
Computer Vision Based Obstacle
Avoidance for a Remotely Operated
Vehicle

Lars Sletbakk Brusletto

Master of Science in Engineering and ICT

Supervisor: Martin Ludvigsen, IMT
Co-supervisor: Stein M. Nordnes, IMT

Trygve Olav Fossum, IMT

Department of Marine Technology

Submission date: July 2016

Norwegian University of Science and Technology

MASTER’S THESIS IN MARINE CYBERNETICS

SPRING 2016

for

STUD. TECH. LARS SLETBAKK BRUSLETTO

Computer Vision Based Obstacle Avoidance for a
Remotely Operated Vehicle

Work Description
The scope of this thesis is to see if it is possible to develop a computer vision
based obstacle avoidance system for Remotely Operated Vehicles (ROVs).

Scope of work

1. Algorithm development

a. Create an obstacle avoidance algorithm that uses Computer Vision
to decide if there is an obstacle in front.

b. Develop an obstacle avoidance algorithm that works on a single cam-
era and use machine learning to decide when something other than
“ocean” is in front of the ROV.

2. Test the developed algorithm on an ROV in Trondheimsfjorden. The ROV
should avoid a transponder tower placed in its way. The program should
be able to communicate to the LabVIEW program using UDP. The mis-
sion is used to verify the performance of the Obstacle Avoidance System.

3. Simulation

a. Simulate the mission in Trondheimsfjorden

b. Compare different algorithms developed for Obstacle Avoidance in the
simulator environment.

The report will be written in English and edited as a research report including
literature survey, description of mathematical models, simulation results, model
test results, discussion and a conclusion, including a proposal for further work.
Source code will be provided online on GitHub. Department of Marine Tech-
nology, NTNU, can use the results freely in its research work, unless otherwise
agreed upon, by referring to the student’s work. The thesis will be submitted in
three copies on July 16.

Adviser: Ph.D. Stein M. Nordnes and Trygve Olav Fossum

Professor Martin Ludvigsen
Supervisor

Preface

This master’s thesis is a part of the study program “Engineering and ICT” at
the Faculty of Engineering Science and Technology, with specialization within
Marine Cybernetics offered by the Department of Marine Technology. The work
was carried out in the spring semester of 2016. This thesis work is concerned
with the development of Computer Vision based Obstacle Avoidance system for
an (ROV). Part of the work tackles the development of a simulation environ-
ment to test different computer vision methods for (AUR-lab). The simulation
environment is called AURlabCVsimulator.

Trondheim, June 20, 2016

Lars Sletbakk Brusletto

Abstract

Remotely Operated Underwater Vehicle (ROV) has been operating for many
years. The use of ROV is increasing with the increased activities in sub-sea op-
erations. These operations are today dominated by oil and gas offshore activi-
ties, aquaculture and mining industry.

There exist a large potential in automating repetitive tasks, for example getting
the ROV to the operational destination. It is a good starting point for devel-
oping a system to automate that process. Such an ROV‘s are operated by a
person. The purpose of this thesis is to develop a system that can allow this
ROV to move towards its desired destination and to find a method to avoid
obstacles which might be present under water

A common sensor for almost all ROV‘s is the camera. Therefore, it is advan-
tageous to develop a system that utilizes these cameras. Another benefit is the
huge amount of research and tools that are already accessible from the field of
computer vision. The camera is a cheap sensor, and it is already on all ROV‘s.
The main benefits are the vast amount of research and tools already accessible
from the field of computer vision.

The challenge is how to benefit from this sensor. This sensor can observe lights
in color and brightness. This thesis evaluates different methods of analyzing
images and developing methods to use the signals to avoid obstacles when it
moves underwater

Three methods have been developed. One method uses two cameras(disparity
method). The two other methods need only one camera. Part of the work was
concerned with developing a simulation environment to test different computer
vision methods for (AUR-lab). This simulation environment is called AURlabCVsim-
ulator. All methods have been successfully tested in the simulation while the
disparity method has been proved to work underwater in Trondheimsfjorden.
During this trial in Trondheimsfjorden, the ROV operated and detected an ob-
stacle and its center and gave directions to the control program to exit path.

v

vi

This trial demonstrates that cameras can be used for underwater obstacle avoid-
ance. Further work can be extended to more sophisticated methods and learn
how to read textures such as pipelines, subsea equipment and fishing equipment.

There are many interesting applications and options for further work on the
methods in this thesis.

The code developed is available and can easily be extended for other users.

Acknowledgements

I would like to thank my supervisor Prof. Martin Ludvigsen for arranging the
mission in Trondheimsfjorden. He provided me with feedback during the project
period. He also gave me space to develop myself independently, and this has
given me great confidence in myself.

Further, I want to thank my co-supervisors, Ph.D. candidate Stein M. Nordnes,
and Ph.D. candidate Trygve Olav Fossum for the academic discussions and help
during the work of this thesis.

Stein M. Nordnes has taken care of the hardware of coupling the electronics
between the camera and the underwater pressure chamber. He also helped me
in the discussion on computer vision. He always had the time to answer my
questions and pointed me the right direction when needed.

Trygve Olav Fossum helped immensely in discussions around how the “computer
vision program” and the “path program” should be coupled.

I want to thank the M.Sc. student Ida Rist-Christensen for the motivating dia-
logues concerning the mission where we had to cooperate, as well as in deciding
upon the format for communication between the “computer vision program” and
the “path program.”

I am grateful to the crew of R/V Gunnerus who made the sea trials possible.
They were always friendly and helpful and made the period on the ship a great
experience.

I also want to thank Adrian Rosebrock for sharing his knowledge on his com-
puter vision blog http://www.pyimagesearch.com/; it has given me new ideas
and motivation throughout this thesis.

Finally, I would like to thank the open source community of OpenCV, which has
shared open source algorithms and tutorials on how one can implement com-
puter vision methods in python. The OpenCV community has provided open
source algorithms and packages vital for the success of this thesis.

Lars Brusletto

Table of contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Motivation . 2

1.1.1 Autonomy Group . 2
1.1.2 Overview of goal of autonomy group 3

1.2 Scope and Limitations . 3
1.2.1 Objectives . 3

1.3 Contributions . 4
1.4 Organization of the Thesis . 5

2 Background 7
2.1 Previous Work related to underwater obstacle avoidance 7

2.1.1 Over-water obstacle avoidance 8
2.1.2 Underwater obstacle avoidance 9
2.1.3 Summary of related work . 11

2.2 Software . 12
2.2.1 OpenCV . 12
2.2.2 Mahotas . 12
2.2.3 Scikit-image . 12
2.2.4 Scikit-learn . 12
2.2.5 Python . 13
2.2.6 Profiling with SnakeViz . 13
2.2.7 Vimba Software Development Kit 14
2.2.8 Pymba . 14
2.2.9 Summary . 15

2.3 Equipment for the test . 15
2.3.1 PC PLATFORM . 15
2.3.2 Boat and ROV . 16

ix

x TABLE OF CONTENTS

2.4 Camera . 17
2.4.1 Stereo rig . 18
2.4.2 Global shutter . 18

2.5 Pinhole camera . 19
2.5.1 Modeling of pin-hole camera 20

2.6 Distortion . 24
2.6.1 Radial distortion . 24
2.6.2 Tangential distortion . 26
2.6.3 Refraction . 28

2.7 Calibration software . 29
2.7.1 The general idea . 29
2.7.2 MathWorks calibration toolbox 30
2.7.3 Caltech calibration toolbox 31
2.7.4 OpenCV calibration . 31
2.7.5 Agisoft PhotoScan calibration 31

2.8 Underwater camera problems/uncertainties 32
2.8.1 Scatter in underwater images 32
2.8.2 Scale of the world in the image plane 32

2.9 Communication between computers 34
2.9.1 User Datagram Protocol . 34

2.10 Histograms . 35
2.10.1 Color Histograms . 35

2.11 Color channel statistics . 36
2.12 Feature Extraction . 38

2.12.1 Semantic gap . 38
2.12.2 Feature Vector . 38
2.12.3 Image descriptor . 39
2.12.4 Feature Descriptor . 40

2.13 Texture Descriptors . 40
2.13.1 Local Binary Patterns . 41
2.13.2 Haralick descriptor . 46

2.14 Classification . 49
2.14.1 Supervised Learning . 49
2.14.2 Training data . 49
2.14.3 Train the classifier . 50

2.15 Machine Learning . 51
2.15.1 Binary Classification . 51

3 Obstacle Avoidance Methods 55
3.1 Disparity Method . 55

3.1.1 Calculating the camera parameters 56

TABLE OF CONTENTS xi

3.1.2 Starting with an image pair 58
3.1.3 Load Calibration Parameters 59
3.1.4 Make image pair Grayscale 60
3.1.5 Rectify . 61
3.1.6 Stereo block matching . 62
3.1.7 Remove error margin . 63
3.1.8 Create 3d point cloud . 64

3.2 Local Binary Pattern Method . 66
3.2.1 Training image . 66
3.2.2 Resize image . 69
3.2.3 Divide Image into Blocks . 69
3.2.4 Predict each segment and mask region based on prediction . 71

3.3 Haralick Method . 72
3.3.1 Divide Image into Blocks . 72
3.3.2 Predict each segment and mask region based on prediction . 74

3.4 Obstacle avoidance . 75
3.4.1 Starting Point . 75
3.4.2 Contour extraction . 75
3.4.3 Center of obstacle calculation 76
3.4.4 Create bounding box . 78
3.4.5 Mean Value . 79
3.4.6 Status . 80

3.5 Summery of methods . 80

4 Testing methodology 81
4.1 Field Test in Trondheimsfjorden . 81

4.1.1 The camera software application programming interface Vimba 82
4.1.2 An overview . 86
4.1.3 Transponder Tower . 88
4.1.4 Organization . 89
4.1.5 Obstacle avoidance path . 91

4.2 Simulator Environment . 92
4.2.1 Simulator Overview . 92

4.3 Summary . 93

5 Results 95
5.1 Comparing segmentation method with SLIC Superpixel segmentation 95

5.1.1 Prediction comparison for segmentation 95
5.1.2 Runtime comparison for segmentation 96
5.1.3 Summery of segmentation comparison 97

5.2 Run time comparisons between the three methods 98
5.2.1 Comparing the methods . 99

xii TABLE OF CONTENTS

5.3 Bad lighting comparison . 102
5.4 AurlabCVsimulator simulation with LabVIEW program 104
5.5 Summary of results . 104

6 Analysis and Discussion 105
6.1 Uncertainties and Obstacles . 105

6.1.1 Uncertainties by removing error margin in the Disparity method105
6.1.2 Synchronization uncertainties 106
6.1.3 Dust clouds . 106
6.1.4 Fish . 106
6.1.5 Multiple simultaneous obstacles 107

6.2 Pros and Cons of the methods . 107

7 Conclusions and Further Work 109
7.1 Conclusion . 109

7.1.1 Performance of the chosen segmentation 110
7.2 Further Work . 110

7.2.1 Detect errors on pipelines 112
7.2.2 Application of camera based obstacle avoidance 113
7.2.3 Implement structure of motion using OpenSFM 113

References 115

A Ocean 16 paper 119

B Attachments 127
B.1 Msc poster . 127
B.2 Links to software and documentation 127

B.2.1 AurlabCVsimulator . 127
B.2.2 ROV objectAvoidance StereoVision 128

List of Figures

1.1 Goal of the work . 1
1.2 Plan of mission. Courtesy of (Rist-christensen, 2016). 3

2.1 Conncept of the pushboom method (Barry & Tedrake, 2015). 8
2.2 Figure of consept using relative scale (Mori & Scherer, 2013). 8
2.3 Disparity map and image divided into 3 parts (Kostavelis et al., 2009). 9
2.4 Super pixel method applied to image of a reef and ocean (Rodriguez-

Teiles et al., 2014). 10
2.5 Super pixel method applied to image with a lighter background (closer

to surface) (Rodriguez-Teiles et al., 2014). 10
2.6 SnakeViz illustates the profiling of different parts of the program . . 14
2.7 Boat and ROV. Courtesy of Aur-lab 16
2.8 GC1380 camera model, courtesy of (“High sensitivity 1.4 Megapixel

CCD camera with GigE Vision”, n.d.) 17
2.9 Image of ethernet port . 17
2.10 cameraRigMinerva . 18
2.11 rolling compared to global shutter, courtesy of http://www.red.com/learn/

red-101/global-rolling-shutter 19
2.12 pinhole camera, image from http://www.lbrainerd.com/courses/

digital-photography/pinhole-cameras 20
2.13 Pinhole model. Image from http://se.mathworks.com/help/vision/

ug/camera-calibration.html . 20
2.14 Example of inside of a camera. Courtecy of (Lens Basics — Under-

standing Camera Lenses , 2016) . 21
2.15 Example Principal Point. Courtesy of (Navab, 2009) 22
2.16 Example of barrel, orthoscopic and pincushion effect. Image from http://

toothwalker.org/optics/distortion.html 24
2.17 Barrel distortion . 25
2.18 Pincushion distortion . 26
2.19 Cause of tangential distortion. Courtesy of http://se.mathworks.com/

help/vision/ug/camera-calibration.html 27

xiii

http://www.red.com/learn/red-101/global-rolling-shutter
http://www.red.com/learn/red-101/global-rolling-shutter
http://www.lbrainerd.com/courses/digital-photography/pinhole-cameras
http://www.lbrainerd.com/courses/digital-photography/pinhole-cameras
http://se.mathworks.com/help/vision/ug/camera-calibration.html
http://se.mathworks.com/help/vision/ug/camera-calibration.html
http://toothwalker.org/optics/distortion.html
http://toothwalker.org/optics/distortion.html
http://se.mathworks.com/help/vision/ug/camera-calibration.html
http://se.mathworks.com/help/vision/ug/camera-calibration.html

xiv LIST OF FIGURES

2.20 Tangential distortion . 27
2.21 Refraction:air-glass-water image. Courtesy of Carroll Foster/Hot Eye

Photography . 28
2.22 Refraction:air-glass-water interface (Sedlazeck and Koch, 2011) . . . 29
2.23 Checkerboard is used underwater to calibrate camera for distortion 30
2.24 Camera calibration in Matlab with mathworks toolbox 30
2.25 Camera calibration in Matlab with calib toolbox 31
2.26 Illustration of scatter . 32
2.27 example of scaling (Visual Odometry AUTONAVx Courseware — edX ,

n.d.) . 33
2.28 Example image of how two computers are connected with ethernet ca-

ble. Courtecy of https://usercontent1.hubstatic.com/9072770
f520.jpg . 34

2.29 Color histogram . 36
2.30 texture and color descriptor . 39
2.31 texture, color and shape descriptor 39
2.32 Smooth texture . 41
2.33 LBP calculation example. Courtesy of (Pietikäinen & Heikkilä, 2011) 42
2.34 flat, edge, corner and non-uniform 44
2.35 58 prototypes when p = 8 . Courtesy of (Pietikäinen & Heikkilä, 2011) 44
2.36 From color image to gray scale resized image 45
2.37 Image to describe the process of calculating the gray co-occurrence

matrix. Courtesy of (Create gray-level co-occurrence matrix from im-
age - MATLAB graycomatrix - MathWorks Nordic, n.d.) 47

2.38 An example data-set . 50
2.39 Optimal hyperplane example. Courtesy of (Introduction to Support

Vector Machines — OpenCV 2.4.13.0 documentation, 2016) 52
2.40 Optimal hyperplane example. Courtesy of (Support vector machine

- Wikipedia, the free encyclopedia, 2016) 53
2.41 One vs all. Courtesy of (Ng, n.d.) 54

3.1 . 56
3.2 Checkerboard image before and after undistortion. The undistroted

image can be seen to the right . 57
3.3 Undistortion done with the parameters calculated by Agisoft 57
3.4 Stereo image pair. 59
3.5 Gray scale image pair. 60
3.6 Aligning to images. 61
3.7 Undistorted image pair . 61
3.8 Disparity image. 63
3.9 Disparity image without error margin. 63

https://usercontent1.hubstatic.com/9072770_f520.jpg
https://usercontent1.hubstatic.com/9072770_f520.jpg

LIST OF FIGURES xv

3.10 Point cloud from disparity. 64
3.11 Histograms highlighted, created by modifying the script written in (Local

Binary Pattern for texture classification — skimage v0.12dev docs, 2016) 67
3.12 Histograms highlighted, created by modifying the script written in (Local

Binary Pattern for texture classification — skimage v0.12dev docs, 2016) 67
3.13 The training image used is a picture from a scene in “Finding Nemo”.

Courtesy of the Disney movie “Finding Nemo” 68
3.14 From color image to grayscale resized image 69
3.15 Image to describe the process of extracting the segment to compute

the histogram . 70
3.16 Histograms created of chosen segment using uniform LBP 70
3.17 Prediction of obstacle using the LBP method 71
3.18 Image to describe the process of extracting the segment to compute

the histogram . 73
3.19 Histograms from Haralick descriptor 73
3.20 prediction of obstacle using the Haralick method 74
3.21 The starting point of the obstacle position calculation. 75
3.22 Calculating the contours of the binary images calculation. 76
3.23 Calculating the center of the binary images calculation. 76
3.24 Calculating the bounding box of the binary images calculation. 78

4.1 Boat and ROV. Courtesy of Aur-lab 81
4.2 Allied Vision Technologies driver stack AVT. Courtesy of Allied Vi-

sion Technologies . 82
4.3 Architecture of autonomy program, courtesy of (Fossum, Trygve Olav

and Ludvigsen, Martin and Nornes, Stein M and Rist-christensen, Ida
and Brusletto, Lars, 2016) . 86

4.4 Plan of mission (Rist-christensen, 2016). 87
4.5 Transponder tower (“AUR-Lab Deployment av LBL nett ved TBS”,

2013) . 89
4.6 Plot of the U turn. Courtesy of (Rist-christensen, 2016) 90
4.7 Obstacle avoidance implementation in LabVIEW. Courtecy of (Rist-

christensen, 2016) . 91
4.8 Webpage for the github project AurlabCVsimulator 92
4.9 ReadTheDocs documentation for AurlabCVsimulator 93

5.1 Prediction image made with SLIC and LBP 96
5.2 Plot of the U turn . 100
5.3 Images in chronological order . 100
5.4 plot of meanvalue . 101
5.5 plot of meanvalue . 101
5.6 Test image . 102

xvi LIST OF FIGURES

5.7 Human analysis . 102
5.8 Bad lighting comparison . 103
5.9 Simulation of Obstacle avoidance using the Disparity method. Cour-

tesy of (Rist-christensen, 2016) . 104

6.1 image of clock from stereo rig . 106
6.2 Example of a challenging situation 107

7.1 Pipeline example image. Courtesy of (Subsea Pipeline Inspection, Re-
pair and Maintenance - Theon - Oil and Gas Front End Consultancy
& Petroleum Engineering Consultants — Theon - Oil and Gas Front
End Consultancy & Petroleum Engineering Consultants , 2016). . . . 112

7.2 OpenSFM example image. Courtesy of (mapillary/OpenSfM: Open
Source Structure from Motion pipeline, 2016). 113

List of Tables

1.1 Members of Autonomy Group . 2

2.1 Software libraries . 15
2.2 Computer configuration used for this thesis 15
2.3 Local Binary Pattern descriptor steps 42
2.4 Haralick steps . 46
2.5 Haralick features . 48
2.6 Datasets . 50

3.1 Disparity method steps . 55
3.2 Camera parameters . 58
3.3 . 58
3.4 . 58
3.5 Stereo block matching parameters, explained in detail in the documen-

tation found in (Welcome to opencv documentation! — OpenCV 2.4.9.0
documentation, n.d.). 62

3.6 Local Binary Pattern Method steps 66
3.7 Haralick Method steps . 72

4.1 Autonomy plan used in thesis (Rist-christensen, 2016). 87
4.2 Test cases run during the day . 89

5.1 SLIC Superpixel LBP method runtime 97
5.2 LBP method runtime . 97
5.3 Disparity method runtime . 98
5.4 Haralick method runtime . 99

xvii

Nomenclature

AUR− lab Applied Underwater Robotics Laboratory

AurlabCV simulator Applied Underwater Robotics Laboratory Computer Vi-
sion Simulator

AUV Remotly Operated Vehicle

AV T Allied Vision Technologies

BRISK Binary Robust Invariant Scalable Keypoints

CPU Central Processing Unit

DP Dynamic Positioning

DV L Doppler Velocity Log

GLCM Gray Level Co-occurrence Matrix

GPU Graphics Processing Unit

GUI Graphical User Interface

HIL Hardware In the Loop

HSV Hue, Saturation, and Value

LabV IEW Laboratory Virtual Instrument Engineering Workbench

LBP Local Binary Pattern

ML Machine Learning

OpenCV Open Source Computer Vision

xix

xx LIST OF TABLES

RGB Red Green Blue

ROV Remotly Operated Vehicle

SDK Software Development Kit

SDK Software Development Kit

SIFT Scale Invariant Feature Transform

SLIC Simple Linear Iterative Clustering

SSD Sum of Squared Differences

SURF Speeded Up Robust Features

SVM Support Vector Machines

TCP Transmission Control Protocol

UDP User Datagram Protocol

Chapter 1

Introduction

Figure 1.1: Goal of the work

In figure 1.1, a possible scenario in an underwater operation is visualized, the
Remotely Operated Vehicle is autonomously controlled to move to its desired
location. Unfortunately, there might be unknown obstacles in it‘s path. This
thesis is concerned with the development of software that achieves real-time
underwater obstacle avoidance in such situations.

This work is about obstacle avoidance methods that work under abnormal con-
ditions, in particular, low light, scattering, blurring or imprecise camera calibra-
tion.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

If we want to get from A to B safely, we must make sure to avoid all obstacles in
the way. Sonar could work well in such a setting. However, the benefits of using
the camera sensor is the substantial amount of information captured. One such
example is how well we can navigate using the information from our eyes and
understand our environment. A camera is also inexpensive since they are manu-
factured at low costs in comparison to other sensors. The camera based obstacle
avoidance system for the AUR-lab is a starting point for further development
of camera-based marine applications. This is advantageous for implementing
artificial intelligence for underwater robotics.

1.1.1 Autonomy Group

Professor Martin Ludvigsen started a project in the spring quarter of 2016 to
create a system that can perform robotic autonomous interventions. The group
consists of the following members

Table 1.1: Members of Autonomy Group

Members

Professor Martin Ludvigsen
PhD candidate Stein M. Nornes and
PhD candidate Trygve O. Fossum
MsC student Ida Rist-Christensen
MsC student Lars Brusletto

The authors contribution were to implement a computer vision system that
streams and processes image data. It is a part of the autonomy framework of
the group. The result of the group’s work is presented in the paper A for the
Ocean‘s 16 conferences. The author has cooperated with MsC student Ida Rist-
Christensen on the part of the project where the computer vision system sends
information to the LabVIEW program as explained further in the chapter 4.

1.2. SCOPE AND LIMITATIONS 3

1.1.2 Overview of goal of autonomy group

2. Descent

3. Transit 5. Camera tracking

1. Launch

6. Inspection/
Intervention

Valve

Figure 1.2: Plan of mission. Courtesy of (Rist-christensen, 2016).

