, pp. 218-227, 2007.

[57] T. Vik, “Real-time visual simulation of smoke,” Master’s thesis, Norges teknisk-
naturvitenskapelige universitet, 2004.

[58] T. Vik, A. C. Elster, and T. Hallgren, “Real-time visualization of smoke through
parallelizations,” Advances in Parallel Computing, vol. 13, pp. 371-378, 2004.

[59] F. M. J. Vestre, “Enhancing and porting the hpc-lab snow simulator to opencl on
mobile platforms,” Master’s thesis, Norges teknisk-naturvitenskapelige universitet,
2012.

[60] K. Babington, “Terrain rendering techniques for the hpc-lab snow simulator,” Mas-
ter’s thesis, Norges teknisk-naturvitenskapelige universitet, 2012.

[61] A. Nordahl, “Enhancing the hpc-lab snow simulator with more realistic terrains and
other interactive features,” Master’s thesis, Norges teknisk-naturvitenskapelige uni-
versitet, 2013.

[62] M. A. Mikalsen, “Openacc-based snow simulation,” Master’s thesis, Norges teknisk-
naturvitenskapelige universitet, 2013.

[63] @. E. Krog, “Gpu-based real-time snow avalanche simulations,” Master’s thesis,
Norges teknisk-naturvitenskapelige universitet, 2010.

[64] @. E. Krog and A. C. Elster, “Fast gpu-based fluid simulations using sph,” in In-
ternational Workshop on Applied Parallel Computing, pp. 98—109, Springer Berlin
Heidelberg, 2010.

[65] O. L. Boge, “Avalanche simulations using fracture mechanics on the gpu,” Master’s
thesis, Norges teknisk-naturvitenskapelige universitet, 2014.

[66] 1. Kerr. Personal communication, 2015.

89

http://www.iquilezles.org/www/articles/dynclouds/dynclouds.htm
http://www.iquilezles.org/www/articles/dynclouds/dynclouds.htm
https://www.shadertoy.com/view/XslGRr
https://www.shadertoy.com/view/XslGRr

[67] 1. Quilez, “Noise - value - 3d,” 2013. Interactive demo, https://www.
shadertoy.com/view/4sfGzS (last accessed: 2016-06-20).

[68] K. Kim, M. Kim, D. Kim, and W. W. Ro, “True motion compensation with feature
detection for frame rate up-conversion,” in Image Processing (ICIP), 2015 IEEE In-
ternational Conference on, pp. 2260-2264, Sept 2015.

[69] 1. E. Halsaunet, “Snow simulation with terrain interactions,” Master’s thesis, Norges
teknisk-naturvitenskapelige universitet, 2016, expected. Title is tentative. Advisor:
Anne C. Elster.

[70] C. Everitt, G. Sellers, J. McDonald, and T. Foley, “Approaching zero driver over-
head,” in Game Deverlopers Conference, 2014.

[71] J.-K. Chang and S.-T. Ryoo, “Real-time rendering of snow accumulation and melt
under wind and light,” 2015.

[72] J. Balme, E. Brown-Dymkoski, V. Guerrero, S. Jones, A. Kessler, A. Lichtl, K. Lung,
W. Moses, K. Museth, N. Roberson, et al., “Extreme multi-resolution visualization:
A challenge on many levels,” 2015.

[73] D. G. Spampinato, A. C. Elster, and T. Natvig, “Modelling multi-gpu systems.,” in
Parallel Computing: From Multicores and GPU'’s to Petascale, vol. 19, pp. 562-569,
1O Press, 2010.

[74] H. Ludvigsen and A. C. Elster, “Real-time ray tracing using nvidia optix,” Euro-
graphics Short Papers, pp. 65-68, 2010.

90

https://www.shadertoy.com/view/4sfGzS
https://www.shadertoy.com/view/4sfGzS

Appendix

Procedural sphere generation

This appendix chapter includes the source code for procedural mesh generation of spheres
by repeated subdivision of a tetrahedron’s faces into 4 equilateral triangles that are ex-
truded to the sphere’s radius.

// Constructs the vertices of a sphere of given radius with given vertex count
void Wind:: GenerateUploadSphere (float =**verts_out,
unsigned short *xindices_out,
unsigned int xvert_count ,
unsigned int xface_count,
unsigned int recursion_level ,
float radius) {
unsigned int faces = 4, vertices = 4;
for(unsigned int i = 1; i <= recursion_level; ++i) {
vertices += faces x 3;
faces = 4;

}

xvert_count = vertices;

xface_count = faces;

float xverts = (floatx)malloc(sizeof(float) x 3 % vertices);
unsigned short xindices = (unsigned shortx)malloc(

sizeof (unsigned short) * 3 % faces);

// Construct tetrahedron
float vdist = radius / sqrtf(3.0);
float xtverts = &verts[vertices * 3 — 4 x 3];

unsigned short *xtindices = &indices[faces * 3 — 4 % 3];

tverts [0] = vdist; tverts[1] = wvdist; tverts[2] = vdist;
tverts [3] = vdist; tverts[4] = —vdist; tverts[5] = —vdist;
tverts [6] = —vdist; tverts[7] = vdist; tverts[8] = —vdist;
tverts [9] = —vdist; tverts[10] = —vdist; tverts[11] = vdist;

91

tindices [0]
tindices [3]
tindices [6]
tindices [9]

; tindices[1]
; tindices [4]
; tindices [7]
; tindices [10]

; tindices[2]
; tindices [5]
tindices [8]
; tindices [11]

1l
W W W N

1l
— O O O
Il
NN = =

/!l Refine the sphere by dividing each face into 4 equilateral triangles
/! and extruding vertices to radius

unsigned int level_vert_count = 4, level_faces = 4;
for (unsigned int i = 1; i <= recursion_level; ++i) {
unsigned int last_vert_count = level_vert_count;

level_vert_count += level_faces x 3;
level_faces x= 4;
float *nverts = &verts[vertices * 3 — level_vert_count *x 3];
unsigned short *xnindices = &indices[faces * 3 — level_faces *x 3];
for (unsigned int idx = 0, vidx = 0, iidx = O0;
idx < (level_faces / 4) x 3;
idx += 3) {
unsigned short idx0 tindices [idx 1;
unsigned short idxl tindices[idx + 1];
unsigned short idx2 = tindices[idx + 2];

unsigned int idx3 = vidx / 3;

float midx = (tverts[idx0 x 3] + tverts[idxl * 3 1 / 2.f;
float midy = (tverts[idx0 * 3 + 1] + tverts[idxl *x 3 + 1]) / 2.f;
float midz = (tverts[idx0 *x 3 + 2] + tverts[idx]l * 3 + 2]) / 2.f;
float scale = radius / sqrtf(midx * midx + midy * midy + midz * midz);
midx *= scale;

midy *= scale;

midz *= scale;

nverts [vidx++] = midx;

nverts [vidx++] = midy;

nverts [vidx++] = midz;

midx = (tverts[idx0 x 3] + tverts[idx2 x 3 1 /7 2.f;

midy = (tverts[idx0 *= 3 + 1] + tverts[idx2 % 3 + 1]) / 2.f;

midz = (tverts[idx0 *x 3 + 2] + tverts[idx2 * 3 + 2]) / 2.f;

scale = radius / sqrtf(midx * midx + midy * midy + midz * midz);
midx x= scale;

midy *= scale;

midz *= scale;

nverts [vidx++] = midx;

nverts [vidx++] = midy;

nverts [vidx++] = midz;

midx = (tverts[idx]l % 3] + tverts[idx2 * 3 1 / 2.f;

midy = (tverts[idx1l *= 3 + 1] + tverts[idx2 x 3 + 1]) / 2.f;

midz = (tverts[idxl x 3 + 2] + tverts[idx2 x 3 + 2]) / 2.f;

scale = radius / sqrtf(midx * midx + midy * midy + midz * midz);

midx *= scale;
midy == scale;
midz *= scale;

92

nverts [vidx++] = midx;
nverts [vidx++] = midy;
nverts [vidx++] = midz;
nindices [iidx++] = idx0 +
nindices [iidx ++] = idx3;
nindices [iidx ++] = idx3 +
nindices[iidx++] = idx1l +
nindices [iidx ++] = idx3 +
nindices [iidx++] = idx3;
nindices [iidx++] = idx2 +
nindices [iidx ++] = idx3 +
nindices [iidx++] = idx3 +
nindices [iidx++] = idx3;
nindices [iidx ++] = idx3 +
nindices [iidx++] = idx3 +
}
tverts = nverts;
tindices = nindices;
}
xverts_out = verts;
sindices_out = indices;

(level_faces

] .
(level_faces

s

2;

(level_faces
1 .

s

2;

2;

1 .

)

/ 4) % 3;

/ 4) x 3;

/ 4) % 3;

93

94

Appendix

WindSource neighborhood
evaluation

This appendix chapter contains the source code for the novel neighborhood evaluation
approach for wind sources.

