

Parameterization and Multiobjective Optimization

Carl Hougsrud Skaar

Mechanical Engineering Submission date: June 2013 Supervisor: Terje Rølvåg, IPM

Norwegian University of Science and Technology Department of Engineering Design and Materials

THE NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ENGINEERING DESIGN AND MATERIALS

MASTER THESIS SPRING 2013 FOR STUD.TECHN. CARL HOUGSRUD SKAAR

PARAMETERIZATION AND MULTIOBJECTIVE OPTIMIZATION Parameterisering og multiobjektiv optimalisering

Modeling and multiobjective optimization is one of the main tasks in the EC project SupLight. In SupLight two industrial cases are selected for design/parameterization and optimization based on a fully integrated multiobjective optimization loop. These are one control arm from Raufoss Technology (RT) and an aircraft door connection arm from Hellenic Aerospace Industry (HAI).

The main goal is to document the process as well as benchmarking how single- and multiobjective design optimization can be applied and implemented to improve products.

The following tasks must be completed:

- 1. Find an optimal strategy for model parameterization of the aircraft door connection arm in NX based on the following criteria:
 - a. Identify product requirements and optimization criteria for the door connection arm
 - b. Design flexibility for robust design perturbations(selection of design variables and optimal modeling strategy for the largest impact on optimization criteria and design requirements)
 - c. A minimum number of design variables (short simulation times)
 - d. Smart selection of linked design expressions (minimum number of user inputs)
- 2. Parameterize the component and perform manual or automatic optimization to verify if the above criteria are met.

- 3. Perform multiobjective design optimization based on Mode Frontier and NX of the aircraft door connection arm:
 - a. Study optimization theory and identify the best algorithms for the optimization considering the given requirements (from point 1a)
 - b. Implement the multiobjective optimization loop in Mode Frontier for the component
 - c. Perform design optimization and evaluate the results wrt. ease of use and final product requirements

The thesis should include the signed problem text, and be written as a research report with summary both in English and Norwegian, conclusion, literature references, table of contents, etc. During preparation of the text, the candidate should make efforts to create a well arranged and well written report. To ease the evaluation of the thesis, it is important to cross-reference text, tables and figures. For evaluation of the work a thorough discussion of results is appreciated.

Three weeks after start of the thesis work, an A3 sheet illustrating the work is to be handed in. A template for this presentation is available on the IPM's web site under the menu "Masteroppgave" (http://www.ntnu.no/ipm/masteroppgave). This sheet should be updated one week before the Master's thesis is submitted.

The thesis shall be submitted electronically via DAIM, NTNU's system for Digital Archiving and Submission of Master's thesis.

().10

Torger Welo Head of Division

Terje Rølvåg Professor/Supervisor

NTNU Norges teknisknaturvitenskapelige universitet Institutt for produktutvikling og materialer

Preface

This master thesis, written within the field of implementation of design optimization, is a culumination of the work to obtain a Master of Science for the Department of Engineering Design and Materials at the Norwegian University of Science and Technology.

The project has been performed in close collaboration with fellow student Espen Nilsen. Together with him, the attached A3 sheets have been produced.

The intention of this report is to present a practical approach to optimization.

Supervisor Prof. Terje Rølvåg has been one of the contributors in this project from the very start. He handed over some of the documentation and model files in order to form the baseline.

Exploring this field of engineering has been very interesting, but still challenging, since most of the documentation is written from a theoretical perspective.

Adam Thorp at Esteco Nordic AB has been a great help, and provided us with necessary data to perform an optimization with modeFRONTIER, as well as general support. I will also thank fellow student Steffen Johnsen for a great collaboration in this project. Many interesting discussions have been essential to the outcome of this work. Last but not least, I will like to thank my family and my girlfriend. They have always been supportive and encouraging, though they have no idea of what I am doing.

Carl Hougsrud Skaar

Cal Steaw

Abstract

One of the core ideas in this thesis is to determine how single- and multiobjective design optimization can be applied and implemented to improve products. The background for this thesis is an EC research project named SuPLight. The purposes is to develop a practical approach by introducing an aircraft component from Hellenic Aerospace Industry. The objective is to reduce the weight/mass of this component by 10 %, without sacrificing stiffness in the load direction. This proved to be impossible with such stringent conditions. However, it was possible to reduce the mass by 6.26 %, and still maintain the same stiffness.

In Chapter 1, the reader is introduced to design optimization and the main objective of this thesis. Chapter 2 covers the base line for the aircraft component. Further, it will be presented how the model should be prepared in order to capture design intent, a so called parameterization. This is covered in Chapter 3. In Chapter 4, a demonstration is presented of how a sensitivity analysis can be performed. A sensitivity analysis helps the validation of the design parameters before performing an single-objective optimization in Chapter 5. In addition to the single-objective optimization, the multiobjective approach will be thoroughly considered in Chapter 6. Beside the thesis, a set of detailed descriptions realted to the use of the software in A3 format, have been made. These can also be found in the appendices.

Sammendrag

En av de sentrale ideene med denne oppgaven er å finne ut hvordan singel- og multiobjectiv design optimalisering kan brukes og implementeres. Bakgrunnen for denne oppgaven er et EU-forskningsprosjekt kalt SuPLight. Formålene er å utvikle en praktisk tilnærming ved å innføre en flykomponent fra Hellenic Aerospace Industry. Målet er å redusere vekten/massen av denne komponent med 10%, uten å gå på bekostning av stivhet i lastretningen. Dette viste seg å ikke være mulig, med så stremge krav. Imidlertid var det mulig å redusere massen med 6.26%.

I kapittel 1, blir leseren introdusert for design optimalisering og hovedformålet med denne avhandlingen. Kapittel 2 dekker analysegrunnlaget for flykomponenten . Videre, vil det bli presentert hvordan modellen må forbereden for å være i stand til å kunne endre form. Dette kalles parametrisering og er dekket i kapittel 3. I kapittel 4blir det demonstrert hvordan en sensitivitetsanalyse kan utføres. En sensitivitetsanalyse hjelper validering av design parametere før singel-objecktiv optimalisering blir utført i kapittel 5. I tillegg til single-objektiv optimalisering, vil multiobjective tilnærming bli grundig vurdert i kapittel 6. Foruten avhandlingen, har et sett med detaljerte beskrivelser relatert til bruken av programvaren, blitt vedlagt i A3 format. Disse kan også bli funnet i vedlegget.

Contents

1	\mathbf{Intr}	oduction 1
	1.1	Background
	1.2	Design Optimization
	1.3	Software
	1.4	Main Objective
	1.5	Scope of Work 6
	1.6	Limitation
2	Bas	e Line 7
	2.1	Material Data
	2.2	Load Case
	2.3	Coordinate systems
	2.4	Simulation
	2.5	Baseline Simulation Results
	2.6	Summary 16
	2.7	Discussion
3	Par	ameterization 18
	3.1	Design Limitations
	3.2	Synchronous Modeling and Expression
	3.3	Practical Approch for Parameterization in NX 21
	3.4	Baseline Design Results after Parameterization
	3.5	Summary
	3.6	Discussion

4	Sensitivity Analysis	32
	4.1 Sensitivity Analysis in NX	32
	4.2 Results	38
	4.3 Summary	45
	4.4 Discussion	45
5	Single-Objective Design Optimization with NX 8.5	47
	5.1 Work Sequence	50
	5.2 Results	
	5.2.1 Run 1	
	5.2.2 Run 2	
	5.3 Summary	56
	5.4 Discussion	
6	Multiobjective Design Optimization with modeFRONTIER	58
Ŭ	6.1 Pareto Optimal Solutions	
	6.2 Introduction to modeFRONTIER	
	6.3 Theory	
	6.3.1 Sampling Methods for DOEs	
	6.3.2 Scheduler	
	$6.3.3$ No free lunch theorem \ldots	
	6.4 Method	
	6.5 Selection of DOE in modeFRONTIER	
	6.6 Comparison of Schedulers	
	6.6.1 MOGA-II	
	6.6.2 MOGT	
	6.6.3 MOSA	
	6.6.4 Hybrid	
	6.7 Additional Reduction of Design Space	
	6.8 Summary	
	6.9 Discussion	
7	Conclusion	94
Bi	bliography	94
A	Sensitivity Analysis Results	98
в	Optimization in NX (run 1)	101

\mathbf{C}	Optimization in NX (run 2)	103
D	A3 Sheet: Geometry Optimization in NX	106
Е	A3 Sheet: Optimization Using modeFRONTIER together NX	with 110
F	A3 Sheet: modeFRONTIER postprocessing	123

List of Figures

1.1	a) Sizing optimization, b) Shape Optimization, c) topology opti-
	mization [1]
1.2	Original part from HAI 5
1.3	Overall workflow
2.1	Terminology of areas
2.2	Original test load direction and constraint
2.3	Coordinate systems
2.4	Placing the WCS
2.5	Orientation of the y-direction
2.6	Meshed solid body
2.7	Constraints
2.8	Applied bearing load
2.9	Stress plot
2.10	Local stress plot of the hole
2.11	Magnitude of displacement 16
3.1	Design limitations
3.2	Synchronous modeling and history tree
3.3	Expressions in NX
3.4	Linking design variables using user expressions
3.5	Offset Region (10) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 22$
3.6	Resize blend (4)
3.7	Delete face and edge blend
3.8	Expressions
3.9	Assign parameters to Offset Region (13)
3.10	Parameterized design variables (Top)
3.11	Parameterized design variables (Bottom)

	Edge Blend (17) removed	29
3.13	Displacement (magnitude)	30
4.1	Global Sensitivity	33
4.2	Defining objective	34
4.3	Defining constraints	34
4.4	How to add constraint	35
4.5	Defining design variables for the sensitivity analysis	36
4.6	Control Parameters	37
4.7	Sensitivity analysis results in Excel	38
4.8	Changes of displacement and stress for Inner_Offset	39
4.9	Changes of displeacement and stress for Large Cavity Thickness	40
4.10	Changes of displeacement and stress for Corner_Blend6	41
4.11	Sensitivity of the design parameters parameter.	42
4.12	Displacement (y-axis) plotted against design variable (x-axis) for	
	each of the design parameters	43
4.13	Comparison of different parameter values for Outer Offset	44
4.14	Revised design parameters	45
5.1	Altair HyperOpt curve fitting	48
5.2	Flowchart ARSM	49
5.3	Default control parameters for the geometry optmization	52
5.4	Excel screen shot from the optimization with default values \ldots	53
5.5	Objective plot for optimization run with default control parameters	54
5.6	Control parameters with harder convergence restrictions	55
5.7	Objective plot for optimization run with harder convergence re-	
	striction	56
6.1	Pareto Front[2]	59
6.2	Workflow in modeFRONTIER	60
6.3	Input variable properties	61
6.4	Mutation operator illustration with a bit string	64
6.5	One point crossover	64
6.6	Directional crossover	65
6.7	Illustrations of simplex steps [3]	66
6.8	Design table for random DOE	70
6.9	Design ID 1	71
6.10	1	72
6.11	Scatter matrix (Random DOE)	73

6.12	Scatter matrix (ULH) 74
6.13	Scatter matrix (Sobol)
	Base and steps
6.15	MOGA-II scheduler properties
6.16	Removed designs which is already presented
6.17	Run log
6.18	Scatter diagram
6.19	Scatter plot for MOGA-II
6.20	Mark Pareto designs
	Feasible designs
6.22	DOE for MOGT
6.23	MOGT - Scheduler properties
6.24	Scatter plotfor MOGT
6.25	Ranking of the designs
6.26	MOGA-II workflow (reduced run)
6.27	MOGA-II (reduced run)
6.28	Mass reduction and time consumption

List of Tables

2.1	Main material properties for Aluminum 7075 T7351	8
2.2	Baseline results	16
3.1	Results after parameterization	30
5.1	Control parameters [4]	51
5.2	Comparison of the design parameters	56
6.1	General comparison of the	69
6.2	Results MOGA-II.	84
6.3	Results MOGT	87
6.4	Results MOSA	88
6.5	Results MOGA-II (reduced)	91
6.6	Results for each scheduler	92

Nomenclature

- ABS Absolute coordinate system
- ARSM Adaptive Response Surface Method
- CAE Computer Aided Engineering
- DOE Design Of Experiment
- EC European Commission
- ES Evolution Strategies
- FEA Finite Element Analysis
- FEM Finite Element Method
- GA Genetic Algorithm
- GUI Graphical User Interface
- HAI Hellenic Aerospace Industry
- MCDM Multi Criteria Decision Making
- MOGA Multi-Objective Genetic Algorithm
- ${
 m MOGT}$ Multi-Objective Game Theory
- MOSA Multi-Objective Simulated Annealing
- RSM Multi-Objective Genetic Algorithm
- SA Simulated Annealing

- SM Synchronous Modelling
- SQP Sequential Quadratic Programming
- STL Stereolithography
- WCS Work coordinate system

Chapter 1

Introduction

1.1 Background

SuPLight is a multidisciplinary EC research project that involves participants from the industry as well as academic environments. The project will be a multidisciplinary research project combining metallurgy, continuum mechanics, structural mechanics, optimization algorithms, tolerance analysis and life cycle analysis. This multidisciplinary perspective represents a challenge, but is also necessary to yield result that exceed today's knowledge on the topic. SuPLight stands for Sustainable and efficient production of light weight solutions. As the world's energy needs get higher every day, one needs to find sustainable solutions that reduces today's energy consumption. Production of virgin aluminum is very energy consuming and more extensive use of recycled aluminum in addition to lightweight optimized solutions can reduce overall energy consumption. The main objective of the SuPLight project is to provide sustainable lightweight industry solutions based on wrought alloy aluminum. Some of the sub goals included:

- Gain a 50 % increased weight/performance ratio through optimization.
- More than 75 % post consumer recycled wrought a luminum alloy is to be used.
- New methodologies and tools for holistic Eco-design of products, processes and manufacturing

The SuPLight project aims to develop new methods and concepts that can be used by the industry. [5, 6]

As a contribution to the overall project, this thesis will seek to find out how it is possible to simplify the design optimization process by use of computer software fitted for this purpose.

1.2 Design Optimization

The field of Computer Aided Engineering(CAE) has grown rapidly the last decades and has become essential in the engineering field. A wide range of different design and analysis tools help to streamline the product development process. During the structural design process in various fields of engineering, the best decisions are made with respect to different aspects like stiffness, strength, construct ability and aesthetic property.

In structural optimization, use of different sets of data representing a mathematical model describes the behavior of a structure. Different control parameters are tuned by a set of design variables to find a situation in which the structure meets a given property [7]. It is common to divide structural optimization into the following three types:

- Sizing optimization involves different size parameters of the structure that is to be optimized. It is common to relate this kind of optimization to a problem where you have a truss containing beams, and you change the thickness of each beam. [8]
- Shape optimization is where you optimize a structure by changing conture or form without changing topology (introducing new holes). Shape optimization has an interdisciplinary character, meaning it can be used on a wide arrange of problems. This kind of optimization is more complex than the sizing optimization. It involves mathematical disciplines as partial differential equations, approximations of these and theory of nonlinear mathematical programming. In terms of three dimensional models and finite element methods, advanced software is required. [9, 8]
- Topology optimization optimizes the topology by, for example, making holes in the component. The algorithm changes the density of elements, controlling the stiffness contribution from that particular element. The result from the optimization must be interpreted and smoothed by the engineer, as output geometries are highly organic shapes that must be

processed before production. Today, gradient-based algorithms are mostly implemented in commercial software, however new algorithms are continuously developed. For a more detailed description, see [10]

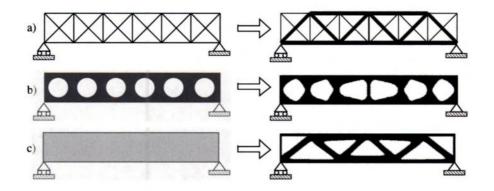


Figure 1.1: a) Sizing optimization, b) Shape Optimization, c) topology optimization [1]

As we can see, there is clearly a correlation between sizing and shape optimization, and several different definitions exists. In terms of this project, controlling various geometry parameters will be referred to as geometry optimization. This is in agreement with the terminology used in the CAE software.

1.3 Software

In this thesis, there are essentially two software packages which have been used. The first one is NX 8.5, which is advanced Computer Aided Design (CAD) and Computer Aided Engineering (CAE) software package developed by Siemens. This software is mainly being used for design (direct solid/surface modeling) and engineering analysis (static, dynamic, thermal using FEM). Intergrated in NX is the CAE software is called NX Advanced Simulations which includes a set of optimization tools[4]:

• Geometry Optimization: Modifies the dimensions of the geometry features or sketches, expression values, etc. This is used to achieve a design objective such as minimizing weight.

- **Topology Optimization:** Uses the Tosca topology optimization solver to adjust the material densities of the elements in your mesh to achieve a design objective such as minimizing weight. The result is an optimized STL or bulk data file that you can use as a guide for creating a new part.
- Shape Optimization: Uses the Tosca shape optimization solver to displace nodes in your mesh with the objective of reducing localized stresses or maximizing specific natural frequencies in your final design. The result is an optimized STL or bulk data file that you can use as a guide to make adjustments to your design.
- NX Nastran SOL 200 Design Optimization: Modifies physical and material properties and mesh associated data to achieve a design objective.

In this thesis we will only use the geometry optimization. This optimization tool contains two different optimization types:

- 1. Altair HyperOpt
- 2. Global Sensitivity

Only the former will actually try to optimize the model and make changes in the geometry.

Global Sensitivity evaluates the sensitivity of the design objective for each selected design variables By using this tool, it is possible to evaluate the design variables which have the most impact on model responses. Global Sensitivity is also a great way of investigating the design space.

The second software package being used is modeFRONTIER 4, a multidisciplinary and multiobjective software allowing easy coupling between different CAE tools. This software extracts results from NX (or almost any other CAE tool for that matter). It is a more advanced software than the geometry optimizers in NX by offering more options regarding how the software should meet the optima. modeFRONTIER has build-in support for a range of softwares. [11]

1.4 Main Objective

The main objective of this thesis is to document the process on how NX and modeFRONTIER can be used to perform geometry optimization. In addition to this, benchmarking the software based on the results and ease of use will be considered. A typical scenario will be to decrease weight without affecting the durability. In other words; how is it possible to automatically tune various design variables in order to reduce weight?

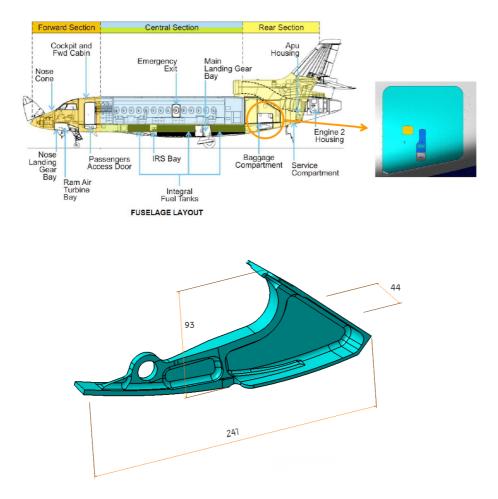


Figure 1.2: Original part from HAI

A case study is conducted in terms of an aircraft door connection arm from

Hellenic Aerospace Industry (HAI). Such door connection arm is located at the baggage door and are subjected to alternating loads (Figure 1.2). First we will try to do this with the optimization tool in NX, and compare this with the results from modeFRONTIER.

1.5 Scope of Work

In order to perform an ideal geometry optimization, the approach mapped in Figure 1.3 has been used.

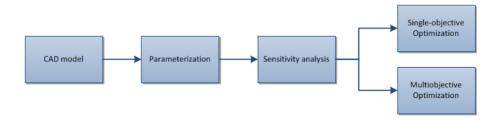


Figure 1.3: Overall workflow

The CAD model needs to be parameterized in order to capture design intents . To evaluate the parameterization, a sensitivity analysis will be performed using *Global Sensitivity*. The model is then ready to be optimized. In this case, it can either be done by a single-objective or a multiobjective analysis. All these steps will be described step by step throughout this thesis. Each chapter will contain a summary and a discussion. In addition to the specific case study, a general guide is given in the appendices D, E, F.