The figure 1.2 illustrates main (ROV) tasks. The computer vision system will
be used to avoid obstacles it meets on it‘s way under the following steps transit,
sonar detection and tracking, camera detection and tracking and inspection/in-
tervention. These steps are enumerated as 3,4,5,6 in the figure 1.2.

1.2 Scope and Limitations

The goal of this thesis is to develop an obstacle avoidance system for NTNUs
camera based underwater robots. The obstacle avoidance system utilizes the
camera as its only sensor. This thesis revolves around developing this system
for the ROV 30 k, with its camera aimed straight forward. A sea trial was con-
ducted to test the performance of the scheme and to gather images for further
simulations.

Several obstacle avoidance systems have been developed for drones. However,
they weren’t designed to face our challenges. In fact, in an underwater environ-
ment, images lack salient features and suffer from noisy blur and backscatter.

1.2.1 Objectives

The primary objectives of this thesis are presented in the list below:

4 CHAPTER 1. INTRODUCTION

• Design and development of the obstacle avoidance method.

• Development of simulation environment module.

• Conduct a mission with the ROV to test its performances in real life condi-
tions.

The details of each objective will be investigated further after the necessary
background material and theory has been introduced to the reader.

1.3 Contributions

The contributions are presented in the list below:

• Development of the Disparity method. Section 3.1 presents the algorithm in
details.
• Development of the LBP method. An algorithm for obstacle avoidance using

ML has been developed. Section 3.2 presents the algorithm in details.
• Development of the Haralick method. An algorithm for obstacle avoidance

using ML has been developed. Section 3.3 presents the algorithm in details.
• Development of simulation environment module that has been used to test

computer vision methods that, i.e., can be used for obstacle avoidance.An
overview is given in section 4.2.

1.4. ORGANIZATION OF THE THESIS 5

1.4 Organization of the Thesis

Chapter 1 introduction of the thesis.

Chapter 2 introduces the background material for obstacle avoidance. A short
introduction to research attempts on obstacle avoidance and other relevant work
is given.

Chapter 3 describes and illustrates the methods developed in this thesis.

Chapter 4 describes how the methods developed in chapter 3 has been tested
in field test in the Trondheimsfjord and simulations.

Chapter 5 presents the results acquired throughout this thesis

Chapter 6 discuss results and errors in the results chapter.

Chapter 7 concludes the thesis and suggests further work.

Appendix A paper proposed for the Ocean 16 conference.

Appendix B lists the attachments that are delivered electronically in DAIM.

Chapter 2

Background

This chapter is an introduction to software, hardware, theory and previous work.

2.1 Previous Work related to underwater ob-

stacle avoidance

Autonomous underwater obstacle avoidance is a challenging problem. If solved
robustly, it will result in several applications in the field of robotics and marine
engineering. Previous work that inspired this thesis is presented. The literature
can be split into over-water and underwater obstacle avoidance. The fundamen-
tal difference between the two is that an underwater environment has a sparse
set of reliable features that can be exploited for obstacle avoidance.

7

8 CHAPTER 2. BACKGROUND

2.1.1 Over-water obstacle avoidance

Pushburst (Barry and Russ 2015) method

Figure 2.1: Conncept of the pushboom method (Barry & Tedrake, 2015).

High-speed obstacle avoidance for drones has been developed using Block match-
ing algorithm as in (Barry & Tedrake, 2015). In their paper, they describe how
they detect the single depth (marked in (Figure 2.1) as dark blue) and integrate
the vehicle’s odometry and its past detection (marked as lighter blue in the fig-
ure). Thus, the method builds a full map of obstacles in front of the vehicle in
real time.

(Mori, Tomoyuki, and Sebastian 2013) method

Figure 2.2: Figure of consept using relative scale (Mori & Scherer, 2013).

2.1. PREVIOUS WORK RELATED TO UNDERWATER OBSTACLE AVOIDANCE9

Another method utilizes feature matching based on SURF(Speeded Up Robust
Features) descriptor, combined with template matching to compare relative
obstacle sizes with different image spacing. This method is described in detail
in (Mori & Scherer, 2013) , see (Figure 2.2). Unfortunately, it was only tested on
a single type of obstacle configuration and hence is not a robust solution.

2.1.2 Underwater obstacle avoidance

(Kostavelis, Nalpantidis, and Gasteratos, 2009.) method

Figure 2.3: Disparity map and image divided into 3 parts (Kostavelis et al.,
2009).

This work is also inspired by (Kostavelis et al., 2009). Their method is to calcu-
late the disparity map and then calculate the mean value of pixels in 3 parts of
the image, left, center, and right. From the calculated mean value, it detects the
dominant obstacle before it applies an exit strategy. See (Figure 2.3) to observe
their decision strategy. Unfortunately, their method is quite slow. It needs 2.317
seconds to complete its disparity method and make a decision.

10 CHAPTER 2. BACKGROUND

The (Rodriguez-Teiles et al. 2014) method

Figure 2.4: Super pixel method applied to image of a reef and ocean (Rodriguez-
Teiles et al., 2014).

In their work, they made an obstacle avoidance system for a robot so it au-
tonomously could move around a coral reef without crashing. Their method seg-
ments the image and retrieves a histogram for each segment. The latter is used
to predict whether the segment belongs to an obstacle. See figure 2.4. The pre-
diction is performed using a pre-trained classifier. Unfortunately, their method
seems to work poorly in different lighting condition, this is since the histogram
of lab space is not illumination invariant. In the following figure 2.5, notice how
bad it is at classifying in poor lighting conditions

Figure 2.5: Super pixel method applied to image with a lighter background
(closer to surface) (Rodriguez-Teiles et al., 2014).

2.1. PREVIOUS WORK RELATED TO UNDERWATER OBSTACLE AVOIDANCE11

In the figure 2.5, the red dots represent segments centers classified as obstacles;
blue dots is classified as “ocean”.

The SLIC Superpixel method allows the user to adjust to the local water condi-
tions by training the classifier to those conditions before it‘s mission.

2.1.3 Summary of related work

There are several papers on obstacle avoidance and computer vision, in this
section the reader has been introduced to the documents that inspired the work
of this thesis the most.

To summarize, the methods all have pros and cons, the underwater methods
have been tested and works in an marine environment, and therefore seems as
a great starting point for further work, while the over-water methods has given
the thesis inspiration for might be possible underwater. Especially the advanced
method described in (Barry & Tedrake, 2015) has given ideas for how to improve
disparity calculation.

12 CHAPTER 2. BACKGROUND

2.2 Software

There are different software that has been chosen as the tools to develop the ob-
stacle avoidance methods. In this section a short presentation of them is given.

2.2.1 OpenCV

(OpenCV) is an image processing library originally developed by Intel, now
maintained by Willow Garage. It is open-source, multi-platform and is imple-
mented in C and C++, and there are wrappers available for several languages,
including C#, Python, Ruby, and Java

2.2.2 Mahotas

Mahotas is a computer vision package created for cellular image analysis. How-
ever, the package includes traditional image processing functionalities as well
as more advanced computer vision functions such as feature computation. In
this thesis, the Haralick feature descriptor has been of interest after reading in
(R. M. Haralick et al., 1973) how it has been used for classification from satellite
images. Furthermore, the interface of Mahotas is in python, which makes it
easy to use, and it is fast since the underlying code is implemented using C++
and optimized for speed. Among other algorithms, the implementation of the
Haralick texture descriptor (documented in (Coelho, 2013a)) is faster than the
one implemented in Scikit-image

2.2.3 Scikit-image

Scikits-image is a collection of algorithms for image processing (scikit-image:
Image processing in Python — scikit-image, 2016). It is written in Python and
Cython. It is used for the feature extraction of the Local Binary Pattern algo-
rithm and for implementing the SLIC Superpixel Segmentation as described in
the (Rodriguez-Teiles et al., 2014) paper.

2.2.4 Scikit-learn

Scikit-learn is a fast library for support vector classification. In the paper (Pedregosa
et al., 2012), is is documented that it has a faster run-time than the following

2.2. SOFTWARE 13

library’s: mlpy, pybrain, pymvpa, mdp and shogun .

LinearSVC inside of Scikit-learn is written using LibSVM and implemented by
(Chang and Lin, 2001)

2.2.5 Python

Python is an open-source, high-level programming language. It allows for the
use of multiple programming paradigms, ranging from object-oriented to func-
tional programming. In addition to OpenCV, two libraries for Python have been
utilized, NumPy and Matplotlib. NumPy is an open-source math library. It
includes support for arrays, matrices and a large set of mathematical functions
for these. Matplotlib is a 2D/3D plotting library. The reason for using Python is
the extensiveness of its standard library. Moreover, as a scripting language, it is
well suited for rapid prototyping. It is not as fast as C++, but in this situation,
quick development is more important than processing speed.

2.2.6 Profiling with SnakeViz

SnakeViz is a open source project available on github at:

https://github.com/jiffyclub/snakeviz.

SnakeViz is a profiling software. “Profiling is a form of dynamic program anal-
ysis that measures, for example, the space (memory) or time complexity of a
program, the usage of particular instructions, or the frequency and duration of
function calls” (Profiling (computer programming) - Wikipedia, the free encyclo-
pedia, 2016).

https://github.com/jiffyclub/snakeviz

14 CHAPTER 2. BACKGROUND

Figure 2.6: SnakeViz illustates the profiling of different parts of the program

In figure 2.6, we can see that snakeViz allows a graphical runtime analysis of
Python programs. SnakeViz has been used for optimization of the programs,
and to compare their runtime.

2.2.7 Vimba Software Development Kit

Vimba SDK is an SDK maintained and developed by Allied Vision Technologies
(AVT). The software is used to communicate and capture images from the AVT
cameras.

2.2.8 Pymba

Pymba is a open source project available on github at: https://github.com/morefigs/pymba

Pymba is a Python wrapper for the Vimba SDK written in c++.

To make the computer communicate and receive images from the camera we
first needed to install the Vimba SDK from AVT(Allied Vision Technologies),
and then install the AVTDriverinstaller to install the AVT Vimba drivers on my
computer.

We then used ”pymba” (morefigs/pymba: Python wrapper for the Allied Vi-
sion Technologies (AVT) Vimba C API , 2016) a Python wrapper for the Vimba

https://github.com/morefigs/pymba

2.3. EQUIPMENT FOR THE TEST 15

SDK written in c++, so we could do all the communication using Python. The
pymba folder is then downloaded and placed in the same repository as the project.

2.2.9 Summary

Software libraries used are summarized in table 2.1 below.

Table 2.1: Software libraries

library characteristics

Python: 2.7.11 —Anaconda 2.5.0 (64-bit)
scipy: 0.17.0
numpy: 1.10.4
matplotlib: 1.5.1
pandas: 0.17.1
sklearn: 0.17
pymba

2.3 Equipment for the test

To be able to do the field test in Trondheimsfjorden (section 4.1) the program
used certain equipment and will therefore be presented.

2.3.1 PC PLATFORM

The main development and testing were all done on Acer Aspire VN7-792G Here
is an overview of the computer hardware used in this thesis.

Table 2.2: Computer configuration used for this thesis

Computer characteristics

Processor Intel Core i7-6700HQ CPU @ 2.60GHz
, 2601 Mhz, 4 Core(s), 8 Logical Processor(s)

PC Model Aspire VN7-792G
RAM 8 GiB (DDR3), 1600MHz
OS Windows 10 64-bit
Graphic card NVIDIA GeForce GTX 960M

16 CHAPTER 2. BACKGROUND

2.3.2 Boat and ROV

(a) Image of Gunnerus

(b) Image of ROV SUB-fighter 30k

Figure 2.7: Boat and ROV. Courtesy of Aur-lab

The computer vision system was tested April 2016 in the Trondheim Fjord on-
board of the boat Gunnerus seen in figure 2.7a. The cameras were mounted
front facing on the ROV SUB-Fighter 30k from Sperre AS seen in 2.7b.

The ROV seen in figure 2.7b is operated from an onboard control room within
a container on Gunnerus. From the control room on can control the vehicle in
manual and automatic control modes. On top of the container, there is placed a
winch that holds the tether of the ROV.

The ROV operator could take over the control of the ROV at any time in case
something would happen. When the ROV operator takes control of the ROV,
the ROV fist goes into “stationkeeping” mode. A mode where the ROV stops,
I.e its keeps its position at the same location and depth.

2.4. CAMERA 17

2.4 Camera

The camera is a relatively cheap sensor that captures extensive information in
the form of an image or a sequence of images.

Figure 2.8: GC1380 camera model, courtesy of (“High sensitivity 1.4 Megapixel
CCD camera with GigE Vision”, n.d.)

The model name of the camera used on the ROV is Prosilica gc1380c (seen in
figure 2.8) and is produced by Allied Vision Technologies.

Figure 2.9: Image of ethernet port

In figure 2.9, the ethernet and power port is displayed. The ethernet cable is
connected to from the computer to the camera.

A selection of specs from the specification in (“High sensitivity 1.4 Megapixel
CCD camera with GigE Vision”, n.d.) is shown below:

• The camera resolution is 1360× 1024

• the resolution is 1.4 megapixel

• it‘s a global shutter (see section 2.4.2)

• Sony ICX285 2/3” Progressive scan CCD

• ethernet cable entry

18 CHAPTER 2. BACKGROUND

2.4.1 Stereo rig

Figure 2.10: cameraRigMinerva

The stereo rig used in the disparity method is shown in figure 2.10. The method
needs two cameras to extract depth infromation from the scene. Only the cam-
era to the right in figure 2.10 has been used for the LBP and Haralick method.

We use two of these cameras (figure 2.8) and they are placed inside camera hous-
ings as shown above in figure 2.10.

They are placed within a camera housing since it protects them from water leaks
and high pressure that can destroy the camera.

Please note how the camera is mounted front facing in on the ROV in figure
2.10.

2.4.2 Global shutter

A camera has typically either a rolling or global shutter. The important differ-
ence is that the global shutter allows all the pixels on its sensor to capture light
at the same time. This means that if something moves in the image, one will
not get any skew and stretched image effects that might happen using a rolling
shutter.

2.5. PINHOLE CAMERA 19

(a) rolling shutter (b) global shutter

Figure 2.11: rolling compared to global shutter, courtesy of http://www.red.com/
learn/red-101/global-rolling-shutter

In figure 2.11, two images of a gun is captured with the two different methods.
Please note how the rolling shutter captures distortion effects.

Distortion effects caused by rolling shutter as mentioned in (Rolling shutter -
Wikipedia, the free encyclopedia, 2016).

• Wobble

• Skew

• Smear

• Partial Exposure

Because of these problems, it‘s advantageous for the obstacle avoidance program
to use a camera with a global shutter.

2.5 Pinhole camera

The pinhole camera is a simple concept and it serves as a useful model to de-
scribe the functionality of a camera.

The sensor used in computer vision is the camera and since the field estimates
the world around us, one need to relate a 2D image to the real 3D world. A
simple model of this relationship can be exemplified by the pinhole camera and
its model.

http://www.red.com/learn/red-101/global-rolling-shutter
http://www.red.com/learn/red-101/global-rolling-shutter

20 CHAPTER 2. BACKGROUND

Figure 2.12: pinhole camera, image from http://www.lbrainerd.com/courses/

digital-photography/pinhole-cameras

In figure 2.12 a basic pinhole camera is shown, it is basically a box that only lets
light through a tiny hole (that usually has been made using a pin) that hits a
piece of film inside the box.

It is a simple concept and is at the basis of what a modern camera is. In modern
camera the film is replaced by digital image sensors that captures the light that
gets through its lens. In a pinhole camera there is no lens.

2.5.1 Modeling of pin-hole camera

In this section we will first introduce the intrinsic camera parameters, this is
the parameters describing the camera‘s inside. Then we introduce the extrinsic
parameters that models the heading(rotation) and position(translation) of the
camera.

Intrinsic camera parameters

Figure 2.13: Pinhole model. Image from http://se.mathworks.com/help/

vision/ug/camera-calibration.html

http://www.lbrainerd.com/courses/digital-photography/pinhole-cameras
http://www.lbrainerd.com/courses/digital-photography/pinhole-cameras
http://se.mathworks.com/help/vision/ug/camera-calibration.html
http://se.mathworks.com/help/vision/ug/camera-calibration.html

2.5. PINHOLE CAMERA 21

In figure 2.13, the relationship between a pinhole camera viewing a 3D object
and the projected 2D object is illustrated. One needs a mathematical model to
relate the real 3D world with the 2D image plane projected (often called per-
spective projection) onto the camera.

The parameters describing the camera‘s inside is called intrinsic. The parame-
ters represent the focal length, the optical center(principal point) and the skew
coefficient.

Figure 2.14: Example of inside of a camera. Courtecy of (Lens Basics —
Understanding Camera Lenses , 2016)

Focal length: fx, fy

In figure 2.14 the focal length is illustrated with the green line. The focal length
is the distance from the optical center (notice that this is the same as the point
of the pin hole in the pinhole camera) to the focal point on the image sensor.

In an ideal camera, the length of fx is equal to fy, but one often get a different
result, this is caused by flaws in the digital camera sensor and can be the follow-
ing:

• Distortion from lens

• Noise from inaccurate digital camera sensor.

• Inaccurate camera calibration

Principal Point Offset (optical center): cx, cy

22 CHAPTER 2. BACKGROUND

Even though the optical center is not on the image plane in figure 2.14, it is
represented in (x,y) direction as it was the focal point on the image sensor. Acc-
tualy it lays on the principal plane and is parallel to the image plane

Figure 2.15: Example Principal Point. Courtesy of (Navab, 2009)

located at the center of the image In figure 2.15 the principal point offset is
exemplified, it is placed at center of the image at point p.

Axis Skew: s

Skew causes shear distortion in the projected image.

When there is no skew the pixels in the ismage sensor are all perfectly squared
as the ratio between height and width is 1 : 1.

Intrinsic matrix

The intrinsic matrix is represented as in (Hartley & Zisserman, 2004) as:

K =

fx s cX
0 fy cy
0 0 1

Please note that the matrix K is the way OpenCV wants to represent the intrin-
sic matrix and is used in 3.1.3 when the program loads in the camera calibration
parameters.

2.5. PINHOLE CAMERA 23

Extrinsic camera parameters

Extrinsic means external or outside of, and in this case it is how the camera
is located in the world or 3D scene. The external components is the rotation
matrix and the translation matrix.

There are many ways to represent the extrinsic parameters according to (Dissecting
the Camera Matrix, Part 2: The Extrinsic Matrix , 2016) and is summarized
bellow.

• World centric − how the world changes relative to camera movement

• Camera-centric − how the camera changes relative to the world

• Look-at − how the camera’s orientation is in terms of what it is looking at

The world centric view can be thought of as the rotation matrix rotates the
camera from its center. And the tangential moves the camera up-down, left-
right, forward-backwards.

The extrinsic matrix in square form is given as:

[
R t
0 1

]
=

[
I t
0 1

]
×
[
R 0
0 1

]
Where the rotation matrix “R” is given as:

R =

r1,1 r1,2 r1,3
r2,1 r2,2 r2,3
r3,1 r3,2 r3,3

And the translation vector “t” (the position of the world origin in camera coor-
dinates) is given as

t =

t1t2
t3

The extrinsic matrix describes how to transform the points in the the 3D world
to camera coordinates. It‘s a way to describe how the world is transformed rela-
tive to the camera.

In section 3.1.1 the result of the camera calibration is given and it shows the
calculated rotation and translation parameters.

24 CHAPTER 2. BACKGROUND

2.6 Distortion

The pinhole camera model presented in section 2.5 is an approximation to the
real world. But that model does not take into account the distortion caused by
the lens. The reason is that the pinhole model only look at how the light from
a 3D world is projected onto the 2D image plane. It gets a whole lot more com-
plicated when light rays get bent by the lens. In underwater image calibration it
is even more difficult, since we have to deal with refraction as explained in more
detail in section 2.6.3.

The distortion coefficients calculated from the camera calibration is presented
in 3.1.1. The way these parameters are loaded into OpenCV using python is
explained in 3.1.3.

2.6.1 Radial distortion

Radial distortion is a common distortion in cameras and comes from the shape(symmetry)
of the lens.

Figure 2.16: Example of barrel, orthoscopic and pincushion effect. Image from
http://toothwalker.org/optics/distortion.html

In figure 2.16 the barrel and pincushion distortion causes is illustrated. When
the lens is not at the optimal spot it leads to these kinds of distortions. In the
barrel and pincushion distortion it caused by the light to go through either side(

http://toothwalker.org/optics/distortion.html

2.6. DISTORTION 25

closer to the edges) of the optical center. Orthoscopic means free from optical
distortion and happens when the light rays go through the optical center.

Radial distortion coefficients

In (What Is Camera Calibration? - MATLAB & Simulink - MathWorks Nordic,
2016) it is given a good explanation of the radial distortion coefficients, and the
following are from that source.

The radial distortion coefficients model this type of distortion. The
distorted points are denoted as (xdistorted, ydistorted):

xdistorted = x(1 + k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6)

ydistorted = y(1 + k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6)
• x, y — Undistorted pixel locations. x and y are in normalized im-

age coordinates. Normalized image coordinates are calculated from
pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

• k1, k2, and k3 — Radial distortion coefficients of the lens.

• r2 : x2 + y2

Typically, two coefficients are sufficient for calibration. For severe
distortion, such as in wide-angle lenses, you can select 3 coefficients
to include k3.

Barrel distortion

Figure 2.17: Barrel distortion

26 CHAPTER 2. BACKGROUND

In figure 2.17, it looks as if the image has been stretched around a ball. Note
that this effect is utilized in typical fisheye lenses like gopro that gives a wide
lens angle, in that case the advantage is that it captures more since it has a
wider field of view. But if one want to utilize image for computer vision one
wishes to have a close as possible approximation to the real world.

Pincushion distortion

Figure 2.18: Pincushion distortion

In figure 2.17, it looks as if the image has been stretched on the inside og a ball,
it is the opposite effect of the barrel distortion. And this also exemplifies that
they they are the opposite poles of each other.

2.6.2 Tangential distortion

The lens and the image plane needs to be parallel. When they are not, tangen-
tial distortion appears. The tangential distortion coefficient describe how they
are non parallel.

2.6. DISTORTION 27

Figure 2.19: Cause of tangential distortion. Courtesy of http://se.mathworks
.com/help/vision/ug/camera-calibration.html

The cause of tangential distortion comes from nonparallel lens and image plane
and is showed in figure 2.19 above.

Figure 2.20: Tangential distortion

In figure 2.20, an example of how an image of a checkerboard gets images when
the camera is affected by tangential distortion.

Tangential distortion coefficients

In (What Is Camera Calibration? - MATLAB & Simulink - MathWorks Nordic,
2016) it is given a good explanation of the Tangential distortion coefficients, and
the following are from that source.

