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).
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Abstract

The thesis is written as an introduction to topology optimization, aiming to help
knowledge development in design optimization techniques, as well as aiding the
adaptation of a sustainable culture with direct application to similar products
like the two test cases supplied by the EC SuPLight project. These components
are; a Door Connection Joint for a business jet and a Front Lower Control
Arm from a McPherson suspension. The thesis has no intention of covering all
aspects concerning topology optimization, but to investigate best practice and
give advice on how to understand the process and how to setup an optimization
run. The thesis is especially discussing how to make sure that results can be
trusted and that they can be used in real life engineering applications. This is
found to be a subject of both loading and boundary condition definitions, as
well as choice of optimization algorithms and general approach.

The thesis begins with an elaboration of basic topology optimization the-
ory; discussing topology optimization history, mathematical algorithms, avail-
able software and general workflow when performing topology optimization.
In particular, the widely used SIMP-algorithm and the MinMax approach are
elaborated, as well as proposing solution strategies for obtaining suitable re-
sults, depending on the desired properties. The thesis further discusses the
use of Abaqus ATOM for optimizing the two test cases, evaluating previously
stated optimization solution strategies as well as manually performing multi-
disciplinary topology optimization on the Door Connection Joint. A process
description of the NX topology optimization module is also included. Simu-
lation results from minimizing volume and constraining displacements suggest
geometries that for the Door Connection Joint and the FLCA are 11.2% and
6.41% lighter than the original parts, respectively. The thesis ends with an eval-
uation of the quality of results, ease of use and reliability of such optimization,
as well as proposing significantly lighter, reengineered designs for both compo-
nents. Reengineered geometries for the Door Connection Joint and FLCA are
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7.11% and 5.92% lighter, respectively. Using topology optimization as an initial
approach to expanding the solution space and finding the optimal solution is
found to be very efficient, and use is expected to increase rapidly as knowledge
and availability of tools increase. Pushing performance limits, topology opti-
mization reduce product versatility, making the engineer’s role in development
just as important as before.
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Sammendrag

Oppgaven er skrevet som en innfgring i topologioptimalisering, med den hensikt
a bidra til kunnskapsutvikling innen teknikker for optimalisering, samt legge til
rette for en baerekraftig kultur for utvikling av tilsvarende produkter som i de
to testkomponentene angitt i SuPLight EU- prosjektet. Disse komponentene er;
en dgrhengsel til et jetfly og en nedre kontrollarm i et McPherson hjuloppheng.
Oppgaven har ikke til hensikt & dekke alle aspekter ved topologioptimalisering,
men derimot & redegjore for hensiktsmessige fremgangsmater og gi rad om hvor-
dan man skal forstd prosessen og sette opp en slik optimalisering. Oppgaven
diskuterer spesielt hvordan man skal kunne vaere sikker pa at man kan stole pa
resultatene, og at disse kan benyttes i virkelige tekniske applikasjoner.
Oppgaven begynner med en utdypning av grunnleggende teori vedrgrende
topologioptimalisering hvor bade historie, matematiske algoritmer, tilgjengelig
programvare og generell arbeidsflyt diskuteres. Spesielt utdypes teorien bak den
mye benyttede SIMP- algoritmen og MinMax- tilnarmingen. Oppgaven foreslar
dessuten strategier for & oppnéa gnskede simuleringsresultater, avhengig av hvilke
produktegenskaper en sgker. Avhandlingen drgfter videre bruken av Abaqus
ATOM for & optimalisere de to testkomponentene og vurderer ulike tilngerminger
til optimalisering av disse, samt utfgrer en manuell multi- disiplineer topolo-
gioptimalisering av dgrhengselen. En prosessbeskrivelse av topologioptimaliser-
ingsmodulen i NX er ogsa inkludert. Simuleringsresultater som fremkommer ved
& minimere volumet og sette begrensninger pa forskyvninger gir geometrier som
for derhengselen og kontrollarmen er henholdsvis 11.2% og 6.41% lettere enn
de originale delene. Avhandlingen avsluttes med en evaluering av kvaliteten pa
resultatene, brukervennlighet og palitelighet ved bruk av optimaliseringsverk-
t@y, samt foreslar betydelig lettere endelige design for begge komponenter. De
nye designene for dgrhengselen og kontrollarmen er henholdsvis 7.11% og 5.92%
lettere. A benytte topologioptimalisering som en forste tilnserming til & utvide
lgsningsrommet og finne den optimale lgsningen er ansett som sveert effektivt,
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og bruken er forventet & gke raskt ettersom kunnskap om og tilgjengelighet til
verktgyet gker. Bruken av topologioptimalisering gir gkt ytelse, men reduserer
allsidigheten til produktet, noe som gjgr at ingenigrens rolle i utviklingen er like
viktig som fgr.
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Chapter 1

Introduction

1.1 Background

The art of structure is where to put the holes.

Robert Le Ricolais, 1894-1977

With the vast development of computers and commercially available software
during the last decades, computer aided design, engineering and manufactur-
ing have been widely utilized for use in commercial companies and research.
The use of optimization algorithms for efficient design of products is rapidly in-
creasing due to continuously increasing computational power. First used in the
development of aeronautic applications, other areas which demand high perfor-
mance and cost savings have embraced the technology and possibilities available
today. This includes, but is not limited to, the automobile industry, oil indus-
try and electronics industry. Topology optimization is particularly powerful for
enhancing creativity and suggesting solutions not initially apparent to the engi-
neer. The method is unique as is provides optimal solutions for the given loads,
boundary conditions and specified design responses. Engineering experience will
always be required to evaluate results, but is naturally limited when faced with
conflicting constraints and the demand of finding optimal solutions.

The project initiator is Prof. Terje Rglvag, contributing to the EC SuP-
Light (Sustainable and efficient Production of Light weight solutions) project,



aiming to reduce the environmental impact of production of structural parts.
One way to achieve a more sustainable world, is through efficient use of recy-
cled aluminium. Reducing the weight of a component will drastically improve
its environmental impact and reduce costs, making it an ever desirable factor
in the highly iterative work of designing and dimensioning components. The
main target of the project is hence to contribute to knowledge transfer and
understanding of topology optimization, as well as evaluate the ease of use of
commercially available topology optimization algorithms. It is also of major
importance to evaluate to which degree commercial software provide results
that are transparent to the user, as many companies fear to use such because
of the uncertainty of the solution process. The report is written as a process
study', including theory and evaluation of two test cases, specified by the SuP-
Light project participants. Questions like “Does topology optimization reduce
the need for engineers and professional skills?” and “Can I trust the results
of my simulation?” are important when evaluating the concept of topology
optimization.

SuPLight Project The master thesis is the written as a contribution to the
EC project SuPLight. The main objective of the SuPLight project is to provide
knowledge of “Sustainable lightweight industry solutions based on wrought alloy
aluminium” [10].

Sub goals include:

e Advanced lightweight products from low grade input re-used materials
(M61,M62)

e Optimization of product weigh/performance ratio trough ad-
vanced optimization algorithms (M34)

e More than 75 % post-consumer recycled wrought aluminium alloys (M61,
M62)

e New methodologies and tools for holistic eco-design of products, processes
and manufacturing (M42)

e New industry models for sustainable manufacturing of lightweight solu-
tions (M52)

L An organized, systematic investigation of a particular process designed to identify all of
the state variables involved and to establish the relationships among them.



RTD WPL: Req. and
specifications

RTD WP2: Development of new wrought alloys with
closed-loop recycling characteristics
RTD WP3: Simulation based optimization of
lightweight solutions
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Figure 1.1: Work Packages in SuPLight project

e Lightweight solutions in a closed-loop life cycle perspective (M83)

The sub-goal marked in bold text is subject for analysis in this master thesis.
Figure 1.1 shows the sub-goals as work packages, whereas the thesis will focus
on WP3.

The project duration is 01.06.2011 — 31.05.2014, including a total of 11 part-
ners from 7 countries. The project has a total budget of 4270 million Euro, and
is coordinated by SINTEF. Test cases, including CAD-models and simulation
boundary conditions, are described in section 1.1. Models and information are
provided by Raufoss Technology (RT) and Hellenic Aerospace Industry (HAI).

The traditional approach to design of structural components is time con-
suming and often lead to ineffective designs, as shown in figure 1.2. A target
for this thesis is to evaluate to which degree topology optimization can improve
the weight/performance ratio of components and save time, and thus provide
an alternative approach to dimensioning components. To which degree the user
can interpret results and understand the assumptions behind the choices and
rationales that has been performed by the software is considered especially im-
portant. The topology optimization approach is shown in figure 1.3.
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Test cases Two test cases have been proposed for analysis. Both cases include
parts that are highly stressed, still vital for the safety and continued use of the
unit on which it is assembled:

e A left-sided Front Lower Control Arm (FLCA), an important part of a
McPherson front suspension on Opel Insignia (2008-). The control arm
is produced by Raufoss Technology, entirely from wrought 6062 T6 alu-
minium.

e A baggage compartment Door Connection Joint on a Falcon 900 Business
Jet Aircraft. The plane is produced by the Greek company HAT on behalf
of Dassault Aviaton. The door joint is made entirely from 7075 T7351
aluminium, and is machined from a solid block using a 5-axis CNC milling
machine.

The overall relevant sustainability objective for WP3 is to reduce the weight of
both components by 10%, but at the same time maintain performance objectives
such as stiffness, buckling strength and ease of production. Specific performance
targets are presented in section 3.2. As far as the selected software enable the



Ball bearing

Figure 1.4: FLCA; Original CAD geometry and boundary interference compo-
nents

use of design responses? that cover these targets, they have been used to control
simulation results.

1.2 Target of thesis

The main target is to provide the reader with knowledge about the theoretical
basics of topology optimization and information on how to perform topology
optimization using commercial simulation software. The aim is also to perform
topology optimization on the two test cases presented in section 1.1 in order
to display the powerful creative capabilities of such tools, and comment on its
performance with regard to ease of use and quality of results.

2Topic covered in section 2.4.4
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Figure 1.6: Door Connection Joint; Original CAD geometry
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1.3 Delimitation of thesis

The thesis will mainly focus on the subject of topology optimization with re-
gard to basic theory and practical structural applications using Abaqus and
NX, and aim to provide a better understanding of topology optimization for
the experienced FE-user. The thesis will mainly focus on the geometrical ap-
proach to topology optimization for load supporting, 3D continuum structures
experiencing static strains within elastic limits for isotropic materials.



Chapter 2

Topology optimization theory

2.1 History

to-pol-o0-gy

lte'pélaje/ 4)

Noun

1. The study of geometric properties and spatial relations unaffected by the continuous
change of shape or size of figures.

2. Afamily of open subsets of an abstract space such that the union and the
intersection of any two of them are members of the family, and...

The first concepts of seeking optimal shapes of structural elements was per-
formed in the 16th and 17th century by Galileo Galilei. In his book “Discorsi”, he
investigated the fracture process of brittle bodies, whereas also the shape of bod-
ies was considered with regard to strength. With ever increasing computational
capabilities, a new area of Computer Aided Engineering has emerged, often re-
ferred to as Structural Optimization. The work of Gottfried Wilhelm Leibniz
(1646-1716) in the fields of mathematics and natural sciences can be seen as the
basis of any analytic procedure [7], while the work of Leonard Euler (1707-1783)
on the theory of extremes provided the basis for the development of the calculus
of variations. With contributions to the work of Euler, Lagrange (1736-1813)

10



and Hamilton (1805-1865) contributed in completing the variational calculus.
This has later turned out to be the basis of several types of optimization prob-
lems, as the theory of topology optimization combines mechanics, variational
calculus and mathematical programming to obtain better design of structures,
according to [11]. Euler, Lagrange and a few significant others also made ini-
tial investigations on finding the optimal shape of one-dimensional load bearing
structures under arbitrary load. Using variational calculus, they derived optimal
cross-sections for columns, torsion bars and cantilever beams [7].

2.2 General optimization theory and applications

Topology optimization is aimed at finding the best use of material within a
given design space (often referred to as ground space), fulfilling requirements on
stiffness, displacement, eigenvalues, etc. In short, the optimization seeks to find
the optimal load path for a particular load and boundary condition. With the
rise of the Finite Element Method (FEM), algorithm-based optimization has
become available not only to the expert user.

Topology optimization is often also referred to as layout optimization or
generalized shape optimization in literature, while in this thesis, topology op-
timization is used to reference the theory. Topology may be used to improve
not only structural performance, but also thermal properties, fluid flow, elec-
tric boards (MEMS), electromagnetic applications and bio-mechanic properties.
All subjects but the first are omitted in this thesis. The basis is, however, the
same as for topology optimization of load-carrying structures. One can roughly
separate topology optimization into two approaches; the Material- or Micro-
approach vs. the Geometrical or Macro-approach, whereas the last approach
is the most used in commercial software today [7]. The inherent differences
between the two approaches will be clarified at a later stage in the thesis. The-
ory also separates between gradient-based and non-gradient-based algorithms,
whereas the difference will be explained later. Keep in mind that combinations
of both approaches and algorithms exist.

Topology optimization can roughly be divided into treatment of two different
types of domains; continuum and discrete structures. Discrete structures often
refer to larger constructions like bridges, cranes and other truss structures, while
continuum structures often refer to smaller, single piece parts and components.
As already mentioned in section 1.3, continuum structures are of main interest
in this thesis.

When performing optimization, one must also distinguish between the num-
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ber of objectives. If there is one objective, or the objective consists of a weighted
average of objectives, the process is referred to as a Single Objective Analysis
(SOA). If there is more than one objective, the process is said to be a Multi-
Disciplinary Optimization (MDO) or a Multi- Objective Analysis (MOA). In this
thesis, the MDO-name is used. The definition of Multi-Disciplinary Optimiza-
tion given by the Multi-Disciplinary Optimization Technical Committee of the
American Institute of Aeronautics and Astronautics (ATAA) states: "Optimal
design of complex engineering systems which requires analysis that accounts for
interactions amongst the disciplines (or parts of the system) and which seeks
synergy to exploit these interactions", ref. [12]. As a result, objectives must
originate from separate, conflicting disciplines or systems in order to be seen
as Multi-Disciplinary. In a Multi-Disciplinary problem the notion of "optimal"
changes as the target is to find a good compromise between conflicting prop-
erties, rather than a single solution. A Multi-Disciplinary optimization results
in many different solutions, whereas the boundary between feasible and infea-
sible solutions is defined as the Pareto frontier. On the Pareto frontier none of
the objectives can be improved without compromising at least one of the other
variables. The alternative to solving Multi-Disciplinary optimization problems
is consequently to solve one objective with means of weighted functions with
which the problem is transformed into a single-objective problem using weights:
F(z)=w1- fi +ws- fo+ ...+ w; - f;, according to [13].

