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Abstract

The purpose of this master’s thesis is to implement a Finite Element Poisson solver
for a Monte Carlo particle transport simulator without the influence of self-forces.
Self-forces are unphysical forces that come into existence when symmetries are not
taken into account in a particle-mesh coupling. These self-forces are handled using
Kalna’s self-force reduction method. A central subject for particle transport sim-
ulators are that they need a particle-mesh coupling scheme, this is done using a
Dirac delta function in the nearest-element center scheme. The particles’ locations
in the triangulation are needed for the particle-mesh coupling, and they are found
using Guiba’s and Stolfi’s Point location algorithm. A linear basis is used for the
Finite Element method, and the contacts are dealt with using conditions of thermal
equilibrium and charge neutrality. To solve the linear system in the discretization,
preconditioned Conjugate Gradient method is implemented together with the pre-
conditioners ILUT and ILU0. The usage of these methods and their parameters
are discussed, and simulations of a PN-junction is performed to verify that the im-
plementation is working. Improvements to the self-force reduction and the particle
location algorithm are made, and a relationship between the background charge,
the particle charge, and the element size is found. This relationship is used for the
characteristic step length to generate a near-optimal mesh. It is found that the
implementation is successful and can be used in the Monte Carlo particle transport
simulator to simulate semiconductor devices.

Sammendrag

Hensikten med denne masteroppgaven er å implementere en Endelige Element Pois-
son løser for Monte Carlo partikkeltransportsimulatorer uten innflytelse av egenkrefter.
Egenkrefter er fiktive krefter som følger ved bruk av partikkel-element kobling uten
hensyn til symmetrier. Egenkrefter blir fjernet ved å bruke Kalnas egenkrefter-
reduksjon. Et sentral tema for partikkeltransport er at de trenger en kobling mellom
partikler og noder. Dette er gjort ved å bruke Dirac delta funksjonen i nærmeste
element senter. Partiklenes posisjon i trianguleringen er funnet ved bruk av Guibas
og Stolfis punktlokaliseringsalgoritme. En lineær basis er brukt i Endelig element
metode og kontaktene er implementert ved å bruke termisk likevekt og ladningsnøytralitet
som betingelser. For å løse det lineære likningssystemet i Endelig element metode
brukes forbehandlet konjugerte gradienters metode sammen med forbehandlerene
ILUT og ILU0. Bruken av disse metodene og deres parametere blir diskutert og
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simuleringer av en PN-overgang brukes til å verifisere at implementasjonen fungerer.
Det blir laget forbedringer til egenkrefter-reduksjonen og punktlokaliseringsalgorit-
men, og en sammenheng mellom dopeladning, partikkelladning, og elementstørrelser
blir funnet. Sammenhengen blir brukt til å lage den karakteristiske steglengden for
å generere en god triangulering. Implementasjonen er god og kan brukes i Monte
Carlo partikkeltransportsimulatorer til å simulere halv-ledere.
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Chapter 1

Introduction

Society today is marked by the use of electronic devices which consist of semiconduc-
tor devices. Semiconductor devices are hard to describe properly using analytical
tools, which means other approaches are necessary. Nowadays, computers allow the
modeling of processes inside materials. This can reduce cost immensely, as fewer
prototype semiconductors need to be produced. Hence there is a demand of model-
ing non-equilibrium carrier distributions in semiconductor devices.

There are several models for semiconductor devices. Each model is employed de-
pending on the scale of the device. Hydrodynamic models work well until scales
are so small that electrons are too far from equilibrium. Smaller devices need to
factor in quantum mechanical effects. The de facto standard is to use semiclassical
Monte Carlo methods down to scales where the quantum effects are too noticeable.
When the scales are really small, that is, when the characteristic dimensions become
shorter than the electron phase coherence length, the non-equilibrium Green’s func-
tion method is applied. The devices treated in this paper fall within the domain
of the semiclassical Monte Carlo method, which works well with dimensions in be-
tween the other two methods. The timescale of the method is typically within some
hundred picoseconds.

The ensemble Monte Carlo method for particle transport follows the phase space
trajectories of free electrons and holes in a semiconductor device. The behavior of
particles is modeled as a series of free flights and scattering events. The method
is called semiclassical because it utilizes classical theory for the free flights and
quantum theory for the scattering events. The scattering events are dealt with by
usage of the Monte Carlo method. The duration of the free flight is dependent on
the scattering rates. Hence they are both determined drawing random numbers.

The method studied in this thesis is called the self-consistent ensemble Monte Carlo
method for particle transport. Building on the ensemble Monte Carlo method,
the particles’ contribution to the potential is taken into account with the solution
of Poisson’s equation. The solution to Poisson’s equation can be numerically ap-
proximated in numerous ways, for instance with the finite difference method, the
multigrid method, or the fast multipole method, each with their advantages and
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CHAPTER 1. INTRODUCTION

disadvantages. One of the latest concerns is to make solvers capable of difficult
geometries and extending these to three-dimensional models. The finite element
method(FEM) is chosen as the numerical method in this thesis because it can ad-
dress these concerns.

In the 1950s, M. J. Turner was among the first to use the finite element method
in everyday practice for the airplane industry [1, 2]. It was further developed over
the following decades. The variational approach was studied in the 60s, and the
method was expanding into the area of civil engineering. Before the end of the
80s, the method was developed into a rigorous mathematical frame set. Today, the
method divides the domain into subdomains, then in each subdomain, the partial
differential equation is posed as a variational problem. A basis in a subspace of the
space of functions is made and transformed into a linear system to be solved. For
usage in the particle-based Monte Carlo method, there are some important aspects
as to how the finite element method is implemented. The charge distribution of
the particles and the resulting potential needs to be addressed in a way that gives
physical meaning to the simulation.

12



Chapter 2

Problem definition

The application for semi-classical transport modeling of carriers in electronic devices
which is studied, and will be further developed, is named ”Monte Carlo Software for
Charge Transport and Electro-optic Applications”. This software will be referred
to as the Monte Carlo charge transport software (MCCT). This chapter presents
MCCT in its previous states. In Section 2.1 the program flow will be introduced.
In Section 2.2 the steps of a Particle-Mesh coupling are presented. In Section 2.3
details of relevant implementations are discussed. In Section 2.4 the previous particle
boundary conditions of the device are presented. In Section 2.5 the relation between
chapters in this master thesis, and the program flow is shown.

2.1 Overview

Holes and electrons are modeled as particles termed superparticles. Superparticles
represent a number of holes or electrons through a superparticle charge qp and are
initialized with their respective positions and velocities. Each superparticle has an
associated charge density weight calculated from the particles they represent [3].
This weight is given by the doping density in a volume of donors, with a user-chosen
number of superparticles. The holes get assigned the same charge density as the
electrons to ensure that no charge is left over after a recombination of electrons
and holes. A flow chart of a typical MCCT simulation is shown in Figure 2.1. The
free flights, acceleration, and displacements are calculated using classical mechanics.
The scattering events and final states are calculated using quantum mechanics[4].
The simulation controls everything without limiting the charge development of su-
perparticle controlled areas.
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Initialize initial potential, field, and carrier properties

Time loop, t = t+ ∆t

Do scattering events and final states

Distribute charge density to grid nodes

Solve Poisson’s equation

Approximate electric field onto the grid

Approximate electric field onto the superparticles

PMC

Update carrier acceleration and displacement

Collect statistics

End
simulation?

Stop

no

yes

1

2

3

4

Figure 2.1: Flow chart of an MCCT run.
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2.2 Particle-Mesh coupling schemes

The problem in its core can be split into what is called the Particle-Mesh coupling
schemes (PMC) [5, 6], which consist of the following steps:

1. Assign particle charges to the mesh.

2. Solve Poisson’s equation.

3. Calculate the electric field in mesh nodes.

4. Interpolate electric field onto particles.

Since changing one of these steps may alter what is appropriate for the others, the
steps must be considered in relation to each other. The purpose of these schemes
is to maximize the realism of the simulation and minimize the impact of numerical
artifacts. The numerical artifacts reduced in PMC schemes takes the form of ar-
tificial forces exerted on superparticles. These are often referred to as ”self-forces”
[5].

2.3 Previous implementations

This section summarizes the relevant implementations in MCCT by looking at the
grid requirements and each step in PMC.

2.3.1 Grid

hx

hy

Figure 2.2: An illustrative mesh with constant step sizes.

As illustrated in Figure 2.2, the grid is structured with fixed step sizes hx and hy
in x− and y− directions. The properties of the mesh are important for making
sure that all relevant interactions are conserved, and therefore, there are limitations
on the coarseness of the grid. The spatial limitation needs to be small enough to
capture the charge variations in the grid. It has to be smaller than the smallest

2.2. PARTICLE-MESH COUPLING SCHEMES 15
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wavelengths of charge variations. This smallest wavelength is given by the Debye
length λD [7]. The Debye length is

λD =

√
εkBT

e2nD
, (2.1)

where ε is the permittivity, kB is Boltzmann constant, T is the temperature, e is the
elementary charge, and nD is the doping density.

Not so important for PMC, but essential to MCCT, is the time steps for a simu-
lation. This needs to be below the inverse plasma frequency. The plasma frequency
is

ωp =

√
e2nD
εm∗

, (2.2)

where m∗ is the effective mass of an electron. The effective masses vary depending
on the chosen model, for MCCT the effective masses can be found in the appendix
of [3].

In addition to these criteria, the maximum distance traveled by a particle needs to
be restricted[8]. This distance is

lmax = vmax ·∆t, (2.3)

where vmax is the estimated maximum carrier velocity and ∆t is the time step. The
time step must be chosen so that lmax is smaller than the spatial mesh size. This
is to ensure that the field distribution, only calculated once every ∆t, can keep up
with the particles.

2.3.2 Charge distribution

These algorithms are written by C.N. Kirkemo, and are described in [3, 5]. They
are presented here as they introduce well the core concepts needed throughout the
report.

Nearest grid point method

The simplest charge distribution algorithm, illustrated in Figure 2.3, is the nearest-
grid-point(NGP) method. In the structured grid, this distribution is

16 2.3. PREVIOUS IMPLEMENTATIONS



CHAPTER 2. PROBLEM DEFINITION

Figure 2.3: Illustration in two dimensions of NGP taken from [9]. The crosses are
nodes in the grid. The particle charge is given to the closest node. The dot is the
superparticle.

ρi,j = ρ(xi, yi) =
enDAdevice
n(P )Aelement

= ρsup, (2.4)

where Adevice, Aelement, ne, n(P ), e denotes respectively the area of the device, the
area of the current element, the doping density, the number of superparticles in
the simulation, and the elementary charge. In this case, the area of each element
is Aelement = hxhy. This method have issues with a discontinuity in force when
particles cross cells [9].

Cloud-in-cell method

The algorithm implemented in MCCT is the cloud-in-cell method(CIC) [5]. CIC
approximates the charge distribution as a finite radius, constant distribution with
its center in the superparticles’ position. This has a smoothing effect on the electric
potential since the charge is distributed to the particle’s four closest nodes, instead of
just the closest node. As the approximated force becomes linear instead of constant,
it allows the force to be continuous across nodes [9]. This removes fluctuations and
leads to increased stability compared to NGP.

The four closest nodes are given the charge densities

ρi,j = ρsup

(
1− |xk − xi|

hx

)(
1− |yk − yj|

hy

)
, (2.5)

where the mesh point is located at (xi, yj) and the point charge is located at (xk, yk)
with hx, hy as the length between each node in respectively x− and y− directions.
As seen in Equation (2.5), each node is given a fraction of the total charge depending
on their distance from the particle. See Figure 2.4 for an illustration of CIC.

2.3. PREVIOUS IMPLEMENTATIONS 17
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Figure 2.4: Illustration in two dimensions of CIC taken from [9]. The crosses are
the four closest nodes of the grid. The dot is the superparticle.

There also exists higher order schemes for charge distribution, but the tradeoff in
computational power makes them undesired [9].

2.3.3 Poisson solver

Partial differential equation formulation

The potential φ is given by Poisson’s equation [10],

∇2φ = −ρ
ε
, (2.6)

where ρ is the charge density and ε is the permittivity. Most of the computation time
spent in MCCT is in the Poisson solver. Therefore, it is crucial that the solution is
efficient.

Neumann boundary

Dirichlet boundary

Superparticle

Figure 2.5: Illustration of the domain.

The typical problem is a bounded domain with constant permittivity, a charge
density calculated from the cloud-in-cell algorithm, and boundary conditions. On
the boundary, the electric field should be zero unless there are contacts that apply
a fixed potential. Mathematically these are represented as Neumann or Dirichlet
boundary conditions. An example of a problem setup for Poisson’s equation is
illustrated in Figure 2.5.

18 2.3. PREVIOUS IMPLEMENTATIONS
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Let n denote the normal vector on the boundary, then the full partial differential
equation(PDE) formulation, with Neumann and Dirichlet boundaries, is

∇2φ = −ρ
ε

in Ω,

φ = D on ∂Ω|D, (2.7)

∂φ

∂n
= N on ∂Ω|N ,

with ∂Ω = ∂Ω|D ∪ ∂Ω|N and ∅ = ∂Ω|D ∩ ∂Ω|N , that is, the boundaries are specified
as either Neumann boundaries or Dirichlet boundaries. The Neumann condition is
usually zero because there is no electric field on the normal of the boundary where
no potential is applied.

The finite difference method

The finite difference method [11] utilizes Taylor expansions to discretize Equation
(2.7). The Neumann boundary conditions are applied using first order Taylor ex-
pansions. Dirichlet boundary conditions are applied by replacing the equations on
the corresponding nodes in the resulting linear system.

The solution of the linear system is calculated with the successive over-relaxation
method [3]. An alternative, the biconjugate gradient stabilized method is also im-
plemented [12]. The first is a fast linear system solver intended for the solution of
two-dimensional Poisson finite difference equations with constant step size, while
the second is intended for usage in the case where the step size vary.

2.3.4 Electric field approximation onto grid

The electric field is implemented with centered difference method. Since the electric
field is given by

~E = −∇φ, (2.8)

the centered difference method yields

~Ei,j ≈

[
φi+1.j−φi−1,j

2h
φi.j+1−φi,j−1

2h

]
. (2.9)

See appendix A.1 for a derivation of equation (2.9).
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2.3.5 Electric field interpolation onto particles

The electric field interpolations onto particles are done using the NGP method. It
is, in this case, given as

~E(xp,yp) ≈ ~E(b xp
hx

+ 1
2
c,b yp

hy
+ 1

2
c), (2.10)

where b·c denotes the round down to nearest integer function and ~E(xp,yp) denotes
the electric field on particle p. In other words, the particle is treated as if it is in
the closest node in the grid.

2.4 Particle boundary conditions

Semiconductor devices typically consist of two contacts where carriers can pass into
or out of the device. The types of contacts are Schottky contacts or ohmic contacts.
In Schottky contacts, there is a potential barrier for carriers to break through to
get into the device. For ohmic contacts, carriers can freely enter because there is no
such potential barrier. MCCT treats the case of ohmic contacts. For more details
on the study of contacts see [13, 14].

The contact implementation is a pivotal factor in MCCT since it controls the num-
ber of particles entering and exiting the device, and thereby controls the current
through the device. Even though it is a crucial component in the model, it is not
the study of contacts that is of interest. Therefore, among the most popular models
of contacts, one was chosen which was simple and had an intuitive physical interpre-
tation. The contact model implemented in MCCT uses the approach of Fischetti
and Laux described in [15].

This model imposes conditions of charge neutrality and thermal equilibrium in a
small region adjacent to the contacts. If there is a net deficit of majority carriers,
injection happens until charge neutrality is maintained. The contact region is ex-
tended into the domain and is typically a few mesh cells wide. This net charge is
calculated by counting free and immobile charges within the region. The injected
particles are assigned a k-vector drawn from a thermal distribution to ensure thermal
equilibrium.

The contacts absorb particles that will hit the contact surface during the next time
step. If the estimated particle positions fall at or beyond the contact surface, the
particles are absorbed and removed from the simulation. What types of superpar-
ticles are injected and absorbed is dictated by the simulation. Depending on the
substance of the materials either contact can inject only holes, electrons, or both.
Absorption, on the other hand, is available for both electrons and holes in both
contacts. The contacts will get a surface charge on the metal because of the fields
from the electrostatic potential, given by Poisson’s equation.
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2.5 New program flow

The goal is to implement the new FEM solver as an alternative. There are many
considerations to cover in such an implementation, and therefore this section is made
as a guidance to the following chapters. There are four main categories of objectives
in the FEM implementation.

1. Discretize the potential using FEM

2. Calculate the charge distribution

3. Calculate the potential

4. Calculate the electric field

However, they are all intricately connected and depend on other problems that need
to be solved. Finding the charge distribution relies on being able to locate where in
the mesh a particle is located. Therefore an algorithm for particle localization is im-
plemented in Chapter 5. With a straightforward implementation, the electric fields
will have an error associated with them called self-forces. These have to be removed,
and this is done in Chapter 4 using reference potentials. The calculation of poten-
tials relies on a linear system solver, in this case, implemented as Preconditioned
Conjugate Gradient method in Chapter 6.

The FEM implementation can now be categorized into two sections. The first is the
initialization and reference potential calculations. The program flow of this part is
depicted in figure 2.6. The first row is the setup of the FEM discretization, all of its
contents is described in Chapter 3. The second row makes the reference potentials
needed for self-force reduction. This row is mostly described in Chapter 4, which
in turn relies on Chapter 3. The linear system solver in this row is described in its
entirety in Chapter 6. The third row initializes the needs of the second category, the
PMC scheme, and also covers the structures needed for point location. This row is
described in Chapter 3 and 5.
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Read mesh
Initialize
variables

Assemble
Matrix
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Dirichlet
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conditioner
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Figure 2.6: Initialization of FEM solution. First row is the basic initialization of
the FEM. Second row is the reference potential calculations. The third row is the
preparation for the time loop.
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The program flow depicted in figure 2.7 happens in place of the PMC scheme in figure
2.1. The PMC scheme is implied in the calculation of the charge distribution and
the electric field. For this master’s thesis, the updating of particle element positions
is described in its entirety in Chapter 5. The calculation of the charge distribution
is described in Chapter 3, in particular, in Section 3.5. The linear system solver is
described in Chapter 6. The calculation of the electric field is described in Chapter
3, but it depends on the self-force reduction, described in Chapter 4.

Update particle element positions.

Calculate the charge distribution

Solver linear system

Calculate the electric field

Figure 2.7: FEM flowchart inside MCCT time loop.
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FEM

As analytical solutions to partial differential equations are hard to obtain there
is a need for a numerical method. The previous Poisson solver utilized a finite
difference scheme. However, as the complexity of the domain increases and three-
dimensional solutions are needed, the finite difference scheme meets its limitations.
An alternative approach for obtaining an approximate solution will be presented,
the finite element method. In this master’s thesis, only the two-dimensional solution
is presented and implemented.