The distorted points are denoted as (xdistorted, ydistorted):

xdistorted = x+ [2 ∗ p1 ∗ x ∗ y + p2 ∗ (r2 + 2 ∗ x2)]

http://se.mathworks.com/help/vision/ug/camera-calibration.html
http://se.mathworks.com/help/vision/ug/camera-calibration.html

28 CHAPTER 2. BACKGROUND

ydistorted = y + [p1 ∗ (r2 + 2 ∗ y2) + 2 ∗ p2 ∗ x ∗ y]

• x, y — Undistorted pixel locations. x and y are in normalized im-
age coordinates. Normalized image coordinates are calculated from
pixel coordinates by translating to the optical center and dividing
by the focal length in pixels. Thus, x and y are dimensionless.

• p1 and p2 — Tangential distortion coefficients of the lens.

• r2 = x2 + y2

2.6.3 Refraction

Figure 2.21: Refraction:air-glass-water image. Courtesy of Carroll Foster/Hot
Eye Photography

When light goes from one medium to another it bends as illustrated in figure
2.21.

The underwater camera housing has a lens and is underwater, the light will
therefore before it hits the light sensor within the camera. This causes difficult
distortion parameters, and can cause bad calibration result as such as setup is
not widely used, and therefore not taken into account in most camera calibration
software.

2.7. CALIBRATION SOFTWARE 29

Figure 2.22: Refraction:air-glass-water interface (Sedlazeck and Koch, 2011)

As seen in figure 2.22 we can see that light breaks and change its direction by
different angles when it crosses different mediums. Refraction is described by
Snell’s law in (Wesley, 2000)

nair sin(Θair) = nglass sin(Θglass) = nwater sin(Θwater) (2.1)

In equation 2.1 the nair and nglassb are a ratio of refraction while Θair and Θglass
are the angles the ray enters the material from it’s medium as seen in figure
2.22.

This refraction causes image points to be placed outward in the image plane.

2.7 Calibration software

Camera calibration is a way to estimate the intrinsic and extrinsic camera pa-
rameters and the distortion coefficient. The distortion coefficients is used to
improve the projected 2d image after it is captured by doing a process called
rectification.

Calculating the camera parameters is a complicated task, the reader will be in-
troduced to four different software while an evaluation of these will be described
in section 3.1.1.

2.7.1 The general idea

By taking pictures of objects we already know the size of it is possible to esti-
mate these parameters. A checkerboard is a very popular object to use in such

30 CHAPTER 2. BACKGROUND

a task, and has been used in this thesis. There are different way to calculate the
parameters. The user can calibrate the camera based on a set of checkerboard
images automatically or calibrate the camera in a step by step procedure. The
disadvantage of the automatic approach give the user less control, while the step
by step gives the user more control but it‘s also more time consuming.

Figure 2.23: Checkerboard is used underwater to calibrate camera for distortion

In figure 2.23 you can see the checkerboard at approximately 70 meters of depth.
It is used for calibration of the stereo camera. Please note that the stereo cam-
era in this example creates a pincushion distortion as in figure 2.18.

In the checkerboard example in figure 2.23 the squares are 80mm by 80mm.

2.7.2 MathWorks calibration toolbox

MathWorks calibration toolbox is Matlab’s built-in calibration toolbox.

Figure 2.24: Camera calibration in Matlab with mathworks toolbox

In this toolbox the user write “cameraCalibrator” for single camera calibration

2.7. CALIBRATION SOFTWARE 31

or “stereoCameraCalibrator” for stereo camera calibration in the command in-
terface. A GUI will pop up, and the user follows the instructions.

2.7.3 Caltech calibration toolbox

Figure 2.25: Camera calibration in Matlab with calib toolbox

The Caltech calibration toolbox is made by Jean-Yves Bouguet and is imple-
mented in Matlab. The main difference between MathWorks toolbox and this
one is that this has more options, and you can supervise the calibration by click-
ing on corners and other functionality (Camera Calibration Toolbox for Matlab,
2016a).

2.7.4 OpenCV calibration

OpenCV has implemented the same calibration algorithms from Jean-Yves Bouguet,
but does not contain a GUI functionality like the Jean-Yves Bouguet toolbox
implemented in Matlab.

2.7.5 Agisoft PhotoScan calibration

Agisoft PhotoScan (Agisoft PhotoScan, 2016) is a commercial software and there-
fore its hard to know exactly how the calibration is done.

32 CHAPTER 2. BACKGROUND

2.8 Underwater camera problems/uncertainties

There are certain difficulties when it comes to underwater imagery one should
keep in mind when developing computer vision for underwater applications and
in general.

2.8.1 Scatter in underwater images

Figure 2.26: Illustration of scatter

To take images underwater, one needs light, therefore at greater depth one need
external lights so that the camera can see the environment. These external light
source hit particles in the water and they ”light up” in the scene in front of the
background, see figure 2.26. This is a problem because it makes computer vision
techniques such as optical flow and feature detection error prone. We can divide
the source of these errors into back scatter and forward scatter.

The primary source of these errors is scattering. Scattering is the change of the
direction of photons due to the different sizes of the particles forming the water.
There are two kinds of scattering. Back-scatter is the reflection of the light from
the light source back to the lens of the camera. A consequence of back-scatter
is the so-called marine-snow. This consists of small observable particles floating
in the water, which creates false positive in the feature extraction and matching
processes. Forward scatter occurs when a small angle deflects the path of the
light source. This leads to reduced image contrast and blurring of object edges.

2.8.2 Scale of the world in the image plane

It is difficult for a computer to understand how far something is from looking at
a image. Depth information can be extracted by using two cameras, similar to

2.8. UNDERWATER CAMERA PROBLEMS/UNCERTAINTIES 33

us humans who have two eyes. If the computer knows the “extrinsic” parameters
of a camera pair it is possible to estimate the distance of objects in the image.

Figure 2.27: example of scaling (Visual Odometry AUTONAVx Courseware —
edX , n.d.)

In figure 2.27 an illustration of the problem caused by using one camera to try
to determine the size of a man in the image.

34 CHAPTER 2. BACKGROUND

2.9 Communication between computers

Figure 2.28: Example image of how two computers are connected with ethernet
cable. Courtecy of https://usercontent1.hubstatic.com/9072770 f520.jpg

In figure 2.28, it is illustrated how two computers have a ethernet cable connect-
ing their two. Such a cable has been used to make the computer vision program
send messages to the LabVIEW program.

Computers that are connected with an Ethernet cable can communicate over
different higher level end-to-end protocols (Ethernet being in itself a layer two
protocol in the OSI protocol model). (UDP) is a layer-4 or end-to-end transport
layer protocol has been used in this thesis so the reader will be introduced to the
theory.

2.9.1 User Datagram Protocol

UDP is a:

• simple message-oriented network
• protocol for transferring information
• no message transmission is guaranteed
• no message saved receiving end
• does not require a restart when a connection is lost, but rather a timeout
• system returns to sending and receiving messages after this timeout

As seen in the list above, UDP is an unreliable transport protocol, but it gives
almost perfect results, due to the very low bit-error-rate make possible by Ether-
net connections.

https://usercontent1.hubstatic.com/9072770_f520.jpg

2.10. HISTOGRAMS 35

Even though (TCP) is considered more reliable, it was inconvenient to imple-
ment on the LabVIEW side of the communication concerning the time frame.
UDP was chosen as it was simpler to implement and it makes the programs less
dependent on each other.

2.10 Histograms

Histograms is a way to quantify the frequency distribution of numerical data.
Histograms are widely used and is among other used in image search engines
often called content-based image retrieval.

Histograms can be used for several things:

• Thresholding
• White balancing
• Tracking object of a distinct color
• Features

Histograms has been useful to store the LBP and Haralick features for their
respective methods.

2.10.1 Color Histograms

With a histogram, one can compare images by similar color distributions.

In a Red Green Blue (RGB) image we have three color channels. When we com-
pute the histogram of each channel we call it a color histogram. In the image
below, three color histograms calculated for the picture is illustrated.

To use the histogram of an image is a type of image descriptor.

36 CHAPTER 2. BACKGROUND

(a) Image that we compute the color
histogram of

(b) color histogram

Figure 2.29: Color histogram

In figure 2.29, an example of an color histogram is shown. A color histogram is a
count of the occurrence of the values 0− 255 in each channel. Thereby. It has no
concept of the shape or texture of objects in the image.

Light sensitive

The lighting is important to note since the histogram of an RGB image will be
very different under different lighting conditions. Just think of how a tree looks
at night, compared to daytime.

To compare histograms, the images should be taken under the same lighting
conditions. comparisons of histograms work best if one acquires the images un-
der same lighting conditions.

Noise sensitive

Color histograms are sensitive to “noise”, such as changes in lighting in the envi-
ronment the image was captured under and quantization errors (selecting which
bin to increment). Some of these limitations can potentially be mitigated by
using a different color space than RGB (such as (HSV) or L*a*b*).

2.11 Color channel statistics

One way to quantify an image is by using a “color descriptor”. There are various
ways of describing the color distribution of an image:

2.11. COLOR CHANNEL STATISTICS 37

• Means
• Standard deviations
• Skew
• Kurtosis

An image is often represented as RGB, and one can look at each channel and
compute the statistics to create a list called the feature vector. The mean and
standard deviation is a way to try to describe the intensity of an area of the
image (a set of pixels).

The paper (Rodriguez-Teiles et al., 2014) describes an interesting method. They
compute two feature vectors, one using the standard deviation, and one using
a normalized (SSD) measure (though only using the a and b color space). The
smaller the Euclidean distance between the two vectors, the more similar images
are.

38 CHAPTER 2. BACKGROUND

2.12 Feature Extraction

This section explains how one can use image descriptors, feature descriptors,
and feature vectors to quantify and abstractly represent an image as a vector
of numbers.

One can use feature extraction for multiple computer vision areas. One could
compare the extracted features from images to see how simular they are. A typi-
cal example is to compare a celebrity picture with a picture of oneself and decide
how “similar” in % the images are. One could also use feature extraction to
search for an item, i.e., find Waldo in an image.

Features are classified into two types:

• Global - these are a function of the whole image.
• Local - these have a position and are a function of a local image region.

2.12.1 Semantic gap

How do one make a computer understand the same as a human perceives when
looking at the same image. The computer represents the image as a matrix with
numbers while humans look at images at another level. A computer will have a
problem with understanding the difference between a dog in an image and a cat.
One need to represent the information in the image in a clever way to be able to
make computers understand what it is looking at (Semantic gap - Wikipedia, the
free encyclopedia, 2016).

2.12.2 Feature Vector

On can quantify information in the image as vectors, i.e., [0.34, 0.44, 0.08 ...]
and one can extract the following features:

• Describe the shape
• Describe the color
• Describe the texture

These features are just lists of numbers used to quantify the image, but if we use
them together with machine learning, we can derive meaning or classification.

Alternatively, a combination of two or three features can be used. An example is
presented in the figure below.

2.12. FEATURE EXTRACTION 39

Figure 2.30: texture and color descriptor

Here in figure 2.30 one can see a picture of the sea bottom in the Trondheims-
fjord; one could represent the sand bottom with a color descriptor and a texture
descriptor.

Figure 2.31: texture, color and shape descriptor

In this figure 2.31, the transponder illustrates that one could extract the features
shape, color, and texture to be able to represent the transponder tower.

2.12.3 Image descriptor

To be able to extract the feature vector, one need to apply an “image descrip-
tor”, it is a form of image preprocessing to be able to quantify the content of an
image numerically. An example of such an “image descriptor” is to calculate the

40 CHAPTER 2. BACKGROUND

histogram of the image, the histogram returned is the “feature vector”. Some
examples of image descriptors are:

• Local Binary Patterns
• Histogram
• Histogram of colors
• Edges

2.12.4 Feature Descriptor

It takes an image and returns multiple feature vectors by looking at different
regions in the image. This method tries to find the areas of the picture that it
considers “special.” One can find these “special” areas using a “keypoint descrip-
tor.”

Typical “keypoint descriptors”:

• (SIFT)
• (SURF)
• (BRISK)

When these “special” regions of the image are detected, the method will send
in these areas almost as separate images to the “image” descriptor to return
separate “feature vectors.”

Please note, image descriptors are used to quantify an image globally, while
feature descriptors are used to quantify an image locally

2.13 Texture Descriptors

Texture descriptor is a type feature vector and will be explained with an exam-
ple below.

2.13. TEXTURE DESCRIPTORS 41

(a) Rough texture (b) Smooth texture

Figure 2.32: Smooth texture

Observe in figure 2.32, there is a brick wall in 2.32a and a smooth wall in 2.32b.
When one compares the two, one can see that there is a lot more “detail” to the
brick wall. The reason we perceive it this way is since there is a larger difference
in pixel intensities, and also a higher distance between different areas of similar
intensities. On the other side the smooth surface has petite differences between
its intensities, and if there are any small change in the “texture”, it is between
short distances in the intensities. In the computer vision world, these intensities
are described in brightness values, often quantified in a gray-scale image as gray
levels.

Textures in images quantify:

• Grey level differences (contrast)
• Directionality or lack of it
• Defined size of area where change occurs (window)

2.13.1 Local Binary Patterns

Local Binary Patterns are the basis of the LBP method presented in section 3.2
and the background theory is therefore presented here.

Local Binary Patterns is a texture descriptor. It has even proven to be useful in
face recognition as in (Ahonen, Hadid, & Pietikäinen, 2004) and also proven to
work well as a texture-based method for modeling the background and detecting
moving objects in (Heikkilä & Pietikäinen, 2006).

The interested reader is recommended to read the slides in (Pietikäinen & Heikkilä,

42 CHAPTER 2. BACKGROUND

2011), as they give an in depth explanation of the LBPs theory and application
areas.

Local Binary Patterns compares the pixels around its center using a kernel that
evaluates its neighborhood. The name is built up of Local meaning the size of
the matrix it looks at. Binary pattern comes from that the threshold of the
“local” area makes the pixels become either “1” or “0” and the process it uses
to calculate the value that will be further explained below.

Computing the Local Binary Pattern

In table 2.3, the general steps of calculating the LBP is shown. It is important
to note step 3, that the weights are calculated differently for different kinds of
pattern one choose to use, this will be explained later in 2.13.1.

Table 2.3: Local Binary Pattern descriptor steps

LBP descriptor workflow

1 - Look at center pixel in a neighborhood
2 - Threshold the values in the neighborhood based on the center pixel
3 - Calculate the weights of the threshold values (based on the type of pattern used)
4 - Sum the weights
5 - Set this value as the new centerpixel value in the LBP image

To illustrate the points in the table, a figure and an example is given below.

Figure 2.33: LBP calculation example. Courtesy of (Pietikäinen & Heikkilä,
2011)

In figure 2.33 an example of a 3x3 matrix to compute the LBP is shown.

2.13. TEXTURE DESCRIPTORS 43

The first step is to look at the center pixel.

The second step is to see which surrounding pixel values are equal or higher then
the center pixel (they are set to “1”). If the values are lower they are set to 0.

The third step is to calculate the weights. In this example there are 8 surround-
ing pixels the first one is 20 = 1, second 21 = 2, third 22 = 4, fourth 23 = 8, fifth
24 = 16 and so on.

The fourth step is then to sum the weights that the threshold gave the value
“1”, so in this example we get:

20 + 24 + 25 + 26 + 27 = 1 + 16 + 32 + 64 + 128 = 241

The calculated value will be placed in the output LBP image with the same
height and width as the input image(the image that LBP is calculated on). Please
note how computationally simple this LBP is and since it only compares the
center pixels with the surrounding pixels it is also invariant to any monotonic
gray level change (Pietikäinen & Heikkilä, 2011).

Only looking at the 3x3 matrix was proposed by the original LBP paper (Ojala,
Pietikäinen, & Mäenpää, 2002) and has later been extended to be able to have
other sizes of the neighborhoods. The advantage of such a small neighborhood is
that the calculation goes faster than a bigger area. If the area is small the LBP
is able to capture small details in the image, than if it uses a bigger neighbor-
hood.

In the extension of the original method, the method handles varying neighbor-
hood sizes. The new method introduces a number of points(pixel intensities)
“p” and instead of looking at a square matrix, it defines a circular neighborhood
given a radius “r”. The radius r can change with different scales.

It is important to note that if one increase “r” without increasing “p”, there are
very few points for a big neighborhood and hence it loses the local discriminative
power.

Different threshold patterns and their meaning

Since it is possible to set the radius r and the points p, it gives the LBPs the
possibility to tune them to get the best possible results. It should be noted that
the greater they are, the bigger neighbourhood, and therefore the computational
cost will increase. In the new improved method the neighbourhoods different
kinds of “patterns” are called “prototypes”. The number of possible “proto-
types” is is defines by “r” and “p”.

44 CHAPTER 2. BACKGROUND

Figure 2.34: flat, edge, corner and non-uniform

In figure 2.34 the black dots are 0 and white dots are 1. This is to illustrate
what gets classified as flat, edge, corner and non-uniform patterns. The flat,edge
and corner information has been used to evaluate the training data in sub-subsection
3.2.1 and the interested reader is recommended to look at how the figures high-
light the flat, edge and corner areas of the image.

Uniform pattern

Figure 2.35: 58 prototypes when p = 8 . Courtesy of (Pietikäinen & Heikkilä,
2011)

In figure 2.35, there are 58 rotation invariant binary patterns. The 9 patterns in

2.13. TEXTURE DESCRIPTORS 45

column 1, is an important subset of these, representing the uniform patterns.
These are the ones used in the uniform LBP and are used for the LBP method
developed in this thesis. The uniform patterns are the most robust and are char-
acterized by that have less than three 1-0 or 0-1 changes in their pattern. Rota-
tion invariant means that any arbitrary rotation of the image will not change the
feature vector created from the neighborhood.

As in the example figure above, the value of p defines the amount of uniform
prototypes. The numberofuniformbinarypatterns = p + 1. The feature vector
created by the LBP also counts the number of prototypes that is not uniform,
these are the last entry in the histogram by the uniform descriptor. The number
of patterns can change by the dimensionality, and to exactly now the number of
features in the vector one should look into the paper (Ojala et al., 2002).

Example image

(a) Original image (b) Default” LBP image

Figure 2.36: From color image to gray scale resized image

The figure 2.36b was made by calculating the “default” local binary pattern of
image 2.36a. Note that the method enhances edges. The ”default” LBP calcu-
lated the flat, edge, corner and non-uniform features(as seen in figure 2.34) of
the image.

46 CHAPTER 2. BACKGROUND

Summery of Local Binary Pattern descriptor

The LBP contains many different patterns and there are a lot of ways to tune
the descriptor. Because of this one needs to take into account that for some
parameters of “r” and “p” values one could get a large feature vector that will
make predictions slower than another set of these values. On the other hand,
if the feature vector is short it will be quite fast. The extension of the orginal
LBP, especially the uniform method is rotationally invariant and this method is
available in scikit-image.

2.13.2 Haralick descriptor

Haralick texture features are used to quantify the texture of an image. Haralick
texture features are great at distinguishing between smooth and rough texture
as in figure 2.32.

The Haralick texture descriptor has proven to work well in distinguishing and
classifying six different types of pore structure in reservoir rocks on a micropho-
tographic level in (R. Haralick & Shanmugam, 1973).

There is an additional benefits of using the Haralick descriptor in the obstacle
avoidance method. Since it is a texture descriptor one could further build upon
the algorithm to classify other textures that the ROV typically encounters, such
as sand, reef, old fish nets and so on.

Steps in the Mahotas implemented method

The table 2.4 below displays the step done inside the Harlick descriptor used in
this thesis provided by the Mahotas library.

Table 2.4: Haralick steps

Haralick workflow

1 - Image converted to grayscale
2 - Compute the GLCM in 4 different directions
3 - Compute the Haralick descriptor of each of the 4 GLCM
4 - Take the average of the 4 Haralick descriptor

2.13. TEXTURE DESCRIPTORS 47

Gray Level Co-Occurrence Matrix

A GLCM is a histogram of a gray scale image where the method counts the co-
occurring values(pixel intensity) at a given offset over an image. Co-occurring is
the same as horizontally adjacent, defined as “ to the left of a pixel”.

Figure 2.37: Image to describe the process of calculating the gray co-occurrence
matrix. Courtesy of (Create gray-level co-occurrence matrix from image -
MATLAB graycomatrix - MathWorks Nordic, n.d.)

In figure 2.37, the left matrix is the gray scale image and the right matrix is the
product after calculating the GLCM. There are three co-occurring values in the
figure. The first is [1,1] and since it only occurs one time in the gray scale image
“1” is placed at position (1,1) in the GLCM. The two other co-occuring values
are both [1,2]. Since they are two co-occuring values, the position (1,2) gets the
value 2 in the GLCM.

In figure 2.37, we defined co-adjecent as being “to the left of a pixel”. However,
we could define co-adjacent in different ways. We could define it as:

• “to the right of a pixel.”
• “upwards of a pixel.”
• “downwards of a pixel.”

This gives a total of four directions. Computing the GLCM using all four direc-
tions gives four GLCM.

Haralick features

The four GLCM will then be used to compute four sets of Haralick features.

In table 2.5 the Haralick features that compute the statistics from the GLCM

48 CHAPTER 2. BACKGROUND

are shown. The table lists the features as in the original paper by Haralick (R. M. Har-
alick et al., 1973).

Table 2.5: Haralick features

Haralick features

1 - angular second moment
2 - contrast
3 - correlation
4 - sum of squares: variance
5 - inverse difference moment
6 - sum average
7 - sum variance
8 - sum entropy
9 - entropy
10 - difference variance
11 - difference entropy
12,13 - information measures of correlation
14 - maximal correlation coefficient

Interested reader are recommend to read more about them in (R. M. Haralick et
al., 1973) and (Miyamoto & Jr., 2011)

According to (Coelho, 2013b) their library only use the 13 first features as they
argue that the 14th feature is considered unstable.

Improve accuracy and Achieve Some Rotational Invariance

After the four GLCMs have been turned into four sets of Haralick features, we
average all the features so that we end up with one feature with 13 dimensional-
ity. To average all of them is good since it improves accuracy and it improves it
rotational invariance (the average of four directions).

Summary of Haralick Descriptor

Haralick Texture Feature is a global method that looks at a whole gray scale
image computes the image‘s GLCM and then the Haralick features. It’s there-
fore different from the LBP method, which only looks at the value of the image
matrix given a certain radius and number of points.

2.14. CLASSIFICATION 49

The Haralick feature is easy to use, since there are no parameters to tune, since
it looks at the whole image it makes into it‘s GLCM.

Even though the method achieves some rotational invariance when it is com-
puted in four directions and averaged, it is not at the same level of rotational
invariance as the LBP method.

Since the operations are done on a gray scale image and looks at it‘s adjacent
pixels it is quite sensitive to noise, only small areas of noise in the image will
change the construction of the GLCM and therefore the resulting Haralick fea-
ture vector as well.

2.14 Classification

Classification is simply to put something into a category. In computer vision,
classification would be to assign a label to an image from a pre-defined set of
categories or classes.