// Potential contains all wind sources, count is the number of wind sources
// in potential that are used. Exclude is a bitmask that identifies which
// neighbors to exclude from consiredation, usually only ourselves.
uint32_t WindSource:: FindNeighbors (WindSource potential [32],

uint32_t count,

uint32_t exclude)

{

uint32_t neighbors = 0;

for(uint32_t i = 0; i < count; ++i) {
if (exclude & (1<<i)) continue;
// Calculate a line between this and it
/!l We define p0 to be this point
float d[3] = {
potential[i].pos[0] — this—>pos[0],
potential[i].pos[1l] — this—>pos[1],
potential [i].pos[2] — this—>pos[2]

}s
float dist = std::sqrt(d[0]*xd[0] + d[1]xd[1] + d[2]xd[2]);
if(dist == 0.f || dist == —0.f) {

printf ("Two sources are in identical positions.”
“Ignoring their neighbor—relations .”);
continue ;

}

bool closer = false;

95

for(uint32_t j = 0; j < count; ++j) {
if(j == i) continue;
if (exclude & (1<<j)) continue;
// Calculate the distance from this source to the line from above
float p[3] = {
potential[j].pos[0] — this—pos[O0],
potential[j].pos[1] — this—>pos[1],
potential [j].pos[2] — this—>pos[2]
}s
float dotPD = d[0]*p[0] + d[1]*p[l] + d[2]*xp[2];
float t = dotPD / (dist % dist);
/!l 1f we’re outside the line segment we must be further away than
/] either end point, so we’re not a neighbor
if(t < 0.0 || t> 1.0) continue;

// Find the closest point
float pt[3] = {
this —>pos[0] + d[0] =* t,
this—>pos[1] + d[1] * t,
this —>pos[2] + d[2] = t
s
float distPT = std::sqrt((pt[O0] potential [j].pos[0])
(pt[0O] potential[j].pos]|
(pt[1] potential[j].pos[1])
(pt[1] — potential[j].pos|[
(pt[2] — potential[j].pos[2])
(pt[2] — potential[j].pos[2])):
// If potential[j] is closer to the line from this to potential[i]
// than that point is from either this or potential[i], then
/!l potential[i] is not a neighbor, since it is hidden by
/!l potential[j]’s influence.
if (distPT < std::min(t, 1.f — t) % dist) {
closer = true;
break ;

* + * 4+ *

}
}

// If none if the other points obscure it, this point is a neighbor of
/! the point this method is called on.
if (! closer) {
neighbors |= 1 << i3
}
}

return neighbors;

}

96

Appendix

Wind interpolation advection
kernels

This appendix chapter includes the various versions of the wind_advect kernel in the
wind simulation. Only the CUDA version is included, as the OpenCL versions are equiv-
alent. Note that only the code in the else clauses are original to this thesis, except the
constant version (Section C.2) which is entirely prior work (no code by the author).

C.1 Branching version

__global__ void wind_advect(cudaTextureObject_t wind_vel_tex ,
cudaPitchedPtr u,
cudaPitchedPtr p,
cudaPitchedPtr obs,
const dim3 dim,
const float dt,
float4 boundary,
uint source_count,
float *xsources) {
INIT(u); // calculate x, y, z coordinates
float4 xv = (float4 =x)shared + x; // use shared memory as temp storage
int mask = REF(int, obs, x, y, z); // obstacle mask
xv = REF(float4 , u, x, y, z);
volatile int zero = 0;
tiny
if(x > zero && x < dim.x—1 &&
y > zero && y < dim.y—1 &&
z > zero && z < dim.z—1) {
// self—advect backwards in time

97

vV—>X (float)x — dt *x v—X;
v—>y (float)y — dt * v—=>y;
v—>z = (float)z — dt x v—>z;

*v = wind_vel_sample (wind_vel_tex , *v);

// check for obstacle
if (mask & (VOX_SELF | VOXLEFT | VOXRIGHT)) v—=>x = zero;
if (mask & (VOX_SELF | VOXABOVE | VOXBELOW)) v—>y = zero;
if (mask & (VOX_SELF | VOX_UP | VOXDOWN)) v—>z = zero;
else {
uint source_count_pure = source_count & Ox7fffffff;
/! We use shared memory as local storage here; it’s not actually shared!
float wind_source_distances [32];
// Calculate distance to sources
for(uint i = 0; i < source_count_pure; ++i) {

float dx = sources[i*8] — (float)x;

float dy = sources[i*8+1] — (float)y;

float dz = sources[i*8+2] — (float)z;

wind_source_distances[i] = sqrt(dx * dx + dy *x dy + dz *x dz);
}
// Find the closest source
uint us = 0;
float mindist = 3.40282347E+38F; // FLTMAX
for(uint i = 0; i < source_count_pure; ++i) {

if (wind_source_distances[i] < mindist) {

mindist = wind_source_distances[i];
us = i;

}
}
if (source_count & 0x80000000) {

// Nearest neighbor only

v—>xXx = sources|[us*8+4];
v—>y = sources[us*x8+5];
v—>z = sources[us*8+6];
} else {

// Calculate total distance to all neighbors and closest
uint32_t xneighbors = (uint32_tx)&sources[us*8+3];
float dist = mindist;
for(uint i = 0; i < source_count_pure; ++i) {
if (*xneighbors & (1 << i)) {
dist += wind_source_distances|[i];

}

I

// Calculate average wind
float3 vel;

vel.x = 0;

vel.y = 0;

vel.z = 0;

for(uint i = 0; i < source_count_pure; ++i) {

if (*xneighbors & (1 << i) || i == us) {
float f = wind_source_distances[i] / dist;
vel.x += sources[i*x8+4] * f;
vel.y += sources[i*8+5] * f;
vel.z += sources[i*8+6] *x f;

}
}
v—>>x = vel.x;
v—=>y = vel.y;
v—>z = vel.z;
}
} else {
*v = boundary;

}
}
REF(float4 , u, x, y, z) = *v;

// also set pressure field to O
REF(float, p, x, y, z) = 0.0f;

C.2 Constant only version

__global__ void wind_advect(cudaTextureObject_t wind_vel_tex ,
cudaPitchedPtr u,
cudaPitchedPtr p,
cudaPitchedPtr obs,
const dim3 dim,
const float dt,
float4 boundary,
uint source_count ,
float xsources) {
INIT(u); // calculate x, y, z coordinates
float4 xv = (float4 =x)shared + x; // use shared memory as temp storage
int mask = REF(int, obs, x, y, z); // obstacle mask
xv = REF(float4 , u, x, y, z);
volatile int zero = O0;

if(x > zero && x < dim.x—1 &&
y > zero && y < dim.y—1 &&
z > zero && z < dim.z—1) {
// self—advect backwards in time
v—=>x = (float)x — dt x v—>Xx;

v—=>y = (float)y — dt x v—>y;
v—>z = (float)z — dt *x v—>z;
xv = wind_vel_sample(wind_vel_tex , *v);

// check for obstacle
if (mask & (VOX_SELF \ VOX_LEFT | VOXRIGHT)) v—>x = zero;

99

if (mask & (VOX_SELF | VOXABOVE | VOXBELOW)) v—>y = zero;
if (mask & (VOX_SELF | VOXUP | VOXDOWN)) v—>z = zero;
} oelse {

*v = boundary;
}

REF(float4 , u, X, Y, Z) = xV;,
/1l also set pressure field to O
REF(float, p, x, y, z) = 0.0f;

C.3 Nearest-Neighbor only version

__global__ void wind_advect(cudaTextureObject_-t wind_vel_tex ,
cudaPitchedPtr u,
cudaPitchedPtr p,
cudaPitchedPtr obs,
const dim3 dim,
const float dt,
float4 boundary,
uint source_count,
float *xsources) {
INIT(u); // calculate x, y, z coordinates
float4 xv = (float4 =x)shared + x; // use shared memory as temp storage
int mask = REF(int, obs, x, y, z); // obstacle mask
xv = REF(float4, u, x, y, z);
volatile int zero = 0;

if(x > zero && x < dim.x—1 &&
y > zero && y < dim.y—1 &&
z > zero && z < dim.z—1) {
/l self—advect backwards in time
v—>x = (float)x — dt x v—=>x;

v—=>y = (float)y — dt x v—=>y;
v—=>z = (float)z — dt x v—>z;
*v = wind_vel_sample(wind_vel_tex , *v);

// check for obstacle
if (mask & (VOX_SELF | VOXLEFT | VOXRIGHT)) v—=>x = zero;
if (mask & (VOX_SELF | VOXABOVE | VOXBELOW)) v—>y = zero;
if (mask & (VOX_SELF | VOXUP | VOXDOWN)) v—>z = zero;

} oelse {

uint source_count_pure = source_count & Ox7fffffff;

// We use shared memory as local storage here; it’s not actually shared!

float wind_source_distances [32];

// Calculate distance to sources

for(uint i = 0; i < source_count_pure; ++i) {
float dx = sources[i*x8] — (float)x;
float dy = sources[i*x8+1] — (float)y;

100

float dz = sources[i*8+2] — (float)z;

wind_source_distances[i] = sqrt(dx x dx + dy *x dy + dz x dz);
}
// Find the closest source
uint us = 0;
float mindist = 3.40282347E+438F; // FLTMAX
for(uint i = 0; i < source_count_pure; ++i) {
if (wind_source_distances[i] < mindist) {
mindist = wind_source_distances[1i];
us = i;
}
}
// Nearest neighbor only
v—>X = sources|[us*8+4];
v—>y = sources[us*8+5];
v—>z = sources[us*8+6];

}

REF(float4 , u, x, y, z) = *v;
// also set pressure field to O
REF(float, p, x, y, z) = 0.0f;

C.4 Interpolation only version

__global__ void wind_advect(cudaTextureObject_t wind_vel_tex ,
cudaPitchedPtr u,
cudaPitchedPtr p,
cudaPitchedPtr obs,
const dim3 dim,
const float dt,
float4 boundary,
uint source_count ,
float xsources) {
INIT(u); // calculate x, y, z coordinates
float4 xv = (float4 =x)shared + x; // use shared memory as temp storage
int mask = REF(int, obs, x, y, z); // obstacle mask
xv = REF(float4, u, x, y, z);
volatile int zero = 0;

if(x > zero && x < dim.x—1 &&
y > zero && y < dim.y—1 &&
z > zero && z < dim.z—1) {
// self—advect backwards in time
v—>x = (float)x — dt x v—=>x;
v—=>y = (float)y — dt * v—=>y;
v—>z = (float)z — dt x v—>z;

xv = wind_vel_sample(wind_vel_tex , *v);