Additionally, one must separate between the use of topology optimization
for static and dynamic systems. As previously stated, the thesis is concerned
with treating the static, steady-state case (alternatively a quasi-static state).
However, treating dynamic systems is also possible and often solved by maxi-
mizing eigenfrequencies. Topology optimization is also applicable for use with
assemblies. This is straightforward, as the definition and selection of design
spaces, objectives, etc., is similar to the standard procedure. Contact, gluing
and such must then be defined to gain validity.

As in every type of optimization, using too strict constraints, there might
not exist a real-world solution to the problem. This is an issue of convergence,
and is discussed in the theory part discussing different algorithms, see section
2.2.2.

In order to obtain reasonable results from topology optimization, the number
of discrete, finite element nodal points should be high [11]. This follows from
the fact that the nodal points are used as variables, and that the resolution and
accuracy of the resulting geometry is directly related to the mesh size, as only
whole elements can be removed or altered. Mesh dependency will be covered in
section 2.4.2.
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Figure 2.1: 2D topology equivalent domains
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Figure 2.2: Optimization techniques

It is important to have a good understanding of the general definition of
topology optimization when evaluating and interpreting optimization results.
For two objects to be topologically equivalent, they must belong to the same
topology class. An object will belong to another topology class if the neigh-
borhood relations of the single elements that establish a domain are violated,
as described in [7]. This means that the size and position of a hole will not
change the topology, but the introduction of new supports, holes or equivalent
will. These implications are shown in figure 2.1.

2.2.1 Types of optimization

Optimization of structures can roughly be divided into 1) shape- and size op-
timization and 2) structural optimization [11, 14]. The different types of opti-
mization are briefly discussed beneath, focusing on the fundamental differences
between them, explained graphically in figure 2.2 and 2.3.
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2.2.1.1 Shape- and size-optimization

Shape- and size-optimizations are mainly concerned with increasing strength
and finding the best compromise between many different design parameters
for a previously prescribed layout. For small, continuum structures, the main
concern is reducing stress concentrations and increasing fatigue life. This topic
is further covered in [15, 16].

Shape Optimization with regard to shape takes into consideration the spec-
ified design parameters of a model and varies these until the desired design
responses and constraints are fulfilled. This included changing fillets, chamfers,
radius, material thickness, etc. The optimization algorithms will not include or
remove holes, rather adjust the ones specified in the analysis.

Size Size optimization, on the other hand, will often handle issues concerning
truss-like structures; bridges, support bars, space frames, etc. If having no lower
limit of a member cross section area, the optimization can fully remove a non-
supporting member if its radius or height is included in the parameters available
for variation. If all possible combinations of connections between specified con-
nection nodes have been modeled and parameterized, size optimization can be
seen as a simplified approach to topology optimization, ref. section 2.2.1.2.
Sizing optimization is also concerned with changing the thickness of plates in
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sheet metal constructions, in order to find the optimum solution with regard to
weight, stress, displacements, etc. Used solely to change the thickness of distinct
plates or members, size optimization can be seen as a somewhat simplified type
of topometry optimization, explained briefly in section 2.2.1.2.

2.2.1.2 Structural optimization

Structural optimization can, contrary to shape- and size optimization, introduce
new holes, voids and trusses in the structure.

Topology First introduced by Bendsge and Sigmund, and extensively treated
in [11], topology optimization is a powerful optimization technique designed to
provide engineers with a tool for evaluating and expanding the solution space
and increasing creativity when designing and dimensioning load-carrying struc-
tures, both on a micro- and macro-scale. By assigning a valid design space and
the proper BC’s (Boundary Conditions); loads, design responses and constraints,
commercially available software are able to predict the optimal structure for the
application. Using a variety of different algorithms, including the most simple
and known of which is the SIMP (Single Isotropic Material with Penalization),
the software will perform many iterations of the consecutive activity of redesign
and simulation to reach a solution. Explanation of the different algorithms is
found in section 2.2.2.

The normal loop of optimization is shown in figure 2.4. The work order and
general sequence of work is valid for most commercial software.

By default, all types of discrete topology optimization algorithms have the
disadvantage that the product of the optimization is a non-smooth structural
geometry. As many engineering applications require smooth geometric shapes,
a smoothing procedure has to be performed. Depending on the optimization
geometric constraints, the resulting geometry is usually highly organic in shape,
requiring a manual process of interpreting and implementing the results into a
parameterized model suitable for production purpose.

Topography Topography optimization is similar to topology optimization,
but is concerned with varying the element (2D) offset from the component mid-
plane [14]. This optimization theory is widely used on sheet-metal structures, as
can be seen in [4], ref. figure 2.5. Keeping the element thickness constant, but
varying the surface topography, one can obtain the structural integrity needed
for the component to solve a specific problem. This kind of optimization is es-
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Figure 2.4: Topology optimization process loop (image courtesy of [3])

pecially useful when working with sheet-metal products suitable for production
using deep-drawing, press forming, hydro forming, etc.

Topometry Topometry optimization is similar to topography optimization,
but the algorithm will maintain a zero element offset from the mid-plane, and
rather change the element thickness. This method is not used as much as
the one previously discussed, as production without the use of ALM (Additive
Layer Manufacturing)-technology is both difficult and expensive. Topometry
optimization is therefore omitted in this thesis, but remains a promising area
for further analysis and use as the ALM-technology is more widely used.

2.2.2 Topology optimization algorithms

The following sections about optimization algorithms are based on the work of
[7, 11].

Topology optimization for continuum structures can be defined as a material
distribution problem, where the target is to find a material distribution in the
form of a body occupying a domain Q™% which is part of a larger reference
domain €, in R? or R3. Q is often called the design space, or ground structure,
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and is chosen to allow for definition of applied loads and boundary conditions.
Some of the most widely used algorithms are based on the search for a minimum
compliance design. This if often referenced in software as minimizing strain
energy, or compliance (often referred to as the stress/strain-relation). Since
Stif fness « m, minimizing the compliance will maximize the stiffness.
Equation array 2.1 defines the minimum compliance design in a mathematical
form, whereas the first line shows the internal virtual work of an elastic body
at the equilibrium v and for an arbitrary virtual displacement v. The resulting
equation is the equilibrium equation written in its weak, variational form. The
index F is used to show that ap depends on the design variables.

a(u,v) = [ Eijr(z)ej(w)er(v) dQ

ou;  Ou;
Eij(u) = % <8Ij + 6mj,>
l(u) = [, fudQ+/ tuds (2.1)
I'r

min(uc U,E)= 1| (u)
ag(u,v) = | (v),forveUandFE € Eyy

Symbols used in 2.1 have the following definitions

U Kinematically admissible displacement fields
f Body forces
t Boundary tractions

E,q Admissable stiffness tensors for design problems

The various possible definitions of E, 4 is the subject of different optimization
algorithms.

When working with a FE (Finite Element)-analysis, the problem must be
stated in a discrete manner. Assuming a constant E for each element, the
discrete form of can be expressed as

min(u, E,) fTu ,80 that

K(E)u = f
E. € Ead (2.2)
K= > K./(E.) ,summingi=1..N elements
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U Displacement vector
f Load vector

K Global element stiffness matrix

K. Stiffness matrix for element e, dep. on the stiffness Ee in the element

Given the equations above, the target is the optimal subset 2% of material
points. The set F, of admissible stiffness tensors consists of those tensors that
fulfill the equalities in equation 2.3.

El_]k)l = 1Q7nat E’Ejk‘l 5 given that
1 Qmat
lﬂmuat - { Ol;iég\ﬂmat } (2.3)

/ IQmat dQ = VOZ(Qmat) %4
Q

Where V is a limit value stating the material at our disposal. In most
simulations, this value is denoted V,..; € {0..1}, and gives the allowable fraction
of the design space volume.

As noted above, topology optimization has only one variable, which is the
density and related stiffness of each element. Expressing the stiffness tensor
E?jkl as a value that depends continuously on a function of the density of the
material, the density become the design variable [11]. Varying the density will
therefore influence the stiffness tensor of the element, E., and total material
distribution. Proving that intermediate values®, referred to as relaxation of the
design variables [6], has a real physical implementation, has been subject to re-
search and discussion. The difference between topology algorithms is how they
handle intermediate density values, as we would mainly like “material or no
material” elements that can easily be interpreted into a design using isotropic
materials. A Black/White-model is defined as having a pure 0-1 design, im-
plied that all possible values of the density of an element are 0 or 1. Because
the density is treated as a continuous variable, this condition would not be
possible without some kind of evaluation of the intermediate values. Without
further processing, this approach would suffer from lack of convergence and
produce mesh dependent topologies. Other problems, such as checker-boarding,

I Relative density values p € {0..1}
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one-element hinges, etc. are also found to be problematic without introducing
further bounds on the algorithm, as further discussed in the following section.

Eijr(p=0)= 0 (2.4)
Eijkl(P = 1) = ]. — Eiojkl

Different algorithms for the interpolation between 0 and E?j 41 are presented
below. Be aware that these are just a few of the many possible algorithms. Ad-
ditional algorithms are omitted because of their lack of use for 3D continuum
structures or because they are still at an experimental stage, hence not imple-
mented into commercial software. For practical applications, discrete models
(e.g. Finite Element) of the domain of interest and algorithms are used to per-
form the structural analysis, as illustrated in figure 2.6. Here, the domain will
be divided into N finite elements.

2.2.2.1 SIMP-model

The Solid Isotropic Microstructure with Penalization (SIMP)-model, also known
as the penalized, proportional stiffness model, is a gradient-based model [17]
expressed in mathematical terms as presented in equation 2.5. The method is
widely used, and one out of two possible algorithms for use with Abaqus ATOM.

Eijri(x) = p(x)pE?jkl, p>1 (2.5)
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/p(fv)dQSV; 0<p(x)<1, zeQ
Q

The algorithm interpolates between extreme values as shown in equation 2.4.
Choosing the value p > 1 makes intermediate densities unfavorable because the
% ratio will decrease. Values of p exceeding 3 is assumed to perform well
for both 2D and 3D-structures, as discussed in [7].

The workflow of the the SIMP-algorithm can be seen in figure 2.7, following
the description in [17].

SIMP usually starts with a uniform distribution of densities in the elements
of the design domain and a volume fraction equal to the one specified. The first
step in the iterative analysis is solving the equilibrium equations, followed by a
sensitivity analysis calculating the derivatives of the design variables (ref. the
element densities). Simulation settings provide the possibility to limit the mag-
nitude of the density updates. To ensure numerical stability, filtering techniques
are applied before the densities are updated using the minimum compliance cri-
teria, followed by a new finite element analysis. This procedure is repeated until
convergence has been reached, as described in figure 2.7. Further discussion on
numerical stability is discussed below.

Methods to ensure numerical stability and valid solutions Numerical
stability is an important issue when working with optimization algorithms, and
is currently one of the main areas of research, as well as finding other ways of
performing topology optimization.

Implementing a lower bound on relative densities, e.g. pmin = 0.001 (can
be adjusted in the Abaqus ATOM environment), giving admissible densities of
0 < pmin < p < 1, prevents singularities in the finite element analysis.

The following paragraph is based on [6, 17, 11]. Other significant causes
of numerical problems treated in literature are, as earlier mentioned; checker-
boards, mesh dependence and local optima, as well as the mere existence of
a solution suitable for engineering interpretation (convergence). The different
problems are shown in figure 2.8. The latter is, partially, dependent on the
discretization of € into N finite elements, as the real-world problem is ill-posed
and is generally not solvable. In order to prevent scattering and rapid changes
in the topology (thus ensure the convergence of a solution), further bounds are
implemented in the algorithm. An upper limit to the perimeter of the set Q
(thus reducing the number of holes by limiting the surface area) and local or
global gradients of p will solve the problem. The latter is found to be the most
time consuming when solving the analysis, together with solving the equilibrium
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equations.

Early beliefs suggested that checker-boarding was some sort of optimal mi-
crostructure, but has later been found to be a result of bad numerical modeling,.
The solution to the checkerboard-problem is solved by using higher order ele-
ments (CTETRAL10, etc.), as well as filtering techniques from image processing.
The image filter makes the design sensitivity of each element dependent on the
weighted average of neighboring elements. Both solutions implies significantly
increased computational time, however they are required in order to obtain
robust results.

In its original form, the SIMP-model is suffering from mesh-dependence.
Work referenced in [6] suggests that solutions to the checkerboard problem can
help solve this problem as well. The problem with mesh-dependence is also
linked to the problem of local minima. Gradient-based algorithms are known to
have a weakness of not finding the global minima, rather finding local minima,
and only small changes in initial simulation parameters (density update limits,
initial volume fraction, etc.) can result in non-re-producible designs. Different
approaches to the problem have been suggested by various researchers, e.g. the
continuation scheme; to gradually increase the intermediate density penalty
factor p through the process, as this will ensure that the process is convex,
gradually converging to the desired 0-1 design. Starting out with a low value of
p will ensure that the solver does not “‘jump” to a 0-1 solution to soon, avoiding
local minima effectively. Commercial software normally has one or more of these
algorithms implemented, ensuring that the optimization results are valid and
truly optimal.

2.2.2.2 RAMP-model

As the second out of two possible interpolation algorithms in Abaqus ATOM,
the Rational Approximations of Material Properties (RAMP)-model is briefly
presented to enlighten the use or possible misuse of the algorithm. The RAMP-
method as first presented in [18], was formulated to solve the problem of design
dependent loads, like pressure loads from wind, water, snow, etc. As element
density is updated, the initial surface properties of the design are no longer valid,
and loads are no longer unambiguous. As an alternative approach to the initial
formulation, a mixed displacement-pressure formulation can be used, defining
the void phase to be an incompressible hydrostatic fluid transferring pressure
loads without further parameterization of the surface [19], as shown in figure
2.9.

Figure 2.10 is included to show the possible error of choosing the RAMP-
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Figure 2.8: Numerical instability; (a) Design problem, (b) Example of checker-
boards, (c¢) Solution for 600 element discretization, (d) Solution for 5400 element
discretization and (e) Non-uniqueness example (courtesy of [6])
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Figure 2.10: Door Connection Joint; 1) SIMP vs. 2) RAMP algorithms used at
part with concentrated loads (no pressure loads)

model when performing topology optimization without the use of pressure loads.
If not specified, the solver will use the default algorithm, normally the SIMP-
algorithm.

2.2.2.3 Other topology optimization algorithms

Other gradient-based algorithms for topology optimization include, but are not
limited to, the Homogenization Based Optimization (HBO). Figure 2.11 shows
the hole-in-cell microstructure and the layered microstructure that can be used
to cover the range of density values from 0 (void) to 1 (solid). By homogenizing
values of the 0-1 areas, the effective mechanical properties can be determined [7].
The HBO algorithm represents the Material- or Micro-approach as presented
in section 2.2.