For instance, one task might be to determine if a ball is a basketball. To do clas-
sification, it needs to be able to find what distinguishes basketballs from other
kinds of balls. The most distinct features of a basketball might be its color,
shape, volume and texture. These features are more distinct than let’s say, whether
the ball is round or bounces. So if one where to classify a ball like a basketball,
one might first look at the volume of the ball, to filter out all small balls, i.e.,
might be used for a tennis-ball. Then one can look at the texture to determine
that it has the typical basketball surface.

2.14.1 Supervised Learning

We already know what a basketball is, as well as its unique features. Hence, we
train a classifier to recognize the features of a basketball. The feature data “X”
is labeled with basketball and sent into the classification algorithm. This process
of labeling the known input is called supervised learning.

2.14.2 Training data

Please note that there exist a variety of different kinds of basketballs in the world,
and when we train our classifier on only a few basketballs, this set of basketballs
is called the training data. It is important to note that one should not test the

50 CHAPTER 2. BACKGROUND

model on its training set, but instead on new “unused” basketballs. The func-
tion made from the training data is referred to as a model.

Keep two data set separate

To do regular classification with machine learning, one needs at least two sets of
data (which in the case of computer vision would be images).

Table 2.6: Datasets

Type of data sets in machine learning
Data-set 1 : Training data set
Data-set 2 : Testing data set

In table 2.6, it is shown that we divide the dataset into a Training and testing
data set. The training data set is used to train the machine learning algorithm
while the testing data set is used to train the model.

We need to keep the dataset separate, since if we train the model on the same
data set we are testing it on would be ”cheating”. Only when we run the algo-
rithm on data the model has never seen before, can we tell how good the classi-
fier model is.

2.14.3 Train the classifier

To train the classifier, a function “f” is used to extract the characteristics of
a sample of the data “X” and use that as input into a classifier (like a linear
support vector classification) and out comes the class.

Figure 2.38: An example data-set

2.15. MACHINE LEARNING 51

The sample “X” is represented as a vector. If we were trying to determine if
a ball is a basketball, each value would be feature of the basketball. Based on
these features, the function “f” creates the class. In figure 2.38 two different
classes are shown. Let‘s say that the basketballs are the circles in the figure.
When function “f” calculates these features on an unknown sample, it gets a
probability of what class the sample belongs to. It does this by comparing the
features in its vector to the features of the samples that has already been clas-
sified during the supervised learning stage. The algorithm compares the texture
of the new unknown ball with the texture of the balls it knows are basketballs.
Let‘s say they are 99% similar, then the unknown ball would get classified as a
basketball(in figure 2.38 it would be placed in the upper right hand corner).

2.15 Machine Learning

Arthur Samuel defined machine learning (ML) as a “Field of study that gives
computers the ability to learn without being explicitly programmed” (Machine
learning - Wikipedia, the free encyclopedia, 2016).

In ML a computer learns to make predictions based on a set of training data. It
can then use its trained model to classify unknown data into classes or clusters

2.15.1 Binary Classification

In Binary Classification an algorithm classifies some label as one of only two
classes

Common methods used for classification:

• Decision trees
• Random forests
• Bayesian networks
• Support vector machines
• Neural networks
• Logistic regression

The support vector machine is widely used. It is used in this work and will there-
fore be explained further.

52 CHAPTER 2. BACKGROUND

Support Vector Machines

Support Vector Machines (SVM) is explained in detail in (Support vector ma-
chine - Wikipedia, the free encyclopedia, 2016). The main concepts will be intro-
duced in this section. The interested reader is recommended to read the paper
(Joachims, 1998) to see examples of how on can use it in text classification.
A Tutorial on Support Vector Machines for Pattern Recognition is given by
(Burges, 1998). The technology was first intended for text recognition, but was
later adopted to other domains, such as computer vision.

Figure 2.39: Optimal hyperplane example. Courtesy of (Introduction to Support
Vector Machines — OpenCV 2.4.13.0 documentation, 2016)

In figure 2.39, to classes are illustrated in red and blue. The classes are divided
by the optimal hyperplane. The optimal hyperplane is defined as the plane that
separates the two classes with maximum margin(see the arrows normal to the
plane in figure 2.39)

2.15. MACHINE LEARNING 53

Figure 2.40: Optimal hyperplane example. Courtesy of (Support vector machine
- Wikipedia, the free encyclopedia, 2016)

To understand what means by the optimal hyperplane, another example is shown
in figure 2.40, where the classes are divided into black dots and white dots. There
are three separting line shown in the figure: H1,H2 and H3.

• H1 does not separate the classes
• H2 separates the classes with only with a tiny margin.
• H3 separates the classes them with the maximum margin and therefore H3 is

the optimal hyperplane.

As one can see from figure 2.39, there are two red squares and one blue circle
on each respective maximum margin distance to the optimal hyperplane (these
points are called the “support vectors”).As one can see, the optimal hyperplane
is only defined by those points closest to it. It is important to note that this is
a big uncertainty in SVMs. Because the optimal hyperplane is only defined by
the points closest to it, one bad data point can result in an incorrect optimal
hyperplane. This can then lead to bad classification results.

Multiclass Classification – One vs All

To classify instances into more than two classes is called multiclass classification.
Multiclass classification can be thought of as comparing one class with the rest
of the “n” classes, often called the “one-vs-rest” method. Please note that there
is another method called one-vs-one, but we will focus on the one-vs-rest.

54 CHAPTER 2. BACKGROUND

Figure 2.41: One vs all. Courtesy of (Ng, n.d.)

In figure 2.41, an illustration of how the one-vs-all algorithm compares each
class against the rest is shown. The algorithm actually divides the problem into
several binary classification problems. Occasionally a sample will get classified
as several classes. In this case the sample will be classified as the class it has the
highest probability of being. The goal of the SVM algorithm is to maximize the
margin of the optimal hyperplane between the classes. Note, this functionality is
available in the Scikit-learn classification function.

Chapter 3

Obstacle Avoidance Methods

This chapter will present three different obstacle detection methods that have
been developed in this thesis.

First, is the “Disparity Method”, then there are two very similar methods, the
“Local Binary Pattern” method and the “Haralick” method. The last two meth-
ods are called texture-based methods since they both use image descriptors to
analyze the texture of sub-regions within the image. The difference between the
two lies in the image descriptor used.

3.1 Disparity Method

Overview of disparity method work flow can be seen in table 3.1.

Table 3.1: Disparity method steps

Disparity workflow

1 - Load camera parameters
2 - Grayscale conversion
3 - Image pair rectification
4 - Block matching
5 - Remove error margin (from challenging calibration parameters)

It is important to note that in step 1 in 3.1, the method needs to have the cam-
era parameters precalculated so they can be loaded directly.

55

56 CHAPTER 3. OBSTACLE AVOIDANCE METHODS

3.1.1 Calculating the camera parameters

Calculating the camera parameters is a complicated task, the reader will be
introduced to three different software tested in this process.

• OpenCV calibration

• Bouguet camera calibration toolbox for Matlab

• Agisoft PhotoScan calibration

Evaluation of calibration toolboxes

Camera calibration in OpenCV isn’t a trivial task. In fact, the built-in methods
require almost perfect conditions to work properly. Firstly, the camera resolu-
tion can restrict the rotation angle of the checkerboard as some corners might
be difficult to locate while rotating the checkerboard. Secondly, images must
have a constant background, with no luminosity/contrast variations. Finally, as
the calibration is based on corner matching, all corners must be visible in each
image, which may make the process of finding an acceptable checkerboard pose a
struggle. An example image is presented in the figure 3.1 below.

Figure 3.1

In order to make OpenCV functions find corners correctly, the background con-
trast to the checkerboard was manipulated, in an attempt to improve corner
detection.

However, since OpenCV was unable to find the corners, we decided to use the
Jean-Yves Bouguet camera calibration toolbox. Please note that the MathWorks
built in calibration toolbox for Matlab was also unable to find the corners cor-
rectly. The calibration steps (for Jean-Yves Bouguet camera calibration toolbox)
are well illustrated with text and illustration images in (Camera Calibration

3.1. DISPARITY METHOD 57

Toolbox for Matlab, 2016b). The downside is that one has to click each corner
of the checkerboard manually. We also performed a calibration using Agisoft
Photoscan (Agisoft PhotoScan, 2016).

When we compare the results from rectification with the parameters from Ag-
isoft Photoscan and the Jean-Yves Bouguet camera calibration toolbox, one
clearly sees that the Jean-Yves Bouguet shown in figure 3.2 was the only one
that removed distortion at an acceptable level (please compare to figure 3.3).

Figure 3.2: Checkerboard image before and after undistortion. The undistroted
image can be seen to the right

As seen in figure 3.2, the left image is prior to rectification, while the right hand
side of the image is after this process. Please note that the lines in the checker-
board is more straight than prior to rectification. Lastly, this process was done
using the Jean-Yves Bouguet camera calibration toolbox calculated parameters.

Figure 3.3: Undistortion done with the parameters calculated by Agisoft

In figure 3.3, one can see a rectification done with the parameters from Agisoft.
Please note that the lines of the checkerboard are distorted (not straight) and
hence unacceptable.

58 CHAPTER 3. OBSTACLE AVOIDANCE METHODS

Camera parameters from calibration

The table below is the resulting camera parameters from the calibration with
the Jean-Yves Bouguet camera calibration toolbox. Please notice that the skew
and tangential distortion (p1, p2, p3 and p4 for left and right camera respec-
tively) coefficient are 0.

Table 3.2: Camera parameters

Table 3.3

Left camera:
fxL = 2222.72426
fyL = 2190.48031
k1L = 0.27724
k2L = 0.28163
k3L = −0.06867
k4L = 0.00358
k5L = 0.00000
cxL = 681.42537
cyL = −22.08306
skewL = 0
p1L = 0
p2L = 0
p3L = 0
p4L = 0

Table 3.4

Right camera
fxR = 2226.10095
fyR = 2195.17250
k1R = 0.29407
k2R = 0.29892
k3R = −0.08315
k4R = −0.01218
k5R = 0.00000
cxR = 637.64260
cyR = −33.60849
skewR = 0
p1R = 0
p2R = 0
p3R = 0
p4R = 0

Extrinsic parameters (position of right camera with respect to left camera):

Rotation vector:

R = [−0.04129, 0.01292,−0.09670] +−[0.00969, 0.005520.00071]

Translation vector:

T = [303.48269,−19.19528, 29.06076] +−[2.17912, 5.0909618.22290]

3.1.2 Starting with an image pair

The process starts with an image pair as in figure 3.4.

3.1. DISPARITY METHOD 59

(a) Left. (b) Right.

Figure 3.4: Stereo image pair.

The comparison of an image pair as seen in figure 3.4, is the basis for this method.
Please note that they have to be captured at the same time to be an acceptable
basis.

3.1.3 Load Calibration Parameters

The calibration is done with Jean-Yves Bouguet camera calibration toolbox
(Camera Calibration Toolbox for Matlab, n.d.) and converted into OpenCV for-
mat. In order to be able to perform “Stereo Block matching”, the images need
to be rectified by using the camera calibration parameters.

Below is an example of how the calibration parameters from table 3.2 is con-
verted into OpenCV acceptable format using numpy.

1 i n t r i n s i c m a t r i x L = np . matrix ([[fxL , skewL , x0] , [0 , fyL , y0] , [0 , 0 ,
1]])

2 i n t r i n s i c m a t r i x R = np . matrix ([[fxR , skewR , x0] , [0 , fyR , y0] , [0 , 0 ,
1]])

Listing 3.1: python example for how the intrinsic parameters are loaded

In the listing above, that we load the parameters for the intrinsic matrix of both
the left(line 1) and right(line 2) camera

1 d i s tCoe f fL = np . matrix ([k1L , k2L , p1L , p2L , k3L])
2 di s tCoe f fR = np . matrix ([k1R , k2R , p1R , p2R , k3R])

Listing 3.2: python example for how the ditortion parameters are loaded

60 CHAPTER 3. OBSTACLE AVOIDANCE METHODS

In the listing above we load the distortion coefficient from both radial(k1, k2,
and k3) and tangential(p1 and p2) distortion for the left and right camera respec-
tively.

Please note in the listing above that we only use the three radial distortion co-
efficients k1, k2, k3 and hence discard k4 and k5 that was calculated using Jean-
Yves Bouguet camera calibration toolbox. This is necessary since the OpenCV
function undistort (used in section 3.1.5 for rectification) only accepts these
parameters.

3.1.4 Make image pair Grayscale

(a) Left (b) right

Figure 3.5: Gray scale image pair.

In figure 3.5, it is demonstrated that the stereo pair in figure 3.4 is converted to
grayscale color space.

3.1. DISPARITY METHOD 61

3.1.5 Rectify

Figure 3.6: Aligning to images.

In figure 3.6, a quick overview of the importance of rectification is illustrated.
Rectification of the images is the process of aligning the images. If one does not
rectify the images before running the “stereo block matching” algorithm, the
point XL and XR will not be aligned, and therefore would give untrue matches
in the case where the images are distorted.

(a) Left. (b) Right.

Figure 3.7: Undistorted image pair

In figure 3.7, the image pair are aligned with one another after rectification is
preformed.

62 CHAPTER 3. OBSTACLE AVOIDANCE METHODS

3.1.6 Stereo block matching

Tuning the Stereo matching variables

Stereo Block matching can be tuned with four parameters, some of which are
held constant during all simulations.

Stereo Block matching can be tuned by changing the parameters given in table
3.5.

Table 3.5: Stereo block matching parameters, explained in detail in the
documentation found in (Welcome to opencv documentation! — OpenCV 2.4.9.0
documentation, n.d.).

Parameters

SADWindowSize is set to 9
preFilterType is set to 1
preFilterSize is set to 5
preFilterCap is set to 61
minDisparity is set to -39
numberOfDisparities is set to 112
textureThreshold is set to 507
uniquenessRatio is set to 0
speckleRange is set to 8
speckleWindowSize is set to 0

By tuning these parameters the program will get different results. The param-
eters used in the program were chosen after a tedious process of testing several
parameters, and choosing the ones that gave the best result.

The parameters that gave the biggest changes when tunning was the “num-
berOfDisparities”. the higher this value became, the less disparities it found in
the image. The specleWindowSize decides how many pixels must be close to
each other for the algorithm to keep them.

3.1. DISPARITY METHOD 63

Figure 3.8: Disparity image.

In figure 3.8, a disparity image created by the disparity method is shown. Please
note the curved vertical line to the right of the transponder tower in the image.
The curved vertical line is an error caused from an unsatisfactory calibration, or
it could be how the cameras inside the camera housing both see the same curve
of the camera housing. Either way, the error is removed as described in 3.1.7.

3.1.7 Remove error margin

Figure 3.9: Disparity image without error margin.

In this figure 3.9 the error margin is removed.

1 # t h i s part i s to remove the e r r o r from the c a l i b r a t i o n
2 width , he ight = d i s p a r i t y v i s u a l . shape [: 2] [: : − 1]
3 margin = 200

64 CHAPTER 3. OBSTACLE AVOIDANCE METHODS

4

5 y1 = 0
6 y2 = he ight
7 x1 = margin
8 x2 = width − margin
9 # ”Cropping the image”

10 d i s p a r i t y v i s u a l = d i s p a r i t y v i s u a l [y1 : y2 , x1 : x2]

Listing 3.3: Remove error margin in Python

In the listing above, the error margin is removed by choosing a subset of the
image (line 10) to avoid this error margin. On line 2 the width and height of
the original image is grabbed. The margin = 200 is the number of pixels on
the right hand side that has to be excluded. It has been found by testing several
values on several pictures. The error margin is constant on all the pictures and
can therefore be removed by hard-coding the appropriate margin.

Please note that the image has now a shorter width by removing a part of the
image on the right hand side. This is an uncertainty and would be further dis-
cussed in section 6.1.1.

3.1.8 Create 3d point cloud

(a) pointCloud inFront MeshLab. (b) pointCloud onTheSide MeshLab.

Figure 3.10: Point cloud from disparity.

In order to see if it is possible to use the disparity map for depth information,
a 3D point cloud is created using OpenCV, see figure 3.10. Unfortunately, the
points does not give an accurate 3D figure of the transponder tower, see figure
3.10b (please note that the figure extends a lot). This means that there is too
much noise in the images, or that the calibration is not accurate enough to ex-
tract this information accurately. One the other hand, the 2D image plane (i.e.,

3.1. DISPARITY METHOD 65

the front) gives a good approximation to reality and can therefore be used for
obstacle avoidance. Even though it is hard to extract the depth from the dispar-
ity because of the mentioned issue, we can still use the location of the obstacle
to calculating the center and bounding box as will be described in section 3.4.

66 CHAPTER 3. OBSTACLE AVOIDANCE METHODS

3.2 Local Binary Pattern Method

The goal of this method is for a given image, the method should be able to pre-
dict the segments within the image as either “ocean” or “other”(anything in the
image that is not ocean.)

The Local Binary Pattern Method proposed in this thesis consist of several steps
as shown in the table below.

Table 3.6: Local Binary Pattern Method steps

Local Binary Pattern Method workflow

1 - Resize image
2 - Divide Image into Blocks
3 - Extracting the segment
4 - Compute the Local Binary Pattern of each segment as a histogram
5 - Binary classification (Predict which class the histogram belongs to)
6 - Mask segment that is predicted as “other”
7 - Compute the obstacle avoidance path

3.2.1 Training image

In table 3.6, note step 6 “Predicts which class the histogram belongs to”. To be
able to predict, one need to already have trained a machine learning algorithm
with a dataset as mentioned in section 2.15.

Therefore, the reader will first be presented for the process done in this thesis to
find a good training image for “other” and “ocean.”

Evaluation of training images

A photograph of the ocean is usually blue or greenish. But the most distinctive
feature of an image of the ocean is its lack of texture. Therefore a good training
image for ”other” would be one with a lot of texture and a good training image
for ”ocean” would be one with the little texture.

3.2. LOCAL BINARY PATTERN METHOD 67

(a) Ocean histogram 3.15 (b) Structure and ocean histogram

Figure 3.11: Histograms highlighted, created by modifying the script written in
(Local Binary Pattern for texture classification — skimage v0.12dev docs, 2016)

In figure 3.11, note how the histogram for flat is highlighted. In an image as
3.11a one can see that most of the image is full of ”flat” texture. While in image
3.11b where there is an object in the image a slight decrease in the ”flat” area
and an increase in the ”edge” area. Therefore, the ”other” training image should
have a lot of edges so that classification of an object is easy to distinguish.

(a) Branches histogram (b) Brick histogram histogram

Figure 3.12: Histograms highlighted, created by modifying the script written in
(Local Binary Pattern for texture classification — skimage v0.12dev docs, 2016)

In 3.12 an example of evaluated training image for ”other” is displayed. From
3.11 one can see a small but notable spike in the edge part of the histogram.
Therefore, the training image for ”other” should have a spike in this area, but

68 CHAPTER 3. OBSTACLE AVOIDANCE METHODS

not as big as seen in the branches histogram displayed in 3.12a. On the other
hand 3.12b gives a smaller spike in the edge area, and is therefore a better match.

Both the images in 3.12 are quite homogeneous, and lack different kinds of tex-
tures. Since we divide the image into 100 smaller segments that we analyze (in
the method described in 3.2.3), it is advantageous to have an image with consid-
erable different textures to get different kind of data points. In (Brownlee, 2013)
it is shown that machine learning algorithms like linear(used in Singular Vector
Machine) and logistic regression can suffer from poor performance if there are
highly correlated attributes in the dataset. Therefore, the method tries to use
more uncorrelated training data. The goal of this is to improve the optimal hy-
perplane of the SVM.

Figure 3.13: The training image used is a picture from a scene in “Finding
Nemo”. Courtesy of the Disney movie “Finding Nemo”

In figure 3.13, notice how the image contains more kinds of features. This image
gives better training data for the ”other” classification.

In the chapter 5, we can see the performance of using such an image. Please
note, that the training image for “ocean” and “other” are each made into 100
smaller images for training the classification model.

3.2. LOCAL BINARY PATTERN METHOD 69

3.2.2 Resize image

Since the image captured by the camera is 1360 × 1024 it is advantageous to
speed up the predictions by sub-sampling the image to a lower resolution(it is
changed to 360 × 270.). It will run faster since it will have to compute far less
LBP than if the image was its original size.

(a) Original image

(b)
Grayscale
resized
image

Figure 3.14: From color image to grayscale resized image

In figure 3.14, it is shown how a large image in 3.14a is turned into a smaller
grayscale image as in figure 3.14b.

3.2.3 Divide Image into Blocks

The LBPs are able to encode spatial information when we calculate the LBP on
blocks of the image.

70 CHAPTER 3. OBSTACLE AVOIDANCE METHODS

Figure 3.15: Image to describe the process of extracting the segment to compute
the histogram

In the segment method, the program divides the re-sized image into 100 squares
as seen in figure 3.15 and analyze the histogram computed from the extracted
uniform local binary pattern features.

Extracting the segment and compute the uniform Local Binary Pat-
tern as a histogram

(a) Histogram of “ocean” (the blue square
in figure 3.15)

(b) Histogram of ”other” (the red square
in 3.15)

Figure 3.16: Histograms created of chosen segment using uniform LBP

In figure 3.16, there are two histograms created from two different Regions of
Interest (ROI) of the same image. These various histograms are then fitted us-

3.2. LOCAL BINARY PATTERN METHOD 71

ing the linear singular vector machine classifier that decides if they are on the
”ocean” or ”other” side of the fitted line between the two classes.

3.2.4 Predict each segment and mask region based on
prediction

(a) Prediction displayed (b) Masking image based on prediction

Figure 3.17: Prediction of obstacle using the LBP method

In figure 3.17, notice the quality of the prediction with the LBP method. In
image 3.17a the squares classified as “ocean” have blue dots, and those classi-
fied as “other” have red dots. The green outline the boxes where the prediction
algorithm is run. There are 100 such boxes in the image.

In image 3.17b the masking procedure of the prediction is shown as a binary
image(only consist of black and white). This image is then sent to the process
described further in section 3.4.

.

72 CHAPTER 3. OBSTACLE AVOIDANCE METHODS

3.3 Haralick Method

The Haralick Method proposed in this thesis consist of several steps as shown in
the table below.

Table 3.7: Haralick Method steps

Haralick workflow

1 - Resize image
2 - Divide Image into Blocks
3 - Extracting the segment
4 - Compute the Haralick descriptor of each segment as a histogram
5 - Predict which class the histogram is
6 - Mask segment that is predicted as “other”
7 - Compute the obstacle avoidance path

The only difference between the table 3.7 and table 3.6 in the LBP section, is
step 4. Step 4 differs, and instead of computing the LBP of each segment as a
histogram, we calculate the Haralick descriptor of each segment as a histogram.

Therefore, this section will be presented with step 4, 5 and 6 from table 3.7.
Step 5 and 6 is presented so that the reader can observe the result of a predic-
tion with this method.

Please note that the training image used is the same as decided in section 3.2.1.
It is chosen since it gave good results for the LBP method and since the seg-
ments contain a lot of texture.

3.3.1 Divide Image into Blocks

The Haralick method is able to encode spatial information when we calculate the
Haralick descriptor on blocks of the image.