1.6 Limitation

- Only the multiobjective approch will be tested in modeFRONTIER.
- Production methods and tolerances will neither be discussed or brought into considuration.

Chapter 2

Base Line

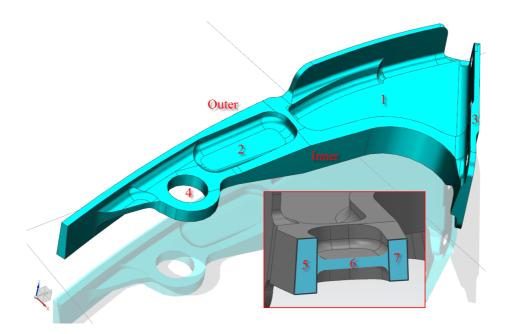


Figure 2.1: Terminology of areas

The intention of this chapter is to identify product requirements and optimization criteria on an initial stage. The base line should form a point of reference for the final model. A clarification of the terminology used when refering to certain areas on the part, is shown in Figure 2.1:

- 1. Large Cavity
- 2. Small Cavity
- 3. Bracket
- 4. Hole
- 5. Outer flange
- 6. Web
- 7. Inner flange

2.1 Material Data

The material to be used during the analysis is Aluminum 7075 T7351. This is a wrought alloy which is commonly used in the aircraft industries.

	Value	Unit
Density	2,81	$\frac{Kg}{dm^3}$
Ultimate Tensile Strength	505	MPa
Yield Tensile Strength	435	MPa
Fatigue Strength $5 * 10^8, R = -1$	150	MPa
E-modulus	72	GPa
Poisson's Ratio	0, 33	
Shear Modulus	26, 9	GPa

Table 2.1: Main material properties for Aluminum 7075 T7351

2.2 Load Case

The load case defined by HAI exposes the component to axial tension applied inside of a bearing hole. From a previously project concerning fatigue testing of the component, the constraints have been defined within a jig (Figure 2.2).

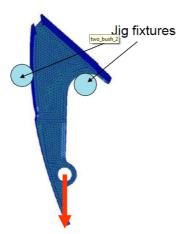


Figure 2.2: Original test load direction and constraint

The component is subjected to a tensile-tensile load of 2.5 kN. This means that the minimum load equals zero, while the maximum load equals 2.5 kN. To keep the focus directed towards the optimization, rather than determine cycles until fatigue, a static load of 2.5 kN will be applied. An overall goal for the optimization, is to reduce the weight by 10 % without affecting the stiffnes. The stiffness is expressed by displacement. Less stiffness involves more displacement. In addition, yield strength should not be exceeded.

2.3 Coordinate systems

Before moving on with the static analysis, the coordinate system needs to be reoriented. This gives a more proper representation of the displacements.

Two of the most important coordinate systems are [4]:

- Absolute coordinate system (ABS): represents origo. Only its orientation can be seen.
- Work coordinate system (WCS): main coordinate system which can be reoriented and is visible in the work environment

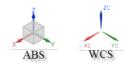


Figure 2.3: Coordinate systems

Only one of each of these coordinate systems exists for a model. On the original hinge model, the ABS together with WCS appears outside the model. This is inconvenient in terms of measuring displacements. For this reason the WCS is moved to the center of the hole.

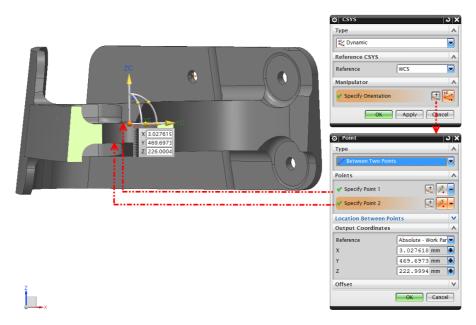


Figure 2.4: Placing the WCS

To move the WCS, choose Format \rightarrow WCS \rightarrow Orient. The edge around the hole is selected to position the WCS. By selecting one point on the upper and lower edge of the hole, the WCS is places into the middle of the web, see 2.4.

	Point Type Point on Curve/Edge Curve Select Curve (1) Location on Curve U Parameter U Parameter Output Coordinates Reference KC S.046539 mm CC S.046539 mm Offset Offset Offset Offset Offset Ca	n 💌	
Lx		>	

Figure 2.5: Orientation of the y-direction

The WCS is oriented with the y-direction parallel to the positive load direction so that the reaction displacement directs in the positive x-direction. This is performed by selecting Format \rightarrow WCS \rightarrow Change YC-direction (Figure 2.5).

2.4 Simulation

A static structural analysis was performed on the model using NX Advanced Simulation. All analyses will be performed using the NX NASTRAN solver.

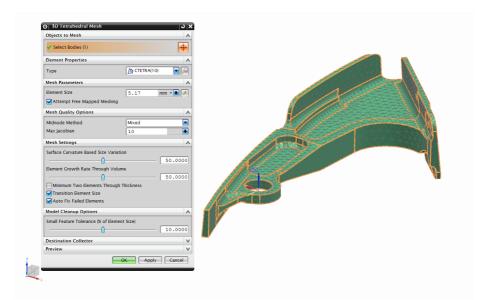


Figure 2.6: Meshed solid body

The element model was generated (meshing) using elements CTETRA(10). Automatic element size gave an element size of 5.17 mm (Figure 2.6)

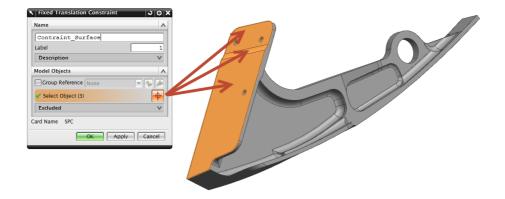
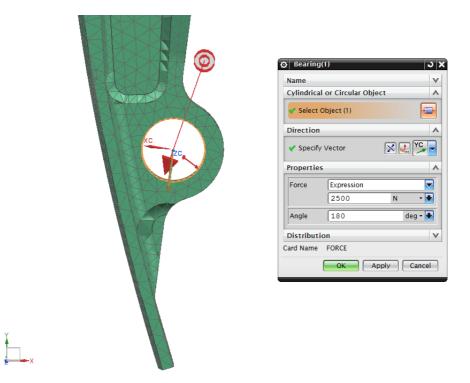
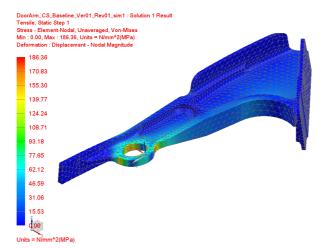
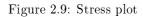


Figure 2.7: Constraints

Representing the constraint within a jig will complicate this problem. This involves introducing contact analysis, which takes a lot of time. It is more likely that the connection arm is constrained by the bracket. In this case, the constraints were defined as simple as possible to reduce computational time and achieve a more accurate result. Fixed constraint were therefore applied to the bracket (Figure 2.7). The bracket consists of three faces, where all three were selected.


Figure 2.8: Applied bearing load

The load type *Bearing* was used with the load applied on the surface inside the hole (Figure 2.8). The load directions was set to YC, which indicates that the load should acts in the WCS y-direction.

2.5 Baseline Simulation Results

The results from the simulations shows stress concentrations inside the hole and at the contours at the inner side of the component, close to the hole (Figure 2.9, 2.10)

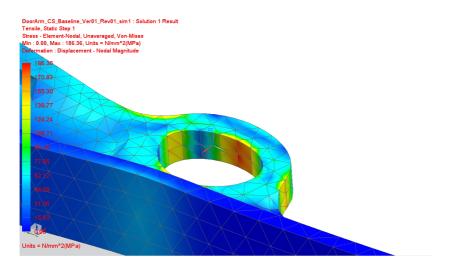


Figure 2.10: Local stress plot of the hole

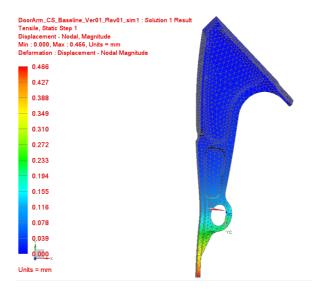


Figure 2.11: Magnitude of displacement

The displacements in x-direction, y-direction and the magnitude of displacement are based on the WCS. A plot showing the deformation when the component is subjected to load, is depicted in Figure 2.11.

	Table 2.2: Baseline results					
	Mass	Displacement Displacement I (x-direction) (y-direction)		Displacement Magnitude	Von Mises Stress (Elemental-Nodal)	
			(y-un ection)	wiagintude	(Elementar-roual)	
Max	202 g	$0.443 \mathrm{~mm}$	0.159 mm	0.466 mm	186.36 MPa	
Min] ²⁰² g	-0.009 mm	0.000 mm	0.000 mm	0 MPa	

Table 2.2: Baseline results

As can be seen in Table 2.2, the component experiences the largest displacement in x-direction, though the load is directed towards y-direction.

From now on, when displacement is mentioned, it will refer to the magnitude of displacement.

2.6 Summary

The component has been simulated with the material properties which were provided by HAI. This analysis gives an idea of what kind of stresses and displacements the component are subjected to. Because of the angled bracket, the component will be subjected to bending, as well as axial tension. The stiffness in the bending direction is less than the axial stiffness. This results in large displacement directed towards the x-direction. This results in greater tension in the inner flange than the outer flange.

2.7 Discussion

The constraint type used in this case differs from the one defined by HAI. While HAI in earlier fatigue analysis has chosen to use a jig constraint, fixed constraints were used in this case. There is reason to believe that this gives a more realistic representation for the global aspect. The jig constraint is most likely chosen to eliminate sources of error during a fatigue analysis, since the area around the hole is of greatest concern in terms of stresses.

Chapter 3

Parameterization

In order to perform an automatic geometry optimization process, the model needs to be parameterized to capture design intents. This involves controlling the design so that the optimization goal can be reached. In order to achieve a proper geometry optimization, the parameterization is important. As stated in [12], an ideal geometry parametrization should:

- 1. Be able to generate a large variety of physically realistic shapes with as few design variables as possible
- 2. Be robust meaning that a random perturbation of the design variable should still provide a realistic design
- 3. Be generic to be applied to a large variety of shape optimization problems and able to be integrated or coupled with any existing CAD system
- 4. Provide design parameters that can easily be handled by an engineer in order to define design variable bounds
- 5. Provide an easy optimization problem by minimizing the skewness and improving the conditioning of the design space

In this chapter, a detailed review on how the model is parameterized by use of NX is presented. In addition, the reason for the selected parameters will be discussed.

3.1 Design Limitations

Since the component should fit into the same position on the aircraft, HAI defined the following design limitations shown on the illustration.(3.1)

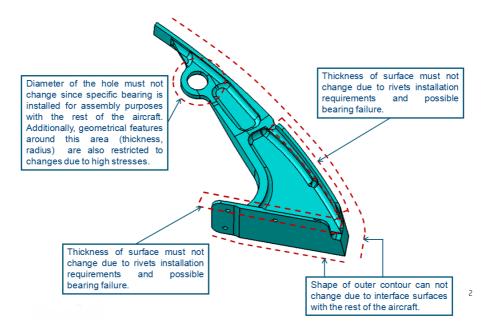


Figure 3.1: Design limitations

3.2 Synchronous Modeling and Expression

The original CAD model is modeled in a software called CATIA v4. The model file was initially made in the file format STEP (STandard for the Exchange)[13]. This format is supported by NX, but the software is not able to recognize any features (leaves an empty history tree). Such features is crucial for changing the geometry. Several CAD systems provides feature recognizion tool. In NX, this kind of tool is called *Synchronous modeling* (SM).

Figure 3.2: Synchronous modeling and history tree

SM is a very powerful tool with various types of commands allowing the user to modify the model regardless of its origins, associativity or feature history [4]. SM creates new features in the history-tree which the user can edit.

Listed Expressions						P1= P2=	1=
All							
Name 🔺	Formula	Value	Units	Туре	Со	Chec	
p20 (Replace Face(10) Offset Dista	0	0	mm	Number			-
p26 (Edge Blend(11) Radius 1)	Design_Varia	4	mm	Number			
p32 (Edge Blend(12) Radius 1)	4	4	mm	Number			
p38 (Edge Blend(13) Radius 1)	2.5	2.5	mm	Number			
p44 (Edge Blend(14) Radius 1)	2.5	2.5	mm	Number			=
p50 (Edge Blend(15) Radius 1)	8	8	mm	Number			
p56 (Edge Blend(16) Radius 1)	8	8	mm	Number			
p57 (Replace Face(17) Offset Dista	0	0	mm	Number			-
Type Number 💌		Ler	ngth				
Name p38						mm	
ormula 2.5							
) 🎓 🗉						

Figure 3.3: Expressions in NX

Each SM features is expressed by a design variable. The design variable is given by a value referring to the size of either an offset, radius or similar. The value will be entered when applying a feature, or it can be edited later in the history tree. NX also has a tool called *Expressions* (Tools \rightarrow Expressions) where all variables are shown (Figure 3.3). Be aware of that the terms design parameters and design variables can be used interchangeably.

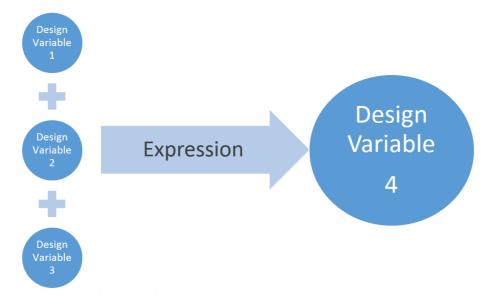


Figure 3.4: Linking design variables using user expressions

To limit the amount of design variables in future analysis, user defined variables can be added. One user defined variable can be used for several design variables (Illustrated in Figure 3.4).


In the following chapter, a practical approch for performing parameterization in NX is discribed by practical implementation.

3.3 Practical Approch for Parameterization in NX

Design parameterization implies creating solid features and relating dimensions that can be changed and still preserve a model update properly. The selection of the design variables is left to the user. Therefore, the quality will most likely differ due to the users experiences and creativity.

The SM commands which were used are:

- Offset Region: Moves a face in a direction perpendicular to the face
- Resize Blend: Changes the radius of a blend
- Delete Face: Removes selected geometry or holes

In addition to these SM commands, Edeg Blend was used.

Figure 3.5: Offset Region (10)

In Figure 3.5 it is shown how the command, **offset region** adjusts a face. The function can adjust the face in both directions, but can not be set equal to zero. This command was used on all faces where the thickness should be adjusted. The thicknesses of the webs inside the two cavities needed four such features (two cavities, top and bottom).

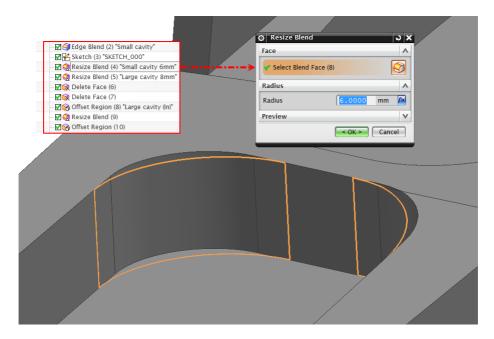


Figure 3.6: Resize blend (4)

Resize blend was used in all four corners of the small cavity and in two corners in the large cavity.

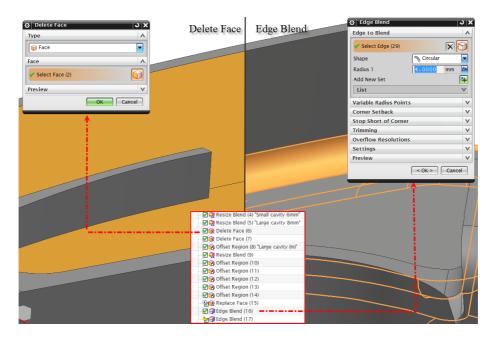


Figure 3.7: Delete face and edge blend

For the blends along the edges, inside the two cavities, the command **resize blend** did not manage to recognize the initial blends. For that reason, **delete face** was first used to remove the initial blend by then apply a new blend with the command **edge blend**.

Listed Expressions						P1= P2= P2	
Named							
Name 🔺	Formula	Value	Units	Туре	Co	Che	
Corner_Blend6	6	6	mm	Number			
Corner_Blend8	8	8	mm	Number			
Inner_Offset	0.01	0.01	mm	Number			
Large_Cavity_Blend	4	4	mm	Number			
Large_Cavity_Thickness	0.01	0.01	mm	Number			
Outer_Offset	0.01	0.01	mm	Number			
Small_Cavity_Blend	2.5	2.5	mm	Number			
Small_Cavity_Thickness	0.01	0.01	mm	Number			
Type Number 🔽			Length				
Name Corner_Blend6					m	m	
ormula 6.00000	0000						
	- 		X				

Figure 3.8: Expressions

It is reasonable to let equal design variables be controlled by one user expression. The parameter needs a name, and a value. A total of eight parameters were established to control almost the whole surface of the component, except the areas which are restricted by the design limitations (Figure 3.8).

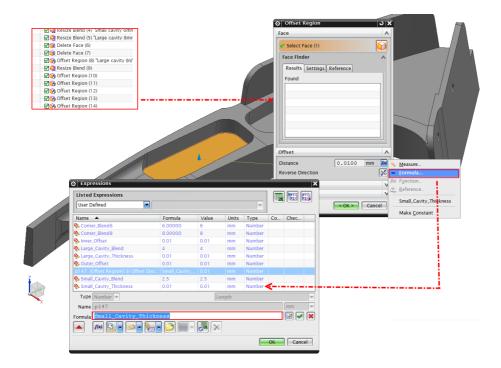


Figure 3.9: Assign parameters to Offset Region (13)

In order to assign user expressions to the various design parameters, the features need to be edited. Instead of the initial constant value, "Formula" is chosen from the menu. This is illustrated in Figure 3.9.

As mentioned earlier, the feature **offset region** is not allowed to be set equal to zero. For that reason it was defined as 0.01 mm.

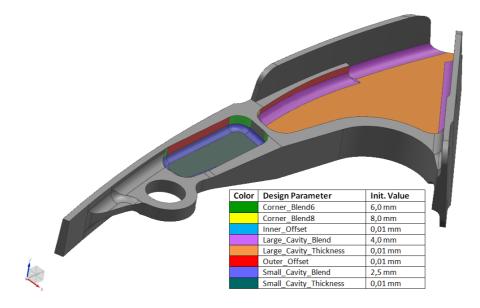


Figure 3.10: Parameterized design variables (Top)

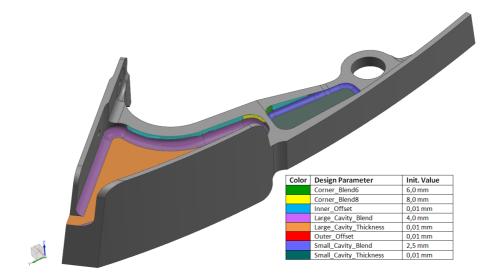
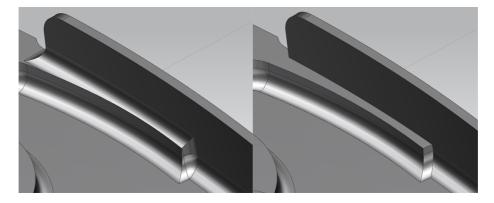
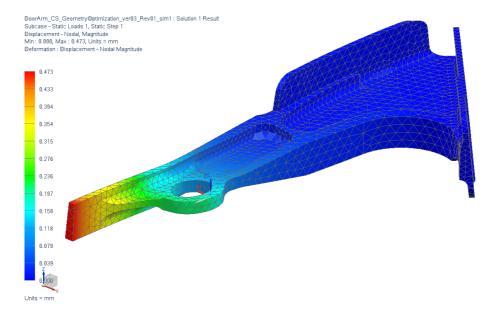


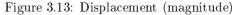
Figure 3.11: Parameterized design variables (Bottom)

Figure 3.10 and Figure 3.11 shows how smart selection of linked design expressions are chosen to reduce the number of parameters. The thickness of the inner flange in both of the cavities, are represented by the same design variable **Inner Offset**. The same goes for the outer flange **Outer Offset**.

