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Abstract

Innovative Utilization of Carbon Nanotubes in Marine and O�shore

Oil/Gas Applications

by Øyvind Våland

Norwegian University of Science and Technology

Department of Engineering Design and Materials

Nations with an established prominence in nanotechnology will lead the devel-

opment of the future society by o�ering superior products to the global market.

This thesis encourages Norwegian maritime industries to recognize the potential

in carbon nanotubes (CNTs) and mark their position as leading innovators. Push

innovation has been used to bring science from research papers into business con-

cepts including product design and cost analysis. Material challenges have been

discussed with partners in aquaculture, shipping and o�shore oil/gas in order to

�nd viable use of CNTs. Two concepts, net cage of CNT yarn in �sh farming

and oil drier with CNT membrane for hydraulic and lubricating systems, have

been developed. The net cage is a potential health risk, but the superhydrophobic

and superoleophilic properties of CNT membranes provide a novel and promising

way of separating water and oil. Fabrication of prototype in NTNU Nanolab have

been attempted by growing vertically aligned CNTs by plasma-enhanced chemical

vapor deposition, but not completed.
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Sammendrag

Innovativ utnyttelse av karbonnanorør i marine og o�shore olje/gass

anvendelser

av Øyvind Våland

Norges Teknisk- Naturvitenskapelige Universitet

Institutt for Produktutvikling og Materialer

Nasjoner med spisskompetanse på nanoteknologi vil lede utviklingen av framti-

dens samfunn ved å tilby overlegne produkter til det globale markedet. Denne

masteroppgaven oppmuntrer norsk maritim industri til å se potensialet i karbon-

nanorør (CNT) og markere sin posisjon som ledende innovatører. Push-innovasjon

har blitt brukt til å bringe vitenskap fra forskningsartikler til forretningskonsepter

med bidrag av produktdesign og kostnadsanalyse. Materialutfordringer har vært

diskutert med bedrifter innen �skeoppdrett, shipping og o�shore olje og gass for

å �nne potensiell bruk av CNT. To konsepter, not av CNT tråd i �skeoppdrett og

oljetørker med CNT membran, er utviklet. CNT kan gi høy styrke til �skenøter,

men er også en helsemessig risiko. De superhydrofobiske og superoleophiliske

egenskapene til en CNT membran vil være optimale for å separere olje og vann

i hydraulikk- og smøresystemer. Konseptene er skissert opp og fabrikasjon av

prototyper i NTNU Nanolab ble forsøkt. Vertikale CNT ble dyrket ved hjelp av

plasmaassistert kjemisk damp deponering, men ingen prototype ble ferdigstilt.
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Chapter 1

Introduction

Figure 1.1: The evolution of material science from stone clubs to dispersed
carbon nanotubes. Adapted illustration [1].

The discovery of materials may have a great social impact, making a big mark in

history. The stone age gave us the skills of carving tools and the bronze age gave

us the ability to cast metals. Now, the science of nanotechnology is making an

entrance in what is referred to as the nano age. We are able to construct an endless

variety of materials using a bottom up approach. This thesis is an exploration of

our new capabilities in maritime environments by the use of carbon nanotubes.

1
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1.1 Opportunity

The carbon nanotube (CNT) was discovered about twenty years ago by Sumio

Iijima and was quickly made famous for its predictions of brilliant properties [2].

A CNT is a tube made of carbon atoms in a hexagonal pattern and with diameter

in the range of 0,5 � 2 nm, hence a nanomaterial (Fig. 1.2). Scienti�cally, the

material has been examined by thousands of researchers and the amounts of hits

on Google Scholar have exceeded half a million articles. Commercially however,

the material has yet to make its true entry. Some products exist, but there is still

some hesitation and reluctance by both manufacturers and consumers partly due

to high costs and possible health risks.

Figure 1.2: Illustration of a carbon nanotube. At each juncture there is a
carbon atom, the lines in between illustrate atomic bonds [3].

Currently, USA, Japan, Germany, South Korea and Taiwan are world leaders in

nanotechnology as illustrated by Fig. 1.3, showing 19 countries ranked by their

research activity over three years [4]. Even though Norway's activity was too small

to be considered in this study, The Norwegian Government has the funding and

vision necessary to reach prominence in nanotechnology research. NANOMAT

(2007�2011) was a project initiated by the government to lay the foundation for

such achievements by building cleanrooms and supporting research projects. The

project was followed by NANO2021 (2012�2021) and The Govenment Research

Strategy for Nanotechnology 2012�2021 which goal is to reach international lev-

els [5].
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Figure 1.3: Diagram ranking the leading countries of nanotechnology by re-
search quantity (y-axis) and quality (x-axis) from 2007 to 2009 [4].

It might seem as a risky operation to initiate product development on such a

material, but as the fabrication techniques improve and the production volume

increases, the cost is coming down [6, 7]. With the support from the government,

any investment may be highly subsidized and economic risks mitigated. The

health risk is present, but the science community expects to �nd types of CNTs

to be harmless [8]. There is currently an opportunity to patent extraordinary

innovations with government support and low competition. The timing is just

right.

This thesis will initiate the development of products by the use of carbon nan-

otubes in applications of national interest. Norway has long been a master of the

sea with its long coastline and large water territories (Fig. 1.4). They employ
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some of the most pro�table industries in Norway; aquaculture, shipping and o�-

shore oil/gas. I will show how these industries may use carbon nanotubes to hold

a competitive edge.

Figure 1.4: Water territories ruled by the Kingdom of Norway. Adapted
illustration [9].

1.2 Methodology

One may choose among two fundamentally di�erent innovation approaches; need

pull or knowledge push [10]. Need pull (or pull innovation), the most common

approach, has the user's need in mind from day one and the product is meant

to �ll a demand. As illustrated by Fig. 1.5, the innovator knows how the gap

looks and pulls the box to �ll it. The opposite approach, knowledge push (push

innovation), focus on research and development with no clear user in mind. The

innovator is much closer to the box so he knows it much better, but he cannot
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see the gap. The user is identi�ed after the concept has been developed and

the product is pushed into the hands of the user. Several products developed

using knowledge push have had enormous success, such as nylon, antibiotics and

transistors [10].

Figure 1.5: Illustration of the two concepts of innovation. The pull innovator
sees the gap and pulls the box to �ll it. The push innovator cannot see the gap,

but he knows the box much better.

This project has root in the utilization of a speci�c technology and material with-

out knowing what the �nal product will do, hence a knowledge push approach

is the best �t. In order for such a project to succeed, the theory of knowledge

and technology transfer should be applied. The goal is to transfer the technol-

ogy from the research lab to the right user at the right moment. Several models

discuss this process, including the appropriability model, the dissemination model,

the knowledge utilization model and the stage model [11, 12].

The model chosen for this thesis is the stage model developed by Gibson and

various coauthors [12]. Their model was developed for high-tech industries and

describes four levels of technology transfer, starting with research �ndings at the

�rst level and narrowing into commercialization in the fourth as elucidated in

Table 1.1. It is quickly recognized that carbon nanotubes are stuck within level II

and level III as there is a large amount of research articles, but few business ideas.
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Table 1.1: Levels of the stage model of knowledge and technology transfer [12].

Level Characteristic

I - Creation Individuals and small groups conduct state-

of-the-art research and publish results in

journals, conferences, etc. No constraints on

the research topics and purpose.

II - Sharing The new potential made by the research is

made accessible across intellectual and or-

ganizational boundaries attempting to locate

an end user.

III - Implementation The end user and application is located and

the potential is implemented into an actual

product including manufacturing process.

IV - Commercialization The product is introduced to the market.

In their research of the Microelectronics and Computer Technology Corporation

(MCC) in the United States, Sung and Gibson identi�ed four key factors increas-

ing the success of knowledge and technology transfer; communication, motivation,

distance and equivocality [12]. Well organized communication channels and mo-

tivating incentives will facilitate faster and wider spread of the knowledge. The

distance and equivocality should be reduced, i.e. decreasing cultural barriers and

reducing the complexity of the knowledge.

This thesis is focusing on sharing knowledge and technology of CNTs and imple-

menting them into applications. The �rst step will be to collect data from research

journals and combine them into a brief review of the material properties (Chap. 2).

The properties will then be discussed with a broad specter of people to locate any

use of the material (Chap. 3). Once potential applications and users have been

identi�ed, concept development and product design will be performed (Chap. 4).

The �nal step is to realize the concept in the lab by making a prototype (Chap. 5).

A cost analysis is added to see the market potential (Chap. 6).



Chapter 2

Material Potential

Figure 2.1: Schematic of a single-walled carbon nanotube. The diameter vary
from 0,5 nm to 2 nm and the length from 10 nm to 1 cm.

The foundation of push innovation is the box of knowledge and technology you

build your device upon. Therefore, this chapter will be all about what we currently

know about the carbon nanotubes. Material properties such as tensile strength

and electrical conductivity are divided into their respective �elds of science and

shortly reviewed. The second part will explore the states of which you would

normally acquire the nanotubes, like CNT powder and CNT yarn. After reading

this chapter, you will see the potential of carbon nanotubes to solve material

challenges.

7
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2.1 Material Characteristics

Like any other tube, the carbon nanotube (CNT) has a certain diameter and

length, in addition to twisting and numerous shells [13]. Tubes with only one shell

are called single-walled carbon nanotubes (SWCNTs) and typically have a diame-

ter of 0,5 � 2 nm and a length of 10 nm� 1 cm. Chirality is a term that speci�es the

twist of the tube and it is expressed by a chiral index (n,m) (also known as chiral

integers or chiral indices). The chiral index forms the chiral vector ~Ch = n~a1+m~a2

(lattice vector or roll-up vector), a chiral angle θ and determines the diameter of

the tube [14]. The chiral vector represents the line between two nodes on a sheet

of hexagons that are connected when rolled up to a tube as seen in Fig. 2.2. The

tubes with chiral index (n,n) and (n,0) are special and are called armchair and zig-

zag tubes respectively. A CNT with multiple shells is called a multi-walled carbon

nanotube (MWCNT). A MWCNT with only two shells is called a double-walled

CNT (DWCNT). If the CNTs are aligned in either vertical or horizontal direction

they are called vertically aligned CNTs (VACNTs) or horizontally aligned CNTs

(HACNTs).

Figure 2.2: The sheet of hexagons is rolled up so that the two ends of the chiral
vector ~Ch are connected as seen by the grey color. The zigzag and armchair

vectors are of particular interest [13].
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2.2 Material Properties

It is evident that any material property is dependent on the scale at which it is

considered. A well known phenomenon in mechanical engineering is Gri�th's cri-

terion of fracture mechanics [15]. He investigated the size-dependence of glass and

concluded that as the specimen decreases, the cracks present in the material also

decrease, hence the strength increases. As for nanomaterials, the material could

have great properties on nanoscale, but the strength diminishes very rapidly once

scaled to macroscale. Any claim of ultimate values of properties of nanomaterials

should therefore be taken with consideration. Nevertheless, a review of the carbon

nanotube properties at the nanoscale follows.

2.2.1 Mechanical

Because the length can be up to seven orders of magnitude greater than the

diameter, CNTs happen to fall between two branches of mechanics as seen by

Table 2.1. It is too narrow to use continuum mechanics and too long to use

molecular dynamics [16]. Simulating the material in a macroscale application

complicates even more. The solution is to �nd a coupling between the molecular

dynamics (MD) of atomistic modeling and the �nite element method (FEM) of

classical continuum mechanics such that it can simulate both crack propagation

and structural failure. These models, called multiscale models, vary in several ways

including equilibrium condition (force or energy), boundary condition (strong or

weak), size of transition region and whether to treat the continuum as linear or

not [17].

Table 2.1: Time and length scales for mechanical points of view [16].

Branch of Mechanics Length scale [m] Time scale [s]

Quantum mechanical analysis < 10−8 10−15 − 10−12

Molecular dynamics 10−10 − 10−6 10−9 − 10−3

Micromechanics 10−6 − 10−4 10−9 − 10−3

Continuum mechanics > 10−3 > 10−3
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Using these multiscale models, CNTs had early predictions of Young's modulus ex-

ceeding 1TPa. Most experiments of strength and sti�ness of CNTs are done with

a few measurements by microscale equipment and then curve �tted to a simple

linear elastic model of continuum mechanics. It is common to use the interlayer

spacing of graphite, about 0,35 nm, as the thickness of a CNT shell in the calcula-

tions. By chance, Treacy et al. observed in 1996 how the tip of a MWCNT vibrated

when heated in a transmission electron microscope (TEM) [18]. They measured

the amplitude and �tted it to the amplitude of a vibrating continuous cylindrical

cantilever. The calculated Young's modulus was between 0,4 and 4,15TPa with

an average of 1,8TPa. The validity and accuracy of this and preceding tests are

questionable, but they seem to converge around a tensile strength of 100GPa and

a sti�ness of 1TPa [14, 19�22]. The elegant experiment by Peng et al. in 2008

is worth mentioning [14]. The group from Northwestern University made a mi-

croscopic testing stage for classical tensile test, stretching a SWCNT until failure.

By the stress-strain curves as seen in Fig. 2.3, they could easily detect a tensile

strength of about 101,7GPa (in an interval of 98 � 110GPa) and breaking strain

of about 13%. The Young's modulus was calculated with an average of 1,048TPa

(in an interval of 0,990 � 1,105TPa).

