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Sammendrag

De teknologiske fremskrittene og den stadig økende mengden av elektroniske data
som har utviklet seg i løpet av de siste årene har stimulert en fremvekst av forsk-
ningsfelt som undersøker hvordan man kan hente nyttig informasjon fra slike data.
Denne informasjonsuthentingen er en utfordring på grunn av kompleksiteten og den
iboende tvetydigheten til naturlige språk.

I denne oppgaven undersøker vi om det er mulig å forbedre det polysemiske aspektet
i entydiggjøring av navngitte entiteter ved å betrakte temporale data. Vi utfører en
preliminær entitetslenking for å teste gjennomførbarheten til denne hypotesen ved
å identifisere omtaler av personentiteter i et semantisk kodet dokumentkorpus, og
forsøke å knytte disse til deres tilsvarende entiteter som befinner seg i en kunnskaps-
base. Vi vil deretter vurdere om det er mulig å forbedre denne entitetslenkingen ved
å vurdere den temporale dataen som er tilgjengelig i kunnskapsbasen, og i innholdet
og metadataen til dokumentene i korpuset.

Vår studie tyder på at det kan være mulig å forbedre entydiggjøring av navngit-
te entiteter ved å vurdere temporale data, men at det trolig er lite hensiktsmessig
ettersom de tilgjengelige temporale dataene i kunnskapsbasen kun er noen få eks-
plisitte datapunkter. Dette begrenser hva slags informasjon som kan hentes ut om
en entitet, og kan egentlig bare formidle om personen var i live da dokumentet ble
publisert, og kanskje utnytte informasjonen innbakt i innholdsbaserte temporale ut-
trykk, gitt at disse uttrykkene viser til datoer som betydelige nok til å bli registrert
i kunnskapsbasen. Vår studie har også avdekket relevante aspekter ved språktvety-
dighet i sammenheng med entitetslenking og uthenting av temporale data som kan
være nyttig i videre forskning på entydiggjøring av navngitte entiteter.



Abstract

The technological advances and an ever-growing amount of online data that has
evolved over the recent years has stimulated an emergence of research fields that
investigates how to extract useful information from the vast amounts of such data.
This information extraction is a challenge due to the complexity and inherent ambi-
guity of natural language.

In this thesis we study whether it is possible to improve the polysemous aspect
of named entity disambiguation in entity linking by considering temporal data. We
perform a preliminary entity linking to test the feasibility of this hypothesis by
identifying mentions of person entities in a semantically tagged document corpus,
and attempt to link these to corresponding entities that resides in a knowledge base.
We then consider whether it is possible to improve this entity linking by assessing
the temporal data that is available in the knowledge base, and in the content and
metadata of the documents in the corpus.

Our study indicate that it may be possible to improve named entity disambigua-
tion by considering the temporal aspect of the data, but is likely inexpedient as the
temporal data available in knowledge bases only hold a few explicit data points.
This put restrictions on the information that can be extracted about an entity, and
can really only convey whether the person was alive when the document was pub-
lished, and perhaps exploit the information embedded in content-based temporal
expressions, given that these expressions refer to dates that are remarkable enough
to be registered in the knowledge base. Our study has also revealed pertinent aspects
of language ambiguity in the context of entity linking and temporal information
extraction that may be useful in further research on named entity disambiguation.
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CHAPTER 1

Introduction

The amount of online data is growing faster than ever before. In 2013, research
showed that a staggering "90 % of all the data in the world had been generated over
the last two years" [6], and still growing. According to recent statistics1, the World
Wide Web2 contains 4,61 billion web pages. The sheer volume, variety and velocity
of the generated data can be overwhelming to comprehend. Much of this data lies
buried within natural language text, tables, figures and images in web documents
such as news articles, discussion forums, research articles, blog posts, reviews and
social media. A common trait for all of these data elements is that they often lack
structure, which essentially makes them practically infeasible to process for a com-
puter. However, by enriching this unstructured data with semantic and syntactic
information, it could be easier for computers to extract relevant information, and
even to target and track specific people, events or locations.

The task of semantically and syntactically enriching large amounts of data mainly
involves identifying and tagging text with grammatical categories, phrasal structural
dependencies and named entities. A named entity is any real-world object, such
as a person, an organization or a rock band. The words that has been recognized as
named entities are then typically linked to a knowledge base (KB) in order to extract
more information about that particular named entity. Identifying the mention of an
entity and linking this entity mention to its corresponding named entity in a knowl-
edge base is often referred to as entity linking. In some cases it may be unclear
which entity that is being referred to in the text, either because the same name is
used to refer to multiple entities, or because an entity is referred to by several names.
This issue is known as the named entity disambiguation problem.

1Available at www.worldwidewebsize.com. Retrieved May 9th 2016.
2The subset of web pages that is indexed by search engines.
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Chapter 1. Introduction

Figure 1.1: Example of ambiguous named entities. Document contains mentions of am-
biguous entities (highlighted and framed). These mentions are linked to potential target
entities.

Consider for instance the example in figure 1.1. Here, the mentions "Python" and
"Spanish Inquisition" are ambiguous named entities because they both could refer
to more than one entity. The set of entities that may be the corresponding entity for
a specific entity mention are often referred to as potential target entities. In this
case, the British comedy troupe Monty Python, the programming language Python,
and the snake species Python are all potential target entities for the entity mention
"Python". Although we can deduce from context that the sentence "During their
2014 tour, Python performed their famous sketch "Spanish Inquisition" . . ." refers to
the entity "Monty Python" and the entity "The Spanish Inquisition (Monty Python)",
the example demonstrates that a name is not necessarily a unique identifier for an
entity. Other examples include:

• People could be named after other people, e.g. George Bush Jr. was named
after his father George Bush Sr.

• A disease could be named after its diagnostician, e.g. Down’s Syndrome
was named after the British doctor John Langdon Down.

• A band could named after a historical person, e.g. The Scottish band Franz
Ferdinand was named after the Austrian archduke Franz Ferdinand.
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1.1. Motivation Chapter 1. Introduction

1.1 Motivation
The explosive growth of online data has formed a basis for research fields that spe-
cialize in extracting and potentially utilizing the information embedded in the data.
Systems that exploit this information is often afflicted by issues that is caused by
ambiguous entities. If ambiguous entities occur, there currently are no sustainable
solutions to cope with them, which consequently produce a bottleneck because the
disambiguation process is likely to require human interference in order to produce
quality results. The named entity disambiguation problem is a fundamental chal-
lenge in such situations, as well as a number of other domains and research fields,
because it is caused by the inherent ambiguity and context-dependency of natural
language.

Figure 1.2: Example of a sentence containing three ambiguous entities and the resulting
number of combinations if a naïve approach was followed. Reprinted from [1]

One approach for solving the named entity disambiguation problem in entity linking
could be to enumerate all possible combinations of potential target entities for each
ambiguous entity [1]. This would however be a naïve approach considering that
a single sentence with only a few ambiguous entity mentions alone could exceed
100.000 combinations, as demonstrated in figure 1.2. On a larger scale, it is clear
that this would not be a feasible solution, and emphasizes the importance of investi-
gating the named entity disambiguation problem in a broader context.

Solving the named entity disambiguation problem is likely to increase the perfor-
mance in existing systems, and could potentially lead to scientific breakthroughs in
research fields that are affected by issues caused by ambiguous entities. It could also
present new opportunities and lead to new research areas and real-world applications.
For example:

• A company could combine a database of their product selection with a special-
ized knowledge base to automate typical corporate customer care tasks such
as inquiries and complaints.
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1.2. Problem Specification Chapter 1. Introduction

• Editorial staffs and research teams could use and generate embedded work of
references to look up information about specific entities during research or
quality checks.

• In research areas that are affected by the named entity disambiguation prob-
lem, the resource intensive disambiguation step could be completely removed,
which would dramatically improve performance in systems that currently is
impeded by named entity disambiguation.

It is also important to consider that a valuable byproduct of named entity disam-
biguation is that for the entities to be recognized, the language must be processed
and enriched with semantic and structural information. This enrichment makes it
possible to transform information in one language into language-independent knowl-
edge, which could open up a world of knowledge and furthermore be an important
aid in third world countries where access to updated knowledge is scarce.

1.2 Problem Specification
Most entities are linked to temporal data in one way or another: The date for when
a band was formed or a person was born, the release date for a movie or a specific
piece of software, or the time interval for a music festival. Even the medium that
conveys the information about the entity is usually associated with metadata such
as document creation time, time of publishing and similar temporal information.

By taking into account the temporal data that is affiliated with specific entities
or documents, we may be able to determine if the document contains relevant new
information about specific entities or information that can be linked to specific enti-
ties based on the available temporal data.

Although several research efforts have been made into both entity linking and tem-
poral information retrieval, few studies have focused on temporal entity linking. To
the best of our knowledge, this is the first study that considers the polysemous aspect
of the named entity disambiguation problem in the view of temporal data.

The main research goal of this thesis is to investigate whether it is possible
to improve named entity disambiguation by considering the temporal aspect
of the data.

4
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This thesis will primarily focus on disambiguation between multiple entities that
can be denoted by the same name. To achieve our goal, there are several aspects that
must be studied, which can be condensed into the following three research questions:

RQ1 What kind of temporal data about entities is possible to obtain?

RQ2 How can temporal data be exploited to disambiguate ambiguous entities?

RQ3 Is it expedient to use temporal data for named entity disambiguation?

To achieve our goal, we developed a system which design is largely based on Stan-
ford University’s contribution [5] in the Knowledge Base Population (KBP) track at
the Text Analysis Conference (TAC) in 2014, where Stanford achieved the highest
overall score with respect to all the evaluation metrics [7]. This system was reimple-
mented and altered to achieve our research goal. Our system design will be further
detailed in chapter 3.

1.3 Project Scope
This section present the scope of the project, and briefly describe the preconditions
and constraints that provides a framework for the system implementation.

1.3.1 Language

This project will only consider the subset of resources in English. This is mainly
because the majority of documents in our available resources are in English, but
also because the tools used to analyze the data is especially adapted to the English
language. By excluding all languages but English, we can reduce potential noise
that could have been introduced by the lack of one-to-one correspondence between
words in different languages. The linguistic aspect of the thesis will mainly be
directed towards the semantic and syntactical properties of the language. It will
not focus on techniques that regards the actual alterations of text, such as spelling
correction and stemming.

1.3.2 Data

Due to constraints imposed by time and economy, the project will employ existing
datasets that are balanced, freely available and easily accessible. The focus will be
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on raw text data, and does not include rich content such as images, tables, figure,
video or audio. The content will stem from several different data sources, including
blogs, discussion forums, research articles, news articles and reviews, to ensure a
various, heterogeneous and representative dataset. The trustworthiness of the data
sources is beyond the scope of this thesis.

1.3.3 Resource Constraints
This project was granted one virtual machine with 4 cores, 8 GB RAM and 2 TB
storage, limiting tests of scalability and the amount of data that could be processed.

1.4 Report Structure
The remainder of the report is structured as follows. First, chapter 2 introduce the
domain knowledge and state-of-the-art related work, and provide the reader with a
context and fundamental understanding of the field of study. Chapter 3 present tools
and frameworks that was used in the development of the system, and challenges that
was encountered during development. Chapter 4 describe the experiment design,
methods and results. Chapter 5 analyze the results from the experiments and discuss
the significance of the results. Lastly, chapter 6 conclude with a summary drawn
from the discussion of the results, and outline some pertinent improvements for
future work.

6



CHAPTER 2

Background

2.1 Natural Language Processing

The natural languages as we know them today has evolved over thousands of years,
even before alphabets existed, and before literacy became a common norm in society.
It should therefore not come as a surprise that natural languages are characterized by
local peculiarities in terms of pronunciation, alphabets, language structure, seman-
tics, and vocabulary. Natural languages are typically also highly context-dependent
because humans often use the language in a particular situation, and thus does not
need to be explicit in how they express themselves. As a result, natural languages
are inherently ambiguous, complex and often difficult to fully comprehend, which
is the main reason why extracting information from natural language text remains a
challenge in Natural Language Processing.

2.1.1 History of Natural Language Processing

Natural Language Processing (NLP) is a research field with roots in artificial
intelligence and computational linguistics pertaining to the interactions between
natural languages and computers. Although the computer is a relatively modern de-
vice, the very idea of a system for translating words across languages was proposed
as early as the seventeenth century by philosophers such as John Wilkins, Gottfried
Leibniz and René Descartes, resulting in mechanical dictionaries that by some was
regarded as genuine precursors of machine translation.

During World War II there was a particular interest in how computers could be
applied in practice to solve real-world problems because of the field’s inherent
potential strategic advantages. A fortunate byproduct of this was an increased in-
vestment in computer science, which created an environment of growth for research
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that could exploit the ever growing amount of computational power, such as cryp-
tography and artificial intelligence. In his essay "Intelligent Machinery" (1948), the
artificial intelligence pioneer Alan Turing suggested a number of ways in which
computers could demonstrate their intelligence, including "(i) Various games, e.g.
chess, noughts and crosses, bridge, poker; (ii) The learning of languages; (iii) Trans-
lation of languages; (iv) Cryptography; (v) Mathematics." [8]. Around the same
time, similar ideas were discussed by Warren Weaver and Andrew Booth, suggest-
ing that electronic computers could be used for translating one language into another.
In 1949, Weaver distributed a memorandum [9] among potential collaborators that
would cause a ripple effect in the research community. For many of its recipients,
the ideas presented in the memorandum were revolutionary: They presented possi-
bilities for new and exciting applications of computers, most notably stimulating
ideas concerning NLP, which in effect launched machine translation as a scientific
enterprise.

The Georgetown-IBM experiment conducted in 1954 is considered a milestone in
the early history of NLP as it was the first real public demonstration of machine
translation performed on an actual computer, and the first implementation that went
a beyond word-for-word translation. It involved a fully automatic machine transla-
tion of sixty sentences from Russian to English. The experiment and the succeeding
research revealed several imperative issues regarding language ambiguity that had
to be addressed for the field to progress. Over the next decades, various approaches
attempted to overcome these issues. Highlights include Chomsky’s establishment
of universal grammar with syntactic structures [10] (1957) and Schank’s conceptual
dependency theory for natural language understanding (1969) [11], which clearly in-
spired many of the structural analysis methods used today, including part-of-speech
tagging and dependency parsing.

In the early history of NLP, writing and executing computer programs were not
trivial tasks. It was mainly due to a question of practicability with the punched card
machinery, and the ensuing great expenses. As technology progressed, so did the
approaches towards natural language processing, and in the late 1980’s, the field
took a leap when NLP systems employed machine learning algorithms rather than
the complex sets of hand-written rules that had dominated the NLP research field
since its inception. The shift was made possible by technological advances that lead
to a significant increase in computational power, which in turn empowered the cor-
pus linguistics that underlies the machine learning approach to NLP. The machine
learning approach had up to that point been strongly discouraged by Chomsky’s
then-dominating linguistics theories. At the time, mainly supervised machine learn-
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ing methods were applied, i.e. methods that required a set of labeled data to produce
an inferred function that later would be used to classify unlabeled data, including
methods such as decision trees and Hidden Markov Models. Eventually, the focus
shifted towards statistical and probabilistic language models.