The thicknesses of the webs in the two cavities are represented by two parameters Large_Cavity_Thickness and Small_Cavity_Thickness. Defining the positive direction perpendicular outward from the face, prevents the center from misalignment.

All of the four blends is represented by one design parameter each.


Figure 3.12: Edge Blend (17) removed

Outer_Offset had problems updating the geometry due to a blend which suddenly disappeared when this parameter was changed. This blend was therefore removed in order to achieve a robust design parameterization (Figure 3.12).

3.4 Baseline Design Results after Parameterization

Because of the changes made in the geometry, new simulation results were necessary. Only the displacement plot is shown in Figure 3.13.

The values from the optimization are presented in Table 3.1.

	Table 5.1. Results after parameterization						
Γ		Mass	Displacement	Displacement	Displacement	Von Mises Stress	
		mass	(x-direction) (y-direction)		Magnitude	(Elemental-Nodal)	
Γ	Max	201.4 g	$0.449~\mathrm{mm}$	0.166 mm	$0.473~\mathrm{mm}$	186.15 MPa	
	Min	201.4 g	0 mm	0 mm	0 mm	0 MPa	

Table 3.1: Results after parameterization

The new simulation showed a slight increase in the displacement, due to the blend that was removed. This gave a slight mass reduction which will form the basis of the optimization criteria.

3.5 Summary

The part has been successfully parameterized in order to capture design intents. A qualitative evaluation of the parameterization can be done in relation to the

five principles regarding an ideal parameterization. SM has provided the model with possibility of generating a large variety of realistic shapes.

Many of the design variables have been linked by use of expression, so one design parameter is able to control several design variables. This helps save computational time, but also compromises the flexibility.

3.6 Discussion

Not every parameter value is feasible in order to return a successful model update, so the design range for each parameter needs to be explored further. In order to run an automated computer based optimization run, it is necessary to define a range for each of design variables. This will help make the parameterization robust.

In many cases, there may be many more design variables to choose from. The parameterization will then be more dependent on the user experience. It is then sensible to start with the design variables which apparently have most impact on the load case.

One aspect mentioned in the principles was to make the parameterization generic and integrable. It is not certain that the SM features is supported by other CAD systems. Compatibility issues like these are common for any other CAD system as well.

Further investigation by performing sensitivity analysis will help to minimize the design space and remove parameters which have minor influence on the optimization.

In this case, nearly all allowed surfaces and fillets were included in the paramterization. **Outer_Offset** and **Inner_Offset** could be divided into four parameters, implementing even more opportunities for the sensitivity.

Chapter 4

Sensitivity Analysis

Flexibility was mentioned as an important aspect of optimization in the previous chapter. But flexibility also has its price. A large number of parameters may appear to give more freedom of choice to the design. However, as the dimensionality of the design space grows, looking for better designs becomes more complex. This results in huge computational cost (time consumption) as the number of parameters increases. Accordingly, efforts should be made to keep the number of input variables as low as possible without sacrificing independence of design intents

Global Sensitivity in NX is a process that enables you to determine how sensitive the design objective is to each design parameter. This helps predict which parameter has the most impact on critical model response [4]. In addition, the design space can contain values which will lead to unsolvable geometry. Performing such an analysis can help to find the values causing this issue. It is important that the design space is continuous so the optimization becomes successful.

In this Chapter, a sensitivity analysis will be performed by use of NX Advanced Simulations.

4.1 Sensitivity Analysis in NX

Prior to the sensitivity analysis, it is necessary to run a standard linear simulation with desired loads and constraints. This is because the geometry optimization will use this simulation as a basis for further optimization. The simulation performed in Section 2.5 will be used further.

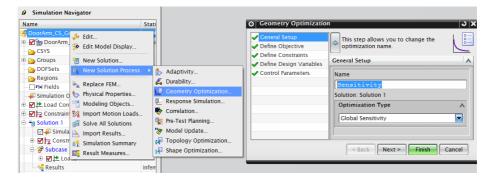


Figure 4.1: Global Sensitivity

The wizard window to perform such an analysis is similar for both of the geometry analysis in NX. Many of the options are not as relevant for a *Global Sensitivity* analysis, as to an *Altair HyperOpt* optimization (will be discussed in Chapter 5).

In NX you can choose objectives like:

- Weight
- Volume
- Result measures (stress, displacement, rotation and reaction force)

During a sensitivity analysis in NX, objective and constraints are basically the same. Both ways, the wanted output variables can be extracted from the analysis.

 Geometry Optimizatio General Setup Define Objective Define Constraints 	This step allows you to define the optimization.	objective of the	1
 Define Design Variables 	Define Objective		^
 Control Parameters 	Objective		^
	Туре	Weight	
	Category		S -
	Apply To	Body	
	Select Meshed Geometry (0)		•
	Weight		
	Parameters		~
	●Minimize ○Maximize ○Ta	rget	
	Target Value	0	.0000
	Unit	N	
	- Back	Next > Finish	Cancel

Figure 4.2: Defining objective

Figure 4.2 depict how weight has been chosen as the objective. NX only allows single-objective geometry analysis.

 Geometry Optimization General Setup Define Objective Define Constraints Define Design Variables 		s you to define the con s	straints of the optimiz	ation.		د ***
 Control Parameters 	Name	Category	Response Type 🔺	Limit Type	Limit Value	200
	Result Measure	Model Constraints	Result Measure	Upper	200.000000	- 2
	Result Measure	Model Constraints	Result Measure	Upper	0.600000	
	•					۲
			E	< Back Nex	t > Finish	Cancel

Figure 4.3: Defining constraints

To get more outputs variables, these had to be defined as constraints (Figure 4.3).

Define C	onstraints	<u>ວ</u> x			🕸 Result Measure			ు
Constraint	s	~			Solution			
Туре	Result	Measure 🔽			Solution 1			
Edit Constra	ints				Input			
vonmises_el	lemental_nodal=186	.15 N/mm^2(MP				(a) et		
					Result Type	Stress - Eleme	nt-Nodal	
•	III	•			Component	Von-Mises		
					Coordinate System	Work Rectang		
					Units	N/mm^2(MPa)		
Parameters		^			Absolute Value			
Limit Typ	e OLower		i		Operation			
Upper	OLower				Minimum	Maximum	Mean Ave	erage
Limit Value		200.0000	i 1		Model Subset Selec			
	ОК	Cancel	i 1			ction		
					Entire Model			
			i		Name			
1				1	Expression Name	vonmises_	elemental_r	loda
Result Me	easure Manager		ļ			OK		ancel
			.					Ĥ
Solution	Quantity Displacement	Component Magnitude	Operation Maximum	Selection T Entire Model	Value Disp_magn=0.4735	\	Units	-11
Solution 1	Stress	Von-Mises	Maximum	Entire Model	vonmises_elemental_	nodal=186.15	N/m	
	G						>	
							Close	

Figure 4.4: How to add constraint

Figure 4.4 describes how to add von Mises stress as a constraint. The von Mises stress (elemental nodal) is used as output variable. In addition, displacement (magnitude) is also defined as a constraint.

The defined limits for constraints and objective, does not have any influence on the result during the sensitivity analysis other than highlighting the exceeded values in red.

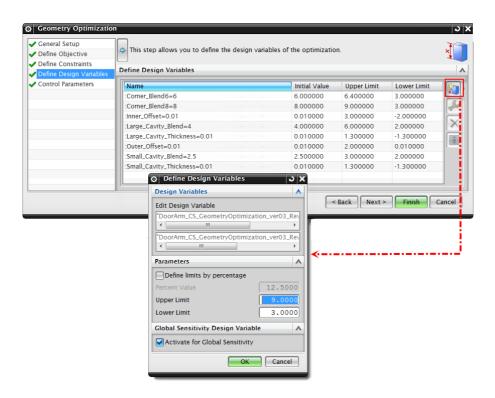


Figure 4.5: Defining design variables for the sensitivity analysis

An attempt to change the design parameters by trial and error, verified to what extent, and how the design range for each parameter could be changed. A rough evaluation of these values were used to define the upper and lower limit. When running such a analysis it is necessary to tick of "Activate for Global Sensitivity" in order to achieve results.

Geometry Optimization		ວ x
 General Setup Define Objective Define Constraints 	This step allows you to define the control parameters to end the optimization.	
 Define Design Variables 	Control Parameters	•
Control Parameters	Maximum Number of Iterations	15
	Convergence Parameters	^
	Max Constraint Violation (%)	2.5000
	Relative Convergence (%)	0.2000
	Absolute Convergence	0.0010
	Perturbation Fraction	0.2000
	Global Sensitivity Parameter	^
	Constraint checking	
	< Back Next > Finish	Cancel

Figure 4.6: Control Parameters

The last step for setting up an analysis, is the control parameters (Figure 4.6). "Maximum Number of Iterations" has been set to 15. This specifies how many uniformly distibuted steps each of the design ranges should be devided into. As an example, if the lower limit is 0 mm, and the upper limit is 3 mm, the increments will be 0.2 mm when the amount of iteration is set to 15. In order to return output values for each and every design, *Constraint checking* needs to be ticked off.

4.2 Results

NX returns an Excel spreadsheet with the results from the analysis (Appendix A). An analysis like this took less than half an hour.

Step #1 -1,30 1,70	Step #2 -1,11 1,74	Step #3	Step #4			
-1,30	-1,11		Step #4			
-1,30	-1,11		Step #4			
-1,30	-1,11		Step #4			
-1,30	-1,11		Step #4	C1		
		0.02		Step #13	Step #14	Step #15
1,70	1.74	-0,93	-0,74	0,93	1,11	1,30
	1,, 4	1,78	1,82	2,17	2,21	2,25
				\$		
0,56	0,52	0,50	0,49	> 0,46	0,46	0,46
186,45	184,98	184,99	184,92	> 185,17	184,99	185,32
ŝtep #1	Step #2	Step #3	Step #4	Step #13	Step #14	Step #15
-1,30	-1,11	-0,93	-0,74	0,93	1,11	1,30
1,91	1,92	1,93	1,94	2,02	2,03	2,03
0,50	0,50	0,49	0,49	0,46	0,46	0,46
400.07	100 50	187.68	186,93	2		183.23
	Step #1 -1,30 1,91	Step #1 Step #2 -1,30 -1,11 1,91 1,92 0,50 0,50	Step #1 Step #2 Step #3 -1,30 -1,11 -0,93 1,91 1,92 1,93 0,50 0,50 0,49	Step #1 Step #2 Step #3 Step #4 -1,30 -1,11 -0,93 -0,74 1,91 1,92 1,93 1,94 0,50 0,50 0,49 0,49	Step #1 Step #2 Step #3 Step #4 Step #13 -1,30 -1,11 -0,93 -0,74 0,93 1,91 1,92 1,93 1,94 2,02 0,50 0,50 0,49 0,49 0,46	Step #1 Step #2 Step #3 Step #4 Step #13 Step #14 -1,30 -1,11 -0,93 -0,74 0,93 1,11 1,91 1,92 1,93 1,94 2,02 2,03 0,50 0,50 0,49 0,49 0,46 0,46

Figure 4.7: Sensitivity analysis results in Excel

Figure 4.7 depicts a screenshot, showing some of the outcome from the sensitivity analysis. Each of the design ranges was split into 15 uniformly distributed steps. For each step, the weight (as the objective), stress and displacement (as constraints) were extracted.

The first thing to notice from the spreadsheet, is how the stress is affected. While the displacement either increases or decreases smoothly, the stress tends to shift inconsistently.

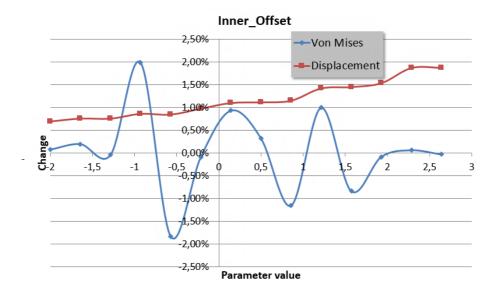


Figure 4.8: Changes of displacement and stress for Inner_Offset

Figure 4.8 shows respectively the percentage change from one parameter value to the next, for the parameter **Inner_Offset** (parameter values in millimeters). Here, the percentage change increases more or less consistently for the dispacement. The von Mises stress on the other hand, tends to alternate unconsistently.

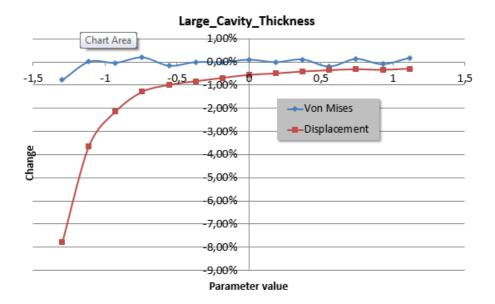


Figure 4.9: Changes of displeacement and stress for Large Cavity Thickness

For Large <u>Cavity</u> <u>Thickness</u>, the von Mises stress is insignificantly affected. The displacement experiences substantial changes in the beginning. This is caused due to the thickness of the web in the large cavity, where the cross section becomes so small that most of the stiffness disappears.

This proves how stresses around the hole, will not be affected to the same extent as the displacement, since the changes in the geometry is made in an area remote from the hole where the stresses are remarkably less.

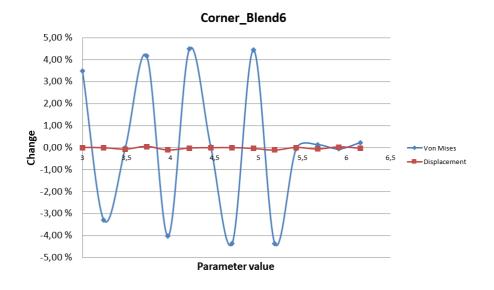


Figure 4.10: Changes of displeacement and stress for Corner Blend6

Figure 4.10 shows how **Corner Blend6** has little influence on the displacement, while the von Mises stress has a tendency to alternate rapidly.

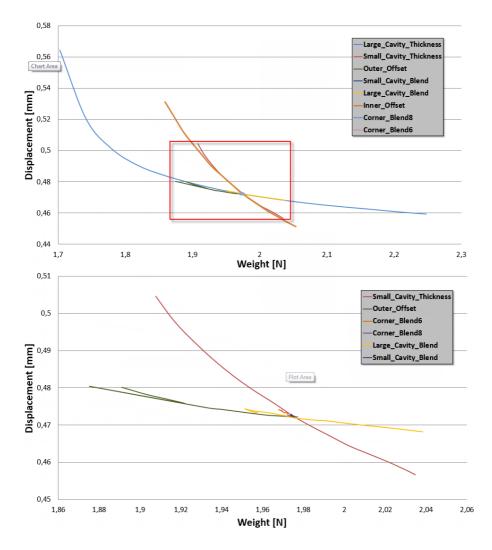


Figure 4.11: Sensitivity of the design parameters parameter.

In Figure 4.11, displacement (y-axis) is plotted against weight (x-axis). This gives a good visualization of how each of the design parameters respond to changes. The gradient along the curves expresses the impact displacement has in relation to weight. The flatter sections of each curve is where we can achieve most weight reduction without compromising deformation excessively. This also goes for the shorter lines, which have less influence on the optimization. Large Cavity Thickness, Small Cavity Thickness and Inner Offset are the most important design variables, since they have great influence on the objective.

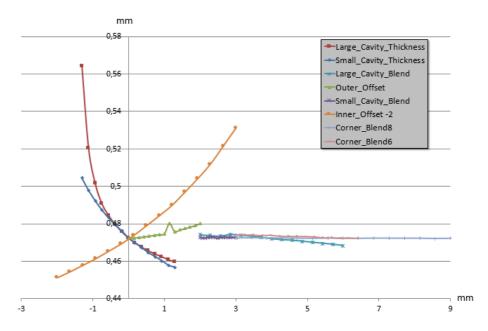


Figure 4.12: Displacement (y-axis) plotted against design variable (x-axis) for each of the design parameters

The lower plot shows a zoomed section of the curves inside the red box. Some of the curves are even so short it is not possible to spot. There is no reason to use those design parameters in further optimization analysis since they will have negligible impact on the objective.

Outer_Offset makes an unsuspected turn. It is clear that the parameter struggles to make a solvable geometry update for certain parameter values. To

be able investigate the design range for the design parameters, and determine which value is causing this issue, another plot is needed. The plot underneath shows the displacements (y-axis) plotted against the design variables (x-axis) for all parameters (fig. 4.12).

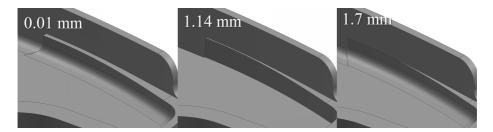


Figure 4.13: Comparison of different parameter values for Outer Offset

As can be seen from the green curve, **Outer_Offset** has problems updating the geometry for the value 1.14 mm. The model was updated manually with this value. This proved how the blend (represented by **Large_Cavity_Blend**) appears to fail as the flange penetrates the inner face of the bracket. Letting the face penetrate the bracket was not the intention in the firste place, when the design range was stated. It also conflicts with design limitations (Section 3.1).

4.3 Summary

Use of global sensitivity in NX has proven to be a very simple way of performing a sensitivity analysis and is not very time consuming either.

General Setup Define Objective Define Constraints Define Design Variables	This step allows you to define the design variables of the optimization. Define Design Variables				X
Control Parameters	Name	Initial Value	Upper Limit	Lower Limit	
	"DoorArm_CS_GeometryOptimization_ver03_Rev01"::Small_Cavity_Thickness	0.010000	1.000000	-1.000000	-
	"DoorArm_CS_GeometryOptimization_ver03_Rev01"::Inner_Offset=0.010000	0.010000	3.000000	-1.000000	2
	"DoorArm_CS_GeometryOptimization_ver03_Rev01"::Outer_Offset=0.010000	0.010000	1.000000	0.009000	
	"DoorArm_CS_GeometryOptimization_ver03_Rev01"::Large_Cavity_Blend=4	4.000000	6.000000	3.000000	>
	DoorArm_CS_CeometryOptimization_ver03_Rev01*:Large_Cavity_Thickness_	0.010000	1.000000	-1.000000	

Figure 4.14: Revised design parameters

After a sensitivity analysis, the following questions should be answered:

- Which are the most important design variables?
- Should any of the design variables be excluded from the analysis?
- Can the design space be reduce by changing upper and lower limit for each design variable?
- Which objective and constraints are suitable for my optimization?

Based on the sensitivity analysis we will continue with the following design parameters and limits in the optimization analyses. Three of them were discarded, leaving five to the optimization.

The upper limit of the design range for **Outer_Offset**, has been reduced to 1.00 mm. The lower limit for **Inner_Offset** is reduced since the value increased the flange thickness more then necessary in comparison to the other variables.

4.4 Discussion

How sensitive each design parameter is compared to weight, stresses or displacements are of great interest in relation to the optimization. If changing one parameter results in negligible influence on the objective, it can be excluded from the optimization analysis. This will help saving computational time. A sensitivity analysis is helpful when it comes to understanding how the design parameters affects the objective and constraints.

Performing a sensitivity analysis is strongly recommended in order to gain knowledgment of the design space. This can help to decreasing the computational time of the optimization analysis.

When it comes to validating what parameters to bring into the further optimization analysis, there will be a compromise between flexibility and robustness. In this case, it could also be beneficial to exclude Large Cavity Blend from the optimization, but since it had a gentle gradient, it was kept in.

The sensitivity analysis has proven why stresses in this case should not be used as an optimization objective. Peak stresses are likely to occour in areas where the force is applied, and these stesses will not be affected by the structural changes in remote regions. Displacement is then a more robust objective to use in further analysis.

Mesh Control is a tool NX tool that can refine the element model in specific areas. If this was applied in the areas around the hole, the stresses would perhaps behave gentler.