Figure 2.3: Stress-strain curve of a SWCNT by Peng et al. Black dots are
experimental result, the others are simulations [14].
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2.2.2 Electrical

Besides the enormous strength, the CNTs possess an exceptional electrical con-

ductivity. The conductivity of carriers along the material surface is favored by two

features; the CNTs 1D structure allowing a straight path and the freely bonded

valence electrons forming a delocalized π-band on its surface, similar to metals.

The resistivity of CNTs at room temperature are in the range of 10−2 − 10−6 Ωm

while silicon and copper have resistivity of 1, 00 · 10−4 Ωm and 1, 70 · 10−8 Ωm

respectively (note that lower resistivity means higher conductivity) [23, 24]. Ob-

viously the CNTs should be aligned in the direction of the current as done by

Salahuddin et al. when they compared copper and CNT (Fig. 2.4) [25].

Figure 2.4: Resistance at short lengths of copper wire compared to 4000 par-
allel CNTs, both having the same cross sectional area. CNTs outdo copper at

lengths greater than 1µm [25].

Experiments have shown a clear correlation between the conductivity and the

twisting of the tube, hence the chiral index (n,m) de�nes the band gap and whether

the CNTs are metallic or semiconducting. If the chiral index is known, it is easy

to test for conductivity by Equation 2.1. If the answer is a multiple of three, the

CNT is considered metallic due to a small band gap, else it is semiconducting. On

the other hand, if the conductivity is known, the chiral index can be determined.

The armchair tubes (n,0) have no twisting to inhibit the conductivity and are

therefore truly metallic, while the zig-zag tubes (n,n) can be both metallic and
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semiconducting. As the MWCNTs can hold tubes of di�erent chiralities, their

electrical properties are very complex.

2n+m =

{
multiple of 3 ⇒ metallic

else ⇒ semiconducting
(2.1)

2.2.3 Thermal

The great electrical conductivity is accompanied by a good thermal conductivity

with reports up to one order of magnitude higher than copper at room temper-

ature [26]. Experiments have shown the thermal conductance at very low tem-

peratures to be without resistance (one-dimensional and ballistic) due to a longer

photon mean-free path than the length of the nanotube [27]. At higher tempera-

tures, the mean-free path shortens and the defects start obstructing, lowering the

thermal conductivity as seen in Fig 2.5. There is still a lot of research to be done

in this �eld, but so far the results are very promising. At room temperature, the

thermal conductivity of CNTs are measured well beyond 3 000W/m-K [28]. For

comparison, diamond has a thermal conductivity of 2 000W/m-K and is one of

the best heat conducting materials known to date [29]. This makes CNTs a great

candidate for thermal management applications.

Figure 2.5: MD simulation of the thermal conductivity of a (10,10) isolated
carbon nanotube with respect to temperature [27].
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2.2.4 Chemical

A SWCNT without any defects or end caps can be considered a chemically inert

macromolecule. The strong covalent carbon-carbon bonds make the atoms di�cult

to separate, but the tubular and twisted structure adds extra stress which reduces

the stability [29]. The smaller the diameter and the more twisted, the more strain

and more reactive the CNT. Simulations have shown SWCNTs to be more stable

than fullerenes, MWCNTs more stable than SWCNTs and graphite more stable

than MWCNTs.

Despite its strong bonds, SWCNTs will break down when sonicated with strong

oxidizing agents such as NHO3 and H2SO4 or strong organic solvents like dimethyl-

formamide [30]. Defects and tube ends are weak spots to which failure can initiate

with complete amorphisation as the �nal result.

The most common defect is the Stone-Wales defect, also known as the pentagon/heptagon-

or 5/7 defect, that may develop during synthesis or arise due to heavy loading on

the carbon bonds [29]. It is believed to be one of the main contributors to the

ductile behavior of CNTs. If an armchair CNT is stretched, MD simulations have

indicated bonds to rotate creating two pentagons and two heptagons as illustrated

by Fig 2.6 [13].

Figure 2.6: Schematic of a Stone-Wales defect in an armchair CNT. The
applied load makes the center covalent bond rotate creating two pentagons and

two heptagons [13].
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In order to break down a CNT by heat alone in an argon atmosphere, temperatures

well above 2000 ◦C are needed. Studies show that SWCNTs coalesce (enlarging

their diameter) at 1600 ◦C and eventually transform into MWCNTs at temper-

atures above 2200 ◦C [31]. Double-walled CNTs are more stable than SWCNT

and keep their diameters until 2100 ◦C before they transform into MWCNTs at

2200 ◦C [32]. At temperatures above 2300 ◦C, the MWCNTs start fragmenting

into amorphous carbon.

2.2.5 Biological

The great stability of CNTs is alarming the scientists working on biological prop-

erties . Parallel to the exploration and fabrication of CNTs, mice are being tested

for asbestos-like behavior of CNT contamination [33]. CNTs are often put along-

side asbestos because they're both �brous materials with high tensile strength,

high thermal stability and resilient to chemical solvents (Fig. 2.7a). If the harsh

defense of the human body can't get rid of the alien material, it will stay in the

body and may cause serious harm.

Asbestos is dangerous because it slips between the human body's two defense

lines [34]. The �rst is the tracheobronchial muscociliary escalator, also known as

nasal mucus, that capture particles and carry them away. The asbestos �bers are

too small and too slick to be e�ectively captured, hence they slide through and

into the lungs. The second defense is the macrophage cells in the lungs that ingest

and destruct foreign substances. Asbestos, with its length and biopersistence is

too long for the macrophage to ingest and too stable to destroy. As a result, the

asbestos will stay in the lungs and release free radicals that damage tissue and

DNA as well as inducing in�ammation; perfect growing conditions for tumor and

mesothelioma cancer [35].
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(a) (b)

Figure 2.7: Comparison of physical structure. (a) SEM image of Anthophyllite
asbestos �ber. Scale bar: 50µm [36] (b) SEM image of asbestos-like carbon

nanotubes. Note, scale bar: 2µm [37].

The fear is that CNTs, with their comparable length and chemical stability as

illustrated by Fig. 2.8, are as toxic as asbestos. They should therefore be treated

with great care to avoid inhalation. However, the CNT properties change dramat-

ically by length, chirality, number of shells, agglomeration, etc., hence there might

be good CNTs and bad CNTs. Research groups are now conducting long run in

vivo experiments on mice exposed to CNTs. Luckily they are giving con�icting

results for us to distinguish the good CNTs from the bad [8, 38�40].

Figure 2.8: Schematic of a macrophage cell trying to ingest di�erent asbestos
and CNT structures. The macrophage is unable to ingest long �bers resulting

in in�ammation [33].
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2.3 Material Arrangements

After synthesis, the tubes may be re�ned into several arrangements and the de-

velopment of any application should originate from one of these. This section will

review the most common macroscale CNT arrangements.

2.3.1 Dispersed in Liquid

Carbon nanotubes are extremely resistant to wetting and tend to agglomerate

and entangle themselves together in a dense network [41]. Depending on the

application, this can either be desired or annoying, but either way it is necessary to

know what it takes to separate them. Clearly this involves liquid dispersion where

two methods are common; mechanical by ultrasonication or chemical by solvents.

Ultrasonication is fast and e�cient, but has a tendency to fragment and destroy

some of the tubes as well as only being temporary. A chemical solvent is needed

to keep the tubes separate and usually involves alternation of the CNTs surface

energy or attaching a water-soluble molecule to its surface or ends. Solvents like

sodium dodecylsulphate (SDS) and sodium dodecylbenzenesulphonate (NaDDBS)

are most commonly used [42, 43], but they may also harm the nanotubes and

change their properties.

DNA has proven to be particular selective in wrapping around speci�c carbon

nanotubes as illustrated by Fig. 2.9 [44]. The wrapping makes the CNTs suspend-

able in aqueous solution as well as making them negatively charged. By adding

a range of di�erent DNA sequences that attach to di�erent chiralities, the tubes

will have di�erent electric charges based on their chirality which further simpli�es

sorting. Due to the high cost of DNA, polymers have been investigated as an

alternative [45].

Figure 2.9: Schematic of a DNA string wrapped around a (8,4) carbon nan-
otube [44].
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Dispersed in a liquid, as in the bottle in Fig. 2.10a, is the most common way of

purchasing CNTs. They are usually mixed with a surfactant followed by a short

ultrasonication. Puri�cation and sorting have also been performed to remove

undesired amorphous carbon, catalyst remains, etc. The dispersed CNTs also go

by the name of CNT ink. Because many applications have strict requirements to

the electrical conductivity, bottles of only metallic or only semiconducting tubes

may be bought.

(a) (b) (c)

Figure 2.10: Bottles of various arrangements of CNTs. (a) A bottle of 25mg
highly puri�ed SWCNTs dispersed in 100ml deionized water and ionic surfac-
tants [46]. (b) A bottle of SWCNT powder with lengths 5 � 10µm [47] (c)
A bottle of 25mg SWCNT powder, highly puri�ed and stamped into a thin

sheet [46].

2.3.2 Dried Powder/Sheet

Drying the solution of CNTs produce an entangled powder as seen in Fig. 2.10b.

The sample is lighter, but CNT powder is inconvenient due to the hazards when

airborne. It is therefore common to stamp the powder into a sheet, also known

as buckypaper as seen in Fig. 2.10c. Buckypaper may be dissolved again by

the techniques mentioned in section 2.3.1. Larger sheets by the meter and with

thickness down to 20 � 30µm are available from Nanocomp Technologies [48]. The

sheets are highly entangled and have no alignment.

2.3.3 Attached to Substrate

Some synthesis techniques yield CNTs attached to a substrate with varying degree

of alignment. Most common is growth of CNTs by chemical vapor deposition
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(CVD) either along the substrate plane or as a forest of vertical tubes seen in

Fig. 2.11. They require no post-treatment after synthesis, the tubes are organized

and aligned and �nally, the tubes stick to the substrate. They stick well enough

not to fall o�, but are also easy to pull o� when called for. The current price for

a 1 cm by 1 cm silicon wafer �lled with VACNTs delivered by Aldrich Materials

Science is about 10 880NOK [49].

(a) (b)

Figure 2.11: (a) Photograph of wafer containing VACNTs grown at NTNU
Nanolab. (b) SEM image of VACNTs at 18 000 times magni�cation [50].

2.3.4 Yarn

Many of the CNTs excellent properties are only true in the axial direction. As the

longest grown CNT is no more than 20 cm [51], the CNTs have to be joint together

somehow to extrapolate the properties to macroscale. The most common method

is making a yarn with the CNTs aligned as much as possible. The CNTs may be

spun into a yarn in four di�erent ways [52]:

Spinning from CNT Solution The CNTs are dispersed in a liquid and injected

into a spinning bath of another solvent. The CNTs re-agglomerate and form

a yarn which is pulled out of the bath, washed and dried.

Spinning from CNT Array A small tape is attached to the end of an array of

VACNT and pulled out. The CNTs then follow in a sheetlike fashion before

twisted into a yarn.

Spinning from CNT Aerogel The yarn is formed during CNT synthesis in a

vertical furnace. A catalyst is injected at the top. As the catalyst �ow
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downward in the furnace, CNTs form and entangle themselves together. A

spool at the bottom collects the yarn.

Twisting or Rolling CNT Sheet A thin sheet of entangled CNTs is sliced from

a thicker sheet and rolled to form a tube.

Miaudet et al. found their CNT yarn to have a tensile strength up to 1,8GPa, a

high toughness and low weight [53]. Other studies have shown the yarn's strength

to be independent of any knots tied on it [54]. Furthermore, CNT yarn has been

reported to absorb water by swelling. Baughman and coworkers experienced a

swelling to a diameter of 200% its initial size [55].

The current top producer of CNT yarn is Nanocomp Technologies with a range

of clients including Boeing, the U.S. Army and NASA [48]. They charge about

17 � 29NOK/meter for their 50 � 75µm diameter one ply yarn [56].

Figure 2.12: Photograph of 10m CNT yarn with a diameter of 30µm winded
on a spool [53].

2.3.5 Fabric

The CNT yarn may be woven into a fabric by regular textile techniques. The

fabric is highly versatile, combining the CNTs one-dimensional properties with a

two-dimensional structure. A �lm of CNTs may also be drawn directly from a

CNT array as seen in Fig. 2.13. Zhang et al. had great success in making 5 cm

wide, 50 nm thick and meters long fabric using this technique [57]. The fabric

showed superhydrophobic performance by supporting drops of water without wet-

ting. CNT fabric has also shown behavior of letting oil pass through while stopping

water, known as superoleophilicity and superhydrophobicity respectively [58, 59].
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Figure 2.13: Figure 1 from paper on CNT sheet by Zhang et al. [57]. A

Photograph of a 3,4 cm wide fabric drawn from a VACNT array. B SEM image
of fabric being drawn. C Cross section SEM image of fabric being drawn. D
SEM image of overlaying CNT fabrics. E Photograph showing the fabric's low

wettability with (f.l.) drops of water, orange juice and grape juice.
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Locating Applications

Figure 3.1: M/S Stril Commander. Norwegian Tug/Supply/Rescue Vessel [60]

This chapter report how ideas developed through communication with Norwe-

gian companies as encouraged by Gibson's stage model [12]. They should be

made aware of the new possibilities the material bring, followed by motivation

and brainstorming. The search focused on three main industries; aquaculture,

shipping and o�shore oil/gas. An aquaculture net cage and hydraulic oil drier are

among the potential business ideas that emerged.