FEM divides the domain into finite elements, then upon each of these domains
derives the weak formulation of the PDE. In the sense of distributions, strong and
weak formulations are equivalent [16]. The weak formulation is discretized to form
a solvable linear system. The Dirichlet boundary conditions are implemented with
the technique of lifting functions. For a more rigorous derivation see [16] which has
heavily influenced this chapter.

Here is a listing of the steps in FEM:

• Deriving the weak formulation.

• Discretizing the weak formulation.

• Choosing a subspace of functions.

• Choosing a basis and transforming to a linear system.

• Solving the linear system.

In Section 3.1 the weak formulation is derived. In Section 3.2 the discretization is
performed both in the sense of the discretization of the domain and the basis of
functions. In Section 3.3 the area coordinates are introduced and used for analytical
integration. In Section 3.4 the Dirichlet boundary implementation is described. In
Section 3.5 the charge distribution is calculated and presented in a general frame-
work. In Section 3.6 the new contact treatment is shown. In Section 3.7 a result
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is derived for guidance in the choice of parameters. In Section 3.8 the assembly
algorithm of the solution matrix and the load vector is presented. In Section 3.9
electric field approximations are discussed, and in Section 3.10 the chosen electric
field approximation is presented.

3.1 Weak formulation

For the derivation of the weak formulation of Poisson’s equation, the following def-
inition is needed.

Definition 1. H1(Ω) is the set of functions such that their first order distributional
derivatives are square integrable on the domain Ω.

Introducing the transformation φ̊ = φ−Dg, where Dg ∈ H1(Ω) is some function on
the domain with Dg = D on the Dirichlet boundary, yields the PDE formulation:

∇2φ̊ = −ρ
ε

in Ω,

φ̊ = 0 on ∂Ω|D, (3.1)

∂φ̊

∂n
= N on ∂Ω|N .

Multiplying with an arbitrary function f ∈ H1(Ω), integrating over Ω using Green’s
theorem, and expanding the transformation yields

∫
Ω

f∇2φdΩ = −
∫

Ω

f
ρ

ε
dΩ, (3.2)∫

Ω

∇f>∇φ̊dΩ =

∫
Ω

f
ρ

ε
dΩ +

∫
∂Ω

f∇φd~S −
∫

Ω

∇D>g · ∇fdΩ. (3.3)

At this point, there is a need to change the space of functions such that f |∂ΩD
= 0

because ∇φ is unknown at the Dirichlet boundaries. This modifies Equation (3.3)
to

∫
Ω

∇f> · ∇φ̊dΩ =

∫
Ω

f
ρ

ε
dΩ +

∫
∂Ω|N

fNd~S −
∫

Ω

∇D>g · ∇fdΩ. (3.4)

Equation (3.4) is the weak formulation, and with proper boundary conditions Lax-
Milgram’s lemma [17] ensures that there always exists a unique weak solution. The
solution is now given by φ = φ̊+Dg.

3.1. WEAK FORMULATION 25



CHAPTER 3. FEM

3.2 Discretization

In any numerical discretization, the mesh is an essential part. In this case, a triangu-
lation of the domain is used. The Delaunay algorithm is applied through the usage
of the free mesh generation software GMSH [18]. There are several commercial or
free mesh generating programs available, whereas GMSH is chosen because it is
free and widely used. A discussion on GMSH and alternatives is found in Appendix
A.4. The mesh generated has the Delaunay property, which is the property that
no circumcircle of any element contains a node of the mesh. This property leads to
many favorable results for the mesh. For instance, in the plane, it maximizes the
minimum angle of triangles, which is good concerning finite precision geometry. It is
known that, on average, each node is surrounded by six triangles. By denoting this
triangulation as τ , the empty set as ∅, and the domain as Ω, the following relations
are true.

Ω = ∪
K∈τ

K , ∅ = ∩
K∈τ

K. (3.5)

Equation (3.5) states that each K is an element within the mesh τ , the elements
are disjoint, and their union is the space Ω. It should be noted that GMSH uses a
characteristic step length, denoted h, to decide the size of elements. Unfortunately,
the documentation[18] is poor on how it is used, but it will be assumed that it
defines the wanted average edge length. The average edge length is dependent on
the domain, and therefore the characteristic step length will not always be the actual
average edge length.

Introducing the space of finite elements, with the linear approximation approach as
follows:

X1 = {v ∈ C0(Ω̄) : v|K ∈ P1∀K ∈ τ}, (3.6)

V = {v ∈ X1 : v|∂ΩD
= 0}. (3.7)

In other words, V is the space of continuous functions that are linear on each element
and zero at the Dirichlet boundary. Redefining variables so that they are now
elements of the space V (Ω) ⊂ H1(Ω) gives the approximation to equation (3.4):
Find φ̊ ∈ V such that

∫
Ω

∇f> · ∇φ̊dΩ =

∫
Ω

f · ρ
ε
dΩ +

∫
∂Ω|N

f ·Nd~S −
∫

Ω

∇D>g · ∇fdΩ, ∀f ∈ V. (3.8)

The functions f, φ̊ ∈ V,Dg ∈ X1 are characterized by their values taken at nodes
Ni in the grid. Therefore, the basis of V is chosen to be the linear function defined
in each node Ni as
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bj(Ni) = δij =

{
0 if i 6= j,
1 if i = j

, (3.9)

as illustrated in Figure 3.1.

Figure 3.1: The basis function bj ∈ V and its support, taken from [16]

Each function in V can now be expressed from the basis as

f(~x) =
∑
i∈N

fibi(~x) , ∀~x ∈ Ω with fi = f(Ni). (3.10)

Now, all functions are expressed in this basis. ND is defined to be the set of nodes
on the Dirichlet boundary and NI to be the rest of the nodes in the mesh, both sets
represented as integers. Then, function (3.8) is reformulated as

∑
j∈NI

φ̊j

∫
Ω

∇b>j · ∇bidΩ =

∫
Ω

bi ·
ρ

ε
dΩ +

∫
∂Ω|N

bi · ∇φd~S

−
∑
k∈ND

Dk

∫
Ω

∇b>i · ∇bkdΩ, (3.11)

∀i ∈ NI .

Defining,

M = [mij],
mij =

∫
Ω
∇b>j · ∇bidΩ,

~u = [uj],

uj = φ̊h(Nj),
~f = [fi],

fi =
∫

Ω
bi · ρεdΩ +

∫
∂Ω|N

bi · ∇φd~S −
∑

k∈ND
Dk

∫
Ω
∇bi · ∇bkdΩ,

(3.12)
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the linear system becomes

M~u = ~f. (3.13)

M is referred to as the solution matrix and ~f is referred to as the load vector. The
approximation to equation (3.1) is now given by ~u in the nodes NI and Dk in the
nodes ND. The approximation to φ in any position ~r ∈ Ω is given by the basis as

φ(~r) ≈
∑
i∈NI

uibi(~r) +
∑
k∈ND

Dkbk(~r). (3.14)

For ease, Equation (3.14) is used re-enumerated with φi as

φ(~r) ≈
∑
i∈N

φibi(~r). (3.15)

3.3 Analytical integration

The next few sections will be about calculating the solution matrix and each term in
the load vector. Since the Neumann boundary condition always is zero for MCCT, it
vanishes, and there is no need to handle it. In this section, the terms of the solution
matrix are solved analytically.

For this linear basis, the natural coordinate system to use is area coordinates [19].
The advantage of area coordinates over the Cartesian coordinate system is that
each element will not have to be transformed to a reference element for calculations.
The coordinates are defined as shown in Figure 3.2. This coordinate system is not
linearly independent, and it is reflected in the fact that the total area of a triangle
K is AK = A1 + A2 + A3. For ease, AK will be denoted as A as long as there can
be no confusion from this.

A1 A2

A3

p1

p2

p3

(A1,A2,A3)

Figure 3.2: Definition of area coordinates.

The basis used in section 3.2 can be expressed through area coordinates as
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b1 = A1

A
,

b2 = A2

A
,

b3 = A3

A
.

(3.16)

Because of Equation (3.5) one can integrate over each element. For ease of calcula-
tions it is useful to define

mij =

∫
Ω

∇b>i ∇bjdΩ =
∑
K∈τ

∫
K

∇b>i ∇bjdK. (3.17)

MK is defined with elements

mK
iKjK

=

∫
K

∇b>i ∇bjdK, (3.18)

where there is an implied transformation (iK , jK , K) = (i, j) for the local element
indices iK and jK , so that the solution matrix can be obtained as

mij =
∑
K∈τ

mK
iKjK

. (3.19)

The solution is obtained for each 3-by-3 matrix MK analytically. Since the basis
functions are linear, differentiation gives a constant. Hence, local area coordinates
yield

mK
iKjK

=

∫
K

∇b>l ∇bqdK = ∇b>l ∇bq
∫
K

dK =
∇A>iK∇AjK

AK
. (3.20)

For vector cross products with the z-axis constant the triangle area spanned by the
vectors u, v is given by ||u×v||

2
, where || · || denotes the Euclidean norm. Each area

Ai can, therefore, be represented as

A1 =
||

#                 –

(p3 − p2)×
#               –

(p− p2)||
2

,

A2 =
||

#                 –

(p1 − p3)×
#               –

(p− p3)||
2

, (3.21)

A3 =
||

#                 –

(p2 − p1)×
#               –

(p− p1)||
2

,

where pi is defined in Figure 3.2. These coordinates are specified in the Cartesian
coordinate system by GMSH. Now the gradient can be taken on each basis as
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shown in appendix A.2. Taking the dot product of each integrand ∇ATi ∇Ai, the
local element matrix becomes

MK =

1

4AK

 || #            –
p3 − p2||2

#                 –

(p3 − p2) ·
#                 –

(p1 − p3)
#                 –

(p3 − p2) ·
#                 –

(p2 − p1)
#                 –

(p3 − p2) ·
#                 –

(p1 − p3) || #            –
p1 − p3||2

#                 –

(p1 − p3) ·
#                 –

(p2 − p1)
#                 –

(p3 − p2) ·
#                 –

(p2 − p1)
#                 –

(p1 − p3) ·
#                 –

(p2 − p1) || #            –
p2 − p1

2||

 . (3.22)

3.4 Dirichlet implementation

In this section the term,

∑
k∈ND

∫
Ω

∇bi · ∇bkdΩ, (3.23)

is handled. Since this term is identical to the M matrix term, instead of calculating
it by itself, the solution matrix M is calculated assuming no Dirichlet boundary
conditions. Then the Dirichlet nodes are removed from M and inserted on the
right-hand side, multiplied by Di. The boundary node positions ~ri are elements in
one of the sets ∂Ω|D or ∂Ω|N , so that one can define

~u =

~uD~uN
~uI

 , (3.24)

where ~uD corresponds to Dirichlet nodes in the grid, ~uN corresponds to Neumann
nodes, and ~uI corresponds to interior nodes. Now M can be partitioned such that
Mi,j have rows i and columns j corresponding to either Dirichlet, Neumann or
interior nodes. For instance, by re-enumerating nodes appropriately, it can be put
in the following form,

M =

MDD MDN MDI

MND MNN MNI

MID MIN MII

 , (3.25)

where MID means rows corresponding to interior nodes, and columns corresponding
to Dirichlet nodes. Since MND and MID are multiplied by Dirichlet nodes, their
values are already known, and they can be removed and set on the right-hand side:
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MDD MDN MDI

0 MNN MNI

0 MIN MII

 ~u = ~f −
[
MND

MID

]
~uD, (3.26)

where ~f denotes the right-hand side terms except the Dirichlet conditions in Equa-
tion (3.11). Since ~uD is known, the corresponding rows can be removed, and the
final linear system is reduced to

[
MNN MNI

MIN MII

]
~u = ~f −

[
MND

MID

]
~uD (3.27)

Now the systems dimensions have been reduced by the number of Dirichlet nodes,
and since Equation (3.25) was symmetric, Equation (3.27) is symmetric. This repre-
sentation is a simplification of the actual situation. In reality, the matrix has several
boundary partitions. However, it can always be partitioned in a similar sense and
yield a similar result. In theory, one can always re-enumerate the nodes to achieve
the above representations, but in practice, the implementation deals with the num-
ber of partitions at hand without additional re-enumerating of nodes. In any case,
it will always end up as a symmetric positive definite matrix. It is also important
to note that, in the above calculations, there is an implied re-enumeration of nodes
due to the dimensional reduction. For instance, the first element M(1,1) is now a
Neumann node and not a Dirichlet node. It should be clear to the reader that this
is an equivalent, but more practical approach to the system defined in Equation
(3.11). That is, the term

∑
k∈ND

∫
Ω

∇bi · ∇bkdΩ, (3.28)

has been replaced with the vector product

[
MND

MID

]
~uD. (3.29)

3.5 Charge distribution

In this section the charge distribution term in Equation (3.11) is handled. That is,
the calculation of

∫
Ω

bi ·
ρ

ε
dΩ. (3.30)
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There are two contributions to this charge distribution,

ρ = ρparticles + ρbc, (3.31)

where ρparticles is the distribution from the moving superparticles and ρbc is the
contribution from the immovable charges in the device, denoted as the background
charge.

3.5.1 Background charge

Figure 3.3: Illustration of redefined boundary between Ωi and Ωk. The dotted line
is the actual boundary line between the sets, the bold line is the redefined line. The
small Ωk and Ωi denote which one the elements are defined as subsets of.

The background charge is considered constant in regions of the device, given by
the doping in the material. Let Ωj denote the regions of different charge densities.
Figure 3.3 shows an example, the dotted line is the boundary between the regions
Ωi and Ωk. Let ρjbc denote the specific density in each region Ωj then

ρjbc = qnjD, (3.32)

where q is the signed elementary charge, njD is the constant doping density in region
Ωj and the sign of q depends on whether the background charge originates from
donors or acceptors. Since ρjbc is constant in each region, the integral on each element
K ∈ τ within a region Ωj, that is K ⊂ Ωj, is
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∫
K

bi ·
ρjbc
ε
dK =

AK
3

ρjbc
ε
, (3.33)

so that each node of a triangle gets an equal contribution of one-third of the charge.
When an element is on the boundary between regions Ωj, the above integral needs
to be split. Denote γ as the enumeration j so that Ω = ∪j∈γΩj, then

∑
j∈γ

∫
K∩Ωj

bi ·
ρjbc
ε
dK =

∑
j∈γ

λ(K ∩ Ωj)

3

ρjbc
ε
, (3.34)

where λ(·) denotes the Lebesgue measure of the argument set, which means the
area of this intersection of sets. However, in practice, this is cumbersome and there-
fore the implementation uses only equation (3.33). The boundaries are redefined
to coincide with some edge in between elements. With finer grids, this will give
approximately the same solution. Each element is well-defined to be in an Ωi by
defining that its element center must be in Ωi as shown in Figure 3.3.

Since the equations are for each node and not for each element, the contribution to
each node is written as

∫
Ω

bi ·
ρbc
ε

=
∑
K∈τi

AK
3

ρbc
ε
, (3.35)

where τi is defined as the elements which are in the support of bi. Since the regions
Ωj are disjoint, ρbc is well defined as ρbc = ρjbc in any region of Ω and therefore the
index is omitted.

3.5.2 Particle-mesh coupling

For ρparticles, the integration becomes different depending on the chosen charge dis-
tribution. It is time to introduce the assignment scheme function. Denoting the
assignment scheme function to be li, it is given as

li =

∫
Ω

bil
′(rp)dΩ, (3.36)

where l′(rp) approximates ρ
qp

as a mesh coupling of the superparticle located at rp,

with the charge qp. qp is either positive or negative depending on if the superparticle
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Superparticle

(xi+1,yj+1)

(xi+1,yi)

(xi,yi+1)

Cloud charge

(a)

(xi,yi)

(xi+1,yj+1)

(xi+1,yi)

(xi,yi+1)

Cloud charge

(b)

Superparticle

p1

p3

p2

loud charge

(c)

Figure 3.4: Illustrating the relationship, between (a) CIC in a rectangular grid (b)
NEC in a quadrilateral grid (c) NEC in a triangular grid, by showing the grid
points, the cloud charge and the superparticle in one element.

represents electrons or holes. qp is explicitly given as an equal charge distributed to
all the superparticles in the simulation:

qp =
qnDAdevice
n(P )

, (3.37)

where q is the signed elementary charge, n(P ) is the number of superparticles, and
nD is the doping density. Equation (3.37) is made so that each particle has an
equal amount of charge distributed to it, and it is the charge equivalent of ρsup
from Equation (2.4), where the needed quantity was the charge distribution of each
particle, and not the charge itself. This difference in what quantity is needed is
mainly due to the integrals in FEM, which in a sense can be interpreted as counting
the charges in each area. Taking the Neumann boundary as zero, Equation (3.11)
becomes,

∑
j∈NI

φ̊j

∫
Ω

∇b>j · ∇bidΩ = −
∑
p∈P

qp
ε
li(rp) +

∑
K∈τi

AK
3

ρbc
ε

−
∑
k∈ND

∫
Ω

∇b>i · ∇bkdΩ, (3.38)

∀i ∈ NI .

where li is a charge assignment scheme that could in principle be any scheme.

One example for a charge distribution scheme is the nearest-element-center scheme(NEC)
which was first proposed by Laux in [5]. This scheme takes a similar approach to
CIC which was described in Section 2.3.2. Before making a cloud, the superparti-
cle’s position is moved to the center of its element. This way the NEC scheme keeps
the charge density locally within an element as shown in Figure 3.4c. Just like with
CIC, the charge density uses ρsupp from NGP.This yields an equal contribution to
each node within an element, but not an equal amount to each node across elements.
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In this case li = A
3

ρsupp
qpε

. Denote Pi to be the set of which particles are in the support

of bi and AKp to be the area of the element this particle is in. Then, Equation (3.11)
becomes

∑
j∈NI

φ̊j

∫
Ω

∇b>j · ∇bidΩ = −
∑
p∈Pi

AKp

3

ρsupp
ε

+
∑
K∈τi

AK
3

ρbc
ε

−
∑
k∈ND

Dk

∫
Ω

∇b>i · ∇bkdΩ, (3.39)

∀i ∈ NI .