Chapter 5

Single-Objective Design Optimization with NX 8.5

Single-objective optimization, as the name implies, is a optimization where you only deal with one objective. It can either be to maximize, minimize or reach a certain target for the objective by changing the assigned parameters. The geometry optimization tool in NX is based on a software called *Altair HyperOpt*. The *Altair hyperOpt* is an adaptive response surface method (ARSM). Hyperopt uses a quadratic polynomial that is found and updated for each of the iterations. These are based on current and previous iterations. Least square algorithm is used to define the polynomial (See Altair documentation for more detailed information about the algorithm) [14].

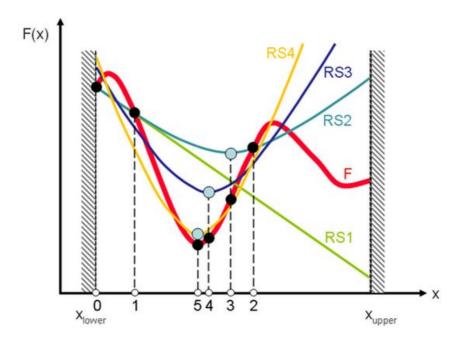


Figure 5.1: Altair HyperOpt curve fitting

In Figure 5.1, the algorithm tries to estimate a quadratic polynomial which will fit the actual function curve (F). As new designs are found along F, the response surface curve is updated (RS1, RS2, ..., RSx) until convergence is reached. In case the last quadratic polynomial curve does not converge sufficiently, the process is restarted from the first linear RS1 and quadratic response surfaces is generated for RS2, RS3 and so on. [4, 15].

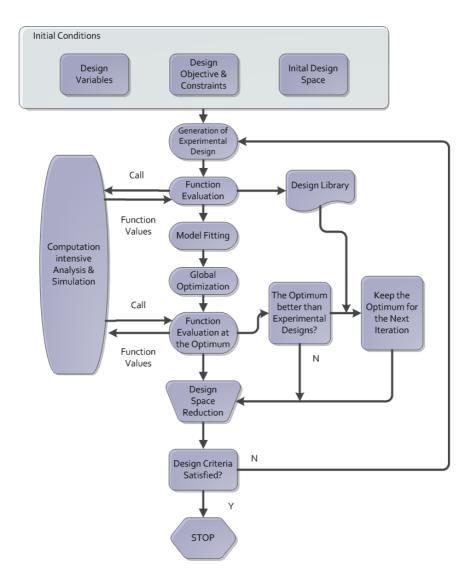


Figure 5.2: Flowchart ARSM

Figure 5.2 shows the overall process of the ARSM procedure. [16]

5.1 Work Sequence

Performing a geometry optimization is performed almost the same way as the global sensitivity. Therefore, most of the dialog box illustrations will be omitted.

The objective was kept with the same properties, trying to minimize the weight. Instead of using both deformation and stress as constraint limits, the stress was excluded from the optimization as a concequence of the results in the *Global Sensitvity* analysis. The design parameters will be defined as shown earlier, in Figure. 4.14.

There are many ways of defining the control parameters and without performing a test run, it can be difficult to predict how these parameters should be defined. Therefore, it could be advisable to run the first analysis with the default settings. We will here try to give a short description of each of the parameters:

	Control parameters [4]
Control Parameter	Description
Maximum Number	The maximum number of iterations that the
of Iterations	optimization is allowed to run. The analysis will
	stop prior to this if has reached convergence
Max Constraint	How much the analysis is allowed to violate the
Violation (%)	constraints. The constraints which are violated
	with be marked red in the excel sheet.
Relative Convergence (%)	Controls the percent change of the objective from
	the last two iterations at which the optimization is
	considered converged. The design is converged when
	the the percentage change is less than this value or
	if the allowable constraint is exceeded in the last
	iteration
Absolute	Controls the actual change from the last two
Convergence	iterations at which the absolute change of the
	objective is considered converged. The most
	conservative control parameter of the relative or
	the absolute criteria is when the analysis is
	converged
Pertubation	How many percent the design variable is allowed to
Fraction	change during the first few iterations. The deisgn
	parameter is allowed to change as much as this
	value times the difference between the upper and
	lower limit for each of the design parameter.

Table 5.1: Control parameters [4]

5.2 Results

One run will be performed with the default settings, the other with more stringent control parameters.

It will be possible to determine whether there is much to be gained by setting more stringent convergence requirements.

5.2.1 Run 1

Geometry Optimization	າາ	×
 General Setup Define Objective Define Constraints 	This step allows you to define the control parameters to end the optimization.	>
 Define Design Variables 	Control Parameters	
✓ Control Parameters	Maximum Number of Iterations 20	
	Convergence Parameters	
	Max Constraint Violation (%) 2.5000	
	Relative Convergence (%)	
	Absolute Convergence 0.0010	
	Perturbation Fraction 0.2000	
	Results Management	
	Save results for all iterations	
	< Back Next > Finish Cancel	

Figure 5.3: Default control parameters for the geometry optimization

After nine iterations the analysis stopped. The analysis with default control parameters returned the following values in an Excel spreadsheet (Appendix C):

Based on Altair HyperOpt									
Design Objective Function Results									
Minimum Weight [N]	0	1	2	3	4	5	6	7	8
	1,9756	1,9948	1,9444	1,9546	1,9919	2,0597	1,9306	1,9090	1,9095
Mass	201,3816	203,3425	198,2010	199,2485	203,0440	209,9603	196,7953	194,5984	194,6518
Difference	0,0000	-1,9609	3,1806	2,1331	-1,6625	-8,5788	4,5863	6,7831	6,7298
Improvement %		-0,97 %	1,58%	1,06 %	-0,83 %	-4,26 %	2,28 %	3,37%	3,34 %
Design Variable Results									
Name	0	1	2	3	4	5	6	7	8
Small_Cavity_Thickness=0.010000	0,010	0,410	0,010	0,010	0,010	0,010	-0,095	0,000	0,000
Inner_Offset=0.010000	0,010	0,010	0,810	0,010	0,010	0,010	-0,076	-0,166	-0,261
Outer_Offset=0.010000	0,010	0,010	0,010	0,510	0,010	0,010	0,100	0,195	0,295
Large_Cavity_Blend=4	4,000	4,000	4,000	4,000	4,600	4,000	3,240	3,000	3,000
Large_Cavity_Thickness=0.010000	0,010	0,010	0,010	0,010	0,010	0,410	-0,090	-0,195	-0,191
Design Constraint Results									
	0	1	2	3	4	5	6	7	8
Result Measure									
Upper Limit = 0.475000 [mm]	0,47305	0,46638	0,48338	0,47312	0,47112	0,46693	0,47624	0,47549	0,47432
Limit	0,475	0,475	0,475	0,475	0,475	0,475	0,475	0,475	0,475
Violation %	-0,19 %	-0,86 %	0,84 %	-0,19 %	-0,39 %	-0,81%	0,12 %	0,05 %	-0,07 %

Optimization History

Figure 5.4: Excel screen shot from the optimization with default values

The red numbers are iterations which violateed the upper limit. To be able to determine the improvements, some data (highlighted in blue) was added to the Excel sheet. The analysis was able to reduce the weight by approximately 3.34%.

Design variable **Small_Cavity_Thickness** seems to be zero, which is not possible because like described in the Chapter 3. In fact, the variable is not zero, but the table rounds off digits after three decimal places.

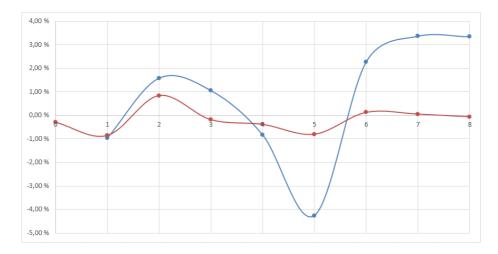


Figure 5.5: Objective plot for optimization run with default control parameters

The analysis is considered converged since the percentage change in the objective from iteration 6 to 7 and 7 to 8 is less than the specified relative convergence (2.5 %). The absolute convergence criteria is also reached from 7 to 8 (0.001 mm).

5.2.2 Run 2

By setting tighter restrictions for the convergence criteria, it will be possible to compare and see if the analysis will return a better optimum. As a consequence of this, the time it takes to run the analysis will increase. By keeping perturbation fraction equal to the last run, it is most likely the objective will converge around the same design variables (Figure 5.6).

O Geometry Optimization	່ ວ 🗙
 General Setup Define Objective Define Constraints 	This step allows you to define the control parameters to end the optimization.
Define Design Variables	Control Parameters
Control Parameters	Maximum Number of Iterations 50
	Convergence Parameters
	Max Constraint Violation (%) 2.5000
	Relative Convergence (%) 0.5000
	Absolute Convergence 0.0010
	Perturbation Fraction 0.2000
	Results Management
	Save results for all iterations
	< Back Next > Finish Cancel

Figure 5.6: Control parameters with harder convergence restrictions

The Excel spreadsheet is shown in Appendix C. After 12 iterations the analysis was completed, returning a slight decrease in constraint violation. The objective improvement was now decreased down to 5.66 %, a remarkable improvement. The displacement constraint was violated by 0.09% for the last pertubation.

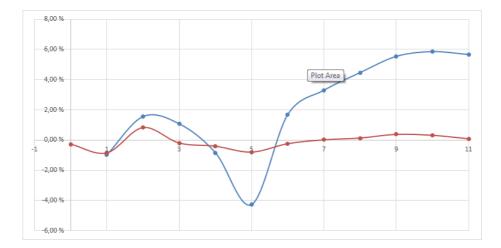


Figure 5.7: Objective plot for optimization run with harder convergence restriction

"Maximum Number of Iterations" is set to 100. Some test runs showed that the analysis stopped long before this value was reached.

5.3 Summary

NX Advanced Simulations contains a simple optimization tool with focus on ease of use. Such analysis is practically easy to perform. Choosing a more stringent convergence criterion, gives a remarkably better outcome in this case.

	Initial	Run 1	Run 2
Small Cavity Thickness [mm]	0.010	0.00	0.395
Inner Offset [mm]	0.010	-0.261	-0.328
Outer Offset [mm]	0.010	0.295	0.343
Large Cavity Blend [mm]	4.00	3.000	3.000
Large Cavity Thickness [mm]	0.01	-0.191	-0.503
Mass [g]	201.4	194.7	190.0
Mass reduction	-	3.34 %	5.66~%

Table 5.2: Comparison of the design parameters

The improvement from the first to second run is remarkable (Figure 5.2). The constraint violations of the weight limit in the two runs are so small it is justifiable to compare the improvement in the two runs. The solver chooses to increase **Outer Offset** in both runs. In the second run **Small Cavity Thickness** is increased as well. The rest of the design parameters are decreased.

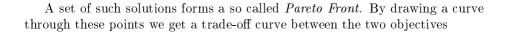
5.4 Discussion

HyperOpt's Achilles' heel, is the way it searches through the designs. Premature convergence can easily occour when a local optimum is found. This have to do with the quadratic polynomial which is not able to give a comprehensive representation of the entire function curve. One way of controlling this behavior is by experimenting with various values for the Pertubation Fraction, mentioned earlier in this chapter. This will gives a wider search, that may result in finding new unrevealed solutions.

It could also be interesting to see if the convergence had been better if the convergence criteria was tightened further.

The displacement constraint limit was set to 0.475 mm instead of 0.473 mm. This was not the intention, but it would have taken an impractical amount of time to correct the error. This value is so close to the initial displacement, it will have a minor influence on the component.

Chapter 6


Multiobjective Design Optimization with modeFRONTIER

In contrast to the single-objective optimization, we have the multiobjective optimization. Such an optimization deals with two or more conflicting objectives. Most real life problems involve improving one objective sacrificing another. In this case, using a multiobjective approach gives a better understanding of the problem.

This chapter will begin with an introduction to modeFRONTIER and study the various optimization algorithms the software uses. The quality of the algorithms will be benchmarked by practical implementation with the door connection arm.

6.1 Pareto Optimal Solutions

An example of a typical multiobjective solution is depicted in Figure 6.1. Here there are two conflicting objectives, one on each axis. In the case where two objectives is put up against each other, a large variety of solutions can be extracted. The Pareto Optimal solutions (non-dominated solutions) are the solutions which can not be improved in value without impairment in any of the other objective values [5].

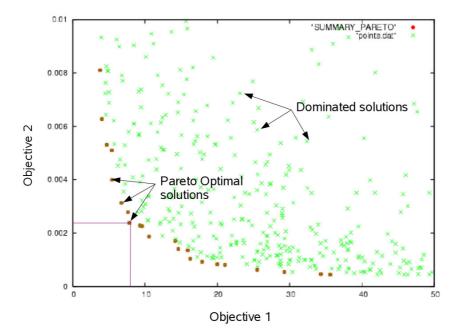


Figure 6.1: Pareto Front[2]

Considering the door connection arm, two objectives may be used; mass and displacement. These two objectives are conflicting in a way that displacement usually will tend to increase (reduction in stiffness), as the mass decreases.

6.2 Introduction to modeFRONTIER

modeFRONTIER is a multiobjective optimization software which allows you to connect several different CAD or FEA software together. Through the graphical user interface (GUI) you are able to build a work flow consisting of nodes (icons) and links (lines betweed the nodes). The blue links represents the data flow, while the black ones represents the process flow. The illustration underneath demonstrates how it is possible to build a workflow which can interact with simulations performed with NX Advanced Simulations. Single-objective optimization is also possible to perform, but is omitted in this case.

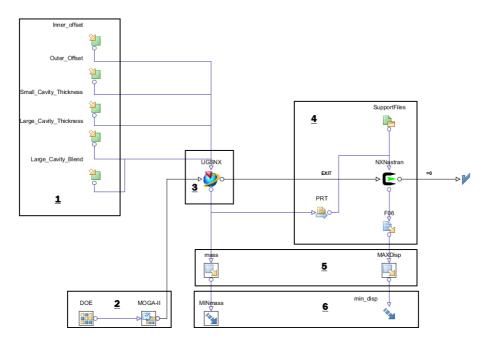


Figure 6.2: Workflow in modeFRONTIER

- A description of the content in each of the numbered groups are:
- 1. Input variables: defines the design space
- 2. Design of Experiment (DOE) and schedulers: DOE and algorithms provides different values for the input variables
- 3. NX CAD node: Interacts with NX expressions
- 4. Support files and Cygwin shell script
- 5. Output variables: design output variables
- 6. Objective: minimizing or maximizing output variables

The workflow in Figure 6.2 starts at **2**, where modeFRONTIER desides what kind of designs parameters to try out . These values are based on the design space defined in **1**. In **3**, the NX geometry is updated and geometry outputs are requested. **5** is necessary in order to extract the data. **6** defines the objective.

Since modeFRONTIER has no built-in support for NX Advanced Simulation, **4** is a customized loop section which allows us to execute NX Advance Simulation and update the geometry with the data used in **3**. This is done by a so called Cygwin shell script node[17].

Constraint variable nodes can also be applied in the work flow, either connected to the input or output variables. As we know from chapter 3.3, the offset parameters can not be equal to zero. For that reason a constraint defined to prevent the scheduler from setting these parameters equal to zero could be applied. It is not very likely that this will happen, and even if so did happen, the program would only move on to the next variable.

Input Variable Properties				
Name		Inner_offset		
Description				4
Format		0.0000E0		
Variable Type		Variable		
Range Properties				
Lower Bound	-1.0	Central Value	1.0	
Upper Bound	3.0	Delta Value	2.0	
Base Properties				
Base		401		
Step		0.01		
Tolerance		0.0		
Arrangement		Ordered		
MORDO Properties				
Distribution	None	 Empty 	Empty	
Data Output Connector				
UGSNX				

Figure 6.3: Input variable properties

The input variables was defined with the same design range as in the singleobjective analysis in NX Advanced Simulations. In modeFRONTIER the size of each step can also be defined. This makes the optimization discrete instead of continuous. All steps are initially defined to be 0.01 mm, which results in 401 numbers of steps for the design variable **Inner_Offset**. These step sizes can be individually defined for each variable.

All DOE and Scheduler properties settings will be kept default as long nothing else is stated. ESTECO recommended to use the default settings, as long as there is no good reason to do else. A detailed description of the nodes and how to define them in this work flow is presented in Appendix E.

6.3 Theory

In order to run an optimization process in modeFRONTIER, the optimization algorithm needs to be provided with a number of test runs. Such test runs are called design of experiments (DOEs). The term scheduler is being used for the algorithms solving the problem . The DOEs is a sample of designs generated from the design spaces. The DOEs will form the basis of the analysis, before the scheduler takes over. The scheduler uses the experience achieved from these first runs to generate proper samples.

Schedulers based on different mathematical algorithms. modeFRONTIER contains several such schedulers. In the subsection underneath a selection of the DOE algorithms and schedulers in modeFRONTIER are presented.

6.3.1 Sampling Methods for DOEs

There are several DOE algorithms to choose from. For this type of optimization, the group of so called "Exploration DOEs" is the most relevant one. These are used to explore the design space in an early stage:

• **Random** sequence which spreads points random, without taking into account the previously generated sample points.

• **Sobol** generates an uniform sampling. The designs will try to avoid each other as much as possible.

• Uniform Latin Hypercube is a random generator that conforms to different statistical distributions and makes a relatively uniform DOE sampling.

It is up to the user to deside how many DOEs to generate. If time permits it, one should use a large DOE instead of a smaller one. Number of test designs might also depend on the type of scheduler being used. DOE can also be used in sensitivity analysis[18, 17].

6.3.2 Scheduler

The schedulers uses different methods in the search of finding the best solutions. Some of them are discribed her :

- Genetic Algorithms (GA) can be compared to the natural evolution of species and uses tools such as natural selection to guide the individuals (designs) towards optimal solutions. This is why a lot of notions like parent and children is used to describe the development of the algorithm.
- Evolution Strategies (ES) works in the same way but uses a mutation tool that produces individuals that stands out from the rest of the population. This way the algorithm can break the pattern and produce diversity in the population. These functions can be combined as well.
- Simulated Annealing (SA) utilizes an analogy from annealing in metallurgy. This process is based on thermodynamic free energy principles. The algorithm works by slowly removing bad solutions as the solution space is explored. The algorithm utilizes a probability function that determines if the new design is to be accepted or discarded.
- Response Surfaces Methodology (RSM) based algorithms: is a collection of mathematical techniques useful for modelling the output functions of interest. If RSM are incoropated within an optimization algorithm in an adaptive way, then the algorithm is speeded up considerably

modeFRONTIER includes a wide range of schedulers based on these methodsalgorithms. Some of them will be presented here.

MOGA - II

MOGA - II is a . This kind of algorithms (GA) utilizes four operators in their search for better designs.

- 1. Mutation
- 2. Selection
- 3. Elitism
- 4. Crossover

The algorithm will alternate between the use of each of the operators based on a defined operator probability.

Figure 6.4: Mutation operator illustration with a bit string

Mutation controls how often the program should alter a random parameter (Figure 6.4). This operator may help break the pattern in cases where the algorithm can get stuck.

Selection defines the probability of how often a design parameter should be kept the same through the run.

Elitism will ensure preservation of good individuals. This means that the algorithm will assure that new generated designs is as good as, or better than the previous design.

The overall driving factor used to decide which individuals to choose in a genetic algorithm is the probability of being better than other individuals, called the fitness factor. Another characteristic that have major impact on the outcome is the use of crossover. Crossover can be done in two ways within the same optimization run; classic and directional.

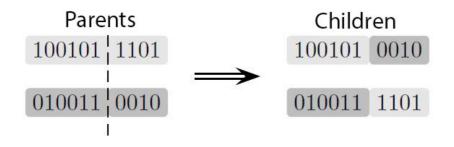


Figure 6.5: One point crossover

The classic way (one point crossover) involves dividing a bit string at a random point. The divided pieces from the parents is then put together to form a new resulting individual. The initial parent is put together by taking a random parent and combining it with the best from a tournament selection. The tournament winner is decided by the individuals fitness factor.

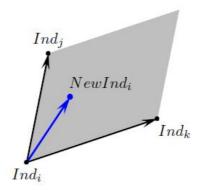


Figure 6.6: Directional crossover

Directional crossover differentiates itself by comparing the fitness value of two reference individuals. It considers the most appropriate direction of improvement by evaluating the parents fitness factor(Indj and Indk) with respect to a weighted direction compared to the new children position(Indi). This generates the New Indi (the actual new individual). Directional crossover represents one of the most helpful properties that make this algorithm a very powerful tool.