Non-gradient-based algorithms include, but are not limited to, the simu-
lated biological growth (SBG), particle swarm optimization (PSO), evolutionary
structural optimization (ESO), bidirectional ESO (BESO) and metamorphic de-
velopment (MD) [17]. These algorithms are based on binary design variables
(solid-void) and problems with “grey” areas (intermediate values) is not an is-
sue. Some of these algorithms have already been implemented in commercial
software, e.g. the BESO-algorithm, where the engineers specify areas of struc-
tural interest (areas for loads, BC’s, etc.) and the algorithm adds material until
constraints and objectives are met [7].
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Figure 2.11: The Material- or Micro-approach; a) Perforated microstructure
with rectangular holes in square unit cells and b) Layered microstructure con-
structed from two different isotropic materials (courtesy of [7])
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A topic of research and development is the use of topology optimization to
design components made of composites and non-isotropic materials. Using com-
posite materials, "grey” areas can be interpreted in physical terms by composite
material design, effectively changing the properties of the material and hence
the effective stiffness contribution. The use of composites is therefore seen as an
alternative to searching for macroscopic, 0-1 designs obtained by reducing the
space of admissible designs by some sort of restrictions [11]. Available topology
optimization algorithms in commercial software are expected to increase rapidly
in the future as more algorithms are tested and implemented.

2.2.2.4 Formulations for evaluating the objective function

Formulations for evaluating the objective function aim to minimize, maximize,
or minimize the maximum of a specified design response. The latter is not as
intuitive as the two first, and is elaborated below for clarification.

The “minimizing the maximum”-formulation is often referred to as the Min-
Maz-formulation, or the Bound formulation. It is so far the most widely im-
plemented formulation in commercial software aimed at handling multiple load
cases. The formulation was proposed as a less time consuming alternative to
creating Pareto frontiers and automatically selecting the appropriate optimum
[20, 21]. The formulation inserts an objective 8 which acts as a new objective,
simultaneously acting as an upper bound on all other objectives, treating the
original objectives as constraints. The problem can be expressed as:

ming : {mazx {f;(x)}} i=1,2,...m
0 (2.6
mingg : 5
s.t. fi—p<0 i=1,2,...,m

Figure 2.12 demonstrates the difference in optimal designs when using the
MinMax-formulation instead of merely minimizing the strain energy.

2.2.3 Multidisciplinary Topology Optimization

Pareto optimal solutions are solutions where multiple design responses are con-
flicting [13, 22]. A topology € is “Pareto-optimal” if no other topology ' exists
with smaller compliance and identical volume, ref. [23, 11]. The designer may
specify a certain performance target (volume, displacement, etc.), but without
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Figure 2.12: Objective functions; a) Minimizing vs. b) Minimizing the Maxi-
mum strain energy (courtecy of [8])

performing multiple simulations or utilizing software with MDO capabilities,
there will be uncertainty about the correspondence between conflicting prop-
erties. In most situations, the relationship is not linear, but rather convex (or
a combination of concave and convex). This fact is illustrated in figure 2.13
and shown in a practical example using the “199 Matlab algorithm for Pareto
optimal topology” in section 2.2.3.1. The topic is also covered in [24], and used
as a background for the thesis. The topic is explored in this thesis using the
Door Connection Joint as an example, applying a manual approach to MDO in
order to visualize how changing volume targets affect the overall performance of
the structure, making Multi Criteria Decision Making? (MCDM) possible. The
motivation for running a MDO compared to a significantly less computational
demanding SOA, is increased knowledge of possibilities, aiding the engineer to
make a better overall trade-off between conflicting variables.

2.2.3.1 199-line Matlab algorithm for Pareto optimal topology

The 199-line algorithm is based on the article “A 99-line topology optimization
code written in Matlab” [25] by Sigmund, the author of [23]. The article shows
that the SIMP-based topology optimization can be implemented in a compact
Matlab script. The 199-line Matlab algorithm, on the other hand, is set to

2 A set of rules that can be defined by the engineer so that the software itself can automat-
ically extract the optimal solution. Typically only implemented in large systems with many
variables.
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Figure 2.13: Pareto-frontier
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perform multiple simulations with different volume targets, giving a Pareto op-
timal frontier based on the concept of topological sensitivity, further based on
the calculation of The Topological Derivative as described in [26]. Optimiz-
ing with different volume targets and plotting the results give a Pareto frontier
that, using the SIMP-method, gives the relationship between the volume and
the strain energy of the problem under analysis. Figure 2.14 shows the topol-
ogy optimization results after applying a transversal force to a cantilever beam,
plotting strain energy [J] vs. volume fraction.

Dips or changes in the graph represents that the solutions shifts into a com-
pletely different topology class, hence changing the number and/or the orienta-
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tion of supports. In short, the material distribution is altered significantly.

2.3 Available software for Topology Optimization

The following list reflects a variety of commercially available software for 3D
topology optimization. Most high-end CAE-software incorporates optimization
algorithms, including wizards and help-functions for setting up and solving the
analysis. The built in functionality in these software are mainly capable of
SOA, or will at best perform an analysis with multiple objectives weighted and
summed up to a single objective. Manually performing multiple simulations with
different targets and plotting these will imitate a MDO. This enables the user
to evaluate the results with regard to Pareto optimal solutions, hence increase
the transparency and viability of the analysis. A practical example of this is
shown in section 3.5.3.

2.3.1 Topology optimization software
2.3.1.1 Commonly used commercial software

Altair; Hyperworks OptiStruct With the release of the Hyperworks Op-
tiStruct software in 1994, Altair was one of the first to provide commercial
software for use in structural optimization. The software is widely used also
today, and serves as a benchmark for other software suppliers. Unlike other
commercial software, OptiStruct provide capabilities for optimizing with regard
to buckling strength as well as the more traditional approaches. Use of the
software is omitted because of limited capabilities in the student edition of the
software.

Dassault Systémes; Simulia Abaqus ATOM In 2011, with the release
of Abaqus 6.11, Dassault Systemés included the Abaqus Topology Optimization
Module (ATOM), capable of both implicit and explicit (typically linear and geo-
metrical non-linear) structural optimization. The module is more comprehensive
than the one found in the NX optimization module, as it is capable of handling
a weighted sum of objectives. Post-processing of results can be done directly in
the software, however the preparation of design spaces is recommended to be
done using more suited modeling software.
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FE Design Tosca Structure The TOSCA Structure is one of most trusted
software for topology optimization. Used as a stand-alone module, the program
is compatible with most high-end FEA-software.

Siemens Unigraphics NX/ MSC Nastran topology optimization mod-
ule With the release of NX8 in October 2011, Siemens incorporated a topol-
ogy optimization module in the Advanced simulation-module of their high-end
CAD/CAE-software NX. The module is implemented so that it can be con-
figured in the pre-processor environment of SESTATIC101 and SEMODES103
analysis, and viewed with the post-processing capabilities within the program.
The optimization module is based on algorithms found in the FE-Design Tosca
Structure software, adopted for the UT in NX.

Ansys The topology optimization algorithm in Ansys became available for
use in 2009. It is based on the FE-Design Tosca Structure, similar to UGS NX.
Additionally, the software has been developed to be suitable both for structural
as well as fluid flow problems.

2.3.1.2 Other software for topology optimization

Other software for topology optimization of 3D structures includes, but is not
limited to, COSMOSWorks Structure and Pro/MECHANICA Structure. For
exploration of 2D topology-optimization and real-time optimization using basic
optimization algorithms, see software found at www.topopt.dtu.dk or download
the TopOpt app from Google Play/Apple Store. The program use and theory
is elaborated in [27]. The reader is encouraged to try out the software, as the
real-time visualization of the optimization progress gives a better understanding
of the concept.

2.4 Topology optimization workflow

The following sections describe topology optimization workflow in general, and
aim to provide a guide for best practice. Specific setup of the two test cases
in the Abaqus ATOM interface is covered in chapter 3 and in appendix B.
Specific setup of the Door Connection Joint in NX is covered in chapter 4, and
in appendix C. Figure 2.15 shows the general workflow presented in a flowchart.
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Figure 2.15: Topology optimization workflow
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2.4.1 Generating the design space

Topology optimization is mainly a tool for enhancing creativity and exploring
alternative designs. Shape- and size-optimization algorithms require that the
designer provide a parametric model, using a variety of algorithms for pertur-
bating these parameters, searching for the desired properties. Topology opti-
mization, on the other hand, only requires the engineer to provide a solid body.
As discussed in section 2.2.2, the algorithms change the relative density of the
elements created when meshing the model. Using the SIMP-model, the relative
density is a continuous value ranging from 0 (void/ hole) to 1 (the real density
of the material). Reducing the density of an element will reduce the stiffness
of that particular element, and its contribution to the overall stiffness will de-
crease. The algorithms can only decrease or increase the density of elements
that were present at the beginning of the analysis. This means that no material
will be added during the optimization beyond what was already present. It is
therefore important to define a design space that is as large as possible within
the constraints of the surrounding environment (other parts, operational spec-
ifications, size specifications, etc.). The larger the design space, the better the
proposed solutions, as the number of possible configurations will increase.

Best practice when defining the design space is to use the Synchronous Mod-
eling functionality in the NX Modeling-environment (See Toolbar or click Insert
> Synchronous Modeling), as shown in figure 2.16. The most widely used
functionalities are 1) Replace face and 2) Delete face, which will assist you in
removing features and closing voids. Special features that the engineer would
like to maintain or voids/ holes that have a vital shape must be modeled in
a precise manner and geometrically constrained before the simulation starts,
otherwise they may be removed or altered. The main disadvantage with not
constraining these areas is the disability to measure and compare reference vol-
umes to the final results. The design space is the maximum permissible volume
for the algorithm to work within. The resulting geometry will only occupy a
fraction of this volume.

The Trim Body command (Insert > Trim > Trim Body) is also useful, as
this makes it possible to Wave-link geometry into the design space .prt and trim
the imbricated volumes of the design space, leaving only the available volume
in the design space.
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2.4.2 Meshing the design space

As already discussed, higher-order elements like CTETRA10 (Nastran) or C3D10
(Abaqus) are preferred , in order to avoid numerical instability. Overall mesh
size defines the coarseness of the solution, and should be evaluated depending
on the type and size of structure under analysis. Initial simulations should be
done with a relatively coarse mesh, as computational time is rapidly increas-
ing for decreasing mesh size. Refining the mesh in particular areas of interest
can be advantageous in order to save simulation time. Usually, free meshing
with mapped meshing allowed at suitable areas give the best results for irreg-
ular components. In addition to the above mentioned, general guidelines for
meshing should be followed.

2.4.3 Defining loads and boundary conditions

Loading and constraining the design space is generally done similar to any other
FE-simulation. Important notes for defining loads and BC’s for topology opti-
mization are the following:

e Pressure loads require special attention, as the topology optimization al-
gorithm may change the surface on which the pressure is applied, altering
the overall load case. In Abaqus, this may be counteracted by using the
RAMP-formulation, as described in 2.2.2.2.

e Topology optimization using the SIMP-method (minimizing compliance)
is not sensitive to the magnitude of the load, but rather the ratio between
multiple load cases.

e The designer must decide whether the load and BC areas should be frozen
or take part in the topology optimization.

e Multiple load scenarios should be defined in different sub-cases or solu-
tion steps in order for the software to differentiate between the scenarios.
This is of great importance when defining design responses and the over-
all characteristics of the objective. Other approaches to multiple loads
include:

— Adding all loads into one load case and obtaining geometry capable
of handling the aggregated state of different loads.

— Solving the topology optimization problem for each load and manu-
ally interpreting the results.

37



e It is of great importance to provide reasonable loads and BC’s, when
performing topology optimization. Results can be expected to have a high
load direction sensitivity. Neglecting to include a load or to overly simplify
loading will strongly influence the proposed geometry. The engineer is
therefore encouraged to include all expected and possible variations of
load directions and utilize the MinMax-formulation or equivalent in order
to secure the robustness of the outcome.

2.4.4 Defining design responses

When performing optimization, a variety of different values and parameters can
be evaluated and controlled. These parameters are called design responses, and
must be specified prior to defining the simulation objective and constraints.
Typical design responses are:

e Volume,/ weight

e Strain energy

e Displacement

e Reaction forces/ moments
e Eigenvalues

e Buckling loads

e Moment of inertia

e Rotation

o Center of gravity

Available design responses depends on the software in use, but one can normally
expect to find at least the first four responses in most software. Best practice
when defining design responses is:

e If possible, define individual design responses for small areas of the design
space, such as fillets, holes, functional surfaces and other areas of interest.
The more specific the area or region, the better the simulation results
will be, leaving less chance of detecting other mechanisms than the one
intended.
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e Use external CSYS to define control points or additional coordinate sys-
tems for easier reference of loads and boundaries and specification of de-
sign responses. When defining a displacement constraint, it is important
to specify the coordinate system and direction of interest.

2.4.5 Defining objectives and objective functions

As discussed in section 2.2, most commercially available software provide Single
Objective Analysis capabilities. The objective of the analysis is therefore the
optimal criteria for the simulation. The optimization is considered a success if
this value converges with increasing no. of iterations, while fulfilling all con-
straints. The objective must be chosen as one of the previously defined design
responses. Typically, you will set your design objective target to Minimum.
This implies that the sum, maximum or minimum design response value in the
region is minimized. Using strain energy as an objective, the topology resulting
in the lowest overall strain energy of multiple load cases will be favored. The
Maximum objective target may be useful for maximizing a negative displace-
ment or for maximizing the natural frequency of a specific mode [28]. Best
practice is, especially for uncertain loading direction and magnitude, to use the
MinMax- formulation as described in 2.2.2.4, giving robust designs. Be aware
that all restrictions and compromises like the MinMax- formulation will lower
the performance of certain properties and create a solution that is less optimal
for one specific load, but reasonably good for more loads. Best practice is to
choose the design response that has the highest uncertainty as the design ob-
jective. If the target volume is specified, choose an approach that has volume
as a constraint. If the stiffness is specified, make sure that displacements are
specified as constraints.

Please note that if you want to maximize the eigenfrequency, a lower limit on
the volume (as distinct from the other two methods that require an upper limit)
must be introduced. This is because the eigenfrequency is determined by the

relationship 1/%. By minimizing the volume the eigenfrequency will increase,
ultimately giving an infinite high eigenfrequency when the volume goes to zero.

2.4.6 Defining constraints

In topology optimization, there are two different types of constraints; geometric
and performance constraints. The latter controls the algorithm and makes sure
that performance targets are met with regard to stiffness, volume, eigenfrequen-
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cies, etc. The first controls the geometry and its visual impression.

2.4.6.1 Performance constraints

Optimization constraints are scalar values checked against FE- solver results
for each consecutive iteration. Constraints can be specified both as absolute or
relative values. The latter is converted into an absolute value by the software
as a fraction of the initial value at the very start of the optimization. Usual op-
timization constraints are, but not limited to; volume, eigenfrequencies (upper/
lower bounds or bands) and nodal displacements. Remaining design responses
after defining the objective must be specified as performance constraints.