21
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3.1 Approach

Several �rms and organizations were contacted to discuss problems they faced with

regards to material properties in the maritime environment. The goal was to locate

applications, users and partners and the search was divided into aquaculture,

shipping and o�shore oil/gas. Furthermore, an example of a semi�nished product

was presented in order to establish CNTs as a macroscale product, not a nanoscale

spectacle. CNT yarn was chosen because it is easy to comprehend. To encourage

and enlighten the representatives, a �yer was sent out by email (Fig. 3.2). Full

size �yers found in supporting material online and magni�ed o�shore oil/gas �yer

found in Appendix A.

Figure 3.2: Flyers sent out to attract attention and ideas from the industry.

Companies being reluctant and skeptic were introduced to Zyvex Marine. The

startup company is already building marine vessels out of carbon �ber/CNT com-

posite as the one in Fig. 3.3 [61]. They mix CNTs into the resin, but are using

carbon �ber as the main load bearing constituent. Their utilization of CNTs is at a

bare minimum, though this project aims to exploit more of the CNT's properties.

Figure 3.3: 57 feet, long range prototype boat (LRV-17), made of carbon
�ber/CNT composite by Zyvex Marine [61].
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3.2 Business Ideas in Aquaculture

Aquaculture refers to the marine �sh farming industry in Norway producing in

excess of 1,1 million tons of seafood worth about 50 billion NOK in 2012 [62, 63].

The �sh, mostly salmon, is farmed in submerged net cages as seen in Fig 3.4. The

farms, located all along the Norwegian coast, sell �sh worldwide, making Norway

the second largest seafood exporter in the world. The industry has a good focus

on sustainability and several issues in need for improvement have been identi�ed.

Figure 3.4: Picture of a �sh farm in Norway showing only the �oating collar
of the net cages [64].

3.2.1 Fish Lice

Aquamedicine Biologist Nils Fredrik Vestvik at Aqua Kompetanse AS was inter-

viewed on the problems faced by the �sh farming industry [65]. An issue of great

concern is the spread of �sh lice, a parasite harmful for the well-being of the �sh

and therefore illegal to ignore. The lice are currently being controlled by vacci-

nating the �sh, but as the lice are evolving, they become resistant to the vaccines.

Attempting to functionalize CNT-yarn for such an application is probably a little

bit far-fetched.

3.2.2 Mooring Plate

Situated in Trondheim, Aqualine is a well established supplier of �sh farming

equipment ranging from �oating collars to mooring systems [66]. Their 30 years of



Chapter 3 - Locating Applications 24

experience have culminated to a very short catchphrase; strength counts. Through

a meeting with Noralf Rønningen, their Project and Development Manager, strength

was indeed the most important property. The equipment in a �sh farm needs to

withstand large and �uctuating strain in an extreme environment, well illustrated

by Fig. 3.5.

Figure 3.5: Aqualine �sh farm under harsh weather conditions [66].

The mooring plate of a �sh farm was identi�ed as critical and in need for improve-

ment. The mooring plate is used to combine mooring lines stretched in di�erent

directions below the net cage, balancing out the forces and securing the farm to

the ocean �oor. The current plate used is a solid piece of galvanized steel as seen

in Fig. 3.6. It is heavy, giving high cost and complicating installation. A solution

could be to replace the mooring plate with a wind/knot of CNT yarn.

Figure 3.6: Aqualine mooring plate used in fastening the farm to the ocean
�oor [66].
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3.2.3 Net Cage

A problem area discussed with both Vestvik and Rønningen is the net cage that

surrounds the �sh keeping it from escaping the farms as seen in Fig. 3.7. The

net is usually made by nylon due to its low cost and perseverance in salt water.

The problem with nylon is the strength; it is too weak and may easily rupture.

Suppliers are now looking into replacing nylon with strong polymer �bers such as

Dyneema.

The net cage also has a problem with algae clogging the net causing oxygen de-

�ciency. The �sh farmers need to clean the net regularly, a task often involving

submerged jet water washing by divers or ROVs. The task is very expensive and

�sh farmers would be most interested in a net with antifouling properties that do

not let algae to grow.

Carbon nanotubes yarn is strong and non corrosive, hence a potential replacement

for nylon. Its chemical stability and hydrophobicity may give antifouling abilities

as well.

Figure 3.7: Illustration showing the order of size of a typical net cage. The
amount of �sh is not representative [66].
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3.3 Business Ideas in Shipping

Norway has a history of shipping stretching from Viking longships to high-tech

o�shore supply vessels (Fig. 3.8) [67]. The industry employs more than 100 000

people in shipping companies, shipyards, suppliers, services, etc., with a value

exceeding 150 billion NOK [68]. Success is not measured by the amount of natural

resources extracted, but by the quality and availability of the service provided

despite extreme harsh environments. It may well be one of the most challenging

industries from a material science perspective.

Figure 3.8: Illustration of a Polarcus research vessel designed for operations
in arctic waters, made by Ulstein Group [69]. The bow, known as X-BOW, is

supposedly inspired by Viking longships [70].

3.3.1 Ropes

Like the use of CNT yarn in net cages, it may be used in tugging and hawser

ropes (Fig. 3.9). O�shore & Trawl Supply AS located just outside Ålesund is

a well established manufacturer of ropes made of synthetic �bers [71]. Their

strongest ropes made of Dyneema �ber have diameters ranging from 6mm to

350mm. Fiber ropes have received increasing attention to replace steel chains

at low depths and where there is a risk of hitting equipment with the lines. To

make CNT yarn attractive to make rope, the tenacity (tensile strength per weight)

should be proved at least as high as Dyneema and not be too expensive.
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Figure 3.9: Illustration showing the large amount of ropes used in seismic
operations [71].

3.3.2 HVAC

Novenco Marine & O�shore A/S is a Danish �rm and one of the world's leading

suppliers of heating, ventilation, air-conditioning and refrigeration solutions for

merchant ships and o�shore vessels [72]. The HVAC systems typically suck in

very humid air, run a heating/cooling process and distribute the air around the

ship. As ships often travel across varying climate, the operating conditions of the

HVAC systems change frequently, putting a high strain on the components.

CNTs might be suitable for ventilation systems due to their high thermal conduc-

tivity and corrosion resistance. Furthermore, the reports on CNT yarn swelling

by absorbing water could be useful. A brand new idea will be to use CNT yarn as

desiccant in a thermal wheel used in energy recovery heat exchangers. However,

this will put the CNTs directly in the ventilation and because there are a lot con-

cern about the health risk of airborne nanomaterials, the idea will likely be turned

down.

3.3.3 Thrusters

Located in Molde, Brunvoll AS manufacture, mount and service thrusters on ships

typically used for maneuvering ships in tight spaces (Fig. 3.10) [73]. When op-

erating the thrusters, vibrations are inevitable and components will be subject

to fatigue. Because CNT yarn has a high toughness, it is believed to be able to
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absorb more energy and give components longer fatigue life. Speci�c components

of the thrusters to improve have not been identi�ed.

Figure 3.10: Illustration of a low noise tunnel thruster made by Brunvoll [73].

3.4 Business Ideas in O�shore Oil/Gas

For more than 40 years, Norway has extracted oil from the continental shelf bring-

ing in immense amount of capital. Today there are 76 �elds in production ranking

Norway as the fourteenth largest oil producer and the sixth largest gas producer

in the world (2011) [74]. It is certainly a matter of national interest as the entire

petroleum sector represents more than 23 per cent of the national value creation.

There are about 50 Norwegian and foreign companies operating on the Norwegian

continental shelf with Statoil as the leading one (Fig. 3.11). In addition, a large

amount of suppliers are spread out along the coast.

Figure 3.11: Illustration of a subsea installation at the Visund South reservoir
connected to the Gullfaks C platform operated by Statoil [75].
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3.4.1 Buoyancy Body

Through a meeting with Statoil employee adjunct professor Mons Hauge, some

of the current material challenges of Statoil were discussed. A currently unsolved

issue of Statoil is buoyancy bodies. When lowering equipment down to low depths,

the weight of the equipment and lines induce high strain on the vessel. A �oating

body attached to the equipment is a proposed solution, but balancing the high

external pressure with thick steel walls makes the body too heavy. Maybe aligned

CNTs in a sandwich structure could be used to support the body on the inside,

keeping it from collapsing.

3.4.2 The Arctic Challenge

Professor Morten Karlsen, head of Statoil's Arctic Technology Research Program

showed great interest in exploring new materials in their arctic operations. As

in Fig. 3.12, equipment quickly becomes covered in ice, making it impossible to

operate valves and cranes. Furthermore, construction materials may pass over the

ductile-to-brittle transition region seriously decreasing the fracture toughness [76].

Lastly, a high thermal elongation coe�cient may cause buckling or gaps, especially

when doing start/stop operations giving temperature variations.

According to Prof. Karlsen, CNTs have already been discussed as a solution. By

adding CNTs to paint, the hydrophobic properties may be utilized to repel ice.

Statoil has also looked into the possibility of adding CNT to rubber to make it

more durable and less temperature dependent.

Figure 3.12: Photography of equipment completely covered in ice [77].
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3.4.3 Oil/Water Separation

There are several uses for equipment that separate oil and water in oil re�nement,

wastewater treatment, oil spill cleanup and bilge water treatment. Moreover, the

presence of water in lubricating or hydraulic system advocate a range of problems

including corrosion, reduced lubricity and formation of ice crystals at low temper-

atures [78]. By installing an oil dryer (water remover) onto the hydraulic system,

maintenance is reduced and money saved. A �lter of CNT fabric letting oil but

not water pass through may be a very pro�table business idea. Another approach

would be to such up oil using the CNT sponges that have already shown their

appearance in scienti�c journals [79].

3.5 Opportunities To Pursue

Two of the proposed business ideas have been picked out for further development.

The concepts should utilize the properties of CNTs, look economic or environmen-

tally feasible and preferably be unique of its kind.

The net cage for �sh farming has been chosen because it employs many of the

CNT's properties. The combination of high strength, anti-fouling properties and

long lifetime makes it ideal for such an application. Also, it is de�nitely an unique

idea.

The second concept is oil drying; removing water contamination from oil in hy-

draulic and lubricating systems. If succeeded, it would be very pro�table with

customers in all kinds of industries.
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Figure 4.1: CAD model of oil drier assembly.

The aquaculture net cage and hydraulic oil drier exploit the extraordinary prop-

erties of CNTs in maritime environments and have been selected for further devel-

opment. This section will study issues with current solutions, look at alternatives

and determine whether the CNT solution is viable. Comparison with alternative

polymer �bers has been done for the net cage and CAD modeling has been done

for the oil drier.

31
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4.1 Net Cage of CNT Yarn

The fundamental function of the net cage is to keep the �sh from leaving the

farm as well as keeping predators from entering. It is composed of a mesh made

with carefully de�ned openings such that the strength is high and the water �ows

through easily. A net cage typically has a cylindrical shape, is 50m in diameter,

20 � 50m deep and has a narrowing in the bottom as seen in Fig. 4.2.

Figure 4.2: Illustration of a net cage. The top ring on the surface is called
a �oating collar, the horizontal submerged ring is called bottom rope and the

vertical ropes in between, holding the mesh, are called vertical ropes [80].

The new idea is to replace the twine material of the mesh (usually nylon) with

CNT yarn. It is expected this will increase the strength, reduce the need for

maintenance and give the net cage a longer lifetime. Drawbacks may be high

costs and biological hazards.

4.1.1 Problem Description

The net cages are subject to a harsh environment and may fail, resulting in �sh

escaping the farm. In addition to loosing pro�t, unleashing the farmed �sh among

the wild �sh are endangering the diversity of the species [81]. The Norwegian

Ministry of Fisheries and Coastal A�airs (Fiskeri- og kystdepartementet) are urg-

ing for a solution, but any new material proposed to replace the twine must be

certi�ed according to government regulations before use.
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Norwegian Standard NS 9415, Floating �sh farming installations � design, dimen-

sioning, construction, installation and operational requirements places strict tech-

nical requirements on �sh farming installations [82]. It includes minimum twine

tensile breaking strength for various designs and requires that at least 65% of the

strength is left after 24 months of operation. The twine should have higher elas-

ticity than the ropes and a high elongation-at-break percentage is desired to take

up energy from impacts and creep. Also, the mesh and rope should not shrink

such that forces are transferred from rope to mesh. A low weight is preferred to

reduce the strain on the �oating collar and ease installation.

The net cage must have a design working life of at least 36 months [82]. Through-

out the lifetime, the equipment will be subject to constant fatigue from waves and

current in addition to wear from temperature changes, corrosion, UV radiation

and maintenance activities. The materials used in the �sh farm may not impose

the risk of harming the �sh, its surroundings or the facility. Additionally, the �sh

may not under any circumstance bring any toxic agents to its consumer. The net

cage should also have a high permeability, meaning water should be able to �ow

freely through to provide enough oxygen to the �sh.

4.1.2 Current Solutions

The established material for the twine is nylon. It ful�lls the government require-

ments, but several incidents of net rupture have called for stronger materials [83].

Mørenot Aquaculture AS has chosen Dyneema as the best replacement for nylon

and is currently testing its performance in net cages [84]. To assess CNT yarn,

a thorough search for alternative �bers and their properties was performed. The

Dutch �ber company Euro�bers [85], a supplier of high performance �bers from

leading brands such as Dyneema and Kevlar, was contacted to ask for test results.

Their in-house test results was supplemented by data from MatWeb and some

vendors, and listed in Table 4.1.

For direct comparison, properties of CNT yarn were included in the same table.