A clear disadvantage of supervised learning methods is that they require large
amounts of labeled data, which is very costly to produce. In contrast, semi-supervised
learning methods are able to exploit large amounts of unlabeled data with only a
fraction of labeled data, while unsupervised learning methods does not utilize la-
beled data at all. These learning methods are able to exploit less amounts of labeled
data than that of fully supervised learning methods, and consequently absorbs fewer
resources, at least in that regard. This caught the attention of the NLP research com-
munity, and in the subsequent years, NLP research increasingly began to focus on
semi-supervised and unsupervised learning methods. In the more recent years, the
focus has narrowed down to semi-supervised learning methods. Learning methods
in NLP will be further explored in section 2.7.

Although the Georgetown-IBM experiment revealed several limitations in machine
translation and NLP research in general, scientists were optimistic in the aftermath
of the experiment, claiming that the issues should be resolved within three to five
years [12].

Nearly sixty years later, most of the issues still persist, and machine translation
has had very limited success, and then almost exclusively in restricted domains such
as weather reports. As machine translation at its most basic level is a word-for-word
substitution from a source language into a target language, it works well in specific
domains with closed environments, and strict, formal wording, which is the case
for weather reports. It is however likely to be a challenge in most contexts because
the approach assumes an one-to-one correspondence between languages, and be-
cause natural language by nature is dynamic, informal, and generally unrestricted in
its choice of vocabulary. Because the Georgetown-IBM experiment only included
a small set of sentences from two languages, it naturally excluded many aspects
of natural language, and over the next decades, it would become apparent that the
true complexity and inherent ambiguity of natural language had been immensely
underestimated by the scientists, and that the actual extent of natural language went
beyond their imagination.

9
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2.2 Language Ambiguity
In most cases, natural language is unrestricted in its choice of vocabulary. A dynamic
and image-rich language often use metaphors and idioms, which creates a fertile
environment for language ambiguity. This inherent property is what makes machine
translation and other natural language applications particularly challenging. In this
section, we will describe common concepts in languages, and explain how and why
they may introduce language ambiguity.

2.2.1 Collocations and Idioms
Both collocations and idioms are cases where synonyms cannot be interchanged
without thorough deliberation, as word-for-word translations may convey entirely
different meanings in different languages. Collocations are two or more words that
often occur together, and where the combination of the words has an additional and
often different meaning than the individual words. Consider for example the col-
location "fast food". Although "quick" in a grammatical sense is equivalent to the
word "fast", "quick food" sounds unnatural for native English speakers. Idioms are
expressions with figurative, or sometimes literal, meaning. "Barking up the wrong
tree" is an example of an idiom that often is used to imply that someone waste their
efforts by pursuing the wrong thing or path.

Collocations and idioms are albeit an issue in machine translation, but it is im-
portant to emphasize that it also is a challenge in language in general, because they
have a figurative sense, and thus have to be interpreted to capture the true meaning
of the expressions.

2.2.2 Words with Multiple Meanings
Certain words and expressions may have different meanings, depending on their
context. For instance, to "withdraw" in a financial context means to take money
out of the bank, while in a game of poker, it means that the player quits the game.
Other examples of words with multiple meanings include homonymy and metonymy.
Homonyms are words that are spelled the same way, but that have at least two
distinct and unrelated meanings. For example, a "bank" could refer to a river bank
or a financial institution. Metonymy is when an entity is referred to by the name of
an associated entity, rather than its own name. For example, it is common practice
to refer to a country’s capital city when referring to a country’s government, as
demonstrated in example 2.1.

10



2.2. Language Ambiguity Chapter 2. Background

(2.1)
Moscow is yet to disclose at what level it will be represented at The Hague
meeting.

It is not unlikely that "Moscow" would have been labeled as Russia’s capital city,
but the real entity in play is actually the Russian government, which can be deduced
from a city’s versus a government’s ability to disclose anything.

2.2.3 Syntactic Ambiguity
In English, the correct order of words depend on their grammatical category, i.e.
whether they are nouns, prepositions, verbs, adjectives, and so on. The words are
organized into so-called phrases, which are groupings of words that acts as con-
stituents of a sentence. Constituents serves as single units within the hierarchical
structure of a sentence, and are characterized by their ability to be placed in various
positions in a sentence without altering the meaning of the sentence. This also in-
cludes uniform syntactic possibilities of phrase expansion and phrase reduction [13].

(2.2) Clark got sick.

(2.3) The teacher got sick.

(2.4) The tall teacher with the curly hair got sick.

To understand what this entails, let us consider the sentences in the above examples.
The phrases "Clark", "The teacher" and "The tall teacher with the curly hair" may
look quite different, but they could indeed convey the same thing, given that they
refer to the same person. Moreover, the phrase in example 2.4 could also be reduced
to that of the sentence in example 2.3, and likewise, the sentence in example 2.3
could be expanded to that of the sentence in example 2.4.

(2.5) The children ate the cake with a spoon.

Another type of syntactic ambiguity is attachment ambiguity, which occur when
a phrase could have been generated by two different root nodes. In example 2.5, the
sentence could either mean that the children used a spoon to eat the cake, or that the
children ate a specific cake that had a spoon in it, and not say strawberries or icing,
depending on whether the preposition is attached to "ate" or "cake".

These are some of the examples of syntactic ambiguity that illustrates how am-
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biguity caused by syntax may impact the semantic interpretation of the meaning of
phrases.

2.2.4 Phrasal Scope
A particular subject can have a scope that extends over one or more sentences or
paragraphs. The sentence in example 2.6 can for instance be interpreted as that
nobody liked the food, or that a least one person did not like the food. To deduct the
actual meaning of the sentence, we must determine which of the interpretations is
correct given the context.

(2.6) Everyone didn’t like the food

There could also be covert relationships between sentences within a scope, often
referred to as a discourse. A central problem in discourse analysis is resolving
anaphoric relations., which are when noun phrases refers to the same person or
thing. An example of anaphoric relation resolution is demonstrated in example 2.7,
where Barack Obama and He refers to the same person.

(2.7)
Barack Obama was elected president of the United States in 2009. He and
his family resides in the White House.

Assuming our knowledge only confines to the information given in the example
above, it cannot easily be deduced that the White House referred to is not just an
ordinary house painted white, but in fact is a particular location in Washington
D.C in United States where the inaugurated president and his family resides. This
information facts may however be possible to extract if the entities in the text is
connected to a knowledge base that discloses these facts.

12
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2.3 Ambiguous Named Entities
A named entity is a real-world object, such as a person, location, an animal, or a
time period, and an entity mention in a text is a reference to a particular entity. In
example 2.7, Barack Obama, United States and White House are all examples of
named entities. Entities are usually identified by their proper name, but unfortunately
there seldom is a one-to-one correspondence in the mapping between entities and
names. This many-to-many relationship is caused by two different phenomena:

1. Synonymy, where the same entity is referred to by several names

2. Polysemy, where a mention in a text could denote multiple entities.

(a) Document with four entity mentions

(b) Synonymy

(c) Polysemy

Figure 2.1: Synonymy and polysemy

Figure 2.1 illustrate these phenomena on a conceptual level. The entity mentions
are denoted e1 . . . en, and p1...pn are entity pages. If two or more entity mentions
refer to the same entity, they exemplify synonymy, illustrated in figure 2.1 (a). If
an entity mention could be linked to more than one entity, it exemplifies polysemy,
shown in figure 2.1 (b).

13
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2.4 Entity Linking
Entity Linking (EL) is the task of disambiguating ambiguous entity mentions by
linking ambiguous entity mentions to actual world entities [14]. EL is typically
split into two subtasks: Name Entity Recognition (NER) and Name Entity Dis-
ambiguation (NED). NER refers to identifying entities in a text and classifying
them into predefined categories (see section 2.5.3), while NED establish mappings
between ambiguous entity mentions and their corresponding entities in a knowledge
base. In some ways, EL is similar to coreference resolution, but rather than clus-
tering entity mentions in a single document, it spans over multiple documents, and
links to specific entities in a knowledge base. An EL system has to cope with three
main issues: Cases of missing entities, synonymy, and polysemy.

2.4.1 Missing Entities
Many EL systems assume that the target entity always is present in the knowledge
base. However, there is a chance that the text corpus contain entity mentions that
refer to entities that are not present in the knowledge base. It could be because the
entity is referred to by a name variation, misspelling, or a nickname, or because the
knowledge base is not up-to-date. It is also a possibility that it is unclear which
entity that is being referred to in the text.

2.4.2 Synonymy
The synonymy aspect of named entity ambiguity can in part be solved by considering
entity-specific values present in a knowledge base, e.g. an entity’s name, birth name,
aliases and nicknames, and combining these values with techniques such as query
expansion and spelling correction. This aspect is however not a focus of this thesis.

2.4.3 Polysemy
Various approaches have been proposed for solving the polysemy aspect of named
entity disambiguation. It includes considering entity coherence and semantic similar-
ity between two Wikipedia pages by comparing their set of incoming and outgoing
links [15], collectively assigning entity mentions to entities based on the assumed
relationship between the entity mentions [16], and by comparing the context of an
entity mention to the contextual information about potential target entities [14].
Section 2.8 will revisit some of these approaches and elaborate further on some key
systems that applies entity linking for named entity disambiguation.

14
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2.5 Information Extraction

The following sections introduce information extraction techniques that may be
used to identify entities in natural language text. As NLP is a quite comprehen-
sive research field, we will only focus the main concepts relevant to this thesis.
More specifically, we will describe the annotators that are provided by the Stanford
CoreNLP parser that may be used to identify and disambiguate ambiguous entities.
We adhere to the standards set by the Stanford CoreNLP parser because its output
format is supported by the information extraction framework DeepDive, which is
an information extraction framework that will be used to conduct our experiments.

2.5.1 Part-Of-Speech

Part-Of-Speech (POS) are grammatical categories of terms that share similar syn-
tactic behaviour, such as nouns, verbs and adjectives. In linguistics, part-of-speech
tagging (POS tagging) is the process of marking up terms in a corpus to its cor-
responding part-of-speech. The process is based on both the word’s definition, as
well as its surrounding context, i.e. the word’s relationship with adjacent and related
words in a phrase.

The selection of grammatical categories may vary among POS taggers, depend-
ing on which tag sets the POS tagger uses. The tag sets differ in annotation and
granularity, e.g. they often refer to grammatical categories in different "codes", and
some tag sets may distinguish between verb tenses, while other does not. Tag sets
generally incorporates morphological distinctions of a particular language and are
thus not directly applicable to other languages. Brown, C5 and Penn Treebank are
examples of English tag sets. The POS tagger used in the Stanford tool suite uses
the standards defined by the Penn Treebank tag set, and is based on the log-linear
POS taggers described in [17]. We will use the terminology as specified by the Penn
Treebank tag set when referring to POS tags for the remainder of this thesis.

To illustrate how POS tags are used in practice, we use the first sentence from
example 2.71, resulting in:

Barack Obama was elected president of the United States in 2009 .

NNP NNP VBD VBN NN IN DT NNP NNPS IN CD .

1Parsed with the online Stanford Parser available at HTTP://nlp.stanford.edu:8080/parser/
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The NNP and NNPS POS tags are used to mark proper nouns2. In combination
with structural analysis, proper nouns can be exploited to identify named entities in
text as well as to determine which entity that is most likely to be the main topic of a
document.

2.5.2 Phrase Structure and Dependency Parsing
There are several ways to represent the structure of a sentence, generally catego-
rized by two types of parsing: Phrase structure parsing, which focus on identifying
phrases and their recursive structure, and dependency parsing, which focus on the
relations between individual words.

(a) Graphical representation

(S
(NP (PRP I))
(VP (VBD saw)
(NP
(NP (DT the) (NN man))
(SBAR

(WHNP (WP who))
(S
(VP (VBZ loves)
(NP (PRP you)))))))))

(b) Bracket representation

Figure 2.2: Different representations of a constituent parse tree for the sentence "I saw the
man who loves you".

In its simplest form, phrase structures could be represented as a constituent parse
tree, which is simply a nesting of phrase constituents. Figure 2.2 illustrate differ-
ent representations of a constituent parse tree. The Penn Treebank distinguish con-
stituents on three levels: Clause level, phrase level and word level3. This information

2An overview of standard English POS tags and their expanded forms used in Penn Treebank can be
found at ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

3Documentation available at surdeanu.info/mihai/teaching/ista555-fall13/
readings/PennTreebankConstituents.html
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can be used to detect entities, e.g. by identifying the noun phrase of the parse tree
on the phrase level (denoted NP in figure 2.2).

nsubj(saw-2, I-1)
root(ROOT-0, saw-2)
det(man-4, the-3)
dobj(saw-2, man-4)
nsubj(loves-6, who-5)
acl:relcl(man-4, loves-6)
dobj(loves-6, you-7)

(a) Universal dependency representation (b) Typed dependency parse

(c) Collapsed typed dependency parse

Figure 2.3: Different representations of a dependency parse for the sentence "I saw the man
who loves you". Graphs reprinted from [2]

While basic dependency parsing simply establish relationships between words, there
are other variations of dependency parsing that provides more information. For
example, a typed dependency parse additionally labels dependencies with gram-
matical relations [2], while in a collapsed typed dependency parse, grammatical
components such as prepositions and conjuncts are collapsed in order to establish
more direct dependency links between important content words, which could be
useful in information extraction applications, e.g. for pattern simplification [18].
Figure 2.3 displays different variations and representations of a typed dependency
parse of the recurrent example sentence "I saw the man who loves you".
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2.5.3 Named Entity Recognition

Named Entity Recognition (NER) is the task of identifying mentions of named
entities in text and classifying them in predefined categories. There is no standard
way to categorize named entities, and as a result there are often discrepancies be-
tween the different parsers in terms of their selection in named entity categories. We
adhere to the standards set by the Stanford CoreNLP parser.

Type Tag Description Example

Named

PERSON Person "Costigan", "Michelle Obama"

LOCATION Location "United States", "Trondheim"

ORGANIZATION Capitalized proper name "Time magazine", "Tupperware"

MISC Miscellaneous entities "Studio", "Galaxy", "Democratic"

Temporal TIME Time expression "12 o’clock", "night"

DATE Date expression "Dec. 19", "Monday", "recently"

DURATION Duration "Hour", "Week"

SET Set of times, e.g. time
intervals and recurring
events

"Weekly", "Mondays"

Numerical MONEY Monetary values "$79", "millions of dollars"

NUMBER Numeric value "2", "two"

ORDINAL A word representing the
rank of a number.

"first", "second"

PERCENT Digit attached to percent-
age character.