101

// check for obstacle
if (mask & (VOXSELF | VOXLEFT | VOXRIGHT)) v—=>x = zero;
if (mask & (VOX_SELF | VOXABOVE | VOXBELOW)) v—>y = zero;
if (mask & (VOX_SELF | VOX.UP | VOXDOWN)) v—>z = zero;
} oelse {

uint source_count_pure = source_count & Ox7fffffff;
/! We use shared memory as local storage here; it’s not actually shared!
float wind_source_distances [32];
// Calculate distance to sources
for(uint i = 0; i < source_count_pure; ++i) {

float dx = sources[i*8] — (float)x;

float dy = sources[i*8+1] — (float)y;

float dz = sources[i*8+2] — (float)z;

wind_source_distances[i] = sqrt(dx * dx + dy *x dy + dz *x dz);
}
// Find the closest source
uint us = 0;
float mindist = 3.40282347E+38F; // FLTMAX
for(uint i = 0; i < source_count_pure; ++i) {

if (wind_source_distances[i] < mindist) {

mindist = wind_source_distances[1i];
us = i;

}
}
// Calculate total distance to all neighbors and closest
uint32_t xneighbors = (uint32_tx)&sources[us=*8+3];
float dist = mindist;
for(uint i = 0; i < source_count_pure; ++i) {

if (*xneighbors & (1 << i)) {

dist += wind_source_distances|[i];
}

// Calculate average wind

float3 vel;
vel . x = 0;
vel.y = 0;
vel.z = 0;
for(uint i = 0; i < source_count_pure; ++i) {
if (*xneighbors & (1 << i) || i == us) {
float f = wind_source_distances[i] / dist;

vel .x += sources[i*8+4] x f;
vel.y += sources[i*8+5] x f;
vel.z += sources|[i*8+6] x f;

}
}
v—>>x = vel.x;
v—>y = vel.y;
v—>z = vel.z;

REF(float4 , u, x, y, z) = *v;

102

/l also set pressure field to O
REF(float, p, x, y, z) = 0.0f;

}

103

104

Appendix

Snow redistribution

This appendix chapter contains the snow redistribution functions for top and side redistri-
bution of snow particles. Prior versions of the simulator simple called re position directly;
this code steps in in its place and takes the distribution probability map into account. Both
the CUDA and OpenCL implementations are included; in the CUDA version, the code
looks identical for all PRNG versions, but in the OpenCL version the function footprints
differ. Only the philox version is included, as the other versions are identical with the
exception of the type of the PRNG streams and calls to the c1RNG library functions.

D.1 CUDA implementation

#ifndef DISTRIBUTION_REJECTION_ITERATIONS
#define DISTRIBUTION_REJECTION_ITERATIONS 12
#endif

__device__ void redistribute_top (float4 &pos) {
curandStatePhilox4_32_10_t state;
int tid = blockldx.x * blockDim.x + threadldx.x;
curand_init ((unsigned long long)clock () + tid, 0, 0, &state);
int i = 0;
float chance;

do {
reposition (pos);
chance = tex2D(part_dist, pos.x + SCENEX % 0.5,
pos.z + SCENEX x 0.5);
} while(curand_uniform(&state) > chance &&
i++ < DISTRIBUTION_REJECTION_ITERATIONS);
if (i == DISTRIBUTION_REJECTION_ITERATIONS) {

105

// NOTE(schmid): We put it outside the volume on the negative

/!l side (which marks it as inactive in the shaders), and far
/! enough that it is likely to be outside the frustum even
// the camera looks towards it and thus get culled early.
pos.x = —10000.f;

}

__device__ void redistribute_side (float4 &pos, floatd &vel) {
curandStatePhilox4_32_10_t state;
int tid = blockIdx.x % blockDim.x + threadlIdx .x;
curand_init ((unsigned long long)clock () + tid, 0, 0, &state);

// Backwards interpolate based on velocity to the cloud layer
float h = SCENE.Y — 2.0 — pos.y;

float t = h / vel.y;

float4 p = pos;

p.x = vel.x % t;
p.y = vel.y x t;
p.z = vel.z x t;

/!l Look up the distribution chance; we clamp to edge here, so
// we’re outside the volume, we assume the distribution at the
/! edge fits. This looks better than redistribtuion it from the

/!l top (where in high wind speeds we have issues with lack of snow
// at the edges) and the distribution is undefined, but assuming

// continuation from the edges is fairly reasonable.
float chance = tex2D(part_dist, p.x + SCENEX x* 0.5,
p-z + SCENEX x 0.5);
if (curand_uniform(&state) > chance) {
/! Redistribute from top next iteration
pos.x = —10000.0;

D.2 OpenCL implementation

The philox implementation is included, but the OpenCL version uses whichever gener-
ator is used in reposition in redistribution as well.

#ifndef DISTRIBUTION_REJECTION_ITERATIONS
#define DISTRIBUTION_REJECTION_ITERATIONS 12
#endif

#include <cIRNG/philox432.clh>
void reposition_top (float4d x*pos,
int4 scene_dim ,
_-global clrngPhilox432HostStream x*streams ,
uint seed,
__read_only image2d_t part_dist) {

106

int gid = get_global_id (0);

clrngPhilox432Stream work_item_stream;

clrngPhilox432CopyOverStreamsFromGlobal (1, &work_item_stream ,
&streams [gid]);

work_item_stream . current.ctr.L.lsb += seed — gid;

int 1 = 0;

float chance;

do {
float x = clrngPhilox432RandomUO01 (& work_item_stream);
float z = clrngPhilox432RandomUO1 (& work_item_stream);
pos—Xx = X * scene_dim.x;
pos—z = z % scene_dim.z;
pos—y = scene_dim.y — 2.0f;
chance read_imagef(part_dist , part_dist_sampler ,
(float2)(pos—x + scene_dim.x * 0.5,
pos—>z + scene_dim.z *x 0.5)).x;
} while(clrngPhilox432RandomUO1(&work_item_stream) > chance &&
i++ < DISTRIBUTION_REJECTION_ITERATIONS);
if (i == DISTRIBUTION_REJECTION_ITERATIONS) {
pos—>x = —10000.f;
}

}

void reposition_side (float4 =xpos,
float4 =xvel,
int4 scene_dim ,
__global clrngPhilox432HostStream x*streams,
uint seed, __read_only image2d_-t part_dist) {
int gid = get_global_id (0);
clrngPhilox432Stream work_item_stream;
clrngPhilox432CopyOverStreamsFromGlobal (1, &work_item_stream ,
&streams [gid]);

work_item_stream . current.ctr.L.lsb += seed — gid;
float h = scene_.dim.y — 2.0f — pos—>y;

float t = h / vel—>y;

float x = pos—>x — vel—>x * t;

float y = pos—>y — vel—>y * t;

float z = pos—>z — vel-—>z * t;

float chance = read_imagef(part_dist, part_dist_sampler ,
(float2)(pos—>x + scene_dim.x x 0.5,
pos—z + scene_dim.z x 0.5)).x;
if (clrngPhilox432RandomUO01 (& work_item_stream) > chance) {
pos—>x = —10000.f;
}

}

107

108

Appendix

Cloud shader

This appendix chapter includes the cloud rendering shader. It is invoked on a box centered
at the top of the rendering domain, and performs a ray-march through itself from the closest
intersection point or the camera to the point at which the ray leaves the box (or until the
loop terminates). The function noise is not original code (as credited in the comment).

#ifdef _VERTEX_
layout (location = 0) in vec3 in_vert;

uniform mat4 mvp;
out vec3 world_pos;

void main ()

{
world_pos = in_vert; // Our vertices are already
gl_Position = mvp % vec4(in_vert, 1.0);

}

#endif

#ifdef _FRAGMENT._
in vec3 world_pos;
out vec4 colour;

uniform sampler2D distribution;
uniform sampler2D noise_tex;
uniform vec3 eye_pos;

uniform vec3 cube_min;

uniform vec3 cube_max;

in world space

109

uniform vec3 light_dir;
uniform vec3 offset;
#ifdef VISUALIZE_ THRESHOLD
uniform float threshold;
#endif

/! Simple noise function not used for simulation so speed is
// valued over quality.
// Function by Inigo Quilez, https://www.shadertoy.com/view/XslIGRr
// License Creative Commons Attribution —NonCommercial-ShareAlike 3.0 Unported
float noise(in vec3 x) {
vec3 p = floor(x);l
vec3d f = fract(x);
f=fxfx (3.0 — 2.0 % f);

vec2 uv = (p.xy + vec2(37.0, 17.0) * p.z) + f.xy;
vec2 rg = texture2D(noise_tex, (uv + 0.5)/256.0, —100.0).yx;
return —1.0+2.0xmix(rg.x, rg.y, f.z);

}

// Fractal brownian motion, 5 octaves
float fbm5(in vec3 p) {

float v;

v = 0.50000 * noise(p); p *x= 2.01;

v += 0.25000 * noise(p); p *= 2.05;

v += 0.12500 * noise(p); p *= 2.03;

v += 0.06250 * noise(p); p *x= 2.02;

v += 0.03125 % noise(p);

return clamp(v, 0.0, 1.0); // Make sure we’re in [0,1] range

}

// Fractal brownian motion, 4 octaves
float fbm4(in vec3 p) {

float v;

v = 0.50000 % noise(p); p

v += 0.25000 * noise(p); p
v += 0.12500 * noise(p); p
*
v,

* ¥

(Ll
NI (S)
S o O
W W —

*
1l

v += 0.06250 noise (p);

return clamp (0.0, 1.0); // Make sure we’re in [0,1] range
}
// Fractal brownian motion, 3 octaves
float fbm3(in vec3 p) {

float v;

v = 0.50000 % noise(p); p *= 2.01;

v += 0.25000 * noise(p); p *= 2.05;

v += 0.12500 * noise(p);

return clamp(v, 0.0, 1.0); // Make sure we’re in [0,1] range
}
// Fractal brownian motion, 2 octaves
float fbm2(in vec3 p) {