Another example of an assignment scheme is li = bi(rp), that is the scheme where
the source is modelled as a Dirac delta. l′ = δ(~r − ~rp) yields that

∑
j∈NI

φ̊j

∫
Ω

∇b>j · ∇bidΩ = −
∑
p∈P

qp
ε
bi(rp) +

∑
K∈τi

AK
3

ρbc
ε

−
∑
k∈ND

∫
Ω

∇b>i · ∇bkdΩ, (3.40)

∀i ∈ NI ,

where P denotes the set of all superparticles. The implemented choice has been
a merge of these two methods; it uses the Dirac delta function where the charge
is set in the center of an element. The reason for this choice is that the Dirac
delta function is most appropriate with the self-force reduction scheme which will
be presented in Chapter 4, and the electric field approximation presented in Section
3.10 will be constant within an element. In that case, it is unlikely for the position
of the particle within an element to have much influence on the result. In addition
to this, it will be seen in Chapter 4 that additional possibilities for improvement
show itself using this scheme. With the scheme chosen, the equation to be solved is

∑
j∈NI

φ̊j

∫
Ω

∇b>j · ∇bidΩ = −
∑
p∈Pi

1

3

qp
ε

+
∑
K∈τi

AK
3

ρbc
ε

−
∑
k∈ND

∫
Ω

∇b>i · ∇bkdΩ, (3.41)

∀i ∈ NI ,

where Pi and τi denote respectively, particles and elements in the support of bi.
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3.6 Contact treatment

As described in Section 2.4, the model must have ohmic contacts. Unfortunately,
the previous implementation does not cope well with FEM. Therefore, the approach
has been altered. The old contact model imposed conditions of charge neutrality
and thermal equilibrium, and therefore this is chosen for FEM as well. The thermal
equilibrium is still kept by assigning a k-vector drawn from a thermal distribution.
The charge neutrality is now done by checking the charge of elements in the region.
There are alternative approaches to check if the contacts become interesting or
important at some stage, for instance, [20] is using tetrahedral or triangular elements.

From Equation (3.31), the background charge needs to equal the contribution of
moving charges in each element. From Equation (3.41) it means that for each
element, it is in theory a neutral charge element if

∑
p∈PK

1

3

qp
ε

=
AK
3

ρbc
ε
, (3.42)

where the sum over p ∈ PK is taken over particles in the support of bi. Now this
yields that a charge neutral element needs n(PK) particles. That is,

n(PK) =
ρbcAK
qp

, (3.43)

which means that the number of particles needed in an element is equal to the total
charge of an element per particle charge.

The contacts are dealt with by checking how many particles are needed in total in
the contact region. Then particles are injected to a randomly chosen element in this
region with a bias towards elements which are far from charge neutral. This approach
is naive, but as has been stated, the contacts are not of interest in the simulator, and
that is the reason it has been done in a rough and simple manner. This approach
assumes that there will be elements that are large enough to accommodate particles
in the contact region, restricting the characteristic step length. The issue can be
resolved by considering merged elements for charge neutrality.

3.7 Mesh considerations

The contacts treatment in the previous section can be taken even further. By
continuing the calculations, one can get insight into the relationship between su-
perparticles’ charge, and the elements’ background charge. The particles’ charge is
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given by Equation (3.37) when using the average doping. For a device of varying
doping, denote each region Ωj as the region with njD constant doping, and γ as the
enumeration j so that Ω = ∪j∈γΩj, then the particles’ charge is given as

qp =

q ·
∑
i∈γ

niDAi

n(P )
, (3.44)

where q is the signed elementary charge, Ai is the regions area, and n(P ) is the num-
ber of superparticles. The charge associated with an element from the background
charge is

qK = qAKn
j
D. (3.45)

where j indicates the region Ωj containing K. When there is an equal contribution
from the background charge and a particle in the element, it means that the area of
an element should be

AK =

∑
i∈γ

niDAi

njDn(P )
. (3.46)

This result is interesting as it gives an estimate of what area the average element
should have to be of neutral charge with one particle in it. Also, since it is in
terms of properties of the domain and the particles, it is suggested that it also gives
an indicator of the particles’ ability to interact with each other and the domain.
Note that, Equation (3.46) is the same as Equation (3.43) when the latter uses the
average doping density as the only density in the domain. These equations should be
thought of as functions of the number of superparticles n(P ) or functions of doping
densities niD. This means that for a set device and mesh, this equation can tell how
many particles must be used, or with a set number of particles viable, it can be used
to generate an appropriate mesh.

Although there is no proof, it will here be suggested that Equation (3.46) should be
used as an upper bound for the size of the elements in areas of interest. Unfortu-
nately, for the mesh generation used in this master’s thesis, there is no simple way
to configure the areas of elements. Therefore, to get an estimate for the character-
istic length, which configures element size in GMSH, an assumption will be made.
Since the mesh is Delaunay, the minimum angle of triangles are maximized, there-
fore a reasonable assumption is that, on average, the areas of the elements can be
approximated as equilateral triangles. Equation (3.46) can then be approximated
as
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h = α

√√√√ 4√
3
·

∑
i∈γ

niDAi

njDn(P )
. (3.47)

where α(~r) is a scaling factor which decides the degree of refinement in an area. This
relationship is used in the PN-junction in Chapter 7, but except for that, there is
no further testing of the relationship. Note that due to the contact implementation,
α ≥ 1 near the boundaries. Except for that, the user is free to vary α as needed in
the domain. The following list is a suggestion of how the parameter α ≥ 0 should
vary in a simulation.

• In contact region, α ≥ 1.

• Regions of few or no particles, α� 1.

• Regions of many particles and important particle interactions, α� 1.

It is important to note that this estimate is a suggestion, and there is no requirement
to use it for the solver to work. Often, the user of FEM implementations needs to
test the mesh and see what works in different circumstances.

3.8 Assembly of stiffness matrix and load vector

As is clear by now, the assembly can be done element-wise. The algorithm for
assembly is presented here for completeness. The load vector has contributions only
from individual particles and is therefore assembled by iterating over particles in
elements.

The algorithm needs a corresponding index transformation, (iK , jK , K) → (i, j),
which depends on the numbering of nodes in the triangulation, which is essentially
the connectivity of nodes in the grid. The GMSH triangulation contains this map-
ping. For a thorough discussion of the assembly process when using other triangu-
lation methods see [21]. Since the matrix, and other matrices involved, are sparse,
they are stored in the compressed row storage format (CRS) which essentially stores
only the nonzero values, their column position and the number of non-zero values
in each row. This format is described in Appendix B.1

3.9 Electric field approximation

The goal of the potential approximation is to find the electric field to make MCCT
self-consistent by applying the forces of the electric field onto the particles. There-
fore, an approximation based on the potential is needed to get the electric field
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Algorithm 1 Matrix and vector assembly

input Triangulation τ , superparticles.
ouput global stiffness matrix M and global load vector f .
∀K ∈ τ calculate locally MK

iKjK

Mij = Mij +MK
iKjK

Remove Dirichlet boundaries by redefining matrix as

M :=

[
MNN MNI

MIN MII

]
Insert dirichlet conditions as

f = f +

[
MND

MID

]
~uD.

∀K ∈ τ calculate locally the charge distribution fki
fi = fi + fKiK
In each time iteration calculate moving charges contribution:
∀ superparticle in K calculate locally fKi
fi = fi + fKiK

doing work on each particle. No matter how this is done, the approximation can be
written as,

~Ep ≈ z(φ, ~rp) (3.48)

where z(φ, ~rp) approximate the electric field in some way dependent on the potential
field calculated and the position of the particle. There are several possibilities for
doing this, however in the particular case of finite element method, there is especially
one which is natural to use and which will be used here. This is because FEM does
not approximate the function just in the nodes, it approximates the function using
a basis, in this case, a linear basis. Therefore, it is approximated as a function in
terms of this basis. This approximated function has its properties in the domain,
and not just at each grid node.

The choice of approximation for ~Ep matters for the properties of the method. How-
ever, the problems which stem from these properties are handled through other
means than finding the most appropriate scheme. Therefore it is wise to use a
simple scheme to make calculations few and quick.

3.10 Natural FEM electric field approximation

The electric field is given by

~E = −∇φ. (2.8)
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From Equation (3.10), φ at a particle position ~rp = (x, y) can be represented locally
in its element as

φ(~rp) =
∑
i∈N

φibi(~rp). (3.49)

Using the above equations, the linearity of the gradient function, and the support
of the basis functions, the electric field approximation becomes

z(φ, ~rp) = ~EKp = −∇φ = −
3∑

ik=1

φiK∇biK (~rp), (3.50)

where ~EKp denotes the E field approximation on the element containing the particle
p and φiK denotes the approximated potentials at nodes belonging to the element
with their respective basis functions biK .

The area coordinates from Section 3.3 are used and the gradients can be found in
Appendix A.2. From these gradients, and from Equation (3.50), the final electric
field approximation in x− and y−directions on a particle is

Ex =
1

2AKp

(φ1(py3 − p
y
2) + φ2(py1 − p

y
3)) + φ3(py2 − p

y
1)), (3.51)

Ey =
−1

2AKp

(φ1(px3 − px2) + φ2(px1 − px3)) + φ3(px2 − px1)), (3.52)

where pxi and pyi respectively denotes the x- and y- coordinate of vertex pi in element
K which the superparticle is contained in.

Notice that due to the chosen basis and approximation function, z, the electric field
becomes constant on each element and therefore is discontinuous when particles
cross boundaries. As has been stated in [5] this lead to issues with stability for
other methods than FEM. However, the finite element method deals best with rapid
variations in the potential field using linear elements. Therefore, this issue has
been ignored to be able to use the self-force reduction scheme presented in the next
chapter. If there are issues with stability, then the method can be improved either
by using some of the electric field interpolations presented in [22] to interpolate
electric fields of elements onto nodes or the basis can be upgraded to use higher
order polynomials.
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Self-force reduction

Self-forces are forces which stem from the properties of the mesh used in a discretiza-
tion, and it is defined as the force which a particle exerts on itself during simulations.
Self-forces has been a topic of discussion within particle simulations for a long time.
Mostly, the NGP and CIC schemes were used with structured meshes to resolve the
issue. In 1996 Laux published improved versions of NGP and CIC[5], which could
be used for non-uniformly spaced tensor-product meshes but also showed that a
simple PMC scheme of the same form as NGP and CIC would not produce zero self-
force for unstructured triangular meshes. However, it did show that for equilateral
triangular meshes, there is zero self-force if the NEC scheme is used.

Since FEM’s main advantage is to be able to solve functions on arbitrary domains,
and triangular elements enhance this advantage, many studies have been done to try
to make this work. Among these, the most important paper on the theoretical aspect
is [22]. This paper introduced the theoretical conditions needed to produce zero self-
force for an unstructured triangular mesh. However, it was unable to produce such
a scheme, like all before, and it drew the same conclusion as Laux, that this is
only easily obtained if the elements are equilateral. However, they did show that,
in practice, the self-force was greatly reduced when using interpolation of electric
fields in elements onto nodes.

In 2015, Kalna et al. presented a method[23] to remove the self-force in PMC
schemes by removing each particle’s contribution to the grid. The method was
presented as a PMC scheme using the Dirac delta representation and the natural
PMC coupling that arise from this. By doing the calculations this way, the Coulomb
potential was used to remove any self-force on each particle. A side-effect of this
approach is that any PMC scheme can be utilized. As this method gave results
which worked for arbitrary meshes, it has been chosen for the implementation in
MCCT.

In this chapter, the self-force reduction is carried out and analyzed. In Section
4.1 the concept of self-forces is explained. In Section 4.2 the self-force reduction is
introduced. In Section, 4.3 the self-force to grid coupling is introduced. In Section
4.4 the method is illustrated and discussed. In Section 4.5 the method is tested for
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a single particle in an infinite domain.

4.1 Self-forces in PMC

Denote ~rp as the position of a superparticle, henceforth any variable denoted as fp
will be considered as fp = f(~rp). In PMC schemes the potential a superparticle p
experiences can be split up as follows:

φp = φself + φothersources, (4.1)

where φothersources denotes the potential which would be if the carrier wasn’t present,
and φself denotes the potential which the particle itself contributes. Because of
linearity the electric field becomes

~Ep = −∇φp = −∇φself −∇φother = ~Eself + ~Eother (4.2)

Since the force is qp multiplied by this electric field, and a particle does not exert a

force on itself, it is apparent that ~Eself = 0. However, this is not the case in PMC
schemes in general. When the discretization is unable to conserve symmetries, the
self-force becomes a factor.

4.2 Self-force reduction

The idea behind self-force reduction is to remove the charges own contribution to
the electric field when calculating the electric field on this particle. This is done
by placing a charge in infinite space,R2, so that it should have zero forces working
on it. The self-force will then be the force that is doing work on the particle,
−qp∇φself . The reference potential is defined to be equal to this self-potential,
−qp∇φref = −qp∇φself , so that it can be removed for the particle to produce zero
self-force. This reference potential depends on the charge assignment scheme, l′(~rp),
and the electric field approximation scheme, z(φ, ~rp). Both of these need to be chosen
the same as in Chapter 3. In any case of scheme choices, the reference potential
with an electron is given by

∇2φref
′
= −qp

ε
l′(~rp) (4.3)

Introducing scaling, define φref
′ ε
qp

= φref , such that
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∇2φref
′ ε

qp
= ∇2φref = −l′(~rp) (4.4)

Now the solution can be obtained in terms of unit charge and unit permittivity, then
scaled for the simulator. The solution to (4.3) is now given as

φref
′
=
qp
ε
φref (4.5)

When approximating the charge as an infinitely small particle, in infinite space,
Ωinf = R2, the solution is the Coulomb potential:

φref
′
= φColoumb =

− ln(|~r − ~rp|)
2π

. (4.6)

Equation (4.6) is interpreted as the two-dimensional version of the Coulomb poten-
tial given that the charge is distributed with unit charge along the third axis. It is
important that it is interpreted in this sense since the boundary condition is that
the potential goes to zero as ~r tends to infinity in R3. This will be denoted as the
infinite boundary condition. The actual domain for simulations is limited to the
domain of the mesh Ω. To simulate Ωinf with the finite Ω, the boundary nodes
are approximated as the Coulomb potential. For a unit charge in a 2-dimensional
domain, the boundary is therefore given by

φref |∂ΩD
=
− ln(|~r − ~rp|)

2π
. (4.7)

If another scheme is used for l′(·), and not the Dirac delta function, then as the
number of elements increase, the charge assignment gets closer to the Dirac delta
function as long as the scheme used takes into account the size of each element.
This means that the boundaries of a simulated infinite domain can at least be
approximated by the Coulomb potential as Equation (4.6) on the boundaries. It is
important to emphasize that in the case of the reference potentials, the boundary
is this Dirichlet condition, and there are no Neumann conditions. This means that
for this chapter, Nref

I are the interior nodes and Nref
D are the boundary nodes.

Before moving on, the goals of this section should be summarized. The steps that
will follow are shown in the following list:

• Calculate the reference potential for a particle in the particle position ~rp in
the infinite domain Ωinf

• Calculate the reference electric field in the particle position ~rp in the infinite
domain Ωinf
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• Remove the self-force from a particle in the position ~rp in the simulation do-
main Ω

Following the finite element approach analogously to Chapter 3, the approximation
to the reference potential is, for a single particle,

∑
j∈Nref

I

φ̊refj

∫
Ω

∇b>j · ∇bidΩ = −l(~rp)

−
∑

k∈Nref
D

∫
Ω

∇b>i · ∇bkdΩ, (4.8)

∀i ∈ Nref
I ,

where Dk is given by Equation (4.6) with ~r = ~rk at boundary nodes k. Equation
(4.8) solves the first step in this section.

The reference potentials role is to reduce the self-force of a particle, and therefore it
is natural to take a look at the electric field before looking at the next step for the
potential. The second step in this section is given by using the same approximation
for the reference electric field, as for the electric field of particles. That is,

~Eref ≈ z(φ, ~rp) = −
3∑

ik=1

φrefiK ∇biK (~rp), (4.9)

with iK denoting nodes in an element K in which the particle’s position, ~rp, is
contained.

The idea is to reduce the electric field in the particle’s position using the reference
potential. At this time, the potential for the particle itself is given by (3.41) at each
time step. The electric field, from equation (3.50) is given as

~Ep ≈ z(φ, ~rp) = −
3∑

ik=1

φiK∇biK (~rp), (4.10)

Since the particle’s position is the same for MCCT and the reference potential
particle, Equation (4.2) is used to remove the particle’s own contribution to the
electric field.

~Ecorrected
p = ~Ep − ~Eref . (4.11)

Using equal assignment schemes for the potential and the reference potential, to-
gether with the scaling in Equation (4.5), yields that
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~Ecorrected
p =

3∑
ik=1

φiK∇biK (~rp)−
qp
ε

3∑
ik=1

φrefiK ∇biK (~rp). (4.12)

Since the electric field approximation is linear in its arguments one can define the
solution as

~Ep
corrected

= z(φ, ~rp)− z(
qp
ε
φref , ~rp) = z(φ− qp

ε
φref , ~rp). (4.13)

By defining

φcorrected = φ− qp
ε
φref (4.14)

the corrected electric field potential at a particle’s position is given by

~Ep
corrected

= z(φcorrected, ~rp) (4.15)

and the corrected potential for the particle’s position is

φcorrected(~rp) =
3∑

ik=1

φiKbiK (~rp)−
qp
ε

3∑
ik=1

φrefiK biK (~rp) (4.16)

However, it should be noted that φcorrected is not an error corrected potential, it
removes all the contribution from the particle in an infinite domain. Therefore,
it can only be used as a definition to correct the electric field for that particular
particle’s contribution to itself in the grid.

4.3 Reference potential to grid

The above calculations are sufficient to get rid of the particles’ self-forces, but it
requires that the reference potential is calculated once for each superparticle at each
time iteration. This is computationally expensive and is therefore not a manageable
approach. It is important that the reference potentials are connected to the grid so
that they can be calculated beforehand. The idea is to calculate the potential in each
node or element, then use the superposition property as a tool to get the reference
potential at any particle position. Since the particles are all positioned inside the
center of each element in the used assignment scheme, the positions are discrete.
Thus it is possible in this case to calculate the reference potential element-wise.
However, there are far more elements than there are nodes in the grid, and for this
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reason, the nodal approach is used. If accuracy is needed, the elemental approach
does a better job since the positions of the reference potentials are the same as for
the MCCT run. Also, the elemental approach has the added advantage of being
able to calculate the reference potential in all elements. The nodal approach cannot
reduce the self-force in elements that have a node on the boundary since these nodes
cannot be calculated. The goal of this section is to do the reduction of the self-force
by calculating the reference potentials before knowing the particle’s position. The
steps required to do so, with the nodal approach, are listed below:

• Calculate φref with a particle set in each mesh node pnode ∈ NI , denoted as
φpnode,R,

• Approximate φref for a particle in ~rp ∈ Ω during the MCCT time loop.

Here, the approach of Kalna et al. [23] will be used. This approach calculates the
reference potential for each grid node using a Dirac delta function for the assignment
scheme function, that is

l′(rp) = δ(~r − ~rp) (4.17)

and the electric field approximation is the natural one,

z(φ, ~rp) =
3∑

iK=1

φiK∇biK (~rp). (4.18)

Now, for each internal node pnode, the reference potential is calculated and denoted
as φpnode,R. That is, the discretized potential φpnode,R

j is the reference potential in
node j from a particle set in node pnode. Inserting l′ and z into equations (4.8) and
(4.15) leads to the reference potential calculations being done as

∑
j∈NI

φ̊pnode,R
j

∫
Ω

∇bj∇bidΩ = −δipnode
−
∑
k∈ND

Dk

∫
Ω

∇b>i · ∇bkdΩ, ∀i ∈ NI . (4.19)

for each node pnode in the grid, where δipnode
is zero for i 6= pnode and one for i = pnode.