"50%"

Other O Miscellaneous words not
recognized as named enti-
ties

"wrote", "them", "well-known"

Table 2.1: Overview of named entity categories

According to its website4, the Named Entity Recognizer in the Stanford CoreNLP
parser, henceforth known as Stanford NER, recognize named, numerical, and tem-
poral entities. The named entities are identified using a combination of three CRF
sequence taggers [19]5, numerical entities are identified using a rule-based system

4stanfordnlp.github.io/CoreNLP/ner.html
5See nlp.stanford.edu/software/CRF-NER.shtml for more information.
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with regular expressions, while temporal entities are identified by a rule-based tem-
poral expression recognizer, SUTime [20]6, currently only available in English. An
overview of these named entity categories are given in table 2.1

2.6 Temporal Information Extraction
Temporal information extraction is valuable in research areas such as question-
answering, information extraction and summary. This section will elaborate on dif-
ferent types of temporal data, as well as the two main categories of temporal data,
namely content-based temporal data and non-content-based temporal data.

2.6.1 Types of Temporal Data
A document or an entity is often associated with some type of temporal data, of
which the most pertinent type are temporal expressions, which may be categorized
as explicit, implicit or relative [21].

Explicit temporal expressions can be mapped directly to an exact time point or
time interval, and can thus be normalized without any additional information, e.g.
"17th May, 2016" and "Week 33, 2015". Implicit temporal expressions are rep-
resented as imprecise time points or time intervals, e.g. "New Year’s Eve 2015"
and "Spring of 1945". These implicit temporal expressions can be mapped to their
corresponding explicit expression. For example, the implicit temporal expression
"New Year’s Eve 2015" can be mapped to the explicit temporal expression "31th
December, 2015".

(2.8) This week, president Bush announced that . . .

Relative temporal expressions is when the content of the document is relative to
either the explicit or implicit temporal information in the document, or the docu-
ment’s metadata. In example 2.8, "This week" refers to a point of time that is relative
to when the document was published. The time of the publication could potentially
help distinguish between the two ambiguous entities named president Bush, George
Bush Jr. and his father George Bush Sr., for example if the document was published
before George Bush Jr. became president. Figure 2.4 exemplifies the kind of context
information that is needed for normalization of relative temporal expressions. Here,
the relative temporal expressions "the following year", "today" and "December" are

6Available at nlp.stanford.edu/software/sutime.shtml
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Figure 2.4: Examples of explicit (transparent boxes) and relative (solid boxes) temporal
expressions. Arrows indicate what kind of context information is needed to normalize the
temporal expression. Reprinted from [3].

linked to explicit temporal expressions in the document content and the document’s
metadata, respectively.

2.6.2 Content-Based Temporal Data
As the name suggests, content-based temporal data considers the textual content of
documents. Two of the most interesting aspects that can be drawn from temporal ex-
pressions in the content is the time period that is the focus of a document, document
focus time, and how entities evolve over time, entity evolution.

Document Focus Time

Document focus time is the period of time that is referred to in the document con-
tents. The document focus time is generally determined by extracting temporal
expressions from the text. This extraction process is normally conducted by 1) iden-
tifying time entities in the text, and 2) performing temporal reference resolution in
order to normalize the relative temporal expressions into explicit or implicit tempo-
ral expressions [22]. The time entities is typically one of four temporal types: date,
time, duration or set [23]. The date and time types refer to specific points in time,
e.g. "Four o’clock" or "17th May, 2016". In contrast, the duration type conveys in-
formation about the length of an interval, e.g., "one week", while the set type inform
about the periodical aspect of an event, e.g., "once a year".
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Resolving temporal expressions with respect to a reference date is typically rule-
based. For example, the temporal tagger used in the Stanford CoreNLP parser, SU-
Time [20], is a deterministic rule-based system built on regular expressions patterns
according to the TimeML annotation language [24]. Other studies use similar ap-
proaches, such as GUTime [25]7, which is a temporal tagger that use a blend of
hand-crafted and machine-discovered rules.

Entity Evolution

It has been observed that entities often change over time, which causes ripple effects
in both how the entities evolve and how they are represented. This evolution can be
manifested in two problems, namely terminology evolution and context change [22].
Terminology evolution includes changes of words related to their definitions, se-
mantics and names. For example, there may be a difference in spelling between
modern and historic language, new words or spelling variations may be introduced,
and the meaning of a word may change. Typical context changes includes changes
in personal relationships, e.g. name change upon marriage or divorce, world-related
knowledge, and organizational roles.

In short, exploiting temporal expressions in content-based temporal data makes
it possible to track specific people, events, organizations and other entities, draw
timelines and anticipate changes that are likely to occur during specific phases of
life in general, and also in organizational and societal settings. Furthermore, it can
follow how languages progresses, as changes in language is a continuous process
that is observable even in short periods of time [22].

2.6.3 Non-Content-Based Temporal Data

The temporal data that does not involve the content itself, but rather the properties of
the document, are often referred to as non-content-based temporal data. Time of cre-
ation and publication are typical examples of non-content-based data, and are often
needed during resolution of temporal expressions that are relative to the publication
time, or document creation time, as illustrated in figure 2.4 on page 20. These values
are usually represented as timestamps and assigned to documents. Disadvantages
for methods that make use of non-content-based temporal data is that they heavily
depend on these values, but does not take into account that this type of information
not always is available, nor accurate or trustworthy, because the metadata often only

7urltimeml.org/tarsqi/modules/gutime/index.html
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specifies when the document lastly was modified or crawled [26]. This put strong
constraints on the availability and accuracy of other information, which could make
non-content-based temporal data less useful in practice. Despite of this, several tasks
use non-content-based temporal data in their research, such as time-aware search
and temporal clustering [3].

2.7 Learning Methods
Learning methods directed at the named entity disambiguation problem generally
fall into three types of learning methods: the unsupervised approach, the supervised
approach, and the semi-supervised approach.

2.7.1 Unsupervised Learning Methods
In unsupervised learning methods, all the input data is unlabeled, and the aim is to
detect and describe the hidden structure of the data. Unsupervised learning methods
mainly rely on heuristic rules or predefined similarity metrics. They are simple and
easy to implement, but usually produce poorer results than supervised methods [27].
This is because the unsupervised methods usually does not focus on any particular
relations or features, and thus may extract large numbers of noisy and inaccurate
relations, which may not be easy to map to corresponding relations in a knowledge
base.

2.7.2 Supervised Learning Methods
Supervised learning methods requires both training data and test data as input. The
training data consist of a set of labeled examples that each represents a pair that
consist of an input object and desired output value. The method analyzes the training
data and produces an inferred function, which can be used for classification of new
and unlabeled examples from the test data. This approach suffer from two important
problems:

1. There often are practical challenges in creating or obtaining enough
training data. It is resource consuming to produce labeled training data,
which consequently limits the quantity. Additionally, it may be difficult to
obtain training data that suits the applications of the system. For example,
you may have access to a semantically tagged dataset that contains Twitter
data from 2011 to 2013, but may be interested in social media in general, or
another time interval.
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2. Supervised approaches are especially prone to overfitting. This is because
the examples in the training data are constructed on a corpus, which produces
classifiers that may be biased toward that particular corpus. Consequently, this
may result in poor accuracy when the trained model is used on other test data.

2.7.3 Semi-Supervised Learning Methods
The semi-supervised approach is a sort of hybrid of the two aforementioned learning
approaches. It uses a small amount of labeled data with a large proportion of unla-
beled data. There are mainly two ways to generate labeled data in a semi-supervised
learning method: 1) Manual labeling, in the same manner as supervised learning
methods, and 2) Distant supervision, which either rely on heuristic rules or mappings
from a secondary dataset.

Distant Supervision

In distant supervision with mappings from a secondary dataset, the idea is to extract
specialized datasets from some source of data, for example a knowledge base using
SPARQL queries, and use the resulting dataset as training data to classify entities.
For example, one can use SPARQL queries to extract all entities belonging to a par-
ticular Wikipedia category, or that are affiliated through a particular relationship, e.g.
married couples, children and parents, siblings, or the literary works of a particular
author. One could also use heuristic rules to define entity properties, or relations
between entities, but in this thesis we apply a semi-supervised learning method with
distant supervision that extracts training data from a knowledge base and use it to
extract information about entities in a semantically and syntactically tagged text
corpus.
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2.8 Related work
Named entity recognition and disambiguation in natural text is a key component
in many research fields. In this section, we will briefly review related work that
touches upon the named entity disambiguation problem.

2.8.1 Entity-Centric Knowledge
Over the past twenty years, extraction of entities has been of particular interest
in the information retrieval research community, resulting in IR evaluations such
as the Message Understanding Conference (MUC), Automatic Content Extraction
(ACE), Text Analysis Conference (TAC), and Text REtrieval Conference (TREC)8.
All of these evaluations9 focus on NER in various tracks, i.e. areas of focus in which
particular IR or NLP tasks are defined. Of the aforementioned conferences, TREC
and TAC are the only conferences that are still operating. Both conferences are
organized by National Institute of Standards and Technology (NIST), and have had
several interesting tracks over the years, but for the focus area of this thesis, there
are two tracks that stands out, namely Knowledge Base Population (KBP) and
Knowledge Base Acceleration (KBA), which both are entity-centric, and utilize a
semantically tagged stream corpus as a mean to expand and update knowledge bases.
The tasks of these conferences changes every year, and as the information from 2015
either was incomplete or unavailable at the time of writing, this thesis is based on
the conferences’ information and results from 2014, although we endeavour to keep
the information as up-to-date as practicable.

Knowledge Base Population

TAC introduced a dedicated KBP track in 2009. The ultimate goal of TAC KBP is
to develop and evaluate technologies for building and populating knowledge bases.
This is done by inputting a knowledge base and a large unstructured text corpus,
and extracting useful information from the corpus to supplement the incomplete ele-
ments of the knowledge base, or to update existing elements in the event of context
changes. The perhaps most interesting tasks of KBP are Entity Linking (EL) and
Slot Filling (SF). EL follows the same definitions as specified in section 2.4, while
the SF task is to search a corpus for new information to update or fill in values for
predefined slots for a given entity in a knowledge base. A predefined slot could for
example be birth date, or other temporal information, as well as explicit information

8trec.nist.gov
9NER was added as a task at the sixth MUC conference in 1995.
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such as birth place, occupation, or spouse. Combining slot filling and entity linking
could thus be an interesting approach towards named entity disambiguation, also in
a temporal aspect.

In the TAC KBP competition of 2014, Stanford University’s system [5] achieved the
highest overall score with respect to all the evaluation metrics [7]. In their submis-
sion, Stanford used the information extraction framework DeepDive10. DeepDive
use distant supervision to extract training data from a secondary dataset, and use
combine this training data with rule-based approaches to extract information from
input text [28]. The design of Stanford University’s contribution served as a baseline
for our experiment design, differing in that our efforts are directed towards whether
it is possible to exploit temporal data to improve named entity disambiguation.

Knowledge Base Acceleration

The KBA track was initiated by TREC in 2012 inspired by ideas from TAC KBP, and
in response to the challenges faced by content managers concerning the exponential
growth of online data and its effect on the relevance and correctness of information
in knowledge bases. According to its website11, the TREC KBA track ran as an open
evaluation in TREC from 2012 to 2014, and was succeeded by TREC Dynamic Do-
main in 2015.

The ultimate goal of the TREC KBA evaluation track was to develop systems to aid
construction and maintenance of knowledge bases by automatically recommending
edits based on content from a time-ordered stream corpus [29]. An important task in
KBA is Cumulative Citation Recommendation (CCR)12, which is to use this stream
corpus in conjunction with a predefined set of entities from a knowledge base, and
generate a score based on the pertinence of a document considering a particular
entity from the entity set. Stream Slot Filling (SSF) exploits the nature of stream
corpora to follow target entities as they evolve over time to provide updated slot
values about particular entities within the timeframe provided by the corpus scope.

The temporal focus of the KBA track provides several possibilities regarding extrac-
tion of temporal slot values. Balog et. al suggests to capture entity-related changes
by considering time bursts through Wikipedia page view statistics, and refers to
implicit handling of named entity disambiguation through centrality detection [30].

10deepdive.stanford.edu
11trec-kba.org
12Also known as Vital Filtering as of TREC KBA 2014
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Abbes et al suggest to leverage the content-based temporal expressions of a doc-
ument to determine the relevancy of the document. Although the approach was
deemed useful for detecting vital documents, i.e. documents containing timely rel-
evant information about an entity, it assume that all entities in the evaluation set is
present in Wikipedia, and does not consider the named disambiguation problem [31].

2.8.2 Spatiotemporal Entity Linking on Microblogs

To the best of our knowledge, the only research effort that has been made into tem-
poral entity linking to this day is a study of temporal entity linking on microblogs
in 2014 [32]. The study suggests that entity linking is an essential step for applica-
tions that exploits user data affiliated with microblogging services, and proposes to
prove its potential by performing entity linking on Tweets13. Due to Twitter’s 140-
character limitation, Tweets are short, and usually noisy and colloquial by nature,
which makes it especially challenging to conduct entity linking. It is also important
to note that all Tweets are linked to a timestamp, and that they also have the possi-
bility of being mapped to a location. These facts puts Tweets in a fortunate position
because it creates a semi-structured dataset that differs from traditional raw text in
that its temporal data is normalized, attached and easily accessible for all Tweets.

The study use a database, containing a set of entities that a tweet can link to, and
a lexicon, based on information from disambiguation pages, redirect pages and an-
chor texts in Wikipedia, that maps candidate anchors to a potential entity set in the
database. The study concludes with that spatiotemporal signals are crucial for entity
linking on microblogs. This claim is supported by comparing the recall, precision
and F1-score results from similar work, which demonstrates that although the study
did not have any significant impact on precision, it did improve recall and F1-score.

2.8.3 Wikification

Wikification is a specialization of entity linking where Wikipedia serves as the target
knowledge base. Over the recent years, several studies have utilized Wikipedia, ei-
ther as a reference knowledge base, or by exploiting semi-structured and structured
data embodied in Wikipedia. Wikipedia’s link structure facilitates for many possible
approaches. For example, the dataset of which Wikification has been applied spans
from Tweets [33, 34], snippets of search-engine results [33], news articles [15, 35],

13A Tweet is a posting made on the social media website Twitter. It may contain photos, videos, links
and up to 140 characters of text.
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and Wikipedia articles [15]. Training data for disambiguation purposes has been
generated in various ways, including by exploiting Wikipedia’s hyperlinks to create
a dataset of ambiguous queries [36], keyword extraction [37], category labels ex-
tracted from the first sentence of a Wikipedia article [38], the relatedness between
unambiguous and ambiguous entity mentions [15], and Wikipedia statistics in con-
junction with semantic and syntactic tagging of named entities [35].