110

float v;

v = 0.50000 % noise(p); p *= 2.01;

v += 0.25000 * noise(p);

return clamp(v, 0.0, 1.0); // Make sure we’re in [0,1] range

}

// Integrate color given a density and a density difference one step towards
// the sun
void integrate(inout vec4 col, in float den, in float dif, in vec2 uv) {
vecd c;
#ifdef VISUALIZE_COLOR
float d = texture2D (distribution, uv).r;
c.r = 1.0 — d;
c.g = 1.0 — d;
c.b = mix(0.8, 0.35, den) x (1.05 + 0.3 x dif);
c.a = den;

#else
¢ = vecd(mix(vec3(1.0, 0.95, 0.8),
vec3(0.25, 0.3, 0.35), den), den);
c.rgb *x= vec3(0.65, 0.7, 0.75) % 1.4
+ vec3(1.0, 0.6, 0.3) x dif;
#endif
c.a x= 0.4;
c.rgb = c.a;
col += ¢ * (1.0 — col.a);
}

// Look up density at a given position with noise of a given level of qualtiy
#ifdef VISUALIZE_HEIGHT
#define density (pos, FBM) \
clamp(0.7 — sqrt(abs(pos.y — 0.5) + 0.05) /\
sqrt(texture2D (distribution , pos.xz).r) +\
0.8 x FBM(pos * noise_scale + ofs), 0.0, 1.0)
#else
#ifdef VISUALIZE_.-THRESHOLD
#define density (pos, FBM)\
(texture2D(distribution , pos.xz).r >= threshold ?\
(0.7 — sqrt(abs(pos.y — 0.5) + 0.05) / \
sqrt(texture2D (distribution, pos.xz).r)) : 0.0)
#else
#define density (pos, FBM)\
clamp(0.7 — sqrt(abs(pos.y — 0.5) + 0.05) /\
sqrt(0.5) + 0.8 % FBM(pos * noise_scale + ofs), 0.0, 1.0)
#endif
#endif

#define check_bounds(pos))\
if (pos.x > cube_max.x
pos.y > cube_max.y

pos.x < cube_min.x
pos.y < cube_min.y

| [\
Il [T

111

pos.z > cube_max.z || pos.z < cube_min.z) break

#define premarch(STEPS, FBM)\

for(uwint i = 0; i < STEPS; ++i) {\
vec3d x = eye_dir * t + p;\
check_bounds (x);\
vec3 pr = (x — cube_min) x ics;\
float den, dif;)\
den = density (pr, FBM);\
if (den > 0.01) break;)\
t += 1.0;)\

}

#define march (STEPS, FBM, MINSTEP)\
for(uwint i = 0; i < STEPS; ++i) {\
if (col.a > 0.99) break;\
vec3d x = eye_dir * t + p;\
check_bounds (x);\
vec3 pr = (x — cube_min) x ics;\
float den, dif;)\
den = density (pr, FBM);\
if (den > 0.01) {\
vec3 sp = ((x + light_dir % 1.0) — cube_min) % ics;)\
dif = clamp ((den — density (sp, FBM)) / 0.6, 0.0, 1.0);\
integrate (col, den, dif, pr.xz);\
N\
float tmp = 1.0 — col.a;\
t += max(MINSTEP, 0.1/tmp);\

}
void main() {
vec3 eye_dir = normalize (world_pos — eye_pos);
vec3 p = world_pos;
vec3 c¢s = cube_max — cube_min;
vec3 ics = 1.0 / cs;
float max_size = max(cs.x, max(cs.y, ¢s.z));
vec3 csm = ¢s / max_size;
vec3 noise_scale = 8.0 * csm;
vec3 ofs = offset / noise_scale;

// Test if eye is inside; if so, start at the eye,

// not the intersection

if (eye_pos.x > cube_min.x && eye_pos.x < cube_max.
eye_pos.y > cube_min.y && eye_pos.y < cube_max.
eye_pos.z > cube_min.z && eye_pos.z < cube_max.

p = eye_pos;

“EE

}

vecd col = vecd(0.0);
float t = 0.01;

112

premarch(192, fbm5);
t = max(0.01, t — 1.0);
float t0 = t;

march(32, fbm5, 0.4)
march(24, fbm4, 0.4);
march(16, fbm3, 0.7);
march(128, fbm2, 1.0);

colour = col;

}

#endif

113

114

Appendix

Profiling system

This appendix chapter describes the automated profiling system introduced into the snow
simulator. Section F.1 includes the Python profiling script that is used to re-compile and
run the simulator, while Section F.2 includes the TimingSystem class that performs
the timing internally. Section F.3 contains a header-only library written by the author
independently of the thesis used to calculate statistics from timing collections and printing
the data to console.

F.1 Automation script

Only two profiles are included for brevity; it should be possible to read from these how
more are added.

#!/usr/bin/python
Atuomatically profiles the snow simulator with all the permutations
defined for the type of profile specified.

import sys, time
from subprocess import call , check_output

CONFIG_FILE = ”../data/config.txt”

CONFIG_FILE_ BACKUP = ” ../ data/config_profile_backup.txt”
CUDABIN = ”snow—cuda”

CL_BIN = ”snow—cl”

COMPILE.OUTPUT_TEMPORARY = ”profile_.compile_out.tmp”
BINARY_STATUS = { CUDABIN: [], CL.BIN: [] }

FRAME_COUNT = 1000

115

PROFILE_TEST = 0xl1
PROFILE_TEX = 0x2
help_text = ”7”
Snow simulator profiler v0.1.0
Usage: python 77”7 + sys.argv[0] +
Available options:
—f [OUTPUT_FILE]
Redirects stdout to the given file
—i [ITERATIONS]
Sets the number of frames to profile over. Defaults to 1000.

RN

[options] [profile]

—h
Prints this help
Available profiles:
Tex
Tests the performance of bindless textures compared to status quo.
test
Tests that the system works. Profiles the CUDA and CL versions
with the current configuration file .

2999 9

def parse_args ():
Parse arguments
profiles = 0
i =1
while i < len(sys.argv):
if sys.argv[i][0] == "—":
if sys.argv[i][l] == "f’:
sys.stdout = open(sys.argv[i+1],
i +=1
elif sys.argv[i][l] == "h’:
print(help_-text)
elif sys.argv[i][l] == "i’:
global FRAME COUNT
FRAME COUNT = int(sys.argv[i+1])

5

w’)

i +=1
else:
elif sys.argv[i] == “test’:
profiles |= PROFILE_TEST
elif sys.argv[i] == "Tex’:
profiles |= PROFILE_.TEX
else:
print (”Unknown._option.’” + str(sys.argv[i]) +
” . .See.—h_for_help.”)
i +=1
if profiles == 0:

print ("No_profiles _.specified ,_will_do.nothing._See_—h_for_help.”)
return profiles

116

Recompile with optional additional defines.
defines is an array of tuples of (NAME, VALUE), where value can be None.
def recompile(version, defines):
print (”Recompiling.’” + str(version) + ”’_(additional_defines:.” +
str (defines) + 7)”)
sys.stdout. flush ()
f = open(COMPILE.OUTPUT_TEMPORARY, ’w’)

call ([”make”, ”clean”], stdout=f, stderr=f, cwd="../")
defs = 7”7
for (d, v) in defines:
if v == None:
defs += 7-D” + str(d) + 7.7
else:
defs += ”-D” + str(d) + ”=" + str(v) + 7.7

call ([’rm”, ”CMakeCache. txt”], stdout=f, stderr=f, cwd="../")
call (’cmake .—DNVCC_DEFINES="" + defs[:len(defs)—1] + "7.. ",

shell=True, stdout=f, stderr=f, cwd="../")
if call(’make.’ + version + ’*_CXX_DEFINES="’ + defs[:len(defs)—1] + 7",
shell=True, stdout=f, stderr=f, cwd="../") == 0:
f.close ()
call ([”’rm”, COMPILE.OUTPUT.TEMPORARY])
else:
f.close ()

f = open (COMPILE.OUTPUT_-TEMPORARY, °'r’)

print (”Compilation.failed._Output_follows.\n")

print (f.read ())

f.close ()

call ([”"rm”, COMPILE_.OUTPUT.TEMPORARY])
sys.stdout. flush ()

def setup ():
Save away the old configuration file
print (”Saving.the_configuration.file”)
sys.stdout. flush ()
call ([”cp”, CONFIG_FILE, CONFIG FILE BACKUP], stdout=sys.stdout)
Mark that the binaries need to be recompiled
global BINARY_STATUS
BINARY_STATUS[CUDA BIN] = []
BINARY_STATUS[CL_BIN] = []
Print PC info
print (”Gathering .PC_information”)
print (”0OS:”)
sys.stdout. flush ()
call (["uname”, ”—a”], stdout=sys.stdout)
print (”\n)
print (”CPU:”)
sys.stdout. flush ()
call (["1Iscpu”], stdout=sys.stdout)
print (”\n)
print ("GPU:”)

117

sys.stdout. flush ()
Ispci = check_output([”Ispci”])
for 1 in Ispci.split(’\n’):

if 1.find ("VGA”) != —1:
if 1.find (”’NVIDIA”) != —1:
call (["nvidia—smi”], stdout=sys.stdout)
else:
call (["Ispci”, 7—v”, 7"—s”, l.split(’.’)[0]], stdout=sys.stdout)
print(”\n”)
Print original config file
print (”\n)

print (”Original_.configuration.file_(with.no_permuatations._applied):\n”)
f = open(CONFIG_FILE, ’'r’)

conf = f.read ()

f.close ()

print (conf)

print (”\n ”)

sys.stdout. flush ()

def post():