Extensive search in scienti�c journals found properties of 24 CNT yarns spun from

CNT arrays and are listed in Table B.1 in Appendix B. The mean and median

properties was calculated for the CNT yarn and compared with the commercial

�bers in Table 4.1. Because some extreme values are shifting the mean giving

a high standard deviation, the median is considered the most reliable. The par-

ticularly good result by the reputable Prof. Zhang and his team was included to
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show how good the properties may become (CNT yarn Zhang) [86]. In addition,

Nanocomp Technologies, an American company already selling CNT yarn was

contacted and asked for test results (CNT yarn N.Comp.) [56]. Note that tests

are performed in di�erent setups and environments creating some room for error.

Table 4.1: Mechanical properties of commercial high performance �bers in-
cluding CNT yarn.

Density E-Modul Tens. strength Tenacity Elong. at break Ref.

Brand name [g/cm3] [GPa] [MPa] [N/Tex] [%]

Dyneema SK78/75 0,97 121 3 600 3,70 3,5 [85]

Dyneema SK65/62/60 0,97 83 2 850 2,95 3,5 [85]

Dyneema SK25 0,97 52 2 200 2,20 3,5 [85]

Diolen 1,38 N/A 1 049 0,76 12,3 [85]

Twaron 1,39 N/A 2 724 1,96 3,1 [85]

Technora 1,39 70 3 000 2,23 4,4 [24]

Vectran UM 1,4 103 3 000 2,14 2,8 [87]

Zylon HM 1,56 280 5 800 3,71 2,5 [24]

Kevlar 29 1,44 71 2 920 2,03 3,6 [88]

Kevlar 49 1,44 112 3 000 2,08 2,4 [88]

Kavlar 149 1,47 179 3 450 2,35 N/A [24]

Nylon 6 1,14 N/A 583 0,51 7,8 [24]

Nylon 66 1,22 N/A 507 0,42 8,3 [24]

Spectra 0,97 172 3 000 3,09 N/A [24]

CNT yarn mean 0,66 101 922 3,43 4,7 Tab. B.1

CNT yarn median 0,68 65 625 1,72 2,4 Tab. B.1

CNT yarn Zhang 0,20 182 2 325 11,74 9,0 [86]

CNT yarn N.Comp. 0,75 N/A 900 1,20 17,5 [56]

4.1.3 Device Design

The business idea is to replace the twine, not modify the design of the net cage.

Therefore, only a new twine diameter will be calculated here using the cage in

Fig. 4.3 as model. According to Table 8 and 9 in NS 9415, the model is placed in

dimension grade VII and should hold a minimum weight of 136 kg [82]. The re-

quired CNT twine thickness is calculated using basic mechanics as seen in Eq. 4.1.

The strength of commercial CNT yarn from Nanocomp Tech. from Table 4.1 is

used in this assessment.
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Figure 4.3: Size of typical net cage. Twine diameter is to be determined.

σUTS = F/A =
m · g

π ·D2
min/4

(4.1)

Dmin =

√
4 ·m · g
π ·σUTS

(4.2)

=

√
4 · 136 kg · 9, 81 m/s2

π · 900 MPa
= 1, 4 mm (4.3)

To ful�ll the government requirement, the CNT twine diameter, calculated by

Eq. 4.3, should be at least 1,4mm. Corresponding calculations for nylon 6 and

DyneemaSK60 give 1,7mm and 0,8mm respectively.

4.1.4 Discussion

CNT yarn seems to satisfy the government regulations on mechanical properties.

It is stronger than nylon, hence requiring lower twine diameter. The toughness of

CNT yarn is assumed high due to the large number of nanotube interfaces that

can absorb energy by slipping. The yarn has a high elasticity and ful�lls the strain

requirement. Furthermore, the density is low, making the cage light. The high

stability reported in section 2.2.4 suggest long lifetime and little fouling. However,

there is a lack of reports on CNT yarn behavior when submerged in water. There

is a chance the yarn will swell and loose its strength.
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Dyneema is probably the greatest rival to CNT yarn. It is currently much stronger,

is well tested in maritime environments and is probably cheaper. Nonetheless, the

chemical stability and high toughness of CNTs are in favor of CNT yarn.

The main problem of using CNT yarn in net cages is the health risk. If CNTs are

used, the release of CNTs in the water is inevitable. The �sh as well as other sea

creatures may inhale CNTs and pass them on to its consumer, eventually ending

up at the dinner table. It is a risk not worth taking and is destroying the business

idea. As long as CNTs are considered toxic, it should not be used in agriculture

of any kind.

4.1.5 Further Work

The issue of toxicity and environmental impact of CNTs should be tested thor-

oughly before continuing this concept. However, using CNT yarn in other maritime

industries is not out of the question. A study on CNT yarn behavior in aqueous

solution over time should therefore be performed. Because cost is always an issue

in comparing materials, a cost analysis of CNT yarn would be helpful.
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4.2 Oil Drier with CNT Membrane

Water contamination is a problem in hydraulic and lubricating systems [89]. Up

to the saturation point, the water is dissolved in the oil. Around the saturation

point, the water emulsi�es by gathering into tiny globules. Once the emulsi�ed

water accumulates, they form an inclusion of free water. The water may initially

be dissolved in the oil when the system is �lled. Because the saturation point is

lower at low temperatures, the water may condense to free water during operation

at reduced temperature. Other sources of water include leakage through seals,

gaskets and faulty components. Figure 4.4 show the components of a typical

hydraulic system.

Figure 4.4: Illustration of a typical hydraulic system [90].
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4.2.1 Problem Description

First of all, water facilitates corrosion. In addition to uniform corrosion on sites of

free water, the �uid motion may give erosion-corrosion rubbing away material [91].

If small cracks develop, water may penetrate and cause pitting and hydrogen em-

brittlement [89]. In valves and pumps, the oil may get a pressure drop vaporizing

emulsi�ed water causing cavitation. In cold environments, the water may freeze

into damaging ice crystals and in warm environments, the water may be living

grounds for oil-eating microorganisms. Furthermore, water reduces the quality of

the oil by decreasing lubricity and increasing degradation.

The operating function of a hydraulic or lubricating system intensi�es the impor-

tance of oil drying. Hydraulic systems are often used to operate large valves and

gates in remote systems making the operator very dependent on it. Furthermore,

a failure in a lubricating system on a large machine, as seen in Fig. 4.5, may be

catastrophic.

Figure 4.5: Photograph of roller bearing subject to water damage [92].

4.2.2 Current Solutions

Current solutions for removing water from oil tackle the water states di�erently.

The simplest approach is draining the oil reservoir of both air and free water

by turning valves in the top and in the bottom [89]. Air rises to the top and

water sinks to the bottom. Secondly, centrifuges may be installed in the pipeline

to remove both free water and some emulsi�ed water by exploiting the di�erent

densities, although this requires high installation and maintenance costs. The

third solution is to use a �lter to collect and fuse emulsi�ed water into free water
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for draining, called a coalescer. This approach does not work for all types of

oils and may be hindered by clogging. If the amount of free water is small, an

absorbing �lter may be used to remove free and emulsi�ed water. Obviously, such

a �lter must frequently be replaced. If the dissolved water must be removed as

well, vacuum dehydration puri�ers are used. Vacuum makes the dissolved water

boil and the steam is removed through valves. The latter removes all states of

water, but the investment and maintenance are expensive.

4.2.3 Device Design

The device proposed here is fundamentally di�erent from the previous techniques.

It is composed of a �lter that blocks instead of absorbing the water. It should

require less maintenance and have a longer lifetime. The working principle and

design will be explained.

Working Principle

As recently shown by Shi et al., a sheet of entangled CNTs may separate emulsi�ed

oil/water mixtures [59]. Their membrane, seen in Fig. 4.6, was able to purify a

water contaminated solution of surfactant-stabilized oil (Toluene) from 99,00wt%

to 99,97wt% (350 ppm) at a �ux of 3 090Lm-2 h-1 bar-1. Because of the contact

angle of water droplets, measured to 94◦, the droplet keeps its shape and rests on

top of the membrane. The same test on oil droplets resulted in a contact angle

of nearly 0◦, i.e. the oil spread out. When the oil/water mixture is placed on top

of the membrane, the oil su�uses and penetrates whereas the water congregates

on top. Key parameters of success are membrane pore size controlled by the

membrane thickness and the pressure di�erence through the membrane.
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(a)

(b)

Figure 4.6: Figures from Shi et al. [59]. (a) Fig. S1,D. Left: SEM image of
70±5 nm thick CNT membrane, inset: optical microscopy of transparent mem-
brane on top of a printed document. Right: TEM image of CNTs in membrane
(b) Fig. 3,C. Optical microscopy of solutions before (left) and after (right) �l-
tration of Toluene with water droplet size 270±50 nm. Middle: Photograph of

the respective solutions.

Design

A simple design turning the research membrane into a commercial product has

been developed. A steel cone with vertical openings as seen in Fig 4.7a will work

as framework and support the membrane. The membrane (Fig. 4.7b) should

consist of CNTs and have a predetermined pore size and thickness according to

oil properties. The membrane can either be made by �ltering a CNT solution and

placed on the cone as in Fig. 4.8a, or it can be made by pulling a fabric from a

CNT array and winded onto the cone as in Fig. 4.8b.
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(a) (b)

Figure 4.7: Main components of CNT �lter. (a) Steel cone with vertical
openings. (b) Flexible CNT membrane.

(a) (b)

Figure 4.8: Illustrations of ways to put the CNT membrane onto the cone.
(a) Make the membrane by �ltering a CNT solution and place it on the cone.
(b) Pull a CNT fabric from a CNT array and wind it directly onto the cone.

The �lter unit, seen in Fig. 4.9a, is 250mm high and has a bottom diameter of

75mm. The e�ective �lter area of the device (the area of the openings) is calcu-

lated to be approximately 60 cm2. Using the measured �ux (3 090Lm-2 h-1 bar-1)



Chapter 4 - Concept Development 42

of the Toluene solution from Shi et al. and a pressure di�erence of 0,5 bar, the

�lter �ow rate is calculated to 0,15 L/min by Eg. 4.5 [59]. The �lter unit will let

oil pass through in the center and guide the water to the side as seen in Fig. 4.9b.

Q = Flux ·Area ·Pressure (4.4)

= 3090
L

m2 ·h · bar
1h

60min
· 60 · 10−2m2 · 0, 5bar = 9, 12L/h = 0, 15L/min (4.5)

(a) (b)

Figure 4.9: (a) Illustration of complete CNT �lter unit. (b) Cross section
image of �lter unit showing how water is blocked and guided to the side.

A simple assembly include a �lter, some pipes and a spiral case as seen in Fig. 4.10.

The water/oil mixture enters at the top and runs through the conical �lter. Water

is collected around the bottom of the cone and collected in the spiral case before

guided out to the side. Only the oil penetrates the membrane and passes through.
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Figure 4.10: Illustration of oil drier with CNT membrane assembly.

4.2.4 Discussion

This device is developed following a series of articles presenting the idea of oil/wa-

ter separation by CNT membranes [58, 59, 93]. It is expected that others have

the same business idea and would like to commercialize it. In fact, patents ap-

plications are already pending for CNT �lters [94]. If the device proposed here is

to be continued, the examination of patent applications and possible �ling of own

patent should be commenced.

The speci�c �lter designed here was calculated to �lter Toluene at 0,15 L/min.

Even though oil driers are needed in all sizes, the �lter should probably �lter at

least 1 L/min to compete with other techniques [95]. The simplest solution would

be to increase the cone height, in turn increasing the �lter area. Furthermore,

Toluene is a low viscosity oil mainly used as solvent. Tests on thicker commercial

oils more common in hydraulic and lubricating systems are needed.
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To handle the pressure di�erence through the membrane, the mechanical strength

of the carbon nanotubes are needed. It is not clear which of the membrane fabri-

cation techniques suggested here, �ltering dispersed CNTs on a grid or pulling a

fabric from a CNT array, are optimal.

Issues of health risk and cost are well handled in this device. The CNTs are

contained in a closed conduit system with low risk of leakage. The amount of

CNTs in a �lter is considered low, hence the cost is held low. Fabrication of a

prototype should not require any large investments.

4.2.5 Further Work

A proof that the CNT membrane works with hydraulic and lubricating oils is

necessary. Membranes of di�erent pore sizes should be acquired and tested with

various oils with di�erent viscosities, droplet sizes and water fractions. In addition,

a more thorough study of patents and patent applications on CNT �lters is needed.
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Figure 5.1: Picture of the author operating the PECVD at NTNU Nanolab.

The value of a concept boosts once a successful prototype has been made. A critical

part of making the proposed devices, net cage and oil drier, is the fabrication of

CNTs and making of the yarn or fabric. The following chapter will cover the

growing of VACNTs at NTNU Nanolab. The entire procedure will be elucidated

including equipment settings, results and discussion.

45
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5.1 Introduction to Growth of CNTs

Before attempting to grow CNTs, a thorough understanding of the CNT char-

acteristics and fabrication method is essential. Due to previous experience with

growing of VACNTs, it is decided to make the CNT membrane and yarn using the

pulling technique described in section 2.3.4.

5.1.1 Target Characteristics of CNTs

The success in pulling either yarn or fabric from a CNT array is highly dependent

on the characteristics of the CNT array. The following section will determine the

target characteristics of the CNT array for CNT yarn fabrication. The targets are

expected to hold for both yarn and fabric.