It is important to understand that pnode ∈ NI , it is in the non-Dirichlet nodes. Dk

is given by Equation (4.6) with ~r = ~ri and ~rp = ~rpnode
. Then from equation (3.40)

the potential at each time step is calculated with FEM as
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∑
j∈NI

φ̊j

∫
Ω

∇b>j · ∇bidΩ = −
∑
p∈P

bi(~rp)
qp
ε

+

∫
Ω

ρbc
ε
dΩ

−
∑
k∈ND

Dk

∫
Ω

∇b>i · ∇bkdΩ, (4.20)

∀i ∈ NI .

Now that the reference potential is known for a particle located in each mesh node,
the reference potential φref for a particle located in ~rp must be approximated. At
this point, this report will diverge from the method of Kalna et al. Their approach
is to use the reference potential directly as the contribution of the self-force to the
particle, by doing the reduction as,

φcorrected(~rp) =
3∑

ik=1

φiKbiK (~rp)−
qp
ε

3∑
iK=1

φiK ,RiK
biK (~rp). (4.21)

However, even though it is not mentioned in their report, this is merely an approx-
imation of the true value of the reduction term. To see this, remember that the
reduction is done as Equation (4.16),

φcorrected(~rp) =
3∑

ik=1

φiKbiK (~rp)−
qp
ε

3∑
iK=1

φrefiK biK (~rp), (4.16)

where φref is calculated from the particle’s position. Because all the charge is given
to only one node in |φi,Ri |, it is strictly larger than |φrefi |, as long as the particle is not
in a node position. Since the two equations (4.21) and (4.16) have the same terms
in them, Equation (4.21) has to be an approximation at best. The approximation is
that one treats the particle as if it was in the nodes themselves, and when the particle
is close to a node, this will be a good approximation. However, it is only a good
approximation as long as it is the potential which is in question. Since the weights
are the bases, they become constants for the electric field, and the approximation
does not take into account the distance to the nodes farther away. Fortunately,
with some care taken, one can make a better approximation which captures the
interaction between nodes within an element.

Here, the usage of the superpositioning principle and the usage of the bases will
be done in great detail to develop a more suitable approximation. If one wants to
represent the particle in an element using particles in the three nodes of said element,
then the superposition principle says that the particle can be represented by using
the distance-weighted particles’ contributions, which can be written in terms of the
bases as
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φref (~r) =
3∑

jK=1

φjK ,R(~r)bjK (~rp). (4.22)

Equation (4.22) is the potential at any position ~r of a particle charge located at ~rp in
the domain in terms of the three reference charges located in rjK in the mesh using
superpositioning. It is tempting to say that since the basis function is zero in all
nodes except the one which the particle is placed in, the potential at the particle’s
position becomes

φref (~rp) =
3∑

jK=1

φjK ,RjK
bjK (~rp), (4.23)

which is Kalna’s approximation. However this assumption that the particle’s loca-
tion is in each node is untrue. The particle’s location in Equation (4.22) is inside the
element, where each of the three nodes has support. Since it is the response at the
particle’s position which obeys the superposition principle, and the basis is merely
a representation of this response, the expression has to be made with respect to
each basis. This can be done by using Equation (4.22) with ~r = ~riK in the elements
nodes. Then the result of each basis contribution is that,

φrefiK =
3∑

jK=1

φjK ,RiK
bjK (~rp). (4.24)

That is, each φrefi is the distance-weighted average of φ·,Ri from the calculation of
a particle in each node in this element. With φrefi found, one can see that in the
particle’s position, the reference potential has to be

φref (~rp) =
3∑

iK=1

3∑
jK=1

(φjK ,RiK
bjK (~rp))biK (~rp). (4.25)

There is a test one can do on this equation. As stated, Kalna’s approximation should
be good enough when the particle is close to a node. This means that Equation (4.25)
should be equal to Equation (4.23) for a particle in a node position. This is certainly
true, take for instance a particle in node number 1, so that bj = 0 for any j 6= 1
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(a) Reference potential for a particle in an
element

(b) Grid reference potential for an element
where the particle is set in node 2.

(c) Kalna approximation reference poten-
tial for a particle in an element

(d) New approximation reference potential
for a particle in an element

Figure 4.1: The illustrated usage of reference potential approximations.

φref (~r1) =
3∑

iK=1

3∑
jK=1

(φjK ,RiK
bjK (~r1))biK (~r1)

=
3∑

iK=1

(φ1,R
iK
· 1))biK (~r1)

= φ1,R
1 ,

which is the expected result. The reference potential for a particle in a node is
equal to the reference potential calculated in that node, which is the same answer
as Kalna’s approach has.

Since the discussion above may be somewhat hard to understand, the methods are
illustrated in Figure 4.1. Figure 4.1a illustrates the reference potential calculated
from the particle’s position, that is the reference potential talked about in Section
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4.2. Figure 4.1b shows how the grid reference potential is calculated, in this illus-
tration the potential is calculated as if a particle is positioned in grid node number
2. In figure 4.1c the way Kalna approximates the function from Figure 4.1a using
the grid potential from figure 4.1b is shown. This is not to be mistaken to be the
approximation to the reference potential situated at the particle’s position; it is the
approximation to the nodes in the grid when the particle is in ~rp. In Figure 4.1d
the new approximation just presented is shown.

Now that the new method has been explained, it should be clear that the corrected
potential is given as

φcorrected =
3∑

iK=1

φiKbiK (~rp)−
qp
ε

3∑
iK=1

3∑
jK=1

(φjK ,RiK
bjK (~rp))biK (~rp) (4.26)

Using this correction, the corrected electric field is given by

~E = −
3∑

iK=1

φ( ~riK )∇biK (~rp) +
qp
ε

3∑
iK=1

3∑
jK=1

(φiK ,RjK
bjK (~rp))∇biK (~rp) (4.27)

4.4 Illustrations of the reference potential

This section will show the results of the method. For this demonstration, a coarse
grid has been employed to make it possible to see the effects and details. The
grid employed has 417 nodes and 832 elements. It is employed on a rectangular
domain where the length in x- and y-directions are respectively 3 µm and 1 µm, the
characteristic length used for the generation of this mesh is h = 0.1 µm.

In Figure 4.2 a scaled reference potential is shown as a contour plot. This is the
solution to Equation (4.3), φi,R, where the particle is set in a node i in the grid,
with the infinite boundary condition. That is, this is the Coulomb potential for the
discretized mesh. The mesh is transparent in the figure to give some insight into
why the equipotential lines are not perfect circles. It is important to understand
that this is merely one of the calculations in the reference potentials. There is such a
calculation for each interior grid node. The resulting electric field from this reference
potential is shown in Figure 4.3. As can be seen, the electric field points outwards
from the particle in all elements. The elements which are stored for usage in MCCT
are the ones which the node is a part of, depicted in Figure 4.4.

Since the reference potential is not unique in each mesh node, the full reference
potential is not shown. As mentioned before, this is because the reference potential
stores each neighbor of its calculated node i. It needs to store several mesh nodes for
each calculation, not just the one node i. Therefore, the best representation is the
electric field coming from the reference potential. In figure 4.5 the reference electric
field is shown for each element. This means that, if one wants to imagine what this
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Figure 4.4: The electric field vectors used for self-force reduction.

figure shows, it is the electric field in each element if a hole was in that one element
in an infinite domain without any other particles.

It may seem like, from the Figure 4.5 , that the electric field is many orders larger
in elements at the boundary. However, this is a side effect of the fact that it is only
possible to calculate the reference potentials in the interior nodes, and the actual
self-force may not be as large. Therefore, these elements only have contributions
from one or two nodes, which gives the large reference electric field here. Unfor-
tunately, this means that these elements cannot be reduced with this method, at
least not in a simple way. But one can see the tendency of the electric field pointing
towards the nearest boundary when close to one boundary. But on the contrary,
when not close to a boundary, the electric field does seem arbitrary and shows that
finding an analytical expression for the self-force, or using statistical analysis for an
approximation, may be to no avail. However, the most dangerous type of self-force
are the systematic ones, and therefore, it might be enough in some circumstances
only to get rid of these that have a tendency to move particles towards, or away from
the boundary. But this is mere speculation, and the most rigorous method would
be to remove the self-force with this reference electric field. It should be noted that
the fields in the interior are barely visible, but they are present. The reason they are
barely visible is that they are much smaller than the ones closer to the boundaries.
However, they are still large, the 2 norm of the reference electric field varies from
632V m−1 to 4312V m−1.

Fortunately, the fact that reference potentials can’t be calculated for elements with
boundary nodes is not very impactful. In fact, the boundary conditions need to take
priority over the reduction of self-forces. Since the boundary condition is Neumann
zero condition, except for the contacts, they cannot be reduced in the same manner
as other elements. That is because doing the reduction after calculating the potential
with zero Neumann condition will introduce a nonzero electric field on the normal of
the boundary. Therefore, if the self-force is to be reduced near boundaries, it should
only be calculated parallel to the boundary. This is possible to do for elements
which have only one node on the boundary, but not for the ones with two nodes
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on the boundary. The reason for the Neumann zero boundary condition is that the
interesting results should be well into the domain, and the boundaries should have
as small an influence as possible on these results. This has usually been achieved
by making the electric field as small as possible. Mathematically, this is expressed
as the Neumann zero boundary condition. A concern is whether or not the self-
force will alter the electric field to be of importance. Looking at the component
of ~E normal to the boundary, near the boundary, it is often said that this is the
component which has the largest magnitude for the self-force, but in the case of
Neumann zero boundaries, this component is essentially removed since the condition
is to set it to zero. On the parallel component of ~E, the self-force is usually much
lower near the boundary. Since this is the case, although no self-force reduction is
done near the boundary, the problem is handled by making sure that the Neumann
zero condition is enforced. There are ways to try to remove the remaining self-force
in the parallel direction. For the boundary elements with only one node on the
boundary, the parallel self-force can be approximated from the potential in the two
interior nodes. For the elements with two boundary nodes, the self-force must be
approximated in a different way. For instance, the element-wise reference potential
approach where the reference potential is calculated for each element is a possibility.
Since the boundaries are employed on nodes, all of the elements, including boundary
elements, can be reduced in this approach.

4.5 Self-force test

In this section, the self-force is tested. To do this, a superparticle is set in an infinite
domain, just as with the reference potential. That is, the same equations are used
as in the reference potential calculations. The difference is that the particle is not
set in nodes, and therefore the calculation is done with the particle in some element,
at some position ~rp and without scaling. That is, here the equations

∇2φref
′
= −qp

ε
δ(~r − ~rp) (4.28)

with dirichlet boundaries simulating an infinite domain as explained in 4.2,

φref |∂ΩD
=
−1

2π
ln(|~r − ~rp|), (4.29)

are calculated using FEM as described so far. That is, firstly, the reference potentials
are calculated; secondly, the particle’s potential is calculated, and finally, the reduced
potential and the electric field are calculated. The particle has been set in x = 1.5
and y = 0.5. The resulting potential from an electron superparticle is shown in
Figure 4.6. From this figure, it is easy to spot why the self-force is such a big problem.
Since the potential is so large at the particle’s position, and quickly descends in its
near vicinity, a very small error either in the particle’s location or the potentials
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peak will make it so that the particle essentially is in the near vicinity where the
electric field becomes large. Since the grid is coarse, it illustrates the non-symmetry
from the triangular elements. The calculation results in an electric field that is

~E =

[
−175.9
1936

]
V m−1. (4.30)

The reference electric field is calculated as nearly identical with opposite direction
and since the superparticle is an electron, the sign of the reference potential is
taken into account so that the negative reference potential is subtracted to yield the
reduced electric field:

~Ereduced =

[
1.282 · 10−9

8.001 · 10−8

]
V m−1. (4.31)

These vectors are shown in Figure 4.7. The 2-norm now gives a relative error of
4.1 · 10−11 for the method. This number makes sense as the linear system solver
used has been set to a tolerance of 1 · 10−10. So the method is exact up to the
tolerance of the solver.
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Chapter 5

Particle locating

When there is a partitioning of a domain into subdomains, the problem of finding
which subdomain an arbitrary point in the domain is within, is what is called the
point locating problem. Point location is a topic of computational geometry and
has seen much research from back in the late 70s [24] until recent years. In the 80s
studies of Voronoi diagrams led to advancements for Delaunay meshes, in particular,
[25] was published by L. Guibas and J. Stolfi, which contained a robust algorithm for
Delaunay meshes. In the 90s further steps were taken to make the method robust
for non-Delaunay meshes in [26], this method is built on Guibas’ algorithm and
patched the algorithm by inserting a distance to position measure which is forced
to be strictly decreasing. In the start of the 21st century point location for particles
was developed further [27][28]. In particular, a particle tracking algorithm able to
work well with particle boundary conditions was published in [29]. In this master’s
thesis, the choice has fallen on using Guibas’ and Stolfi’s algorithm as it suits the
purpose and the Delaunay property is satisfied for the mesh.

In this chapter, the particle locating problem will be discussed. In Section 5.1
the problem is defined and possible algorithms are discussed. In Section 5.2 the
chosen algorithm is presented. In Section 5.3 the structures needed for an efficient
implementation is discussed. In Section 5.4 the implementation is altered for speed.
In Section 5.5 the run time of the algorithm is tested.

5.1 General problem description

The general problem to find which element a particle resides within, can be stated
as follows: given a coordinate (x, y) in the domain Ω find which element K ∈ τ it
lies within. See figure 5.1 for an illustration. For a rectangular grid, this problem is
trivial since one can simply calculate which four nodes are closest to the coordinate,
immediately giving the location in the grid. However for a general mesh, the problem
can be hard. Several algorithms such as [30, 31] exists. The choice is dependent
upon what kind of mesh has been generated. Here, the choice will be dependent
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on the Delaunay property of the grid. However, if another type of grid is generated
in the future, there exist methods that can deal with non-Delaunay meshes, for
instance, [26].

Figure 5.1: An illustration of a point (x, y) in a domain Ω with a triangulation τ ,
where K ∈ τ is the element containing the point (x, y).

There is an algorithm made in particular for particle-in-cell (PIC) methods [29].
This algorithm should be employed when the mesh is unstructured and used in
combination with tracking of particles since it assumes that the particle’s position
was known at the previous time step. A vector is made from the previous to the new
location. This vector will intersect all faces in the shortest route to the new location.
Then, the length of this vector and its intersections with faces decides which element
the point is within. If hybrid elements in 3D are used [32] is a valid choice. This
method stores triangular faces of all elements. While searching through elements,
the triangular faces are used to combine existing methods for different element types
to find the points location in the mesh. Here the focus is only on triangular meshes
since that is what has been used in the finite element method, and therefore simpler
methods can be employed.

Even for triangular meshes, there are many algorithms that can be chosen. However,
since these algorithms are worthy a study of their own, a simple algorithm, which
does well enough has been implemented. Even so, there are criteria for the algorithm.
The criteria are:

• Take into account previous particle location.

• Take into account that the mesh is Delaunay.

• Be able to detect particle positions outside of the domain.
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The first and second criteria are advantages of the mesh, which should be exploited
for speed or rigor. By taking into account the previous particle location, with a
small time step, the new location should be in an element close to the previous one,
and therefore the algorithm should only need to check elements close to the previous
location. The Delaunay property is a favorable property for FEM, and in general,
for cases of geometrical computations, it is a property that should be exploited. The
last criterion, being able to detect positions being outside of the domain, is required
to make the particle boundary conditions implementable on an arbitrary domain.
It is sufficient to be able to detect that it is outside, and not knowing the closest
element to the particle. However, it is positive if the algorithm can identify which
boundary edge the particle crossed to get outside of the domain.

5.2 Guibas’ and Stolfi’s Point Location Algorithm

current edge

cl
oc

kw
is
e 

ed
ge

Counterclockwise edge

Figure 5.2: An example element with directed edges.

Since Guibas’ and Stolfi’s Point Location Algorithm (PLA) [25] is designed to locate
an element containing a coordinate in a Delaunay triangulation, it is a perfect match
for the mesh generated by GMSH. It has been chosen for its simplicity both in
implementation and concept and also for being in agreement with the three criteria
laid down in the previous section. Guibas’ and Stolfi’s Point Location Algorithm,
shown in Algorithm 2, starts at some random edge, then traverses the mesh in the
general direction of the particle to be located. This is done by letting each edge be a
directed edge, keeping the particle on the left of its directed edge at all times. Then
it will arrive at the correct element K when no such edge exists. The directions
for each edge is shown in Figure 5.2. The illustration shows that if the particle
to be found is contained in the element only the current edge have the particle to
its left. Notice that since counterclockwise rotation is checked first, the algorithm
has a bias for searching in a counterclockwise direction, which implies that it does
not necessarily take the shortest path to the correct element. Therefore, there is
potential to speed up the algorithm by alternating which edge is checked first. This
has not been applied since when the particles travel a short distance, the algorithm
will approximately take the shortest path. An example run through a triangulation
from an arbitrary edge is shown in Figure 5.3. This figure also illustrates that the
algorithm has a bias for searching in a counterclockwise direction.

To determine the side of a directed edge, denote ~ep as the vector between the origin
of the current edge and the particle p to be located in space and ~e as the current
edge vector. Then the side of ~e which the particle lies on is shown by the sign of
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Algorithm 2 Particle locating in a Delaunay triangulation

input ~rp = coordinate of particle to find location of. τ = triangulation to find
particle in.
ouput K = element which point is within.
set K = element with edge e
if ~rp is on the right of the current edge then

Edge e direction is inverted.
end if
while element not found do

if ~rp = one of the endpoints of edge e then
e = e is the found edge with K as the found element.

else
if ~rp is to the left of counterclockwise edge then

e = counterclockwise edge, update K to opposite element of e
else

if ~rp is to the left of clockwise then
e = clockwise edge, update K to opposite element of e

else
e is the found edge with K as the found element.

end if
end if

end if
end while

|S| = |
[
~e ~ep

]
|, (5.1)

where | · | denotes the determinant. The change of sign on the left or right of a
directed edge follows from the interpretation of the determinant as a dot product.
It should be noted that point location algorithms often have issues related to using
finite precision to calculate geometrical concepts. This issue is discussed in [29].
In this algorithm, the issue shows up in Equation (5.1). That is, because of finite
precision, this algorithm may in some instances calculate the point in space to be
on the right or left side of a directed edge when in reality it is on the opposite side.
With one exception, this has not had any effect on the results as far as what the
author has noticed. The exception is that in some cases the algorithm concludes
that a particle may be outside of the grid when it is not. However, the algorithm
has been implemented with this in mind. Whenever it concludes that a particle is
outside the grid, it will stay in the same element but have the boundary edge as its
current edge. If the particle is inside this element, it will not find any new edge or
element. If it is in another element, it will rotate the edge correspondingly. Since
the new iteration will have redefined what is clockrotate and counterclockrotate,
the next test will decide whether or not the particle is in this element or not. This
means that some care has to be taken to be able to find out whether or not a particle
is about to cross the boundary of the domain. The algorithm has to be allowed to
find an element which it believes the particle is within, and if this element is on the
boundary, a particle-in-cell test must be used to check if it is actually outside the

60 5.2. GUIBAS’ AND STOLFI’S POINT LOCATION ALGORITHM



CHAPTER 5. PARTICLE LOCATING

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Figure 5.3: Example of a path of the particle location algorithm. Starting at a
random edge, finding the element containing the particle in (0.84, 0.54).

domain. Therefore, this algorithm can find particles that are outside the domain,
but, unfortunately, it is inefficient.