2.4.6.2 Geometric constraints

A particularly useful functionality when performing topology optimization is
the ability to define restrictions, in particular geometric constraints, designed
to ensure manufacturability. Most software can control the following:

Frozen areas Areas or elements of the body constrained with a relative density
of 1 throughout the simulation, thus experiencing no density updates.

Symmetry conditions The entire design space or specific parts of the design
space may be specified as symmetric. Symmetry conditions apply both to
point symmetry, circular symmetry and planar symmetry.

Cast conditions Probably the most important geometric constraint, designed
to counteract the existence of undercuts and internal voids; hollow spaces
that make the part impossible to produce with conventional production
methods. Specifications of production methods like casting, forging, stamp-
ing and extrusion is thus possible.

Member size Specifying upper or lower limits for member size ensures that
no cross section is too small or too big.

As a rule of thumb the number of and extent of geometric constraints should be
kept as low as possible. Introducing geometric constraints will inevitably reduce
the solution space and result in a less optimal solution. Examples of properties
that can be specified with geometric constraints can be seen in figure 2.17.
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Figure 2.17: 1) Manufacturing constraints and 2) geometries feasible /infeasible
of forging

2.4.7 Post-processing of optimization results; smoothing
and interpretation of optimization results

2.4.7.1 Smoothing

In order to obtain usable results from the optimization, the geometry must be
extracted as an input file for further processing, IGES slices or most commonly
an STL-file. This process is often called smoothing, and involves an iterative pro-
cedure where the sharp-pointed surface obtained by removing single tetrahedral
elements is evened out, as illustrated in figure 2.18 and 2.19.

Varying a large amount of parameters makes it possible to extract a vast
amount of different geometries. As can be seen in figure 2.20, varying the ISO
value is of great importance to how the extracted model will look like, compared
to the other parameters. The ISO-value is used to calculate where on the interior
edges of the elements new nodes are created. Increasing the ISO-value shifts
the surface toward the inside of the model, which results in a decrease in the
model volume [28].

Procedures for smoothing and extracting geometry in Abaqus is covered in
chapter 3 on both test cases.
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Figure 2.19: Results extraction; Smoothing as an iterative procedure (courtesy

of [4])
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1SO: 0.3 1S0: 0.5 ISO: 0.7
R%: O R%: O R%: O
NSC: 5 NSC: 5

1S0: 0.3 ISO: 0.3 1S0: 0.3
R%: 30 R%: 60 R%: 90
NSC: 5 NSC: 5 NSC: 5

150: 0.3 ISO: 0.3 150: 0.3
R%: O R%: O R%: O
NSC: 5 NSC: 8 NSC: 15

Figure 2.20: Results extraction; Varying control parameters in Abaqus
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2.4.7.2 Interpretation and reengineering of extracted geometry

Reversed engineering takes into account that you have performed a successful
optimization run with the chosen approach. At this point, the highly organic
part must be interpreted by the engineer and reengineered in a way that enables
easy manufacture, given the desired production method. An important part of
the post-processing is to understand the implications of all features. As a tool
for creativity and design exploration, there is no single answer to what is the
correct geometry. However, the designer must follow the same constraints as
specified when establishing the geometric constraints in the optimization run.

In order to perform reversed engineering of the optimization results, two
main procedures can be performed; 1) extracting an .STL-file from the result
file, import this file as a facet body into a copy of the design space part and use it
as a template for remodeling the latter, or 2) extract an .IGES file with sections
showing the part partitioned into a specified number of sections. For Abaqus
users, it is also possible to 3) extract an input (.inp) file, but this option is mainly
for continued use in the Abaqus environment of the resulting geometry. For NX
users, you may extract a .BDF-file into the Advanced simulation environment
in order to perform further analysis on the smoothed geometry. In general,
the reengineered model should, as with most designed parts, be prepared as a
parameterized model in order to facilitate the use of shape-and size optimization
algorithms in order to reduce stress concentrations, improve fatigue life and
improve performance.

Reengineering tools are shown in appendix D, and reengineering of results
are described in chapter 5.
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Chapter 3

Process description using the
Abaqus ATOM optimization
module

3.1 Software

3.1.1 Abaqus

Abaqus CAE is a commercially available software with main capabilities within
simulation of a variety of problems, both structural, thermal, fluid, magnetic,
etc. In order to perform optimization with Abaqus, an ATOM license is required
in order to submit the analysis. Abaqus was chosen because of its wide use in
the academic environment at NUST, as well as its record for being a proven
finite element software. Simulations were performed with Abacus/CAE 6.11-1.

3.1.2 Unigraphics NX

Unigraphics NX is a powerful tool for both modeling and simulation of structural
and thermal problems. In the following process description, NX has been utilized
to calculate the baseline and final result values, as well as preparing the design
space and reengineering the optimization results. Modeling was done using
Unigraphics NX8.02.2 and simulations using Nastran 8.0 and Nastran 8.5'.

L Baseline calculations for the Door Connection Joint
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Figure 3.1: Door Connection Joint; Area specifications

3.2 [Establishing baseline

3.2.1 Boundary conditions, load cases and product re-
quirements

Performance requirements and SuPLight simulation targets for the test cases
have been specified by Raufoss Technology and Hellenic Aerospace Industry,
and can be seen in figure 3.2 and 3.10[9, 1].

3.2.1.1 Door Connection Joint

The Door Connection Joint is subject to complex forces. Simplified load cases
are evaluated in the baseline, as shown in figure 3.6. Figure 3.1 specifies con-
strained areas, frozen areas and features removed when creating the design
space.

As specified in the SuPLight performance objective list shown in figure 3.2,
the following parameters are relevant for WP3 and have been calculated:
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Performance objectives

Material properties must be as minimum as existing product
> Yield Strength, R,0.2

Mechanical properties
> The predicted life- time For a constant amplitude loading F, = 1.25 + 1.25 kN shall be
the same as current design.

> Light weight (reduction of 10% from)

Production properties
> New designs must not affect the machining time

Figure 3.2: Door Connection Joint; Performance objectives

e Deformation at F' = 2.5kN, both in the LC1 and the LC2 direction as
defined in figure 3.6. Value obtained as the maximum expected value
experienced during cyclic load F = 1.25+ 1.25kN

e Volume (proportional with weight, assuming isotropic material proper-
ties).

When performing topology optimization, manufacturing properties must be
specified. The Door Connection Joint is produced by machining a solid block of
aluminium, and requirements state that the production time must not exceed
the time used at present. As the main target of weight reduction is inconsistent
with this second target, measures are only taken to maintain the production fea-
sibility. This means; no internal voids or cavities (impossible to machine) as well
as the least amount of work piece reorientation and pre-machining preparations.

Specifications, standards and methods The baseline for the door joint
is calculated using general engineering standards. All units are SI units, or a
combination of such.

Meshing The Door Connection Joint was free meshed with 2 mm CTETRA10
elements, as well as applying RBE2-elements inside the bearing housing to im-
itate the bearing and bolt assembly when installed on the business jet. Mesh
can be seen in figure 3.3
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Figure 3.3: Door Connection Joint; Free mesh using 2 mm CTETRA10 elements
1) Overall meshed model and 2) Closeup picture of mesh

Loads and constraints In order to specify simulation constraints, local cylin-
drical CSYS were placed at the center of the bearing housing and at the base of
the structure, as shown in figure 3.5. Applied loads and boundary constraints
have orientations as illustrated in figure 3.6. Loads are applied as bearing loads
to separate sub-cases and solved independently of the other. Results are read
out in the specific load directions by assigning results to the work coordinate
system of interest.

LC1 The force is parallel to the lower, straight edge of the underside of the
upper part of the joint, directed in the X-direction of CSYS 1) in figure
3.5

LC2 The force is directed at an angle of 40 degrees upward of LC1, parallel
to the sides of the structural part of the hinge. The base plate is tilted
somewhat to the side, but the force is assumed not to introduce sideways
bending. The force direction corresponds to the Z-direction of CSYS 2)
in figure 3.5.

Translation constraints are placed on the bottom surface of the Door Connection
Joint to simulate the attachment of the joint to the fuselage. As previously
described, rivet attachments and constraints by surface contact are omitted.
The constraint can be seen in figure 3.6.
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Figure 3.5: Door Connection Joint; Placement of local CSYS for easier definition
of 1) LC1 and 2) LC2

Tools The simulation preparations have been performed with UGS NX8.0.2.2.
The simulations are performed in NX Nastran 8.5, using the SESTATIC101
linear elastic analysis module.

Design drivers The main design driver is the deformation in the load direc-
tions due to elastic strains and volume.

Materials Material properties used in the simulations are specified by HAI
and have properties as shown in table 3.1. Properties in bold are necessary for
performing simulations.

Remarks and sources of error Sources of error in the calculations are the
following:

e The constraint of the Door Connection Joint depends on its interaction
with the baggage door. Because of company protocols, HAI could not sup-
ply accurate data for the application beyond what is given in the SuPLight
documentation. The anticipated constraints are therefore simplified to a
case without the need for contact analysis and complicated load patterns.
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Figure 3.6: Door Connection Joint; Applied boundary conditions and loads

Table 3.1: Material properties; Aluminium 7075 T7351

Aluminium 7075 T7351
Mass Density | 2810 | kg/m®
Mechanical
Young’s Modulus 72000 | MPa
Poisson’s Ratio 0.33 -
Shear Modulus 26900 | MPa
Strength

Yield Strength 435 M Pa
Ultimate Tensile Strength 505 M Pa
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Figure 3.7: Door Connection Joint; SuPLight ambiguous specifications of load
directions and constraints

Specifying two load directions follows from the definition of simulation
and physical test procedures in the SuPLight documentation, as shown in
figure 3.7.

e The Door Connection Joint is connected to the airplane fuselage using 5
rivets, while in the simulations, the entire contact area between the joint
and the body has been constrained from translation.

3.2.1.2 Front Lower Control Arm

The global CSYS is defined so that the positive X-axis is parallel, but opposite
to the driving direction of the car, while the positive Z-axis is defined normal
to the mid-surface of the control arm. The CSYS can be seen in figure 3.8. The
FLCA is connected to the front sub-frame of the car with two bushings and one
ball bearing, respectively a pinned bushing at the front and a hydro-bushing at
the rear.

As specified in the paragraph containing mechanical properties in the SuP-
Light performance objective list shown in figure 3.10, the following parameters
are relevant for WP3 and have been calculated:
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Figure 3.8: FLCA; Definition of global CSYS on design space

e Deformation at F' = 7kN in both X-and Y-direction (Ref. the global
CSYS). Value obtained as the maximum expected value experienced dur-
ing cyclic load F' = 0.5+ 6.5kN.

e Volume (proportional with weight, assuming an isotropic material)

e Buckling load for the first buckling mode, calculated in the positive X-
direction.

e Stress level at F,, = 7TkN, giving a rough estimate of the maximum ad-
missible stress level in the construction to maintain a fatigue life of 10°
cycles.

The two first parameters are used to control the analysis, while the two last are
checked for the reengineered part.

Additionally, manufacturing constraints must be specified. The control arm
is produced by forging a cylindrical billet before removing the flash and machin-
ing functional surfaces. This requires that the design of the component must
have the following properties:
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Figure 3.9: FLCA; Area specifications
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Performance objectives

Material properties must be as minimum as existing product

v Vv

YV V V VY

Yield Strength, R,0.2
Tensile Strength, R,,0.2
Elongation, A
Hardness, HV10
Fatigue, R (109) cycles
Corrosion resistance

Material structure must be as minimum as existing product

>
>

Grain size
Particle size

Mechanical properties

>
>
>

Stiffness in both x- and y- direction shall be the same as current design
Buckling load in x- direction shall be at the same level as current design

The predicted life- time For a constant amplitude loading F, = 0.5 + 6.5 kN shall be the
same as current design

Light weight (reduction of 10% From)

Figure 3.10: FLCA; Performance objectives
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e No inner voids or complex geometries that make forging impossible.
e Symmetric geometry mirrored about the X-Y-plane.

Raufoss Neumann, a subdivision of RT, additionally specified a maximum stress
level of 200 M Pa for Ny = 200 - 10® cycles (R = —1). Fatigue assessments are
not included in the analysis because the refinement of the structure with regard
to stresses is due at a later stage of the product development process. The value
will, however, give a rough estimate for whether the proposed solution is feasible
for handling the required 10% cycles specified.

Specifications, standards and methods The baseline for the FLCA is
calculated using general engineering standards. All units are SI units, or a
combination of such.

Meshing The FLCA was free meshed with 2 mm CTETRA10 elements, as
well as applying RBE2-elements inside the ball bearing housing to imitate the
assembly of the system. Mesh can be seen in figure 3.11.

Loads and constraints In order to specify simulation constraints, an ad-
ditional local cylindrical CSYS was automatically placed at the front bushing
when defining constraints. The cylindrical CSYS is defined by the orientation of
the cylinder axis of the front bushing. Both the front and rear bushings restrict
the FLCA from moving in the global X-axis, as well as in the radial direction,
but maintain a free rotation about the X-axis. Constraining the ball bearing in-
ner surface against movement in the global Z-direction imitates the McPherson
spring and shock assembly at steady-state condition.

In order to calculate the stiffness in X-and Y-direction, sub-cases were de-
fined with distributed bearing loads of 7 kN to the ball bearing in the respective
directions. Results were read out in the specific load direction by assigning re-
sults to the work coordinate system of interest. For the buckling analysis, the
force in X-direction was maintained, but its magnitude was changed to unit
value (1 N). See figure 3.12 and 3.13 for illustrations of loads and constraints.

Tools Simulation preparations are performed with UGS NX8.0.2.2. The simu-
lations are performed in NX Nastran 8.0, using the SESTATIC101 linear elastic
and SEBUCKL105 buckling analysis solvers.
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Figure 3.11: FLCA; Free mesh using 2 mm CTETRAI0 elements 1) Overall

meshed model and 2) Closeup picture of mesh
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Figure 3.12: FLCA; NX environment for defining loads and constraints

Design drivers The main design driver is the buckling factor in X-direction,
volume and deformation in the proposed load directions due to elastic strain.
The buckling load is proportional to the product of the buckling factor and the
magnitude of the applied load [8].

Materials Material properties used in the simulations are specified by RT
and have properties specified in table 3.2 and figure 3.14. Properties in bold
are necessary for performing simulations. Fatigue properties as shown in figure
3.14 are included so that it is possible to consider whether the main structure of
the proposed solutions are within reasonable limits of what is acceptable. Stress
concentrations are not considered critical, as these must be treated at a later
stage of the product development.