Restore the oldconfig file
print (”Restoring .the_configuration._file”)
sys.stdout. flush ()
call ([”cp”, CONFIG_FILE.BACKUP, CONFIG_FILE], stdout=sys.stdout)
Recompile vanilla version
if len (BINARY_STATUS[CUDABIN]) != 0:
recompile (CUDABIN, [])
if len (BINARY.STATUS[CL_BIN]) != 0:
recompile (CL.BIN, [])

def run_profile (name, perms):

” ”

print (”Running.” + name +
sys.stdout. flush ()
start = time.time ()
f = open(CONFIG_FILE, ’r’)
conf = f.read ()
orig_conf = conf
f.close ()
i=0
for (b, d, p, ¢) in perms:
Recompile if it has custom defines or the binary
does not have the defines we want
defines = d + [(”AUTOMATED_TEST_VERSION”, None),
(”TIMING_FRAME_COUNT” , FRAME_COUNT)]
for di in defines:
if di not in BINARY_.STATUS[b]: # New directive, recompile!
recompile (b, defines)
BINARY_STATUS[b] = defines
break
Alter the config file

-profiling _permutations:\n”)

118

for key, value in p.iteritems ():
pos = conf. find (key)
if pos == —1:

conf += ”"\n” + key + ”.” + str(value) + "\n”

else:
pos += len (key)
end = pos

while conf[end] != ’\n’:
end += 1
conf = conf[:pos] + ”.” + str(value) + conf[end:]

Uncomment it

pos —= len (key)

if conf[pos—1] == "#’:

conf = conf[:pos—1]+conf[pos:]

Write the config file
f = open(CONFIG_FILE, °'w’)
f.write (conf)
f.close ()
Run the simulator
print (”Permuatation.” + str(i) +

(str(d) if len(d) != 0 else ””) + "\n”)
print (”Version:.” + str(b) + "\t”)
sys.stdout . flush ()
call([”./” + b], ewd="../", stdout=sys.stdout)
for cmd in c:

[T}

”

call (cmd, shell=True, cwd="../”, stdout=sys.stdout)

print (”\n\n”)
Reset to original config for next iteration

conf = orig_conf
i +=1
print (”Finished.” + name + ”.profiling._in.” +
str(time.time () — start) + “_seconds\n\n")

sys.stdout. flush ()

Permutations. These are tuples of
Binary to test,

list of preprocessor directives (whcih force a recompile

dictionary of configuration values to set
postprocessing commands

est.perms = [(CUDABIN, [], { }, [1),
(CLBIN, [], { }
tex_-perms = [(CUDABIN, [
{ ’time_kernel_snow_update’: 1,
>time _kernel_wind_advect’: 1 },
(1,
(CUDABIN, [(”LEGACY.TEXTURES”, None)],
{ ’time_kernel_snow_update’: 1,
“time_kernel_wind_advect’: 1 },
(1)

+ str(p) +

I,

if not empty)

, 1) 1 # Simple test of the system

119

Main entry point

profiles = parse_args ()
if profiles != 0:
setup ()

if profiles & PROFILE_.-TEST: run_profile(”Tool_Test”, test_perms)
if profiles & PROFILE.-TEX: run_profile(”Bindless_Texture”, tex_perms)
post ()

F.2 TimingSystem class

Listing F.1: Header

#ifndef TIMING_.SYSTEM_H
#define TIMING_SYSTEM_H

#include <stdlib .h>
#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include <stdexcept>

enum TimingEventType {
TIMING_FULL_FRAME,

TIMING_KERNEL_SNOW _PARTICLE_UPDATE,
TIMING_KERNEL_SNOW_SMOOTH_GROUND,

TIMING_KERNEL_WIND_ADVECT,
TIMING_KERNEL_WIND_BUILD_SOLUTION,
TIMING_KERNEL_WIND_POISSON,
TIMING_KERNEL_WIND_BOUNDARY
TIMING_KERNEL_WIND_PROJECT,

/1 NOTE(schmid): This contains the swap, so if vsync is enabled,
// it 1is inaccurate (contains the v—blank wait)

TIMING_RENDER _FULL,

/1 NOTE(schmid): These are not guaranteed to contain a flush,

/" so it is CPU side timings. GPU timings require a gpu profiler
/1l or explicit flush after each of these.
TIMING_RENDER_SHADOWS,

TIMING_RENDER_TERRAIN,

TIMING_RENDER_SKYBOX,

TIMING_RENDER_SNOW ,

TIMING_RENDER_CLOUDS,

TIMING_EVENT_TYPE_Count // Must be the last argument!

120

}s

class TimingSystem {

public:
TimingSystem (uint64_t frames);
"TimingSystem ();

void SetElapsedTime (TimingEventType type, uint64_t elapsed);
void CalculateSetElapsedTime (TimingEventType type,

struct timespec start,

struct timespec end);
void PrintAllStats(uint32_t histogram_bucket_count = 20);
void PrintStats (TimingEventType type,

uint32_t histogram_bucket_count = 20);

void Reset(TimingEventType type);
void ResetAll ();

void Start();
void Stop ();
bool Running ();

static uint64_t CalculateElapsedTime (struct timespec start,
struct timespec end);

private:
uint64_t xmTimeArrays[TIMING_EVENT_TYPE_ Count];
uint64_t mTimeArrayTops[TIMING_EVENT_TYPE_Count];
uint64_t mFrameCount;

bool mRunning;

static const char *TimingEventNames[TIMING_EVENT_TYPE Count];
+s
#endif // TIMING_SYSTEM_H

Listing F.2: Source

#include ”TimingSystem.h”
#define VUL_DEFINE
#include ”vul_benchmark.h”

const char *TimingSystem :: TimingEventNames[TIMING_EVENT_TYPE Count] = {
”Full frame”,
”Snow particle update kernel”,
”Snow ground smoothing kernel”,
”Wind advection kernel”,
”Pressure solution build kernel”,
”Poisson kernel total”,
”Boundary reset kernel total”,
”Wind projection kernel”,

121

”Full render”,
”Shadow pass”,
”Terrain pass”,
”Skybox pass”,
”Snow pass”,
”Cloud pass”

}s

TimingSystem :: TimingSystem (uint64_t frames)
{
mRunning = false;
mFrameCount = frames;
for(uwint32_t i = 0; i < TIMING.EVENT_TYPE_Count; ++i) {
mTimeArrays[i] = NULL;
mTimeArrayTops[1] = 0;
}
}
TimingSystem ::~ TimingSystem ()
{
for(uwint32_t i = 0; i < TIMING_.EVENT_TYPE Count; ++i) {
if (mTimeArrays[i] != NULL) {
delete [] mTimeArrays[i];
}
}
}

void TimingSystem :: SetElapsedTime (TimingEventType type, uint64_t elapsed)

{

if (!mRunning) {

return ;
if (mTimeArrays[type] == NULL) {
mTimeArrays[type] = new uint64_t[mFrameCount+1];

}

if (mTimeArrayTops[type] > mFrameCount) {
printf(”Types %d frame %d\n”, (int)type, (int)mTimeArrayTops[type]);
throw std::runtime_error (" Timing array is out of room”);

}

mTimeArrays|[type][mTimeArrayTops[type]++] = elapsed;

}

uint64_t TimingSystem :: CalculateElapsedTime (struct timespec start,
struct timespec end)
{

return ((end.tv_sec — start.tv_sec) x 1000000) +

((end.tv_nsec — start.tv_nsec) / 1000);
}

void TimingSystem :: CalculateSetElapsedTime (TimingEventType type,
struct timespec start,

122

struct timespec end)

if (!mRunning) {
return ;
}

uint64_t elapsed = ((end.tv_sec — start.tv_sec) x 1000000)
+ ((end.tv_nsec — start.tv_nsec) / 1000);
this —>SetElapsedTime (type , elapsed);

}

void TimingSystem:: PrintAllStats (uint32_t histogram_bucket_count)
{
for(uwint32_t i = 0; i < TIMING.EVENT_TYPE_Count; ++i) {
if (mTimeArrays[i] != NULL) {
this —>PrintStats ((TimingEventType)i, histogram_bucket_count);
}
}
}

void TimingSystem:: PrintStats (TimingEventType type,
uint32_t histogram_bucket_count)
{

if (mTimeArrays[type] == NULL) {
throw std::runtime_error (” Attempted to print timing statistics ”
”for untimed event type”);
}

vul_benchmark_result res;
res.mean = vul_benchmark_mean(mTimeArrays[type], O,
mTimeArrayTops[type]);
res . median = vul_benchmark_median(mTimeArrays[type], O,
mTimeArrayTops[type]);
res.std_deviation = vul_benchmark_standard_deviation (
mTimeArrays[type], O,
mTimeArrayTops[type], res.mean);
printf("%s: %f mean (ms), %lu median (micros), %f std.dev. (ms)\n”,
TimingEventNames [type],
res.mean / 1000.0,
res . median ,
res.std_deviation / 1000.0);
if (histogram_bucket_count) {
vul_benchmark_print_histogram_micros(mTimeArrays[type], O,
mTimeArrayTops|[type],
histogram_bucket_count);

}
}

void TimingSystem :: Reset(TimingEventType type)
{

mTimeArrayTops[type] = 0;

123

}

voi

{
f

}
}

voi

{

d TimingSystem:: ResetAll ()

or(uint32_t i = 0; i < TIMING.EVENT_TYPE_Count; ++i) {
mTimeArrayTops[i] = O;

d TimingSystem:: Start ()

mRunning = true;

}

voi

{

d TimingSystem:: Stop ()

mRunning = false;

}

bool TimingSystem :: Running ()

{

T

}

eturn mRunning;

F.3 vul benchmark

~
¥ O K X K K K K K K K K X K XK X X X XK

*

*/
#if

Villains ° Utility Library — Thomas Martin Schmid, 2016. Public domain?