Moga – II is a great tool for most uses and is less susceptible for ending up in a local maximum. The method is slower than some of the other algorithms presented, but it is very stable and rarely crashes. When the design space is large, this algorithm can outperform many other schedulers. [19, 20, 17].

Simplex

The Simplex scheduler is a single-objective algorithm. It is based upon the "Nelder and Mead simplex" which is updated to handle constraints and discrete variables. The scheduler utilizes an algorithm to move the initial points along with their values closer to the objective. This will continue until the scheduler exceeds its maximum number of iterations or the points converge. For two input

variables, a simplex is a triangle. The method searches and compares values at each vertices in a triangle. The worst vertex (where x and y is largest.) is identified and replaced with a new vertex. This results in new triangles being formed which generates smaller triangles that reveal optimal minimum coordinates.¹ The operators that control the algorithm is presented below in figure 6.7 in sequential order.

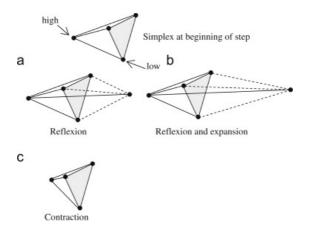


Figure 6.7: Illustrations of simplex steps [3]

This illustration shows a three dimensional simplex and shows how the operators would work towards a converging solution.

- **Reflection** involves an operator that makes the function move in the opposite direction of the worst value.
- **Expansion** will minimize the value(objective) further by expanding the previous goal achievement.
- **Contraction** is used if reflection gives a worse value than the previous. This means that the new point reverts back towards the initial value.

The new design generated is rounded up to the nearest discrete values defined by the initial value of each variable. Simplex iterates each variable in turn. It is not capable of iterating each variable at once[17]

¹Simplex means a generalized triangle in N dimensions.

Hybrid

Hybrid combines a steady state genetic algorithm and a single objective optimizer (SQP). This makes it a robust multi-objective algorithm, as well as a good single objective algorithm. The amount of robustness versus exploration can be varied by specifying this in percentage. The algorithm works by implementing SQP run as one of the operators in a genetic algorithm. For more information regarding SQP see[17]. The combination of the two algorithms makes it quick to reach the pareto front. Then the genetic algorithm fine tunes the variables in the end.

Hybrid uses Adaptive filter SQP and may also use RSM within the hybrid algorithm.

The main idea behind the chosen SQP solver is to use gradient information to make an approximation of the lagrangian function related to the objective function and constraints. To avoid local optimum points adaptive filters are introduced in the algorithm. This means that the old designs are stored and evaluated against the new ones. The criterion of the new design is to stand out and prevent local stagnation [17].

The overall process can be logically described as follows:

- Creation of a parent population based on an initial DOE(design of experiments) or performing a tournament selection among the population.
- The genetic algorithm work with its operators like mutation, crossover and SQP that generates offspring.
- Storing old design generated by SQP.
- If a local optimum is created, it gets sorted out as a parent in the population for further optimization.
- The design storage gets analyzed and the best designs are saved according to the elitism function.

MOSA – Multi-Objective Simulated Annealing

The method is a modified SIMPLEX method based on Simulated Annealing. One of the most important control parameters in this algorithm is the "hot" and "cold" phases. As the algorithm iterates it is either in a hot or cold phase. The hot one implies that it explores widely the design space, avoiding local optima. The cold phase allows convergence and local exploration. These two parameters has to be specified in the scheduler properties based on what property is the most preferable.

The fraction of hot iteration tells what the scheduler prioritizes. The total number of designs $(N_{Designs})$ necessary to complete a MOSA run is the number of initial DOEs (n) specified (In DOE properties) times numbers of iterations $(N_{Specified})$ specified in the MOSA scheduler. This yields: $N_{Designs} =$ $N_{Specified} \times n$ [21, 17]

MOGT - Multiobjective Game Theory

Game theory algorithm works by assigning two different objectives to functions called players. These players are influenced by each others choice. They in turn try to minimize each others objective based on the others move. The two players does this until each player has minimized its function, an equilibrium is now found. In this optimization only one initial DOE is required for design space sampling.

MOGT has proved to be useful in economics. It is most commonly used in decision making regarding competitive fields. These strategies has been adopted by other disciplines and modified. Multiobjective game theory algorithms can be combined with different algorithms such as evolutionary algorithms to save computational time. A variety of game theory algorithms exist, one of them is a combination of Nash game theory coupled with the simplex method which is used in modeFRONTIER. This Nash simplex algorithm is a single objective algorithm that works by combining it with a competitive game theory algorithm called Nash equilibrium to make it multi objective [17].

6.3.3 No free lunch theorem

It is hard to predict which of the algorithms that will yield the best results. This is stated by the "no free lunch" theorem (NFL). This theorem uses an analogy about restaurant (problem solving algorithm), a menu that combines a lunch plate (the problem) and a price (performance of the algorithm in problem solving). The menus of each restaurant are alike, except for the prices that are shuffled. A omnivore would pay the same average price for lunch because he could order any plate at any restaurant. A vegan accompanied by the omnivore that seeks economy would however pay a higher average price for lunch. To reduce the average cost, one need to know what the order will cost at each restaurant and what the order will consist of. This means that performance depends on information about the problem.

Another interpretation is that unless it is possible to make prior assumptions about the problem, it is no algorithm that can be expected to outperform any other. This will in turn mean that without assumptions no algorithm will perform better than a blind search. [22, 23, 17]

Despite this NFL theorem, a general assumption based on experiences, a general comparison was mentioned by Esteco. This is presented in Table 6.1:

	Pros	Cons
	- Stable	- Slow (many iterations)
MOGA-II	- Finds global optimum	
	- Suited for non-linear problems	
	- Fast	- More sensitive than MOGA-II
Simplex		- Usually finds local optima
		- Only single objective
Fast	- Lives up to its name	- Not suited for non-linear problems
Hybrid	- Suited to cover global optimum	- Extensive search that takes
IIybiiu		advantage of two algorithms
MOGT	- Faster than MOGA-II	- Not exploratory, local optima
MOSA	- Finds global optimum	- Very slow (many iterations)
MOSA	- Well suited for large design spaces	

Table 6.1: General comparison of the

6.4 Method

As just mentioned, it is hard to tell which of the algorithms that will give the best results and cost less computational time. Because it is hard to predict the most appropriate approach, a kind of brute $force^2$ search will be used.

There is almost infinite ways of running a optimization in modeFRONTIER. Based on what we know about the various DOEs and schedulers , we will compare some of these.

6.5 Selection of DOE in modeFRONTIER

In all three cases, the number of DOE samples were set to 30. This is because the minimum number of designs in order to use MOGA-II is 28.[17]

The analyses were performed like a sensitivity analysis without any scheduler by selecting "DOE Sequence" under *Scheduler Properties*.

MINmass and min_disp represents the objectives trying to minimize mass and displacement respectively.³.

ID	RID	М	CATEGORY	省 Inner_off	🔁 Large_C	省 Large_C	省 Outer_Of	省 Small_C	🔩 MAXDisp	喝 mass	PMINmass 🧖	lisp 🖓 🖓
0			RNDD0E	1.9300E0	4.2300E0	-5.9000E-1	3.3933E-1	9.4000E-1	5.0300E-1	1.8430E-1	1.8430E-1	5.0300E-1
1			RNDDOE	-9.8000E-1	5.9000E0	8.8000E-1	9.4995E-1	8.8000E-1				
2			RNDD0E	5.9000E-1	4.0400E0	-4.1000E-1	5.0951E-1	-7.7000E-1	5.1206E-1	1.8289E-1	1.8289E-1	5.1206E-1
3			RNDD0E	2.0800E0	4.9800E0	-6.9000E-1	3.7937E-1	-7.2000E-1	5.6231E-1	1.7374E-1	1.7374E-1	5.6231E-1
4			RNDD0E	1.7800E0	5.4200E0	-9.9000E-1	5.2953E-1	4.9000E-1	5.3240E-1	1.7619E-1	1.7619E-1	5.3240E-1
5			RNDD0E	-4.4000E-1	4.4500E0	9.0000E-2	5.7958E-1	-5.9000E-1	4.7846E-1	1.9991E-1	1.9991E-1	4.7846E-1
6			RNDD0E	1.4900E0	3.5500E0	-9.8000E-1	1.6916E-1	-6.5000E-1	5.6348E-1	1.6733E-1	1.6733E-1	5.6348E-1
7			RNDD0E	1.1600E0	5.9300E0	-5.1000E-1	3.9939E-1	-5.7000E-1	5.1626E-1	1.8594E-1	1.8594E-1	5.1626E-1
8			RNDD0E	7.3000E-1	3.7000E0	7.8000E-1	3.9030E-2	1.9000E-1	4.7234E-1	2.1489E-1	2.1489E-1	4.7234E-1
9			RNDD0E	1.6200E0	3.3600E0	3.1000E-1	9.8999E-1	-5.9000E-1	5.2009E-1	1.9187E-1	1.9187E-1	5.2009E-1
10			RNDD0E	5.0000E-1	4.3900E0	-3.3000E-1	4.4944E-1	1.0000E-2	4.8829E-1	1.9057E-1	1.9057E-1	4.8829E-1
11			RNDD0E	3.0000E0	4.8900E0	8.2000E-1	5.0951E-1	-2.0000E-2	5.1967E-1	2.0797E-1	2.0797E-1	5.1967E-1
12			RNDD0E	7.1000E-1	3.9200E0	4.4000E-1	9.6997E-1	-5.8000E-1	4.9529E-1	1.9985E-1	1.9985E-1	4.9529E-1
13			RNDD0E	-3.1000E-1	4.6500E0	1.1000E-1	5.8959E-1	5.8000E-1	4.6220E-1	2.0656E-1	2.0656E-1	4.6220E-1
14			RNDD0E	1.8000E0	3.6100E0	-4.9000E-1	7.7978E-1	-5.5000E-1	5.4139E-1	1.7477E-1	1.7477E-1	5.4139E-1
15			RNDD0E	2.9400E0	5.4100E0	6.8000E-1	1.6916E-1	2.8000E-1	5.0507E-1	2.0991E-1	2.0991E-1	5.0507E-1
16			RNDD0E	-9.7000E-1	4.8900E0	-5.9000E-1	8.8989E-1	4.2000E-1	4.7100E-1	1.9276E-1	1.9276E-1	4.7100E-1
17			RNDD0E	1.9000E0	4.5300E0	9.8000E-1	1.5915E-1	4.2000E-1	4.8004E-1	2.1831E-1	2.1831E-1	4.8004E-1
18			RNDD0E	2.3000E0	3.3700E0	2.4000E-1	4.8948E-1	-8.0000E-1	5.5375E-1	1.8853E-1	1.8853E-1	5.5375E-1
19			RNDD0E	1.4700E0	3.0800E0	1.8000E-1	7.9071E-2	-8.6000E-1	5.2798E-1	1.9144E-1	1.9144E-1	5.2798E-1
20			RNDD0E	1.7200E0	3.8400E0	2.1000E-1	8.4985E-1	-2.9000E-1	5.1146E-1	1.9274E-1	1.9274E-1	5.1146E-1
21			RNDD0E	1.4000E0	3.8700E0	7.6000E-1	7.4975E-1	-1.5000E-1	4.9246E-1	2.0767E-1	2.0767E-1	4.9246E-1
22			RNDD0E	5.0000E-1	3.8100E0	4.6000E-1	8.8989E-1	-9.2000E-1	5.0134E-1	1.9926E-1	1.9926E-1	5.0134E-1
23			RNDDOE	8.3000E-1	5.5900E0	8.1000E-1	6.9061E-2	5.3000E-1				
24			RNDD0E	7.1000E-1	6.0000E0	-8.8000E-1	5.8959E-1	1.4000E-1	5.0512E-1	1.8308E-1	1.8308E-1	5.0512E-1
25			RNDD0E	1.6500E0	5.7300E0	-5.1000E-1	2.4924E-1	4.2000E-1	4.9951E-1	1.8946E-1	1.8946E-1	4.9951E-1
26			RNDD0E	3.5000E-1	4.8200E0	-3.7000E-1	2.9020E-2	-1.0000E-1	4.8770E-1	1.9287E-1	1.9287E-1	4.8770E-1
27			RNDD0E	4.8000E-1	4.3900E0	-6.5000E-1	6.7968E-1	4.3000E-1				
28			RNDD0E	1.9800E0	5.7900E0	1.8000E-1	6.4965E-1	-7.8000E-1	5.3526E-1	1.9510E-1	1.9510E-1	5.3526E-1
29			RNDD0E	2.1000E0	3.9200E0	7.7000E-1	6.3964E-1	8.6000E-1	4.7702E-1	2.1195E-1	2.1195E-1	4.7702E-1

Figure 6.8: Design table for random DOE

The Random DOE returned the following list of results. In the run l, 3 out of 30 design iteration failed.

²Brute force search is a wide systematic search based on all possible combinations

³Displacements are in millimeters and mass in kilograms

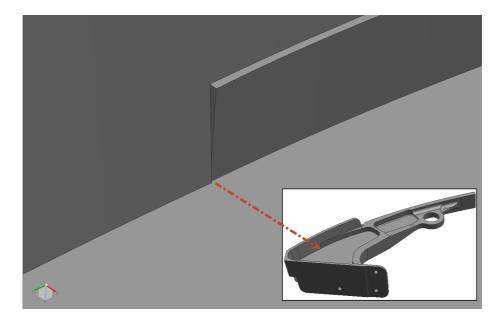


Figure 6.9: Design ID 1

As an example, the reason for the geometry update failure for design ID 1 is illustrated in fig 6.9. The model struggles to update the blend as the blend radius becomes to large, as the **Outer_Offset** is about to penetrate the flange.

When it comes to postprosessing the results, *Scatter Matrix* chart (Assessment \rightarrow Statistic Charts \rightarrow Scatter Matrix) is helpful for comparing data. It contains a single sheet showing three different representations [17].

- 1. Pairwise scatter plots for the variables (top right region)
- 2. The probability density functions (PDF) charts for each variable (diagonal)
- 3. Correlation values between the variables (bottom left region)

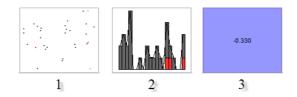


Figure 6.10: Explanation of charts in scatter matrix

The *Scatter Matrix* helps evaluating:

- Correlations⁴ between the variable
- Discover outliers in the data
- Reveal clustering groups in the data

 $^{^4\}mathrm{Correlation}$ refers to any of a broad class of statistical relationships involving dependence[24]

	Inner_offset	Large_Cavity_Blend	Large_Cavity_Thick	Outer_Offset	Small_Cavity_Thick	MINmass	min_disp
Inner_offset	h						
Large_Cavity_Blend	0.013	MARA					
Large_Cavity_Thickness	0.248	-0.330					
Outer_Offset	-0.208	-0.145	0.079				
Small_Cavity_Thickness	0.018	0.312	0.028	-0.188			
MINmass	-0.003	-0.058	0.895	-0.029	0.346		
min_disp	0.564	-0.086	-0.383	-0.051	-0.573	-0.708	

Figure 6.11: Scatter matrix (Random DOE)

30 iteration using "Random DOE" gave the following scatter matrix (Figure 6.11. The PDF shows an uneven distribution of the input variables. It is easier to determine this based on the PDFs, rather than looking at the scatter plots. This uneven distribution is also indicated by the correlation values. The stronger the color is, the more correlation it is between the variables. In this case, a relatively high corrolation factor accours for some of the input variables. This indicate more uneven distribution of the DOEs in this case.

The correlation values for the output variables shows that Large <u>Cavity</u> Blend and Outer <u>Offset</u> have significant less correlation with the mass and displacement. This is in good agreement with the sensitivity analysis performed in NX. It also seems like **Inner** offset has low correlation with mass as well.

	Inner_offset	Large_Cavity_Blend	Large_Cavity_Thick	Outer_Offset	Small_Cavity_Thick	MINmass	min_disp
Inner_offset	Y WWW.						
Large_Cavity_Blend	0.039	M. W					
Large_Cavity_Thickness	0.015	-0.064	WWA N				
Outer_Offset	-0.035	0.075	0.102	WWW.M			
Small_Cavity_Thickness	-0.017	0.035	0.021	-0.053	VAWAY		
MINmass	-0.310	0.107	0.892	0.013	0.276		
min_disp	0.891	-0.034	-0.485	-0.050	-0.518	-0.780	

Figure 6.12: Scatter matrix (ULH)

The scatter matrix in Figure 6.12 shows a significant better distribution when ULH is used. Here, only 1 of 30 failed. This can also be clearly seen in the PDF for the input variables. Correlation between **Inner_Offset** and mass is also found.

	Inner_offset	Large_Cavity_Blend	Large_Cavity_Thick	Outer_Offset	Small_Cavity_Thick	MINmass	min_disp
inner_offset	WMAW						
Large_Cavity_Blend	0.030	NWMW.					
Large_Cavity_Thickness	0.016	-0.129	WA_MV.				
Outer_Offset	0.047	0.029	0.113				
Small_Cavity_Thickness	-0.028	-0.051	0.007	0.052	$\mathbb{W}_{\mathcal{A}}$		
MINmass	-0.355	0.023	0.882	-0.010	0.232		
min_disp	0.768	0.026	-0.327	0.074	-0.506	-0.897	AMA

Figure 6.13: Scatter matrix (Sobol)

Sobol returns much of the similar results as ULH. Both of these DOEs are preferable in favor of the Random DOE.

Large_Cavity_Blend and Outer_Offset will have minor influence on the objectives. Rather then excluding these from the optimization, the amount of steps will be reduced in order to save computational time (Figure 6.14). The rest of the design variables will be remained as they are.

	Name	Variable Type	Lower Bound	Upper Bound	Base	Step
0	Inner_offset	Variable	-1.0	3.0	401	0.01
1	Outer_Offset	Variable	0.01	1.0	10	0.11
2	Small_Cavity_Thickness	Variable	-1.0	1.0	201	0.01
3	Large_Cavity_Thickness	Variable	-1.0	1.0	201	0.01
4	Large_Cavity_Blend	Variable	3.0	6.0	31	0.1

Figure 6.14: Base and steps

6.6 Comparison of Schedulers

A suitable optimization analysis normally takes some hours and even up to days. For that reason, a selection of the most preferred schedulers will be evaluated. The results will be compared with the single-objective optimization in NX. Only in the first section with MOGA-II, all steps will be shown. In the next sections, only the steps that differ from the MOGA-II, will be commented.

6.6.1 MOGA-II

Like stated in section 6.5, ULH with 30 designs is used.

By double-clicking the scheduler node, the Scheduler Properties appears. On the left hand side, all the different algorithms are listed. Here we are looking at the MOGA-II properties, where the users can adjust the algorithm parameters.