Remarks and sources of error Sources of error in the calculations are the
following:

e The displacement reference node is not defined by a specific geometric
point, rather a point at the circular interior of the ball bearing. The
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) ) Constraint; hydrobushing
Constraint; Front bushing (allowing rotation)

(allowing rotation)

Constraint and Force in X-
direction; ball bearing

Constraint and Force in Y-
direction; ball bearing

Figure 3.13: FLCA; Loads and constraints for stiffness simulations
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Table 3.2: Material properties; Aluminium 6082 T6

Aluminium 6082 T6

Mass Density [ 2700 [ kg/m?
Mechanical
Young’s Modulus 70000 | MPa
Poisson’s Ratio 0.33 -
Shear Modulus 26315 | MPa
Strength

Yield Strength 320 M Pa
Ultimate Tensile Strength 350 MPa

5]
s
T

i
1

Fatigue strength model (stress range) (MPa)

1135 MPa
LeiMPa A S
100 93MP3 —————————————————————————————————————————————————————————————————————
IUIU IUIUU IUUIUEI IUUIUUEI 1e6 léT 1és
Number of Cycles

Stress Ratio=-1

Figure 3.14: Fatigue properties, 6062 T6; 121 MPa at R = —1 and 10° cycles
(50% p.f) (courtesy of EduPack 2012)
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displacement error is expected to be low, as the curvature of the ball
bearing surface is large compared to the uncertainty of selecting the correct
node.

e Stress concentrations are substantial, because bushings are modeled with
infinite stiffness. This is not considered a problem, as further analysis will
not be influenced by the max stress level, rather stresses at larger areas
of interest.

3.2.2 Baseline results

3.2.2.1 Door Connection Joint

Displacement The reference point for displacement was set at the very tip
of the joint. The point was chosen because it would not be affected during
topology optimization, as well as being well defined. Displacements are found
to be 0.077 mm in LC1 direction and 0.644 mm in LC2 direction, as can be seen
in figure 3.15 and 3.16.
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Parameterized Hinge sim1 : Solution 1 Result
Subcase - Static Loads 1, Static Step 1
Displacement - Nodal, X

Min : -0.0001, Max : 0.1007, Units = mm
Coord sys : Work Rectangular

Deformation : Displacement - Nodal Magnitude

0.1007

00923

- DpDB29

~— 00755

-~ DDe71

Arrow indicating direction of
measurement

0.0587

0.0503

0.0419

0.0335

0.0251

0.0167

0.0083

-0.0001

Figure 3.15: Door Connection Joint; Displacement in LC1 direction
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Parameterized _Hinge sim1 : Solution 1 Result
Subcase - Static Loads 2, Static Step 1
Displacement - Nodal, Z

Min : -0.032, Max : 0.644, Units = mm

Coord sys : Work Rectangular

Deformation : Displacement - Nodal Magnitude

0.644

0.588

0.531
-~ 0475
- D419

Arrow indicating direction of
measurement

0.363
0.306

0.250

I 0.194
0.137
0.081
0.025
-0.032

Figure 3.16: Door Connection Joint; Displacement in LC2 direction

Volume The volume of the Door Connection Joint was found to be 72301.5 mm?,
using the Analysis > Measure Bodies-command in NX. For simplicity of com-
parison, rivet holes were removed prior to the volume analysis.

Results summary The values in table 3.3 are product demand specifications
for the new Door Connection Joint geometry found through topology optimiza-
tion. In particular, the volume is required to be within 90% of the initial volume,
hence Vjegirea = 65071.4mm?. The displacement values in the table are mea-
sured in the load directions at the specified reference node.
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Table 3.3: Door Connection Joint; Results from baseline simulation

] Parameter \ Comments \ Value \ Unit ‘
LCI [F = 2.5 kN] Force dl‘rectlon 0.077 mm
. Magnitude 0.272 mm
Displacement - -
LC2 [F = 2.5kN] Force direction 0.644 mm
' Magnitude 0.829 mm
Volume Design space 72301.5 | mm?®

3.2.2.2 Front Lower Control Arm

Displacement Results from the static analysis can be seen in figure 3.18 and
3.20. Results show that the displacements are 1.418 mm and 0.044 mm in the X-
and Y-direction, respectively. The reference point for measurements is located
at the ball bearing surface as shown in figure 3.18 and 3.20.
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FLCA_ALL Baseline_Ver01 _Rev01_sim1 : Stiffness_sim Result
Stiffness_x_direction, Static Step 1
Displacement - Nodal, X

Min : -0.023, Max : 1.486, Units = mm
Coord sys : Work Rectangular

Deformation : Displacement - Nodal Magnitude

1.486

1.360

1.234

1.108

0.983

0.857

0.731

0.605
0.480
0.354
0.228
0.103

Y

.023

pu—

Units = mm

Figure 3.17: FLCA; Displacement w/7 kN load in X-direction
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FLCA_ALL _Baseline Ver01_Rev01_sim1 : Stiffness_sim Result
\Siiffsganoni. direction, Static Step 1 Nodal Resuits
Displacement - Nodal, X Mark Selection
Min :-0.023, Max : 1.486, Units = mm Boolean Operation EB
Coord sys : Work Rectangular
[s] :D - Nodal (= CmEEED
Selection - 1 Item
1486 NodeID
870367
870367
1.360 o
1.234
~ 1.108
- 0983

0.857

0.731

- AVAvY
AV SN
Y T AVAT S N A AP
> 257
ey avav, VAV v,
v v""

ENISEN
Ve VAVAVA
K OSSEL

AV,

VAV YA,

Ve ava v e vav,
SEEK

S VAV S A vav e VA VA

RIS

Figure 3.18: FLCA; Displacement w/7 kN load in X-direction at reference node
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FLCA_ALL Baseline Ver01_Rev01_sim1 : Stiffness_sim Result
Stiffness_y_direction, Static Step 1

Displacement - Nodal, Y

Min : -0.0027, Max : 0.0532, Units = mm

Coord sys : Work Rectangular

Deformation : Displacement - Nodal Magnitude

0.0532
0.0485
. 0.0439
- 0.0392
~ 00345
0.0299
0.0252
0.0206
0.0159
0.0113
0.0066
0.0019

&
- Z

P

Units = mm

Figure 3.19: FLCA; Displacement w/7 kN load 1) Y-direction
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FLCA_ALL Baseline Ver01 Rev01_sim1 : Stiffness_sim Result

e " " " =)
t@iiffisdendpy- direction, Static Step 1 Nodal Results Pick from Model L
Displacement - Nodal, Y Mark Selection [ Mark Result values ]

Boolean Operation

Selection : 1 Item
Values NodeID
Min 0.042 870366
Max 0.042¢ 870366
Sum 0.048 -
Bvg 0.044 - |

EE

3

Min : -0.0027, Max : 0.0532, Units = mm
Coord sys : Work Rectangular
Deformation : Displacement - Nodal Magnitude

0.0532
I 0.0485

00439

g

- 00392

Figure 3.20: FLCA; Displacement w/7 kN load in Y-direction at reference node

Buckling Analysis results provide buckling values for the ten modes. The first
mode represents the lowest eigenvalue associated with buckling. The buckling
factor for the first mode is 9.5398 - 104, corresponding to a failure load of 95380
N. The first buckling mode can be seen in figure 3.21.

Volume Using Analysis > Measure bodies > Volume resulted in a volume
measurement of 534687.7mm?3. Cabel fastening plate as shown in figure 3.22
was removed prior to the analysis to simplify comparison against simulation
results.

Results summary Simulation results are summarized in table 3.4. These
values will work as product demand specifications for the control arm with
a geometry found through topology optimization, except the volume, which is
required to be within 90% of the initial volume, hence Vyegireq = 481218.9 mms3.
Displacements are measured at the specified reference node.
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FLCA_ALL Baseline Ver01 _Rev01_sim1 : Buckling_sim Result
Subcase - Buckling Method, Mode 1, Eigenvalue = 9.538e+004
Displacement - Nodal, Magnitude
Min : 0.000, Max : 1.016, Units = mm
Coord sys : Work Rectangular f
y d Eigenvalue = 9.538e+004

Deformation : Displacement - Nodal Magnitude

1.016

0932

- 0.B47

0.762

- 08678

- 0593

0.508

0424

0.339

0.234
0.170

0.085
Y

,Q.OOO ,

Units = mm

Figure 3.21: FLCA; Buckling factor for the first buckling mode
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Figure 3.22: FLCA; Cable fastener removed prior to volume analysis

Table 3.4: FLCA; Results from baseline simulation

| Parameter | Comments | Value | Unit |
Displacement X-direction | Force direction 1.418 mm
p Y-direction | Force direction 0.044 mm
Buckling load | X-direction - 95380 N
Volume - 534687.7 | mm?

3.3 Model preparation, meshing and setup of static

analysis

3.3.1 Generating the design space

3.3.1.1 Door Connection Joint

The design space was generated by filling all cavities with material, while retain-
ing the outer shape and characteristics of the part, as specified by HAI in figure
3.23. Special care was taken not to change or add geometry in the surrounding
area of the bearing hole. Most of the work was done using NX Synchronous
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E‘ﬂ\ﬂl HELLENIC AEROSPACE INDUSTRY 5.A.

* Thickness of surface must not

1
Diameter of the hole must not |y change due to rivets installation

change since specific beanng is | requirements and possible
installed for assembly purposes bearing failure.

with the rest of the aircrafl

Additionally, geometrical features

around this area (thickness,

radius) are also restricted to /
changes due 1o high stresses.

Thickness of suface must not |'

change due to rivets installation ‘T“ =

requirements and possible

bearing failure. Shape of outer contour can not

change due to interface sufaces

‘gmt with the rest of the aircraft

Figure 3.23: Specification of functional surfaces on Door Connection Joint (cour-
tesy of [9])

modeling capabilities such as Delete face and Replace face. The design space
can be seen in figure 3.24 and in appendix A.

The design space has a volume of 122968.07 mm3, equivalent to 1.70 times
the original volume, hereby referred to as the reference volume. In order to save
10% weight, the resulting volume after the optimization must be within 52.92%
of the reference volume. This value is used to normalize results when graphing
results.

3.3.1.2 FLCA

The FLCA design space was generated by filling all cavities with material, while
retaining the shape of the outer surfaces to maintain functionality within the

71



Figure 3.24: Door Connection Joint; 1) Original part and 2) Design space

suspension. Regions that are significant to the assembly of the control arm, such
as the front bearing, hydro-bushing support and ball bearing are maintained at
their original shape. These areas are frozen and not taken as a part of the
permissible design space during the optimization process. The design space can
be seen in figure 3.25.

The design space has a volume of 1099702 mm?, equivalent to 2.06 times the
original volume, hereby referred to as the reference volume. In order to save 10%
weight, the resulting volume after the optimization must be within 43.76% of
the reference volume. This value is used to normalize the results when graphing
results.

3.3.2 Meshing

Because of the irregular geometry of both test cases, free meshing was performed,
using general purpose Abaqus C3D10 elements, as illustrated in figure 3.26. Be
aware that simulation times stated below are highly dependent on factors such
as the necessary number of iterations, algorithm of choice, mesh size, available
computational power and total workload on the computer.

3.3.2.1 Door Connection Joint

The Door Connection Joint was free-meshed with full integration, higher order
C3D10 tetrahedral elements with an overall mesh size of 2 mm, with mapped
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Figure 3.25: FLCA; 1) Original part and 2) Design space

Figure 3.26: Abaqus mesh; C3D10 elements
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Figure 3.27: Door Connection Joint; 1) Overall meshed model and 2) closeup
picture of mesh

meshing allowed where appropriate. The total element count was 115904. This
provided adequate resolution to the resulting geometry, as well as keeping sim-
ulation time acceptably low at approximately 8 hours per simulation run with
approximately 35 iterations per run. Mesh is shown in figure 3.27.

3.3.2.2 FLCA

The FLCA was free-meshed with full integration, higher order C3D10 tetrahe-
dral elements with an overall mesh size of 4 mm, with mapped meshing allowed
where appropriate. The total element count was 107778. This provided ade-
quate resolution to the resulting geometry, as well as keeping simulation time
acceptably low at approximately 6 hours per simulation run with approximately
45 iterations per run. Mesh is shown in figure 3.28.

3.3.3 Setting up the FE-analysis

Similar loads and BC’s to both baseline simulations are applied in the Abaqus
environment, however concentrated loads at the center of a kinematic coupling
distribute the loads onto the bearing surfaces.

3.3.3.1 Door Connection Joint

The Door Connection Joint no-translation constraint is shown in figure 3.29.
Figure 3.30 and 3.31 show the kinematic coupling and concentrated LC1 and
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Figure 3.28: FLCA; 1) Overall meshed model and 2) closeup picture of mesh

LC2 loads. Notice that LC2 has a total resultant force of 2.5 kN, applied as
decomposed loads in two directions.

3.3.3.2 FLCA

The FLCA cylindrical constraint is shown in figure 3.32, allowing rotation
around the coincident cylinder axis of the inner and outer bushing and hy-
drobushing contact surface but constraining movement in radial and axial di-
rection. Figure 3.33 and 3.34 show the kinematic coupling and concentrated
loads in X and Y direction.

3.4 Setup of topology optimization

For bigger images and a step-by-step description on how to setup optimization
using Abaqus ATOM, see appendix B. Figure 3.35 shows the workflow for setup
of the Abaqus ATOM topology optimization process.

3.4.1 Creating the topology optimization task

The first requirement when setting up a new topology optimization simulation,
is to setup the model under analysis with properties, loads, boundary conditions
and mesh as you would do with any other FE-simulation. Then go to Module:
Optimization and navigate through the menus as illustrated in figure 3.36. Be
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2= Boundary Condition Manager

| Name | Initial Step-1 Step-2

= Propagated

2= Edit Boundary Condition [ = ‘

Step procedure: Static, General
Boundary condition type: - Displacement/Rotation
Boundary condition status: Created in this step

[ Create... ] [ Copy... ] [Rename...] [ Delete... ]

[ Dismiss ]

Name: BC-1

Type:  Displacement/Rotation
Step:  Step-1 (Static, General)
Region: (Picked) [

CSYS: Datunm csys—2 [3 L

Distribution: | Uniform [
ul: 0

2: 1]

3: 1]

[E] uRa: radians
[F] uR2: radians
[E] uR3: radians
Amplitude: | (Ramp) H e

Note: The displacement value will be
maintained in subsequent steps.

Figure 3.29: Door Connection Joint; Translation constraint in Abaqus
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2= Constraint Manager [= ]
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Type: Coupling

fl Control points: (Picked) [
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Figure 3.30: Door Connection Joint; Kinematic coupling definition in Abaqus
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2= Load Manager

LC1

Name Step-2 Edi
v Load-l [Created JERYS e
v Load-2 Created
Mave Right
Activate
Deactivate
Step procedure: Static, General
Loadtype:  Concentrated force
Load status:  Created in this step
[Create..] [ Copyw |  [Remame.]  [Delete.| [ Dismiss |
Lcz2

4
S g W

,
STTR——

[T Follow nodal

Note: Force will be applied per nede.

Mame:  Load-1 Neme  Load-2
Type:  Concentrated force Type  Concentrated force
Step:  Step-1 (Static, General) Step:  Step-2 (Static, General)
Region: (Picked) [3 Region: (Picked) [3

CSYS: Datum osys—2 [3 L C5Ys: Datum ceys-2 [p L

CFL: 2500 CF1:

rotation

7] Follow nodal rotation

Note: Force will be applied per node.