Entity linking research the recent years has been greatly influenced by the the ideas
presented in [15], which can be condensed into the following key points: (1) iden-
tifying a set C of context pages, which are pages linked to by unambiguous entity
mentions, (2) a relatedness between two Wikipedia pages, p1 and p2, that is based
on the overlap between the pages that links to p1 and p2, and (3) the notion of co-
herence of a page between other pages in set C . These concepts were adapted and
further developed in [16], which suggested to jointly consider all entity mentions in
an input, and aim for a collective entity linking with respect to coherence between
the potential target entities. The similarity between potential target entities should
then be measured with context similarity score between each pair of entity mention
and corresponding potential target entity.

One of the most notable entity linking systems based on the aforementioned ideas
are TAGME [33]14, which is a system that enhances plain text with pertinent hy-
perlinks to Wikipedia pages. TAGME specialize in annotating short and noisy data,
such as snippets of search-engine results and tweets, and aims to identify possible
entity mentions in input text and link these mentions to unambiguous entities ex-
tracted from Wikipedia. Although TAGME explicitly targets short text, it also yields
competitive results in annotation of longer texts, which makes TAGME an inter-
esting candidate with respect to an entity linking experiment. However, as argued
by [39], the full set of TAGME experiments described in [33] are not repeatable due
to inter alia discrepancies in the datasets. Nonetheless, TAGME is an outstanding
entity linking system, and will therefore be used for initial experiments to test the
quality of our entity linking.

14Available at tagme.di.unipi.it
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CHAPTER 3

Methodology

This chapter presents an overview of the system flow, describes the details of the
system components, and justifies the technical and practical decisions made during
development.

3.1 System Flow

The main goal of this thesis is to investigate whether it is possible to improve named
entity disambiguation by considering the temporal aspect of the data. Figure 3.1
depicts a high-level description of how such a system could be constructed. The
system flow is divided into the following steps:

1. Obtaining the dataset

2. Preprocessing data

(a) Restraining the data

(b) Preparing data for parsing

(c) Parsing data

3. Distant supervision

(a) Extracting relationships from the data sources

(b) Extracting and downloading data from knowledge base
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Figure 3.1: High-level description of system

3.2 Datasets
In this section, we describe the contents and structure of the datasets that may be
used in our system. This include the components referred to as "Data source" and
"Knowledge base" in figure 3.1.

3.2.1 Data Source

As the experiment results will depend on the dataset of which it is constructed, it
is important to have a representative dataset. Ideally, the dataset is a semantically
tagged document corpus that contains documents from several heterogeneous data
sources, and is cleansed for characters with a special meaning that may cause prob-
lems in a processing context, e.g. when loaded into databases or during parsing.

3.2.2 Knowledge Base

A knowledge base represents facts about the world or particular domains according
to a model that defines the vocabulary for a domain of knowledge, and the relations
between concepts in the domain, also known as an ontology. Knowledge bases are
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frequently used in applications that acquire a reference point for established and
recognized knowledge. To select a knowledge base that befits our needs, we present
the following requirements:

• Open and freely available Due to constraints in time and finances, the KB
should be freely available and easy to access.

• Up-to-date and broad coverage of general knowledge To ensure a good
correspondence between the entities in the corpora and the KB, the KB should
be up-to-date and have a broad coverage of general knowledge. It may prefer-
ably be based on Wikipedia, as Wikipedia is a good data source because it
is relatively up-to- date, and because the content of the articles tend to make
explicit many facts that might be omitted in newswire.

• Incorporate Semantic Web standards To enable an investigation of seman-
tic and syntactical properties of the corpus, the KB should embody Semantic
Web standards such as data modelling with RDF and querying with SPARQL.

These requirements excludes small or weakly structured knowledge collections, dis-
continued projects such as Freebase, and commercial projects with no or limited
access such as the Google Knowledge Vault [40], Walmart [41], Facebook [42],
WolframAlpha, Internet Movie Data Base (IMDB), and Microsoft’s Satori. It also
excludes Wikipedia, which does not facilitate semantic querying of its data.

The strongest candidates are DBpedia1, YAGO [43], and Wikidata2. They all store
their data as Resource Description Framework (RDF) tuples and can be accessed
through the query language SPARQL. Additionally, they cover general knowledge
and gather at least some of their data from Wikipedia.

There is however a great difference that distinguishes Wikidata from the other two
KBs: Rather than extracting information from Wikipedia, Wikidata aims to provide
information, most notably by automatically creating, updating and enriching parts
of Wikipedia articles. As our objective is to extract information, this fact disquali-
fies Wikidata from our candidate selection, and thus moves our attention to the two
remaining knowledge bases.

As demonstrated in table 3.1, both DBpedia and YAGO extract an ontological knowl-
edge base from Wikipedia, they both are registered in Linked Open Data (LOD)3,

1wiki.dbpedia.org
2wikidata.org
3The LOD cloud is a web of interrelated open datasets, available at urlurllod-cloud.net
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YAGO DBpedia

Fact representa-
tion

Subject-predicate-object triple with
time and location (SPOTL)

Subject-predicate-object (SPO)
triple

Release date 2008 23rd January, 2007

Data source Wikipedia, WordNet, GeoNames,
Wikidata

Wikipedia

Influence on other
datasets

SUMO, DBpedia, UMBEL, Free-
base

Freebase, YAGO

LOD linkage DBpedia Freebase, OpenCyc, YAGO, UM-
BEL, GeoNames, Musicbrainz, CIA
World Factbook

Table 3.1: Overview of KB features

and they use subject-predicate-object triples to represent facts. When it comes to
coverage, however, DBpedia is deemed as the most prominent KB in the LOD cloud,
and often referred to as the LOD hub [44, 45, 46], while YAGO is only connected
to the LOD cloud via DBpedia. DBpedia’s advantage is partially outweighed by the
fact that YAGO retrieves its data from several data sources, while DBpedia only
extracts data from Wikipedia. Furthermore, YAGO holds an advantage because time
and location information is attached to facts by reification.

It was primarily three reasons that ultimately made us choose DBpedia over YAGO:
DBpedia’s close integration with Wikipedia, easier access, and because it offers the
highest number of datatypes4, which we have assumed entails a higher granularity,
and thus potentially could offer more temporal information. As DBpedia receives
all its data from Wikipedia, it entails that

1. it inherits the broad coverage of general knowledge from Wikipedia,

2. it can more easily exploit the link structure in Wikipedia, and

3. potential problems caused by different setup or standards in various data
sources is avoided.

Additionally, DBpedia provides a simple web interface for online SPARQL queries5,
and easily accessible data dumps of Wikipedia-specific categories6. The next sec-

4mappings.dbpedia.org/index.php/DBpedia_Datatypes
5dbpedia.org/sparql
6wiki.dbpedia.org/Downloads2015-10
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tions will describe the semi-structured data that DBpedia extracts from Wikipedia [44],
and that may be exploited to cope with the named entity disambiguation problem.

Basic Wikipedia Article Structure

The title of a Wikipedia article, or entity page, acts as a unique identifier for the
entity page. The title suggests what the article is about, and consists of a sequence
of words, separated by underscores, with the first word capitalized. The title of the
article is usually the entity’s most commonly used name, to ease the entity recogni-
tion and search for ordinary users [36, 47].

In cases of polysemy, the convention in Wikipedia is to add distinguishing infor-
mation, often a descriptive parenthetical expression after the article title [47]. For
example, to distinguish Franz Ferdinand, the Scottish band, from the archduke of
Austria, the entities are denoted "Franz_Ferdinand_(band)" and "Franz_Ferdinand",
respectively.

Wikipedia Redirect Pages

A redirect page is an empty page that acts as a pointer to another page, or a section
of a page. The purpose of redirect pages is to handle synonymy, i.e. different name
varieties of the same entity. Some of these varieties includes alternative names or
spellings, common misspellings, closely related words and abbreviations [36, 48].

Wikipedia Disambiguation Pages

A disambiguation page is created in the case of polysemy, i.e. when two or more
entities share the same name. Such a page contains a list of references that links to
pages for entities that are most commonly known by a particular entity name, and
is denoted "<entity-name>_(disambiguation)".

Wikipedia Categories

According to Wikipedia guidelines7, every article in Wikipedia should belong to
at least one category. These categories usually are conceptual defining character-
istics of the article’s main subject. Categorization of articles allows the entities to
be associated with one or more topics, which in turn could be further categorized
by associating them with one or more parent categories. For example, a document

7en.wikipedia.org/wiki/Wikipedia:Categorization#Articles
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containing the mentions "Sagan" and "Tyson" is likely to refer to the American
astrophysicists Carl Sagan and Neil deGrasse Tyson because they share six com-
mon categories: "Science communicators", "American skeptics", "Space advocates",
"Planetary scientists", "Fellows of the Committee for Skeptical Inquiry" and "People
associated with the American Museum of Natural History". In contrast, other entity
candidates for these entity mentions, such as the Slovak professional road bicycle
racer Peter Sagan and American boxer Mike Tyson, does not share any common
categories.

Wikipedia Hyperlinks

Hyperlinks can be thought of as branches that connects the leaves, i.e. the article
pages, to the Wikipedia knowledge tree. When an article contains mentions of enti-
ties that already have a corresponding article page, the convention is to link at least
the first mention to the corresponding article page by using links or piped links. The
article page that contains the hyperlink is called an anchor, while the article page
that the hyperlink points to is called a target.

(3.1)
Oslo is the capital and the [[List of towns and cities in Norway|most popu-
lous city]] in [[Norway]].

An example of regular links and piped links are displayed in example 3.1, retrieved
from the wiki source code of a sentence from the Wikipedia article on Oslo. The
string from the second link, "Norway", denotes the title of the target article. If
the article author should wish to display something else than the title in the text,
e.g. "most populous city" instead of "List of towns and cities in Norway", then the
alternative string is included after the title string in a piped link, as demonstrated in
the first link in example 3.1. Consequently, the display string for the aforementioned
example become: "Oslo is the capital and the most populous city in Norway."

Wikipedia Infoboxes

The purpose of a Wikipedia info box is to summarize key facts that appears in its
associated article page. It is useful because it transforms the unstructured content of
the article page into a machine-readable format that can be exploited by third-parties
such as DBpedia. Wikipedia has several templates for Infoboxes that is specialized
for particular entity types, such as people and companies.

We focus on the template for person entities because they are subject to frequent
context changes, such as birth, marriage, education and death, and consequently is
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more likely to be affiliated with more temporal data than other entity types. They
are also the entity type with the largest number of instances: According to SPARQL
queries to DBpedia, DBpedia contain 1.760.735 distinct person instances, in con-
trast to 83.220 distinct company instances8. Although there may not be the exact
representation of the number present in Wikipedia, we expect the ratio to be of sim-
ilar proportions.

Note however that according to Wikipedia guidelines9, there are no fixed rules
when it comes to usage of infoboxes, or parts of the infoboxes, in Wikipedia articles.
This is determined for each individual article through discussion and consensus be-
tween the editors. It is also worth noting that the information DBpedia extracts from
Wikipedia infoboxes is not cleaned nor merged beyond a minimal amount of prop-
erty value clean-up, e.g. date normalization. Combined with the fact that Wikipedia
does not have any fixed rules when it comes to usage of infoboxes, this creates an
environment for noisy and replicate data. In fact, DBpedia state that the infobox
dataset they provide only should be used if you require "complete coverage of all
Wikipedia properties . . ." and are prepared to accept ". . . relatively noisy data"10.

Available Temporal Data

The temporal parameters on person entities available in the person infobox template
is summarized in table 3.211.

8Results available at bit.ly/1OSOAdP and bit.ly/1WKIhf0
9en.wikipedia.org/wiki/Help:Infobox

10wiki.dbpedia.org/services-resources/datasets/dbpedia-datasets
11Retrieved and adapted from en.wikipedia.org/wiki/Template:Infobox_person
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Parameter Explanation

birth_date Date of birth: birth date and age (if living) or birth date (if dead).

baptised Date of baptism: Only for use when birth date is not known.

disappeared_date (For missing people) Date of disappearance: disappeared date and age (if birth
date is known).

death_date Date of death: death date and age (if birth date is known) or death date (if birth
date unknown).

education Education, e.g. degree, institution and graduation year, if relevant.

years_active Date range in years during which the person was active in their principal occupa-
tion(s) and/or other activity for which they are notable.

era Era in which the person lived and worked; less specific than |years_active=. e.g.
"Medieval"

term Years the person held to a title, including Formal title, such as First Lady of Japan
for Akie Abe, Awarded title, such as Mr. Olympia for Arnold Schwarzenegger,
and Job title, such as President of Calvin College for Anthony Diekema.

spouse(s) Name of spouse(s), followed by years of marriage, e.g. Name (m. 2014–present)
for current spouse and Name (1970–99) for former spouse(s)

partner(s) Name of unmarried life partner(s). Same format as spouse(s).

Table 3.2: Summary of infobox parameters for person entities in Wikipedia
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3.3 Preprocessing of data
Before information can be extracted from the data, the data must be preprocessed to
prepare it for further processing. There are several operations that can be applied for
document preprocessing, including lexical analysis, elimination of stopwords, stem-
ming, keyword selection and construction of thesauri. This section will elaborate on
the subset of these techniques that are relevant for this thesis.

3.3.1 Lexical Analysis

Lexical analysis, or tokenization, is the process of segmenting a text into units
known as tokens. According to definitions by Manning et. al [49], a token is an
instance of a sequence of characters that are grouped together as a useful semantic
unit, often referred to as a syntactic word, which includes systematically undoing
contradictions, as in "don’t = do not", and to define rules on how to handle multiword
lexeme. A type is the class of all tokens that contains the same syntactic word, while
a term is a normalized type.

(3.2) To be or not to be, that is the question.

In example 3.2 there are twelve tokens, including punctuation, but only ten types
because there are two instances of each of the tokens to and be.

Token normalization is the canonicalization of tokens so that tokens matches de-
spite of superficial differences. For instance, if you perform a web search for the
string "USA", you might hope to also match documents containing "U.S.A". If both
"USA" and "U.S.A" are mapped onto the same term, then a search for one of the
tokens would retrieve documents that contain either of them.

(3.3) Alice and Bob doesn’t like their Hewlett-Packard printer.

A major question in the tokenization phase is to decide what tokens are correct
to use for distinguishing terms. Considering only example 3.2, tokenization may
look trivial: Terms are split by whitespaces, and punctuation characters are removed.
This would be a naïve approach of several reasons. Firstly, whitespaces may mean
different things in different languages. For example, in languages like English and
Norwegian, whitespace-tokens are often used to distinguish separate words. In con-
trast, other languages such as Chinese and Japanese does not use whitespaces at
all, while in Hebrew and Arabic whitespace-tokens and their mapping to syntac-
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tic words plays a central role and require a system that considers both tokens and
syntactic words. This indicates that it may be expedient to use NLP tools that are
intended for one particular language, and that the data being processed should be in
the same language. Secondly, it does not account for the number of special cases in
the English language. For instance, considering how to handle apostrophes, what is
the correct tokenization of doesn’t in example 3.3? Is it

(a) doesn’t

(b) doesnt

(c) does n’t, or

(d) doesn t?