This file contains auxilliary functions for benchmarking.

@TODO: Proper statistics; at the moment this does the programmer’s
hacky equivalent; specify iteration count and calculate mean,

median and standard deviation.

@TODO: Plotting (bar diagram of all iterations , histogram , smooth graf)
nanovg should be useful for this; hide the whole thing behind a define.

? If public domain is not legally valid in your legal jurisdiction
the MIT licence applies (see the LICENCE file)

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

ndef VULBENCHMARKH

#define VULBENCHMARKH

124

#include <stdarg.h>
#include <stdint.h>

/! Define VULDEFINE in exactly ONE compilation unit (C/CPP file)

// that includes this file to define it.

typedef struct vul_benchmark_result {
double mean;
uint64_t median;
double std_deviation ;

} vul_benchmark_result;

typedef struct vul_benchmark_histogram {
uint32_t sxbuckets, bucket_count, bucket_max;
uint64_t smallest, largest;

} vul_benchmark_histogram;

#endif // VULBENCHMARKH

/% %

*+ Helper function used to find the median. This is the median—of—median

* algorithm , and all the median—function does is pretend the
* k—argument doesn’t exist.

*/

#ifndef VUL_DEFINE

uint32_t vul__benchmark_select(uint64_t xtimes, uint32_t left ,

int32_t right, uint32_t k);
#else

uint32_t vul__benchmark_select(uint64_t xtimes, uint32_t left ,

uint32_t right, uint32_t k)

{

uint64_t order[5], time;
uint32_t i, 1, count, median;
int32_t j;

count = right — left;
if (count < 5)

{

/! Just find the k—th element the hard way

1 = 1;
order[O] = times[left];
for(i = 1; i < count + 1; ++i)
{
time = times[left + i];

if(time < order[1 — 1]) {
for(j =1—-1; j >= 0 & time < order[j]; —j

{
}

order[++j] = time;
++1;

order[j + 1] = order[j 1;

)

u

125

} oelse {

order|[1++] = time;
}
}

for(i =0; i < 5; ++i) {
if (order[k] == times[left + i]) {
return left + i;
}

—
o
=

—
-

1]

0; i < (count / 5) 4+ 1; ++i)

1 =5 % i; // Left bound of new array
j=(C1+4)>right ? right : (1 + 4); // Right bound of new array

median = vul__benchmark_select(times, 1, j, 2); // O—indexed k
time = times|[median];

times|[median | = times[i];

times[i] = time;

}

return vul__benchmark_select(times, O, count / 5, count / 10);

}
#endif // VUL_DEFINE

/% %

*+ Finds the median element of an array of times. O(n)

*/

#ifndef VUL_DEFINE

uint64_t vul_benchmark_median(uint64_t xtimes, uint32_t left,
uint32_t right);

#else

uint64_t vul_benchmark_median(uint64_t xtimes, uint32_t left,
uint32_t right)

{

return times[vul__benchmark_select(times, left, right,
(right — left) / 2) 1;

#endif // VUL_DEFINE

/% %

* Calculates the mean of an array of times. O(n)

*/

#ifndef VUL_DEFINE

double vul_benchmark_mean(uint64_t xtimes, uint32_t left ,
uint32_t right);

#else

double vul_benchmark_mean(uint64_t xtimes, uint32_t left ,

126

uint32_t right)

uint32_t 1i;
double avg, count;

count = (double)(right — left);
avg = 0;

for(i = left; i < right; ++i)

{

avg += (double)times[i] / count;

}

return avg;
#endif // VUL_DEFINE

/% %

* Calculates the stad_deviation of an array of times given the

*+ mean of the array. O(n)

*/

#ifndef VUL_DEFINE

double vul_benchmark_standard_deviation(uint64_t xtimes,
uint32_t left ,
uint32_t right,
double mean);

#else

double vul_benchmark_standard_deviation(uint64_t xtimes,
uint32_t left ,
uint32_t right,
double mean)

uint32_t 1i;
double d, dev, inv_count;

inv_count = 1.0 / (double)((right — left) — 1);
dev = 0;
for(i = left; i < right; ++i)
{
d = (double)times[i] — mean;
d x= d;
dev += d * inv_count;

}

return sqrt(dev);
#endif // VUL_DEFINE
#ifndef VUL_DEFINE

void vul__benchmark_create_histogram (vul_benchmark_histogram xhist,
uint64_t *xtimes, uint32_t left ,

127

uint32_t right, uint32_t buckets);
#else
void vul__benchmark_create_histogram (vul_benchmark_histogram xhist,
uint64_t xtimes, uint32_t left,
uint32_t right, uint32_t buckets)

double s, 1, r, t;
uint32_t i, j;
hist—>bucket_count = buckets;

// Find range
hist—>smallest = —1;
hist—>largest = O0;
for(i = left; i < right; ++i) {
hist—>smallest = times[i] < hist—>smallest ?
times[i] : hist—>smallest;
hist —>largest = times[i] > hist—>largest ?
times[i] : hist—>largest;
}
s = (double)(hist—>largest — hist—>smallest) / (double)buckets;
if (hist—>largest — hist—>smallest < (uint64_t)buckets) {
uint32_t hb = buckets / 2;
double med = (double)hist—>smallest + (s % (double)hb);
s = 1.0;
hist—>smallest = med — s *x (double)hb;
hist—>largest = med + s * (double)hb;

}

// Fill buckets
hist—>buckets = (uint32_tx)malloc(sizeof(uint32_t) % buckets);
1 = (double)hist—>smallest;
r = (double)hist—>smallest + s;
for(i = 0; i < buckets; ++i) {
hist —>buckets[1] = 0;
for(j = left; j < right; ++j) {
t = (double)times|[j];
if(t >18&% (t<r || (1i== buckets — 1 &&
t == (double)hist—>largest))) {
++hist —>buckets[1];

Il =r;
r += s;

}

// Find largest bucket
hist —>bucket_max = 0;
for(i = 0; i < buckets; ++i) {
hist —>bucket_max = hist—>buckets[1 | > hist—>bucket_max ?
hist—>buckets[i] : hist—>bucket_max;

128

}
}
#endif // VUL-DEFINE

/% %

* Print a histogram to stdout with a given number of buckets.

*/

#ifndef VUL_DEFINE

void vul_benchmark_print_histogram_millis(uint64_t *times,
uint32_t left,
uint32_t right,
uint32_t buckets);

#else

void vul_benchmark_print_histogram_millis(uint64_t xtimes,
uint32_t left ,
uint32_t right,
uint32_t buckets)

uint32_t i, j, ml;

uint64_t v, s;

double 1, r, ds;
vul_benchmark_histogram hist;

// Calcualte it
vul__benchmark_create_histogram (&hist, times, left, right, buckets);

/!l Print legend

printf(”Time (ms) | Count |07);

ml = (vint32_t)loglO((double)hist.bucket_max);
for(i = 1; i < buckets — ml; ++i) printf (" 7);
printf(”%d|\n”, hist.bucket-max);

printf(| ")

for(i = 0; i < buckets; ++i) printf (7" —=");

printf (”|\n”);

s = hist.bucket_max / buckets;
ds = (double)(hist.largest — hist.smallest) / (double)buckets;
1 = (double)hist.smallest;
r =1 + ds;
for(i = 0; i < buckets; ++i) {
v = ;
printf ("%02.1f—-%02.1f | %d”, 1, r, hist.buckets[i 1);
ml = (uvuint32_t)loglO((double)hist.buckets[i]);
for(j = 0; j <5 —ml; ++j) printf(” 7);
printf (7]”);
1 = r;
r += ds;
for(j = 0; j < buckets && hist.buckets[i] > v; ++j) {
printf (7"
vV += 8

129

}

for(; j < buckets; ++j) printf (" 7);
printf (”|\n”);

printf ("\n”);

/1 Clean up
free(hist.buckets);

#endif // VUL_DEFINE

/% %

* Print a histogram to stdout with a given number of buckets.

*/

#ifndef VUL_DEFINE

void vul_benchmark_print_histogram_micros(uint64_t *times, uint32_t left,
uint32_t right, uint32_t buckets);

#else

void vul_benchmark_print_histogram_micros(uint64_t *times, uint32_t left,
uint32_t right, uint32_t buckets)

{

uint32_t i, j, ml;

uint64_t v, s;

double 1, r, ds;
vul_benchmark_histogram hist;

// Calcualte it
vul__benchmark_create_histogram (&hist, times, left, right, buckets);

/!l Print legend

printf(”Time (ms) | Count |07);

ml = (uvint32_t)loglO((double)hist.bucket_max) + 1;
for(i = 1; i < buckets — ml; ++i) printf (" 7);

printf("%d|\n”, hist.bucket-max);

printf(| ")

for(i = 0; i < buckets; ++i) printf(”—=");

printf (”|\n”);

s = hist.bucket_max / buckets;
ds = (double)(hist.largest — hist.smallest) / (double)buckets;
1 (double)hist.smallest;
r =1 + ds;
for(i 0; i < buckets; ++i) {
vV =

0;
printf ("%02.2f—-%02.2f | %d”, 1 / 1000.0, r / 1000.0, hist.buckets[i]);
ml = (uint32_t)loglO((double)hist.buckets[i]);

for(j = 0; j <5 —ml; ++j) printf(” 7);

printf (”|"):

1 = r;

r += ds;

130

for(j = 0; j < buckets & hist.buckets[i] > v; ++j) {

printf (7 x”

V += S
}
for(; j < buckets; ++j) printf (" 7);
printf (”|\n”);

printf ("\n”);

/1 Clean up
free(hist.buckets);

}

#endif // VUL_DEFINE

131

132

Appendix

Terrain pre-processing

This appendix chapter includes the pre-processing script in Python used to create RAW
16-bit height-maps from USGS DEM data. The user interface is loosely based on the work
of Lien [12].