19151
1606.7

Figure 3.31: Door Connection Joint; Applied concentrated loads in Abaqus
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4 Boundary Condition Manager

Name Initial Step-1 Step-2
v BC1 Created Propagated
v BC2 Created Propagated

Step procedure: Static, General
Boundary condition type: ~ Displacement/Rotation
Boundary condition status; Created in this step

4 Edit Boundary Condition

Edit Boundary Condition

Name: BC1

Type:  Displacement/Rotation
Step:  Step-1 (Stetic, General)

Region: (Picked)
CSYS: Datum osys—3 R A
g m

Distribution: | Uniform

[ uRL radians
O uR2: radians
ow: [ -
J— (S

Note: The displacement value will be
maintained in subsequent steps.

Name:  BC-2

Type  Displacement/Rotation
Step:  Step-1 (Stetic, General)

Region: (Picked) [y

Csvs: Datum osys—2 R L

P—— o

-
oz

o
7 URe: redians
P [
Amplitude: @l P

Notes The displacement value will be
maintained in subsequent steps

Figure 3.32: FLCA; Constraints in Abaqus
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Figure 3.33: FLCA; Kinematic coupling definition in Abaqus
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2= Load Manager

Name Step-1 Step-2
v Load-1 Created Inactive
v lont2
Move Right
Activate
Deactivate
Step pracedure: Static, General
Loadtype:  Concentrated force
Load status: Created in this step
[Create..|  [Copye |  [Rename.]  [Delete..| [ Dismiss |
Y
2 Edit Load L= ) [ e Loa_ =)
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Type:  Concentrated force Type:  Concentrated force
Step:  Step-1 (Static, General) Step:  Step-2 (Static, General)
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[7] Follow nodal rotation [Z] Follow nodal rotatien
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Note: Force will be applied per node.

Figure 3.34: FLCA; Applied concentrated loads in Abaqus
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Figure 3.35: Setup of Abaqus ATOM topology optimization workflow
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RAMP technique is the better
choice when boundary Faces are
changing during the optimiza-
tion.

Convergence criteria used to
dermine if the solution has con-

L verged. Default values are quite

strict, so for initial simulations,

corser values might be used to

lower simulation time. Additional
convergence criteria can also be
specified at a later stage.

Figure 3.36: Abaqus; Creating the topology optimization task

aware that most simulation control settings may be edited at any time during
the setup, though the main algorithm can only be selected when defining new
tasks, as this choice affects possible options on design responses, objectives and
constraints. The SIMP-based General optimization is recommended, but if only
strain energy and volume design responses are of interest, the faster Stiffness
optimization may be chosen. The default material interpolation technique will
adapt to the problem under analysis, and should not be changed. The same
is valid for the penalty factor, as a lowered penalty factor might lead to solu-
tions without a clear 0-1 geometry, while increasing the value might give invalid
solutions (local minima) because of high sensitivity to intermediate densities.
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Figure 3.37: Abaqus; Defining design responses

3.4.2 Defining design responses
For further explanation on how to define design responses in Abaqus ATOM,
see figure 3.37.
3.4.2.1 Door Connection Joint
The following design responses were defined for the Door Connection Joint:
e Volume for the entire design space
e Displacement in LC1l-and LC2-direction measured at the reference node,
specified at two different time-steps.
3.4.2.2 FLCA
The following design responses were defined for the FLCA:
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e Volume for the entire design space

e Displacement in X-and Y-direction measured at the reference node, spec-
ified at two different time-steps.

3.4.3 Defining the objective and constraints

In order to reach a valid solution, best practice is to specify multiple design
responses for particular areas in the model. When choosing a smaller area to
control, the solution accuracy will improve. For example, it is better to specify
a threshold value for rotation of a smaller area, as well as setting a maximum
displacement limit on specified nodes and use the MinMax-formulation to reduce
the displacement in the most highly loaded step for each consecutive design
cycle.

In general, three different approaches are recommended for optimizing a
structure using Abaqus ATOM:

1. Minimize (or minimize the maximum) strain energy, constrained with an
upper limit on the relative volume fraction.

2. Minimize the volume, constrained with an upper limit on displacement,
moment of inertia, reaction forces, CoG or rotation (or a combination of
these).

3. Maximize eigenfrequencies, constrained with a lower limit for volume
or/and limits for other design responses that are independent of loads (as
eigenvalue analysis are performed without external forces applied).

Variations of the above mentioned approaches are also possible, but less used.

Figure 3.38 and 3.39 describes the basic procedure in Abaqus for defining the
objective function and constraints. As previously mentioned, Abaqus is capable
of handling a weighted sum of objectives. E.g. if you wish to minimize the
maximum strain energy, you can define one or more load cases to be of higher
priority than the other(s).

As arule of thumb, a general analysis should be performed before geometric
constraints are introduced, as they will increase computational time as well as
limit the available design space, giving a less optimal solution. Demold control
is probably one of the most important geometric constraints, as it ensures that
production methods like casting, stamping, forging and machining can be used.
If the design space loads and BC’s introduce some kind of torsion or angular
momentum in the part, internal voids and holes will be present, as material is
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Figure 3.38: Abaqus; Defining the objective and performance constraints
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Figure 3.39: Abaqus; Defining the geometric constraints
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preferred at the outer premises of the design space, due to an increase in the
second moment of inertia. Symmetry constraints can be specified as planar,
rotational, cyclic or for a point. Using the symmetry constraint, solutions will
look more aesthetic, and they will be easier to produce. Frozen faces or regions
will not be affected, and will remain the same after the analysis has ended.
This is particularly useful to maintain areas of geometric significance, as the
algorithm is forced to shave off weight from other areas of the design space.
Specifying a lower or upper limit for the member size will restrict the results
from having too thin or thick members that cannot be produced.

3.4.3.1 Door Connection Joint

Simulation constraints scalar values are obtained from the baseline simulation
results in section 3.2.2.

Design response Value Unit
Objective Minimize volume N/A mm?
Performance Displacement LC1 direction <0.077 mm
constraints Displacement LC2 direction <0.644 mm
Geometric Frozen areas (fig. 3.40), planar N/A -
constraints symmetry and manufacturing

An alternative objective and performance constraint definition for the Door
Connection Joint is presented beneath, and discussed further in section 3.5.3.
Design response Value  Unit

Objective MinMax strain energy from LC1 N/A J
and LC2 load

Performance Volume fraction <0.5292 -

constraints

Geometric Frozen areas (fig. 3.40), planar N/A -

constraints symmetry and manufacturing

Geometric constraints are shown in figure 3.40, and symmetry plane is shown
in figure 3.41. Symmetry and manufacturing constraints are applied for the
entire design space, but are not enforced in frozen areas. Frozen areas for the
Door Connection Joint are applied to the surface of the geometry.

3.4.3.2 FLCA

Simulation constraints are obtained from the baseline simulation results in sec-
tion 3.2.2.
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Figure 3.40: Door Connection Joint; Frozen areas geometric constraints

89



Figure 3.41: Door Connection Joint; Symmetry plane
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Figure 3.42: FLCA; Frozen areas geometric constraints (red areas constrained)

Design response Value Unit
Objective Minimize volume N/A -
Constraints Displacement X-direction 0.044 mm

Displacement Y-direction 1.418 mm
Geometric Frozen areas (fig. 3.40), planar N/A -
constraints symmetry and manufacturing

Geometric constraints for the FLCA are shown in figure 3.42, and symmetry
plane is shown in figure 3.43. Symmetry and manufacturing constraints are
applied for the entire design space, but are not enforced in frozen areas. Frozen
areas for the FLCA are applied to separate regions, using the Partition Cell-tool
to divide the solid body. This method is preferred instead of applying constraints
to surfaces, as this might result in internal voids if not manufacturing constraints
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Figure 3.43: FLCA; Symmetry plane

92



a e CTeE———
O ization Process jer
Name Model Task Status
Opt-Process-1 Model-1 TopOptl Completed (Submit ]
Opt-Process-1_other_volume_target  Model-1 TopOptl-other_volume Completed (e
Opt-Process-1_vol 03 Model-1 TopOptl_vol 03 Completed e
Opt-Process-1_vol 04 Model-1 TopOptL_vol 04 Completed e ——
Opt-Process-1_vol 05 Model-1 TopOptl_vol 05 Completed ot oo DTS
Opt-Process-1_vol 06 Model-1 TopOptl_vol 06 Completed P
Opt-Process-1_vol 07 Model-1 TopOpt_vol 07 Completed Tottofn Metchase & ox § freieas
Opt-Process-2_Kreiss_eigenfrequency Model-1 TopOpt2_eigenvalue  Aborted =)
Opt-Process3 RAMP Modet TopOptt RAMP Gompleted When monitoring the simulation, you can see
Opt-Process-4_SIMP Model-1 TopOpt_SIMP Completed thoe tho algoritr%m Berfotims andegnsitg Updote
Opt-Process-5_2_1_weighting Model-1 TopOpt1_different_weig Terminated Folowed by 5 FE- simulation to Update the do-
Opt-Process-6_disp_vol Model-1 TopOptdisp.vol  Completed Sign rosponse velues and check Far convergence

& o o | Ee—r——

Name: | Opt-Process-13 Name | Opt-Process-13
Model: | Model-1 [ || Modet: | moder1 [+
g e T o
ok | TopOptl T dopotogy, Genera Tk |Topoptt [¢] Topology. Generan
b - e e -
Description: Description:
Optimization | Submission | Memory || |, Optimization | Submission | Memory | Paralelization |
Controls [¥] Use muttiple processors | 4{%
= == =1 L ="
Maximum cycles: | 50 bw
—— — o4 -
ata save: @ Tirst and last cycle ©) Every cycle 0
Domain
Multifrocessing mode: | Defautt  [+]

The maximum number of cycles can Choose which
be limited, but the number should be topology optimi- IF you have more than two processors,
50 high that the convergence criteria zation to solve. assign more to speed up the simulation.

stops the simulation.

Figure 3.44: Abaqus; Submitting the topology optimization process

are applied as well.

3.4.4 Submitting the topology optimization process

In order to run the simulation, an optimization process must be made in the
Module: Job. Specifications on the number of processors, maximum number of
cycles and which topology optimization task to be used may be specified. In
the Optimization Process Manager; Clicking Submit will start the simulation,
clicking Monitor will let you see the progress for each iteration, while clicking
Results will let you see the iterations so far, visualized on the part. Features
are shown in figure 3.44.
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Figure 3.45: Door Connection Joint; Minimizing volume while maintaining stiff-
ness results

3.5 Topology optimization results

3.5.1 Door Connection Joint

Results from the optimization of the Door Connection Joint can be seen in
table 3.5, figure 3.45 and 3.46. Figure 3.47 shows the normalized displacements
vs. the volume fraction of the reference volume when minimizing the volume
and maintaining stiffness and the convergence for both loading directions. The
graph shows an increase in stiffness in both LC1 and LC2 direction for a unity
normalized reference volume. The final change in stiffness in both LC1 and
LC2 direction is, however, assumed to be equal to zero. The proposed solution
is therefore considered to be equally stiff as the reference geometry, while being
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Figure 3.46: Door Connection Joint; Minimizing volume while maintaining stiff-
ness results
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Table 3.5: Results table door joint; Comparison of 1) original part and 2) opti-

mized parts

Door Connection Joint
Original | Design | SuPLight | Optimization] Target
part space target result Vvs.
results;
difference
Volume 72302 122968 65071 64215 —-11.2%
fmm]
Displacement- 0.077 N/A 0.077 0.0769 —0.081%
tensile
[mm]
Displacement- 0.644 N/A 0.644 0.643 —0.136%
bending[mm)|

11.2% lighter. Results also obey all geometric constraints, and results look
reasonable from an engineering perspective. The optimization is considered to
be a success.

3.5.2 FLCA

Results from the optimization of the FLCA can be seen in table 3.6 and figure
3.48. Figure 3.49 shows how the solution has converged for both X-and Y-
direction. When iterations enter the green area of the graph, solutions are
considered to be successful, as the weight is lower and the stiffness is equal
or higher than the reference part. The final change in stiffness in X-and Y-
direction is minimal and assumed to be equal to zero. The proposed solution
is therefore considered to be equally stiff as the reference geometry, while being
6.41% lighter. Figure 3.50 shows VonMises stresses with a maximum color bar
limit of 121 MPa, corresponding to the fatigue limit at 10% cycles. Except
irrelevant peak stresses in the bushing transition?, maximum relevant stresses
are below the fatigue limit. Results also obey all geometric constraints, and
results look reasonable from an engineering perspective. The optimization is
considered to be a success.

2Bushing is not as infinite stiff (as modeled), and peak stresses will be significantly reduced.
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Figure 3.47: Door Connection Joint; Results from topology optimization mini-
mizing volume while maintaining stiffness
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Figure 3.48: FLCA; Minimizing the volume while maintaining stiffness

Table 3.6: Results table FLCA; Comparison of 1) original part and 2) optimized

parts
FLCA
Original | Design | SuPLight | Optimization] Target
part space target result vs.
results;
difference
Volume 534687.7 | 122968.07| 481218.9 500389 .0 —6.41%
[mm’]
Displacement- 1.418 N/A 1.418 1.416 —0.110%
X
[mm]
Displacement- 0.044 N/A 0.044 0.0439 —0.157%
Y
[mm]
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Figure 3.49: FLCA; Results from topology optimization minimizing volume
while maintaining stiffness

3.5.3 Manual Multi-Disciplinary Optimization

Results presented in section 3.5.1 are per definition single-objective. In order
to visualize the strengths of a MDO, the alternative objective and constraint
definition for the Door Connection Joint has been used as a basis.

MinMax strain energy, constrained by upper limit on volume fraction
An initial simulation was performed with the aim of saving 10% weight. The
solution process and results are shown in figure 3.51. The setup of the simulation
is equivalent to the one previously shown for the Door Connection Joint, except
from the design response, objective and constraint definition. The solution
process was set to MinMax the strain energy from the two load cases, while
specifying an upper volume fraction limit. Equal weights were applied to the
two load cases. This resulted in an increased strength of +5.6% in the LC2
direction and a loss of stiffness in the LC1 direction of —26.4%. The large
negative difference in stiffness in LC1- direction can be explained by looking
at the different loading mechanism for the part under analysis. The LC1 force
results in a straightening of the curved shape of the joint. As both solution
approaches tend to remove material inside the permissible design space, the one
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Figure 3.51: Door Connection Joint; Solution process for MinMax strain energy
while constraining volume

with the stiffest structure at the lower part of the joint is the stiffest in LC1
direction. This is shown in figure 3.52, where X; denotes the difference between
the two approaches in how much the curved top surface bends inwards, and X5
denotes the resulting difference in displacement in LC1 direction.