3.3. HARALICK METHOD 73

Figure 3.18: Image to describe the process of extracting the segment to compute
the histogram

In the segment method, the program divided the re-sized image into 100 squares
as seen in figure 3.18 and analyzes the histogram computed from the extracted
local binary pattern features.

Extracting the segment and compute the Haralick descriptor as a his-
togram

(a) Histogram of ”ocean” (the blue square
in 3.18)

(b) Histogram of ”other” (the red sqaure
in 3.18)

Figure 3.19: Histograms from Haralick descriptor

As seen in figure 3.19 one can see two histograms created from two different
segments of the same image. These different histograms are then fitted using the

74 CHAPTER 3. OBSTACLE AVOIDANCE METHODS

linear Singular vector machine classifier that decides if they are on the ”ocean”
or ”other” side of the fitted line between the two classes.

3.3.2 Predict each segment and mask region based on
prediction

(a) Prediction. (b) Masked image.

Figure 3.20: prediction of obstacle using the Haralick method .

The quality of the prediction with the Haralick method is shown in figure 3.20.
In image 3.20a the squares classified as “ocean” have blue dots, and those classi-
fied as “other” have red dots. The green outline the boxes where the prediction
algorithm is run. There are 100 such boxes in the image.

In image 3.20b the masking procedure of the prediction is shown as a binary
image(only consist of black and white). This image is then sent to the process
described further in section 3.4.

3.4. OBSTACLE AVOIDANCE 75

3.4 Obstacle avoidance

The three methods discussed above (the “Disparity Method”,“Locally Binary
Pattern” and “Haralick”) are ways to create a binary image that contains infor-
mation about obstacles in the image. When we have created this binary image,
we need to further extract the position of the center of the obstacle and to cre-
ate a bounding box around a no-go zone.

3.4.1 Starting Point

(a) Disparity image.
(b) Masked image after prediction from
either LBP or Haralick.

Figure 3.21: The starting point of the obstacle position calculation.

In figure 3.21, we can see the starting point for the Disparity method 3.21a, LBP
and for the Haralick methods in 3.21b.

Please note that the image 3.21b has less detail compared to the image 3.21a
since it is masked and also has a smaller resolution.

3.4.2 Contour extraction

The next step is to extract the contours of the binary images. This is done using
OpenCV‘s built-in function to extract the external contours only, as we are not
interested in the contours inside of a contour.

1

2 # c a l c u l a t e the e x t e r n a l contour
3 (contours0 ,) = cv2 . f indContours (image , cv2 .RETR EXTERNAL, cv2 .

CHAIN APPROX SIMPLE)
4

5 # draw the e x t e r n a l contour
6 cv2 . drawContours (image , contours0 , −1, (255 , 255 , 255) , 2)

Listing 3.4: Calculate the external contour

76 CHAPTER 3. OBSTACLE AVOIDANCE METHODS

The flag “cv2.RETR EXTERNAL” makes the function on line 3 only return
the external contours, while the flag “cv2.CHAIN APPROX SIMPLE” is
memory efficient since it returns a simpler representation of the contour.

(a) External contours of disparity image.
(b) External contours of masked from
prediction of either LBP or Haralick.

Figure 3.22: Calculating the contours of the binary images calculation.

In figure 3.22, please note that the contours have been calculated and drawn
for both the Disparity method 3.22a, LBP and Haralick method in figure 3.22b
(since both the LBP and Haralick give a similar masked image, they look very
similar during this process).

3.4.3 Center of obstacle calculation

(a) Center calculated from disparity image.
(b) Center calculated after prediction from
either LBP or Haralick.

Figure 3.23: Calculating the center of the binary images calculation.

In figure 3.23, the center has been calculated for both the Disparity method
3.23a, LBP and Haralick method in figure 3.23b.

Observe the small white circle in the center of the “disparity object” in figure
3.23a. To find the center one takes the average with respect to x and y-coordinates
of all the centroids in the image. Finding the average area center of the obsta-
cles, sort of like a “mass center calculation.” However, only the area displayed

3.4. OBSTACLE AVOIDANCE 77

in the binary image is taken into account and is calculates to an average area
center.

Finding the center of the object

Since there are different sizes of contours, we need a way to weigh them, so we
get the average center of all the obstacles in the image. The geometric center is
given by summing up all then centroids respective x and y position and multi-
plying them by there respective “area”.

The calculation can be seen bellow implemented in Python:

1 c en t ro id XL i s t = []
2 c en t ro id YL i s t = []
3

4 areaTot = 0
5 f o r (i , cnt) in enumerate (contours0) :
6 area = cv2 . contourArea (cnt)
7

8 # compute the moments o f the contour
9 # use the moments to compute the ” cente r o f mass” o f each contour

10 m = cv2 . moments (cnt)
11 centro id X = [area ∗ i n t (round (m[’m10 ’] /m[’m00 ’]))]
12 c e n t r o i d y = [area ∗ i n t (round (m[’m01 ’] /m[’m00 ’]))]
13

14 c en t ro id XL i s t . append (centro id X)
15 c en t ro id YL i s t . append (c e n t r o i d y)
16

17 areaTot = areaTot + area
18

19 c en t ro id XL i s t = np . asar ray (c en t ro id XL i s t)
20 c en t ro id YL i s t = np . asar ray (c en t ro id YL i s t)
21

22 # take the average
23 cent ro id XLi s tCente r s = cent ro id XL i s t / areaTot
24 cent ro id YLi s tCente r s = cent ro id YL i s t / areaTot
25

26 # sum the po in t s and ca s t to i n t so cv2 . draw works
27 objectCenterX = i n t (np . sum(cent ro id XLi s tCente r s))
28 objectCenterY = i n t (np . sum(cent ro id YLi s tCente r s))
29

30 cente r = (objectCenterX , objectCenterY)

Listing 3.5: Calculate the center of the obstacle in Python

In the listing above, notice that the area of the obstacle represented in image
3.23 is calculated by the following formula at line 6:

area = cv2 · contourArea(cnt) (3.1)

78 CHAPTER 3. OBSTACLE AVOIDANCE METHODS

Further on the the moment for each countour “cnt” is calculated by:

m = cv2 ·moments(cnt) (3.2)

To calculate the moments in general, we use the theory of the Second moment of
the area as described deeper in (Second moment of area - Wikipedia, the free en-
cyclopedia, 2016). But to calculate the moments of the contours we use Green‘s
Theorem as described more in-depth in (Green’s theorem - Wikipedia, the free
encyclopedia, 2016). Moreover, this theory is implemented in OpenCV -we can
use the cv2 · moments() function to calculate the moment directly as shown on
line 10 and in equation 3.2.

The “mass center” (x̄, ȳ) of each moment scaled to the size of their area is calcu-
lated by (same as line 11,12):

centroidx = [area× int(round(m[′m10′]/m[′m00′]))] (3.3)

centroidy = [area× int(round(m[′m01′]/m[′m00′]))] (3.4)

Please note on line 19 and 20, the Numpy library (as np.) is utilized to be able
to do operations on arrays to optimize for speed.

As in line 11 and 12, these scaled “mass centers” are then divided by the total
area in line 23 and 24. Before the center of all the obstacles is calculated on line
27 and 28 by taking the sum of all these relative centers.

Then we sum up all the “scaled” x and y positions to give the real centers.

3.4.4 Create bounding box

(a) Bounding box calculated from disparity
image.

(b) Bounding box calculated after
prediction from either LBP or Haralick.

Figure 3.24: Calculating the bounding box of the binary images calculation.

3.4. OBSTACLE AVOIDANCE 79

In figure 3.24, the bounding box has been calculated for both the Disparity method
3.24a, LBP and Haralick method in 3.24b.

A simple approach has been used to calculate the bounding box. The method
sums up the width in x-direction and height in the y-direction, as given in the
Python implementation below.

1 (contours0 ,) = cv2 . f indContours (c l one . copy () , cv2 .RETR EXTERNAL,
2 cv2 .CHAIN APPROX SIMPLE)
3

4 xLast , yLast = c lone . shape [: 2]
5 wLast = 0
6 hLast = 0
7

8 f o r c in contours0 :
9 # f i t a bounding box to the contour

10 (x , y , w, h) = cv2 . boundingRect (c)
11

12 i f (xLast > x) :
13 xLast = x
14

15 i f (yLast > y) :
16 yLast = y
17

18 #i f (wLast < w) :
19 wLast = wLast + w
20

21 #i f (hLast < h) :
22 hLast = hLast + h
23

24 cv2 . r e c t a n g l e (c lone , (xLast , yLast) , (xLast + wLast , yLast + hLast) ,
25 (255 , 255 , 255) , 2)

Listing 3.6: Calculate the bounding box in Python

3.4.5 Mean Value

The mean value is used for two things in this program. Firstly it is used to cal-
culate the status as shown in the following subsection 3.4.6, secondly it is calcu-
lated and sent to the LabVIEW program so it later could be used as mentioned
in further work in 7.2.

Mean value is simply calculated using OpenCV built in function as shown below:

1 meanValue = cv2 . mean(image binary)

Listing 3.7: Calculating mean value of a binary image

cv2.mean calculates an average (mean) of the array elements in the binary image

80 CHAPTER 3. OBSTACLE AVOIDANCE METHODS

3.4.6 Status

If there is an obstacle greater than a certain threshold, the LabVIEW program
will be notified. The “status” is calculated to decide if the obstacle is significant
enough to be taken seriously to avoid detecting backscatter and other effects as
obstacles.

Calculating the status

1 de f i s O b s t i c l e I n F r o n t (s e l f) :
2 i f s e l f . meanValue > s e l f . i sObst i c l e InFrontTreshVa lue :
3 re turn True
4 e l s e :
5 re turn Fal se

Listing 3.8: Calculating the status

In several experiments, different values for “isObsticleInFrontTreshValue” has
been tested. From these experiment a value of

isObsticleInFrontTreshV alue = 0.345

has proven to give good results for all three programs.

In the listing below, an example of how the status message is implemented is
shown. This message is later sent to the LabVIEW program as part of message
string that contains more information.

1 d i r ec t i onMessage = ” s t a t u s : , ”
2

3 s t a t u s = i n t (s e l f . i s O b s t i c l e I n F r o n t ())
4 d i r ec t i onMessage = di rec t i onMessage + s t r (s t a t u s) + ” ”

Listing 3.9: Making the status message

The status value meaning is easily summed up below:

• No obstacle in front of ROV : 0

• Obstacle in front of ROV : 1

3.5 Summery of methods

In this chapter, the methods control flow has been shown. The Disparity method
is different to the texture methods that have a similar approach. In the 3.4 it is
demonstrated how all the methods use the same methods for calculating infor-
mation from the binary images.

Chapter 4

Testing methodology

This section is concerned with the joint work of the autonomy group consisting
of the members in table 1.1.

4.1 Field Test in Trondheimsfjorden

(a) Image of Gunnerus (b) Image of ROV SUB-fighter 30k

Figure 4.1: Boat and ROV. Courtesy of Aur-lab

The computer vision system was tested in April 2016 at the Trondheim Fjord
onboard the boat Gunnerus (seen in figure 4.1a).

The cameras were mounted front-facing on the ROV SUB-Fighter 30k from
Sperre AS, as seen in figure 4.1b. This ROV is operated from an onboard control
room within a container on Gunnerus. The vehicle can be controlled in both

81

82 CHAPTER 4. TESTING METHODOLOGY

manual and automatic modes. On top of the container, there is a winch that
holds the tether of the ROV.

The ROV operator could take over the control of the ROV at any time in case
something happened. When the ROV operator takes control of the ROV, the
ROV first goes into “stationkeeping” mode. In this mode, the ROV stops and
maintains its position at the same location and depth.

The purpose of the field test was to maintain situations identical to real opera-
tions, where the goal was to go from launch to localizing the structure of interest
(SOI). In our field test, the SOI was a transponder tower at 85 meters depth.

During the mission on Trondheimsfjorden, the ROV was run using its auto depth
function, so it was constantly around 2 meters above the ocean floor.

The ROV was set to go from waypoint to waypoint. In this mode, it used auto-
heading mode, in which the ROV holds its front at the correct angle.

The repository for the source code used in the field test is placed at:

https://github.com/larssbr/ROV˙objectAvoidance˙StereoVision

4.1.1 The camera software application programming in-
terface Vimba

To make the computer communicate and receive images from and to the Allied
vision camera(s), software has to be innstaled. First, install the Vimba SDK
from AVT(Allied Vision Technologies). Second, install the AVTDriverinstaller
toll to install the AVT Vimba SDK drivers on the computer. Finally, install
pymba.

Figure 4.2: Allied Vision Technologies driver stack AVT. Courtesy of Allied
Vision Technologies

https://github.com/larssbr/ROV_objectAvoidance_StereoVision

4.1. FIELD TEST IN TRONDHEIMSFJORDEN 83

In figure 4.2, an overview of the driver stack that enables the camera to connect
to the software. The ”.dll” files includes functions to communicate with the
camera written in c and c++. Since python is the choosen language for this
work, an open source package of python wrappers written for these “.dll” files
called pymba has been utilized.

pymba is located at https://github.com/morefigs/pymba.

Pymba

Pymba is summarized in (morefigs/pymba: Python wrapper for the Allied Vision
Technologies (AVT) Vimba C API , 2016) as: “pymba is a Python wrapper for
the Allied Vision Technologies (AVT) Vimba C API. It wraps the VimbaC.dll
file included in the AVT Vimba installation to provide a simple Python interface
for AVT cameras. It currently supports most of the functionality provided by
VimbaC.dll.”

The pymba folder is then downloaded and placed in the same repository as the
project. It is important to note that the user of pymba need to link the ”.dll”
files with pymba. An example of how the “.dll” files was linked in the vimbadll.py
is seen in the listing below.

1

2 base = r ’C:\Program F i l e s \A l l i e d Vis ion Techno log ie s \
AVTVimba 1.% i \VimbaC\Bin\Win%i \VimbaC . d l l ’

3

4 vimbaC path = r ’C:\Program F i l e s \A l l i e d Vis ion \Vimba 2 .0\VimbaC\
Bin\Win64\VimbaC . d l l ’

Listing 4.1: change these parameters in vimbadll.py inside the pymba folder

When pymba is linked correctly, one can access the camera(s) and capture a
sequence of images as seen in the listing below.

1 from pymba import ∗
2 import numpy as np
3

4 with Vimba () as vimba :
5 system = vimba . getSystem ()
6 system . runFeatureCommand (”GeVDiscoveryAllOnce”)
7 time . s l e e p (0 . 2)
8 camera ids = vimba . getCameraIds ()
9 f o r cam id in camera ids :

10 pr in t ”Camera found : ” , cam id
11

12 c1 = vimba . getCamera (camera ids [0])
13 c1 . openCamera ()
14 t ry :
15 #gigE camera

https://github.com/morefigs/pymba

84 CHAPTER 4. TESTING METHODOLOGY

16 pr in t c1 . GevSCPSPacketSize
17 pr in t c1 . StreamBytesPerSecond # Bandwidth a l l o c a t i o n can

be c o n t r o l l e d by StreamBytesPerSecond , or by r e g i s t e r SCPD0.
18 c1 . StreamBytesPerSecond = 35000000 # −−> tak ing the h a l f

o f MAXIMUM = 124000000 , and g i v e s a margin # gigabyte e the rne t
cab l e

19 except :
20 #not a gigE camera
21 pass
22

23 #s e t p i x e l format
24 # colorFormat
25 c1 . PixelFormat=”BGR8Packed” # OPENCV DEFAULT #c0 .

PixelFormat=”Mono8” #
26

27 # give the camera a shor t break
28 time . s l e e p (0 . 2)
29

30 #c0 . ExposureTimeAbs=60000
31 c1 . ExposureTimeAbs=100000
32

33 frame1 = c1 . getFrame ()
34 frame1 . announceFrame ()
35

36 c1 . s tar tCapture ()
37

38 # i n i t i a t e v a r i a b e l s
39 framecount1 = 0
40 droppedframes1 = []
41

42 c1 . runFeatureCommand (” A c q u i s i t i o n S t a r t ”)
43

44 whi le 1 :
45 # get s t a t u s o f camera 1
46 t ry :
47 frame1 . queueFrameCapture ()
48 suc c e s s1 = True
49 except :
50 droppedframes1 . append (framecount1)
51 suc c e s s1 = False
52

53

54 frame1 . waitFrameCapture (100) # 1000
55 f rame data1 = frame1 . getBufferByteData ()
56

57 i f s u c c e s s 1 :
58 img1 = getImg (frame data1 , frame1)
59

60 # use image f o r method
61

4.1. FIELD TEST IN TRONDHEIMSFJORDEN 85

62 ############ CLOSE THE CAMEREA ############
63 c1 . runFeatureCommand (” Acqu i s i t i onStop ”)
64

65 c1 . endCapture ()
66 c1 . revokeAllFrames ()
67 c1 . closeCamera ()

Listing 4.2: pymba example for accessing the camera

1 de f getImg (frame data , frame) :
2 img = np . ndarray (b u f f e r=frame data ,
3 dtype=np . uint8 ,
4 shape=(frame . height , frame . width , frame .

p i x e l b y t e s))
5

6 re turn img

Listing 4.3: python example for getIMG function

Explanation of important lines in the code from the uppermost listing:

• line 1: import pymba
• line 4: creating the vimba object
• line 5: get the system
• line 8: get all the camera id‘s there are
• line 9,10 : is just to print out all the camera id‘s for debugging purpuses.
• line 12: creates the camera object c1 using the first identified camera from line

8
• line 13: open the camera
• line 18: the maximum streaming capabilities are set to a max of 12400000 and

therefore if the program uses two cameras one need to be below this number
as the sum for both cameras. We set it to 35000000 as it also gives a a safety
margin.
• line 25: sets the pixel format to BGR 8 bit image
• line 31: sets the exposure time to 100000 as it gave good results
• line 33: frame1 object is made from the camera object c1
• line 42: the c1 camera object a call that it should start to aquire frames
• line 47: this is where the frame gets captured by the camera
• line 55: gets the buffer data
• line 58: img1 is the frame captured by the camera in numpy array that is

compatible with OpenCV

86 CHAPTER 4. TESTING METHODOLOGY

4.1.2 An overview

The LabVIEW program contains the vehicle control system and autonomous
agent program and is connected to the computer vision program through an
ethernet cable that sends UDP messages.

Deliberative

Control
Execution

Layer

Vehicle
Control
System

Percept
Behavior
 responseReactive

Figure 4.3: Architecture of autonomy program, courtesy of (Fossum, Trygve
Olav and Ludvigsen, Martin and Nornes, Stein M and Rist-christensen, Ida and
Brusletto, Lars, 2016)

In figure 4.3, an overview of the autonomy program architecture is visualized.
The work in this thesis is concerned with giving a reactive signal and an exit
direction to the system when an obstacle is detected.

In the field tests, the autonomy group first preformed tests to validate the delib-
erative behavior and how it compared to the (HIL) simulation to verify that the
HIL simulation was accurate.

Finally, the autonomy group tested the “LabVIEW program” to see if it would
behave as desired when the computer vision program sent a reactive behavior.

States

In Figure 4.4, the different states of the “path program” implemented by Ida
Rist-Christensen as part of her project thesis is illustrated.

4.1. FIELD TEST IN TRONDHEIMSFJORDEN 87

2. Descent

3. Transit 5. Camera tracking

1. Launch

6. Inspection/
Intervention

Valve

Figure 4.4: Plan of mission (Rist-christensen, 2016).

List of states seen in figure 4.4:

Table 4.1: Autonomy plan used in thesis (Rist-christensen, 2016).

Steps in plan

1 Launch
2 Descent
3 Transit
4 Sonar detection and tracking
5 Camera detection and tracking
6 Inspection/intervention

In the experiments run in Trondheimsfjorden, the obstacle was meet in the third
state “Transit”. In this state, the “path program” is listening to UDP messages
sent from the computer vision program. The reason it does not care in the “De-
scent” state is that it only moves along the z-axis and not in the x-y-plane. There-
fore, the ROV only uses the DVL to detect if something is beneath the ROV.
For more information about the autonomy plan, the reader should consult Ida‘s
thesis in (Rist-christensen, 2016).

In step 2 in table 4.1 the ROV will move vertically downwards, and it uses its
DVL to measure the distance to the sea bottom, It also uses its pressure sensor
to know its current depth.

88 CHAPTER 4. TESTING METHODOLOGY

Communication between the computer vision program and LabVIEW
program

When the threshold for what the obstacle avoidance program interpret as an
obstacle the following information would be sent with UDP over the ethernet
cable.

• status

• center

• mean value

The status is either 0 for no obstacle or 1 for obstacle detected. The center is
x and y position og the calculated center of the obstacle. The mean value is a
measurement of how much big the given obstacle is.

• MESSAGE = Status + center + meanValue

The ”Obstacle Avoidance” program sends the MESSAGE above to the Lab-
VIEW: The LabVIEW utilizes the information to plan its path.

It sends the message usinng the following IP settings:

• UDPIP = ”192.168.1.73”

• UDPPORT = 1130

The UDPIP is the IP address to the computer LabVIEW program was run on.

In section 3.4 the details of how the status, center and the mean value is being
calculated is presented.

4.1.3 Transponder Tower

The seafloor in Trondheimsfjorden where we conducted the experiment is mostly
flat, with few obstacles. Therefore, the autonomy group decided to test the pro-
gram using the transponder towers that are placed out in Trondheimsfjorden.
This was thought to be a good “test” for the program. Please note, that the
program is then only tested on static obstacles, and not moving obstacles.

4.1. FIELD TEST IN TRONDHEIMSFJORDEN 89

Figure 4.5: Transponder tower (“AUR-Lab Deployment av LBL nett ved TBS”,
2013)

In figure 4.5, the transponder tower is shown. That is a structure made of a
tripod and an attached transponder. It is placed at a depth of 85.22 meters.

4.1.4 Organization

There was conducted several test during the day, in the table bellow a short
summery of the field test and the time conducted is shown.

Table 4.2: Test cases run during the day

20 April 2016

1. 11:00-11:30 Deliberative autonomy (wrong transit coordinates) , fixed and the mission continued.
2. Deliberate autonomy - full mission
3. Test push corer
4. 17:30-18:00 Reactive: Collision Avoidance
5. Reactive: Collision Avoidance - first attempt (first attempt - missed target)
6. Reactive: Collision Avoidance - second attempt (backwards - u-turn avoidance)
7. Reactive: Collision Avoidance - third attempt (missed target)
8. Reactive: Collision Avoidance - fourth attempt (failure - should have used body fixed coordinates).

The program was tested on step 5,6,7 and 8. Unfortunately the ROV missed
the obstacle two times(step 5 and 7). The Obstacle avoidance system reacted
correctly both times it encountered the obstacle. The system sent messages to
the LabVIEW program that the status was that there was an obstacle in front

90 CHAPTER 4. TESTING METHODOLOGY

of the ROV and the given direction the ROV should go. Unfortunately there
was a bug in the LabVIEW program that was caused by using the the wrong
body coordinate system that it choose the wrong latitude and longitude coor-
dinates. Hence, this caused the new desired position to mismatch with the new
given direction, this caused the ROV to set its new desired position behind itself
in step 6 and behind the obstacle in step 8 (ROV was heading into the obstacle
and therefore manual control was used to regain control of the vehicle.) The
bug was later fixed in the LabVIEW program and worked well in subsequent
simulations.