#!/usr/bin/python
import argparse, sys, struct, itertools , numpy, math

def read_header(lines):
>?’USGS DEM (.asc) header parser. Header contains the number of
columns and rows, the cellsize in meters that an entry describes
and the value used to mark an entry for which no data is
available (a ”nodata” entry).’’’
ncols_line = lines [0].split(’)

ncols = ncols_line[len(ncols_line)—1]
nrows_line = lines[1].split(’)
nrows = nrows_line[len(nrows_line)—1]
csize_line = lines [4].split(’)
csize = csize_line[len(csize_line)—1]
ndata_line = lines [5].split(’)
ndata = ndata_line[len(ndata_line)—1]
return { “ncols ’: int(ncols),
nrows ': int(nrows),
>cellsize ’: float(csize),

"nodata *: float(ndata) }

def read_data(header, lines):
>?>’Read the height data for all remaining lines (all lines except
the header), while maintaining a running minimum and maximum
height record for used in scaling. Writes and error if number of
rows or columns does not match the header information given.’ ’’

133

data = []

= 1e20

mx = —1e20

y =0
for 1
if

in lines:
len(1l) == 0:
continue

y += 1

row = []
line = 1.

split(”)

x =0
for w in line:

if

if w== """
continue
v = float(w)
X += 1
if v != header[’nodata ’]:
mn = min(mn, V)
mx = max(mx, V)
row . append (v)
x != header[’ncols ’]:
sys.stderr.write ("Row contained wrong number of valid entries.
”Found ” + str(x) + ” instead of 7 +
str (header [’ ncols ’]) + ”\n”)

data.append (row)
if y != header[’ nrows ’]:

Sys

return

.stderr . write (”Wrong number of valid rows. Found ” +
str(y) + 7 instead of ” +
str (header[nrows’]) + ”\n”)
{ ’min’: mn,
max’: mx,
>step ’: header [’ cellsize ’],
>size ’: (header[’ncols ’], header|[’nrows’]),
>data ’: data,

"nodata ’: header[’nodata’] }

def scale_height(data, minheight=None):

>’ Scale the height from actual height values to the
of unsigned shorts, using the full

difference is given (in which case, the larger of

2xx16 range
range unless a minimum height
the actual range

and the given minimum range is used).’’’
z_scale = data[’max’] — data[’ min’]
if minheight != None:

z_scale = max(z_scale, float(minheight))
sys.stderr . write(”Z—scale of heightmap is ” + str(z_.scale) + ”\n”)
raw = []
for y in range(data[’size "]J[1]):

row = []

for x in range(data[’size "]J[0]):

v = data[’ data’][y][x]

134

if v == data[’nodata ’]:
v = data[’ min’]
row . append (max(min(int (((v—data[’min’]) / z_scale) x 2x%x16),
2xx16—1), 0))
raw . append (row)
return raw

def write_height(raw, size):
>’ Write the raw (scaled) heightdata to a file/stdout. The size of
the output is the smallest power of 2 that fits the input’’’
p2x = int(pow(2, math.ceil (math.log(size[0], 2))))
p2y = int(pow(2, math.ceil (math.log(size[l], 2))))
sys.stderr . write (" Output resolution (%d x %d)\n” % (p2x, p2y))
for y in range(size[1]):
sys.stdout.write(struct.pack("%dH” % size[0],
x(e for e in itertools.islice(raw[y],
0,
size [0]))))

for x in range(p2x—size[0]):
sys.stdout.write(struct.pack(”H”, 0))

for y in range(p2y—size[1]):
for x in range(p2x):
sys.stdout.write(struct.pack(”H”, 0))

def entry(argv):
parser = argparse.ArgumentParser(description = “Converts ~ +
”the USGS DEM (.asc) format to a 16bit 7 +
”(unsigned short) RAW format.”)
parser .add_argument("—f”, "——inputfile”, type=str,
help="Input USGS DEM .asc file”)
parser.add_argument(”—o0”, "——outputfile”, type=str,
help="Output RAW file ”)

parser .add_argument(”—m”, "——minheight”, type=str,
help="Minimum height scale of the heightdata™)
args = vars(parser.parse_args(argv))
must_close_infile = False
must_close_outfile = False

if args[’inputfile "]:
sys.stdin = file (args[inputfile], "r”)
must_close_infile = True

if args[’ outputfile ’]:
sys.stdout = file (args[’outputfile], “wb”)
must_close_outfile = True

lines = sys.stdin.read ().split(’\n”)

sys.stderr.write (" Parsing header\n”)

135

header = read_header(lines[:6])

sys.stderr.write (" Parsing data\n”)
data = read_data(header, lines[6:])

if must_close_infile:
sys.stdin.close ()

sys.stderr.write(” Calculating heightfield\n”)
raw = scale_height(data, args[’minheight ’])

sys.stderr.write (” Writing raw file\n”)
write_height(raw, datal[’size ’])

if must_close_outfile:
sys.stdout.close ()

if __name__. == " __main__":
if len(sys.argv) > 1:
exit(entry (sys.argv[1:]))
else:
exit(entry ([]))

136

Appendix

Stereo rendering

This appendix chapter lists an abbreviated version of the snow simulator main rendering
function that highlights how stereoscopic rendering is implemented. It also includes the
StereoCamera advanceEye and mvp functions, as the prior is called from the loop,
and it’s state change is used in the second.

All timing-related code, as well as screenshot support, has been cut for brevity. Only
the cloud-rendering call and the loop and related variables are original code, the rest is the
result of previous work on the simulator.

/%
* Calculate the model—-view—perspective matrix.
* Augment the camera position with the inter—pupilary distance
* of the camera along the right—vector.
*/
glm:: mat4 StereoCamera::mvp() const {
glm:: mat4 camera = glm:: perspective (_fieldOfView ,
_viewportAspectRatio ,
_nearPlane ,
_farPlane);
glm:: mat4 ori = orientation ();
camera *= Ori;

glm::vecd right = glm::inverse(ori) * glm::vecd4d (1.£,0.f,0.f,1.1);

float factor = (_currentEye == CAMERA_EYERIGHT ? 0.5 : —-0.5);
glm::vec3 delta = _pos + _ipd % factor x glm::vec3(right);
camera = glm:: translate (camera, —delta);
return camera,

}

/

* Set internal state for which eye is in use, and change draw buffer
*/

137

void StereoCamera::advanceEye () {
if (_currentEye == CAMERA EYELEFT) {
_currentEye = CAMERA _EYERIGHT;
glDrawBuffer (GL.BACK_RIGHT);
} else {
_currentEye = CAMERA EYE LEFT;
glDrawBuffer (GL.BACK_LEFT);

}

/%
* Main rendering function called from main.
*/
void Render(Terrainx terrain , Wind* wind, Snowx snow,
Clouds *clouds, TimingSystemx times) {
int eyes = 1;

keyOperations ();

if (conf.camera_3dvision) {
eyes = 2;
}

// Render shadow map only once

if (conf.render_shadow) {
shadowMap—>ShadowMapPass (terrain , light);

}

// Render everything else per—eye
for(int i = 0; i < eyes; ++i) {
if (conf.camera_3dvision) {
dynamic_cast<StereoCamerax>(camera)—>advanceEye ();
}

if (!conf.wireframe) {
glClearColor(conf.clear_color[0],
conf.clear_color[1],
conf.clear_color[2], 1.0f);

} else {
glClearColor (0.0f, 0.0f, 0.0f, 0.0f);

glClear (GL_.COLOR_BUFFER BIT | GL_DEPTH_BUFFER_BIT);

if (conf.render_terrain) {

terrain —>Render (camera, light , shadowMap—>getShadowMap ());

if (conf.render_skybox) {
skybox—>Render (camera);
}

if (conf.render_obstacles) {
wind—>RenderObstacles (camera);

138

// Pressure has to be rendered after the skybox to
// make the blending work correctly
if (conf.render_pressure) {

wind—>RenderPressure (camera);

if (conf.render_velocity) {
wind—>RenderVelocityLines (camera);

if (conf.render_wind_sources) {
wind—>RenderWindSources (camera, light);

if (conf.render_snow) {
snow—>Render (camera);

if (conf.cloud_type != CLOUD.OFF) {
clouds—>Render(camera, light);

if (conf.render_shadow_texture) {
shadowMap—>RenderPass ();
}

if (conf.render_minimap) {
terrain —>RenderMiniMap (camera);
}

if (conf.tweak_bar) {
TwDraw () ;
}

}

glfwSwapBuffers (window);
glfwPollEvents ();

139

140

Appendix

User Manual

This appendix chapter contains a simple description of the steps required to use the func-
tionality introduced in Chapter 3. The sections below mirror the sections from Chapter 3
directly, except the motivation section.

I.1 Wind

The boundary wind changes manifest in two options: the type of interpolation/source to
use, and if sources are used the source data files. Figures 1.1 and 1.2 show these entries in
the start-up menu. The file path is to the meta-file described in Section 3.2, and contains a
list of the actual source files. Listings I.1 and 1.2 contain examples of the meta file and the
file it points to. Note that once the simulation is started, the selection of Uniform wind is
final, while if one of the two source-based strategies is used, these two can be toggled (but
Uniform wind may not be selected without restart).

ion x
¢

. Non-uniform requires Wind source file to be set

ins the number and paths of the sample files of each source
Neraest neighbor source sampling
Smart average source sampling

Figure 1.1: The expanded entry (boundary wind strategy) is used to select the boundary wind type
to use. Uniform wind is the old approach, and is the default setting.