If we assume that our initial proposal is correct, whitespace always indicates sepa-
rate tokens. In reality some space-separated tokens are often viewed as single tokens.
Examples include proper names such as San Francisco, foreign expressions such as
au fait and compounds that are sometimes written as a single word and sometimes
space-separated, e.g. window sill vs. windowsill.

Another example is hyphenation, which is used for various purposes in English,
including

• for splitting up vowels in words (co-occurrence)

• to show word grouping (the hold-him-back-and-drag-him-away maneuver),
and

• for joining nouns as names (Hewlett-Packard)

Should these examples be interpreted as one token, or separated into words? Al-
though most these examples are simple, they demonstrate why the initial assump-
tion would not hold in a general context. Moreover, the issues are largely language-
specific, which underpins our argument in only dealing with English documents.
Also taking into account domain-specific properties and constraints such as spe-
cial characters in programming languages or aircraft-names (B-52), tokenization
becomes an even more important tool when it comes to entity identification. A
practical example that illustrates this importance is given in figure 3.6 on page 50.
Although tokenization is considered a relatively simple task in comparison with
other tasks in NLP, but is nevertheless an important one, as any errors made during
this phase will cause a ripple effect in all subsequent phases.
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3.3.2 Eliminating Stopwords
If some words appear too frequent in a text or document collection, they are often
deemed useless as discriminators for indexing purposes in information retrieval [50].
Such words are often referred to as stopwords, and includes common words in a
language, such as grammatical articles, prepositions, and conjunctions. Eliminating
stopwords has the benefit of considerably reducing the size of the index structure,
and is therefore often common practice in search and ranking algorithms. However,
although stopword removal may benefit from a reduced index size, it may suffer
from reduced recall. Moreover, there is no single universal list of stopwords. This
is because what may be considered a common word in one domain some may have
a special meaning in another. The list of stopwords is therefore closely related to
the content of the document or document corpus. Not all NLP tools have the need
to use such a list, and some tools even specifically avoids removing stopwords, e.g.
to support phrase search.

(3.4) Barlow predicts Take That reunion tour will feature only four members.

If we were to remove the stopwords from the sentence in example 3.312, it would
return "Alice", "Bob", "Hewlett-Packard", and "printer". That is a good match for
nouns, and could be a useful discriminator when searching for named entities. How-
ever, if we were to remove the stopwords from the sentence in example 3.4, we
would remove important information because the name of the band "Take That"
consists solely of stopwords, and thus is eliminated. As elimination of stopwords
could remove useful information for our purposes, especially in the context of part-
of-speech tagging, and phrase structure and dependency parsing, we therefore argue
that it is futile, and potentially harmful for system accuracy, to perform stopword
elimination, and will thus not apply this operation on our system.

3.3.3 Stemming and Lemmatization
For grammatical reasons, documents are likely to use different forms of a word, e.g.
"organize", "organizes", and "organizing". Additionally, there are families of deriva-
tionally related words with similar meanings, such as "democracy", "democratic",
and "democratization". In many situations, it could be useful if a search for one of
these words returned documents that contained derivationally or inflectually related
words. Stemming and lemmatization are techniques that may be used to achieve this.
Stemming usually refers to a process that substitutes inflected or derived words

12According to Wikimedia’s online list of Google stopwords [51]
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with their respective word stem, which is the portion of a word that is left after
removing the word’s prefixes and suffixes [50, 49]. Lemmatization differs from
stemming in that its removal process often involves a vocabulary and morphological
analysis of words, and that it returns the base form of a word, known as the lemma,
rather than the word stem [49]. Additionally, lemmatization is able to match the
lemma with a word with equivalent meaning, which usually is handled by a separate
system in traditional stemming. An excellent example to illustrate the difference
between stemming and lemmatization is how they cope with the word "saw": Stem-
ming might return just "s", whereas lemmatization would attempt to return either
"see" or "saw" depending on whether the use of the word was as a verb or a noun.

Both stemming and lemmatization aims to reduce extended forms of a word to
a common concept. This could be useful for improving performance in informa-
tion retrieval, but there are no general consensus about whether lemmatization and
stemming actually leads to improvement in performance in information retrieval
systems [52, 50, 53, 13]. One possible explanation on why performance could be
reduced when stemming and lemmatization is applied, is that grouping the various
forms of a stem or lemma not always yields good results, and in fact could lead to
loss of information. This especially applies to collocations and cases where result-
ing word stem may not be related to the actual word. For example, it is more likely
that a search for inflected variants of "operating system" would perform better than
a search on all paragraphs containing "operat-" and "system".

(3.5) Bing, Microsoft’s replacement for Live Search, was unveiled by Microsoft
CEO Steve Ballmer.

However, lemmatization is often applied in parsing contexts, as witnessed by anno-
tator dependencies in appendix B. This is because proper names typically are stored
in normalized forms e.g. for indexing purposes. To illustrate how this would affect
performance of a named entity recognizer, consider the sentence in example 3.5.
If lemmatization had not been applied, entity mentions on a genitive such as "Mi-
crosoft’s" would not have been recognized as a named entity, in this case Microsoft,
by an named entity recognizer.

3.4 Parsing
A general notion in machine learning is that the classification accuracy can be
boosted if multiple classifiers are combined [49]. This is because the parsers often
differ in their approach and underlying algorithms, which consequently leads to dif-

40



3.4. Parsing Chapter 3. Methodology

ferent parsing results. The idea is that whenever a sentence is parsed incorrectly by
one parser, the same sentence might have been correctly parsed by another parser.
Combining the results from three different parsers may reduce the probability of
obtaining parsing-related errors, and thus approaches a collective disambiguation
that applies across the system.

The parsers used in this project includes SERIF, which the corpus is tagged with, in
addition to separate runs of the MaltParser and Stanford CoreNLP parser. The
results from SERIF and MaltParser would then be converted to the same output
format as the Stanford CoreNLP parser, and the union of their results would be used
as input in DeepDive.

3.4.1 Stanford CoreNLP
Stanford CoreNLP13 is an integrated NLP framework that includes a set of core tools
for natural language analysis developed at Stanford University. It follows a pipeline
architecture that includes annotators such as a tokenizer, a part-of-speech-tagger,
named entity recognizer, a parser and a coreference resolution system, which easily
can be enabled or disabled by simply choosing to include or exclude them in the
Stanford CoreNLP pipeline. Further details on the applied annotators may be found
in appendix B. The Stanford CoreNLP tokenizer is based on the Penn Treebank 3
(PTB) standard14.

3.4.2 SERIF
Statistiscal Entity & Relation Information Finding (SERIF) is an extraction en-
gine developed by BBN Technologies. It is the official document set for TREC KBA
201415. According to [54], SERIF follow the PTB standard.

3.4.3 MaltParser
The MaltParser16 is a system for data-driven dependency parsing developed at
Växjö University and Uppsala University in Sweden. Stanford used a English pre-
trained model of MaltParser17 based on a linear Support Vector Machine (SVM),

13stanfordnlp.github.io/CoreNLP
14nlp.stanford.edu/software/tokenizer.shtml
15s3.amazonaws.com/aws-publicdatasets/trec/kba/index.html
16maltparser.org
17C. Zhang, E-mail correspondence (13th March, 2016). See maltparser.org/mco/mco.html
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and trained on the Penn Treebank18. According to its website19, this configuration of
the parser assume that its input is in the CoNLL format and is tagged with the Penn
Treebank notation tagset, and outputs Stanford typed dependencies. As the Malt-
Parser depends on input in CoNLL format, it is a prerequisite that the MaltParser in
any case is run after the CoreNLP parser.

3.5 The DeepDive Framework
DeepDive is an Information Retrieval (IR) framework developed at Stanford Uni-
versity. The framework can be applied to process unstructured data, such as text
documents, and from it produce structured data, such as SQL tables, which then is
integrated with existing structured databases. On a more conceptual level, this en-
tails extracting complex relationships between entities in text and making inferences
about facts involving those entities.

Figure 3.2: Illustration of the input and output of a Knowledge Base Construction system
built for paleontology. Reprinted from Zhang[4]

18C. Zhang, E-mail correspondence (5th April, 2016)
19maltparser.org/mco/english_parser/engmalt.html
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Figure 3.2 illustrates how DeepDive is used to construct a Knowledge Base (KB) to
extract information from various sources of input.

3.5.1 DeepDive operations
This section will elaborate on four common DeepDive operations, adapted from [5]
and illustrated in figure 3.3. The three latter operations may be run separately or
combined, and can be applied for system calibration and for system results improve-
ment.

Input

The first step is to prepare DeepDive for data by initializing the database and cre-
ating table schemas to extract the desired values from the data. DeepDive supports
files with .tsv, .csv or sql extension, as well as serialized and compressed
versions of these files, including files embedded in shell scripts.

Feature Extraction

When the data is loaded, DeepDive lets the users perform feature extraction by
creating their own UDF (user defined function), using any scripting language. Fig-
ure 3.3 (b) shows one example that uses Python to extract the word sequence be-
tween two entity mentions in a sentence. Assuming the first step is completed, the
user is able to select desired input by using a SQL query, which in this case selects
all sentences available in the uploaded data. The user’s UDF is then executed for
each tuple in the result from the preceding SQL query.

Constraints and Domain Knowledge

DeepDive allows the user to integrate constraints and domain knowledge as correla-
tions among variables, illustrated in figure 3.3 (c). Imagine for example that a user
wants to integrate a simple rule stating that a person is likely to be the spouse of
maximum one other person. Given the entity "Barack Obama", the rule entails that
only one of the relation candidates (Barack Obama, Michelle Obama) and (Barack
Obama, Michelle Williams) could be true. The SQL query in figure 3.3 (c) obtains
two relation candidates, each taking two variables. The first variable is a primary
entity, which is similar in both relation candidates, while the second variable is a
secondary entity that differs in the relation candidates. The function AND(t0, t1)
defines how the variables correlate, whereas the weight defines how strong, or how
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likely, this correlation is. In this case, the rule indicates that it is unlikely that both
of the relation candidates are true. This can be executed with other rules, and more
or fewer variables, to generate weight scores, which DeepDive can apply to learn
probabilities from the data.

Distant Supervision

DeepDive follows the standards of the distant supervision assumption, which is that
if a sentence contains two entities, the sentence may express a relation between the
entities. This makes it easier to incorporate data, but it could also potentially create
a lot of noisy data because it assumes relationships that may not exist.

We attempted to apply distant supervision in DeepDive by downloading a DBpedia
dataset containing Wikipedia disambiguation pages and its associated entity pages,
and using this to make a selection of ambiguous entities from the document corpus.
This approach did however turn out to be unprofitable for our purposes because it
matched next to none entities in the document corpus, and was eventually scrapped.
We do however believe that the approach may bear fruits in the event that the entire
document corpus was processed, as it may result in a relevant dataset that may be
used for testing purposes.

Figure 3.3: DeepDive operations. (a) Prepare datasets in relational form. (b) Generate labels
using distant supervision with SQL; (c) Integrate constraints with SQL and logic functions;
(d) Extract features with SQL and script languages. Reprinted from [5]
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3.6 Challenges
This section describes the challenges that was encountered during the processing of
the data set and development of the system.

3.6.1 Nouns Not Considered as Potential Named Entities
It is not unreasonable to think that most humans would be able to reason that the
sentence in example 3.6 is about a particular named entity, and not just about any
president. However, the Stanford NER does not recognize "president" as an entity
because it is just a regular noun, and not a proper noun.

(3.6) The U.S. president visited Norway in 2009 when he received the Nobel
Peace Prize.

Figure 3.4: Screenshot from sample sentence parsed with Stanford NER

Figure 3.4 demonstrates that only LOCATION, ORGANIZATION and DATE are
recognized as potential named entity categories by the Stanford NER. However,
though not shown in the visual representation of Stanford NER in the screenshot
above, the words in the sentence that has not been tagged by the named entity cat-
egories listed in the figure are actually tagged by another named entity category,
simply referred to as O, or OTHER. Although we could include the OTHER cate-
gory, that could entail also including typical stopwords (see section 3.6.1), which
would involve part-of-speech analysis to identify nouns that could be affiliated with
proper nouns, going well beyond the scope of this thesis. This aspect could however
be interesting to explore in future work.
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3.6.2 Multiple Values for Temporal Attributes
DBpedia was selected as knowledge base because it was the knowledge base alter-
native with the most datatypes, and was therefore thought to also provide the most
temporal data types. However, closer investigations revealed that the only tempo-
ral data available in a superficial search of an person entity page on DBpedia was
flat temporal attributes, i.e. attributes only corresponding to one value, such as the
date of birth, and if the person was deceased, the date of death, ref. table 3.2 on
page 36. This is however only given that the person is a real-world individual, and
not a fictional character, which is not a distinction made by the Stanford NER nor
our system.

Figure 3.5: Screenshot of term intervals for DBpedia entry George H. W. Bush. The list is
sorted by date, and the term interval is given by a combination of the list elements in the
dbp:termStart and the list item in dbp:termEnd at a corresponding position.

At this point, the available temporal data for a real-world person entity is 1) the
stream time of the document, which we assume to be the time when the document
was generated, 2) the entity’s date of birth and possibly 3) the entity’s date of death.
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This information could really only convey whether or not the person was alive during
the time the document first was generated.

(3.7) This week, president Bush announced that . . .

Returning to our presidential example from page 19, here repeated as example 3.7,
this temporal information could not really clarify whether the sentence was about
George W. Bush or George H. W. Bush, unless the stream time of the document was
before George W. Bush was born. However, although the date of birth is the only
temporal data we can usually assume to find about a person entity, there are other
temporal data available for special cases, cf. table 3.2. For example, if an entity
is currently holding, or has held, a political position such as president, mayor or
governor, the date of when their term started and ended are usually provided. It is
however important to note that these temporal data are likely to not just contain one
value, but rather a list of values, as depicted in figure 3.5.

3.6.3 Unavailable Temporal Data

As we addressed in section 3.2, there may be cases where Wikipedia infoboxes are
incomplete, and therefore lack temporal information that one normally can assume
is available about person entities. For such cases, we suggest using cosine similarity
to compare DBpedia entity pages for potential target entities with the document of
which the entity mention resides.

3.6.4 Dataset Incompatibility

One of the first tasks in the preprocessing was to obtain a sample of the dataset
that was to be used in the experiments, and use this sample to test whether de-
cryption, decompression and deserialization was performed correctly. This sample
came from the TREC KBA 2012 dataset. The deserialization was performed with
a designated framework that specialized processing massive data streams, namely
streamcorpus.org, as suggested by TREC.