East

567560 567562 567564 567566 567568 56757#0 567572 567574

N
o
rt

h

7035460

7035462

7035464

7035466

7035468

7035470

7035472

7035474

7035476

7035478

7035480

Obstacle

Original path

Obstacle

avoiding

path

ROV position

η
init

Manual control

Logging

stopped

Figure 4.6: Plot of the U turn. Courtesy of (Rist-christensen, 2016)

Figure 4.6 is a plot of what happened at step 6. One can see that the ROV gets
closer to the obstacle and turn away in a backwards direction. In steps it can be
explained as:

• 1 follow path to goal waypoint

• 2 computer vision program changes status, telling the LabVIEW that there is
an obstacle and the direction of escape

• 3 the LabVIEW program calculates new desired waypoint that effectively
makes it go around obstacle

• 4 when status changes to no obstacle in front of the ROV, the LabVIEW
changes desired waypoint to goal waypoint

4.1. FIELD TEST IN TRONDHEIMSFJORDEN 91

• 5 follow path to goal waypoint

4.1.5 Obstacle avoidance path

Within the “autonomy plan”, it is important for the ROV to be able to handle
obstacles in its way. Ida Rist-Christensen path planning algorithm is pictured
bellow in 4.7

Figure 4.7: Obstacle avoidance implementation in LabVIEW. Courtecy of (Rist-
christensen, 2016)

In figure 4.7, her algorithm sets a new longitude and latitude (ηavoid in the fig-
ure) to avoid an obstacle. This is a starting point for her algorithm, and she will
develop a more sophisticated solution in her final thesis.

92 CHAPTER 4. TESTING METHODOLOGY

4.2 Simulator Environment

Figure 4.8: Webpage for the github project AurlabCVsimulator

In figure 4.8 one see the website for the AurlabCVsimulator located at:

http://larssbr.github.io/AURlabCVsimulator/

The repository for the source code is placed at:

https://github.com/larssbr/AURlabCVsimulator

Documentation for the project is placed at:

http://aurlabcvsimulator.readthedocs.io/

4.2.1 Simulator Overview

The name (AurlabCVsimulator) is made up of Aur-lab (Applied Underwater
Robotics Laboratory at NTNU), CV (Computer Vision) and simulator. It is
meant to be a starting point for designing reusable code, and as a project that
contains useful folders of underwater imagery.

At this point, the AurlabCVsimulator is meant to be used for people with expe-
rience programming with Python. Inside the repository, the code is divided into
object oriented classes, so it should be possible to modify and reuse the code.
There is also provided ”Jupiter notebooks” for fast prototyping of new methods.

http://larssbr.github.io/AURlabCVsimulator/
https://github.com/larssbr/AURlabCVsimulator
http://aurlabcvsimulator.readthedocs.io/

4.3. SUMMARY 93

Figure 4.9: ReadTheDocs documentation for AurlabCVsimulator

In figure 4.9, the web page for the documentation of the AurlabCVsimulator is
shown. Hopefully, as the code base grows, more and more documentation will be
added.

In table 2.1 the packages used within the simulator is listed.

The AURlabCVsimulator has a method to load a set of stereo images. It con-
tains the image data sets from the mission in Trondheimsfjorden. If desired, one
can change the desired path to the folder of images It loads the images from a
file in the repository or one can change the path to the desired folder.

It is not a simulator in the sense that one can create image sequences within the
software and run it on synthetic computer-generated images.

4.3 Summary

In this chapter, the field test and simulation software has been presented. The
main take aways is that the field test was run successfully, although the Lab-
VIEW program choose the wrong desired path caused by a bug in that program.
The data captured from the field test, has been reused as data for til simulator.
The simulator is important since there is very few real world data sets one can
try ones computer vision algorithms on. In the simulator it is possible to run
sequences of stereo and mono images. The calibration parameters is already
calculated and loaded into the program. This simulators goal is to reduce de-
velopment time, and also save resources. In fact, it is quite expensive to go out
with a ship and an ROV to test the software developed. It is advantageous to
test the software in the simulator first.

Chapter 5

Results

This chapter presents the results from the simulations, Trondheimsfjorden field
test and other comparisons.

5.1 Comparing segmentation method with SLIC

Superpixel segmentation

Since the SLIC Superpixel Segmentation algorithm is computation heavy, the
author explored the possibility of discarding it. The results in performance and
run-time can be seen below.

5.1.1 Prediction comparison for segmentation

As for comparing the performance, several experiments were investigated, and
one example can be viewed in the figure bellow.

95

96 CHAPTER 5. RESULTS

(a) Prediction image made with SLIC
superpixel segmentation and LBP
descriptor

(b) LBP method prediction

Figure 5.1: Prediction image made with SLIC and LBP

The two predictions in figure 5.1, there is very similar results, they both are
able to detect the obstacle. The advantage of not using the SLIC superpixel
segmentation is that it looks at the whole blocks within the image, and therefore
naturally gets a “bigger” prediction, i.e it take a bit more area of the image.
This is an advantage since the blocks easier gets connected and therefore the
contours and center calculation has less area blocks to compute. The advantage
of using the SLIC superpixel segmentation is that it forms it’s segment around
areas that are similar, but in the experiments this has not given any better re-
sults than the simpler segmentation.

5.1.2 Runtime comparison for segmentation

To compare the segmentation times, profiling of the code on the same method
using two different segmentation algorithms are done. The profiling is visualized
using the snakeViz python package, but since the figures are hard to read, tables
are instead presented. Please note that the first row is the program and take 100
% of the time, the rows bellow are methods within it and are part of this time.

In the tables below, notice the high speed up when using a simpler method(not
SLIC superpixel segmentation) than the one proposed in (Rodriguez-Teiles et
al., 2014).

5.1. COMPARING SEGMENTATION METHOD WITH SLIC SUPERPIXEL SEGMENTATION97

Table 5.1: SLIC Superpixel LBP method runtime

runtime

simulation lbp.py(module) 1.15e+ 3 sec (100%)
simulation lbp.py(main) 1.15e+ 3 sec
slicSuperpixel lbp method.py(init) 1.09e+ 3 sec
slicSuperpixel.py(slic) 957 sec
skimage.segmentation slic slic cython 932 sec

Table 5.2: LBP method runtime

runtime

simulation lbp.py(module) 58.5 sec (100%)
simulation lbp.py(main) 57.9 sec
ROI lbp method.py(init) 37.4 sec
ROI lbp method.py(predictMaskedImage) 35.4 sec
ROI lbp method.py(describe) 17.6 sec
cv2.imread 9.20 sec

In table 5.1the runtime of the Superpixel SLIC method is shown. It uses the
SLIC superpixel segmentation algorithm implemented as in (Rodriguez-Teiles
et al., 2014). While in table 5.2 one can see the LBP method proposed in this
thesis and it‘s runtime.

The runtime of the skiimage SLIC segmentation in itself is 932 seconds and total
of 1153 seconds compared to the total of 58.5 seconds it takes to run the LBP
method.

That is an improvement of
1153

58.5
= 19.7

This is almost an improvement of 20 times.

5.1.3 Summery of segmentation comparison

The prediction and runtime has been shown for two different segmentation method
using the same descriptor for prediction. It has been shown that the SLIC su-
perpixel segmentation is a huge bottleneck, being extremely slow while giving

98 CHAPTER 5. RESULTS

similar results as a simpler segmentation method. Therefore, the slow method is
discarded and the simpler method should be used in further development.

5.2 Run time comparisons between the three

methods

To know which methods have the greatest potential, profiling of the code from
each method is done. The profiling is visualized using the snakeViz python pack-
age, but since the figures are hard to read, tables are instead presented. Please
note that the first row is the program and take 100 % of the time, the rows bel-
low are methods within it and are part of this time.

How does the LBP Method compare to the Disparity Method

Table 5.3: Disparity method runtime

runtime

simulation disparity.py(module) 69.5 sec (100%)
simulation haralick.py(main) 69.2 sec
simulation disparity.py(process) 48.5 sec
simulation disparity.py(disparityCalc) 74 sec
simulation disparity.py(getDisparity) 54.1 sec
cv2.undistort 16.9 sec cv2.imread 9.18 sec

The disparity method uses 69.5 seconds. The majority of the runtime is linked
to the stereo block matching algorithm and the undistortion of the stereo pair.
Compared to the LBP prediction algorithm it is actually slower by 69.5seconds−
58.5seconds = 11seconds. And the speedup is:

69.5

58.5
= 1.19

It is 1.19 times faster.

The speed of the disparity method can be increased by resizing the stereo pair
before block matching.

5.2. RUN TIME COMPARISONS BETWEEN THE THREE METHODS 99

The Haralick method runtime

Table 5.4: Haralick method runtime

runtime

simulation haralick.py(module) 101 sec (100%)
simulation haralick.py(main) 100 sec
ROI haralick method.py(init) 75.9 sec
ROI haralick method.py(predictMaskedImage) 74 sec
ROI haralick method.py(describe) 54.1 sec
cv2.imread 9.25 sec

From the table in 5.4 we can see that the runtime of the Haralick is way slower
than the LBP. This is because it has more complex features to compute than
the LBP method. The total time is 101 seconds. 101seconds − 58.5seconds =
42.5seconds. and the speedup is:

101

58.5
= 1.726

The LBP method is 1.726 times faster

5.2.1 Comparing the methods

To compare the methods, we have chosen to describe the images in a sequence
by it‘s mean value. By comparing the mean values for each image by the differ-
ent methods, we can analyze the quality of the methods.

100 CHAPTER 5. RESULTS

East

567560 567562 567564 567566 567568 56757#0 567572 567574

N
o
rt

h

7035460

7035462

7035464

7035466

7035468

7035470

7035472

7035474

7035476

7035478

7035480

Obstacle

Original path

Obstacle

avoiding

path

ROV position

η
init

Manual control

Logging

stopped

Figure 5.2: Plot of the U turn

The image sequence used is from the field test and reconstruct the situation
where the ROV encounters the obstacle and reacts and turn away backward and
can be seen in figure 5.2. It was chosen as a proper testing sequence since the
ROV slowly encounters the obstacle and then turn back again. It is possible to
compare the time the methods detect the obstacles and how the “mean value”
change over the image sequence.

Figure 5.3: Images in chronological order

In figure 5.3 : a set of images in sequential order to visualize the images used in
the simulation. Note: One can observe that the ROV gets closer and closer to
the transponder tower, and then backs away in the opposite direction.

Calculating the mean value of the obstacle image:

5.2. RUN TIME COMPARISONS BETWEEN THE THREE METHODS 101

Figure 5.4: plot of meanvalue

The graph in figure 5.4 are from observing the obstacle from a sequence of 245
images. To get a clearer image, we shorten the x axis around the area it recog-
nises the obstacle as seen in the following figure. Please note that the graphs are
normalized, and that their maximum y-value is 1.

Figure 5.5: plot of meanvalue

As one can see in figure 5.5,the plots are very similar and observe the obstacle at
the same time. They also have approximately the same rate of change.

Figure 5.5, led to the inspiration of a new way to use the “mean value” over
time information as an auto distance or anchor function that is further explained
in 7.2

102 CHAPTER 5. RESULTS

5.3 Bad lighting comparison

It is interesting to see how the texture based methods perform on an image with
difficult visibility. To do an evaluation, an image from a river with a group of
fish has been chosen. It‘s hard even for the human eye to see what is “ocean”
and “other”.

Figure 5.6: Test image

Figure 5.6 has been used as a testing image to evaluate how well the texture
based methods are able to predict “ocean” and “other” in an image with a bright
background and fishes. Note that ocean has been trained with blue water back-
ground, and could therefore be improved if trained with this bright watercolor.

Figure 5.7: Human analysis

If figure 5.7 a human estimation of what is fish and what is ocean is given as a
way to compare. The colored are is the area where there is “other”.

5.3. BAD LIGHTING COMPARISON 103

(a) LBP method (b) Haralick method

Figure 5.8: Bad lighting comparison

In figure 5.8 one can see a comparison between LBP method and Haralick method
on a test image with bad lighting.

One can clearly see that the LBP method observes almost all obstacles as the
human did, while the Haralick method works badly in this setting.

104 CHAPTER 5. RESULTS

5.4 AurlabCVsimulator simulation with Lab-

VIEW program

Original

Obstacle

path

Avoiding path

Sub-behavior

+ Obstacle
warning from
Stereo Cameras

570125

7036900

7036940

7036960

7036920

570129 570133 570137 570140

 Sonar tracking

 Stationkeep

Avoiding obstacle

Avoiding obstacle

East

N
or

th

1

2

Figure 5.9: Simulation of Obstacle avoidance using the Disparity method.
Courtesy of (Rist-christensen, 2016)

The figure 5.9 is a result from integrating the LabVIEW HIL simulator pro-
gram and the AurlabCVsimulator running a joint simulation where the ROV
encounters two obstacles simulated. The red crosses in the figure are from the
simulator sending the message status “1” (represents an obstacle being detected)
over UDP. In the message the center of the obstacle is also used in this plot.

5.5 Summary of results

The AurlabCVsimulator was used to test the all three methods described in
chapter 3, and gave satisfying results.

In figure 5.9 the disparity method was used in the simulation.

Chapter 6

Analysis and Discussion

In this chapter, uncertainties, pros and cons of the methods used in this thesis
are analysed and discussed.

6.1 Uncertainties and Obstacles

The capturing of the data used for the simulation can have uncertainties that re-
sult in incorrect data. There can always be uncertainties in results, equipments,
and research work.

6.1.1 Uncertainties by removing error margin in the Dis-
parity method

In the Disparity method the error margin is removed by excluding a part of the
image from the right hand side. This means that some of the information about
the ROV‘s view on the right hand side is lost. Therefore, it will perform worse
when an obstacle is placed to the right hand side of the cameras view than to
the left.

105

106 CHAPTER 6. ANALYSIS AND DISCUSSION

6.1.2 Synchronization uncertainties

Figure 6.1: image of clock from stereo rig

The clock of the stereo camera can be out of sync making the stereo block match-
ing algorithm less accurate, if the images matches are not taken at the same
time. Figure 6.1 shows a test to see if the stereo rig is running synchronised.
The test is to take an image of a clock and then compare the two images, if they
capture the images at the same time it is acceptable.

6.1.3 Dust clouds

If the ROV is close enough to the seafloor it can make mud mix with the clear
water, and this will create a change in the water clarity so it will effect the cam-
era object avoidance system at that location for a short period of time.

6.1.4 Fish

A school of fish swimming in front of the camera, can affect the obstacle avoid-
ance algorithm. Therefore, one can in a future implementation use optical flow
(or another promising method), to recognize that there moving objects in front

6.2. PROS AND CONS OF THE METHODS 107

of the camera, as, i.e., fish, and take that into the equation of obstacle avoidance
detection.

6.1.5 Multiple simultaneous obstacles

The obstacle avoidance algorithm might end up getting trapped in a situation
like this:

Figure 6.2: Example of a challenging situation

In figure 6.2, an example of a situation where the ROV gets stuck is shown.

This situation has the program not been tested for, and it is therefore unknown
what would happen. In such a situation, the program should use the “mean
value” to decide if there are too much obstacles and then back up until there
it sees no obstacle and then try again with a new direction.

6.2 Pros and Cons of the methods

From the comparison of mean value in the results chapter, it has been proven
that all the methods reacts around the same time for discovering an obstacle.
The Haralick method is the most sensitive and reacts first, while the disparity
and LBP method react at the same time.

The LBP method reacts better to obstacles in difficult light conditions as in
the bad lighting comparison. It is therefore considered a more robust solution.
Although the Haralick method responded faster in the image sequence, the LBP
method was more robust and hence have potential for achieving better perfor-
mance.

108 CHAPTER 6. ANALYSIS AND DISCUSSION

The runtime of the different methods is also important, even though the Haral-
ick method reacts to the obstacle first in the image sequence, it is important to
note that the LBP method is 1.726 times faster and would therefore be able to
capture information at almost twice the frequency. The speed of the movement
could therefore be increased, and would in that way be able to cover greater
areas at a shorter time window. This is important for reducing time of offshore
operations and could lead to cost savings.

The disparity method on the other hand could be tuned and improved similar
to what they do in the paper (Barry & Tedrake, 2015), where they are able to
calculate the disparity map needed for obstacle avoidance at 0.02 sec. But since
disparity needs two cameras that have to be pre-calibrated and also lighting and
water quality can have an effect on the calibration it is a very expensive method
to use. It is expensive since the ROV needs a heavier payload, and it needs more
time since one needs to calibrate the camera in the ocean because of refraction
effects (how light breaks between the camera and the water).

Chapter 7

Conclusions and Further Work

This chapter presents the conclusions and proposed further work regarding this
thesis.

The Obstacle avoidance modes developed are presented in the list below.

• Disparity method
• Locally Binary Pattern method
• Haralick method

7.1 Conclusion

Chapter 5 present the results and comparisons between the methods. It shows
that they are all successful, but that the Haralick descriptor is a bit more sensi-
tive, and therefore captures the obstacle a few images before the LBP method.
The Disparity method provides a benchmark comparison for mono camera based
obstacle avoidance methods.

The disparity method and the texture based methods were successfully imple-
mented and tested. The disparity method was proven to work in sea trials at
Trondheimsfjord.

Under simulated experiments, the methods have been compared, and all of them
gave excellent results in obstacle avoidance.

The methods were developed to work in real time for underwater application.
The most promising method is the LBP method and the Disparity method.

The LBP method has great potential also for other underwater applications as

109

110 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

it is rotation and illumination invariant. Therefore, it is robust under different
rotation and light conditions, hence making it the method with potential for
having the best performance.

This thesis has investigated several obstacle avoidance algorithms. The programs
were proven to preform accurately in sea trials and in simulations.

The Computer Vision program have been able to extend the capabilities of the
LabVIEW program as part of a new autonomous program for the ROV that is
under development.

In conclusion the software developed in this thesis can perform obstacle avoid-
ance with acceptable accuracy and is recommended for further investigation.

7.1.1 Performance of the chosen segmentation

In the method proposed by (Rodriguez-Teiles et al., 2014) they segment the
whole image using the SLIC Superpixel algorithm as in (Achanta, R and Shaji,
A and Smith, K and Lucchi, A and Fua, P and Süsstrunk, Sabine, 2011).

The trade-offs between the speed and the quality of the prediction have to be
considered. Time and precision comparisons have been presented in chapter 5.

The LBP method and Haralick method achieved an improved speed and perfor-
mance by using the simpler segmentation method.

7.2 Further Work

There are several further investigations that have potential for improving the
range of applications for the proposed methods for the obstacle avoidance sys-
tem.

The texture based methods have great potential for further development. It
would be interesting to look at how one could use these methods to derive infor-
mation for automatic scene interpretation. One could experiment with training
the classifier for more objects as the model can classify more than two classes.
For instance, it might be interesting to train the classifier for “reef”, “sand”,
“subsea installation” and try to perform autonomous scene interpretation based
on such classifiers.

The disparity image contains noise that makes it hard to reconstruct 3D models
from the image pair; one could investigate further how to fix the noise problem.

7.2. FURTHER WORK 111

If one can get disparity images with little noise, underwater computer vision
SLAM module for the ROV might be developed.

One could create and test a DP anchor module based on the LBP method, as it
is robust to light and rotation. Moreover, the user should be able to specify the
object it wants to set as an anchor.

The LBP method could be made to run faster using (GPU) multithreading and
(CPU) threading. Moreover, one could vectorize more of the “for” loops imple-
mented in Python.

The LBP and Haralick method could be improved by using/gathering more
training data for “ocean” and “other.”

Mean Value

Over time, the images change and therefore the obstacle image also changes. By
calculating the mean value of the binary image created by the method, it can be
observed whether the obstacle size is increasing or decreasing. This is similar to
the relative scale effect that the (Mori & Scherer, 2013) paper use, although they
look at the relative size of SURF generated keypoints over time.

Disparity method improvement

The disparity method could be improved by doing a better calibration, but there
are also other methods to improve the disparity. A design similar to the one in-
troduced in (Barry & Tedrake, 2015), where the goal was to cause sparse dispar-
ity detections with few false positives is recommended for further investigation.
This could greatly improve the speed of the algorithm. In fact, the algorithm in
their method only used 0.02 seconds to process one image pair. By only com-
paring image blocks that go through a filter and rejecting blocks with a lack of
edges, they were able to remove false positives, which might cause the ROV to
turn away from a phantom obstacle.

The disparity method could remove repeating textures in the image (Barry &
Tedrake, 2015) where a horizontal invariance filter was enabled to remove re-
peating textures that cannot be disambiguated with only two cameras.

112 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

Anchor system for Remotely Operated Vehicle

The idea is that by storing a queue of the last value of the center of an obstacle,
one could use this information to make the ROV try to have that object in the
center. In this thesis work, the Computer Vision program is dependent on the
control system is written in LabVIEW. To implement the code in LabVIEW was
outside the scope of the thesis, however, it is recommended for further investiga-
tion.

But one could imagine training the classifier for an image of a particular subsea
structure one wants to ”park” the ROV in front of, using visual servoing. It
could take advantage of the “Mean Value” information as a relative distance
measurement, and the “centerPosition” queue as an indication of movement
sideways and in the up-down direction. Therefore, it would have sufficient in-
formation to stand still in DP(Dynamic Positioning) in front of the desired ob-
stacle.

All the necessary information is already computed and sent over UDP; one needs
only to implement and tune the controller.

7.2.1 Detect errors on pipelines

Figure 7.1: Pipeline example image. Courtesy of (Subsea Pipeline Inspection,
Repair and Maintenance - Theon - Oil and Gas Front End Consultancy
& Petroleum Engineering Consultants — Theon - Oil and Gas Front End
Consultancy & Petroleum Engineering Consultants , 2016).

In order to maintain subsea pipes, one needs to inspect the pipes. If one could
classify typical errors on pipelines that have to be maintained, one could train
the classifier to detect these and then geo-reference or path-reference them. In
that way, one could set up a mission for control of pipelines and automatically
get feedback without having a human operator. The system could be applied to
any underwater drone, and an AUV would be the best fit.

7.2. FURTHER WORK 113

7.2.2 Application of camera based obstacle avoidance

It could be interesting to apply the methods on ROV‘s so that one does not
need to drive the ROV to the desired position. But instead, could give a depth
and a longitude and latitude and the ROV would drive to the specified coordi-
nates.

7.2.3 Implement structure of motion using OpenSFM

OpenSFM is a Structure of Motion library written in Python on top of OpenCV.
The library can be used to reconstruct the camera poses and 3D scene from
multiple images. It is possible to integrate sensors such as accelerometers and
more to improve the robustness and geographical alignment.

Figure 7.2: OpenSFM example image. Courtesy of (mapillary/OpenSfM: Open
Source Structure from Motion pipeline, 2016).

In figure 7.2 an example of the javascript viewer provided within the software.