Optimization Wizard MOGA-II Schedulers Mode Sequence MACK Supports geographical selection and directional cross-over. Lipschitt:Sampling Singer Security State evolution. Basic Optimizers Implements Ellism for multioplective search. Singer Security State evolution. How Schulzs of Security State evolution. Basic Optimizers Implements Ellism for multioplective sure date medent individuals. The N (num. of individuals) entries in the DOE table are used as the problem's initial population. Each input varial base multip of Directional Cross-Over Detereight arroward Number of Generational Cross-Over ArkNOGA Implements Number of Generations 15000130 Probability of Directional Cross-Over 100.101.05 Probability of Selection 100.101.05 Probability of Selection 00.101.01.05 Probability of Selection Implementers Divide Strategies Implementers Evolution Strategies Implementers Evolution Strategies Implementers Probability of Directions Implementers Divide Strategies Implementers Evolution Strategies Implementes	Scheduler Properties			×
Bobeliers Image: Constraints Image: Constraints	Optimization Wizard		🗆 MOGA-II	
 DOE Sequence MACK Lipschitz Sampling Main features: Supports geographical selection and directional cross-over. Lipschitz Sampling Etoschitz Sampling Frankers Frankers Frankers Etoschitz Sampling Frankers Frankers Frankers Frankers Frobability of Directional Cross-Over Etoschitz Sampling Frobability of Samplication (Do.10) 0.5 Frobability of Samplication (Do.10) 0.5 Frobability of Mutation Ratio Etoschitz Sampling Dipervise Category Parameters Category Parameters Category Parameters Category Parameters Categorize Operators	Schedulers		Scheduler based on Multi Objective Genetic Algorithm (MC	GA) designed for fast Pareto convergence.
Salic Optimizers image: Solid Salic Optimizers image: Solid Salic Optimage: Solid Salic Optimizers <td< td=""><td> DOE Sequence MACK Lipschitz Sampling </td><td></td><td> Supports geographical selection and directional cross Implements Elitism for multiobjective search. Enforces user defined constraints by objective function </td><td></td></td<>	 DOE Sequence MACK Lipschitz Sampling 		 Supports geographical selection and directional cross Implements Elitism for multiobjective search. Enforces user defined constraints by objective function 	
• SIMPLEX B-BFGS • BFGS Levenberg-Marquardt • ARMOGA Parameters • NSGA-II MOSA • NSGA-II MOSA • MOSA Probability of UizetGonal Cross-Over • MOSA Enabled • MOCA- Generations • MOGA- Generations • Nem	Basic Optimizers (8)			S.
Image: Second Strategy Number of Generations (1,5000) 3.0 Image: Second Strategy Probability of Silectional Cross-Over (0,0,1,0) 0.5 Image: Second Strategy Image: Second Strategy (0,0,1,0) 0.5 Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: Second Strategy Image: S	© SIMPLEX	ш	base must be different from zero, since MOGA-II works on	
Image: Arking Advanced Optimizers Probability of Directional Cross-Over [0,0,1,0] 0.5 Image: Arking Advanced Optimizers Probability of Directional Cross-Over [0,0,1,0] 0.5 Image: Arking Advanced Optimizers Probability of Directional Cross-Over [0,0,1,0] 0.5 Image: Arking Advanced Parameters Directional Cross-Over [0,0,1,0] 0.5 Image: Advanced Parameters Directional Cross-Over [0,0,0,0] 0.5 Image: Advanced Parameters Directional Cross-Over [0,0,0,0] 0.5 Image: Advanced Parameters Image: Advanced Parameters Image: Advanced Parameters Image: Advanced Parameters Image: Advanced Parameters Image: Advanced Parameters Image: Advanced Parameters Image: Advanced Parameters Image: Advanced Parameters Image: Advanced Parameters Image: Advanced Parameters Image: Advanced Parameters Image: Advanced Parameters Image: Advanced Parameters Image: Adv	Levenberg-Marquardt			1 30
Image: Advanced Optimizers Image: Probability of Mutation (0,0,1,0) 0.5 Image: NGAAII Image: Probability of Mutation (0,0,1,0) 0.1 Image: NGAAII Image: Probability of Mutation (0,0,1,0) 0.1 Image: NGAAII Image: NGAAII Image: NGAAII Image: NGAAII Image: NGAAII Image: NGAAII Image: NGAAII Image: NGAAII Image: NGAAII Image: NGAAIII Image: NGAAIII Image: NGAAIII Image: NGAAII Image: NGAAIII Image: NGAAIIII Image: NGAAIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ARMOGA			
NSGA-II NSGA-II NOSA N				
MOSA MOSA MOGT MOGT MOGT MOPSO MOPSO MOPSO FAST HYBRID SAnGeA MOGA Substance MOGA - Generational Evolution Radiom Generator Seed (0,999) 1 Gategory Parameters Categorize Generations Categorize Generations Categorize Generations Categorize Generators Run Options MORDO Options Run Options MORDO Options Run Options MORDO Options MORDO Options Save Error Design in DB Evaluate Repeated Design in DB Evaluate Repeated Designs Save Repeated Designs MOB Save Reproceed Designs Save Repeated Designs Save Reproces Save Reproces Save Reproces S	Haraced Optimizers			
MOGT MOPSO MOPSO FAST FAST SAnGeA Elitism Elitism Elitism Enabled Irreat Constraints Penalising Objectives Adjointim Type MOCA- Generational Evolution Category Parameters Category Parameters Categorize Operations V Categorize Operations V Categorize Operations V SanGeA SanGeA	NSGA-II		Advanced Parameters	
MOPSO MOPSO FAST HVBRID SAnGeA Logothim Type MOGA-Generational Evolution Run Options MORDO Options Run Options MORDO Options Run Options Num, of Concurrent Design Evaluations Num, of Concurrent Design Evaluations Save Error Design in DB Save Er	MOSA		DNA String Mutation Ratio [0.0,1.0	0.05
More Comparison Algorithm Type MOGA - Generational Evolution FAST HYBRID Random Generator Seed (0,999) 1 SANGEA Category Parameters Category Parameters Evolution Strategies Category Parameters Category Parameters IP1-ES IP1-ES Categorize Generations Categorize Operators Run Options MORDO Options Categorize Seed Image: Seed Seed Seed Seed Seed Seed Seed Se	MOGT	-	Elitism	Enabled -
HYBRD HYBRD SAnGeA Category Parameters Category Parameter	MOPSO		Treat Constraints	Penalising Objectives 🗸
HYBRID SAnGeA Random Generator Seed [0,999] 1 Categorize Generator Seed [0,999] 1 Categorize Generators Categorize	A FAST		Algorithm Type	MOGA - Generational Evolution -
SAnGeA Category Parameters Cate			Random Generator Seed [0,999] 1
Categorize Generations Categorize Generations Evolution Strategies Image: Categorize Operators Image: Categorize Operators			Category Parameters	
Run Options RSM Options Run Options MORDO Options Run Options Num. of Concurrent Design in DB Save Error Design in DB Ø Evaluate Repeated Designs I Save Repeated Design in DB Ø Evaluate Repeated Designs Ø Evaluate Repeated Designs Ø Evaluate Repeated Designs Ø	Shiden	J	Categorize Generations	
	Evolution Strategies 🛞		Categorize Operators	
Run Options In Options In Options In Options In Options In Options In Options Save Error Design in DB O Evaluate Repeated Designs Save Repeated Designs O Evaluate Options O	IP1-ES	-		
Num. of Concurrent Design Evaluations 1 Save Error Design in DB Image: Concurrent Design S Evaluate Repeated Design in DB Image: Concurrent Design S Evaluate Unfeasible Design S Image: Concurrent Design S				
Save Error Design in DB V Evaluate Repeated Design in DB Save Repeated Design in DB Valuate Unifersibile Designs V				
Evaluate Repeated Designs Save Repeated Design in DB Evaluate Undersable Designs Ø				
Save Repeated Design in DB Evaluate Unfeasible Designs				
Evaluate Unfeasible Designs				
Liear Design Dir on Ext. [Never				
	Clear Design Dir on Exit		Ivever	_
OK Cancel Help	ОК		Cancel	Help

Figure 6.15: MOGA-II scheduler properties

Only Number of Generations was necessary to adjusted here. This specifies the maximum size of the run. For this run it will be set to 30 generations which gives a total of 900 iterations. (The other user specifications governs how the algorithms uses the different opterator as explained under 6.3 A briefly explanation of the other parameters is given in the modeFRONTIER help section [17].

The run can be started by clicking Project \rightarrow Run/Stop. modeFRONTIER then executes the process by starting up NX and run the recorded macro. The first row with input variables in the DOE is used to update the model parameters. The mesh (finite element model) is then updated before proceeding to the simulation file. The first output variables (mass and displacement) appear on the first row in the design table. One iteration is completed, leaving one design. modeFRONTIER automatically moves one with the next design. Each of the iterations took about 55 second. With 900 successful iterations, a complete run takes about 14 hours.

"Save Repated Design in DB" should be uncheck to avoid that designs, which is already presented will be evaluated twice. Designs like these appear as missing rows in the design table6.16.

83		MOGA2	-1.0000E0	5.4000E0	1.8000E-1
84		MOGA2	-6.8000E-1	4.0000E0	-6.9000E-1
85		☐ MOGA2	1.9100E0	4.8000E0	-8.0000E-1
86		□ M° ₀A2	-2.8000E-1	5.7000E0	-2.8000E-1
87		MOGA2	-9.1000E-1	6.0000E0	-2.7000E-1
88		MOGA2	2.1600E0	3.9000E0	-2.4000E-1
89		MOGA2	4.0000E-2	5.7000E0	-3.4000E-1
91		MOGA2	-2.9000E-1	3.4000E0	-8.8000E-1
92		MOGA2	3.2000E-1	5.4000E0	-3.4000E-1
93		MOGA2	-8.1000E-1	3.0000E0	-2.6000E-1
94		MOGA2	7.3000E-1	3.6000E0	5.8000E-1
96		MOGA2	8.4000E-1	3.9000E0	1.0000E-2
97		MOGA2	1.5200E0	4.3000E0	4.4000E-1
98		□ MOGA2	1.6200E0	3.2000E0	-5.0000E-2

Figure 6.16: Removed designs which is already presented

The optimization run finishes after 11 hours and 44 minutes, returning 742 unique successful designs.

	🗗 Project 🛛 🏭 Schedu	ler 🎹 De	esigns 👸 Robust Des.	
4	index.html			
🖌 🕫 🚺 🎸 🕌	MORDO Sampling Moo MORDO Samples MORDO Virtual Sample Reject Out Of Bounds S Error Samples accepta	es Samples	montecarlo_sampling 1 0 false 100	
4-▶ Auto Scroll On	Date & Time	Event		Argument
i on	on, 08 mai 2013 21:31:37:918 21:31:38:126	PROJECT		C:\Users\Carl\Desktop\modeFRONTIER\Optl\MOGA-II.2_00000\MOGA-II.2.prj
	21:31:38:126 21:31:38:336 21:31:38:545	LICENSE	MESSAGE MESSAGE MESSAGE	License Available for Integration Node - Output File License Available for Integration Node - NX License Available for Integration Node - CVgwin Shell Script
	21:31:38:545 21:31:38:545 21:31:38:545	LICENSE	MESSAGE MESSAGE	License Available for Integration Node - Ergushi sheri Script License Available for Integration Node - Support File License Available for Integration Node - Support File
	21:31:38:755 21:31:38:973	LICENSE	CHECKOUT CHECKOUT	FEATURE = mf_batch FEATURE = mf_batch
	21:31:39:194 21:31:39:194		MESSAGE CHECKOUT	License Available for Plugin - M06A-II FEATURE = mf_batch_base_sched
	21:31:39:195 21:31:39:207	DESIGNS PLUG-IN		MOGA-II.2.des MOGA-II
	21:31:39:732 to, 09 mai 2013		GROUP STARTED	00000-00999
	09:15:51:087 09:15:51:266		GROUP COMPLETED	<u>MOGA-II</u> <u>00000-00999</u> (COMPLETED=742, FAILED=68) ELAPSED TIME=11h:44m:11.535s
	09:15:53:509 09:15:53:509		CHECKIN	C:\Users\Carl\Desktop\modeFRONTIER\Optl\M0GA-II.2_00000\M0GA-II.2.pr FFATURE = mf_integration_file
	09:15:53:509 09:15:53:509	LICENSE	CHECKIN CHECKIN	FEATURE = mf_batch FEATURE = mf_batch_npe
	09:15:53:509 09:15:53:509	LICENSE	CHECKIN CHECKIN	FEATURE = mf_integration_ugsnx FEATURE = mf_batch_base_sched
	09:15:53:509	LICENSE	CHECKIN	FEATURE = mf_integration_cygwin

Figure 6.17: Run log

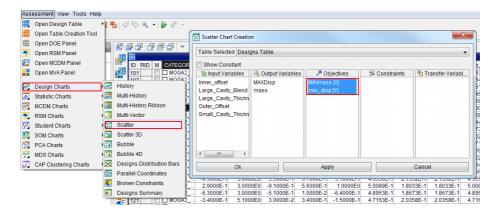


Figure 6.18: Scatter diagram

The scatter plot in 6.19 shows all the solutions, except the ones which failed due to unsolvable geometry. The scatter plot can either be extracted from the *scatter matrix*, or it can be plotted separately (see 6.18).

The green points indicates the Pareto front. By right-clicking in the design table, choose Mark Designs \rightarrow Mark Pareto Designs \rightarrow Only Real, the Pareto front becomes visible.

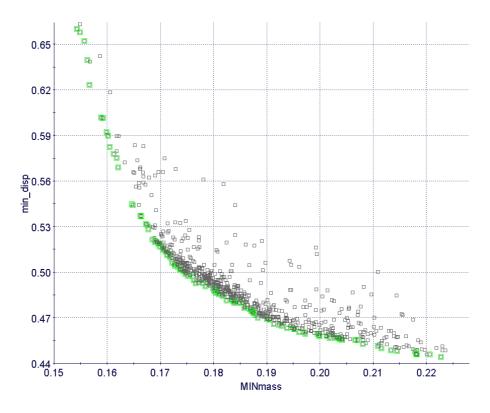


Figure 6.19: Scatter plot for MOGA-II

It is possible to sort out only the Pareto solutions. This can be done by opening "Designs Table", right-clicking in the table, choose Mark Designs \rightarrow Mark Pareto Designs \rightarrow Only real. The Pareto solution will then get marked. Right-click in the table once more. Select "Create Table". Name the table (6.20)

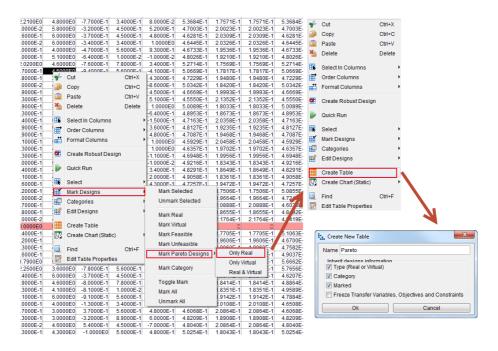


Figure 6.20: Mark Pareto designs

"Pareto(1)" now appears in the explorer window at the left side. These can then again be plotted in a new scatter plot

The designs that have a displacement well above 0.475 mm, were not of interest in this case. These were excluded from the pareto solutions simply by unchecking these from the "Pareto (1)" table.

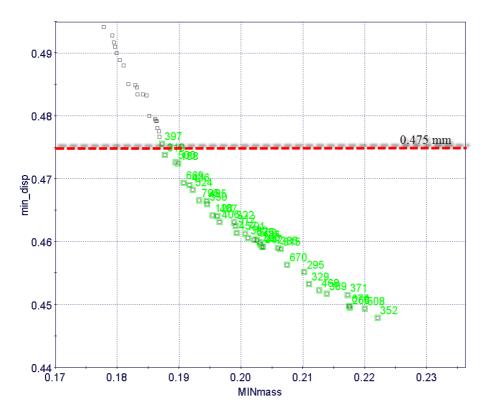


Figure 6.21: Feasible designs

There are several ways of choosing the best design. In a problem like this where you only have two objectives, it is simple to sort out the results manually from the DOE table by sorting the displacements. A detailed description of this is shown in Appendix F

The following designs that lay close the constraint limit were chosen.

Table 6	<u>5.2: Results MOG</u>		
	Design (319)	Design (397)	Design (861)
Inner_Offset	-0.980	-1.000	-1.000
Large_Cavity_Blend	3.400	4.200	3.000
Large_Cavity_Thickness	-0.710	-0.770	-0.740
Outer_Offset	0.890	-0,890	0.560
Small_Cavity_Thickness	1.000	0.770	0.830
Mass [g]	189.2	188.8	188.4
Displacement [mm]	0.473	0.475	0.476
Mass reduction	6.06 %	6.26~%	6.45 %

— ... MOGAT _ .

When dealing with problems that are more complex, it can often be difficult to rank and select between the solutions. Multi Criteria Decision Making (MCDM) assists you in selecting the best design based on a relative value. MCDM is also applicable for problems like this.

6.6.2MOGT

Only one DOE is required to perform a run with MOGT. Therefore the DOE was defined manually with a value lying in the middle of the design range (fig. 6.22)

	Μ	CATEGORY	🛅 Inner_offset	1 Large_Cavity_Blend	1 Large_Cavity_Thickness	1 Outer_Offset	1 Small_Cavity_Thickness
0		RNDD0E	1.0000E0	4.5000E0	9.0000E-3	5.0000E-1	9.0000E-3

Figure 6.22: DOE for MOGT

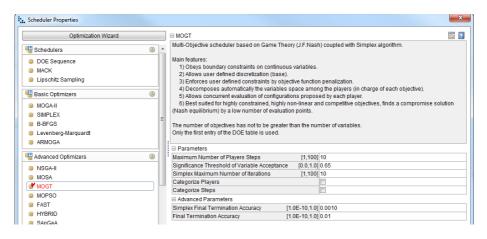


Figure 6.23: MOGT - Scheduler properties

The scheduler settings are depicted in Figure 6.23.

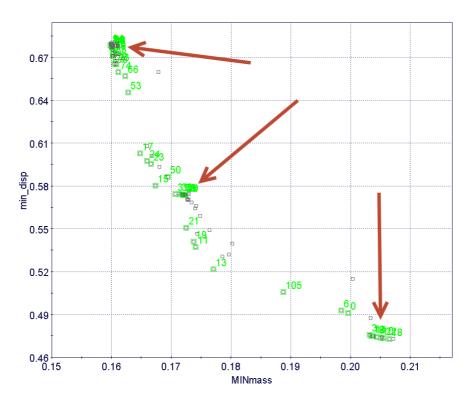


Figure 6.24: Scatter plotfor MOGT

With the default settings, MOGT finished after 102, with only one error design. A typical clustering effect occurred at three separate places (fig. 6.24). It was not enough solutions to decipher a coherent Pareto front here.

	Design (12)	Design (3)	Design (7)
Inner_Offset	1.000	1.000	0.927
Large_Cavity_Blend	4.500	4.500	5.910
Large_Cavity_Thickness	0.009	0.009	-0.059
Outer_Offset	0.916	0.867	0.500
Small_Cavity_Thickness	1.000	0.901	0.009
Mass [g]	200.0	199.7	0.199
Displacement [mm]	0.473	0.474	0.485
Mass reduction	0.70 %	0.84~%	1.19~%

T 11 00 Б

Three of the most promising results are presented in the Table 6.3. The optimization left no proper improvements. However, it needs to be kept in mind that this run only performed a fraction of all the iterations that MOGA-II did.

6.6.3 MOSA

30 DOE deisgns and 100 schedular iterations gave a total of 2932 unique designs. Designs which have displacement below 0.476 mm were sorted out in a seperate table.

ID	MAXDisp	mass	Rank Value
849	4.7508E-1	1.9005E-1	1.000
2949	4.7584E-1	1.9033E-1	0.365
879	4.7589E-1	1.9070E-1	0.309
819	4.7490E-1	1.9079E-1	0.301
1680	4.7399E-1	1.9113E-1	0.274
81	4.7469E-1	1.9114E-1	0.273
2218	4.7385E-1	1.9122E-1	0.267
2116	4.7527E-1	1.9127E-1	0.264
2026	4.7414E-1	1.9138E-1	0.258
2649	4.7596E-1	1.9140E-1	0.257
1696	4.7583E-1	1.9152E-1	0.250
2709	4.7556E-1	1.9155E-1	0.249
2759	4.7536E-1	1.9157E-1	0.248
2985	4.7454E-1	1.9173E-1	0.241
2604	4.7561E-1	1.9184E-1	0.236

Figure 6.25: Ranking of the designs

The Linear MCDM algorithem gave a ranking of the designs as shown in Figure 6.25.

	Design (1710)	Design (849)	Design (1830)
Inner_Offset	-0.780	-0.990	-0.810
Large_Cavity_Blend	3.500	3.200	3.200
Large_Cavity_Thickness	-0.360	-0.590	-0.530
Outer_Offset	0.890	-0.339	0.229
Small_Cavity_Thickness	0.200	0.260	0.190
Mass [g]	191.9	190.0	189.8
Displacement [mm]	0.473	0.475	0.476
Mass reduction	4.72 %	5.66~%	5.76~%

. . . 1000

As we can see, design ID 849 got a remarkable better rank value than the second most promising design. A selection of the best desings which are comparable with the designs from the previous optimizations is given in table 6.4.