Wind source file; contains the number and paths of the sample files of each source data/wind_samples.bxt

Figure 1.2: The Wind source file entry takes the relative or absolute path of a wind source meta-file.
This setting is only used if the wind strategy is not Uniform wind

141

Listing I.1: Wind source meta-file example with two sources

data/wind_samples.1
data/wind_samples.2

Listing I.2: Wind source data file example with 4 samples spaced at 1 minute intervals

4.0, 3.2, 1.5 60000 4
1.0 0.0 0.0
0.4 0.0 0.3
0.0 0.1 0.8
—-0.3 0.0 0.5

I.2 Precipitation

The precipitation distribution entries in the start-up menu are shown in Figures 1.3 and 1.4.
Strategy can be changed after start-up, however it is important that if Texture sequence is
used, the number of textures is > 2, and the path to the textures is valid. When texture
sequences are used, the texture path takes the base name (for example the base name
data/dist.png expects the actual textures to be at data/distN.png, where N is
the zero-based frame index). If a constant texture is used, the path is the full path to that
texture. If Wrap is set to false, the simulation is terminated when the time of the last frame
is reached. All settings except the texture paths can be changed from the snow distribution
menu in the running simulator.

=ISnow Distibution
Snow distribution type Constant value
Constant value/checkerboard size Constant texture

Path to texture or texture sequence without the frame number Texture sequence
Frame count for texture sequences Constant value
Frame duration for texture sequences (in milliseconds) White noise
Wrap (true) or quit(false) after last frame of texture sequence Perlin noise

8 Clguds —— . . Checkerboard

Figure 1.3: The expanded entry (Snow distribution type) is used to select the strategy to use. The
default is Perlin noise.

Snow distribution type
Constant value/checkerboard size

Path to texture or texture sequence without the frame number
Frame count for texture sequences

Frame duration for texture sequences (in milliseconds)

Wrap (true) or quit(false) after last frame of texture sequence

Figure 1.4: All precipitation distribution settings. If the Constant value strategy is used, only the
two first entries have meaning.

I.3 Clouds

The cloud rendering settings are shown in Figures 1.5 and 1.6. If the No clouds option is
used, none of the settings (except the type) are used. The Cloud threshold setting is only

142

used with the Distribution thresholded type. Cloud height determines the maximum height
of the cloud volume, and is defined in units of the simulation volume (that is 1.0 is the same
height as the simulation volume). The cloud volume is always vertically centered on the
top of the simulation volume, so the part of the volume that enters into the simulation
volume is half of the Cloud height setting. All types and settings can be changed at run-
time from the main menu in the running simulator.

- Clouds
Cloud visualization technique Vanilla

Cloud height No clouds
Cloud threshold Vanilla

Hide tweak bar Distribution as colour
- - Distribution as height
Start program Distrubtion thresholded

Figure L.5: The selection of strategies to use for cloud rendering. The default type is Vanilla; purely
decorative clouds.

= Clouds
Cloud visualization technigue Vanilla

Cloud height 0.6
Cloud threshold 0.50

Figure 1.6: All cloud rendering settings.

I.4 Terrain

The height-map pre-processing script is included in Appendix G. To see the options, run
the script with the —h or ——help option. There are 2 mandatory arguments; the input
and output files paths. The third supported parameter is a minimum height scale to use
when re-scaling height data. If this is not supplied, the full 16-bit range is used; otherwise
that range is set to encompass the larger of the given value and the range of the input data.
Missing values in the input data are set to the minimum height, that is to zero.

I.5 3D rendering

To use 3D rendering, the hardware must support OpenGL stereoscopic rendering. This
means there must be a NVIDIA Quadro GPU installed, a 120HZ display device, and
aNVIDIA 3D vision communication device attached. If the first requirement is not
met, enabling the Stereo rendering (3DVision) option will fail, as a framebuffer of the cor-
rect format cannot be created. Otherwise, the simulator will run, but the content will not be
displayed in 3D if the other requirements are not met. The Inter-pupillary Distance (3DVi-
sion) option sets the distance between the camera positions for each eye in the simulator’s
rendering coordinate system; the terrain in this system is 64 x 32 x 64 units large, and the
default value of 0.015 was found by experimentation for the Mt. St. Helens terrain. 3D
rendering can only be toggled at startup, but the IPD can be adjusted at run-time using the
hotkeys K and J to respectively increase and decrease the distance in increments of 0.001.

143

1.6 OpenCL hardware sampling

This setting is enabled by default. It can be disabled by supplying the pre-processor define
CLMANUAL_SAMPLING when compiling the snow simulator.

1.7 Performance analysis

The profiling system is used through the Python script included in Appendix F. To run a
profile, simply run the profiling script with the name of the profile to run. To add a profile,
the script must be altered in several places:

e The profile must be assigned a bit for the bit-mask used internally. Simply use the
next available bit after the last entry of the type PROFILE_xx (in the Listing F.1
this would be the 3rd bit — 0x4 — and the new entry would be on line 19.

e The profile’s description and name must be added to the help text and the parse_args
function must add it’s bit-mask value to the profiles variable if encountered.

o All option permutations must be enumerated or generated. An example of enumer-
ated values is the tex_perms listin the Listing F.1.

e The branch on profile bit-masks must call run_profile with the option permuta-
tions if the bit is masked. See lines 42-43 in Listing F.1.

The option permutations include which binary to use (CUDA_BIN and CL_BIN), a
list of pre-processor directives (these are passed to the CMAKE, C++, and the OpenCL or
CUDA compilers), option settings for the configuration file, and a list of commands to run
after the profiling run is complete.

The TimingEvent Type enum in Listing F.1 contains all the supported timing sec-
tions. To add additional timing sections, add an entry to this array, and give it a descrip-
tive name in the corresponding position in the TimingEventNames array. Then call
SetElapsedTime or CalculateSetElapsedTime onthe TimingSystem class
instance with the elapsed time or start and end times respectively every frame. The system
is intended for timing per-frame events, and it expects a timing value every frame while
the system is running.

Finally, the number of frames for which the timing system runs is set with the FRAME_COUNT
variable of the profiling script. The system will always run 10% of FRAME_COUNT frames
before starting the timing, allowing the GPU driver to perform any profile-guided opti-
mizations it may apply after a invocations of a kernel or shader.

144

I.8 Bindless textures

The use of bindless textures is enabled by default. To use legacy binding, supply the pre-
processor define LEGACY_TEXTURES when compiling the CUDA version of the snow
simulator. This may be required to run on older hardware.

1.9 Wind simulation stability problem

Neither of the proposed solutions are enabled by default, as it is not desirable to potentially
sacrifice simulation correctness for visual quality, and the increase SOR iteration count
proved insufficient to alleviate the problem. The code in Listing 3.3 may be manually
inserted into the wind_advect kernel if stochastic sampling is desired.

145

	Problem Description
	Abstract
	Sammendrag
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Contribution
	Real-world data integration
	Visual and miscellaneous improvements

	Outline

	Background
	Computational fluid dynamics
	Navier-Stokes
	Numerical methods

	Meteorological measurements
	Methods
	Precipitation and cloud coverage
	Wind
	Public data

	Terrain models
	USGS DEM Format

	Random number generation and noise
	Random Number Generators
	Probability Density Functions and Distributions
	Noise

	Voronoi tessellation and their duals
	Stereoscopic rendering
	Anaglyph stereoscopy
	Polarization stereoscopy
	Active-shutter stereoscopy
	Multi-screen stereoscopy
	Performance implications

	GPU and GPGPU computing
	Hardware model
	OpenGL
	CUDA
	OpenCL
	Performance analysis

	Cloud rendering
	Ray-marching volumetrics

	The HPC-Lab Real-Time Snow Simulator
	History
	Technical overview

	Simulator improvements and extensions
	Motivation
	Wind
	Importing the values
	WindSource representation on the GPU
	Spatial interpolation at boundary points
	Setting the values
	Visualization

	Precipitation
	Precipitation distribution
	Initial distribution
	Re-positioning
	PRNGs

	Clouds
	Technique choice
	Technical details
	Real-world data integration

	Terrain
	Other Snow Simulator improvements
	3D rendering
	OpenCL sampling improvements
	Performance analysis
	Bindless textures
	Wind simulation stability problem

	Results and Discussion
	Performance analysis
	Tool analysis

	Wind
	Wind advection kernel implications
	CPU implications
	Memory packing

	Precipitation
	RNGs
	Rejection cost
	Distribution map

	Clouds
	Technique differences
	Visual artifacts
	Optimization
	Interaction with other systems

	Terrain
	Miscellaneous improvements
	3D rendering
	OpenCL sampling improvements
	Bindless textures
	Wind simulation stability improvements

	Conclusion and Future Work
	Real-world data integration
	Miscellaneous improvements
	Future work
	Snow melting
	Terrain model improvements
	Wind simulation improvements
	Extended Multi-GPU support
	Raytracing
	NEXRAD support

	Bibliography
	Procedural sphere generation
	WindSource neighborhood evaluation
	Wind interpolation advection kernels
	Branching version
	Constant only version
	Nearest-Neighbor only version
	Interpolation only version

	Snow redistribution
	CUDA implementation
	OpenCL implementation

	Cloud shader
	Profiling system
	Automation script
	TimingSystem class
	vul_benchmark

	Terrain pre-processing
	Stereo rendering
	User Manual
	Wind
	Precipitation
	Clouds
	Terrain
	3D rendering
	OpenCL hardware sampling
	Performance analysis
	Bindless textures
	Wind simulation stability problem