The software is available on GIThub at https://github.com/mapillary/OpenSfM.

https://github.com/mapillary/OpenSfM

References 115

References

Achanta, R and Shaji, A and Smith, K and Lucchi, A and Fua, P and
Süsstrunk, Sabine. (2011). SLIC Superpixels Compared to State-of-the-
Art Superpixel Methods. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 34 (11), 2274–2282. Retrieved from http://ieeexplore

.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6205760papers3://

publication/doi/10.1109/TPAMI.2012.120 doi: 10.1109/tpami.2012
.120

Agisoft photoscan. (2016). http://www.agisoft.com/. ((Accessed on
07/15/2016))

Ahonen, T., Hadid, A., & Pietikäinen, M. (2004). Face Recognition with Local
Binary Patterns. Computer Vision - ECCV 2004 SE - 36 , 3021 , 469–481.
Retrieved from http://dx.doi.org/10.1007/978-3-540-24670-1{ }36$\

delimiter"026E30F$nhttp://link.springer.com/10.1007/978-3-540

-24670-1{ }36 doi: 10.1007/978-3-540-24670-1 36
AUR-Lab Deployment av LBL nett ved TBS. (2013). , 1–12.
Barry, A. J., & Tedrake, R. (2015). Pushbroom stereo for high-speed navigation

in cluttered environments. In Robotics and automation (icra), 2015 ieee
international conference on (pp. 3046–3052).

Brownlee, J. (2013). Machine Learning Mastery with Python. doi: 10.1017/
CBO9781107415324.004

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery , 2 , 121–167. https://

www.microsoft.com/en-us/research/wp-content/uploads/2016/02/

svmtutorial.pdf.
Camera calibration toolbox for matlab. (n.d.). http://www.vision.caltech

.edu/bouguetj/calib doc/. ((Accessed on 06/15/2016))
Camera calibration toolbox for matlab. (2016a). http://www.vision.caltech

.edu/bouguetj/calib doc/. (Accessed on 06/27/2016)
Camera calibration toolbox for matlab. (2016b). http://www.vision.caltech

.edu/bouguetj/calib doc/htmls/example.html. ((Accessed on
07/15/2016))

Coelho, L. P. (2013a). Mahotas: Open source software for scriptable computer
vision. Journal of Open Research Software, 1 (1), e3. Retrieved from
http://openresearchsoftware.metajnl.com/article/view/jors.ac/5

doi: 10.5334/jors.ac
Coelho, L. P. (2013b, July). Mahotas: Open source software for scriptable

computer vision. Journal of Open Research Software, 1 . doi: http://
dx.doi.org/10.5334/jors.ac

Create gray-level co-occurrence matrix from image - matlab graycomatrix -

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6205760papers3://publication/doi/10.1109/TPAMI.2012.120
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6205760papers3://publication/doi/10.1109/TPAMI.2012.120
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6205760papers3://publication/doi/10.1109/TPAMI.2012.120
http://www.agisoft.com/
http://dx.doi.org/10.1007/978-3-540-24670-1{_}36$\delimiter "026E30F$nhttp://link.springer.com/10.1007/978-3-540-24670-1{_}36
http://dx.doi.org/10.1007/978-3-540-24670-1{_}36$\delimiter "026E30F$nhttp://link.springer.com/10.1007/978-3-540-24670-1{_}36
http://dx.doi.org/10.1007/978-3-540-24670-1{_}36$\delimiter "026E30F$nhttp://link.springer.com/10.1007/978-3-540-24670-1{_}36
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/svmtutorial.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/svmtutorial.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/svmtutorial.pdf
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html
http://openresearchsoftware.metajnl.com/article/view/jors.ac/5

116 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

mathworks nordic. (n.d.). http://se.mathworks.com/help/images/

ref/graycomatrix.html. ((Accessed on 07/14/2016))
Dissecting the camera matrix, part 2: The extrinsic matrix. (2016).

http://ksimek.github.io/2012/08/22/extrinsic/. ((Accessed on
07/12/2016))

Fossum, Trygve Olav and Ludvigsen, Martin and Nornes, Stein M and Rist-
christensen, Ida and Brusletto, Lars. (2016). AUTONOMOUS ROBOTIC
INTERVENTION USING ROV:AN EXPERIMENTAL APPROACH.

Green’s theorem - wikipedia, the free encyclopedia. (2016). https://en

.wikipedia.org/wiki/Green%27s theorem. (Accessed on 06/21/2016)
Haralick, R., & Shanmugam, K. (1973). Computer Classification of Reservoir

Sandstones. IEEE Transactions on Geoscience Electronics , 11 (4), 171–
177. Retrieved from http://ieeexplore.ieee.org/xpl/login.jsp

?tp={&}arnumber=4071646{&}url=http://ieeexplore.ieee.org/xpls/

abs{ }all.jsp?arnumber=4071646 doi: 10.1109/TGE.1973.294312
Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features

for image classification. Systems, Man and Cybernetics, IEEE Transactions
on(6), 610–621.

Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in computer
vision (Second ed.). Cambridge University Press, ISBN: 0521540518.

Heikkilä, M., & Pietikäinen, M. (2006). A texture-based method for modeling
the background and detecting moving objects. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28 (4), 657–662. doi: 10.1109/
TPAMI.2006.68

High sensitivity 1.4 Megapixel CCD camera with GigE Vision. (n.d.). , 1–4.
Introduction to support vector machines — opencv 2.4.13.0 documentation.

(2016). http://docs.opencv.org/2.4/doc/tutorials/ml/introduction

to svm/introduction to svm.html. ((Accessed on 07/13/2016))
Joachims, T. (1998). Text categorization with support vector machines:

Learning with many relevant features. In European conference on machine
learning (pp. 137–142).

Kostavelis, I., Nalpantidis, L., & Gasteratos, A. (2009). Real-time algorithm
for obstacle avoidance using a stereoscopic camera. In Third panhellenic
scientific student conference on informatics.

Lens basics — understanding camera lenses. (2016). http://www

.exposureguide.com/lens-basics.htm. ((Accessed on 07/10/2016))
Local Binary Pattern for texture classification — skimage v0.12dev docs. (2016).

http://scikit-image.org/docs/dev/auto examples/plot local

binary pattern.html. (Accessed on 06/18/2016)
Machine learning - wikipedia, the free encyclopedia. (2016). https://en

.wikipedia.org/wiki/Machine learning. (Accessed on 06/27/2016)

http://se.mathworks.com/help/images/ref/graycomatrix.html
http://se.mathworks.com/help/images/ref/graycomatrix.html
http://ksimek.github.io/2012/08/22/extrinsic/
https://en.wikipedia.org/wiki/Green%27s_theorem
https://en.wikipedia.org/wiki/Green%27s_theorem
http://ieeexplore.ieee.org/xpl/login.jsp?tp={&}arnumber=4071646{&}url=http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4071646
http://ieeexplore.ieee.org/xpl/login.jsp?tp={&}arnumber=4071646{&}url=http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4071646
http://ieeexplore.ieee.org/xpl/login.jsp?tp={&}arnumber=4071646{&}url=http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4071646
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://www.exposureguide.com/lens-basics.htm
http://www.exposureguide.com/lens-basics.htm
http://scikit-image.org/docs/dev/auto_examples/plot_local_binary_pattern.html
http://scikit-image.org/docs/dev/auto_examples/plot_local_binary_pattern.html
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning

References 117

mapillary/opensfm: Open source structure from motion pipeline. (2016).
https://github.com/mapillary/OpenSfM. ((Accessed on 07/13/2016))

Miyamoto, E., & Jr., T. M. (2011). FAST CALCULATION OF HARALICK
TEXTURE FEATURES Human Computer Interaction Institute
Department of Electrical and Computer Engineering Carnegie Mellon
University. Human Computer Interaction Institute Department of Electrical
and Computer Engineering Carnegie Mellon University Pittsburgh PA,
15213 , 1–6. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.123.9719{&}rep=rep1{&}type=pdf

morefigs/pymba: Python wrapper for the allied vision technologies (avt) vimba
c api. (2016). https://github.com/morefigs/pymba. ((Accessed on
07/10/2016))

Mori, T., & Scherer, S. (2013). First results in detecting and avoiding frontal
obstacles from a monocular camera for micro unmanned aerial vehicles. In
Robotics and automation (icra), 2013 ieee international conference on (pp.
1750–1757).

Navab, N. (2009). 3d computer vision ii. http://campar.in.tum.de/twiki/

pub/Chair/TeachingWs09Cv2/3D CV2 WS 2009 Reminder Cameras.pdf.
((Accessed on 07/12/2016))

Ng, A. (n.d.). Machine learning - stanford university — coursera. https://www

.coursera.org/learn/machine-learning. ((Accessed on 07/14/2016))
Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale

and rotation invariant texture classification with local binary patterns.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24 (7),
971–987.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
. . . Duchesnay, É. (2012). Scikit-learn: Machine Learning in Python. . . .
of Machine Learning . . . , 12 , 2825–2830. Retrieved from http://dl.acm

.org/citation.cfm?id=2078195$\delimiter"026E30F$nhttp://arxiv

.org/abs/1201.0490 doi: 10.1007/s13398-014-0173-7.2
Pietikäinen, P. M., & Heikkilä, P. J. (2011). Image and Video Description with

Local Binary Pattern Variants. Group.
Profiling (computer programming) - wikipedia, the free encyclopedia. (2016).

https://en.wikipedia.org/wiki/Profiling (computer programming).
((Accessed on 07/06/2016))

Rist-christensen, I. (2016). Autonomous robotic intervention using ROV.
Rodriguez-Teiles, F. G., Pérez-Alcocer, R., Maldonado-Ramirez, A., Abril

Torres-Mendez, L., Dey, B. B., & Martinez-Garcia, E. A. (2014). Vision-
based reactive autonomous navigation with obstacle avoidance: Towards a
non-invasive and cautious exploration of marine habitat. In Robotics and
automation (icra), 2014 ieee international conference on (pp. 3813–3818).

https://github.com/mapillary/OpenSfM
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.9719{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.9719{&}rep=rep1{&}type=pdf
https://github.com/morefigs/pymba
http://campar.in.tum.de/twiki/pub/Chair/TeachingWs09Cv2/3D_CV2_WS_2009_Reminder_Cameras.pdf
http://campar.in.tum.de/twiki/pub/Chair/TeachingWs09Cv2/3D_CV2_WS_2009_Reminder_Cameras.pdf
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
http://dl.acm.org/citation.cfm?id=2078195$\delimiter "026E30F$nhttp://arxiv.org/abs/1201.0490
http://dl.acm.org/citation.cfm?id=2078195$\delimiter "026E30F$nhttp://arxiv.org/abs/1201.0490
http://dl.acm.org/citation.cfm?id=2078195$\delimiter "026E30F$nhttp://arxiv.org/abs/1201.0490
https://en.wikipedia.org/wiki/Profiling_(computer_programming)

118 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

Rolling shutter - wikipedia, the free encyclopedia. (2016). https://en

.wikipedia.org/wiki/Rolling shutter. ((Accessed on 07/07/2016))
scikit-image: Image processing in python — scikit-image. (2016). http://

scikit-image.org/. ((Accessed on 06/21/2016))
Second moment of area - wikipedia, the free encyclopedia. (2016). https://

en.wikipedia.org/wiki/Second moment of area. ((Accessed on
06/21/2016))

Semantic gap - wikipedia, the free encyclopedia. (2016). https://en.wikipedia

.org/wiki/Semantic gap. (Accessed on 06/27/2016)
Subsea pipeline inspection, repair and maintenance - theon - oil and gas front

end consultancy & petroleum engineering consultants — theon - oil and
gas front end consultancy & petroleum engineering consultants. (2016).
http://www.theonltd.com/news/subsea-pipeline-inspection-repair

-and-maintenance/. (Accessed on 06/27/2016)
Support vector machine - wikipedia, the free encyclopedia. (2016). https://

en.wikipedia.org/wiki/Support vector machine. ((Accessed on
07/13/2016))

Visual odometry autonavx courseware — edx. (n.d.). https://

courses.edx.org/courses/course-v1:TUMx+AUTONAVx+

2T2015/courseware/b6f17cd5224f43d8a29aca3dcbc15902/

9f52ee0a957047119ce4644f71100a4a/. ((Accessed on 06/15/2016))
Welcome to opencv documentation! — opencv 2.4.9.0 documentation. (n.d.).

http://docs.opencv.org/2.4.9/. ((Accessed on 06/15/2016))
Wesley, A. (2000). University physics. 10th edition.
What is camera calibration? - matlab & simulink - mathworks nordic. (2016).

http://se.mathworks.com/help/vision/ug/camera-calibration.html.
((Accessed on 07/10/2016))

https://en.wikipedia.org/wiki/Rolling_shutter
https://en.wikipedia.org/wiki/Rolling_shutter
http://scikit-image.org/
http://scikit-image.org/
https://en.wikipedia.org/wiki/Second_moment_of_area
https://en.wikipedia.org/wiki/Second_moment_of_area
https://en.wikipedia.org/wiki/Semantic_gap
https://en.wikipedia.org/wiki/Semantic_gap
http://www.theonltd.com/news/subsea-pipeline-inspection-repair-and-maintenance/
http://www.theonltd.com/news/subsea-pipeline-inspection-repair-and-maintenance/
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine
https://courses.edx.org/courses/course-v1:TUMx+AUTONAVx+2T2015/courseware/b6f17cd5224f43d8a29aca3dcbc15902/9f52ee0a957047119ce4644f71100a4a/
https://courses.edx.org/courses/course-v1:TUMx+AUTONAVx+2T2015/courseware/b6f17cd5224f43d8a29aca3dcbc15902/9f52ee0a957047119ce4644f71100a4a/
https://courses.edx.org/courses/course-v1:TUMx+AUTONAVx+2T2015/courseware/b6f17cd5224f43d8a29aca3dcbc15902/9f52ee0a957047119ce4644f71100a4a/
https://courses.edx.org/courses/course-v1:TUMx+AUTONAVx+2T2015/courseware/b6f17cd5224f43d8a29aca3dcbc15902/9f52ee0a957047119ce4644f71100a4a/
http://docs.opencv.org/2.4.9/
http://se.mathworks.com/help/vision/ug/camera-calibration.html

Appendix A

Ocean 16 paper

119

AUTONOMOUS ROBOTIC INTERVENTION
USING ROV: AN EXPERIMENTAL APPROACH.

Trygve O. Fossum, Martin Ludvigsen, Stein M. Nornes, Ida Rist-Christensen, Lars Brusletto
Department of Marine Technology,

Norwegian University of Science and Technology, NTNU,
NO-7491 Trondheim, Norway.

Email:{trygve.o.fossum,stein.nornes,martin.ludvigsen}@ntnu.no

Abstract—Using an experimental approach, this paper pro-
poses a semi-autonomous agent architecture for a remotely
operated vehicle (ROV). The system is inspired by Behavior-
and Reactive-based architectures using stimulus response blocks
to segment behavior. The capability and limitations of the system
is demonstrated through a field experiment, where the goal is to
approach and localize a structure of interest (SOI). The system
is tested using Hardware-In the-Loop (HIL) simulations before
deployment. The motivation for our approach is testing and
verification of architecture feasibility in an environment similar
to an operational situation. The results from the field campaigns
demonstrate the ROV agent able to execute an inspection type
mission, navigating to the SOI from surface, while avoiding
obstacles.

I. INTRODUCTION

In general, current industrial ROV operations are directly
and manually controlled, with neither automatic control func-
tions nor autonomy [22]. The operator must understand and
process a wide range of information, while keeping safe dis-
tance to potential obstacles and seafloor terrain. Autonomous
systems can alleviate and simplify the mission complex-
ity, making the operation less dependent on operator skill,
whilst providing increased precision, and reduced ship time.
Increasing efficiency and regularity in ROV operations is
important in a landscape where the industry is challenged
to cut cost; consequently, automation should be considered.
The combination of modern ROV motion control systems, see
e.g. [11] and [8], and the advent of autonomous underwater
vehicles (AUVs), has leveraged the development of autonomy
in the ROV domain. An important factor to note in this
regard is the development of station-keeping, which allows
for independent control of ROV and manipulator arms. Also,
advancements in telerobotics and remote control systems have
had impact. Intervention capable AUVs are currently only
at the research stage, and not fully developed for industrial
application [12]. There are only a few vehicles equipped with
manipulators and generally AUVs are purposed to perform
survey missions; more on the topic of AUV intervention
can be found in [14]. Expanding autonomous capabilities of
ROVs can be considered with the notion that the system
only need to incorporate a reduced degree of self-dependence.
The platform enjoy the benefits of human supervision and
continuous contact with the vehicle, which removes demand
for full autonomy. The operator would monitor the operation

and intervene only when unanticipated behavior is noticed.
This conditions ROV autonomy – compared to AUV autonomy
– to be semi-autonomous. Inspection, maintenance and repair
(IMR) on subsea infrastructure is a natural application where
this potential can be explored (i.e. locating a SOI).

The outline of the paper is given in the following. Section II
describes the autonomous agent design, and the integration of
computer vision. Selected results from field trials are presented
in Section III. Finally, Section IV summarizes the concluding
remarks.

A. Related work

The previous work on ROV automation is limited. Normally
the attention is directed towards AUV research, but compar-
isons can be made where the system application is similar.
A review of recent advances for autonomous marine robots
and use of intelligent systems is given in [23]. An overview
of traditional Behavior-Based Methods for underwater vehicle
control is found in [5]. Most autonomous control [7] systems
today are a variant of the Behavior-Based subsumption ar-
chitecture, often attributed to [3]; having a large influence
on the field. The work cited above focuses mainly on the
AUV platform. However, the material is relevant for all marine
robots. Periodic inspection, autonomous docking and valve
turning, component maintenance, and repair are operations
considered in literature applicable for robotic adaptation.
Consequently, the research reported on manipulator control
couples in with ROV autonomy. Automated valve turning is
considered in [4] and [1], where a robotic arm aim to turn
a valve in an underwater environment. The strategy is based
on imitation and machine learning. A ROV prototype with
high level autonomy capabilities is presented in [17]; the ROV
is supported by an operational environment platform (Ocean-
RINGS), installed in the ROV and the control cabin. Both
ROV and environment platform are tested in field trials, see
e.g. [16]. The NTNU based company Eelume have developed
an intervention capable AUV snake robot, intended to fully
automate the control of a subsea template, see [9].

B. Autonomy levels

An important factor to consider is the degree of autonomy
adequate for practical use in ROV applications. It is anticipated

that future operation of ROVs will involve more autonomy,
still relying on pilot support, but rather as a operational
supervisor. There are several existing scales depicting levels
of autonomy. One example is presented here from Chris et al.
(2014) dividing autonomy for ROVs into five levels:

1. Direct Control: Control is executed within the actual
vehicle by a pilot.
2. Remote Control: Having visible contact with the vehicle
and remotely assigning control commands.
3. Teleoperation: Joystick control aided by visual information
streamed from cameras. This is the most common type of
control, with pilots sitting in a control-room.
4. Logic Driven: Semi-autonomous control using some level of
logic driven programming. Waypoints and states are typically
used in programmed execution.
5. Logic Driven with goal orientation: High level tasks and
instructions are stated as goals and the ROV can perform these
without human intervention.

The current level of autonomy used for ROV operations
is largely restricted to level 1,2 and 3; though there exist ex-
amples and prototype systems having higher level capabilities.
Most modern work-class ROVs have the capability to do auto-
heading/depth/altitude, and incorporate dynamic positioning
(DP) systems.

C. Autonomous architectures

Several types of Behavior-based architectures exist in ma-
rine robotics. These systems make up the framework contain-
ing control laws, error detections, recovering, path planning,
task planning, and monitoring of events during mission execu-
tion. A common way to differentiate is between; Deliberative,
Reactive, and Hybrid type systems.

1) Deliberative architectures generally include a world
model, on which planning decisions are taken
[5]. Planning can be done prior to mission, or
adaptively in-situ. Highly advanced systems like T-REX
(Teleo-Reactive EXecutive) [19] is an example of a
Deliberative type system which can work adaptively
in-situ. Maintaining an accurate world model is vital for
favorable planning to proceed. Developing this model is
a complex and laborious task, and mismatch will cause
suboptimal behavior. However, suitable domains exist
and several successful implementations and applications
have been demonstrated, see e.g. [25] and [18].
Problems which need to be resolved considering the
world model often are classified as NP-hard [23]. Time
for internal computation (deliberation) can therefore
be several minutes depending on implementation.
Deliberative architectures follow the structure, sense →
plan → act.

2) Reactive architectures are generally more simple
to build and do not directly require a world model
representation. The reaction time, compared to

Deliberative systems, needs to be short, in order to
react to non-predictable events. The complete behavior
is divided into parallel sub-behavior blocks; each block
is defined by reaction to a concrete stimulus and
designated response. These independent blocks collect
the incoming perceptions and calculate an output. The
output of the different sub-behaviors are then collected
and assessed inside a coordinating mechanism, which
determines the resulting behavior [5]. One example
would be to base the coordination on a hierarchical
defined rule set; taking form as a ”prioritizing switch”,
using if-then-else notation to handle behavior branching
within the blocks. The resultant behavior can be a direct
prioritization of one block or a combination. It is hence
possible to obtain behavioral complexity inherited from
such a summation. This is the principal idea behind
Behavior-based approaches and apply to Deliberative
as well as Reactive architectures. A central element for
the Behavior-based architectures to be prosperous, is
the correct composition of the coordinating mechanism.
Thus, efforts must be spent designing this component
carefully; focus on attaining behavioral predictability
is important for ROV applications. The Reactive
framework is comparably easy to implement and gives
real-time response. Reactive architectures follow the
structure, sense → act.

3) Hybrid solutions also exist. The Hybrid architecture
integrates the Deliberative and the Reactive layer (in
the hybrid context referred to as the Functional Re-
active layer), assuring both satisfying mission conduc-
tance (high-level goal fulfillment) and quick adapta-
tion to uncertainties (reflexive response). Similar to
Reactive/Behavior-based architectures, Hybrid systems
incorporate a coordinating mechanism responsible for
regulating the task execution, generally addressed as
the Control execution layer – responsible for enabling,
disabling, and parametrization of the different behav-
iors. Several coordination schemes exist, e.g. fuzzy-
implemented behaviors and hierarchical classifications
of the behavior [10]. Hybrid systems have been suc-
cessfully used in AUV applications. A more detailed
description and comparison is given in [20]. Hybrid ar-
chitectures follow the structure, Deliberative ∪ Reactive
→ Coordinating mechanism → act.