5.3 Particle locating structures

The output from GMSH is two lists, or functions, which relate the elements to the
nodes, and the nodes to the x- and y-coordinates in the domain. By defining the
sets Nnodes and τ , as respectively the set of nodes and elements, the output of GMSH
can be represented as the two functions

N : Nnodes → R2 (5.2)

and

Enodes : τ → N3
nodes. (5.3)

That is, Enodes is a list of which nodes each element consist of, and N is a list of
the node coordinates. However, it is apparent from Algorithm 2 that the edges
are important. Edges between nodes can, in theory, be found using only Enodes by
searching for elements sharing the nodes which are part of an edge, but this search
will make the algorithm slower than it needs to be. Therefore, some more mappings
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are constructed during initialization to resolve these speed issues. The lists needed
are:

1. A mapping telling which two elements share an edge.

2. A mapping telling which two nodes make an edge.

3. A mapping which says which three edges make an element.

By defining that γ is the set of edges,

eelements : γ → τ 2, (5.4)

denotes which two elements share an edge. In the case of boundary elements, the
edges at the boundary are seen as 1-dimensional elements and are therefore included
in this list as both edges and elements. This is handy to be able to identify boundary
edges.

enodes : γ → N2
nodes, (5.5)

is a list denoting which edge consist of which two nodes.

Eedges : τ → γ3, (5.6)

is a list denoting which elements consists of which edges.

Using the three new lists, the operation of finding opposite element can be reduced
in complexity. Denote einodes as the ith output of enodes. Then the opposite element,
given a current edge e ∈ γ, can be stated as

Koppositeelement = ejelements(e), j = 1, 2 such that, (5.7)

ejelements(e) 6= Kcurrentelement.

The reason enodes is needed, is because it defines the edges. The directed edges are
found in Enodes, then the edge number e can be found in the list enodes by comparing
with Enodes. Notice this approach only needs to check the neighboring edges, which
gives speedup from the naive approach of matching elements by searching in Enodes.
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Figure 5.4: Naive approach of initialization

5.4 Reducing search time

In MCCT all the particles need to be updated once for each iteration. Each parti-
cles search is proportional to the number of elements the algorithm needs to pass
through to get to the correct element. Therefore, the algorithm starts from the
previous location to reduce the length from the initial element and the particle’s
element. With this initial element, the time spent in the particle location algorithm
is obviously close to proportional to the length the particle traveled and inversely
proportional to the size of each mesh element. That is, for n(P ) number of particles,

Tsearchtime ∝ n(P ) · l
h
, (5.8)

where h is an average element size. This equation is only true for the ensemble of
particle searches. It is not true for only one particle since h is a step length on
average, and the particle may be going through elements larger, or smaller, than the
average element. Equations (2.3) and (5.8) yields that

Tsearchtime ∝ n(P ) · ∆t

h
. (5.9)

From section 2.3 it is assumed that a finer grid needs a shorter time step, but since
the triangulation is not structured, another limitation is put on the time step from
Equation (5.9). This limitation is of a kind which has more to do with practicality
rather than stability or other issues. A large ∆t will make the algorithm slow, which
can in some instances be an issue.

It is worth mentioning that since this search is done for each particle, the algorithm
is parallelizable by giving particles to different processes. However, load balance is
an issue since it is unknown prior to the search which searches will take a long time.
Considering the number of particles and that they have an equal time step, this may
not be an issue. If it is an issue, it can be resolved by using distance traveled as an
estimate for load balance. Note that this is only an approximation since the number
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of elements traversed is not necessarily proportional to the distance traveled for a
particle in an unstructured grid.

At initialization the particles’ positions are randomly generated and therefore the
first search will take extensive time. However, it can be sped up by making some
considerations. The naive approach is to make all the particles search from an
arbitrary element which is inside the domain. This could take a very long time
since most particles will be far away from this element. A smarter way to initialize
is to distribute some ghost particles that are imagined on the grid and use the
particle location algorithm on these ghost particles. Then for each superparticle,
check which ghost particle is the closest and start the algorithm from this ghost
particle’s element. With this idea in mind, each device can be initialized efficiently
depending on where particles are likely to be. For a PN-junction, which will be
presented in Chapter 7, a simple approach has been used. The approach is to use
4 ghost nodes which are in the center of each of the regions P+, N+, P,N . This is
done in this way since the centers for P and N are central for most particles, and
because the regions P+, and N+ are initialized with more particles than P and N
regions. An illustration of this strategy is shown in Figure 5.5c.

The idea of ghost particles extends beyond just initialization. The concept can be
used to get speedup for large time steps. Usually this is not needed, but in some cases
it might be useful not to be restricted to a small time step, and therefore another
approach has been implemented. The idea is to use a domain filling strategy using
a Cartesian coordinate system. By inserting the ghost particles at each node in the
Cartesian coordinate system, the domain can be filled to the extent where, often,
the closest particle will be in the same element as the actual superparticle. This
means that the search time can, in theory, be reduced to be close to some chosen
constant that must be larger than in the case of all the particles being in their initial
element. Some step size is chosen low enough to fill the domain sufficiently. Then
the set of ghost nodes is instead viewed as a rectangular grid in the xy- plane. For
each particle, the nearest grid point in this grid is used as the initial search element.
Using

(i, j) = ([
x

hgn
], [

y

hgn
]), (5.10)

where hgn is the step size between ghost nodes, a look-up table gives the approx-
imated nearest element in this grid. For a given hgn this method is linear with
respect to the number of elements. However, hgn can always be decreased until near
constant search time is achieved. This can require a huge amount of memory, but
only integers need to be stored, so this is efficient and can be of help in some cases.
This method is depicted in Figure 5.5b. Although the figures shown in this section
are only for rectangular domains, the approach is just as useful within an arbitrary
domain. This is because any arbitrary domain can be put into a rectangle of a larger
area. It just means that these domains will have ghost nodes for which there are no
elements. However, there can be trouble with the size the grid would need, and in
that regard, the amount of memory needed for an arbitrary domain. It should be
noted that the implementation in MCCT, when using the domain-fill method, uses
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the following relation to choose the initial element:

~rgn = (xgn, ygn) = (i · hgn, j · hgn)

Kinitial =

{
Kprevious if ||~rp − ~rprev|| < ||~rgn − ~rprev||,

Kgn if ||~rp − ~rprev|| ≥ ||~rgn − ~rprev||,
(5.11)

where Kinitial, Kgn, Kprev, denotes the initial element to search from in this iteration,
the ghost node’s element, and the particle’s previous element respectively. The same
notation is used for the particles’ positions where ~rp is the new particle position.
Equation (5.11) describes that the new initial search element is either the previous
location or the closest grid node depending on which of these two is closest to the new
position. This is to ensure that a too coarse ghost grid will not make the algorithm
slower. For fine grids, relative to the distance traveled by the particle, this check
can be neglected. It is tempting to fill the space and never use the search algorithm.
However, this is not recommended since as long as hcoord is finitely small, there is a
chance that a superparticle p will be put into a neighboring element. This approach
is only used as an initial guess and will always need a point location algorithm to
find the real element.

The ghost particles’ elements are found in an orderly fashion by making sure the
distance between successive ghost particles is close, as illustrated in Figure 5.5a.
Each search is iterated onwards from the previous search. This approach is linear
in search time since more ghost particles mean less distance between each and the
total number of edges traversed is approximately constant. That is, up until the
number of ghost particles exceeds the number of elements in the grid by a large
amount. When this happens, the time spent making the grid becomes dominated
by the time it takes to check if the ghost particle is contained in the starting element.
Therefore, with such a high degree of resolution, the initialization time of the ghost
grid is proportional to the number of ghost particles.

The domain filling method resembles what is presented in [33]. In that article, it
is shown that this kind of search can give great speedups, and gives a reason to
suspect the method presented herein also performs well. The difference between
the approach here and the one given in the article is that the grid on top is not
used as an initial guess for another algorithm, but rather checks which element the
particle is contained in by iterating over each element with a subset of an element
inside the Cartesian coordinate location, using a partial volume based method, or
outer normal vector based method, both described in the paper. Depending on in
what order these tests are carried out, it is possible that the method in the article
outperforms the method described here, or the other way around.
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(a) The initialization of the domain-fill strategy.

(b) The usage of the domain fill strategy.

(c) The initialization of a P+, P,N,N+ device.

Figure 5.5: Illustrations of strategies using ghost nodes. The circles are ghost nodes,
the black dots are superparticles, and the arrows are approximate search direction
when using the point location algorithm.
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5.5 Results

In this section, run times of the algorithm are presented. The domain is a rectangle
with sides Lx = 3 µm and Ly = 1 µm. The characteristic length in the area where
this test takes place is close to 0.016µm and the total number of elements is 203872.
Further details of the mesh are not important, but can be found in Section 7.3. The
mesh is the same as will be used in Chapter 7.

For this test, a particle is set in position (x, y) = (0.1, 0.1)µm inside a known element.
Then the particle travels to a new location, where the current element is unknown.
The particle-location algorithm is employed to find the new element. Since an
MCCT run consists of typically 100, 000 particles, the process is repeated 100, 000
times to show the time spent for a typical run. Since the mesh is unstructured, the
paths taken are not the same for different lengths. This means that there is some
additional variation in the time taken. To minimize this fact, the directions to the
end locations are the same. In fact, the particle positions are all set on the line
y = x.

In Table 5.1 the end locations, length traveled, and the time spent in the particle
locating algorithm is shown. The number of lengths tested is not enough to check
Equation (5.8). A detailed study could be performed to test the relationship, but the
relationship will vary much depending on the mesh, and the test case, and therefore
such a study has not been done. It is important to verify, that the time step chosen
dictates the time spent in the algorithm. This is clearly seen from Table 5.1, as a
shorter travel distance gives a shorter time spent in the point location algorithm.
Analyzing the data given, one can see that the time spent in PLA is reduced faster
than linear with respect to the distance traveled. This behavior is explained by
the fact that the particle location algorithm does not take the shortest path to the
destination. It has a large influence on the path taken and the number of elements
traversed when traveling a long distance.

l(µm) t (s) x(µm) y(µm)
0.99 2.44 0.8 0.8
0.14 0.27 0.2 0.2
0.02 0.14 0.12 0.12

0.0014 0.016 0.101 0.101

Table 5.1: Run times for the particle location algorithm. The particle starts in
(x, y) = (0.1, 0.1)µm and ends in the positions listed in columns 3 and 4. The
traveled distance is listed in the first column, and the time spent in PLA is listed in
the second column.

The improved version of the point-location algorithm is tested without varying the
position of the destination. The destination is set to (x, y) = (0.8, 0.8)µm and the
distance hgn between ghost nodes is varied instead. To fill the domain sufficiently,
a good estimate of hgn is needed. In this particular case, the used estimate is:
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hgn = [
Ly√
Nτ

] (5.12)

where Nτ is the number of elements. This estimate treats the problem as if Lx = Ly,
and the elements were inside this area. Since Lx = 3 · Ly, this approach makes
a much finer step size than the average step size between elements. With this
approximation, and letting Ny =

√
Nτ , Nx = Lx

hgn
the different tests have been done

by scaling the result. The result gained using this estimate is Ny = 452, Nx = 1506,
and hgn = 1.99e−9m. For MCCT, the most natural approach is to use the average
distance travelled as an upper bound for hgn, then use a stricter bound than this
value to get speedups.

As can be seen in Table 5.2, this estimate was a success since further dividing the
domain into more ghost nodes does not give any speedup from the estimate. It looks
like the estimate is rough and the result can be gained with fewer ghost nodes, but
as should be made clear, this is a method which needs to be tested over time to see
what works for a problem. In any case, if there is an issue with the estimate not
being good enough, one can make a finer ghost mesh. The goal of this test is to
show that the method can give the desired result of being fast when the distance
traveled is large. Even for a very coarse ghost grid with Nx = 376 and Ny = 113,
one can see that the time has been reduced from 2.44s to 1.77s. But these results
are, as stated, not to be taken too literal. It should be stated that 0.008s is the time
it takes when the initial guess of PLA is the same as the end destination.

Nx Ny hgn(µm) t (s)
3013 904 9.4 · 10−4 0.008s
1506 452 1.99 · 10−3 0.008s
753 226 4.01 · 10−3 0.008s
376 113 8.02 · 10−3 1.772s
186 56 1.6 · 10−3 5.23s

Table 5.2: Run times for particle location algorithm using ghost nodes.

Memory consumption has been stated as a concern for the method. For Table 5.2 the
worst memory consumption is very low. 4-byte integers are sufficient to represent
the mesh. Calculating the storage needed then yields that 11MB was enough for
the finest grid tested in this case. Therefore, at this time, this is not a concern.
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Preconditioned Conjugate
Gradient Method

A linear system solver is needed to calculate both the reference potentials and the
potential in MCCT. Since the linear systems are large in these calculations, exact
solvers are unsuitable. Exact solvers spend a large amount of memory to obtain the
solution, especially for large matrices the memory requirements grow substantially.
These arguments and the fact that iterative solvers have an initial guess, which can
be close to the new solution, are the reasons that an iterative solver is implemented.

There exists a vast amount of iterative solvers that may be applied to the problem,
knowing which one is most suitable is hard. However, an indication is that a spe-
cialized solver is more efficient in obtaining a solution. Therefore, a solver should be
based on the properties of the system. In this case, the matrix is sparse, symmetric,
and positive definite. With these properties, the obvious choice is the Conjugate
gradient method, which was first published in [34] by Hestenes and Stiefel.

In addition to having a solver that works, it needs to be quick. Any preparations
that can be done to speed up the solver can have a large impact, traditionally done
with the use of preconditioners. Preconditioners alter the system to make its prop-
erties more favorable for convergence. They can be expensive to calculate, but are
favorable in circumstances where the same matrix is used for several calculations,
as in MCCT. Included in these convergence properties are not just speed of conver-
gence, but also stability. A preconditioner is often needed for the iterative solver to
converge at all.

The preconditioned Conjugate Gradient method is chosen to solve the linear system
arising from the problem. This choice is a consequence of the fact that the linear
system is symmetric and positive definite. For such systems, this method is among
the most tested and stable algorithms that exist. The method of conjugate gradients
is an exact solver which uses a finite number of iterations to find the solution.
However in practice, it is used as an iterative solver by stopping the algorithm after
reaching the desired tolerance.
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This chapter will introduce the preconditioned Conjugate Gradient Method. In
Section 6.1, the theory of standard Conjugate Gradient method is introduced. In
Section 6.2, the preconditioned version is presented. In Section 6.3, the choice of pre-
conditioner class is discussed. In Section 6.4 the first preconditioner is shown, and in
Section 6.5 , the second preconditioner is shown. Section 6.6 shows the convergence
and efficiency of the method. The notation in this chapter differs from previous
chapters because of lack of new intuitive characters to employ, so the notation is
self-contained in this chapter.

6.1 The Conjugate Gradient method

The goal of CG is to solve the linear system,

A~x = ~b. (6.1)

A ∈ Rn×n needs to be a symmetric positive definite matrix, and therefore, equation
(6.1) is equivalent to minimizing

φ(~x) =
1

2
~xTA~x−~bT~x, (6.2)

which has the property that the residual is equal to the gradient:

~r(x) ≡ A~x−~b = ∇φ. (6.3)

CG belongs to the class of Conjugate direction methods. The idea behind these
methods is to generate a set of vectors which are conjugate and utilize this property
to make an iterative method.

Definition 2. A set of vectors {~p0, ~p1, ..., ~pn} is conjugate with respect to the matrix
A if and only if

~pTi A~pj = 0, ∀i 6= j.

Since A is symmetric positive definite, and therefore nondegenerate, Definition 2
implies that conjugate vectors are linearly independent, which means that φ(~x) can
be minimized in n steps by minimizing φ(~x) along ~pi. This can be stated as, minimize
φ(~x) along the n directions

~xk+1 = ~xk + αk~pk. (6.4)

The directional minimizing α can be found by inserting Equation (6.4) in Equation
(6.2), explicitly calculated as
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φ(~x+ α~pk) =
1

2
(~x+ α~pk)

TA(~x+ α~pk)−~bT (~x+ αkpk), (6.5)

=
1

2
~xTA~x−~bT~x+

1

2
α2(~pk)

TA(~pk) + (α~pk)
TA( ~xk)− αk~bT (pk). (6.6)

Then differentiating with respect to the scalar α yields

dφ

dα
=

1

2
2α(~pk)

TA(~pk) + (~pk)
TA( ~xk)−~bT (pk), (6.7)

which in turn, by setting the derivative to zero, gives the minimizer α along the line
xk + αk~pk as

αk =
−rTk pk
pTkApk

, (6.8)

where the residual rk = Axk − b has been inserted into the equation.

The main selling point of the Conjugate Gradient method is that it can generate a
set of conjugate vectors in succession using only the previous vector, instead of the
whole sequence of conjugate vectors. That is pk can be generated from pk−1. As
explained above, using successive one-dimensional minimizations for each direction
yields the final result in n iterations. It is important to note that, in practice,
computers carry round-off errors which make the vectors not truly conjugate and
therefore CG may never terminate as an exact solution.

The idea for generation of ~pk is to start off with the steepest descent direction for
~p0, then add a term which will make the new direction conjugate with respect to
the old direction, that is by setting

pk = −rk + βkpk−1, (6.9)

where β is chosen such that pk becomes conjugate with respect to A. That is by
multiplying Equation (6.9) with pTk−1A,

pTk−1Apk = −pTk−1Ark + pTk−1Aβkpk−1, (6.10)

the left-hand side must be zero because of conjugacy, then solving for β yields that

βk =
rTkApk−1

pTk−1Apk−1

(6.11)
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At this point, the complete conjugate gradients algorithm has been derived, and it
is stated in the implemented form in Algorithm 3.