MOGA-II used 300-400 designs to find solutions which were much better then those MOSA found after more than 1700 designs.

6.6.4Hybrid

Two attempts to run Hybrid resulted in failure in both cases. After some hours, the program automatically shuts down. No failure log was reported.

6.7Additional Reduction of Design Space

In section 6.5, we confirmed how small impact **Outer Offset** and **Large Cavity Blend** had on the objectives, compared to the other design variables. It could therefore be interesting to see what would happen if these were excluded.

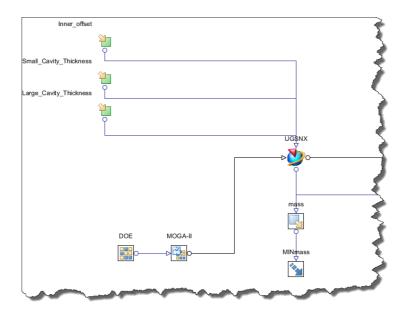


Figure 6.26: MOGA-II workflow (reduced run)

The scheduler properties were kept the same as in the first MOGA-II run.

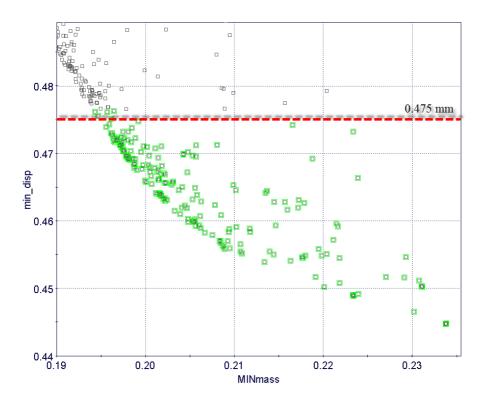


Figure 6.27: MOGA-II (reduced run)

Fig. 6.27 shows a zoomed plot av the results achieved form this analysis. The deisgns with less displacement than 0.476 mm is marked green. A total of 773 designs completed successfully, 35 failed.

	Design (770)	Design (412)	Design (294)
Inner_Offset	-0,890	-1.000	-0.980
Large_Cavity_Thickness	-0.680	-0.690	-0.720
Small_Cavity_Thickness	0.520	-0.330	0.300
Mass [g]	192.4	191.7	190.8
Displacement [mm]	0.473	0.475	0.476
Mass reduction	4.47 %	4.82 %	5.26~%

Table 6.5: Results MOGA-II (reduced)

Table 6.5 shows the results from the reduced analysis. They are not as satifying as the initial MOGA-II optimization. Still, several designs tends to fail. Both analysis was set to perform as many design. Therefore, both simulations took approximately the same time.

6.8 Summary

Four different schedulers were tested, showing a remarkable difference in goal achievement for the three of them which succeeded to accomplish. MOGT must said to be the worst one. The analysis had poor distribution of the solutions.

MOSA was the most time consuming analysis. The scheduler struggles to find good solutions, but the distribution seems to be good.

There is a remarkable difference between the sheduler algorithms. The analyses shows that the last designs not neccessarily are the more preferable ones. How many iterations which is needed in order to achieve a good solution is difficult to predict

Relatively many designs tends to fail during optimization. It could be reasonable to either exclude the blends as input variable from the optimization analysis or remove them entirely from the model. By doing the former, flexibility is reduced and the blend could still be an issue for some designs. Removing them completly will have a major impact on the baseline result.

When the program discovers an unfeasable design, it will not try to extract the displacement, which is the aspact of the analysis which is most time consuming.

Table 6.6 shows the results for each scheduler with displacement equal to 0.475 mm.

Algorithm	total designs	successful designs	Time	Improvement
HyperOpt (NX)	11	11	$30\mathrm{m}$	5.66~%
MOGA-II	810	742	11h 44m	6.26~%
MOSA	2932	2723	57h $49m$	5.75~%
MOGT	102	101	1h~17m	0.94~%
MOGA-II (reduced)	773	738	$15h \ 48m$	4.82 %

Table 6.6: Results for each scheduler

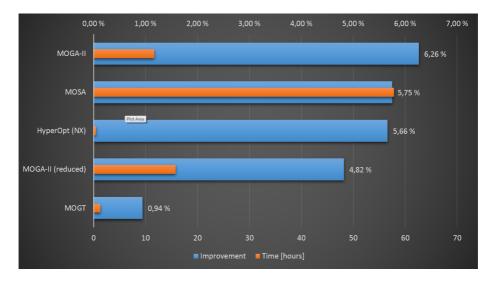


Figure 6.28: Mass reduction and time consumption

6.9 Discussion

The time consumption is an important aspect. Since modeFRONTIER have no built-in support for NX Nastran simulations. The NX GUI was therefor executed successively, running the analyses by use of a macro. This contributes to a large computational cost, spent on running the GUI, instead of performing the actual calculations. One single run used an average of 55 seconds per design. By running the analysis silent (no windows pops up), it is reason to believe that the computational time could be decreased significantly.

The multiobjective optimizations have revealed several unfeasible designs, which the sensitivity analysis was not able to detect. This is caused of certain design values which are not compatible. It is hard to tell how much impact this have on the final results.

modeFRONTIER is a complex software. This is necessary when performing complex optimizations with several objects (more than two). In terms of this load case, using modeFRONTIER is like using a sledgehammer to crack an egg.

Chapter 7

Conclusion

This thesis has gained results in terms of documenting the process and benchmarking how single- and multiobjective design optimization can be applied and implemented to improve products. Guide lines for performing an ideal strategy for model parameterization are presented and evaluated by practical use.

It has not been possible to meet the objective, reducing the mass by 10 % without exceeding the displacement requirement. Though, the mass reduction must be considered substantial, since it was reduced by more than 6 %. Geometry optimization must therefore be said to be suitable for problems where the topology should be kept as it is.

Single-objective geometry optimization in NX (HyperOpt) proves to be satisfactory, both in terms of computational time and mass improvement. On the other hand, if the optimization problem has to be expressed by more than one objective, this will be unsuitable.

Multiobjective optimization with modeFRONTIER has proven to be a complicated process, involving more work. The program does not provide one solution which is best, but a whole set of best solutions (*Pareto optimal solutions*). Here it is up to the user to deside what design to choose. Among the schedulers which have been tried out, MOGA-II has proven to be the best one. MOGA-II gives a good distribution (in contrast to MOGT) of the output values and succeeds in finding better solutions than MOSA scheduler. This is not necessarily the case for any general geometry optimization problem. This has been proven in accordance with the No Free Lunch theorem.

Bibliography

- O.Sigmund M.P. Bendsøe. Topology Optimization: Theory, Methods and Applications. Springer, 2004.
- [2] cenaero.be. Pareto front. http://www.cenaero.be/Page.asp?docid= 27103.
- [3] S. Rechak J.M. Roelandt N. Amoura, H. Kebir. Axisymmetric and twodimensional crack identification using boundary elements and coupled quasi-random downhill simplex algorithms. Internet, June 201.
- [4] NX 8.5 Documentation, 2012.
- [5] Santtu Salmi. Multidisciplinary design optimization in an integrated cad/fem environment. Master's thesis, University of Jyväskylä, jul 2008.
- [6] SuPLight. Suplight homepage. http://www.suplight-eu.org/, January 2013.
- [7] Z. Gürdal R.T. Haftka. *Elements of structural optimization*. Dordrecht; Boston: Kluwer Academic Publishers, 1992.
- [8] Peter W. Christensen; Anders Klarbring. An Introduction to Structural Optimization. Springer, 2009.
- R.A.E. Mäkinen j. Haslinger. Introduction to Shape Optimization. theory, approximation, and computation. Society for Industrial and Applied mathematics, 2003.
- [10] Steffen Johnsen. Structural topology optimization: Basic theory, methods and applications. Master's thesis, The Norwegian University of Science and Technology, 2013.

- [11] modeFRONTIER webpage,.
- [12] S. Pierret. Multi-objective and multi-disciplinary optimization of threedimensional turbomachinery blades. Technical report, CENAERO a.s.b.l, 2005.
- [13] RepRap. File formats. http://reprap.org/wiki/File_Formats.
- [14] Altair Engineering. Introduction to hyperworks. http://www. altairhyperworks.com/(S(3fu2zyrlbyi03xcofiue25jd))/hwhelp/ Altair/hw11.0/help/hst/hst.htm?least_squares_regression.htm, 1999-2012.
- [15] Ph.D Dr. Marc Ratzel, Fatma Kocer. Cfd optimization with altair hyperworks. http://blog.altair.co.kr/wp-content/uploads/2011/03/ hyperstudy_10-0.pdf, May 2007.
- [16] Peter Aitchison G. Gary Wang, Zuomin Dong. Adaptive response surfacemethod - a global optimization scheme for approximation-based design problems. http://blog.altair.co.kr/wp-content/uploads/2011/03/ hyperstudy_10-0.pdf, April 2007.
- [17] modeFRONTIER User Guide.
- [18] ESTECO. Doe techniques. http://blog.altair.co.kr/wp-content/ uploads/2011/03/hyperstudy_10-0.pdf, February.
- [19] S. Saha S. Bandyopadhyay. Some single- and multiobjective optimization techniques. http://link.springer.com/chapter/10.1007% 2F978-3-642-32451-2_2, 2013.
- [20] Tea Robic Silvia Poles, Enrico Rigoni. Moga 2 performance on noisy optimization problems. http://dis.ijs.si/tea/Publications/ Poles04M0GA.pdf.
- [21] Wikipedia. Simulated annealing. http://en.wikipedia.org/wiki/ Simulated_annealing, April 2013.
- [22] Wikipedia. No free lunch in search and optimization. http://en. wikipedia.org/wiki/No_free_lunch_in_search_and_optimization, February 2013.

- [23] David L. Pepyne Yu-Chi Ho. Simple explanation of the no free lunch theorem of optimization. http://www.cc.gatech.edu/~jlee716/ml/ NoFreeLunch.pdf, December 2001. Downloaded as pdf via google.
- [24] Wikipedia. Correlation and dependence. http://en.wikipedia.org/ wiki/Correlation_and_dependence, April 2013.
- [25] Makoto Ohsaki. Optimization of Finite Dimensional Structures. CRC Press, 2010.
- [26] J.S. Arora R.T. Marler. Survey of multi-objective optimization methods for engineering. 2004.

Appendix A

Sensitivity Analysis Results

>	
story	
γHi	
ivit	
insit	
Š	

Design Objective Results Weight (Minimum) [N]

Large_Cavity_Thickness Objective Result	Step #1 Step #2 -1,3 -1,114286 1,7026756 1,7417162	Step #2 -1,114286 1,7417162	Step #3 -0,928571 1,779107	Step #4 -0,742857 1,817908		Step #5 Step #6 Step #7 -0,557143 -0,371429 -0,185714 1,8561401 1,8950722 1,9341622	Step #7 -0,185714 1,9341622	Step #8 Step #9 0 0,1857143 1,9731527 2,0129123	Step #9 0,1857143 2,0129123	Step #10 Step #11 0,3714286 0,5571429 2,0519756 2,0910725		Step #12 0,7428571 2,130433	Step #12 Step #13 0,7428571 0,9285714 2,130433 2,1693475	Step #14 1,1142857 2,2087564	Step #15 1,3 2,2478438
Result Measure Upper Limit = 0.600 [mm]	0,56422	0,52031	0,50142	0,49072	0,4844	0,4796	0,47561	0,47233	0,4697	0,46737	0,46545	0,46379	0,46233	0,46075	0,45943
Result Measure Upper Limit = 200.000000 [N/mm^2(MPa)]	186,45	184,98	184,99	184,92	185,28	184,97	184,96	184,94	185,12	185,1	185,3	184,93	185,17	184,99	185,32
Small_Cavity_Thickness Objective Result	Step #1 -1,3 1,907812	Step #1 Step #2 -1,3 -1,114286 1,907812 1,9167748	Step #3 -0,928571 1,9264892	Step #4 -0,742857 1,9363494	Step #5 -0,557143 1,9459347	Step #6 -0,371429 1,9553614	Step #7 -0,185714 1,9649921	Step #8 0 1,9750389	Step #9 0,1857143 1,9834792	Step #10 0,3714286 1,9929112	Step #11 0,5571429 2,0023942	Step #12 0,7428571 2,0117527	Step #13 0,9285714 2,0212596	Step #14 1,1142857 2,0310727	Step #15 1,3 2,0347918
Result Measure Upper Limit = 0.600 [mm]	0,50453	0,4979	0,49234	0,48736	0,48309	0,47941	0,47609	0,47239	0,46977	0,46709	0,46441	0,46229	0,46016	0,4577	0,45664
Result Measure Upper Limit = 200.00000 [N/mm^2(MPa)]	190,37	188,52	187,68	186,93	186,41	185,89	185,41	185	184,68	184,4	184,1	183,91	186,35	183,44	183, 23
Outer_Offset Objective Result	Step #1 0,01 1,975572	Step #1 Step #2 0,01 0,1521429 1,975572 1,9696584	Step #3 0,2942857 1,9636059	Step #4 0,4364286 1,9576959		Step #5 Step #6 0,5785714 0,7207143 1,9516237 1,9455099	Step #7 0,8628571 1,9394106	Step #8 1,005 1,9334311	Step #9 1,1471429 1,8752066	Step #10 1,2892857 1,9213093	Step #11 1,4314286 1,9151571	Step #12 Step #13 1,5735714 1,7157143 1,9091166 1,9032892	Step #13 1,7157143 1,9032892	Step #14 1,8578571 1,8970574	Step #15 2 1,8910253
Result Measure Upper Limit = 0.600 [mm]	0,47218	0,47246	0,47264	0,47299	0,47341	0,47385	0,47428	0,47462	0,48036	0,47585	0,47671	0,47745	0,47816	0,47913	0,48009
Result Measure Upper Limit = 200.000000 [N/mm^2(MPa)]	185,27	184,95	184,99	185,01	185,03	185,51	185,01	185	185,06	185,09	185,54	186,71	185,13	185,22	185,17
Small_Cavity_Blend Objective Result	Step #1 2 1,9735849	Step #1 Step #2 2 2,0714286 1,9735849 1,9736948	Step #3 2,1428571 1,9742662	Step #4 2,2142857 1,9742648	Step #5 2,2857143 1,9741837	Step #6 2,3571429 1,9739953	Step #7 2,4285714 1,9744451	Step #8 2,5 1,9754856	Step #8 Step #9 Step #10 2,5 2,5714286 2,6428571 1,9754856 1,9746896 1,9739008		Step #11 2,7142857 1,9738511	Step #12 Step #13 2,7857143 2,8571429 1,9738838 1,9741048		Step #14 2,9285714 1,9743931	Step #15 3 1,9744086
Result Measure Upper Limit = 0.60000 [mm]	0,47269	0,47248	0,47252	0,47263	0,47285	0,47286	0,47267	0,47229	0,4726	0,4727	0,4728	0,47269	0,47265	0,47273	0,47262
Result Measure Upper Limit = 200.000000 [N/mm^2(MPa)]	184,99	185,01	185,02	184,98	185,04	185,02	185,01	185,02	185,02	185,02	184,99	185,06	185,07	185,09	185,16

Large_Cavity_Blend Objective Result	Step #1 2 1,9523856	Step #2 2,2857143 1,9575065	Step #3 2,5714286 1,9565868	Step #4 2,8571429 1,9513264	Step #5 3,1428571 1,9557929	Step #6 3,4285714 1,9623644	Step #7 3,7142857 1,9684886	Step #8 4 . 1,9754791	Step #9 4,2857143 1,9830251	Step #10 4,5714286 1,991008	Step #11 4,8571429 1,9993252	Step #12 5,1428571 2,0083539	Step #13 5,4285714 2,0179345	Step #14 5,7142857 2,0277864	Step #15 6 2,0383066
Result Measure Upper Limit = 0.600000 [mm]	0,47413	0,47368	0,4734	0,47439	0,47384	0,47342	0,47281	0,472	0,47149	0,47121	0,47064	0,47006	0,46952	0,46893	0,46824
Result Measure Upper Limit = 200.000000 [N/mm^2(MPa)]	184,98	184,98	184,98	185,07	186,32	184,98	184,93	184,97	184,93	185,04	185,24	184,96	185,07	185,36	185,02
Inner_Offset Objective Result	Step #1 -2 2,0539215	Step #2 -1,642857 2,0396091	Step #3 -1,285714 2,0257048	Step #4 -0,928571 2,0115561	Step #5 -0,571429 1,9977526	Step #6 -0,214286 1,9841858	Step #7 0,1428571 1,9701187	Step #8 0,5 1,9565364	Step #9 0,8571429 1,9425986	Step #10 1,2142857 1,9283253	Step #11 1,5714286 1,914775	Step #12 1,9285714 1,900786	Step #13 2,2857143 1,8867293	Step #14 2,6428571 1,8730763	Step #15 3 1,8592476
Result Measure Upper Limit = 0.600000 [mm]	0,45128	0,45442	0,45787	0,46134	0,46532	0,46926	0,47384	0,47905	0,48439	0,48996	0,49691	0,50411	0,51184	0,52139	0,53115
Result Measure Upper Limit = 200.000000 [N/mm^2(MPa)]	184,33	184,47	184,83	184,75	188,42	184,96	184,79	186,51	187,11	184,94	186,78	185,21	185,05	185,16	185,1
Corner_Blend8 Objective Result	Step #1 3 1,9705232	Step #2 3,4285714 1,9703597	Step #3 3,8571429 1,9708631	Step #4 4,2857143 1,9714196	Step #5 4,7142857 1,9715196	Step #6 5,1428571 1,9715516	Step #7 Step #8 5,5714286 6 1,9720758 1,9727123		Step #9 6,4285714 1,973198	Step #10 6,8571429 1,9737971	Step #11 7,2857143 1,9742345	Step #12 7,7142857 1,9749044	Step #13 8,1428571 1,975889	Step #14 8,5714286 1,9761477	Step #15 9 1,977006
Result Measure Upper Limit = 0.600000 [mm]	0,47253	0,47266	0,4725	0,47246	0,47247	0,47224	0,47245	0,47243	0,47224	0,47242	0,47237	0,4723	0,47232	0,47212	0,47226
Result Measure Upper Limit = 200.000000 [N/mm^2(MPa)]	185,04	184,99	184,94	185,02	185,02	184,98	184,95	185	185,03	184,99	184,95	185,05	185,45	185,03	185,37
Corner_Blend6 Objective Result	Step #1 3 1,9677827	Step #2 3,2428571 1,9680511	Step #3 3,4857143 1,9681772	Step #4 3,7285714 1,9691382	Step #5 3,9714286 1,9692921	Step #6 4,2142857 1,9699334	Step #7 4,4571429 1,9705721	Step #8 4,7 1,9710976	Step #9 4,9428571 1,971261	Step #10 5,1857143 1,972063	Step #11 5,4285714 1,9724587	Step #12 5,6714286 1,9736308	Step #13 5,9142857 1,9750777	Step #14 6,1571429 1,9753102	Step #15 6,4 1,9758467
Result Measure Upper Limit = 0.600000 [mm]	0,47409	0,4741	0,47406	0,47373	0,47394	0,47344	0,47334	0,4733	0,47328	0,47309	0,47258	0,47259	0,47229	0,47241	0,47226
Result Measure Upper Limit = 200.000000 [N/mm^2(MPa)]	185,12	191,57	185,24	185,21	192,95	185,17	193,47	193,55	185,1	193,33	184,87	184,79	185,04	184,93	185,36

Appendix B Optimization in NX (run 1)