II. HYBRID AGENT ARCHITECTURE

Considering that a pilot will accompany and supervise the
ROV; it is reasonable to argue for using a plain and intuitive
architecture, keeping the behavior output deterministic
and transparent. A Hybrid architecture type fits well to
this purpose, since it can include properties for handling
both fast and slow moving behavior. The system design
characteristic was chosen to be based on Behavior-based
principles; dividing behaviors into distinct sub-behaviors,
having no explicit representation of knowledge, and having a

modular structure with each block dedicated to a particular
aspect of the vehicle autonomy. This allows the system to be
simplistic in structure and be open to modification. Further,
the design method chosen is based on experimentally driven
design, where the basic premise is to iteratively build skill
components from running trials, and in turn add these to
the system. The agent design have been verified and tested
using a ROV HIL simulator. This is vital in order to assess
the credibility and the behavioral model of the system before
going into sea trials. The agent architecture presented follows
the Hybrid framework, presented in section I-C, point (3), and
consists of the Deliberative, Reactive, and Control execution
layer. The behaviors are implemented and conditioned based
on a typical ROV inspection and intervention mission;
approaching, locating, and recognizing a SOI. The degree of
autonomy for the agent, following the scale given in I-B, is
comparable with level 5.

The Deliberative layer accounts for the slower moving
behavior components, e.g. taking the ROV from surface to
the SOI. This block is comprised of six underlying sub-
behaviors which sequentially follow the mission anatomy,
namely; (1)Launch, (2)Descent, (3)Transit, (4)Sonar tracking,
(5)Camera tracking, (6)Camera Inspection and Intervention.
Only one behavior is active at a time, implicating sequential
steering. Each sub-behavior has a set of conditions which
need to be fulfilled before progressing to the next state. The
active sub-behavior block translate the sensor input (e.g.
position, depth, altitude, camera, etc.) to high-level behavior
(sense → plan). The functional mapping is discrete, yielding
concrete actions – e.g. setAltitude=10m. Actions are then
interpreted and executed (→ act) by the vehicle control
system, which handles the discrete to continuous decoding.
The translation from sensor input to output is based on
common planning formulations using logic expressions with
time-dependent conditions, since several of the conditions are
declared by being either True or False given a time limit –
e.g. X is True if (depth = 5m && timer >= 1min), X
representing a generic time-dependent condition.

Having such a simple mapping introduces certain tradeoffs,
but is practically suited for the experimental context brought
into play by running trials and building the autonomy system
incrementally. In the design phase finding program bugs,
faults, and carry out modifications becomes uncomplicated,
which is a considerable benefit. Only the active sub-behavior
receive sensor information within the Deliberative layer, whilst
in the Reactive layer all sub-behaviors are active and re-
ceive sensor data. The Reactive layer consist of the fast-
moving behavior components; Obstacle avoidance, and Stuck
detection. Reactive components require limited environmental
knowledge and integrate with the Deliberative layer by altering
the mission on the fly. Making the ROV able to modify the
existing plan based on real-time sensory information. Similar
to the Deliberative layer the Reactive functional mapping is
discrete – E.g. in the case of obstacle detection, waypoints

and direction is calculated using computer vision (see Section
II-A), and is sent to the vehicle control system in the form:
newWaypoint=N52◦60.323′, E8◦32.144′. Important to note is
that the Reactive layer have priority in the coordination mecha-
nism, i.e. the Control execution layer, meaning the Reactive
sub-behaviors will be granted control if either obstacles or
stuck symptoms are detected. The coordination follows a
hierarchical ruling with the Reactive layer on top. Due to the
sequential steering, the Deliberative layer will never request
several behavior actions at the same time. The coordination
will therefore only have to reconcile between the Deliberative
and the Reactive layer. The output from latter is always
sent through the Control execution layer, before dispatch to
the vehicle control system. A diagram of the Hybrid agent
architecture is presented in Figure 1.

Deliberative

Control
Execution

Layer

Vehicle
Control
System

Percept
Behavior
 responseReactive

Fig. 1: Agent architecture.

A. Integration of computer vision

The Hybrid agent is complemented with computer vision
for detection and avoidance of obstacles. Using visual infor-
mation is not only necessary for resolving obstacle avoidance.
Realization of autonomous IMR operations is dependent on
computer vision based tools to deal with in-situ identification
and precision control. The tools and methods used in this
paper was developed to suit an underwater environment with a
relative short visual range, inherit to the cloudy waters of the
Trondheim Fjord. The main results are collected in Figure 2,
followed by a summary of the theory and simulation results.

(a) Unaltered video frame
of transponder tower.

(b) Disparity image of
obstacle.

(c) LBP prediction.

(d) Haralick prediction (e) Disparity prediction. (f) LBP / Haralick predic-
tion.

Fig. 2: Computer vision results.

The ROV was equipped with stereo cameras looking
straight forward to simplify detection of obstacles. The
video stream was received, and the computer vision output
produced, on one single desktop computer. The computer
communicated with the Hybrid agent, running on a similar
computer, via the UDP protocol.

The first method of abstraction uses disparity maps. This
approach creates a disparity map of the image pair in front
of the ROV. A threshold filter, based on detection size, is
utilized to avoid mis-identification of backscatter as obstacles.
If the visual input precede the threshold values, the algorithm
interpret this as an obstacle in the field of view, see Figure
2b. The algorithm then calculates the region of the obstacle
and a corresponding bounding box with a center, referring
to Figure 2e. The extracted visual information can now be
used for safe path inference in an obstacle avoidance context.
A weakness inherit to this approach is the dependence
on the threshold filter, which can cause problems in low
light conditions. Consequently, two additional methods, for
obtaining a more robust obstacle bounding box prediction,
are developed to complement the preceding approach using;
Local Binary Patterns (LBP) (as described in [15]), and
Haralick texture descriptors (as described in [13]). The
main advantage of these particular texture descriptors is that
ocean in itself has almost no texture and is therefore easy to
distinguish from obstacles. Simulations show better accuracy
in varying illumination – which is practical for underwater
purposes. Uniform Local Binary Patterns is known to be
illumination invariant, which make the approach appealing
to use, providing robust prediction of regions of obstacles.
Further augmentation is done to speed up results from [21],
replacing the (slice-by-slice) SLIC Superpixel Segmentation
algorithm; the modified methods simply segment the image
into workable grid blocks. Simulations indicate improvement
close to 20 times faster using this approach. The LBP and
Haralick methods are also advantageous compared to the
Disparity approach, removing the need to calibrate a stereo
camera pair, and allowing predictions with only one camera
active. The output from the LBP and Haralick method is
drawn in Figure 2c, 2d. Comparable with Figure 2e, the
bounding box produced by the LBP prediction is shown
in Figure 2f; similar output is obtained with the Haralick
approach. Having a more robust prediction in low light
conditions, the LBP and Haralick methods are preferred over
the Disparity approach.

The integration of the methods described was able, based
on the bounding box and center prediction, to provide explicit
detection and direction of avoidance. Direction is calculated
based on the location of the obstacle in the field of view. Data
from field trials in the Trondheim fjord made it feasible to
rerun the field test for HIL testing and tuning of the obstacle
avoidance. Figure 3 demonstrate HIL simulations using the
Disparity prediction to avoid two obstacles in succession. The
red crosses represent an ”obstacle detected” message. The

message is sent until the obstacle no longer appear in the
cameras. The ROV avoids the obstacle for a certain amount
of time or until the obstacle is out of the camera range.
Satisfactory results was also obtained in simulation using the
LBP and the Haralick methods.

Original

Obstacle

path

Avoiding path

Sub-behavior

+ Obstacle
warning from
Stereo Cameras

570125

7036900

7036940

7036960

7036920

570129 570133 570137 570140

 Sonar tracking

 Stationkeep

Avoiding obstacle

Avoiding obstacle

East

N
or

th

1

2

Fig. 3: HIL simulation of obstacle avoidance using computer
vision.

III. EXPERIMENTAL RESULTS

The Hybrid architecture was tested in the Trondheim Fjord
April 2016 using a ROV SUB-Fighter 30k from Sperre AS,
see [24]. The research vessel RV Gunnerus provided the
premises for remote control and computer resources. The
mission setup reflected an operational situation where the
ROV was to approach and localize a SOI, in the form
of a transponder tower submerged at 85m, see Figure 2a.
The underlying sub-behaviors active in the experiment were;
(1)Launch, (2)Descent, (3)Transit, (4) Sonar tracking, with
pre-generated sonar data, and approximate position for the
SOI provided for simplification. The ROV supervisor could
intervene at any time, overriding the agent. The default and
fail-safe sub-behavior was Stationkeep, keeping the ROV still
at the current depth and location. The remaining sub-behaviors
(5,6) were dormant. The autonomous agent and the vehicle
control system were connected and operated separately from
the computer vision computer. The experiment was organized
in two parts; First part concentrated on validation of the
Deliberative behavior and comparison with the pre-mission
HIL simulations. The second part was testing with both
the Deliberate and Reactive behavior active, reflected with a
obstacle avoidance scenario. The ROV was manually taken to
5m water depth before activating the Hybrid agent. Figure 4a
shows the Deliberate behavior taking the ROV from the surface
to the SOI, switching successfully between the sub-behaviors
(marked with blue text), in accordance with HIL simulations
carried out on land. After attaining confirmation from the
acoustic sensors, altitude control takes over from depth control,
on request from the Hybrid agent – switching from Decent

to the Transit behavior. The approach then continue with
the provided location of the SOI, until a distance condition
activates the pre-generated sonar data and the Sonar tracking
behavior. The mission is concluded by the agent when arriving
within 5m radius of the tower, going into the Stationkeep
behavior. A overlooking plot is shown in Figure 4b.

Time [s]
0 100 200 300 400 500 600 700 800 900 1000

D
ep

th
 [m

]

Surface

10

20

30

40

50

60

70

80

90

100

Launch
Descent

Transit

Mission
completed

Deliberative behavior

ROV depth

SOI

Stationkeeping

Sonar tracking

(a) Depth-Time plot of the vehicle.

East
567570 567580 567600 567620 567640 567660

N
or

th

7 035 390

7 035 410

7 035 430

7 035 450

7 035 470

7 035 490

ROV path

Deliberative behavior

SOI

SonarTracking
Stationkeep

Transit

Launch/Decent

(b) North-East plot of the vehicle.

East

570100 570105 570110 570115 570120

N
o

rt
h

7036890

7036894

7036898

7036902

Start

Transit

Transit

Computer vision

detects obstacle.

Mission
stopped

Obstacle

Original path

Avoiding path

Sub-behavior

(c) Results from testing obstacle avoidance.

Fig. 4: Results from field trials.

For the second part of the experiment, both the Reactive and
Deliberative layer were activated in order to test the Control
execution layer, as well as the camera-triggered obstacle
avoidance described in section II-A. Figure 4c shows this
scenario with the planned destination waypoint blocked by an
obstacle. The reconciliation between the layers is successful
and the Reactive behavior – i.e. obstacle avoidance – takes
control and steer clear, before handing control back to the
Deliberative layer. The mission is stopped after successful
avoidance has been verified.

IV. CONCLUSIONS AND FUTURE WORK

We have used a Hybrid agent architecture to show the
autonomy potential for intervention type ROV missions. In
addition, the system have demonstrated handling of non-
deterministic events, i.e. obstacle avoidance, using computer
vision for identification and navigation. There remains much
work to be done; the lessons learned from field trials is to be
included for next iteration and system version. In particular,
all the sub-behaviors (1-6) are to be included, and further
work on improving logic flow within the architecture is
important. One can further imagine implementation of more
elaborate computer vision methods, e.g. camera tracking, for
attaining accurate navigation relative to the SOI.

It is anticipated that future operation of ROVs will involve
more autonomy. Arguing for a semi-autonomous approach,
with the pilot in a supervising role, a Behavior-based ar-
chitecture is considered adequate for practical use in ROV
applications. Having a plain and intuitive structure makes
finding program bugs, faults, and carry out modifications
uncomplicated, which is a considerable benefit in building
ROV autonomy systems following a bottom-up approach.
Certain tradeoffs are associated with Behavior based robotics,
see e.g. [2, 23], where particular concerns relate to overall
action selection and adaptation for the vehicle in off-nominal
conditions. Additionally, the use of propositional logic for
deliberation can cause problems for problem domains which
are hard to represent. For routine and recurring ROV missions,
this shortcoming is accepted, but can become a concern for
more complex intervention activity, e.g valve operation, and
manipulator tasks. System augmentation will in this case be
necessary to obtain these capabilities, implicating development
towards full autonomous control without human supervision.
If this convergence is practical in the ROV domain, will not be
advocated in this paper, but is a question which to be mindful
of when planning the composition of autonomous agents.

ACKNOWLEDGEMENT

The work presented in this article is conducted through
the NTNU Applied Underwater Robotics Lab (AURLab),
providing equipment and resources for field trials. The funding
is supported by the Research Council of Norway (RCN) under
the project number, 223254.

REFERENCES

[1] Seyed Reza Ahmadzadeh, Petar Kormushev, and Dar-
win G. Caldwell. “Autonomous robotic valve turning: A
hierarchical learning approach”. In: Proceedings - IEEE
International Conference on Robotics and Automation.
2013, pp. 4629–4634. ISBN: 9781467356411. DOI: 10.
1109/ICRA.2013.6631235.

[2] Michael Benjamin, Matthew Grund, and Paul Newman.
“Multi-objective optimization of sensor quality with
efficient marine vehicle task execution”. In: Proceedings
2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006. IEEE. 2006, pp. 3226–
3232.

[3] Rodney A. Brooks. “A Robust Layered Control System
For A Mobile Robot”. In: IEEE Journal on Robotics
and Automation 2.1 (1986), pp. 14–23. ISSN: 08824967.
DOI: 10.1109/JRA.1986.1087032. arXiv: 1010.0034.

[4] A Carrera et al. “Towards Autonomous Robotic Valve
Turning”. In: Cybernetics and Information Technologies
12.3 (2012), pp. 17–26.

[5] M Carreras et al. “An Overview on Behaviour-Based
Methods for AUV Control”. In: Behaviour (1999),
pp. 141–146.

[6] Robert D. Christ and Robert L. Wernli. ”The ROV
Manual” (Second Edition), Chapter 4: Vehicle Con-
trol and Simulation, Elsevier, 2014, pp. 93–106. ISBN:
9780080982885. DOI: 10 .1016 /B978- 0- 08- 098288-
5.00003-8.

[7] McGann, Conor et al. “T-rex: A model-based architec-
ture for auv control”. In: ICAPS 2007 - USA. Vol. 2007.
2007.

[8] Fredrik Dukan, Martin Ludvigsen, and Asgeir J.
Sørensen. “Dynamic positioning system for a small size
ROV with experimental results”. In: OCEANS 2011
IEEE - Spain. 2011. ISBN: 9781457700866. DOI: 10.
1109/Oceans-Spain.2011.6003399.

[9] Eelume. Eelume - Intervention capable snake robot.
http://eelume.com/. 2016.

[10] Jonathan Evans et al. “Design and evaluation of a
reactive and deliberative collision avoidance and escape
architecture for autonomous robots”. In: Autonomous
Robots 24.3 (2008), pp. 247–266. ISSN: 09295593. DOI:
10.1007/s10514-007-9053-8.

[11] Daniel de A Fernandes et al. “Output feedback mo-
tion control system for observation class ROVs based
on a high-gain state observer: Theoretical and exper-
imental results”. In: Control Engineering Practice 39
(2015), pp. 90–102. ISSN: 09670661. DOI: 10.1016/j.
conengprac.2014.12.005.

[12] Einar Gustafson et al. “HUGIN 1000 Arctic Class
AUV”. In: Arctic Technology conference. Vol. 2. 2011,
pp. 1–8. ISBN: 9781613991725. DOI: 10.4043/22116-
MS.

[13] Robert M Haralick, Karthikeyan Shanmugam, and Its’
Hak Dinstein. “Textural features for image classifica-

tion”. In: Systems, Man and Cybernetics, IEEE Trans-
actions on 6 (1973), pp. 610–621.

[14] Giacomo Marani, Song K. Choi, and Junku Yuh.
“Underwater autonomous manipulation for intervention
missions {AUVs}”. In: Ocean Engineering 36.1 (2009).
Autonomous Underwater Vehicles, pp. 15–23. ISSN:
0029-8018. DOI: dx.doi.org/10.1016/j.oceaneng.2008.
08.007.

[15] Timo Ojala, Matti Pietikäinen, and Topi Mäenpää.
“Multiresolution gray-scale and rotation invariant tex-
ture classification with local binary patterns”. In: Pat-
tern Analysis and Machine Intelligence, IEEE Transac-
tions on 24.7 (2002), pp. 971–987.

[16] E. Omerdic and D. Toal. “OceanRINGS: System con-
cept amp; applications”. In: Control Automation (MED),
2012 20th Mediterranean Conference on. July 2012,
pp. 1391–1396. DOI: 10.1109/MED.2012.6265833.

[17] Edin Omerdic. ROV LATIS: next generation smart un-
derwater vehicle. Control, Robotics and Sensors. Insti-
tution of Engineering and Technology, 2012, pp. 9–44.
DOI: 10.1049/PBCE077E ch2.

[18] Frédéric Py, Kanna Rajan, and Conor McGann. “A
Systematic Agent Framework for Situated Autonomous
Systems”. In: Scientist 128.44 (2010), pp. 583–590.
ISSN: 00027863. DOI: 10.1021/ja065334o.

[19] Kanna Rajan and F Py. “T-REX: partitioned inference
for AUV mission control”. In: Further advances in un-
manned marine vehicles. The . . . (2012), pp. 171–199.

[20] P Ridao et al. “On AUV control architecture”. In:
Intelligent Robots and Systems, 2000. (IROS 2000).
Proceedings. 2000 IEEE/RSJ International Conference
on 2 (2000), 855–860 vol.2. DOI: 10.1109/IROS.2000.
893126.

[21] F Geovani Rodriguez-Teiles et al. “Vision-based reac-
tive autonomous navigation with obstacle avoidance:
Towards a non-invasive and cautious exploration of
marine habitat”. In: Robotics and Automation (ICRA),
2014 IEEE International Conference on. IEEE. 2014,
pp. 3813–3818.

[22] Ingrid Schjølberg and Ingrid Bouwer Utne. “Towards
autonomy in ROV operations”. In: IFAC Papers Online
(2015), pp. 183–188. ISSN: 24058963. DOI: 10.1016/j.
ifacol.2015.06.030.

[23] Mae L. Seto. Marine robot autonomy. Springer-Verlag
New York, 2013, p. 382. ISBN: 978-1-4614-5658-2.
DOI: 10.1007/978-1-4614-5659-9.

[24] Sperre. SUB-FIGHTER 30K. http : / / sperre - as . com /
portfolio / sub - fighter - 30k/ [Accessed: 28.04.2016].
2016.

[25] Ioannis Vlahavas and Dimitris Vrakas. Intelligent Tech-
niques for Planning. English. IGI Global, Jan. 1. ISBN:
DOI: 10.4018/978-1-59140-450-7.

Appendix B

Attachments

This appendix lists the attachments. The attachment is a zip file that includes
the Msc poster while the software is online and available at the given hyperlinks
in B.2.

B.1 Msc poster

Mandatory scientific poster that presented the work done so far, at May 24.
Please note that at the time of the delivery, the SLIC superpixel segmentation
method was used, and was later changed to the faster and simpler segmentation
presented in chapter 3.

B.2 Links to software and documentation

The software is divided in the project AurlabCVsimulator and the ROV objectAvoidance StereoVision.
The ROV objectAvoidance StereoVision project is the code developed for the
field test at trondheimsfjorden, it also contains other code used for development.

B.2.1 AurlabCVsimulator

The website for the AurlabCVsimulator located at:

http://larssbr.github.io/AURlabCVsimulator/

The repository for the source code is placed at:

127

http://larssbr.github.io/AURlabCVsimulator/

128 APPENDIX B. ATTACHMENTS

https://github.com/larssbr/AURlabCVsimulator

Documentation for the project is placed at:

http://aurlabcvsimulator.readthedocs.io/

B.2.2 ROV objectAvoidance StereoVision

The repository for the source code used in the field test is placed at:

https://github.com/larssbr/ROV objectAvoidance StereoVision

https://github.com/larssbr/AURlabCVsimulator
http://aurlabcvsimulator.readthedocs.io/
https://github.com/larssbr/ROV_objectAvoidance_StereoVision

	List of Figures
	List of Tables
	Introduction
	Motivation
	Autonomy Group
	Overview of goal of autonomy group

	Scope and Limitations
	Objectives

	Contributions
	Organization of the Thesis

	Background
	Previous Work related to underwater obstacle avoidance
	Over-water obstacle avoidance
	Underwater obstacle avoidance
	Summary of related work

	Software
	OpenCV
	Mahotas
	Scikit-image
	Scikit-learn
	Python
	Profiling with SnakeViz
	Vimba Software Development Kit
	Pymba
	Summary

	Equipment for the test
	PC PLATFORM
	Boat and ROV

	Camera
	Stereo rig
	Global shutter

	Pinhole camera
	Modeling of pin-hole camera

	Distortion
	Radial distortion
	Tangential distortion
	Refraction

	Calibration software
	The general idea
	MathWorks calibration toolbox
	Caltech calibration toolbox
	OpenCV calibration
	Agisoft PhotoScan calibration

	Underwater camera problems/uncertainties
	Scatter in underwater images
	Scale of the world in the image plane

	Communication between computers
	User Datagram Protocol

	Histograms
	Color Histograms

	Color channel statistics
	Feature Extraction
	Semantic gap
	Feature Vector
	Image descriptor
	Feature Descriptor

	Texture Descriptors
	Local Binary Patterns
	Haralick descriptor

	Classification
	Supervised Learning
	Training data
	Train the classifier

	Machine Learning
	Binary Classification

	Obstacle Avoidance Methods
	Disparity Method
	Calculating the camera parameters
	Starting with an image pair
	Load Calibration Parameters
	Make image pair Grayscale
	Rectify
	Stereo block matching
	Remove error margin
	Create 3d point cloud

	Local Binary Pattern Method
	Training image
	Resize image
	Divide Image into Blocks
	Predict each segment and mask region based on prediction

	Haralick Method
	Divide Image into Blocks
	Predict each segment and mask region based on prediction

	Obstacle avoidance
	Starting Point
	Contour extraction
	Center of obstacle calculation
	Create bounding box
	Mean Value
	Status

	Summery of methods

	Testing methodology
	Field Test in Trondheimsfjorden
	The camera software application programming interface Vimba
	An overview
	Transponder Tower
	Organization
	Obstacle avoidance path

	Simulator Environment
	Simulator Overview

	Summary

	Results
	Comparing segmentation method with SLIC Superpixel segmentation
	Prediction comparison for segmentation
	Runtime comparison for segmentation
	Summery of segmentation comparison

	Run time comparisons between the three methods
	Comparing the methods

	Bad lighting comparison
	AurlabCVsimulator simulation with LabVIEW program
	Summary of results

	Analysis and Discussion
	Uncertainties and Obstacles
	Uncertainties by removing error margin in the Disparity method
	Synchronization uncertainties
	Dust clouds
	Fish
	Multiple simultaneous obstacles

	Pros and Cons of the methods

	Conclusions and Further Work
	Conclusion
	Performance of the chosen segmentation

	Further Work
	Detect errors on pipelines
	Application of camera based obstacle avoidance
	Implement structure of motion using OpenSFM

	References
	References

	Ocean 16 paper
	Attachments
	Msc poster
	Links to software and documentation
	AurlabCVsimulator
	ROV_objectAvoidance_StereoVision