Algorithm 3 Conjugate Gradient

r0 = b− Ax0

for i = 1, 2, 3, ..., n do
ρi = rTi−1ri−1

if i=1 then
p1 = r0

else
βi = ρi

ρi−1

pi = zi + βipi−1

end if
qi = Api
αi = ρi

pTi qi
xi = xi−1 + αipi
ri = ri−1 − αiqi

end for

The algorithm described iterates over n directions to find the exact solution but is
now altered to stop further calculations when the residual ri is below some tolerance
to make it an iterative method. When doing this, the following error estimate is of
interest.This error estimate is well-known for CG and can be found in for instance
[35].

||xk − x∗||A
||x0 − x∗||A

≤ 2 ·
(√

κ(A)− 1√
κ(A) + 1

)k
, (6.12)

Equation (6.12) can be used to estimate the convergence of the method as a nu-
merical method and implies that the conditioning number of A, κ(A) dictates the
convergence of the solver. In particular, κ(A) = 1 gives the fastest possible con-
vergence. It makes sense to alter the conditioning number for a more favorable
convergence rate, and this is what the preconditioners do. This is verified in many
papers and the convergence of CG and preconditioned CG has been well-studied
[36][37][38].

6.2 Preconditioned Conjugate Gradient

The Conjugate Gradient method does not converge exceptionally fast, however,
coupled with a preconditioner it has proven itself to be useful for many problems
[39][40]. When a preconditioner is used, it dictates most of the algorithms properties,
the convergence rate and stability. The idea behind a preconditioner is to alter the
linear system with some matrix M by multiplying the linear system with M−1. The
resulting linear system is
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M−1Ax = M−1b, (6.13)

where M = LU , and L and U are easily solvable matrices. From [41] it is known
that this has the same convergence properties as multiplying by the left- and right-
hand side as U−1AL−1 for symmetric positive definite matrices. The convergence
rate now depends on the condition number of U−1AL−1 instead of A, which means
that the preconditioner can be chosen to alter the convergence rate. These matrix
products are not explicitly calculated, as this would lead to an abundance of issues,
but rather included by solving linear systems of the form Uy = z.

Algorithm 4 is the algorithm used in MCCT, which is the preconditioned conjugate
gradient method (PCG). The algorithm takes as input the linear system A, the
right-hand side b and the preconditioner in the form of an upper matrix U and a
lower matrix L. These two matrices have to be solved once each for each iteration.
The solutions of these linear systems are acquired through backward and forward
substitutions. These are exact quick solvers which the interested reader can find out
more about in Appendix A.3.

Algorithm 4 Preconditioned Conjugate Gradient

r0 = b− Ax0

tolerance= tol · norm(b)
for i = 1, 2, 3, ..., max iterations do

solve Lyi = ri−1

solve Uzi = yi
ρi = rTi−1zi
if i=1 then

p1 = z1

else
βi = ρi

ρi−1

pi = zi + βipi−1

end if
αi = ρi

pTi Api
xi = xi−1 + αipi
ri = ri−1 − αiqi
if norm(ri) <tolerance then

answer found, exit loop
end if

end for

The stopping criterion is that the 2−norm of the residual needs to be less than the
scaled tolerance, which is scaled by multiplying with the 2−norm of the right-hand
side. That is

||ri||2
||b||2

< τ. (6.14)
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6.3 Preconditioners

As have been stated earlier, the convergence rate is dictated by the choice of pre-
conditioners in the conjugate gradient method. Here has been chosen the methods
which are in the category of incomplete LU preconditioners. The LU decomposition
of a matrix is a decomposition where A = LU , where L is a lower triangular ma-
trix and U is an upper triangular matrix. In principle a full LU factorization can
yield the exact solution to Ax = b by solving the triangular equations, Ly = b and
Ux = y. The algorithms presented here are taken from [42].

The LU decomposition performs Gaussian elimination to convert a matrix into the
product of a lower and an upper matrix. The ikj version of Gaussian elimination is
what is used as a basis for the algorithms; it is depicted in Algorithm 5,

Algorithm 5 Gaussian elimination ikj variant

for i = 2, 3, ..., n do
for k = 1, ..., i− 1 do

lik = a(i,k)
a(k,k)

for j = k + 1, ..., n do
a(i, j) = a(i, j)− lik · a(k, j)

end for
a(i, k) = lik

end for
end for

Doing an LU factorization and leaving out entries of some criteria makes an ILU
preconditioner. In principle, the incomplete preconditioner can be written as

LU + E = A, (6.15)

where E is an error term indicating the difference between the complete and in-
complete factorization. L, and U are respectively the incomplete lower and upper
factorizations. Such a preconditioner have the property that

L−1AU−1 ≈ I (6.16)

where I is the identity matrix. Equation (6.16) has the condition number κ(L−1AU−1) ≈
1. It is worthwhile to mention that for an identity matrix, CG will find the solution
in exactly 1 step, which is an indicator of good performance for this preconditioner.
One problem these methods may have is that the resulting matrix may not be
sufficiently symmetric positive definite, another issue is that the factorization may
introduce instabilities or breakdown. These issues are resolved by using additional
fill-in.

Different choices in what entries to leave out lead to different ILU methods. The
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choice has been to implement two different methods which have different advantages
and disadvantages. One of these is called the ILU0 preconditioner, and the other is
called the ILUT preconditioner.

As for the choice of this preconditioner, there is another class of preconditioners
which is more suitable for this particular setup. The incomplete Cholesky (IChol)
decomposition is regarded as a better choice for positive definite symmetric matrices
because it has the form A = LLT . This preconditioner can guarantee that L−1AU−1

is symmetric since A is symmetric:

(L−1AL−T )T = L−1ATL−T = L−1AL−T . (6.17)

The same result does not apply for a general LU factorization, which may lead
to issues for preconditioned CG. However in practice, the matrices produced have
shown no issues. Therefore, the author has opted to use ILU instead of incomplete
Cholesky since other solvers in MCCT can use ILU. Ignoring this important factor is
justified by the above and since the identity matrix is symmetric and positive definite
the approximation should tend to have similar properties as better approximations
are used. Preconditioners were tested in MATLAB before implementation, and
since incomplete LU and incomplete Cholesky performed the same in these tests,
incomplete LU was chosen as it can be used in other solvers in MCCT.

6.4 ILU0 preconditioner

The (ILU0) preconditioner, given in Algorithm 6, is made by allowing only nonzero
entries in positions also nonzero for the original matrix A. That is Li,j + Ui,j 6= 0
if and only if Ai,j 6= 0. With this approach, the memory consumption, the number
of calculations done, and the time to generate the preconditioner is kept as low as
possible. Only the matrix entries are needed for L and U since the matrices are stored
in the CRS format described in Appendix B.1, and the row pointer and column index
are the same for the matrices L + U and A. ILU0 is, therefore, a method which
requires few resources but still gives a reasonable speedup in convergence. The zero
in the name indicates that no fill-in is used. Fill-in is the related method where
more entries, according to a level of fill-in rule, are allowed. Traditionally the fill-in
rule is to accept entries where Ak+1 have nonzero entries and k denotes the level
of fill-in, so for the implementation here, k = 0 gives that the used entries are the
nonzero entries of A.

Although this preconditioner does a decent job in making CG converge faster, it
is worthwhile to invest more resources on the preconditioner since the number of
calls to the solver is extremely high both in the reference-potential calculations and
in MCCT main loop. Therefore, another suitable approach is implemented called
(ILUT).
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Algorithm 6 ILU0

for i = 2, 3, 4, ..., n do
for k = 1, 2, , i− 1 and Ai,k 6= 0 do

lik =
Ai,k

Ak,k

for j = k + 1, k + 2, ..., n and Ai,j 6= 0 do
Ai,j = Ai,j − Ai,kAk,j

end for
Ai,k = lik

end for
end for
Set L = unit lower matrix of A
Set U = upper matrix of A

6.5 Incomplete LU threshold preconditioner

The strategy of the ILUT preconditioner, shown in Algorithm 7, is to regard any
substantial entries in the calculation as important. The idea is to decide what size of
entries in the matrix is large enough to be substantial and include these entries in the
factorization. To do this, ILUT takes as an additional parameter some value τt which
is a threshold. Any entries in a full LU factorization with a magnitude less than this
threshold is set to zero while the rest of the entries are kept. Many variations of this
preconditioner exist depending on how the threshold is implemented and used. In
this version, the entries which would also be in ILU0 is kept regardless of the size of
these entries. Also, a condition to limit the memory consumption is applied. That
is, despite being larger than the threshold, only a certain number of nonzero entries
will be allowed in each row, removing the smallest entries.

The threshold,τt, checks the following relation,

|r(k)|
||A(k,·)||

< τt, (6.18)

and if it is true, the entry is set to zero. Otherwise, it is included in the preconditioner
as a nonzero entry. For each row, the last condition removes the smallest entries
until the row has an acceptable number of entries.

Although ILUT does well in accelerating the convergence of CG, it is important
to note that the prime interest is not how many iterations, but how long time it
takes to converge. When using preconditioners, additional calculation cost is the
price to pay. The more non-zero entries that are allowed into the preconditioners,
the more costly it is to run an iteration. Therefore, the threshold parameter is key
in controlling both the number of calculations and the number of iterations. In
addition, calculating the preconditioner is costly for large matrices. Fortunately, it
is, within reason, worth spending some time on calculating the preconditioner since
the solver is extensively used in MCCT. Another limiting factor is that the memory
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Algorithm 7 ILUT

U1,· = A1,·
for i = 2, 3, 4, ..., n do

copy the current row r = Ai,·
for k = 1, 2, , i− 1 and r(k) 6= 0 do

r(k) = r(k)
A(k,k)

if r(k) < thresholdcondition then
r(k) = 0

end if
if r(k) 6= 0 then

for j = k + 1, k + 2, ..., n do
rj = rj − rkUk,j

end for
end if

end for
if r(k) < thresholdcondition then

r(k) = 0
end if
while number of entries in r>allowed number of entries in each row do

Set the smallest entry of row to zero
end while
L(i, 1 : i− 1) = r(1 : i− 1)
U(i, i : n) = r(i : n)
r = 0

end for
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consumption can become vast for large matrices since the complete LU factorization
can potentially have as much as n2 nonzero entries. The limiting factor of the number
of nonzero entries in each row is key to controlling memory consumption.

6.6 Convergence of CG

In this section the solver and preconditioners are tested, the test example is on a grid
of 142, 538 nodes and 285, 074 elements, the characteristic step length is constant
0.005µm in the domain. It solves Equation (4.19) for node number pnode = 70469
which is at position x = 2.44µm, y = 0.677µm. This is on a rectangular grid of
length Lx = 3 µm, Ly = 1 µm. The initial guess is x0 = 0. The solver is set to stop
at τ = 1 · 10−6 residual.

Without a preconditioner, the solver never converges. For ILU0, the solution con-
verges in 366 iterations, and spends a total of 4.04s to obtain the solution. Figures
6.1a and 6.1b shows the time spent to obtain a solution and the convergence for
the variation of the threshold parameter in ILUT. The number of non-zero entries
allowed in each row was set to 1, 000. The greatest speedup, in terms of time and
iterations, is gained when only a few matrix entries are kept. As the threshold
approaches zero, the effects are less remarkable. ILUT outperforms ILU0 for all
thresholds tested. It should be kept in mind that the two preconditioners solve
different issues, and the results are as expected. ILU0 requires much less memory
but has more than double the time spent to calculate the solution, even for a very
large threshold in ILUT. For a threshold τt ≥ 10−2 the solution did not converge
within 10, 000 steps and is therefore not included. The convergence could be very
slow for a large threshold, or more likely, the resulting preconditioned matrix is not
sufficiently symmetric positive definite. As expected, a smaller threshold fixes this
issue.

Figures 6.2a and 6.2b shows a smaller variation in the threshold. These figures also
verify that the solution converges faster for a lower threshold, which corresponds to
accepting more entries of the LU decomposition, but as can be seen from Figure
6.2a, this does not necessarily imply a speedup. The reason for this is that the
more entries that are allowed into the matrix, the heavier the computations are at
each iteration. For instance, at the threshold τt = 7.0 · 10−6 the desired accuracy
is achieved at 9 iterations, which is the same number of iterations as for 6.0 · 10−6.
However, the time spent is more for the latter because each calculation involves
more entries in the preconditioner.

The purpose of this section is not only to show the convergence and show that it
is working, but also to get some insight into what kinds of thresholds are useful in
ILUT. Finding the best threshold for each matrix can be hard and needs to be done
using user experience. The figures suggest that the lower the threshold, the better
the preconditioner. Also, the most gains are found when the number of iterations
is initially high for a threshold. If some threshold gives a low number of iterations,
the speedup expected from lowering the threshold further is small. With respect to
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(a) Plot of time spent in seconds calculating the Poisson solver for varying threshold.
Log(x)-Axis is inverted to show the variation as the threshold approaches zero.

(b) Plot of iterations needed for convergence for varying threshold. Log(x)-Axis is inverted
to show the convergence as threshold approaches zero.

Figure 6.1: Convergence of ILUT for τt ∈ [10−3, 10−7].
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(a) Plot of time spent in seconds calculating the poisson solver for varying threshold. The
x-axis is inverted to show the variation as the threshold approaches zero.

(b) Plot of iterations needed for convergence for varying threshold. The x-axis is inverted
to show the convergence as threshold approaches zero.

Figure 6.2: Convergence of ILUT for τt ∈ [10−6, 10−5].
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the time step loop in MCCT, it is even harder to come with a good estimate of the
threshold parameter. The reason is that the initial guess depends on the previous
iteration, so when the time step is low, the initial guess should be close to the new
solution. This means that the number of iterations is even lower for convergence
during the time step loop. Since the solver always must do at least one iteration,
it is important that the allowed number of non-zero entries in the preconditioner is
not too large. If it is made able to converge in only one iteration, it is quite likely
that a preconditioner with fewer entries will be faster on average, since there will
always be variation in the difficulty to obtain the solution in each time step.
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Chapter 7

PN junction

PN-junctions got attention in the 1940s [43] and were well studied by the 1970s when
the theory of PN-junctions was at a stage of standard textbook material. Here the
theory has been found in [44], and the reader is referred to this book for further
details.

Since PN-junctions are well described using analytical models, they are usually not
modeled in simulators such as MCCT, except for the studies of [3] and [45]. However,
since they are well described, they are good candidates for testing the FEM solver.
Since PN-junctions need the electric field, they are great for catching mistakes in
the calculation of the electric field or the potential.

In this chapter, the PN junction theory is introduced, then modeled using the FEM
Poisson solver. In Section 7.1, the PN-junction is introduced and defined. In Section
7.2, the one-dimensional theory is introduced. In Section 7.3, the model used in
MCCT is defined. In Section 7.4, the test cases are defined, and the near unbiased
case is found. In Section 7.5, the behavior of particles is shown. In Section 7.6, the
potential and electric field calculated are presented and discussed. In Section 7.7,
the performance of the solution is discussed.

7.1 Introduction

Essentially, semiconductors are materials that have a resistance between metals
and isolators. Their resistance can be altered by using different doping densities
or temperatures. Doping is the act of introducing impurities to the semiconductor,
which leads to the introduction of free electrons or holes in the material. If the doping
introduces electron type carriers then it is called an N-type extrinsic semiconductor,
if it introduces hole type carriers it is called a P-type extrinsic semiconductor. The
doping level is quantitatively denoted through the donor and acceptor densities ND

and NA. It is important to note that whenever a carrier is made, there is also a fixed
charge of the opposite type left. That is, in a P-type semiconductor, there are left
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negatively charged ions. Likewise, in an N-type semiconductor, there are positively
charge ions. This is described as the background charge in MCCT.

A PN-junction is, as the name suggests, a junction of a P-type semiconductor and
an N-type semiconductor. As the two types come in contact, the diffusion current of
electrons and holes, from respectively the N-side and the P-side over to the opposite
side will make the particles recombine and leave a carrier empty region. This region
is referred to as the depletion zone. In this zone, there are no carriers left, and
therefore only the background charge will yield a contribution to the potential.
This results in a positive and a negatively charged side from which an electric field
appears. This electric field gives a drift current in the opposite direction of the
diffusion current. As time passes, an equilibrium enters in which the net currents of
electrons and holes respectively are zero.

7.2 One dimensional theory

The theory of PN-junctions is well made for the one-dimensional case. Therefore, it
is presented in this section for usage in discussing the simulation from MCCT. Only
the results which can be used as tests are presented, and not the derivation of the
results. The derivation can be found in an elementary textbook on the subject of
semiconductors.

The easiest available test is to check the width of the depletion zone. When assuming
a discontinuous transition from the depletion layer to the P and N side, the built-in
voltage has to be φ0 = φ(xN)− φ(xP ), where xN and xP denotes the distance from
the junction and the discontinuous transition on the N and P size. It can then be
derived that

xn =

√
2ε

eND

NA

NA +ND

√
φ0, (7.1)

and on the P side,

xp = −
√

2ε

eNA

ND

NA +ND

√
φ0 (7.2)

In these equations, ε is the permittivity, e is the elementary charge, and ND, NA

denotes the donor and acceptor densities respectively. Also, the electric field in the
cross section between regions N and P is given as

E = −
√

2e

ε

NAND

NA +ND

√
φ0. (7.3)
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The built-in voltage mentioned, which can also be compared to the simulator, is
given by

φ0 =
kBT

ε
ln(

NAND

n2
i

), (7.4)

where kB is Boltzmann’s constant, T is the temperature, and ni is the intrinsic carrier
density. The intrinsic carrier density depends on the material used. In MCCT the
material simulated is CdxHg(1-x)Te where x = 0.28 denotes the cadmium fraction of
the material. An approximation to ni is found in [46], and is given explicitly as:

ni = (5.585− 3.82x+ 0.001753T − 0.001364xT ) · 1014 · E0.75
g · T 1.5 · e

−Egq

(2kT ) (7.5)

where the energy gap Eg is found in [47] to be approximated by

Eg = −0.302 + 1.93x− 0.81x2 + 0.832x3 + 5.35 · 10−4(1− 2x)T. (7.6)

Unfortunately, it will be seen in this chapter that the analytical theory does not
match every result. The theory is mostly applicable for PN-junctions with a built-in
voltage in the range 0.2 − 1.0V while the built-in voltage calculated for the test
case is 0.0287. Thus, the evaluation of quantities must not be awarded too much
significance, and instead the qualitative behavior is emphasized.

7.3 MCCT model description

The chosen model is a P+, P,N,N+ model. The domain is heavier doped in the
P+ and N+ region than in the P and N regions. The domain is depicted in Figure
7.1. The device is chosen to be of length Lx = 3 µm, Ly = 1 µm with a small
contact region of the same length as the P+ and N+ regions in x-direction, and the
length Lcry = 0.02 µm in the y-direction. The doping factors have been chosen to be
1016cm−3 for the N and P regions, and 1017cm−3 for the N+ and P+ regions. The
parameters used for the model are summarized in Table 7.1.

The simulations are done with a simple recombination implementation. Whenever
an electron is in the proximity of a hole, they will recombine. The theory states that
the recombination is the reason for depletion zones. However, it should not alter the
results much since, without recombination, the particles are still able to be removed
from the simulation through the contacts. Since the theory is applicable only to the
steady state, it is not important how the steady state is achieved.