For this particular solution method, Multi-Disciplinary Optimization results
have been made available by manually changing the volume fraction target of the
simulations and making the optimization process Multi-Disciplinary. Results are
plotted in figure 3.54 and 3.55, showing strain energy vs. volume fraction for the
LC1 and LC2 load direction, respectively. In figure 3.54, the red line showing
the displacement at the reference node is included to show the relation between
strain energy and displacement. As discussed in section 2.2.3, the curves have
the characteristic shape of Pareto curves. Topology optimization results for
various reference volume fractions are shown in figure 3.53. The percentage
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illustrates the change in weight from the reference volume.

Because the strain energy is a measure of stiffness, the same tendencies can
be seen by studying the displacement at the reference node and plotting it vs.
the corresponding volume fraction of the reference volume, as seen in figure 3.56.
As the axis of the graphs are normalized, a volume fraction of 0.9 corresponds to
the simulation target, while a normalized displacement less than 1 corresponds
to a smaller displacement than the reference volume, hence the part has become
stiffer.

Knowing the curvature and shape of the Pareto curve helps the engineer to
make a well-considered choice of design, as the sensitivity of the strain energy
is visualized and easily interpreted. From figure 3.56 it is clear that there is a
definite shift just below the target volume, as both the LC1 and LC2 displace-
ments increase rapidly for lowering the volume fraction. This means that the
gradient of the change in displacement is increased after a specific value, imply-
ing that a small change of volume fraction will result in a large displacement
increase. The graph also predicts that with equal objective weighting (1 : 1)
when minimizing strain energy in LC1 and LC2 load direction results in an
improvement in bending stiffness while decreasing the stiffness in the tensile
direction for a specified 10% weight saving. Adjusting the objective weighting
may result in favorable results, but this requires a lot of trial and error and is
not recommended when a specific stiffness is required. Minimizing volume give
better results and is less time consuming, as discussed in section 3.5.1.

3.6 Post-processing of simulation results

Figure 3.57 shows the general workflow when post-processing simulation re-
sults. Post-processing of results is important to verify that the simulation has
converged, and that the design constraints are within limits. Graphs can be
generated by the software by clicking the Graph-icon in the Visualization Man-
ager, selecting the design responses of interest and plotting these. When viewing
contour plots that are dependent on direction, the user can specify which coordi-
nate system to be used by clicking (in the Visualization environment) Results >
Options > Transformation > User-specified, and choosing the CSYS of interest.

Results surface extraction is done by clicking (in the Job environment) Op-
timization Process Manager > Extract. As shown in figure 3.57, varying the
ISO-value will have the largest impact on the resulting STL-file. Increasing the
Number of Smoothing Cycles (NSC) gives a smoother surface, while increasing
the Reduction percentage (R%) will give a coarser surface as the surface com-
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Figure 3.53: Door Connection Joint; MinMax strain energy, constrained by
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Pareto curve; Discrete Topology optimization runs
Objective: MinMax strain energy in LC1 direction (max. sCifFness)
Constraints: Volume Fraction and geometric const.
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Figure 3.54: Door Connection Joint; Pareto curve for strain energy and dis-
placement vs. volume fraction of reference volume; LC1 load direction
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Pareto curve; Discrete Topology optimization runs
Objective: MinMax strain energy (mMax. stifFness)in LC2 direction
Constraints: Volume Fraction and geometric const.
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Figure 3.55: Door Connection Joint; Pareto curve for strain energy vs. volume
fraction of reference volume; LC2 load direction
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Figure 3.56: Door Connection Joint; Pareto curve for displacement of reference
node vs. volume fraction of reference volume; LC1 and LC2 direction
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Figure 3.57: Abaqus; Post-processing of simulation results

plexity will be reduced. Interpretation of the geometry is discussed in chapter
5.

3.6.1 Smoothing of chosen optimization output
3.6.1.1 Door Connection Joint

Smoothing and STL-file extraction of the Door Connection Joint was done using
default parameters; ISO=0.3, no reduction and 5 smoothing cycles. The result
can be seen in figure 3.58.

3.6.1.2 FLCA

The FLCA smoothing was also done using default parameters; ISO=0.3, no
reduction and 5 smoothing cycles. The result can be seen in figure 3.59.
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Figure 3.58: Door Connection Joint; 1) STL file extracted from Abaqus ATOM
and 2) parameters for the extracted surface ISO = 0.3, No. smoothing cycles =
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Figure 3.59: FLCA; 1) STL file extracted from Abaqus ATOM and 2) parame-
ters for the extracted surface 150 = 0.3, No. smoothing cycles = 5
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Chapter 4

Process description using NX
Topology Optimization

The following chapter is similar to the previous, however Unigraphics NX is used
for optimization instead of Abaqus ATOM. For simplicity, only the setup and
basic results for the Door Connection Joint is included, as the main purpose
is to show that NX has similar optimization capabilities as Abaqus ATOM.
Baseline values, the design space, loads and boundary constraints are similar to
those in the Abaqus ATOM chapter, and is therefore omitted. Application of
the aforementioned loads and boundary conditions are done similar to the NX
baseline calculations. For bigger images and a step-by step description on how
to setup optimization using NX, see appendix C. Figure 4.1 shows the general
workflow for setting up a topology optimization in NX.

4.1 Software

4.1.1 Unigraphics NX

In this process description, Unigraphics NX 8.0 is used for topology optimiza-
tion simulations. NX Topology optimization is a powerful tool for enhancing
creativity and finding optimal distributions of material given a design space,
loads and boundary conditions and an objective. NX is capable of handling a
single, non-weighted objective. NX is also limited to handling only one displace-
ment constraint. Results presented are therefore not comparable to the ATOM
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Figure 4.1: Setup of NX topology optimization process
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Figure 4.2: NX mesh; CTETRA10 elements

solution in the previous chapter.
Specific problems in NX 8.0 and 8.5 have been found using the following
tools:

e MinMax strain energy from separate subcases
e (Cast condition geometric constraint

The combined effect of handling only one displacement constraint, problems
with the MinMax approach and the Cast condition geometric constraint is that
only the setup is discussed, while results are presented only to show how they
can be obtained and how they are represented.

4.2 Model preparation, meshing and setup of static
analysis

4.2.1 Meshing

The meshing of the design space was done using 3 mm overall size CTETRA10
tetrahedral elements, as shown in figure 4.3. The model was free meshed because
of irregular geometry.
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Figure 4.3: Door Connection Joint; Meshing of design space in UGS NX

4.3 Setup of topology optimization

4.3.1 Creating the topology optimization and defining el-
ement groups

NX Topology optimization is a part of the NX Advanced simulation environ-
ment, and can be added to the simulation as a New Solution Process after
defining the initial FE-simulation file. The tool is easily configured using the
NX Topology Optimization step-by-step wizard. The tool is designed to handle
static, structural simulations of 2D and 3D continuum structures, as well as
multiple loads, contact forces, assemblies, etc.

Defining element groups simplifies the geometric constraints definition. In
the following example, groups for 1) Frozen areas and 2) Symmetry areas are
defined. Best practice have been found to define areas by using the 3) Related
Elements selection method. Be aware that only surface elements are selected
with this method, and depending on Cast condition settings, internal voids and
undercuts may appear. Using the Split Body command for creating separate
bodies enable choosing regions of elements if more suitable (Modeling environ-
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bodies is only applicable when simulating assemblies.

Figure 4.4: Door Connection Joint; Creating the topology optimization process

ment; Insert > Trim > Split Body). Figure 4.4 and 4.5 show the previously
described procedures.

4.3.2 Defining geometric constraints (restrictions)

Guidelines for defining geometric constraints in NX are similar to those pre-
sented in the Abaqus ATOM chapter. Figure 4.6 shows the procedure in NX.
Previously defined Element Groups form the basis of both the Frozen and Sym-
metry constraints. The symmetry plane for the Door Connection Joint is bisec-
tor the two parallel surfaces of the design space.
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Figure 4.5: Door Connection Joint; Defining element groups

116



B4\ | Topology Optimization |J & | X B3

A\

R \ | Restriction |9 G| X B3
/ Name and Description A
Extrusion [symmetry ]
| ipti v
i \
Two-lsided
casting (symmetry Condition v

|« General Setup This step allows you to define the manufacturing
v Design Area | restrictions or geometrical design aspects to be
& || taken into consideration in the optimization symmetry
BgRestrictions | .
¥ Design Responses fesuictions L3 T | j
v Objective Name Check Type
¥ conrans e g
¥ smoothing Symmetry Symmetry Condition n
|« Control Parameters
< >
Name and Description A
)
omci v
Check Type A

Restricted Elements Selection

UserSpeciied v

Selection

« select Object (6749) =) !
'T_Eﬁnem ‘Selection Filtering v
| Excluded v

==l=—x

Check Type defines the type of geo-
> metric constraint you wish to intro-
duce to the model

Set Selection to User- Specified, tick
= the Group Reference box and choose
the previously defined element group
to be restricted.

The NX manual specifies that the search radius
must be larger than 80% of the element size.
Symmetry type can be set to either Planar or
Cyclic. For Planar symmetry, a coordinate sys-
tem and normal axis must be specified.

Restricted Elements Selection A
_________ =

- Selection User-Specified
[MGroup Reference [ Manufacturing @ |

N = a—
 Select Object (5207)
EffmemTsetettion fifterig = = ==
| Excluded v
Symmetry Condition A
searchRadius (2 mm -4 [ﬂl
Symmetry Type [anesm o
Symmetry Coordinate System Al
oe Cr—
+ Specify CSYS [:15]@ I
o
Axis z E
k@lgnm Frozen,

===

Check Ignore Frozen box to
prevent symmetry condition
to apply to Frozen areas.

Figure 4.6: Door Connection Joint; Defining geometric constraints (restrictions)
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Figure 4.7: Door Connection Joint; Defining design responses

4.3.3 Defining design responses

Design responses can be seen as the simulation variables. They are defined
before the simulation objective and performance constraints are set. Design
responses may be specified for the entire model, or for specific regions of the
geometry. For certain design responses, e.g. strain energy and displacement,
Load Cases must be specified. The Group Operator can be used to change
the interpretation of the Design Response of interest, changing between Sum,
Maximum, Minimum (value), etc. Defining design responses in NX is shown in
figure 4.7.

4.3.4 Defining the objective and performance constraints

Process descriptions are shown in figure 4.8 and 4.9. Objective and constraint
definition for the Door Connection Joint using NX is shown below:
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Figure 4.8: Door Connection Joint; Defining the objective

Design response Value  Unit
Objective Minimize strain energy LC1 and N/A J
LC2 direction
Performance Volume fraction <0.5292 -
constraints
Geometric Frozen areas (fig. 3.40) and N/A -
constraints planar symmetry.

4.3.5 Geometry extraction settings, solution control pa-
rameters and submitting the optimization process

Extracting geometries may be specified using the Smoothing process. In gen-
eral, standard values are reasonable and give good results. Advanced setup is
therefore omitted. Desired output control variables may also be specified to
control the simulation process. Control parameters for the simulation run as
seen in figure 4.10 are: 1) The Maximum Number of Iterations will stop the
simulation before if the solution diverges. The number should be so high that
the simulation stops by itself when convergence is achieved. 2) Sensitivity Ap-
proach Parameters may be adjusted to reach convergence if initial simulations
fail. Setting Density Update to Conservative and lowering the Density Move
value will reduce the extent and magnitude of element density updates, aiding
the search for a valid solution. 3) Choose between saving the First and Last
.OP2 result files, None or All. The first is recommended.

Submitting the simulation is done by finishing the wizard and clicking Solve
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Figure 4.9: Door Connection Joint; Defining (performance) constraints
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Figure 4.10: Door Connection Joint; Smoothing and submitting the topology
optimization

(right-click process tab and click Solve). Simulation times in NX are consider-
ably lower than using Abaqus ATOM, durations being as low as approximately
one hour for the simulation of interest.

4.4 Topology optimization results

This section is mainly included to show the reader how to extract values from
the simulation. Figure 4.11 shows the results extraction process, while figure
4.12 shows the STL surface extracted. Notice that image 2) in the previously
mentioned figure shows that the model has internal voids making it impossible
to produce by machining, because no manufacturing constraints were specified.
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Figure 4.12: Door Connection Joint; Surface extracted 1) side view and 2) half
view
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Figure 4.13: Door Connection Joint; Results visualization
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Figure 4.14: Door Connection Joint; Results graph
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Chapter 5

Reengineering of optimization
output using UGS NX

5.1

Reengineered geometry

In this section, procedure 1) discussed in section 2.4.7.2 is described, as this
is found to be best practice. For both the Door Connection Joint and the
FLCA, solutions from minimizing the volume while constraining displacements
are reengineered and analyzed, confirming that performance targets are met.

Best practice for reengineering planar symmetric parts using UGS NX is as
follows:

Extract optimization geometry from preferred topology optimization soft-
ware as a STereoLitography (STL)-file.

Open the design space part file (.prt)
Evoke the Model environment

Click File > Import > STL and follow the import procedure to retrieve
the extracted geometry. It should normally position itself on top of the
design space.

Create a symmetry plane, bisector two parallel surfaces in the design space
. This plane should interfere with the previously defined geometric sym-
metry constraint.
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Figure 5.1: NX; Reengineering the geometry from topology optimization using
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Figure 5.2: NX; Reengineering the geometry from topology optimization using
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e Create a new sketch on the datum plane.
e Orient view to be normal to datum (symmetry) plane.

e Start the Studio Spline (click S) and position splines on top of the bound-
ary lines in the topology optimization part.

o Extrude sketches with the Boolean function set to “Subtract” in order to
remove material.

e Use fillets, chamfers and other design tools to imitate results.

Reengineered geometries have been prepared in UGS NX 8.0, using the Modeling
environment. Extracted STL-geometries as described in section 3.6.1 are used
as a basis for reengineering.

5.1.1 Door Connection Joint

The reengineered geometry of the Door Connection Joint for minimizing volume
and constraining displacement can be seen in figure 5.3. The volume of the
geometry is 67161 mm?, giving a 7.11% weight loss, compared to the reference
geometry. Simulation results are shown in figure 5.4 and 5.5, confirming that the
proposed reengineered geometry has adequate stiffness. Performance properties
from simulations are summarized in table 5.1. Notice that displacement values
are sligly lower than in the baseline, hence the part is also marginally stiffer.

The reengineered geometry of the Door Connection Joint from minimizing
strain energy and constraining volume can be seen in figure 5.6. This rendering
is included to show another approach to reengineering optimization results. The
volume of the geometry is 66430 mm?, giving a 8.12% weight reduction. Simu-
lations are not included for this geometry, as performance requirements are not
met in the initial optimization results.

Figure 5.7 shows the Door Connection Joint printed in plastic in full scale
using a 3D-printer. Outputs have been printed to visualize the process, and
aid knowledge development. All files are printed from STL- files. Extracted
geometry is therefore suitable for printing with ALM- methods.