Several research groups have tried to come up with criteria for VACNTs for yarn

pulling. Lee et al. were only able to make yarn with CNT length in the range of

180 � 1 500µm [96], whereas Kutnetsov et al. concluded that the CNT length must

be within 50 � 800µm [97]. However, the collection of CNT yarn characteristics

seen in Table 5.1 prove them both wrong. The length issue is more likely related

to the waviness and entanglement occurring at long growth times, not the length

itself. For the pulling technique to be e�ective, the tubes need to separate easily in

the centers and join together in the ends as illustrated by Fig. 5.2 [98]. Therefore,

the tubes should be straight and pure in the centers and dense and entangled in

the ends. If the density is too high, the stress among the tubes during growth

could result in some tubes detaching from the substrate [96]. If this happens, the

density at the bottom gets reduced and yarn pulling di�cult.

Figure 5.2: Illustration of how entanglement in top and bottom of CNT array
connect the individual CNTs while pulling a yarn [98].
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Table 5.1: CNT characteristics from successful CNT yarn pulling. More details
found in Appendix B. Abbreviations explained in the front matter.

Diameter [nm] Length [µm] Walls Growth method Ref.

10 300 MWCNT CVD Aliev et al. 2007 [99]

N/A 300 MWCNT CVD Atkinson et al. 2007 [100]

N/A 550 MWCNT CVD Atkinson et al. 2007 [100]

15 500 MWCNT WACVD Jakubinek et al. 2012 [101]

10,5 5 000 MWCNT CVD Jayasinghe et al. 2011 [102]

15 450 MWCNT CVD Kuznetsov et al. 2011 [97]

10 425 MWCNT N/A Liu et al. 2010 [103]

10 235 MWCNT N/A Liu et al. 2010 [104]

N/A 170 MWCNT CVD Nakayama 2008 [105]

8 350 MWCNT CVD Randeniya et al. 2010 [106]

5,5 720 DWCNT PECVD Ryu et al. 2011 [107]

8 350 MWCNT CVD Tran et al. 2009 [108]

8 350 MWCNT CVD Tran et al. 2011 [109]

11,5 100 MWCNT CVD Zhang et al. 2004 [54]

7 1 000 DWCNT CVD Zhang et al. 2007 [86]

10 650 MWCNT CVD Zhang et al. 2007 [110]

10 1 000 MWCNT WACVD Zhang et al. 2008 [111]

Zhang et al. performed strength measurements on CNT yarn made of CNTs with

di�erent lengths grown by chemical vapor deposition (CVD) [110]. They discov-

ered the �ber strength increases as the CNT length increases as seen in Fig. 5.3,

hence longer tubes are preferred for load bearing applications. Furthermore, longer

tubes are expected to be of less health risk as they can be considered as articles,

not particles [56].

From the previous reports of CNT yarn fabrication, a requirement speci�cation

for the CNT array is made. These requirements, seen in Fig. 5.4, will work as

guide when the parameters of the fabrication equipment are determined and when

evaluating the fabrication results.
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Figure 5.3: Tensile strength of CNT yarn made by CNT array of three di�erent
tube lengths. Longer tubes yield higher tensile strength [110]

Figure 5.4: Requirement speci�cation for the VACNTs. A height higher than
100µm is of particular importance.

5.1.2 Growth Mechanisms of PECVD

The CNTs will be grown by plasma-enhanced chemical vapor deposition (PECVD).

PECVD has a large amount of parameters to control and their correlations are not

fully understood. The technique involves mixing a carbonaceous gas and plasma
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such that carbon atoms are released and deposited into a tube [112]. The growth

mechanism in a PECVD as the one in Fig. 5.5 is shortly reviewed.

Figure 5.5: Schematic of the PECVD located at NTNU Nanolab. The sample
is inserted in the loading chamber and a loading arm moves the sample into the
main chamber. The top electrode is a disk with holes to let the process gasses

penetrate. The sample rests on top of a heater/electrode.

A wafer coated with a layer of catalyst, here iron, is inserted into a chamber at

high vacuum and high temperature [113]. The sample is heat treated such that

the catalyst recrystallizes to form spherical catalyst particles of a speci�c size.

A gas, usually ammonia, nitrogen or hydrogen is added to control the process

called pretreatment. Step two is the growth of CNTs where a gas containing

carbon enters the chamber, supplemented by control gasses such as ammonia,

nitrous oxide and/or hydrogen. To decompose the gas and release the carbon

atoms, a plasma ignited by an alternating radio frequency voltage, excite the gas

molecules. The released atoms di�use to the catalyst particle and deposit on the

edges creating a ring of carbon as seen in Fig. 5.6. Maintaining this process makes

the carbon grow into a tube with the catalyst resting on top, called top growth.

After a preset growth time, the chamber is purged and pumped to remove gases,

cooled down and the sample is extracted.
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Figure 5.6: Schematic of VACNT top growth. 1. Carbonaceous gas is in-
troduced. 2. The carbon atoms decompose and attach to the catalyst. 3. The
carbon forms a ring at the underside of the particle. Frequent addition of carbon

atoms makes the catalyst particle rise, growing a VACNT.

The van der Waals forces make the tubes repel each other aligning them vertically.

In addition, the plasma assists alignment by introducing a strong vertical voltage

potential [13]. The problem with using plasma is the risk of etching. If the e�ect

is too high or the growth step too long, the plasma may etch away the catalyst

and tubes completely [113].

5.1.3 Initial Equipment Parameters

The master's thesis by M.Sc. Karl Erik Nordheim lay the foundation on growing

CNTs at NTNU Nanolab [50]. Of Nordheim's 226 di�erent recipes, 38 of them

yielded VACNTs including recipe E47 seen in Table 5.2. His data will be used to

derive the initial parameters for CNT yarn fabrication.
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Table 5.2: Successful CNT recipe E47 by Nordheim [50].

Step Description Equipment Parameters

1 Cut sample Scriber unit 5x5mm, 250µm thick Si-wafer

2 Clean sample Solvent bench Acetone, Ethanol, DI-Water, N2

3 Dehydrate sample Hot plate 180 ◦C, 2 min

4 Deposit barrier layer Sputter coater 30 nm Al

5 Oxidize barrier layer RTP Oven 500 ◦C, 50 0 sccm O2, 30min

6 Deposit catalyst Sputter coater 1 nm Fe

7 Slow heating PECVD 300→650 ◦C, 50 sccm NH3, 0mTorr, 30min

8 Pretreatment PECVD 650 ◦C, 50 sccm NH3, 1 000mTorr, 30min

9 VACNT growth PECVD 650 ◦C, 50 sccm CH4, 1 000mTorr, 100W, 60min

10 Slow cooling PECVD 650→300 ◦C, 1 200 sccm Ar, 0mTorr, 120min

Nordheim had best success with a catalyst layer thickness of 1 nm as seen in

Fig. 5.7. The reason is probably that thicker catalyst layers have trouble forming

particles in the pretreatment. Furthermore, he tested the use of N2O instead of

NH3 in step 8. Once he changed the gas to N2O, the recipe yielded VACNT for

catalyst layer thickness 1, 3, 6 and 10 nm (Fig. 5.8).

(a) (b)

Figure 5.7: SEM images showing dependence on catalyst layer thickness [50].
(a) Recipe E47, catalyst thickness 1 nm. 90◦ tilt. VACNT. (b) Recipe E48,

catalyst thickness 3 nm. 30◦ tilt. No VACNT.
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(a) (b)

Figure 5.8: SEM images showing dependence on pretreatment gas at 90◦

tilt [50]. (a) Recipe E115. Replaced NH3 with N2O in pretreatment. Cata-
lyst thickness 1 nm. VACNT. (b) Recipe E116. Replaced NH3 with N2O in

pretreatment. Catalyst thickness 3 nm. VACNT.

The E47 recipe had a heating and cooling cycle (step 7 and 10), but this seemed

to inhibit growth. As seen in Fig. 5.9, samples with both 1 nm and 3 nm cata-

lyst thickness was successful when these steps were left out. It also resulted in

an increased growth rate for these samples as recipe E167 had a growth rate of

0,48µm/min, the highest of all recipes.

(a) (b)

Figure 5.9: SEM images showing dependence on heating and cooling cycle
at 90◦ tilt [50]. (a) Recipe E167, heating and cooling removed, catalyst thick-
ness 1 nm. VACNT. (b) Recipe E168, heating and cooling removed, catalyst

thickness 3 nm. VACNT.
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5.2 Method

In cooperation with Espen Rogstad, NTNU Nanolab Chief Engineer, growing of

CNTs was attempted. The goal was to grow CNTs that ful�ll the speci�cations

in Fig. 5.4 with an easily reproducible recipe. The established reference recipe,

called R01, will hereby be explained. A more detailed procedure may be found in

Appendix C, the equipment is listed in Appendix D and some notes on handling

and storage are found in Appendix E.

A small piece measuring 5x5mm was cut out of a 51mm (2 inch) diameter, 250µm

thick silicon wafer using an automatic scriber. The piece was cleaned by putting

it in a beaker �lled with acetone and lowered into an ultrasonic bath for 5min at

20 ◦C. The sample was then transferred to a beaker with ethanol to rinse o� the

acetone. Finally it was sprayed with isopropanol and deionized water, followed

by blow drying with nitrogen gas. The sample was dehydrated for 5min on a hot

plate at 185 ◦C.

To prevent contamination of silicon in the catalyst, a 30 nm aluminum barrier

layer was deposited using a water-cooled sputter head in an argon atmosphere.

The barrier was further enhanced by oxidation in a rapid thermal processing oven

for 30min at 500 ◦C with 500 sccm O2. The 1 nm iron catalyst layer was deposited

with the same sputter coater, but without water-cooling. For easier imaging of

the samples cross section, a piece of tape was put along one of the sides to prevent

growth on a small strip.

The �nal steps take place in the PECVD pre-set at 650 ◦C. The sample is loaded

into the chamber where the chamber preparation includes purging nitrogen gas for

2min and pumping to a base pressure of 1, 5 · 10−5 using 22min. Further thermal

pretreatment is done by adding 50 sccm NH3 at 1 000mTorr for 30min, that is

54min at 650 ◦C pretreatment in total including chamber preparation time. At

last, 50 sccm methane gas at 1 000mTorr is added to feed the growth with carbon.

The growth time is 120min and a plasma of 100W is present the whole time.

Chamber dispatch includes a pump-purge cycle, pumping to base pressure and

lowering the temperature to 435 ◦C. Every run in the PECVD is logged and the

log of recipe R01 is seen in Fig. 5.10.



Chapter 5 - Fabrication 54

Figure 5.10: Graph showing the temperature development through the pro-
cessing of reference recipe R01 in the PECVD with main steps labeled. During
growth, the temperature is stable at 650 ◦C, but drop to 435 ◦C during dispatch.

Visual inspection of samples after fabrication was the �rst assessment of the recipe.

The second characterization technique was cross section imaging by optical mi-

croscopy. The sample was attached to a SEM stub, mounted on a sample holder

and laid on the side in the microscope. The third technique was imaging by

scanning electron microscopy (SEM).

With basis in the reference recipe R01, several alternative recipes have been at-

tempted. However, due to process irregularities like equipment failure and shat-

tered samples, some results have been rejected. Table 5.3 present the parameters

that have been subject to change in the completed attempts.
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Table 5.3: Di�erences between recipes for VACNT growth.

Parameter R01 R02 R03 R04 R05 R06 R07 R08

Al thickness [nm] 35,0 35,0 30,0 30,0 30,0 30,0 30,0 30,0

Chamber prep. time [min] 24 5 5 101 12 12 15 15

Pretreatment time [min] 30 15 30 45 48 48 30 30

Growth time [min] 120 120 120 60 120 60 60 120

Pretreatment gas NH3 NH3 NH3 NH3 NH3 NH3 N2O N2O

Enter temp [◦C] 650 300 650 650 650 650 650 650

Dispatch temp [◦C] 435 419 436 412 422 425 300 300

5.3 Results

When doing visual inspection, all samples had a dim black color as seen in

Fig. 5.11.

Figure 5.11: Photograph of all samples.

The cross section imaging by optical microscopy was a relatively easy procedure,

but the images could only give the height of the deposited layer as seen in Fig. 5.12.
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However, some pictures, like Fig. 5.12b, show distinct vertical lines indicating

something aligned.

(a)

(b)

(c)

(d)

(e)
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(f)

(g)

(h)

Figure 5.12: Digital photography through optical lens of sample's cross sec-
tion. (a) Sample R01. (b) Sample R02. (c) Sample R03. (d) Sample R04.

(e) Sample R05. (f) Sample R06. (g) Sample R07. (h) Sample R08.

SEM was used to study the samples even closer. At �rst, imaging was attempted

by a TableTop SEM but appeared to be useless due to low resolution. SEM with a

FIB installed was then used which proved to be successful with the help of fellow

student Marius Vebner. SEM images of 52◦ tilted samples R01 and R04 may be

seen in Fig. 5.13a and 5.13c. The remaining samples were imaged in a Zeiss FE-

SEM at a tilt of 30◦. SEM of R03 and R06 was omitted due to lack of sign of

CNT by optical microscopy.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: SEM images of samples from two di�erent electron microscopes.
(a) Sample R01, tilt 52◦. By M. Vebner. (b) Sample R02, tilt 30◦. (c) Sam-
ple R04, tilt 52◦. By M. Vebner. (d) Sample R05, tilt 30◦. (e) Sample R07,

tilt 30◦. (f) Sample R08, tilt 30◦.

The color of the samples and cross section imaging by optical microscope indi-

cated CNTs. SEM images reinforced this assumption. Using basic geometry, the

height of each sample was calculated from the tilted images from SEM. Table 5.4
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summarize the measured heights from both optical microscopy and SEM as well

as own observations from the images.

Table 5.4: Measured heights of the deposited layer by optical microscopy
(Opt.M.) and SEM. SEM images are used to determine whether CNTs and

VACNTs are present.