The variables are always the ones in Table 7.1, and the only varying factor is the
Dirichlet condition of the left contact, the bias of external voltage applied to the
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Variable Value
Lx 3 µm
Ly 1 µm

LP
+

x 0.75 µm

LP
+

y 0.5 µm

Lcrx 0.5 µm
Lcry 0.02 µm

∆t 1 fs
ND 1016 cm−3

N+
D 1017 cm−3

NP 1016 cm−3

N+
P 1017 cm−3

T 300 K
x 0.28
h 1.6 · 10−2µm
h+ 4.01 · 10−3µm

Table 7.1: Parameters in MCCT run.

simulation. Simulations were first conducted using a mesh with equal characteristic
step length in the domain, but it was found that simulations could be improved
by varying the characteristic step length. Figure 7.2 is a picture of the drawn
device in GMSH, and the black dots indicate where the characteristic step length
is defined. The arrows point at which characteristic step length is chosen in each
node. Equation (3.47) is used with α = 1 for both the heavy doped zone and the
light doped zone yielding h+ = 4.01 · 10−3µm and h = 1.6 · 10−2µm. The arrows in
the figure show which of the two characteristic step lengths are used for each node.
The mesh generated in GMSH and used in this chapter is shown in Figure 7.3. As
can be seen, the characteristic step length is used by doing a linear interpolation so
that the element sizes vary linearly. With this mesh, the P+ and N+ regions are
kept constant, near the suggested optimal step size, while the variation in element
size happens in the lightly doped region. This mesh performed better than a mesh
with equal step size in the whole domain of h = 5 ·10−3µm and gained an advantage
in speed of calculations. The choice of α = 1 is important in the P+ and N+ regions
considering these need to be large enough for the contact implementation. Since
the background charge has less weight in P and N regions, these regions can have a
less detailed mesh, which is taken into account just by using Equation (3.47). The
mesh can further be altered for improved efficiency, but the focus here is just to
demonstrate that it works and not to get the best model possible.
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Figure 7.1: Illustration of the domain of a P+, P,N,N+ device. To keep the illus-
tration readable, all lengths are not shown.

Figure 7.2: Picture of GMSH drawing of the domain, where the characteristic step
length is defined in the black circles. The arrows denote which characteristic step
length is chosen.
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All runs shown here has been started from the initial positions, which is to distribute
the superparticles evenly as if they were just introduced via doping. An example is
shown in Figure 7.4. The potential at the first time step is then calculated using this
distribution of particles. The initial potential is dominated by the contacts since
the distribution of particles creates charge free regions, but they contribute some
noise to the solver through the discretization error and particle-mesh coupling. The
initial potential of a PN-junction is shown in Figure 7.5 with Dirichlet left contact
having applied −0.3V and right contact 0V. Since every calculation here is done in
the two-dimensional domain, the third dimension is ignored in this chapter. This
means that all results can be seen as per unit length, m, in the z-axis.

Figure 7.4: The particles’ positions at initialization. Holes are indicated as red
particles and electrons are indicated as blue particles.

Figure 7.5: Initial potential for a PN-junction. The contacts have Dirichlet condi-
tions of −0.3V and 0V on respectively the left and right contact.
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7.4 Current

To be able to classify the simulation cases, which will be presented here, the bias
of the cases must be found. One way to find which voltage yields zero bias is to
measure the current in the PN-junction. Since the immediate current is dominated
by noise, all figures in this section show the accumulated charge entering or exiting
through the contacts. The currents are given by the slope of the accumulated charge,
and the positive current is defined as the forward current of the PN-junction. The
currents run parallel for the two contacts since there is no accumulation of charge
inside the device. The different cases tested in this chapter are summarized in table
7.2, where DP and DN denotes the Dirichlet condition at the contacts respectively
for the P side and the N side.

Case DP DN

1 −0.1 0
2 −0.2 0
3 −0.3 0

Table 7.2: Voltage at contacts for test cases.

Figures 7.6a to 7.6c show the accumulated charge in the three cases. In Figure 7.6a,
there is a current running through the device. With the direction of this current, case
1 is in forward bias, and its average current, after 40ps has passed, is 0.04mA µm−1.
In Figure 7.6b there is also a small current. Since this current is so small, it is not
calculated, and the case is treated as the near zero bias voltage. The third case, in
Figure 7.6c shows that the current running through the device is approaching zero
as the simulation goes on. The backward bias should have a small current from a
generation of particles; however a generation has not been implemented, and the
current becomes zero. Therefore, the near unbiased voltage is chosen as the lowest
forward bias current seen, and case 3 is seen as the backward bias voltage case.
Note that, in the first 10ps the backward bias has a current running in the negative
direction since there are more particles than there should be, and therefore, the
generation of particles is not needed during this time for the backward bias to get a
current. When the simulation keeps going, the current becomes zero.

Figure 7.6c, illustrates the best that the current is alternating during the initializa-
tion phase. An alternating current can lead to instabilities in the simulator, which
has to be taken into account when setting up the model. Figure 7.7 shows what
happens when such instabilities are allowed to develop for a near zero bias PN-
junction. To resolve this issue, the time step between each call to the Poisson solver
has been made lower. As stated in Section 2.3.1, the time step is essential to keep
the simulations stable. The simulator was unstable when the Poisson solver was
called every second time step. The stable solutions have the Poisson solver called at
every time step. From the figures, there is a reason to suspect that the instabilities
are connected with the applied bias since the fluctuations in the current are less for
the forward bias than the backward bias PN-junction. However, this has not been
tested further, and it is unknown at this stage if it is the case.
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It should be stated that even though a lower timestep was needed, this did not
create a long runtime. The run time was the same for the stable and unstable
runs, even with twice as many calls to the solver. One reason for this is that the
particle location algorithm had to travel less distance, and the initial guess for the
potential for each time iteration was closer to the new solution, but the real culprit
is that there is a known bug with losing track of particles when some particles
leave through contacts. This does not make the solver less rigorous, but it makes
some of the particles not search from their previous location. Since half the time
step between each update means that on average this bug has half the impact, the
speedup can mostly be accounted for by the bug. Some speedup is still because of
the less travel distance and the closer initial guess in the solver.
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(a) The accumulated charge over 100ps in Case 1.

(b) The accumulated charge over 100ps in Case 2.

(c) The accumulated charge over 100ps in Case 3.

Figure 7.6: The accumulated charge over 100 picoseonds measured in Coloumbs.
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Figure 7.7: The potential after 60ps in a simulation with developed instabilities. An
instability at the right contact is developing due to a Poisson time step chosen too
large.
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To summarize this section, it has been found that case 1 is forward biased, case 2
is near zero biased, and case 3 is backward biased. What is important here is that
the simulation acts like a PN-junction. As the voltage is larger in forward bias, the
current becomes larger, and as the voltage is larger in backward bias, the current
becomes smaller. It can be concluded that the current behaves as expected, with
the exception that there is no generation of particles for backward bias. Therefore
from here on out, the three cases will be referred to as forward bias, near zero bias,
and backward bias.

7.5 Depletion zone

From equations (7.1) and (7.2) the depletion zone of a one-dimensional PN junction
can be calculated. In this section, the position plots of superparticles are shown to
see how the depletion zone behaves. The theoretical one-dimensional depletion zone
in zero bias is marked as two vertical lines in the figures. The cases are the same as
in the previous section, shown in Table 7.2.

Figures 7.8 to 7.10 show the position plot of particles after 100ps for the three cases.
In Figure 7.8, as expected from the forward bias PN-junction, some particles are
inside the theoretical zero bias depletion zone. Although it has not been shown
here, tests show that the simulators depletion zone becomes smaller as the voltage
is increased further in the forward bias direction. In Figure 7.9 the depletion zone
has increased and is close to the theoretical depletion zone, verifying that case 2
is close to the zero bias voltage. In figure 7.10 the depletion zone has increased
further and is now clearly outside of the theoretical depletion zone from the one-
dimensional model. The particles are doing as expected, since when the simulator is
set in forward bias, the length of the junction zone decreases, and when the simulator
is set in backward bias, the length of the junction zone increases. This verifies that
the FEM solver is doing a correct job since it is the potential fields that cause this
behavior. The Ohmic contact implementation seems to be working since there is
no lack of particles in the contact region for any of the three cases. Since particles
do not move away from, or toward the boundaries, the Neumann conditions are
working. Self-forces does not impact the simulation since the particles are behaving
as they are supposed to.
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Figure 7.8: The particles’ positions after 100ps for forward bias. Holes are repre-
sented as red particles and electrons are represented as blue particles.

Figure 7.9: The particles’ positions after 100ps for near zero bias. Holes are repre-
sented as red particles and electrons are represented as blue particles.

Figure 7.10: The particles’ positions after 100ps for backward bias. Holes are rep-
resented as red particles and electrons are represented as blue particles.
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7.6 Potential and electric fields

From Equations (7.3) and (7.4) the built-in potential and electric field at the junction
is known in one-dimensional theory. In this section, the potentials and electric fields
are shown for the simulation to see how these behave in comparison to the theory of
PN-junctions. Since, as explained in Section 4.2 , the self-force cannot be extracted
for the potential, the potentials are shown as is. Therefore, it is hard to say whether
or not local fluctuations are from the self-force, or if they are from instabilities in
the simulation. On the other hand, the self-force has been extracted for the electric
fields and therefore these are the most accurate representations for this section. For
the discussion, any fluctuations in the potential will be regarded as not being from
the self-force. The one-dimensional model’s built-in voltage is calculated from (7.4)
to be 0.0287V and the electric field in the junction zone is calculated from (7.3) to
be −5.6kV cm−1.

The electric field plots are generated by making a Cartesian grid in MATLAB and
showing the closest element center to each Cartesian grid node. This means that
the electric field has been sampled and not averaged. So it is important to look at
the broad picture in these figures and be aware that looking at a single electric field
vector gives the electric field in the element at the vectors origin.

In Figure 7.11 the potential for the forward bias PN-junction is shown. Its electric
field is shown in Figure 7.12. It would seem that when put in forward bias, the
potential difference across the junction zone is small compared to the potential
difference between heavier doped zones and lighter doped zones. Although the figure
shows many fluctuations, these are very small and therefore are not as influential as
they may seem. It has previously been experienced with MCCT that there may be
some fluctuations and stability issues when the voltage is low.

Strictly speaking, the contacts are not Ohmic in this case since there is a small drop
in the potentials in both contact regions. In the P-side, the potential decreases into
the metal, and in the N-side the potential increases into the metal. From the position
plot in Figure 7.8 it is seen that the effect is unnoticeable, and this is because the
potential drop is very small. Figure 7.12 also demonstrates well that the Neumann
zero boundary condition has been handled correctly. If the reference potentials were
used in the elements with boundary nodes, then there would be an electric field on
the normal of the boundaries. The electric field is not very large in the junction
zone in forward bias. They are in the range −2.5kV cm−1 to −3kV cm−1, which is,
as expected, smaller than the calculated electric field for a zero bias PN-junction.
Most of the potential differences can be seen to be at boundaries of heavier doped
regions, and so can be seen in the electric field as well. The potential difference
across the junction for forward bias is close to the theoretical value for the unbiased
PN-junction, it is 0.03V. This is an unfortunate result and is not following the
one-dimensional theory.

In Figure 7.13 the potential for the near unbiased PN-junction is shown. Its electric
field is shown in Figure 7.14. As the voltage difference at the contacts become larger,
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the potential becomes smoother. Fluctuations are still present, but has become less
distinct, and they stay in areas of approximate zero charge. On the other hand,
the potential is smoother in areas of a large potential drop, for instance in the
P+, P boundary and in the junction zone. The potential drop in the contact region
near the metal is smaller than before and is considered Ohmic in this case. The
built-in voltage is the drop in potential in the junction zone; the one-dimensional
theoretical value was 0.0287V and in the figure, it is seen that it is approximately
0.1V in MCCT. Here it can be seen that the theoretical value does not work well
with the junction shown. The theoretical value is a good approximation in the range
0.2−1V and since the theoretical value is much less, in this case, it cannot be taken
too seriously for the test case. The electric field in the junction is approximately
−6kV cm−1, which is somewhat larger than the theoretical value of −5.5kV cm−1,
but it is seen as a quite good result. As expected, the electric field is larger for the
near unbiased case than for the forward bias case.

In Figure 7.13 the potential for a forward bias PN-junction is shown. Its electric
field is shown in Figure 7.16. Now that there is a more substantial voltage, the
potential is much smoother. The voltage difference across the junction is 0.2V, and
therefore, the additional bias put into the contacts appear in the depletion zone,
and not between heavier and lighter doped regions. The fluctuations are smaller,
and there is no longer a potential drop at the contacts. The electric field in the
junction is about −10kV cm−1. This is much larger than the theoretical value and
the other two cases and is as expected when the PN-junction is in backward bias.
In this case, there is no potential drop in the metal in either contact.

It should be noted that the potential drop in the boundaries between heavier and
lighter doped zones are nearly the same for all applied biases. These potential
drops are unwanted, and make the comparison with the analytical model harder.
Since these regions become large compared to the built-in voltage when the applied
forward bias is large, it is expected that instabilities may be introduced since these
potential drops become major components of the simulation. This also explains the
pictures and how the total solution seems more stable for a large backward bias.
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7.7 Discussion

The particles, electric fields, and the currents all seem to do as expected in the
steady state of the PN-junction in accordance to the one-dimensional theory of PN-
junctions. The built-in potential in the junction zone is, unfortunately, much larger
than the theoretical value. This has been explained as the existence of potential
drop between regions of heavier and lightly doped zones, as well as through the fact
that the one-dimensional theory is best suited for modeling simpler cases where the
built-in voltage is in the range of 0.2− 1V . It is seen that the simulations are most
stable at a large backward bias and that the time step between each update of the
potential must be low enough for the solver not to develop instabilities.

The contact implementation seems to give a nearly Ohmic contact, but may have
some issues with a larger forward bias. The Neumann condition is working as there
are no electric fields in the normal direction of the domain, and no electrons or
holes are dragged to, or out of, boundary elements. The mesh recommendations
are verified to yield a good result as it has performed well in this chapter, and
although not shown in the report, performed as well as a uniform mesh of similar
characteristic step length.

The simulations were ran using ILUT with the threshold τt = 10−6, and the non-
improved version of the point location algorithm. This approach gave a run time of
25 hours for 100, 000 time step iterations. The average run time of PLA was 2.5s.
For PCG, the run times vary in iterations, and they are approximately 0.1s before
equilibrium and 0.02s during equilibrium. These run times suggest that the minor
bug in the point location algorithm, mentioned in Section 7.4, slows the total run
time by a considerable amount since it is the point location algorithm which is the
bottleneck. From the low run time of PCG, it can be concluded that it is a very
efficient solver in practice for MCCT and that the ILUT implementation has been
verified to work well.

There has unfortunately not been enough time to test the total run time with the
improved version of PLA and the ILU0 implementation. However, the tests per-
formed, in Section 6.6, for ILU0 suggests that the average run time would increase
to approximately 6.5s, which is more than double of what has been the case with
ILUT. This would, theoretically, use more than 50 hours of computation time. Un-
fortunately, there has not been enough time to implement the usage of the improved
PLA in the MCCT time loop. An error in the implementation cause the program
to shut down when 25% of the time steps are done. However, the improved PLA
spends 0.9 seconds on average for each time step up to this point using hgn given by

Equation (5.12). This time is improved by using hgn
10

, in which case the improved
PLA spends 0.6 seconds per time step. Both of these, therefore, give a considerable
speedup from the unimproved version.

100 7.7. DISCUSSION



Chapter 8

Discussion and further work

There have been many topics to cover in order to make the working FEM implemen-
tation for MCCT. These topics both individually and together need to be discussed
regarding limitations, advantages, and further work. In this chapter, the work is
summarized and discussed altogether. In Section 8.1, the work is summarized. In
Section 8.2, the work and the possibilities are discussed. In Section 8.3, further work
is suggested.

8.1 Summary

In this master’s thesis, a working FEM implementation has been developed for
MCCT using linear bases, constant background charge, and a particle-mesh cou-
pling where the charges are modeled as infinitely small. The framework presented
is general enough to employ other particle-mesh coupling schemes. The contacts
have been treated in a working minimalistic approach using conditions of charge
neutrality and thermal equilibrium. An estimate for the size of the mesh has been
suggested and verified to be working in the PN-junction. The electric field has been
calculated from the bases of the potential. To remove self-forces the approach of
Kalna et al. has been implemented, and the reduction has been improved from their
report. A point location algorithm has been implemented to find particle positions
in the domain. It has been implemented efficiently using additional structures, and
by handling insertion and removals of superparticles correctly, except for in the case
of particles leaving the domain through contacts. This exception only matters for
speed and not for robustness. A memory-speed tradeoff improvement has been im-
plemented to be able to gain additional speed in the algorithm when needed. The
preconditioned conjugate gradient method has been implemented with two precon-
ditioners. The first preconditioner, ILU0, was made for cases where memory is a
scarce resource, and the second preconditioner, ILUT, was implemented for speed.
The implementations have been kept fast by utilizing the CRS format to keep the
needed quantities continuous in memory. A PN-junction has been simulated to show
the working implementation. The results are positive, the implementation is effi-
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cient, and the PN-junction simulations verify that the implementation is working.
The method is topical as FEM has had issues with self-forces until recent years, and
the implemented self-force reduction is from 2015 and has been improved in this
implementation.

8.2 Discussion

The results of the PN-junction verifies that the implementation is working. However,
there are still many properties of the implementation left to discuss. First of all,
the particle-mesh coupling and the self-force reduction demands a fine grid since the
particles cannot interact if they are part of the same element. Also, the electric field
calculations here have properties similar to the NEC scheme; they are discontinuous
across elements. This is known to be a culprit of stability issues. At the same
time, the contact implementation demands large elements to be able to keep the
contact region Ohmic. These two requirements are opposites, and therefore give
restrictions on the mesh. On the other hand, these restrictions are local, and one
of the advantages of FEM is that it can vary the mesh size. To some extent, this
makes up for the mesh restrictions, but it is also possible to fix these issues. Ohmic
contact regions are currently fixed by large local elements, but can also be done
using merged elements in the charge neutrality test.

The electric field can be made continuous by using a different electric field scheme,
for instance, one can use one of the methods in [22] which makes an interpolation
over neighboring elements’ natural electric field. This interpolation scheme makes
the electric field smoother. It also makes it so that the particles can interact, since
the electric field can vary within the element. The only issue with this approach is
that the self-force reduction needs to take additional steps to be a working imple-
mentation. However, the method has less self-force than other naive methods, and
may, therefore, be a viable solution in some cases, even without the reduction. Mak-
ing the self-force reduction may be a bit more intricate in this type of electric field
calculation. A simpler way that eliminates all the mentioned issues is to use higher
order elements in FEM. Higher order elements will make the natural electric field
approximation vary within the element, and can guarantee that the electric field is
continuous across elements. The issues with higher order elements are that the cost
is higher, and they do not capture rapid variations as well as linear elements. On
the other hand, higher order polynomials give a smoother potential, which in many
cases is a property needed for a stable simulation. Also, it is likely that fewer higher
order elements are needed than linear elements, and this is favorable for the speed
of the point location algorithm.