5.1.2 FLCA

The reengineered geometry of the FLCA for minimizing volume and constrain-
ing displacement can be seen in figure 5.8. The volume of the geometry is
503029.1 mm?, giving a 5.92% weight loss. Simulation results are found in figure
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Figure 5.3: Door Connection Joint; Reengineered geometry from minimizing
volume and constraining displacement

Table 5.1: Door Connection Joint; Reengineered geometry performance proper-

ties
Door Connection Joint
Original Original Reengineering| Original vs.
part VS. results reengineering
simulation results
results difference
difference
Volume 72302 —11.2% 67161 —7.11%
fmm]
Displacement- 0.077 +0.081% 0.074 —3.90%
LC1-direction
[mam]
Displacement- 0.644 +0.136% 0.640 —0.62%

LC2-direction
[mm]
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Hinge_min_vol_from_STL_sim1 : Solution 1 Result
LC1, Static Step 1

Displacement - Nodal, X

Min : -0.0004, Max : 0.0991, Units = mm
Coord sys : Work Rectangular

Deformation : Displacement - Nodal Magnitude

0.0991
0.0908
00825
-~ 0.0742
— 0.0659
| | 0.0578
0.0493
0.0410
0.0327
0.0244
0.0162
0.0079

-0.0004

AN

Figure 5.4: Door Connection Joint; Displacement in LC1 direction
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Hinge_min_vol_from_STL sim1 : Solution 1 Result

LC2, Static Step 1 0-540\
Displacement - Nodal, Z -
Min :-0.042, Max : 0.648, Units = mm

Coord sys : Work Rectangular
Deformation : Displacement - Nodal Magnitude

0.648

0.590

. 0533

~ 0.475

— 0.418

0.360

0.303

0.248

0.188

0.131

0.073

0.016

-0.042

Figure 5.5: Door Connection Joint; Displacement in LC2 direction
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Figure 5.6: Door Connection Joint; Reengineered geometry from minimizing
strain energy with prescribed volume fraction |—10%]|

5.9 and 5.10, confirming that the proposed reengineered geometry has adequate
stiffness. Performance properties from simulations are summarized in table 5.2.

In the baseline, the buckling factor for the first buckling mode was simulated,
as this was promoted as one of the most important performance parameters
of the FLCA. Optimization using the ATOM did not enable the possibility
to constrain buckling performance, but the reengineered geometry have been
simulated in the exact same way as in the baseline. Result can be seen in figure
5.11, showing a 9.88% improvement in buckling load.

Figure 5.13 shows the FLCA optimization result and reengineered geometry,
printed in 66% of full size.
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1) Original part

2) Design space

3) Result; min. volume,
displacement constrained

4) Result; min. strain energy,
volume constrained

5) Reengineering of 4)

Figure 5.7: Door Connection Joint; 3D printed results from topology optimiza-
tion in Abaqus
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Figure 5.8: FLCA; Reengineered geometry from minimizing volume and con-
straining displacement

Table 5.2: FLCA; Reengineered geometry performance properties

FLCA
Original Original Reengineering | Original vs.
part vs. results results reengineering
difference results
difference
Volume 534688 —6.41% 503029 —5.92%
[mm?]
Displacement- 1.418 +0.110% 1.418 0%
X-direction
[mm]
Displacement- 0.044 +0.157% 0.044 0%
Y-direction
jmm)
Buckling load 95380 N/A 104800 +9.88%
V]
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FLCA_SJ_Design_space_Ver03_Rev01_reengineered_from_STL_sim3 : 1 Result
X, Static Step 1

Displacement - Nodal, X

Min : -0.099, Max : 1.482, Units = mm

Coord sys : Work Rectangular

Deformation : Displacement - Nodal Magnitude

YC

1.482

1.351

o 1.219

-~ 1.087

- D.955

| 0824

0.692

0.560

0.428

0.297

0.165

Units = mm

Figure 5.9: FLCA; Stiffness in X-direction of reengineered geometry
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FLCA _SJ Design_space Ver03 Rev01_reengineered from_ STL_sim3 :1 Result

Y, Static Step 1

Displacement - Nodal, Y

Min ; -0.0021, Max : 0.0460, Units = mm
Coord sys : Work Rectangular

Deformation : Displacement - Nodal Magnitude

Units = mm ‘

Figure 5.10:
geometry
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0.0220

0.0180

0.0140

0.0100

0.0060

0.0020

Door Connection Joint; Stiffness in Y- direction of reengineered
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FLCA_SJ_Design_space_Ver03_Rev01_reengineered from_STL_sim3 : Solution 1 Result
Subcase - Buckling Method, Maode 1, Eigenvalue = 1.048e+005
Displacement - Nodal, Magnitude

Min : 0.001, Max : 1.018, Units = mm |Eigenva|ue = 1.048e+005
Deformation : Displacement - Nodal Magnitude

1.018

0.933

. D.B4B

~ D.764

— D679

| D594

0.510

0.425

0.340

0.256

0.171

0.0886

o

2

Units = mm

Figure 5.11: FLCA; Buckling factor in X-direction of reengineered geometry

Figure 5.12: FLCA; 3D printed results from topology optimization in Abaqus
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Figure 5.13: FLCA; 3D printed results from topology optimization in Abaqus
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Chapter 6

Views on implementation,
ease of use and quality of
results

The following section is devoted to my subjective views on topology optimiza-
tion, discussing ease of use and quality of results. For topology optimization to
be a useful tool for engineering purpose, the engineer must trust the solution
process and results. In my opinion, basic knowledge of the process and mathe-
matical theory makes it easier to trust results and to understand the differences
between valid and invalid results. Reading the theory and process description
sections in this thesis should be sufficient to get you started with optimization
without fearing the output.

In my opinion, results from topology optimization should not be expected
to be frightening or difficult to understand. Topology optimization results are
merely FE-models that are iteratively updated and analyzed in the same way
as an engineer would do, only more precisely updated and less time consuming.
The only difference is that the engineer is replaced by algorithms as described in
section 2.2.2, and how the process is pre- and post-processed. This is illustrated
in figure 6.1.

Some people are worried that as an engineering tool, topology optimization
will reduce the need for engineers and knowledge of how to design and dimension
components. In my opinion, the opposite is true. Engineers are still required
to setup the process, evaluate results and reengineer the geometry. With the
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 Algorithm updating | i Finite Element
: geometry ; Analysis

i Engineer updating i i Finite Element
' geometry _ Analysis

Normal procedur
~
(
)\

Figure 6.1: Development of parts with normal procedure and using optimization

utilization of optimization algorithms, gradually becoming more stable and so-
phisticated, engineers are able to push performance limits. This development
may be compared to the development and utilization of advanced material and
material processing techniques, like tempering processes. Increasing material
strength and tailoring material properties increase performance, but simultane-
ously reduce versatility and tolerances for changes in operation parameters. The
same is true for optimized parts; Performance is increased, but the vulnerability
to changes in load direction, combination of loads and other factors will increase.
This is illustrated in figure 6.2. As previously stated, including all possible loads
and load directions is important to reduce the possibility of faulty optimization
results. This is illustrated for the Door Connection Joint in figure 6.3, showing
the alternative topology obtained by introducing an alternative load direction
of LC2, orthogonally on LC1. Insufficient knowledge of loads and boundary
conditions is often a source of bad designs, regardless of whether the geometry
is improved using the traditional approach or use topology optimization algo-
rithms. It is however worth noting that if the design engineer knows that there
is uncertainty in loads, he will often subconsciously take this into account when
dimensioning. The algorithm is more efficient and will cynically try to obey
constraints as formulated, and is less flexible for handling uncertainties.

As shown in figure 6.4, incorrect setup of the optimization may result in in-
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Figure 6.2: Performance vs. versatility; Implication of optimizing components

Alternative load
direction

Figure 6.3: Door Connection Joint; Load direction sensitivity and implications
on topology
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Figure 6.4: FLCA; Invalid topology optimization results

valid results, or no results at all. Through my work with topology optimization,
problems are found to occur due to these causes:

e Incorrect setup of initial FE-analysis (insufficient knowledge about the
CAE software of choice).

e Incorrect specification of the Cast condition geometric constraint.

e To strict performance constraints that causes the process to diverge and
stop after the maximum number of allowed iterations.

From an engineering perspective, valid solutions are found to be material
efficient and intuitively reasonable. Smooth transitions and surfaces ensure low
stress concentrations and a close to fully-stressed design. The introduction
of irregular sized holes provides geometries with a high number of triangles,
ensuring that the main loading mechanism is truss-like; mainly giving tensile
or compression stresses. Valid solutions are therefore considered to be of good
quality. Solution validity is confirmed by checking simulation graphs, plotting
objective and constraints values vs. the number of iterations. Visual inspection
of the geometry will normally confirm symmetry and manufacturing constraints
validity.
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Assuming that one is familiar with the theory of topology optimization and
possess basic knowledge of how to setup the analysis in the analysis program of
choice, setting up the optimization process is very fast. The topology optimiza-
tion approach is more front and end work loaded compared to the traditional
approach being mid work loaded, as illustrated in figure 6.5. As soon as the
optimization is clearly defined, the solution process will run by itself without
user interference. The dip in work load for the topology optimization approach
thus illustrates that the solution process is running, leaving the engineer waiting
for results. The engineer is then required to interpret and reengineer results at
the end of the process. As illustrated by the colored areas beneath the graphs,
the total work load of the traditional approach is higher. Be aware that the hor-
izontal axis of the graph refers to the product development process as a whole.
The total amount of time from start to ending is considerably lower using the
topology optimization approach, further reducing total work load.

Labor intensive tasks not experienced in the traditional approach are:

Defining the design space

Setting up the topology analysis process (using ATOM/ NX Topology
optimization module, etc.)

Solving the analysis
e Reengineering the geometry

An important issue with topology optimization is that it requires powerful com-
puters with high processing capabilities and memory. For larger simulations a
minimum of 16 GB RAM or more is recommended, as well as an Intel i7 pro-
cessor (or equivalent) or better. If one does not possess such equipment, it is
recommended to set up the simulation on the available computer and run the
simulation on a sufficiently powerful workstation. Storage space is also criti-
cal, as the presented simulation runs for the Door Connection Joint and FLCA
required 8 GB and 10 GB of storage, respectively.

Considering the aforementioned limitations and personal reflections, I con-
sider the tool to be very useful and relatively easy to use. In my opinion,
applying the correct loads and boundary conditions as well as reengineering the
geometry are the most challenging tasks encountered. Most of the time spent
during the master thesis was used to gain knowledge of the theory and testing
different approaches to optimization. To address challenges in energy use and
higher demands for performance, I believe it is absolutely necessary to include
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Figure 6.5: Work load; Topology optimization approach vs. traditional ap-
proach
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optimization as a natural part of product development for engineering appli-
cations. As an alternative approach to developing new components, topology
optimization can also be used to define an upper performance limit and help
engineers decide whether existing components are fully utilizing their potential
and if it is cost effective to do changes in the geometry.

The danger of using systematic methods in connection to con-
struction work is to believe that one with certainty reaches a good
result, only the approach is followed. Unfortunately, this is not the
case. The most effective way of working is therefore an appropriate
mix of being systematic and using intuition.

Eskild Tjalve

The quote from Tjalve (found in [29]) was originally intended as a comment
to the use of specific methods for product development, but is just as relevant
today as a comment to the use of computers and algorithms to aid in develop-
ment and product design. All in all; the topology approach is very powerful and
will in most cases propose solutions that from an engineering perspective give
excellent properties. Often the distinction between false and reasonable results
is clearly visible, yet it is solely on the shoulders of the engineer to provide both
input parameters and to interpret the results in a satisfactory way. When tech-
nology takes on traditional tasks of humans, humans must learn to control the
technology and use this to obtain the best possible outcome. Human intuition
is still required.

146



Chapter 7

Conclusion and further work

The thesis has mainly focused on the subject of topology optimization with re-
gard to basic theory and practical application using Abaqus and NX, and aim
to provide a better understanding of topology optimization for the experienced
FE user. The Front Lower Control Arm supplied by Raufoss Technology and
Door Connection Joint supplied by the Hellenic Aerospace Industry through the
EC SuPLight-project have been subjects for optimization with focus on the geo-
metrical approach to topology optimization for load supporting, 3D continuum
structures experiencing strains within elastic limits using isotropic materials.
The use of topology optimization for product development may initially seem
scary and difficult to understand. Complex mathematical algorithms intended
for complex products does not inspire confidence and reassurance, however the
thesis aim to provide basic knowledge making it easier to understand implication
of settings.

As part of the WP3 delivery in the SuPLight project, topology optimization
results from simulations on the Door Connection Joint and FLCA show that
it is possible to save respectively 11.2% and 6.41% weight while maintaining
stiffness in all anticipated load directions, while preserving manufacturability.
Results were obtained by setting the objective to minimize the volume while
constraining displacements in load directions to be within limits as calculated
in initial baseline simulations. Additionally, frozen areas, symmetry and demold
control was specified to ensure manufacturability. Reengineered geometries are
heavier than the optimization results, giving a total weight saving of 7.11% and
5.92%, respectively. The initial goal of the SuPLight project was to save 10%
weight, however several assumptions, including the available design spaces, load
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directions and load magnitudes have been made throughout the process. As pre-
viously mentioned, these parameters are highly normative for the outcome of the
analysis. The ultimate weight goal is most likely achievable by evaluating load
cases and especially the design space, as well as performing size-optimization on
the proposed geometries.

For optimization of existing products with known and adequate stiffness,
minimization of the volume and restricting displacements give the best results.
For the development of new components or in other cases demanding geometries
to be as stiff as possible within a certain volume, minimizing the strain energy
and setting an upper limit on the volume would be more appropriate.

Topology optimization as an engineering tool is found to be easy to use,
giving results that expands the solution space and go beyond constraints and
common beliefs about what is proper design. Suggested solutions are often rel-
atively complex, which is expected when performance limits are pushed beyond
current, standards. In addition to being a creative tool for finding better solu-
tions, the use of topology optimization tools will likely help reduce development
time.

Further work Further work on topology optimization should be carried out
in the following areas:

e Investigation of non-gradient based algorithms (such as the BESO-algorithm)
and corresponding software that provides other solution methods for topol-
ogy optimization.

e Investigating the use of other design objectives (and software), such as an
in-depth analysis of using eigenfrequencies and buckling strength as design
objectives.

e Studying the use of topology optimization within assemblies and with
boundary conditions like contact forces, gluing, the use of RBE-elements,
etc.

e Studying the use of topology optimization for dynamic problems where
load direction and magnitude change frequently.

e Investigation and possible development of algorithms where load magni-
tude and direction can be expressed with a certain amount of uncertainty,
for combined proportional and non-proportional simultaneous loading.
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Appendix A

A3 brief on generation of
design space using

Unigraphics NX
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Appendix B

A3 brief on optimization
using Abaqus ATOM
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Appendix C

A3 brief on optimization
using Unigraphics NX
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Appendix D

A3 brief on reengineering of
geometries
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