Parameter R01 R02 R03 R04 R05 R06 R07 R08

Opt.M. height [µm] 0 8 0 3 6 0 2 5

SEM height [µm] 0 6,6 - 1,1 3,4 - 1,2 2,4

CNT Yes Yes - Yes Yes - Yes Yes

VACNT No Yes - No Yes - Yes Yes

5.4 Discussion

During the �rst attempts to grow CNTs (R01 and R02), the Al and Fe layer was

deposited on several samples at a time and stored until their time in the PECVD.

This was soon altered such that the Fe layer was deposited just before the sample

was put into the PECVD to make sure the catalyst did not corrode. However,

sample R02 had �ve days between deposit of Fe and PECVD, hence the timing is

not that crucial. Also, the change in thickness of the Al barrier layer is probably

not of importance.

Despite the PECVD's simple user interface it introduced some issues. Perhaps the

greatest issue was the irregularity in the time it took to pump to base pressure in

chamber preparation. As seen in Table 5.3, recipe R04 used 99min to pump to

base pressure and 2 min to purge N2 (101min in total). The pump to base step in

the other attempts was either much quicker or restricted to a limited amount of

time. One occurrence of failing to raise the temperature to 650 ◦C was experienced,

but was �xed by restarting the power source. Furthermore, one attempt failed due

to the loading arm being uneven.

By the look of the SEM image of recipe R04 (Fig. 5.13c), it seems as the CNTs

have bowed down. A possible explanation is the thermal shock from 412 ◦C to

23 ◦C it experienced when the sample was taken out of the chamber. Recipe R07

and R08 was therefore altered by lowering the dispatch temperature to 300 ◦C.

However, no direct correlation on dispatch temperature could be made on such

few experiments.
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Sample R07 and R08 were pretreated with N2O instead of NH3. It is observed

that the doubling of growth time gave a doubling of the VACNT height. Whether

the growth is in fact linear is unsure.

The purpose of the characterization was to prove the existence of VACNTs, deter-

mine the density, height and entanglement or, if unsuccessful, indicate what might

have gone wrong. The optical microscope was able to indicate CNTs in a quick

and inexpensive way, but SEM was the only technique capable of showing their

cylindrical structure. However, SEM could not clarify if the structures were car-

bon nanotubes or carbon nano�bers (without a hollow core). For such assessment,

Transmission Electron Microscopy (TEM) should be used.

Height measurements taken in the optical microscope were all higher than the ones

taken by SEM. Whether this is a natural scattering or an e�ect of the wavelength

of light being close to the height of the tubes is not clear. Nevertheless, the SEM

measurements are more accurate. The maximum height achieved was 6,6µm.

However, the height requirement in Fig. 5.4 was set to 100µm. They are therefore

not suitable for yarn or fabric pulling.

By comparing the equipment limitations of the PECVD with parameters of suc-

cessful growth of VACNT in literature it is evident that the unit is not optimal

for such experiments illustrated by Fig. 5.14. The upper and lower values of the

boxes are values from successful VACNT fabrication in literature with the blue

line as the most popular value. The green values are the equipment limitations

and the red is the settings of recipe R02. The PECVD can only provide a low gas

pressure and have trouble reaching high temperatures. In addition, the installed

gases are less favored for CNT growth than for instance C2H2.
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Figure 5.14: Illustration of PECVD Parameters. The boxes illustrate the
parameter domain for typical VACNT growth with the same setup of gases and
equipment. Blue lines represent the most common values in literature while
the green lines are the equipment limitations. Red lines indicate the settings of

recipe R02.

5.5 Concluding Remarks

Even though the fabrication was well planned, unexpected issues with equipment

and lack of experience destroyed several samples. The total pretreatment time

including chamber preparation time is identi�ed as a particularly sensitive param-

eter. It is also shown that optical microscopy provide an easy and inexpensive

way of detecting VACNTs. Despite the di�culties, it is believed that CNTs were

grown at a maximum length of 6,6µm. The length is not as long as desired to be

able to make CNT yarn or fabric.
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5.6 Further Work

The fabrication provided only a fraction of the desired length to achieve yarn or

fabric pulling. It was therefore decided, with respect to the hazards of airborne

CNTs and the unlikely success, the attempt of pulling should be left out. The

fabrication technique of VACNT should be improved before such attempts are

made.

Because the technique has proven to be successful for other research groups, there

is no need to stop the device development. A cost analysis of the fabrication should

be performed to suggest a retail price once the correct equipment and recipe have

been found.



Chapter 6

Cost Analysis

Figure 6.1: Norwegian currency [114].

To answer the question of economic feasibility, a cost analysis is performed. This

chapter will calculate the expense of a die with VACNTs and the expense per

meter of CNT yarn. There will also be an attempt to locate which part of the

fabrication is the most costly. The analysis has been done using a modi�ed Cost

of Ownership model inspired by the semiconductor industry with formulas thor-

oughly documented.

63
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6.1 Introduction to Cost Modeling

A common mistake in cost modeling is to calculate the cost as the sum of materials

and parts. A more correct approach is to track resources and assign a value for

every process step, including equipment, maintenance, facility, labor and so on.

Furthermore, cost may also be the lack of pro�t and the cost of producing faulty

goods.

Due to the large uncertainty in the future of nanotechnology, only a manufacturing

cost analysis will be performed here, not the full life cycle cost analysis. Depending

on what kind of fabrication process used, a Manufacturing Cost Model needs to

be selected [115]. Analysis approaches include Process-Flow Analysis, Cost of

Ownership (COO), Activity Based Costing (ABC) and Parametric Models. The

Cost of Ownership model, partly developed by Intel (Fig. 6.2), is identi�ed as

the most suitable model as it is focused on the cost of equipment, facilities and

processes, considerable expenses in the fabrication of CNTs.

Figure 6.2: Fabrication facility at Intel, one of the founders of the Cost of
Ownership analysis [116].

In the mid 1980s, the semiconductor industry had trouble calculating the cost of

defects and idle time of their expensive fabrication equipment [117]. The products

required very little material, were high in volume and had a very short lifetime

before becoming obsolete. As a result, the COO model was developed to predict

the cost per unit. The fundamental COO algorithm (Eq. 6.1) is dividing the total

cost throughout the lifetime on the total number of good units produced during

the lifetime.
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COO =
CF + CV + CY

T ·Y ·U
(6.1)

where:
CF is the �xed costs occurring once.

CV is the variable costs occurring regularly.

CY is the cost of failed parts.

T is the throughput.

Y is the yield.

U is the utilization.

6.2 Method

The cost analysis will be based upon the fabrication procedure in section 5.2. To

�t the current scenario, the Cost of Ownership model needs to be adapted. It

must be able to calculate the loss of pro�t from having a machine running as a

bottleneck, but also give a reliable prediction of the expense put into the product.

Firstly, some key terms are de�ned:

Cost - The sum of money spent on the product and the money saved or lost.

Cost of yield (omis) - Di�erence between cost and yielded cost calculated by

the Omission method.

Cycle time - The time between each �nished unit.

Expense - Actual money being spent on the product.

Expense of yield (cuml) - Di�erence between expense and yielded expense cal-

culated by the Cumulative method.

Good unit - A unit with no defects.

Labor burden - Added fraction on the hourly labor rate to account for business

management, fringe bene�ts, etc. Total labor rate is (1+ labor burden).

Pro�t - Expected pro�t from selling each unit.

Step yield - Fraction of good units in the output of a step.
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Yielded cost - E�ective cost per �nished unit with no defects (good unit), i.e.

cost divided by yield.

Yielded expense - E�ective expense per �nished unit with no defects (good

unit), i.e. expense divided by yield.

Some operational assumptions are made.

• Defects may not be discovered or repaired during the fabrication process.

• All produced units will be sold immediately, i.e. no stockpiling.

6.2.1 Equations

The following section explain the formulas used in the cost analysis. It is common

to divide the calculation into three parts called capital costs, sustainment costs

and performance costs [118]. This analysis will also calculate capital expense,

sustainment expense and performance expense. The cost may be used to identify

uneconomical parts of the fabrication and the expense may be used to calculate

retail price. All formulas employed here are modi�ed versions of the formulas

found in Cost Analysis of Electronic Systems by Prof. Sandborn [118].

Capital Cost/expense

The cost of acquiring the equipment is calculated as capital cost. It is a one time

cost and may be reduced by selling the equipment after its use. Here, the expense

and cost is the same.

Capital Cost/expense =
Purchase Price− Residual Value

Depreciation Life
(6.2)

where:
Purchase Price is the cost of buying, installing and con�guring

the machine.
Residual Value is value of the machine at the end of its depreci-

ation life.
Depreciation Life is how many years the machine is expected to

operate.
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Sustainment Cost/expense

The sustainment expense is the sum of scheduled and unscheduled maintenance

cost, including the repair of equipment. The sustainment cost also includes the

lost pro�t from unscheduled maintenance events.

Typical scheduled maintenance events are cleaning, change of seals and calibration.

Spare parts are included in the labor burden.

Scheduled maintenance = Nsch ·TR ·LR (6.3)

where:
Nsch is the number of scheduled shutdowns for main-

tenance per year.
TR is the avg. hours used to perform the mainte-

nance.
LR is the hourly labor cost including labor burden.

Machines have a predicted number of operating hours before something fails and

require an unscheduled maintenance event.

Unscheduled maintenance =
Tprod
MTBF

·MTTR ·LR (6.4)

where:
Tprod is the number of production hours per year.

MTBF is the mean time between failures.

MTTR is the mean time to repair a failure.

LR is the hourly labor cost including labor burden.

The unscheduled maintenance events were supposed to bring pro�t but is now lost

pro�t from downtime.

Lost pro�t from dt. =

Tprod

MTBF
·MTTR

Cycle time
·Pro�t (6.5)

where:
Tprod is the number of production hours per year.

MTBF is the mean time between failures.

MTTR is the mean time to repair a failure.



Chapter 6 - Cost Analysis 68

Performance Cost/expense

Performance expense includes the expense of labor, materials, facility and the

expense of yield. Performance cost includes expense of labor, materials, facility,

cost of yield, lost pro�t from scraped units and the cost of having a bottleneck

machine.

Labor cost is the cost of operating the equipment.

Labor cost = Tstep ·Tprod ·LR (6.6)

where:
Tstep is the labor time per unit.

Tprod is the number of production hours per year.

LR is the hourly labor cost including labor burden.

Material expense is the expense of material and parts not included in the facility

expense.

Material expense = Unit material expense ·Units per year (6.7)

The facility expense is the expense of infrastructure like utilities and standard

supplies.

Facility expense = Monthly facility expense · 12 (6.8)

The expense of yield may be understood as how much you need to pay extra to

reproduce the defect units such that all units are good. The expense of yield is

calculated by the cumulative method, hence the sum of all the steps expense of

yield should be the total expense of yield for one �nished unit.

Expense of yield, step i = EOOi − EOOmin,i (6.9)

=


i∑

n=1

EOOmin,n

i∏
n=1

Yn

−

i∑
n=1

EOOmin,n−1

i∏
n=1

Yn−1

− EOOmin,i

(6.10)
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where:
EOOi is the expense of ownership including reproduc-

tion of defect units for step i, i.e. yielded cost by

the cumulative method.
EOOmin,i is the expense of ownership for a perfect machine

without defects.
Yi is the yield of step i.

The cost of yield also includes the fabrication cost from previous and succeeding

steps when a step produces a defect. That is, the cost of sputtering a sample that

is going to be ruined in the PECVD anyways is assigned as a PECVD cost. To

achieve this, the omission method is used. However, the cost of yield per step may

not be summed to �nd total cost of yield for one �nished unit due to overlapping

costs. The cost of yield is a true measure on the step cost and may be used to

identify costly machines.

Cost of yield, step i = COOi − EOOmin,i (6.11)

=


∞∑
n=1

EOOmin,n

∞∏
n=1

Yn

−

(
∞∑
n=1

EOOmin,n

)
− EOOmin,i(

∞∏
n=1

Yn

)
/Yi

− EOOmin,i

(6.12)

where:
COOi is the cost of ownership including reproduction

of defect units and cost from preceding and suc-

ceeding steps, i.e. yielded cost by the omission

method.
EOOmin,i is the expense of ownership for a perfect machine

without defects.
Yi is the yield of step i.

Every defect unit was supposed to give a pro�t, but is now a cost of lost pro�t.

Lost pro�t from defects = (1− Step yield) ·Units per year ·Pro�t (6.13)

If one step has a lower cycle time than the rest of the steps it will perform as a

bottleneck delaying the total cycle time. Such a machine will then be assigned a
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bottleneck penalty cost.

Bottleneck penalty =

(
Tprod

Tcycle excl. step
− Tprod
Tcycle incl. step

)
·Pro�t (6.14)

where:
Tprod is the number of production hours per year.

Tcycle excl. step is the time of the whole process excluding this

step.
Tcycle incl. step is the time of the whole process including this

step.

6.2.2 Input Data

Because this analysis is carried out at an early development stage, there is a large

uncertainty in the input data. With some contributions from Division Director

of NTNU Nanolab and leader of NorFab (Norwegian infrastructure for micro and

Nanofabrication.), Dr. Kay Gastinger, estimates of expenses have been made.

The inputs regarding equipment yield and maintenance are quali�ed estimates

from own experience gained in the fabrication of VACNTs. The input data in

Table 6.1, 6.2 and 6.3 are derived from the following assumptions:

• A year has 52,14 weeks including 2 weeks of holiday, hence 50,14 production

weeks.