Although the implementation gives restrictions on the mesh, it is already known
that there are restrictions to capture the interaction between particles. At no time
during this work has there been any indications that the implementation needs an
even stricter mesh than what is known to be the case from before. On the other
hand, it should be expected that this is the case because these previous statements
are made for structured meshes, in particular, the nodes are distributed in the x−
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and y−directions with either constant step size, or varying step size. Since the
unstructured mesh has more variability in the details in any particular point in the
mesh, it should be expected that the mesh needs to be finer than for the structured
case.

It should also be noted that the particles are always calculated from the center of
an element in the PMC scheme. Therefore, it is possible that a smoother potential
is acquired if the particle-mesh coupling uses the particle’s position in the element.
This author’s opinion is that it is unlikely to produce much of a difference since
the particles do not interact in the element, and as long as the electric field is
discontinuous across elements, it should not make a large difference in the electric
field. Unfortunately, there has not been enough time to test if it does make a
difference. Also, the focus has been on keeping the self-force out of the simulations.
Therefore, the NEC scheme is the most appropriate solution because equilateral
triangles yield zero self-force for this scheme. The mesh used does not employ
equilateral triangles and therefore the self-force reduction is still needed, but it
could be used as an advantage by keeping boundary elements equilateral to make
sure these do not have a self-force.

The need to have a fine grid is remedied by the fact that the linear system solver and
the point location algorithm are fast, even for fine grids. Keeping these algorithms
quick has been a priority, but still, they have their pitfalls. The LU preconditioners
lack a solid mathematical foundation for well behaving in the conjugate gradient
method. This means that there is no guarantee this algorithm won’t break down
in some cases. So far, this has never happened. The point location algorithm is
great as long as the particle boundary conditions are handled elsewhere in MCCT.
It is capable of having particle boundary conditions in it, but it does so unnaturally.
On the other hand, there are positive results regarding the implementation of the
LU preconditioner and the point location algorithm. They are very well made for
utilizing the available memory for speed gains and have been reliable throughout.
They also interact well with previous time steps since the convergence of the PCG
has been very quick for small timesteps, and the PLA has found its elements very
fast when the particles travel a short distance.

One of the main reasons to implement a FEM solver is that it is capable of calculating
the potential for arbitrary domains. This gives the possibility of simulating more
complicated devices. Such an implementation requires that the attributes of the
domain are associated with the elements and that the particle boundary conditions
are naturally implemented with the particle location algorithm. Unfortunately, there
has not been enough time to make the extension to more general domains. The other
advantage of FEM is that it can use step sizes locally as an added advantage, which
has been utilized to great success.

Speed is always a concern. In this implementation, there are two distinct cases
of speed. Every time a new mesh is generated, the reference potentials of this
mesh must be made. Since this is computationally expensive, the time taken is
substantially more for the first run on a mesh. Fortunately, the reference potential
calculations are near perfectly parallelizable, and this should be utilized in the future.
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In the second case, when the same mesh is used, the PLA and the PCG are the two
bottlenecks. PCG is very quick, and speedup using parallelization is limited, it
cannot be done for the algorithm itself, but it can be done in the matrix-vector
products involved. Such an approach is not recommended since it is a low-level
parallelization, which is often suboptimal, and the solver is so quick that it is unlikely
to make it faster. PLA, on the other hand, is in the original version quite slow and
is highly parallelizable.

8.3 Further work

Since the solver has been made for a two-dimensional domain, a three-dimensional
solver is a natural extension. The framework and the subjects are the same in that
case, but many details must be implemented differently. Firstly, the FEM method
with linear elements has a different analytical solution; secondly, the PLA needs a
different algorithm since it is made for the two-dimensional domain, and finally the
size of the matrices involved are much larger, and therefore, the linear system solver
must be even more efficient.

From the discussion in the last section, it is apparent that there is also much work
that can be done in the two-dimensional solution. To solve the issue of a non-
continuous electric field across boundaries, it is recommended to test higher order
elements. There are many favorable properties that suggest that this is worth a try.
As said, this makes the electric field continuous across boundaries while making the
potential smoother in the domain. The PLA becomes faster as there will be fewer
elements needed. Since PLA is the bottleneck, and the solver is quite fast, it is
a good tradeoff. What degree of polynomials should be used is hard to say. The
HP-FEM methods, which vary both polynomial degrees and mesh size, has results
of exponential convergence rate in some cases[48][49]. This suggests that testing
higher order elements is worth an effort. In principle, quadratic triangular elements
are sufficient to make the electric field continuous, but it is possible that higher order
polynomials are better. An added advantage with higher order polynomials is that
the needed density of nodes in the mesh increases which leads to less elements and
more nodes. It should also be emphasized that lower order polynomials are better
for rapid variation, and therefore it is probable that a mix of different types is the
optimal solution.

A factor often overlooked in practice is that the mesh has a great influence on
the convergence of FEM. It is suggested here that it might be fruitful to explore
further the possibilities of generating optimal meshes. This is suggested because
even the few steps taken for a more optimal mesh in Chapter 7 lead to a much
more efficient simulation, without loss of accuracy. There are several options for
this consideration, one can use HP-fem as mentioned, or it is possible to make
use of either a previous simulation run to generate a suitable mesh for future runs
by using error estimates from adaptive mesh refinement methods[50], or use simpler
models of devices to get results which can be interpreted to generate the mesh. Since
adaptive mesh refinement methods have highly expensive iterations, only their error
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estimates should be used, and not the methods themselves. The error estimates
can be used either to choose element sizes, or element polynomials in regions, or
both. The issue with very advanced FEM implementations is that they would
lead to very advanced self-force reductions. Heavy emphasis on this approach to
improve FEM will need a mesh generation implementation if the options are to be
fully explored, but existing mesh generators can be utilized to a large extent. A
compromise between the different suggestions here would be to use different meshes
depending on the stage of the simulation, and use a mesh generating software to
generate a mesh that can be improved after generation.

The Conjugate Gradient method is likely to be one of the most efficient methods for
FEM since it utilizes the properties of the matrix and is well tested. Therefore, it is
unlikely to need any further work, or be exchanged with a different solver. On the
other hand, most of the calculations lie in the preconditioners, and these are always
hard to make sure are the best available. First off, it is known that, usually, the
incomplete Cholesky preconditioner is a better choice, but in this case, all testing
has shown that ILU and IChol perform the same. However, if the making of the
preconditioner takes too much time, Cholesky is quicker to make, and can, therefore,
be used. What is worth to note is that it may be much to gain from using other
preconditioners, and more sophisticated versions of the ilu preconditioners may do
better. One such new preconditioner is presented in [51], which is made for elec-
tromagnetic applications and another is the multigrid method [52] used for particle
simulations on a rectangular mesh. As stated, knowing which preconditioners work
well in advance is hard, so that testing these in MCCT is needed for any suggestions.

For the point location algorithm, there is, most likely, not much potential speedup
if the improved version is used. But for the general domain, it would be favorable
to upgrade this to [29] so that the particle boundary conditions can be naturally
implemented. The current implementation is also reliant on the Delaunay attribute
and needs to be replaced if another type of mesh is used.

It should be mentioned that some parts of the implementation can be parallelized. In
particular, the PLA is highly parallelizable, and since it is the bottleneck, it should
be considered for the future. Also, the calculation of reference potentials is near
perfectly parallelizable since these iterations have the same workload. This is the
bottleneck of the initialization of FEM and takes substantial computation time on
the first simulation on a mesh. Other than these two, there is not much potential for
using parallelization for the current implementation. On the other hand, these two
are the most expensive implementations, and it is worthwhile to parallelize these.
The current implementation of preconditioners cannot be parallelized, but in [53] a
new method which makes this possible is shown. It is not something of an issue in
today’s implementation, but in the future, it could be considered.
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Chapter 9

Conclusion

A working two-dimensional FEM implementation has been made and illustrated
to work in a simulation of a PN-junction. The goal of the master’s thesis was to
make an efficient FEM implementation without the influence of self-forces. The self-
force has been shown to be reduced to the order of the tolerance of the linear system
solver. This solver and a point location algorithm have been implemented efficiently,
and their convergence has been demonstrated. The simulation of a PN-junction has
shown no influence of self-forces and is working as intended.

Efficiency and usability were focused on, and therefore estimates have been found for
the implementations. In particular, estimates for the characteristic step length have
been made, estimates and a discussion on step lengths of the Cartesian coordinate
system in the improved PLA have been given, and a demonstration and discussion
on the threshold parameter of ILUT is shown. These estimates have been used with
great success in the simulation of a PN-junction.

A great deal of discussion on the subjects of advantages and disadvantages have been
conducted throughout the work. In particular, it has been pointed out that there are
many ways to do the particle-mesh coupling, contact treatment, and electric field
calculations. Each choice has been reasoned upon, and the results show that the
reasons have been good enough for a working implementation. The most important
issues pointed out are that the electric field is discontinuous across elements and
that the implementation needs adjustments for usage within a general domain. The
discontinuity of the electric field is also the case for finite difference method with
the NGP scheme, and therefore the FEM solver is not worse in this regard.

Overall, the conclusions throughout seem to agree with the practical application.
It is believed that the current FEM implementation is well suited for Monte Carlo
charge transport simulations for similar devices to those used with other solvers, but
with the added advantage of being able to dictate the mesh properties to a much
greater extent, leading to a better solver. It is also believed that with a few tweaks,
the solver can simulate more general domains. Also, it has shown to be efficient and
robust in the application for PN-junctions.
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Calculations

A.1 Centered difference method

The electric field is given as

~E = −∇φ. (2.8)

Forward finite difference method, in half a step size, is defined as the approximation
using first order Taylor series in x− and y− directions as

∆x
i+ 1

2
,j

=
φi+1,j−φi,j

h
,

∆y

i+ 1
2
,j

=
φi,j+1−φi,j+1

h
.

(A.1)

The backward finite difference method can be represented by inserting i− 1
2

instead
of i + 1

2
. Then the average of forward and backward finite difference is used to get

the centered difference method, which is

Ex
i,j =

∆x
i+ 1

2
,j

+ ∆x
i− 1

2
,j

2
. (A.2)

The same procedure is done in y− direction. By insertion in Equation (2.8) the
result is the centered difference approximation to the E field:

~Ei,j ≈

[
φi+1.j−φi−1,j

2h
φi.j+1−φi,j−1

2h

]
. (A.3)
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A.2 Gradient of area basis

From section 3.3 the areas are

A1 =
||

#                 –

(p3 − p2)×
#               –

(p− p2)||
2

,

A2 =
||

#                 –

(p1 − p3)×
#               –

(p− p3)||
2

, (3.21)

A3 =
||

#                 –

(p2 − p1)×
#               –

(p− p1)||
2

.

Taking A1 as an example, the rest follows analogously.

∇A1 = ∇||
#                 –

(p3 − p2)×
#               –

(p− p2)||
2

= ∇||
#                 –

(p3 − p2)×
#  –

(p)||
2

. (A.4)

With u = [u1, u2] constant, v = [x, y] , and the z coordinate fixed as z = 0 the
following holds true:

∇||
#  –

(u)×
#  –

(v)|| = ∇||0 · ~x+ 0 · ~y + (u1v2 − u2v1)~z|| =
[
−u2

u1

]
. (A.5)

Inserting equation (A.5) in equation (A.4) yields that

∇||
#                 –

(p3 − p2)×
#  –

(p)||
2

=

[
−(p3 − p2)y

(p3 − p2)x

]
, (A.6)

where (·)y, (·)x denotes taking respectively the second and first coordinate in a Carte-
sian coordinate system vector.

Following the same approach for all the bases, the gradients are

∇A1 =

[
−(p3 − p2)y

(p3 − p2)x

]
, (A.7)

∇A2 =

[
−(p1 − p3)y

(p1 − p3)x

]
, (A.8)

∇A3 =

[
−(p2 − p1)y

(p2 − p1)x

]
. (A.9)
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A.3 Backward and forward substitutions

Given an upper matrix U

U =


u11 u12 . . . u1n

0 u22 . . . u2n
...

. . . . . .
...

0 0 0 unn

 (A.10)

the solution to the system

Ux = b (A.11)

can be solved by backward substitution since

xn =
bn
un,n

(A.12)

and then substituting this into n− 1 gives

xn−1 =
bn−1 − un,n−1xn,n

un−1,n−1

(A.13)

that gives the general formula given the previous i− 1 rows as

xi =
bi −

∑n
k=i−1 ui,kxk

ui,i
, (A.14)

which is employed as the backward substitution. For forward substitution, the same
concept is applied, but now the first row is used instead of the last row.

A.4 GMSH

As stated in Section 3.2 the Delaunay algorithm is applied through the usage of the
free mesh generation software GMSH [18]. The version used in this master thesis is
2.10.1. GMSH lets the user draw a domain using their interactive menu and built-in
computer-aided design engine. This generates a .geo file which can be altered to set
proper values.
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The output of GMSH is a .msh file, which is a list of nodes and their corresponding
coordinates, and a list of elements and their corresponding nodes. The list of ele-
ments includes the edges on the boundary, which can, therefore, be used to identify
boundary nodes. The software also includes post-processing which could be used to
visualize results. However in this master thesis, MATLAB has been used instead.

In the future, the mesh should be generated by MCCT itself because there are
several considerations to take into account. The most important being that the
mesh size needs to be smaller than the Debye length at subdomains where the
density of charge rapidly varies as mentioned in section 2.3.1. For further efficiency
and accuracy, this consideration can be coupled with an adaptive mesh refinement
finite element method. See [54] for the development of mesh generation software.

The method described in [55] is interesting in this context. This algorithm makes
the elements close to equilateral, which is an alternative to minimize self-forces.
Also, it is made suitable for moving grid points or elements, which makes it able to
adapt the grid to where particles are during the simulation. In [56], this property is
used to make such an adaptive triangular element generation method.
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Implementation details

B.1 CRS format

The CRS format stands for compressed row storage format. It is a general format
for storing large sparse matrices without any particular structures. The idea stems
from the idea of storing each element of a matrix as the three vectors

A = ak

i = ik (B.1)

j = jk

where A = Ai,j such that ak stores the value of the matrix element at row i = ik
and column j = jk. In which case, only nonzero elements and their position in the
matrix needs to be stored. The CRS format takes this approach one step further
and instead stores the following three vectors.

A = ak

i = ipointerk (B.2)

j = jk

such that ipointerk denotes the position k in the matrix A for each row i, and j is
a column index. ipointerk is number of rows +1 long. The total number of nonzero
elements is stored in the last ipointerk . In this way each row Ai,· is found as

Ai,· = a(ik),(ik+1),...,(ik+1−1) (B.3)
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so that the length of each row i is ipointerk+1 − ipointerk . This storage type complements
the fact that many of the operations needed in the solvers are row-wise operations
which are naturally stored in succession using this format. Every matrix made in
MCCT has been stored using this format.

For the reader to easily grasp the concept, an example should suffice. Take the
following arbitrary matrix,

Afull =


1 0 0 9 2
3 0 0 0 7
0 0 8 4 0
1 2 3 4 5
0 0 0 0 6

 (B.4)

now, this matrix is stored continuously in its nonzero entries, as

A = [1, 9, 2, 3, 7, 8, 4, 1, 2, 3, 4, 5, 6] (B.5)

the starting entry in A for each row is given in i as

i = [1, 4, 6, 8, 13, 14] (B.6)

and the column index of each entry in A is given as

j = [1, 4, 5, 1, 5, 3, 4, 1, 2, 3, 4, 5, 5] (B.7)

Now the number of nonzero entries in A is given by the last entry in i as 14−1 = 13
nonzero entries. The most used operation is to get a row of A. Say that the third row
is needed, then the number of nonzero entries in this row is i4− i3 = 8− 6 = 2, and
the starting entry is given as i3, so the third row contains the values Ai3 = A6 = 8
and Ai3+1 = A7 = 4. The column index is given in the same entries as j6 = 3 and
j7 = 4.

In MCCT it is often needed to do matrix-vector products. For instance, say there
is a vector ~b,

~b =


0
1
0
1
1

 , (B.8)
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then taking the product A~b can be done row-wise. For instance for the first row,
the i vector gives that A must be iterated over entry number 1, 2,and 3, and these
entries are in the columns j(1), j(2), j(3), which are the corresponding rows of ~b.
This means that

A1,·~b =
∑
i=1,3

Aibji = 1 · 0 + 9 · 1 + 2 · 1 = 11 (B.9)

and as can be seen, only nonzero entries of A needs to be done in the calculations.
Furthermore, the calculations are done continuously in memory row-wise, and if the
rows are done from the first to the last, it is continuous for the full calculation.
These two attributes make the calculations efficient.

B.1. CRS FORMAT 113



Bibliography

[1] J.L. Meek. A brief history of the beginning of the finite element method. In-
ternational journal for numerical methods in engineering, 39:3761–3774, 1996.

[2] Carlos A Felippa. Introduction to finite element methods. Course Notes, De-
partment of Aerospace Engineeing Sciences, University of Colorado at Boulder,
2004.

[3] C.N. Kirkemo. Monte carlo simulation of pn-junctions. Master’s thesis, Uni-
versity of Oslo, 2011.

[4] Juri Selv̊ag. High precision, full potential electronic transport simulator. Mas-
ter’s thesis, Norwegian University of Science and Technology, 2014.

[5] S.E. Laux. On particle-mesh coupling in monte carlo semiconductor device sim-
ulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 15(10):1266 – 1277, 1996.

[6] H. Kosina and M. Nedjalkov. The monte carlo method for semi-classical charge
transport in semiconductor devices. Mathematics and computers in simulation,
55(1):93–102, 2001.

[7] Geir Uri Jensen. Monte Carlo simulation of III-V semiconductor devices. PhD
thesis, The Norwegian Institute of Technology, 1989.

[8] Dragica Vasileska, Stephen M. Goodnick, and Gerhard Klimeck. Computational
Electronics: Semiclassical and Quantum Device Modeling and Simulation. CRC
Press, 2010.

[9] C. Jacoboni and P. Lugli. The Monte Carlo Method for Semiconductor Device
Simulation. Springer-VerJag/Wien, 1989.

[10] J.M. Thijssen. Computational physics. Cambridge University Press, 2007.

[11] Ole Christian Norum. Monte carlo simulation of semiconductors – program
structure and physical phenomena. Master’s thesis, Norwegian University of
Science and Technology, 2009.

[12] J.J. Harang. Implementation of maxwell equation solver in full-band monte
carlo transport simulators. Project thesis, Norwegian University of Science and
Technology, 2015.

114



BIBLIOGRAPHY
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