However, deserialization proved to be a difficult task. The framework could not
process the data. Further investigation revealed that the data did not match the input
expected by the framework, i.e. variables designated for retrieving specific values,
such as clean_visible, did not exist. This was caused by a technological shift
in the development of the framework and technology used by the framework, most
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notably the serialization technology Thrift. This entailed that the dataset was seri-
alized with now-deprecated and thus incompatible technology, preventing the data
to be correctly deserialized with the updated technology. These issues could most
likely have been resolved by rolling the technologies back to previous versions and
making alterations in the document content, but this would also have required a lot
of resources in terms of time and computational power. Eventually, it was decided to
renounce the TREC 2012 dataset and instead obtain a newer version of the dataset
from 2014.

3.6.5 Errors Caused by Special Characters

Although streamcorpus.org claims that the clean_visible version of the dataset
is correctly encoded with UTF-8, observations has been made of several instances
of characters referring to the Unicode code point rather than the UTF-8 encoded
character. It was also observed that because HTML tags were replaced with whites-
paces, some of the documents consisted almost exclusively of whitespace characters,
which was directly linked to the size of the documents, and moreover disturbed the
parsing because some whitespace characters such as \n was interpreted as a part
of the words, e.g. "\nThese". These issues was dealt with by encoding the content
of StreamItems with ASCII, causing UTF-8-specific characters to be ignored and
removed, and by replacing all cases with one or more preceding whitespaces with a
single space.

During the entry of data in the PostgreSQL database, three types of error occurred:
1) End-of-line marker corrupt, 2) Literal carriage return found in data, and 3) Ex-
tra data found after last expected column. The first kind of error was caused by
occurrences of "\" (backslash) in the text that was not escaped with an additional
backslash. Additionally, the combination of a backslash and a period in the text is
a way to represent end of data in the PostgreSQL database20. The second kind of
error was caused by using the backslash character when the slash characters should
have been applied, causing the backslash character in the text to be transformed into
a literal carriage return, represented as ˆM. The third error was caused by escape
characters in the text that made the database assume that the row was completely
processed. All of these errors were handled by deleting the line in question, but
in order to keep as much data as possible in future work, we suggest defusing the
characters causing the errors rather than deleting the line where the error resides.

20Documentation available at postgresql.org/docs/9.2/static/sql-copy.html
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3.6.6 Unifying Parser Results
The first phase of the union was to select a small sample from the different document
categories, and then compare the results from each parser to clarify what adaptions
had to be made to make the output compatible with DeepDive. This phase included:

1. Retrieving the clean_visible from the TREC dataset and parsing it
with Stanford CoreNLP

2. Use the output from Stanford CoreNLP as input in the MaltParser

3. Retrieving relevant columns from SERIF

As named entity categories are an important focus of this thesis, the first comparison
concentrated on the word form and named entity category, known as FORM and
NERTAG in technical terms. The comparison lead to two imperative discoveries:

1. The results from the MaltParser and Stanford CoreNLP parser were identical.

2. SERIF and Stanford CoreNLP use different standards in tokenization.

These findings forced us to reconsider whether it was still expedient to use three
parsers. The first finding indicated that it may be unnecessary to run both the
Stanford CoreNLP parser and MaltParser, at least in the case of the FORM and
NERTAG columns, as these columns were identical to that of the other parser. One
obvious reason to drop the MaltParser in favor of Stanford CoreNLP is that the
MaltParser input depends on output from Stanford CoreNLP.

With this in mind, we assume that the aforementioned reason excludes MaltParser
as a viable option, and move on to the second finding. Although both Stanford
CoreNLP and SERIF allege that they follow the Penn Treebank (PTB) notation
for the tokenization phase, indisputable differences in token interpretation between
Stanford CoreNLP and SERIF was observed. According to the official Penn Tree-
bank website21, there are rules that outlines how text is tokenized. Highlights in-
cludes verb contractions and special characters such as punctuation, hyphens, and
various types of parentheses. The tokenizer in Stanford CoreNLP, implemented in

21HTTPs://www.cis.upenn.edu/ treebank/tokenization.html
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PTBTokenizer22, follow PTB notation according to these rules. The technical de-
tails described in the PTBTokenizer documentation emphasize that although SERIF
claim to use the PTB notation for tokenization [55], it diverges notably from the
PTB standard in at least two cases.

20 (CNRS ORG

21 UMR8022 None

22 ) PER

23 slawomir.staworko PER

24 @ None

25 inria. LOC

26 fr None

(a) SERIF

20 -LRB- O

21 CNRS ORG

22 UMR8022 O

23 -RRB- O

24 slawomir.staworko@inria.fr O

(b) Stanford CoreNLP

Figure 3.6: Excerpt that has been parsed by SERIF and Stanford CoreNLP

For example, the PTB standard is to map bracket-like characters to special three-
letter sequences, e.g. the round parentheses ’(’ and ’)’ to -LRB- and -RRB-,
respectively. As illustrated in figure 3.6, this standard has been followed by Stan-
ford CoreNLP, but not by SERIF. Moreover, note that Stanford CoreNLP on line
24 in figure 3.6 (b) identifies the e-mail address as a single token and assigns the
NER-tag O (OTHER). In SERIF the same character sequence is split into four
tokens and then assigned the NER-tags PER (PERSON), None, LOC (LOCA-
TION) and None. None of the parsers produce a optimal result in this instance,
which would be to treat slawomir.staworko@inria.fr as a single token
and NER-tag it as an e-mail, but Stanford CoreNLP certainly came the closest to the
desired outcome. On a further note, SERIF appears to be both too eager to assign
entity categories to tokens that are quite ordinary English expressions (for example,
it interprets i.e. to be a location), at the same time as it does not recognize numerical
or temporal expressions.

As merging the results from these parsers requires more resources than first an-
ticipated, it becomes a question of not only practicability within the available time
scope, but also whether it is expedient to use more than one parser, especially if one
of the parsers outperforms the other. On the account that named entity categories

22Available at nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/
process/PTBTokenizer.html
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are an important focus of this thesis, it is therefore pertinent to select the parser that
surpasses the other parser in NER-tag accuracy and selection, with a special empha-
sis of the parser’s ability to recognize temporal expressions. Based on the submitted
evidence and details of the Stanford NER in section 2.5.3, Stanford CoreNLP clearly
stands out as the better alternative and was thus selected to be the parser applied in
the experiments.

However, we do recognize that information may be gained from document context
and surrounding text, represented in data columns such as POS-tags and dependency
relations, and will therefore discuss briefly how these data columns combined with
multiple parsers could be exploited in future work in section 6.2.
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CHAPTER 4

Experiments

In this chapter, we describe how the experiments were set up, and how they were
evaluated. Lastly, we represent the experiment results.

4.1 Experiment Setup

This section describe the dataset that used in the experiments, and the methods that
was used to evaluate the experiments.

4.1.1 Experiment Outline

The experiment can be divided into these following steps:

1. Preprocess dataset

(a) Select sample of dataset

(b) Decrypt, decompress and deserialize the sample

2. Parse preprocessed dataset

3. Extract entities from parsed dataset with information extraction framework

4. Link extracted entities in the dataset to an external knowledge base

5. Evaluate experiment results
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Figure 4.1: Proportion of data sources from the TREC 2014 Stream corpus

4.1.2 Evaluation Methodology

Dataset

The experiment use the stream corpus from the Text REtrieval Conference (TREC)
Knowledge Base Acceleration (KBA) 2014 [56], which is a representative and well-
established document collection, extensively used in prior work of name entity dis-
ambiguation. The official TREC dataset consists of approximately 580 million doc-
uments semantically tagged by the SERIF system [57]. The total size of the dataset
after compression and encryption amounts to approximately 10,9 TB. The dataset is
divided into ten different document types and span in publication time from Decem-
ber 2011 to April 2013. The distribution of document types is depicted in figure 4.1.

Stream Corpus Structure

Figure 4.2 provide a conceptual understanding of how the stream corpus is orga-
nized: (1) The core is a StreamItem, representing a snapshot of a single document at
a single point in time, and uniquely identified by its URL. (2) Several StreamItems
are serialized into hourly chunks with Apache Thrift. A chunk range in size from
a few hundred to a few hundred thousand StreamItems. The resulting chunks are
compressed with XZ (3) and then encrypted with GnuPG (4).
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Figure 4.2: The Stream Corpus Onion

The StreamItems are deserialized with the StreamCorpus python-package1. Fig-
ure 4.3 depicts a graphic model of how StreamItems are organized. Each StreamItem
contains metadata such as stream_id, doc_id, stream_time, and body.
Inside body, there is a ContentItem, which is a complete representation of the
StreamItem’s data. It includes several properties that describes the data, as well as
different versions of the data, which is further elaborated in table 4.1.

Version Description

raw the original file, downloaded as an unprocessed byte array

clean_html HTML-formatted version of raw, with correct UTF-8 encoding and no broken
tags. HTML-escaped characters are converted to their UTF-8 equivalents. <,
>, and & are escaped.

clean_visible copy of clean_html where all HTML tags is replaced with whitespace. Can be
directly inserted into an HTML or XML document without further escaping.

Table 4.1: Summary of data versions

1Documentation available at streamcorpus.org
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Figure 4.3: Structure of a StreamItem

Constraining the Dataset

Due to language-specific properties, only the subset of English documents in the
corpus is relevant for this thesis. Fortunately, TREC provides a subset with all
non-English documents removed and StreamItem.body.raw set to an empty
string, which reduces the dataset to just over 500 million StreamItems distributed
over 11.948 chunks, and 4,5 TB in size. To help distinguish between the two datasets,
the aforementioned subset is referred to as dataset B, while the original dataset is
referred to as dataset A. Although A is reduced to less than half its original size,
dataset B is still of such a size that it introduces challenges when it comes to time
and computational resources.

As this system is a proof of concept, we argue that it is sufficient to process a
subset of dataset B to prove its feasibility. The first step to attain this subset, dataset
C , was to generate a list of the most recent chunks. As there was no way to know
in advance how the StreamItems would be distributed and consequently nor the to-
tal size of the data, 10 percent of the chunks from subset B were retrieved, based
on their date novelty. The oldest chunks were then removed from our generated
list to adjust for our available resources. This new dataset C amounts to 305.987
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StreamItems distributed over 1190 chunks, and approximately 492 GB when the
data is encrypted, compressed and serialized.

After the data was retrieved and the number of chunks was reduced, the data was pre-
pared for parsing through decryption, decompression and deserialization of the files.
As this preprocessing progressed, intermediate files were deleted to further reduce
the size of the data. Preprocessing and parsing was tested on a substantially smaller
dataset for performance optimization, and yielded promising results. When applied
to the actual dataset C , however, it turned out that the system was able to process
on average just over 200 StreamItems per day. Should we have processed the full
dataset C with our available resources, the preprocessing and parsing alone would
have taken over four years to complete. Due to constraints in time and resources, we
therefore selected a subset of dataset C , which was the resulting dataset after run-
ning annotation for five days. We will refer to this subset as dataset D. It amounts
to 1,7 GB when encrypted, compressed and serialized, 6,7 GB postprocessed, and
approximately 5 million sentences, each representing an entity mention.

Note that only a subset of the content of each StreamItem were retrieved, namely
body.clean_visible and stream_id. These fields are required because
the body.clean_visible is the HTML-escaped raw document text to be parsed
by Stanford CoreNLP, and the stream_id serves as a unique identifier for the
StreamItem.

It is usually possible to parse the documents in DeepDive. However, due to technical
difficulties, this step had to be performed separately, using the same parser as the
one embedded in DeepDive. Although it was not ideal, it did provide us with the
opportunity to configure the parser for improved performance, we did for example
not need to run all the default annotators. See appendix B for further details.

When the preprocessing and parsing was complete, the parsed data was loaded into
DeepDive and stored as a PostgreSQL database table. Each tuple in this database ta-
ble is a sentence, uniquely identified by its stream_id and sentence_index.
Additionally, each sentence contains the sentence’s text, as well as its tokens, lem-
mas, POS-tags and NER-tags.
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4.1.3 Baseline Methods
When the data has been preprocessed, parsed and loaded into DeepDive, the next
step is to extract entities that has been recognized as entities by the Stanford NER.
In principle, we could choose all tokens that has been tagged with one particular
named entity category, or that has been tagged with any named entity category2.

In our experiments we have chosen to only extract PERSON entities. This is be-
cause the number of PERSON entities clearly surpasses that of other entity types
in DBpedia, in addition to the fact that PERSON entities are the most likely to
be associated with great amounts of temporal data compared to other entity types
because it is in the PERSON entities’ nature to change over the course of their
lifespan.

In DeepDive, we extract mentions of PERSON entities by first creating a database
schema, person_mention, containing the mention, stream identifier, sentence
index and sentence text, and then creating a function that returns tuples conforming
to the person_mention schema. This function calls upon a User Defined Func-
tion (UDF), which finds phrases that are continuous tokens tagged as PERSONs.
Then, we specify a new function that is applied to the tuples in the sentences
database table and applied to the person_mention table.

The next step is to establish a link between the PERSON mentions in the docu-
ments and a knowledge base.

(4.1)
mention stream_id index text

Sansa 1351c. . .7aa411 13 But, at the end, Sansa was the danger . . .

First, we copy the person_mention table from DeepDive’s underlying database
onto a file. In this file, each line contains data as structured in example 4.1. The
database contains 2.009.101 entity mentions, distributed over 1.051.648 unique sen-
tences. A naïve way to establish links between all the entity mentions and their
corresponding entity page in DBPedia is to perform a lookup in DBpedia for each
of the entity mentions in the input text. However, because we do not want to do
unnecessary lookups, and in worst case scenario even cause a Distributed Denial of
Service (DDoS) attack and get our IP address blocked from DBpedia, it is expedi-
ent to reduce the number of lookups. We reduce the number of lookups by adding
all entity mentions to a separate list, and then removing entity mention duplicates,

2Excluding the OTHER category, which is used for tokens that does not qualify as entities
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shrinking the number of lookups from 2.009.101 to 294.403.

To further optimize the lookup process in the knowledge base, the processing is
divided into three steps: 1) preprocessing of all the entity mentions, 2) lookup of
all preprocessed entity mentions, and 3) processing of the results from the lookup.
Figure 4.4 shows the flow of this parallel entity linking. The reasoning behind this
division of labour is that if entity mentions are processed separately, it increases the
cost because the system has to wait for the HTTP request to respond before it can
start on the next request, for every entity mention.

Figure 4.4: System flow in parallel entity linking

However, as the HTTP requests for each entity mention does not depend on each
other to produce a response, they can be done in parallel, and thereby improve the
system performance. Parallelizing the requests reduced the experiment runtime from
approximately four days to two hours.

To check whether DBpedia has a page about a entity mention, we combine a URL-
prefix, dbpedia.org/page3, with the entity mention, and assign this combi-
nation to a new variable, entity_url. A HTTP request is then sent with en-
tity_url as input parameter to check whether the request returns a successful
HTTP response code. This gives a complexity of O(m2), which is the number of
the number of StreamItems times the number of entities.