• The lab is expected to operate 8 hours a day, 5 days a week.

• One unit is the complete spool of CNT yarn pulled from one full wafer of

VACNT.

• The expected pro�t of one unit is iterative calculated according to a pro�t

margin of about 50%.

• The number of complete square dies of a round wafer is calculated by the

Gross Die Per Wafer formula by Trapp et al. [119].

• The length and thickness of CNT yarn pulled from a wafer of 100 µm VACNT

is 50m/cm2 and 2µm respectively according to Zhang et al. [54].
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• The 1 ply yarn is twisted into multiple plies yarn to achieve the desired yarn

thickness such that every ply have an e�ective diameter of 1,5 of its initial

diameter.

• The sputtering of Fe and Al are done in the same machine.

• Plasma cleaning of the PECVD is not included in scheduled maintenance

events as it may be done outside fabrication hours in an automated process.

• The unit material expense is the expense of 4-inch silicon wafers.

The initial input data are presented in Table 6.1.

Table 6.1: First set of input data to the cost analysis.

Parameter Unit Value

Production hours per week h/w 40

Production weeks per year w/yr 50,14

Cycle time h 2

Finished units per week units/w 20

Expected pro�t NOK/unit 15 000

6.3 Results

The formulas have been implemented in a Microsoft Excel spreadsheet to do the

calculations and can be found in supporting material online. The fabrication is

divided into �ve steps; preparation, sputtering, RTP, PECVD and spinning. The

preparation step accounts for unpacking, cleaning and drying of wafers and the

spinning step accounts for spinning the yarn onto spools and simple packaging.

The yearly cost and expense of ownership are calculated in Table 6.2 and the unit

cost and expense of VACNT and CNT yarn are calculated in Table 6.3.
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Table 6.2: Cost/Expense of Ownership.

Preparation Sputter RTP PECVD Spinning

Purchase Price NOK 50 000 1 200 000 1 200 000 3 000 000 1 500 000

Depreciation life yr 5 5 5 5 5

Residual value NOK - 300 000 300 000 500 000 400 000

Capital cost/expense NOK/yr 10 000 180 000 180 000 500 000 220 000

Labor rate for maint. NOK/h 800 800 800 800 800

Labor burden 0,50 2,00 2,00 3,00 2,00

No. scheduled maint. evt. /yr 2 12 12 12 12

Time per sched. mnt. evt. h 2 2 2 8 5

Machine MTBF h 0 1000 1000 1000 1000

Machine MTTR h 0 24 24 36 24

Scheduled maintenance NOK/yr 4 800 57 600 57 600 307 200 144 000

Unscheduled maint. NOK/yr - 115 523 115 523 231 045 115 523

Lost pro�t from downt. NOK/yr - 361 008 361 008 541 512 361 008

Sustainment cost NOK/yr 4 800 534 131 534 131 1 079 757 620 531

Sustainment expense NOK/yr 4 800 173 123 173 123 538 245 259 523

Labor rate for operation NOK/h 400 400 400 400 400

Labor burden 0,50 0,50 0,50 0,50 0,50

Labor time per unit h 0,5 2 1 2 1

Cycle time excl. this step h 2 2 2 2 2

Step yield 0,99 0,95 0,99 0,97 0,98

Unit material expense NOK/unit 1500 0 0 0 0

Monthly facility expense NOK/m 10 000 40 000 40 000 60 000 40 000

Labor cost NOK/yr 300 840 2 406 720 1 203 360 3 208 960 1 203 360

Material expense NOK/yr 1 504 200 - - - -

Facility expense NOK/yr 120 000 480 000 480 000 720 000 480 000

Expense of yield NOK/yr 19 594 308 094 206 338 772 285 556 079

Cost of yield NOK/yr 391 994 1 047 998 403 448 962 727 556 079

Lost pro�t from defects NOK/yr 150 420 752 100 150 420 451 260 300 840

Bottleneck penalty NOK/yr - - - - -

Performance cost NOK/yr 2 467 454 4 686 818 2 237 228 5 342 947 2 540 279

Performance expense NOK/yr 1 944 634 3 194 814 1 889 698 4 701 245 2 239 439

Cost of Ownership NOK/yr 2 482 254 5 400 949 2 951 359 6 922 704 3 380 810

NOK/unit 2 475 5 386 2 943 6 903 3 371

Expense of Ownership NOK/yr 1 959 434 3 547 937 2 242 821 5 739 490 2 718 962

NOK/unit 1 954 3 538 2 237 5 723 2 711
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Table 6.3: Final results of the expense of producing VACNT and CNT yarn.

Manufacturing expense

Total expense, �ber NOK/yr 16 208 644

Volume, �ber units/yr 1 003

Expense, �ber NOK/unit 16 163

Expense, VACNT NOK/wafer 13 452

Wafer details

Wafer diameter inch ≈ 4

Wafer diameter mm 100

Wafer area cm2 78,54

Target die size cm2 1,0

Gross Die Per Wafer dies 50

Fiber details

Expected �ber length m/cm2 50

VACNT height µm 100

Yarn thickness, 1 ply µm 2,0

Desired yarn thickness mm 1,0

Required number of plies 334

VACNT

Expense of VACNT per area NOK/cm2 171

Expense of VACNT per complete die NOK/die 269

Volume, complete dies dies/yr 50 140

Fiber

Expense of �ber, 1 ply NOK/m 4,12

Expense of �ber at desired thickness NOK/m 1 375

Volume, 1 ply km/yr 3 938

Volume, desired thickness km/yr 12
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6.4 Discussion

The expense of 1 ply CNT yarn is calculated at 4,12NOK/m, making the selling

price, with 50 
% pro�t margin, about 8,24NOK/m. However, the yarn is only 2µm

thick, hence hard to handle. If spun to a diameter of 1mm the price skyrockets to

1 375NOK/m. It is believed that growth of longer CNTs on the wafer will increase

the diameter of the 1 ply yarn, but the cost of macroscale yarn will still be very

high. This result support the presumption that CNT yarn is most suited in low

quantities.

Aldrich Materials Science are selling square dies of PECVD grown VACNTs for

about 10 000NOK/die [49]. The calculated expense of fabricating one wafer of

VACNTs is 13 452NOK making the expense per die as little as 269NOK. In

today's market, selling dies of VACNTs is therefore much more lucrative than

selling CNT yarn. However, it is assuming you are able to sell 50 000 dies per year

which is unlikely. Before entering this market, a thorough analysis of the market

demand is necessary.

The calculation of cost, including loss of pro�t, identi�es the PECVD and the

sputter coater as the most costly equipment. They are expected to have a low

yield because successful growth is very dependent on their parameters. The defects

need to be replaced by producing new units and the pro�t of selling the defected

units vanish. When selecting machines for this kind of fabrication facility, the

machine yield is a crucial parameter.

6.5 Concluding Remarks

The Cost of Ownership model has been altered to calculate both real expenses

and simulated costs for the fabrication of VACNT and CNT yarn. The expense of

1 ply, 2µm thick, CNT yarn is 4,12NOK/m and the expense of a 1x1 cm square

die of VACNT is 269NOK/die. The defects caused by the PECVD and the sputter

coater are the most costly and could be reduced by increasing the machine's yield.
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Evaluation

Figure 7.1: A moment of afterthought at NTNU Nanolab.

The fundamental steps of product development using push innovation have been

completed. Each chapter is to be evaluated to discuss its outcome and lessons

learned. Furthermore, some thoughts of how they may be improved are proposed.
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Material Potential

Founding this project on carbon nanotubes made the search for material properties

an easy task as scienti�c journals are �ooded with papers on the topic. However,

it was discovered that as the CNTs got re�ned into macroscale structures, the

material properties weaken and �uctuate a lot. The tensile strength of a single

CNT is measured at 100GPa while the CNT yarn is less than 1GPa. Median

values for CNT yarn properties are considered most reliable and are summarized

in Table 7.1. It recommended that material speci�cations are held back until the

prototype is fabricated and tested.

Table 7.1: Median values of CNT properties.

Property Median Unit

CNT Diameter 10 nm

CNT Length 650 µm

Yarn Twist 25 000 turns/m

Yarn Diameter 10 µm

Density 0,68 g/cm3

E-Modul 65 GPa

Tensile strength 625 MPa

Tenacity 1,72 N/Tex

Elongation at break 2,43 %

Toughness 21 J/g

Electric conductivity 410 S/cm

Thermal conductivity 43 W/m·K

Locating Applications

The industry partners showed hesitation for investing time and resources in this

project. Despite e�orts to brag of the excellent material properties, they wanted

to see physical results. The best approach would probably be to make a strip of

CNT yarn and mold it inside a piece of epoxy. Bringing the sample as well as

documenting and presenting the material test results would give more enthusiasm

by companies. Nevertheless, some ideas emerged which are listed in Table 7.2.
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Table 7.2: Potential business ideas in marine and o�shore oil/gas.

Business ideas

Mooring knot

Net cage

Ropes

HVAC thermal wheel

Thruster components

Buoyancy body

Anti-icing coating

Oil/Water separation

Concept Development

The net cage is an example of how CNTs are ideal for load bearing structures in

a challenging environment (Fig. 7.2a). However, high performance polymer �bers

like Dyneema are still outperforming commercial CNT yarn. If CNT yarn is to

raise the standard, it needs to prove a long lifetime and anti-fouling properties.

Moreover, the biggest obstacle, the issue of health risk, need to be addressed and

solved. This is a task for scientists and researchers and should not be attempted

by commercial companies because the customer want scienti�c consensus, not

internal reports.

The oil drier employs the functional properties of the nanostructures to separate

water from oil (Fig. 7.2b). The contact angle of oils are low, letting the oil su�use

and penetrate, whereas the contact angle of water is high such that droplets keep

their shape and cannot penetrate. The product is novel and probably patentable.

Because the CNTs are in a closed system, the environmental risk is minor. The

problem with the oil drier is the lack of proof that it will work. A prototype needs

to be made and tested on various commercial hydraulic and lubricating oils.

(a) (b)

Figure 7.2: (a) Illustration of a net cage arrangement for �sh farming including
typical measurements. (b) Illustration of complete CNT �lter unit with CNT

membrane.



Chapter 7 - Evaluation 78

Fabrication

The fabrication of CNTs was unsuccessful as the goal of growing 100µm long tubes

and pulling a yarn from them was not achieved (Fig. 7.3). This made the task of

testing CNTs eligibility as stated in the project task fail. One reason is that the

applied PECVD was not optimal for CNT fabrication. The majority of CNTs are

grown by CVD that require higher temperatures and pressures than the PECVD

could provide as well as other process gasses. More time would be needed to work

the chamber parameters to �nd an optimal recipe. Leading over to the second

reason, experience. The experience in growing carbon nanotubes in the research

group and at NTNU Nanolab is limited. If the concepts proposed here are to be

continued, it would be wise to seek help from more scientists.

Figure 7.3: SEM image of sample R02 yielding the tallest vertically alligned
CNTs measuring 6,6µm.

Cost Analysis

The cost analysis showed the cost of producing VACNTs are much less than the

market price when assuming a perfect demand. The equipment is expensive and

is best utilized if the demand is steady and high. It also showed how the price

of CNT yarn increased as it was scaled from one-ply yarn to a 1mm diameter

rope. A lesson from this is that the production of VACNTs is much more feasible

than CNT yarn as seen in Fig. 7.4. Furthermore, applications which require low

quantities of CNTs should be prioritized.
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Figure 7.4: Results from cost analysis showing how selling dies with VACNT
is much more lucrative than selling CNT yarn. Values in Norwegian Krone.

Timing

The introduction of a new technology to the commercial market should always be

taken with great care. There is no guarantee being �rst is the most pro�table.

On the contrary, being �rst impose a lot of risk including the cost of convincing

the public the technology is safe. A close look at the current public acceptance of

nanomaterials is necessary before introducing a new product.

Make or Buy?

An important question for companies developing applications with carbon nan-

otubes is whether to make the CNTs yourself or buy them? The high market price

and the sensitivity of the properties on the growth procedure suggest the devel-

opers to fabricate their own CNTs. Whereas the manufacturers of CNTs should

also invest in �nding possible uses for their own product to increase the demand

and make it more predictable.

National Interest

The potential of carbon nanotubes show similarities to the broad use of semicon-

ductors. There are few countries leading the semiconductor development giving

fruit to large industries in electronics. It would therefore de�nitely be of national

interest for any country making a leading position in carbon nanotube technology

because it may nourish export and make jobs.

In the 70's, �ve microelectronic companies founded the Semiconductor Industry

Association (SIA). The American technological advance and pro�t in microelec-

tronics is much thanks to this cluster. If a similar knowledge transfer forum

is established among Norwegian maritime companies, with sharing of knowledge
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and resources on nanotechnology, the probability of success is much higher. In

fact, such a cluser already exist in Norway called NCE Micro- and Nanotech-

nology [120]. The work focus on MEMS (micro-electro-mechanical-systems) and

sensors, but innovation in all industries are welcome.

Applicability in Maritime Applications

Carbon nanotubes are well suited the maritime industry in Norway. The CNTs

have great environmental stability making them robust without deteriorating in

salt and humid conditions. They are strong, light weight and possibly anti fouling.

Furthermore, the maritime industry is a big employer all along the Norwegian coast

which existence is dependent on providing high-end and international competitive

technology. They are likely to invest in new technology provided that a proof of

concept has been made.

Stage Model

The development of carbon nanotube technology using a push innovation stage

model is a reasonable approach as it provided a broad specter of business ideas.

If this project were to be redone, the same procedure would have been employed.

It is found that the communication in step II, sharing (Locating applications), is

of particular importance as it is the breeding ground for good ideas.



Chapter 8

Conclusion

Two business concepts, net cage and oil drier, have been developed to solve issues

with current technology by the use of carbon nanotubes (CNTs). The net cage is

made of a CNT yarn to reduce the risk of rupture, reduce maintenance and increase

the lifetime. However, due to health risks, this device should be put on hold. The

oil drier is composed of a membrane made of CNT fabric wrapped around a cone.

The membrane is superhydrophobic stopping water and superoleophilic letting oil

pass through. Such a device provides a novel solution to water contamination in

hydraulic and lubricating systems and is considered most viable.

Fabrication of carbon nanotubes is a delicate process. About 6,6µm long vertically

aligned CNTs have been grown, but the minimum requirement to make CNT

yarn or fabric is 100µm. Lack of time, experience and equipment limitations

were identi�ed as causes. The expense of fabricating VACNT and CNT yarn was

calculated to be about 269NOK/die and 4,12NOK/m respectively using a Cost

of Ownership model.

The Norwegian aquaculture, shipping and o�shore oil/gas industries are contin-

uously searching for new ideas to keep a cutting edge in the global market. The

exceptional properties of carbon nanotubes, such as high strength, low weight and

corrosion resistance, indicate an excellent future in maritime applications.
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Appendix A

Magni�ed Flyer for O�shore

Oil/Gas Industry

Figure A.1: Flyer sent out to potential business partners to attract ideas from
the o�shore oil/gas industry. Copy found in supporting material online.



Appendix B

CNT Yarn Characteristics from

Literature

Characteristics and properties of CNT yarn made by pulling from CNT array have

been collected from various research papers. Results are presented in Table B.1

and B.2. Mean and median values are calculated and presented in Table B.3.
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Table B.2: Characteristics and properties of CNT yarn made by pulling from
CNT array - part II.

Ref. Composition Full reference

a Pure CNT Aliev et al. 2007 [99]
b Pure CNT Atkinson et al. 2007 [100]
c Pure CNT Atkinson et al. 2007 [100]
d Pure CNT Jakubinek et al. 2012 [101]
e Pure CNT Jayasinghe et al. 2011 [102]
f Pure CNT Kuznetsov et al. 2011 [97]
g CNT / PVA Liu et al. 2010 [103]
h Pure CNT Liu et al. 2010 [104]
i Pure CNT Nakayama 2008 [105]
j CNT / particles Randeniya et al. 2010 [106]
k Pure CNT Ryu et al. 2011 [107]
l CNT / PEI-C Ryu et al. 2011 [107]
m CNT / PEI-C Ryu et al. 2011 [107]
n Pure CNT Tran et al. 2009 [108]
o CNT / PU Tran et al. 2011 [109]
p Pure CNT Zhang et al. 2004 [54]
q Pure CNT Zhang et al. 2007 [86]
r Pure CNT Zhang et al. 2007 [110]
s Pure CNT Zhang et al. 2007 [110]
t Pure CNT Zhang et al. 2007 [110]
u Pure CNT Zhang et al. 2007 [110]
v Pure CNT Zhang et al. 2008 [111]
w Pure CNT Zhang et al. 2008 [111]
x Pure CNT Zhang et al. 2008 [111]
y Pure CNT Nanocomp Technologies Inc. [56]

Table B.3: Typical characteristics for CNT yarn pulled from CNT array. Mean
and median values of Table B.1.

Property Mean Median Unit

CNT Diameter 10 10 nm

CNT Length 760 650 µm

Yarn Twist 37 009 25 000 turns/m

Yarn Diameter 14 10 µm

Density 0,66 0,68 g/cm3

E-Modul 101 65 GPa

Tensile strength 922 625 MPa

Tenacity 3,43 1,72 N/Tex

Elongation at break 4,68 2,43 %

Toughness 93 21 J/g

Electric conductivity 445 410 S/cm

Thermal conductivity 43 43 W/m·K





Appendix C

Complete CNT Recipes

Full procedure for reference recipe RO1 found in Table C.1. Complete details for

all recipes found in Table C.2.
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Table C.1: Complete recipe - R01.

Step Description Equipment Parameters

1 Cut sample Dynatex DXIII
scriber

5x5mm of a 250µm thick, 2-inch Si-wafer

2 Clean sample Ultrasonic bath /
Solvent bench

Acetone in ultrasonic bath, 5min, 20 ◦C →
Ethanol bath → Spray with isopropanol →
Spray with DI-water → N2 blow dry

3 Dehydrate
sample

Hot plate
(located at end
of 5th "�nger")

Desired temp: 185 ◦C. Thermostat show
deviation of -65 ◦C. Setpoint: 250 ◦C, 5min.

4 Deposit
barrier layer

Cressington 308R
Sputter and
Evap.

30 nm Al by sputtering, Water-cooled head
(#1), Tooling factor: 6,01, Density: 2,70,
Rotational speed: "1 o'clock", Pressure:
3, 0 · 10−5 Torr, Argon �ow rate: N/A,
Current: 80mA.

5 Oxidize
barrier layer

JetFirst 200 RTP 500 ◦C, 500 sccm O2, 30min, 1000mTorr

6 Deposit
catalyst

Cressington 308R
Sputter and
Evap.

1 nm Fe by sputtering, Non-cooled head
(#2), Tooling factor: 6,01, Density: 7,87,
Rotational speed: "1 o'clock", Pressure:
3, 0 · 10−5 Torr, Argon �ow rate: N/A,
Current: 80mA.

7 Chamber
preparation

Oxford Instr.
PlasmaLab
System 100
PECVD

Preheat unit to 650 ◦C. Purge N2 2min -
Pump 22min (1, 51 · 10−5 Torr)

8 Catalyst
pretreatment

Add 50 sccm NH3 at 1000mTorr for 30min,
650 ◦C

9 CNT growth 650 ◦C, 50 sccm CH4, 1000mTorr, 100W,
120min

10 Chamber
dispatch

(Pump 3min - Purge N2 2min) x 3 → Pump
to 5, 54 · 10−6 Torr ( 7min), Temp. drop to
425 ◦C
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Table C.2: Complete details for all recipes.

Parameter R01 R02 R03 R04 R05 R06 R07 R08

Fe thickness [nm] 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

Al thickness [nm] 35,0 35,0 30,0 30,0 30,0 30,0 30,0 30,0

RTP gas O2 O2 O2 O2 O2 O2 O2 O2

RTP gas�ow [sccm] 500 500 500 500 500 500 500 500

RTP pressure [Torr] 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

RTP temp [◦C] 500 500 500 500 500 500 500 500

RTP time [min] 30 30 30 30 30 30 30 30

PECVD start temp [◦C] 650 300 650 650 650 650 650 650

Ch. prp. purge time [min] 2 2 2 2 2 2 2 2

Ch. prp. pump-t-b time [min] 22 3 10 99 7 7 10 10

Ch. prp. base press. [10−6 Torr] 15,0 5,0 9,7 5,0 8,6 8,1 7,6 14,0

Pretreatment gas NH3 NH3 NH3 NH3 NH3 NH3 N2O N2O

Pretreatment gas�ow [sccm] 50 50 50 50 50 50 50 50

Pretreatment pressure [Torr] 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Pretreatment temp [◦C] 650 650 650 650 650 650 650 650

Pretreatment time [min] 30 15 30 45 48 48 30 30

Growth gas CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4

Growth gas�ow [sccm] 50 50 50 50 50 50 50 50

Growth power [W] 100 100 100 100 100 100 100 100

Growth pressure [Torr] 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Growth temp [◦C] 650 650 650 650 650 650 650 650

Growth time [min] 120 120 120 60 120 60 60 120

Ch. dsp. pump x3 [min] 3 3 3 3 3 3 3 3

Ch. dsp. purge x3 [min] 2 2 2 2 2 2 2 2

Ch. dsp. cooling time [min] 0 0 0 0 0 0 38 39

Ch. dsp. pump-t-b time [min] 7 7 6 7 6 6 1 2

Ch. dip. temp [◦C] 435 419 436 412 422 425 300 300

Opt.M. measured height [µm] 0 8 0 3 6 0 2 5

SEM measured height [µm] 0,0 6,6 0,0 1,1 3,4 0,0 1,2 2,4

CNT observed? Yes Yes - Yes Yes - Yes Yes

VACVT observed? No Yes - No Yes - Yes Yes





Appendix D

Fabrication Equipment

The entire CNT fabrication was carried out in cleanroom grade ISO7 except

PECVD at ISO5, both at NTNU Nanolab. A short presentation of the equipment

used in the fabrication follows.

Dynatex DXIII Scriber

The scriber is used to cut the wafer into smaller samples. It uses a diamond tip

to scribe along the cutting edge and then hit the cut with a bar, cleaving it [121].

The scriber can maximum cut a gap width of 5µm and at a rate of 75mm/s. The

breaker uses an impulse bar and can do 2 breaks/s.

Figure D.1: Photograph of Dynatex DXIII Scriber [121].
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Ultrasonic bath

An ultrasonic bath is used to clean the wafer after scribing. It uses sound waves

to oscillate the liquid molecules causing cavitation on the sample surface tearing

o� contaminants.

Figure D.2: Photograph of ultrasonic bath.

Hot plate

A hot plate is a very accurate and leveled heated plate used to dehydrate the wafer

after cleaning.

Figure D.3: Photograph of hot plate.

Jipilec JetFirst 200 RTP

RTP, short for rapid thermal processing, is an oven used for annealing, oxidation,

crystallization, etc., under a controlled atmosphere or vacuum [121]. It contains

sixteen 6 000W halogen lamps that can heat at a rate of 100 ◦C/s up to a temperature

of 1 200 ◦C. Two process gases are connected, O2 and N2.
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Figure D.4: Photograph of Jipilec JetFirst 200 RTP.

Cressington 308R Sputter and Evaporator

The instrument is used to deposit thin �lms of various materials. The atoms

are detached from a target either by bombarding the target with argon ions

(sputtering) or by heating the target by resistive heating until it evaporates [121].

The substrate is located above the target on a rotating stage at which the atoms

redeposit. The unit has two DC magnetron sputter heads, one of which is water

cooled and two water cooled evaporation boats. A quartz crystal is used to measure

the �lm thickness.

Figure D.5: Photograph of Cressington 308R Sputter and Evaporator.
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Oxford Instruments PlasmaLab System 100 PECVD

The instrument is used to deposit thin �lms at a very accurate rate by plasma-

enhanced chemical vapor deposition. The plasma may be stroked from the top

electrode by a RF source (13,56MHz), a LF source (50 � 460KHz) or a mixture of

the two [121]. A bottom DC electrode (10 � 20V) absorb the electrons. The sample

is placed on a heated stage with a minimum temperature of 20 ◦C and a maximum

temperature of 700 ◦C. The unit is connected to a variety of process gasses

including SiH4, NH3, N2O, N2, Ar, CF4, CH4, 10%PH3/Ar and 10%B2H6/Ar.

Figure D.6: Photograph of Oxford Instruments PlasmaLab System 100
PECVD.

Zeiss AxioScope A1 for Re�ected light BF-DIC/POL

An optical microscope with a color CCD-camera of 3,3 megapixels [121]. The

microscope is installed with a di�erential interference contrast illumination to

improve pictures of nearly transparent samples.
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Figure D.7: Photograph of Zeiss AxoScope A1 for Re�ected light BF-
DIC/POL

Hitatchi TM3000 Tabletop SEM

The tabletop SEM is a small and simple unit for scanning electron microscopy

(SEM). It uses low vacuum and can magnify an area 15 to 30 000 times [121]. It

is suitable for quick imaging of microscale structures.

Figure D.8: Photograph of Hitatchi TM3000 Tabletop SEM.

FEI Helios NanoLab DualBeam FIB

FIB is short for focused ion beam and is used to machine samples by sputtering

with Ga-ions [121]. The instrument also has an electron beam for SEM of which
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the resolution may reach 1,2 nm in optimal conditions. The instrument was used

for imaging purposes.

Figure D.9: Photograph of FEI Helios NanoLab DualBeam FIB.

Zeiss Ultra 55 LE FE-SEM)

The electron microscope is equipped with a �eld emission cathode for high resolution

imaging [122]. The unit can run at an acceleration voltage of 0,02 � 30 kV, magni�cation

of 12 � 1 00 000 times and may reach a resolution of 0,8 nm in optimal conditions.

Figure D.10: Photograph of Zeiss Ultra 55 LE FE-SEM.



Appendix E

Handling and Storage of CNTs

Throughout the fabrication, there are several ways of harming the sample, equipment,

facility, coworkers and oneself, hence risk assessment and mitigation is important.

All users of the cleanroom are required to attend a cleanroom introduction and

HSE course, receive training in operating the equipment and to �ll out a risk

evaluation form.

In addition to regular safety routines, the work with CNTs should act in accordance

with the following guidelines:

• Waste that might contain CNTs should be collected in a separate container.

• Whenever risk of releasing airborne CNTs, the work should be done inside

a fume hood with gloves and mask with P2/P3 particle �lter.

• Storing of CNTs must be done in a ventilated cabinet. Sample boxes must

be marked with activity number, name, content and appropriate warning

labels.

• In accordance with Norwegian legislation, work with CNTs must be logged

for future reference.

Figure E.1 shows the storage box used to store the samples in the lab. It was kept

in a ventilated cabinet.
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Figure E.1: Photograph of storage box used to store samples.
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