To avoid overloading the DBpedia server by bombarding it with HTTP requests,
the list of unique entity mentions is divided into chunks of 300 entity mentions.
HTTP requests is then sent in parallel to DBpedia for every entity mention in the
chunk. When the processing of a chunk is complete, the system begin processing
the next chunk. This way, no more than 300 HTTP requests are processed simulta-
neously, preventing our own system from crashing, as well as avoiding launching
an inadvertent DDoS attacks.

The HTTP request may return one of six responses, listed in table 4.2. If any status

3dbpedia.org/page and dbpedia.org/resource are equivalents
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code other than 200 is returned, we assume the request was unsuccessful and that
the entity mention in its current form is not in DBpedia. We will use the number of
successful HTTP responses to determine the accuracy of our entity linking system.

Status code Name Description

000 Unknown Error An error caused by connection drop and
associated timeout

200 OK Standard response for successful HTTP re-
quests

301 Moved Permanently Response for permanent URL redirection

404 Not Found The requested resource could not be found

500 Internal Server Error Generic error message, given when an un-
expected condition was encountered and
no more specific message is suitable

502 Bad Gateway The server was acting as a gateway or
proxy and received an invalid response
from the upstream server

503 Service Unavailable The server is currently unavailable (be-
cause it is overloaded or down for main-
tenance)

Table 4.2: Description of status code responses returned by HTTP request
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4.1.4 Evaluation Metrics
System Accuracy

To measure the accuracy of the system in a classification context, we use the stan-
dard precision, recall and F-measure based on the values given in the confusion
matrix in table 4.3.

Predicted class

+ −

Actual class
+ True positive False positive

− False negative True negative

Table 4.3: Confusion matrix for a binary classification problem

Here, the "Predicted class" refer to a classifier’s predicted results, while "Actual
class" refers to the actual classifier results. True and false refers to whether the
prediction corresponds to the observations. In our case, we have a set of sentences
that contains at least one PERSON entity tag. We measure the accuracy of the
entity linking by checking if the PERSON entity tag combined with a URL-prefix
return a successful HTTP response code. This can be interpreted as:

• True Positive (TP): Sentence was retrieved and returned a successful HTTP
response code

• False Positive(FP): Sentence was not retrieved but returned a successful
HTTP response code

• True Negative (TN): Sentence was not retrieved and did not return a success-
ful HTTP response code

• False Negative(FN): Sentence was retrieved but did not return a successful
HTTP response code

From these definitions, precision and recall are defined as:

(4.2) Precision = TP

TP + FP
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(4.3) Recall = TP

TP + FN

The F-measure is a harmonic mean of precision and recall. It has a parameter that
sets the trade-off between recall and precision. The standard F-measure F1 assigns
equal importance to recall and precision, and is defined as follows:

(4.4) F1 = 2TP

2TP + FP + FN

Cosine Similarity

When an ambiguous entity occur in a document, the entity points to a set of links
that represents its potential target entities. Cosine similarity evaluates the degree
of similarity of a document dj with regard to a query q as the correlation between
the vectors ~dj and ~q. This correlation can be quantified by the cosine of the angle
between these two vectors. In our case, q is some document from our text corpus,
and dj is a link to a potential target entity on DBpedia. The resulting similarity
ranges from 1 to 0, where 1 means exactly the same, and 0 indicating no similarity.

(4.5) sim(d, q) = dj • q

|~dj | × |~q|
=

∑t
i=1 wi,j × wi,q√∑t

i=1 w2
i,j ×

√∑t
i=1 w2

i,q
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4.2 Results
Twenty experiments were conducted on the same set of entity mentions. In each
experiment, the entity mentions were grouped into chunks of 300 instances. HTTP
requests were then sent in parallel per item in the chunk. This was done to rule out
any discrepancies caused by e.g. server downtime or HTTP request timeout.

From our previous definitions, only HTTP requests with HTTP response code 200
are deemed successful requests. Precision scores were therefore calculated with the
set of instances that returned successful HTTP response codes as True Positives,
and the entire set of unique entity mentions as the sum of True Positives and False
Positives. The distribution of HTTP response status codes and calculations of pre-
cision scores for each experiment is shown in appendix A, in table A.2 and A.1,
respectively.

The experiments revealed clear deviations in the distribution of HTTP responses on
the same dataset. Although it was possible, it was highly unlikely that there would
be that many and rapid changes on the same set of person entities in DBpedia within
the approximate two days it took to conduct the experiments. A more reasonable
explanation for the fluctuations in the results was that the server did not handle the
requests properly, which in turn affected the resulting response codes. However,
there was a chance that the experiments returned successful HTTP responses for
different entities in each experiment. To explore that possibility, the intersection of
successful HTTP response codes were extracted from the experiment log files, i.e.
if a entity mention returned HTTP response code 200 in any of the experiments,
the counter increased. This resulted in overall 85.206 successful response codes of
294.403 entity mentions, and a precision score of 28,942 %. In contrast, the average
precision score for all the experiments was 14,652 %, ranging from 12,267 % to
16,282 %.
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CHAPTER 5

Discussion

In this chapter, we will discuss the experiment results in the light of our research
questions.

5.1 Extracting All Entities

The natural language text from our dataset is produced by humans, and thus it is not
uncommon for human errors to occur, such as misspellings, or accidental removal of
letters or spaces. Nor is it unusual for people to refer to other people by nicknames,
alternate names, abbreviations, and by using lowercase letters instead of a correctly
capitalized full entity name. This adds an element of uncertainty of how many of
the entity mentions that actually exists in the data versus how many of them that are
actually retrieved, because we cannot be sure that the Stanford NER will be able to
identify person entities represented in such a form.

To determine whether there are person entities that should have been retrieved but
were not, i.e. the set of FPs, a manual check would have to been conducted by an
independent domain expert, or the statistics could have been provided by the TREC
organizers. However, manual processing of the dataset would have been resource
demanding beyond our capacities, and even if we had access to dataset statistics, it
would only be useful to us if either the full dataset was processed, or if the statistics
were mapped to specific chunks, on the account that we only processed a subset of
the full dataset. Hence, from the data that is available to us, we cannot be entirely
certain that we have indeed found all the FPs, which makes it impossible to calculate
recall, and consequently also the F1-score, because it relies on recall.
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5.2 Accuracy of Stanford NER
When a web document is annotated, all the textual content of the document is pro-
cessed. Apart from main content, e.g. article text, blog post or discussion forum
thread, it also includes scripts, menus, advertisements and spam, which may pro-
duce noise in the data.

Moreover, named entities are often identified by the considering adjacent capitalized
proper nouns. Having this as the sole criteria could however cause the Named Entity
Recognizer in the Stanford CoreNLP parser to assign named entity categories to
tokens and phrases that are not actual named entities. This could prove problematic
if the resulting named entities are applied directly for entity linking due to DBpedia
URL standards.

# Reason Example

1 Capitalization "MATT_BELLAMY", "JOHN", "AARON", Moist_Von_Lipwig

2 Non-alphabetic
characters

"–_Max-_Ehrmann", "Kim_Leadley/Matthew_Briggs", "Anil_ji_-LRB-
_Kapoor", "–_Liliana_11:15", "ISBN_978-0-9765531-3-7_Schuller",
"O’Cantler"

3 Name repeated "Farah_Al-Qasimi_Farah_Al-Qasimi_Farah_Al-Qasimi"

4 List of people "Obama_Barack_Obama_Abraham_Lincoln", "Kristen_Stewart_
Cheryl_Cole_Kate_Beckinsale_Jessica_Alba_Katy_Perry_Michelle
_Keegan_Miranda_Kerr_Victoria_Justice_Taylor_Swift"

5 Misinterpreted
abbreviations

"Ricardo_Henson_confirmed._Nathan_Rombley","Paul-_Lester-
_guardian.-_co._uk"

6 Foreign words "Kostenloser_Versand_Deutschlandd", "Eigenhan-
del_von_Banken_einen_Riegel"

7 Foreign names "Bjorn_Kjos", "Bjrn_Borg"

8 Nicknames "Dyana_Shoppaholicccccc", "Vijay_S", "Sassy_Shanon_Todd_Tracy"

Table 5.1: Examples

According to DBpedia documentation1, each thing in DBpedia is denoted by a URL
on the form dbpedia.org/resource/Name. The requirements for these URLs
are rigorous, and thus any URLs that does not correspond to its expected format is
rejected.

1wiki.dbpedia.org/services-resources/datasets/data-set-39
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The combination of DBpedia’s strict URL policy and direct application of person
entities identified by the less discriminating Stanford NER consequently produce an
entity linking system with a low success rate. In general, DBpedia does not recog-
nize entities that diverges from their URL policy unless the entity mention already
exists as an alias or alternate name that redirects to the correct entity page. Table 5.1
present some possible explanations on why some HTTP requests were unsuccessful,
using observed patterns in entity mentions as examples.

5.2.1 Capitalization and Non-Alphabetic Characters
As the Stanford NER does not place particular high demands with regard to iden-
tifying named entities, the resulting set of potential named entities could be quite
extensive. It includes all capitalized entity mentions, and entity mentions where
parts of the name is wrongly capitalized, as observed in #1, in addition to entity
mentions with non-alphabetic characters that are misplaced or unlikely to be part of
a name, such as a slash, a time or an ISBN-number, as observed in #2.

5.2.2 Lack of Length Restrictions
Because there are no restrictions on the length of a name, it may be difficult to
decide whether a person entity is represented using multiple names, or if it in fact is
a list of named entities or a set of links without delimiters between each item, that
is interpreted as one single entity mention, as observed in #3 and #4. The behaviour
may be caused by a lack of delimiters between consecutive person entity mentions,
but nonetheless, it might suggest to revisit the UDF for person entity extraction in
DeepDive, and consider stricter rules on what constitutes a person entity.

Moreover, abbreviations are not uncommon in entity names. For example, the 43.
American president is typically referred to as George W. Bush. However, the Stan-
ford NER has not set any restrictions on length of abbreviations, resulting in cases
such as those shown in #5.

5.2.3 Foreign Words and Names
Although we have assumed that our dataset consist solely of documents in English,
some occurrences in Spanish and German have been observed. This is unfortu-
nate because syntactic and semantic rules in other languages often differ from En-
glish, and may result in undesirable results in NLP tools that specialize in English
language-properties. For instance, German capitalize all nouns, which could produce
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errors if a Named Entity Recognizer expect English text, and thus wrongly catego-
rize phrases that may not contain proper nouns at all. For example, the Stanford
NER identifies the phrase "Kostenloser_Versand_Deutschland" as a person entity,
but it actually translates into something like "Free shipping Germany". Moreover,
if a person entity has a name that contains special characters that is not part of the
English alphabet, these letters may be misinterpreted or removed, e.g. "Bjørn_Kjos"
become "Bjorn_Kjos", and "Björn_Borg" become "Bjrn_Borg".

5.3 Data sources
A diverse and representative dataset is often crucial in information extraction ap-
plications because the results heavily depend on the content of the data sources.
Our system is no different in that respect. For example, we expect the documents
we process to be UTF-8 encoded, cleansed for HTML tags, and to only be in English.

However, in entity-centric systems, it is important to keep in mind that not all types
of web documents are likely to contain information about person entities. For exam-
ple, it is probable to find information about academic concepts in scientific articles,
rather than factual information about particular people, perhaps except references
to authors that is relevant to the article. Similarly, people may be referred to by
nicknames in discussion forums, and bloggers may write about family, friends and
colleagues.

Although person entities may be identified in such web documents, it is not unlikely
that these entities are ordinary people without dedicated DBpedia pages, interns or
scientists yet to make their breakthrough, or anonymous people that hides behind
nicknames.

5.4 Scalability
Dataset D amounts to 6,7 GB postprocessed, and corresponds to about 5 million
entity mentions. Considering that it took five days to generate this modest amount,
and that we have access to a dataset amounting to 500 million StreamItems in 4,5
TB of data, i.e. more than 2.700 times larger than the dataset we currently use, it
is clear that it would be expedient to scale our system so that it would be able to
accommodate larger amounts of data. However, for it to be feasible to annotate the
corpus and run our experiments within reasonable amount of time, we would need
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more than one computer.

Let us consider what we would need to process 4,5 TB of data: First, 500 mil-
lion StreamItems would have to been annotated. As StreamItems vary in length,
we would not have concrete numbers on the amount of person entity mentions,
but assuming that the proportion of entities are similar to that of dataset D, it will
amount to about 13,5 billion person entity mentions. Then, still assuming that the
relationship between the number of person entity mentions and unique person entity
mentions are of similar proportions as in dataset D, the number of unique person
entities would amount to about 2 billion. For every unique person entity, there would
be a number of links to potential target entities. If we then chose to exploit the tempo-
ral data available to us in the knowledge base, there would also be a list of temporal
data attributes affiliated with each potential target entity, with each temporal data
attribute a potential list. This approach would have a complexity of s× e× l× t× tl,
where s is the number of StreamItems, e the number of entities, l the number of
links to potential target entities, t in the number of temporal data attributes, and tl

is the number of values in each temporal data attribute. In a worst case scenario, the
complexity would be O(m5). A suggestion on how this could be dealt with will be
further addressed in section 6.2.

5.5 Entity Linking Quality
Comparing the results from our entity linking experiment with the results from
TAGME, it is clear that they are based on different models and preconditions. For the
sentence in example 5.1, TAGME returns links for "Sansa" and "Hound", as depicted
in figure 5.1. Moreover, "Sansa" has been identified as the line of flash memory-
based portable media players Sansa2, produced by SanDisk, while "Hound"3 has
been recognized as a type of dog. In contrast, our system returns links for "Sansa"
and "Sandor", where "Sansa" links to a disambiguation page, and "Sandor" links to
a page with a list of men by the name Sándor4.

(5.1) "It is a way of telling that Sansa should protect herself of The Hound and
not of Sandor."

An ideal entity linking system would recognize "Sansa", "The Hound" and "Sandor"
in example 5.1 as entities, and attempt to link them to the corresponding page in an

2en.wikipedia.org/wiki/SanDisk_Sansa
3en.wikipedia.org/wiki/Hound
4dbpedia.org/page/S%C3%A1ndor
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Figure 5.1: Screenshot of TAGME

Figure 5.2: Screenshot of entity linking
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encyclopedia or knowledge base such as Wikipedia or DBpedia. In cases where an
entity were not linked to an actual article, such as a page containing a list of outgoing
links to actual articles, the system could try to attach "_(disambiguation)"5,
to the the entity mention, and then again attempt to link it to the corresponding page
in a knowledge base.

5.6 Limitations Imposed by System Design
Our approach assume that if a HTTP request for an entity mention returns a suc-
cessful HTTP status code, the entity mention was linked to its corresponding entity.
However, although this would mean that the entity mention in its current form is
represented in the knowledge base, it is uncertain whether the URL actually refers
to a disambiguation page, an entity page, or even whether the entity mention is a
person entity.

(5.2) Paris and Nicole appeared in The Simple Life

If our system was to process the sentence in example 5.2, it would have recognized
"Paris" and "Nicole" as person entities, but during the entity linking process, it
would return a disambiguation page for "Nicole" and an entity page about the capi-
tal city of France for "Paris".

Another limitation is that Stanford NER, and consequently also our system, does
not distinguish between real-world and fictive people. This is problematic because
fictive people is not affiliated with person-specific temporal data, such as date of
birth or death. Additionally, date of birth is not guaranteed to only contain just one
value6. Nor is it guaranteed that all person entities are affiliated with a date of birth,
as there are no requirements for a person entity page to contain an infobox or which
parts of the infobox to include. Thus, we cannot assume to always have temporal
information about an entity. For cases where the temporal data is unavailable, we
have suggested to use cosine similarity for comparing DBpedia entity pages for
potential target entities with the document of which the entity mention resides.

Moreover, our system does not consider entity coherence, i.e. it is reasonable to
simultaneously assign "Paris" and "France" to the French capital and European
country.

5The representation used by Wikipedia and DBpedia to indicate a disambiguation page
6Observed in at least one person entity: dbpedia.org/page/William_Shakespeare
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Our system does not take into account techniques that regards actual alterations
of text. This implies that cases of misspellings, words that falsely has been identi-
fied as person entities, and words that should have been tagged as person entities,
but were not, could be overlooked. This could in part be counter-measured, for ex-
ample by requiring that only a given set of characters are allowed for person entities.
This would cover most of the person entities, and for special cases, such as person
entities known by artist names containing unusual characters, e.g. 2pac and 50 Cent,
the system would require a few calibrations. However, it does not consider that some
data sources are inconsistent when they refer to entities, e.g. a blog post may men-
tion people or organizations using lowercase letters, which would have resulted in
that these entity mentions were not recognized by the Stanford NER.

5.7 Evaluation of Experiment Metrics and Results
The experiments revealed significant fluctuations in the distribution of HTTP re-
sponses, which consequently had an impact on the precision score. Although the
intersection of entity mentions with successful HTTP responses across the exper-
iments more than doubled the precision score compared to the individual experi-
ments, an entity linking system with a precision score of 28 % is not competitive
when compared to state-of-the-art systems. In comparison, Stanford’s contribution
in TAC KBP 2014 gave an overall result of 54.6 % precision [7], entity linking on
microblogs with spatial and temporal signals had a precision score of 85.5 % [32],
and the entity linking system TAGME had up to 90 % precision [33]. However,
as we have only been able to calculate the precision score, and not recall nor the
F1-score, these numbers does not provide us with a good enough basis to evaluate
our system by comparing it to other systems.

The reason for this is that the precision score only conveys one aspect of relevance,
namely the exactness of the classification, while we lack a measure to express the
completeness of the classification, i.e. recall. This is pertinent because recall and
precision are inversely related, and because of this relationship, a moderately good
performance on the harmonic weighted mean of these two measures is more inter-
esting than an great performance for precision and a terrible performance for recall,
and vice versa. It is also important to consider that all of the aforementioned mea-
sures assumes that we know how many person entities there are in the document
corpus we process in our experiments, but as explained in section 5.1, we cannot be
entirely sure that the entity mentions our system has retrieved corresponds to the
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actual number of person entities that exists in the data.

Another challenge when it comes to comparing our system to that of others, it that
it is almost impossible to assess entity linking approaches. This is because, if we
wish to compare the performance system A to the performance of a reference sys-
tem B, both systems must either process the exact same dataset, or system B must
be reimplemented, and run on the same dataset as system A. This depends on the
repeatability of system, which means that system A should be implemented under
the same conditions as the reference system [39]. This is challenging because the
datasets and applied technology may no longer be available, as we ourselves experi-
enced during the course of this project (see section 3.6.4), the documentation may be
unavailable, outdated or incomplete, or the implemented system may diverge from
the descriptions in the documentation, which makes it difficult to reproduce results,
and thus to perform a correct evaluation.

Furthermore, cosine similarity was not used to compare DBpedia entity pages of po-
tential target entities with a document wherein an ambiguous entity mention resides.
This was because the temporal expressions identified in the document corpus were
largely implicit and relative temporal expressions, which would have required some
sort of transformation into an explicit temporal expression to be able to map the
temporal expression to a temporal data property in DBpedia. Moreover, the temporal
data attributes in DBpedia only were a few data points that represented important
life events for the person entity, which made it difficult to find direct matches in
the content-based temporal expressions. As we suggested to use cosine similarity
for cases where temporal data was unavailable, this would in effect entail that all
the entity mentions and corresponding potential target entities would have to be
measured with cosine similarity, defeating the purpose of regarding the temporal
aspect of the data.

5.8 Research Questions Revisited
In the introduction of this thesis, we stated that our goal was to investigate whether
it was possible to improve named entity disambiguation by considering the tem-
poral aspect of the data. In that regard, it is interesting to review how others have
approached the problem, both when it comes to exploiting temporal data, for the
polysemous aspect of the named entity disambiguation problem, and to reuse some
of the knowledge others have learned through their work.
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Our first research question touched upon what kind of temporal data about entities it
is possible to obtain. As we have described in section 2.6, there are several types of
temporal data, including explicit, implicit and relative temporal expressions, which
could be both content-based and non-content-based. Combined with the temporal
data available in e.g. Wikipedia infoboxes and DBpedia, this provided us with the
necessary means to explore whether this temporal information could be exploited to
disambiguate ambiguous entities. This was approached by preprocessing and pars-
ing a document corpus, and then use an information extraction framework to extract
person entities and temporal entities from the text. The extracted person entities
were then used in a HTTP request to check whether the entity in its current form
returned a successful HTTP response code.

To exploit temporal data for named entity disambiguation, we could then compare
the available temporal data for each of the entity mentions returning a successful
HTTP response in the knowledge base with the normalized temporal entities. This
brings us to our last research question, which is whether it is expedient to use tempo-
ral data for named entity disambiguation. The answer is: It could be both useful and
practicable, but it is also likely inexpedient because named entity disambiguation
based on temporal data depends on there being explicit temporal expressions in the
content, as well as accurate document metadata. This is problematic because we
cannot guarantee the accuracy of the document metadata without further analysis,
and although temporal expressions may occur in the content, they are improbable
to be explicit temporal expressions because humans are unlikely to be be explicit
and unambiguous when referring to temporal expressions. Thus, should there be
non-explicit temporal expressions in the content, they would have to be transformed
into explicit expressions in order to link them to the temporal data in the knowl-
edge base, which only contained a few data points representing important life events
for the person entity. Transforming non-explicit temporal expressions into explicit
temporal expressions would require a lot of resources. Thus, the scarcity of explicit
content-based temporal data combined with the limited temporal data in the knowl-
edge base is likely to outweigh the potential useful information that could have been
used for named entity disambiguation.
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CHAPTER 6

Summary

6.1 Conclusion

The named entity disambiguation problem poses a challenge in several research
fields. In this thesis we have investigated whether it was possible to exploit tempo-
ral data to improve named entity disambiguation, and ultimately bring us one step
closer to the solution of the named entity disambiguation problem.

Our proposal was to perform entity linking to check whether mentions of person
entities identified in a semantically and syntactically tagged document corpus could
be linked directly to its corresponding entity in DBpedia. We examined what kind of
temporal data that could exist about person entities, both in the content and metadata
of a StreamItem, as well as the temporal attributes in DBpedia. We initially planned
to use precision, recall and F1-score to evaluate our entity linking approach, and sug-
gested using cosine similarity to compare the similarity of the potential target entity
pages in DBpedia with the content of the StreamItem wherein the entity mention
resided for cases where the temporal data was unavailable. Unfortunately, we were
unable to calculate recall, and thus nor the F1-score, as we could not be certain that
all the person entities in the corpus had been extracted, which made it impracticable
to make a reasonable comparison of our results with results from state-of-the-art
systems. Nor did we calculate cosine similarity, as we were unable to detect specific
temporal data properties in DBpedia that could have been used for named entity
disambiguation given the content-based and non-content-based temporal data that
was available to us through the subset of the document corpus we processed.

There has been no indications that the generation of online data will decelerate
in the years to come, and a solution to the polysemous aspect of the named entity
disambiguation problem becomes key in fully exploiting the potential invaluable
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information hidden in this data. The challenges affiliated with the named entity
disambiguation problem that has been discussed in this thesis is a pertinent contri-
bution to research on the named entity disambiguation problem, and forms a solid
basis for general and further work with the polysemous aspect of named entity dis-
ambiguation problem.

6.2 Future work
One of the challenges we encountered during the development of the system is that
common nouns are not considered candidates for named entities, as described in
section 3.6.1, which was a restriction set by the NER annotator in the Stanford
CoreNLP parser. Moreover, limitations in resources forced us to diverge from our
original plan, which was to use three parsers rather than one, as this was likely to
boost system accuracy. For future improvements of our system we therefore sug-
gest to combine the Stanford CoreNLP parser with at least two other parsers, and
to increase the focus on part-of-speech tagging, phrase structure parsing and depen-
dency parsing for identifying named entities that currently is recognized as regular
nouns by the Stanford NER. Moreover, we suggest to implement methods that han-
dles misspellings and errors that was caused by special characters. Although distant
supervision was futile in our case, we do recognize its potential in NLP research,
and believe it may be expedient in future work, for example by generating a dataset
consisting solely of person entities by extracting person entities from a knowledge
base, and use this dataset to test the entity linking performance by comparing it to a
dataset containing several types of entities. This could also be expanded or changed
to include other types of entities, given that they belong to a concept that is defined
by the knowledge base.

As described in section 4.1.2, the size of the document corpus had to be confined
due to restrictions imposed by time and resources. If not impeded by these factors
however, processing the full dataset would have been preferable as it for example
could have revealed interesting patterns that was not apparent in the fraction of the
dataset that was processed. Our entity linking approach would be possible to scale
to fit the full dataset, but would be impracticable because the semantic and syntac-
tic annotation alone would have taken years to complete if it was only run on one
machine. We therefore propose that a system like the one we describe in this thesis
would benefit from parallel, distributed processing over multiple machines, which
would be available through programming models such as MapReduce. Enforcing
such a programming model would allow the operations to be run in parallel on mul-
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tiple computers simultaneously, and thus drastically reduce system runtime.

The approach we have described in this thesis is directed towards temporal data,
but as temporal and spatial data in this context largely is represented using the
same backbone, the system could be easily adapted to fit spatial data in addition to
temporal data. For example, the Stanford NER identifies spatial entities as well as
temporal entities, and DBpedia provide attributes pertaining to locations in addition
to the temporal attributes we described in section 3.2.2. This may an interesting
aspect to pursue in future work, especially considering the spatial data increasingly
becoming available in social media, e.g. Facebook allow users to tag their location,
and in Twitter, all Tweets are timestamped, and in many cases also mapped to a
location [32].

The document corpus processed in this thesis is static offline data, which is appropri-
ate for our purposes because we want the data to be stable during experimentation to
be able to determine whether any progress had been made regarding entity linking
quality and named entity disambiguation. However, once improvements have been
made and the system have been stabilized, it may be interesting to adapt the system
to accommodate for continuous data streams. Given the same preconditions, it may
also be interesting to expand the system to accommodate for multiple languages. A
language-independent named entity disambiguation incorporated in research areas
such as KBA and KBP could create a low threshold for third world countries to
generate knowledge bases in their own language, and stimulate to easier access to
education and vast amounts of knowledge.
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Experiment Results

1 42.605
294.403 =14.471 % 8 43.040

294.403 = 14.619 % 15 43.062
294.403 =14.626 %

2 42.512
294.403 = 14.440 % 9 42.112

294.403 = 14.304 % 16 43.990
294.403 =14.942 %

3 42.948
294.403 = 14.588 % 10 41.774

294.403 = 14.189 % 17 43.162
294.403 = 14.566 %

4 36.114
294.403 = 12.267 % 11 47.937

294.403 = 16.282 % 18 43.217
294.403 = 14.434 %

5 43.181
294.403 = 14.667 % 12 45.347

294.403 = 15.403 % 19 42.679
294.403 = 14.254 %

6 43.977
294.403 = 14.937 % 13 43.905

294.403 = 14.913 % 20 43.879
294.403 = 14.655 %

7 43.713
294.403 = 14.848 % 14 43.564

294.403 = 14.797 %

Table A.1: Precision score for when TP equals successful HTTP requests
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# 000 200 301 404 500 502 503

1 43 42.605 12.590 90.251 131 - 148.783

2 44 42.512 12.555 90.106 124 - 149.062

3 25 42.948 12.733 90.878 126 - 147.693

4 117 36.114 10.668 76.604 95 21.171 149.634

5 35 43.181 12.762 91.527 129 - 146.769

6 62 43.977 13.158 92.729 115 - 143.241

7 114 43.713 12.967 92.176 129 - 145.304

8 33 43.040 12.698 90.992 110 - 147.530

9 - 42.112 12.625 89.586 132 - 149.948

10 - 41.774 12.371 88.302 120 - 151.836

11 13.482 47.937 14.196 101.602 140 - 117.046

12 54 45.347 13.484 95.445 127 177 139.769

13 333 43.905 12.913 92.871 135 - 144.246

14 18 43.564 12.868 92.646 139 - 145.168

15 85 43.062 12.771 91.722 118 - 146.645

16 45 43.990 13.017 92.615 120 127 144.489

17 27 43.162 12.930 91.499 123 - 146.662

18 35 43.217 12.757 91.548 131 - 146.715

19 39 42.679 12.705 90.538 118 - 148.324

20 271 43.879 12.874 92.898 122 - 144.359

Table A.2: Distribution of HTTP response status codes for the experiments
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APPENDIX B

Parser annotators

This thesis used the Bazaar parser1 to perform annotations. The Bazaar parser is a
wrapper of the Stanford CoreNLP parser, and is the embedded parser of DeepDive.
Table B.1 includes a brief description of each of the annotators used in this thesis2.

PROPERTY DESCRIPTION DEPENDS ON

tokenize Tokenizes the text. Originally based on the Penn
Treebank standard, but later extended to handle noise
and web text

None

cleanxml Remove XML tokens from the document tokenize

ssplit Splits a sequence of tokens into sentences tokenize

pos Labels tokens with their Part-of-speech tag tokenize, ssplit

lemma Generates the base words (lemmas) for all tokens in
the corpus

tokenize, ssplit, pos

ner Recognizes named (PERSON, LOCATION, OR-
GANIZATION, MISC), numerical (MONEY, NUM-
BER, ORDINAL, PERCENT), and temporal (DATE,
TIME, DURATION, SET) entities

tokenize, ssplit, pos, lemma

Table B.1: Parser annotators

1HTTPs://github.com/HazyResearch/bazaar
2A full overview of annotators, dependencies and more details is available at HTTP://

stanfordnlp.github.io/CoreNLP/annotators.html
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