~
~
-
•
÷
ίΩ.
•
T
-
-
=
0
=
a
niz
.=
5
~
5
2
\mathbf{n}
<u> </u>

Based on Altair HyperOpt

Design Objective Function Results

Minimum Weight [N]	0	Ч	2	Э	4	Ω	9	7	8
	1,9756	1,9948	1,9444	1,9546	1,9919	2,0597	1,9306	1,9090	1,9095
Mass	201,3816	203,3425	198,2010	199,2485	203,0440	209,9603	196,7953	194,5984	194,6518
Difference	0,0000	-1,9609	3,1806	2,1331	-1,6625	-8,5788	4,5863	6,7831	6,7298
Improvement %		-0,97 %	1,58~%	1,06 %	-0,83 %	-4,26 %	2,28 %	3,37 %	3,34 %
Design Variable Results									
Name	0	1	2	ŝ	4	ŋ	9	7	8
Small_Cavity_Thickness=0.010000	0,010	0,410	0,010	0,010	0,010	0,010	-0,095	0,000	0,000
Inner_Offset=0.010000	0,010	0,010	0,810	0,010	0,010	0,010	-0,076	-0,166	-0,261
Outer_Offset=0.010000	0,010	0,010	0,010	0,510	0,010	0,010	0,100	0,195	0,295
Large_Cavity_Blend=4	4,000	4,000	4,000	4,000	4,600	4,000	3,240	3,000	3,000
Large_Cavity_Thickness=0.010000	0,010	0,010	0,010	0,010	0,010	0,410	060'0-	-0,195	-0,191
Design Constraint Results									
	0	1	2	£	4	Ŋ	9	7	8
Result Measure									
Upper Limit = 0.475000 [mm]	0,47305	0,46638	0,48338	0,47312	0,47112	0,46693	0,47624	0,47549	0,47432
Limit	0,475	0,475	0,475	0,475	0,475	0,475	0,475	0,475	0,475
Violation %	-0,19 %	-0,86 %	0,84 %	-0,19 %	-0,39 %	-0,81 %	0,12 %	0,05 %	-0,07 %

Appendix C Optimization in NX (run 2)

-
~
~
0
<u> </u>
12
Ś
=
T
_
-
-
0
·
-
ίπ.
<u>ح</u>
~
=
<u>a</u>
$\overline{}$
0

Based on Altair HyperOpt

Design Objective Function Results Minimum Weight ^{INI}

Minimum Weight [N]	0	1	2	ŝ	4	ŋ	9	7	8	6
	1.975534	1.994719	1.944793	1.954334	1.992075	2.059812	1.942221	1.910363	1.887356	1.866109
Mass	201.3796	203.3352	198.246	199.2186	203.0658	209.9707	197.9838	194.7362	192.391	190.2252
Difference	0	-1.95563	3.13359	2.161017	-1.6862	-8.59109	3.395821	6.643351	8.988596	11.15443
Improvement %		-0.97%	1.56%	1.07%	-0.84%	-4.27%	1.69%	3.30%	4.46%	5.54%
		-0.97%	2.50%	-0.49%	-1.93%	-3.40%	5.71%	1.64%	1.20%	1.13%
Design Variable Results										
Name	0	Ļ	2	ŝ	4	ŋ	9	7	8	6
Small_Cavity_Thickness=0.010000	0.010	0.410	0.010	0.010	0.010	0.010	0.115	0.005	0.095	0.190
Inner_Offset=0.010000	0.010	0.010	0.810	0.010	0.010	0.010	-0.100	-0.190	-0.213	-0.113
Outer_Offset=0.010000	0.010	0.010	0.010	0.510	0.010	0.010	0.100	0.195	0.295	0.363
Large_Cavity_Blend=4	4.000	4.000	4.000	4.000	4.600	4.000	3.240	3.000	3.000	3.000
Large_Cavity_Thickness=0.010000	0.010	0.010	0.010	0.010	0.010	0.410	-0.090	-0.195	-0.305	-0.395
Design Constraint Results										
	0	H	2	æ	4	ъ	9	7	80	6
Result Measure										
Upper Limit = 0.475000 [mm]	0.47332	0.46645	0.48333	0.47305	0.47093	0.46698	0.47257	0.47518	0.47635	0.47879
Limit	0.475	0.475	0.475	0.475	0.475	0.475	0.475	0.475	0.475	0.475
Violation %	-0.17%	-0.86%	0.83%	-0.19%	-0.41%	-0.80%	-0.24%	0.02%	0.14%	0.38%

11 1.863677 189.9773 11.40234 5.66% -0.21%	11 0.395 -0.328 0.343 3.000 -0.503	11 0.47585 0.475
10 1.859824 189.5845 11.79514 5.86% 0.34%	10 0.290 -0.218 0.253 3.000 -0.490	10 0.47817 0.475

0.09%

0.32%

Appendix D

A3 Sheet: Geometry Optimization in NX

Geometry Optimization

Topic: NX8.5 Optimization Brief

Date: March 2013 Approved By: Terje Rølvåg Name: Espen Nilsen, Carl Skaar

To perform a geometry opti-
mization in NX it is nescessary
to do a initial standard linear
simulation with the correct
load cases. This is because the
geometry analysis uses this
as a base line. This is shown in
step 0.
1. First off you get to choose
what type of optimization you
want – choose Altair Hyperopt
2. In this next step it is pos-
sible to define more objective

1. First off you get to choose what tring of ontimization unit	want - choose Altair Hyperopt	2. In this next step it is pos-	sible to define your objective.	Based on experience it is best	to define a target rather than	just minimize.
---	-------------------------------	---------------------------------	---------------------------------	--------------------------------	--------------------------------	----------------

Name		<
[Setup 1		
Solution List		<
Type	Name	
SOL 101 Linear Statics - Clo basis	basis	
[
0		
Optimization Type		<
Altair HyperOpt		

		<				<							
	This step allows you to change the optimization name.	General Setup	Name	[working_geoopt	Solution: basis	Optimization Type	Altair HyperOpt	Altair HyperOpt	Global Sensitivity				
🗸 Gereral Setup	🗸 Define Objective	 Define Constraints Define Design Variables 	 Control Parameters 							•	-		

he objective of the optimization.		Weight		Body			🜒 Target	12.7900	~
 Cereral Securp Define Constraints Define Constraints 	Derme Objective Objective	Type	Category		Weight	Parameters	🔿 Minimize 🔿 Maximize 💿 Target	Target Value	Unit

This step allows you to define the objective of the optimization.		Weight		Body	4			🔿 Maximize 💽 Target	12.7900
This step allows you to define the contract of the contract	Objective	Туре	Category			Weight	Parameters	O Minimize O Maximiz	Target Value

Geometry Optimization

Topic: NX8.5 Optimization Brief

Approved By: Terje Rølvåg Name: Espen Nilsen, Carl Skaar Date: March 2013

Ceneral Setup Image: Sete allows you to define the constraints of the optimization. Define Collective Image: Sete allows you to define the constraints Define Constraints Define Constraints Define Design Variables Image: Sete allows you to define the constraints Control Parameters Mame Control Parameters Name Result Measure Model Constra Result Measure Nodel Constra Result Measure Nodel Constra
--

basis Quantity Comporent A	Operation				
7	Maximum	Selection Type Value Entrie Model maxin	mm_d	Units mm	
					×

	x 2
Constraints	<
Type Result Measure	2
38	
רכ	
Parameters	<
Limit Type Lipper OLower	
Limit Value	1.7051
OK Apply	Cancel

Solution basis basis basis basis basis Input Component Result Type Displacement - Nodal Coordinate System Absolute Rectangular Units Absolute Rectangular Units Absolute Rectangular Operation Maximum Operation Maximum Mannum Maximum Madel Subset Selection A Name Maximum_displacement Expression Name Maximum_displacement	olute Rectangular	Solution (basis	
oluce Rectangular	olute Rectangular	basis	
olute Rectangular	olute Rectangular		
oluce Rectangular	oluce Rectangular oluce Rectangular imum Omean Average imum _di splacement oxdi splacement	Input	
olute Rectangular imum Omean Average kimum_di splacement ox [Aphy] Cancel	olute Rectangular imum Mean Average cimum _di sp1a cement ox Apply Cancel	Result Type	Displacement - Nodal
olute Rectangular imum Mean Average imum di splacement ok [Appi] Cancel	olute Rectangular	Component	x
imum OMean Average kimum di splacement ok di splacement	imum Mean Average	Coordinate System	Absolute Rectangular
imum OMaan Average kimum di splacement ok Aphy Cancel	imum O Mean Average kimum_displacement ok Apply Caree	Units Absolute Value	
dmum OMea cimum_displac ox Apply	mum displac	Operation	3 U
kimum_displac OK	kimum_displac ok Aph	O Minimum	Maximum (
: Model ssion Name [maximum_displac OK [ApN	: Model ssion Name [maximum_displac ok [Apply]	Model Subset Sel	ection
ssion Name [maximum_displace]	ssion Name maximum_displac	Entire Model	
maximum_displac	maximum_displac	Name	
Apply		Expression Name	[maximum_displacement]
			Apply

Geometry Optimization

Topic: NX8.5 Optimization Brief

Approved By: Terje Rølvåg Name: Espen Nilsen, Carl Skaar

arl Skaar Date: March 2013

4. Here is the tab that lets you define which variables to define as your design space. The easiest thing is to use expressions that is associated with the model.

might help you to some extent. Number of more deviation from target it can tolerate. more options. None of these seem to have Relative and absolute convergence decides Fraction is how big percentage of the prewhen NX is satisfied with the results and an enormous impact on the solution, but defined design space(proportion between ables) it is allowed to alter between each upper and lower limit of the design varidom seem to exceed 30 iterations. Max 5. This is the last step containing some constraint violations tells NX how much terminates the iterations. Perturbation iterations can be kept high since it seliteration.

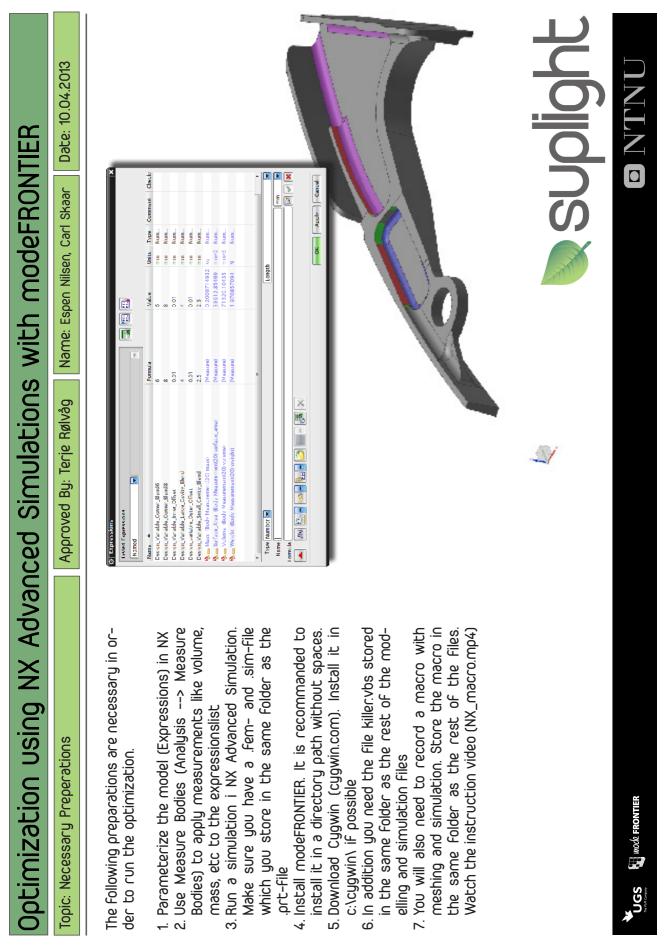
Right click on the geometry solution icon to solve.

 Cereral Setup Define Objective Define Constraints Define Design Variables Control Parameters 	This step allows you to define the design variables of the optimization. Define Design Variables			-
	Name	Initial Value	Upper Limit Lower Limit	LOWER LIMI
	"FLCA_EN_Parameterized_control_arm_ver04_rev02"::Ball_joint_blend=17.600000	17.100000	18.100000	17.100000
	"FLCA_EN_Parameterized_control_arm_ver04_rev02"::Flange_thickness=6.500000	6.070685	7.000000	6.000000
	"FLCA_EN_Parameterized_control_arm_ver04_rev02"::Flange_offset=0.010000	0.010000	3.000000	0.010000
	"FLCA_EN_Parameterized_control_arm_ver04_rev02"::Front_bushing_blend=20.000000 18.000000	18.000000	22.000000	18.000000
	"FLCA_EN_Parameterized_control_arm_ver04_rev02"::Thickness_main_plate=0.01	0.014157	1.000000	0.010000
	"FLCA_EN_Parameterized_control_arm_ver04_rev02"::Hydrobushing_blend=17.000000 16.000000	16.000000	18.000000	16.000000
	"FLCA_EN_Parameterized_control_arm_ver04_rev02"::Swing_arm_flarge_thickness=15 16.000000	16.000000	16.000000	12.000000

ite control parameters to end the 2.5000 2.5000 0.2000	This step allows you to define the control parameters to end the optimization. Control Parameters Maximum Number of iterations Convergence Parameters Max Constraint Violation (%) Relative Convergence (%) Absolute Convergence Perturbation Fraction Results Management
---	---

Appendix E

A3 Sheet: Optimization Using modeFRONTIER together with NX


Optimization using NX Advanced Simulations with modeFRONTIER	anced Simulations	with modeFRONTIER
Topic: Optimization modeFRONTIER	Approved By: Terje Rølvåg	Name: Espen Nilsen, Carl Skaar Date: 10.04.2013
modeFRONTIER is a multi-objective optimization software which allows you to connect sever- al different CAD or FEA softwares together. Through the graphical interface you are able to set up a workflow consisting of nodes (the icons) and links (lines between the nodes)		
We will here demonstrate how it is possible to build a workflow which can interact with simulations performed with NX Advanced Sim- ulations.		
The objectives of this simulation will be mass and displacement.		
NX 8.5		and the second se
NASTRAN	And the second sec	

UGS Mode FRONTIER

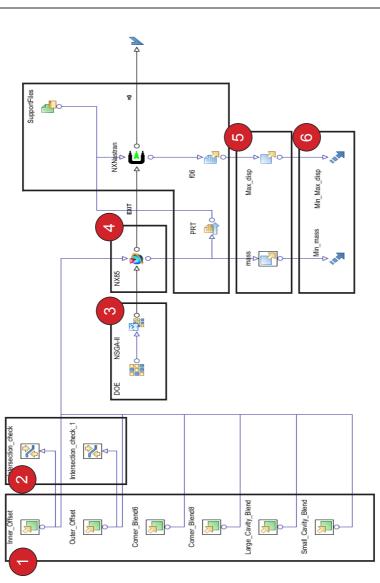
Wode FRONTIER

ONTN O

Suplight

Topic: Workflow in modeFRONTIER

Approved By: Terje Rølvåg Name: Espen Nilsen, Carl Skaar


Date: 10.04.2013

The workflow shows how modeFRONTIER can

control NX and NX Advanced Simulation to optimize a prt-file The Following nodes are necessary to run a optimization run:

- 1. Input Variables: DeFines design space
 - 2. Constraints: Contraints on variables.
- 3. DOE and Scheduler: DOE and algorithems provides different values for the input variables
- 4. NX CAD Node: Interacts with NX expressions
- 5. Output Variables: Design output variables
 6. Objective: Minimizing or maximizing output variables

The last bulk consists of four nodes that are necessary to derive data outputs from NX Advanced Simulations.

Suplight

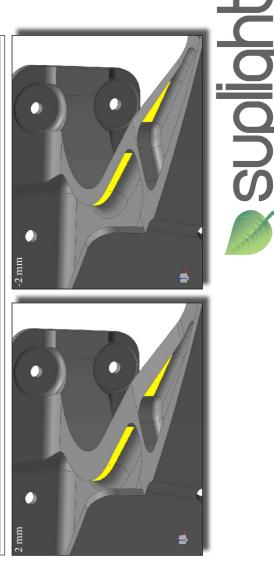
Date: 10.04.2013

Name: Espen Nilsen, Carl Skaar

Approved By: Terje Rølvåg

Topic: Define Input Variables

Input variable


Input variables: Defines the design space by the upper and lower bound

The value range (design space) needs to be defined in order to run a successful optimization run.

- Open the Input Variable Properties by double clicking the input node icon.
- Under Range Properties you are able to specify the lower and upper bound for the design parameter. This tells the scheduler what range it should keep within while changing the design parameter.

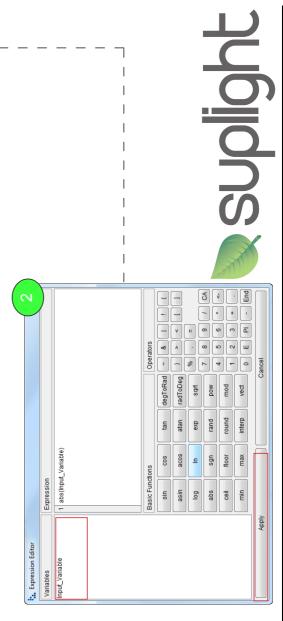
The screen shots underneath shows how the CAD model responds when the parameter inner_offset is changed.

Help Empty 0.0 Central Value Delta Value Inner_Offset 0.0000E0 Variable Ordered - Empty 0.0 Cancel None -2.0 ð Input Variable Properties Input Variable Properties Data Output Connector Intersection_check NX85 MORDO Properties E Range Properties Base Properties /ariable Type Upper Bound Distribution Description Tolerance Base step

Date: 10.04.2013

Name: Espen Nilsen, Carl Skaar

Approved By: Terje Rølvåg


Topic: Define Input Constraint

 \mathbf{k}

Deisgn Constraint: Additional contraints added to the output or input variable It is also possible to define additional constraints to the Input or output variable. If one of the design parameters for instace can't be equal to zero, a contraint node can be linked to the input variable node. 1: What is needed to be defined here is the "User Expression" and "Limit". To edit the user expression, click the calculator icon behind the "User Expression".

2: In this case the expression is written as the absolute value of the input variable. The variables connected to the constraint node will occur in a list to the left. Click "Apply" to save the changes. You will then return to the Contraint Properties. Set the limit equal to zero. Save the changes and close the window by clicking "OK".

Constraint Properties		
 Constraint Properties 		
Name	Intersection_check	
Description	Offiset > 0	
Enabled		
Format	0.000E0	
Constraint Expression Properties		
User Expression	abs(Input_Variable)	
Type	Greater Than	
Limit	0.0	_
Tolerance	0.0	
 Data Input Connector 		_
🎦 Input_Variable		
УО	Cancel	Help

Optimization using NX Advanced Simulations with modeFRONTIER	nced Simulations	with modeFROI	NTIER
Topic: DOE and Schedulers	Approved By: Terje Rølvåg	Name: Espen Nilsen, Carl Skaar	Date: 10.04.2013
Design of experiments (DOE). Necessary sample of the design space which the scheduler algorithms on. The near base its optimization algorithms on. The near base its optimization algorithms on the near base its optimization algorithm the text on the near base its optimization algorithm the text on the near base its optimization algorithm the text on the near base its optimization algorithm the text of the near base its optimization algorithm the text of the near base of algorithm the near base of th	Image: Second		A month A month A month A month

ONTN O

Topic:	Topic: Assign Input/Output Variables From part-fi	<u>.</u>	Approved By: Terje Rølvåg	Name: Espe	Name: Espen Nilsen, Carl Skaar	Date: 10.04.2013	13
R	NX CAD Node: interact with the user ex- pressions in a NX .prt-file.			抗 Introspection Log 📹 📑 🐥 🗚	Auto Scroll On		
				Ð.			
				mar 21 2013 11:06:44:987 Partfile	187 Part file: C.U.Serskarlhs/DropboxMasteroppgave/Car/NX/DoorArm_CS_Geomet	ar/N/X/DoorArm_CS_Geomet	
The NX	The NX CAD node can only interact with inputs and			mar 21 2013 11:06:44:9	mar 21 2013 11:06:44:988 Introspection Directory: CNUsers/car/hs/modeFRONTIER/4tmp/ttmp_2013.03.21_10.54.10_006	10_2013.03.21_10.54.10_006	
outputs	outputs involving the geometry.		_	mar 21 2013 11:06:44:9	mar 21 2013 11:06:44:988 Starting Introspection		
-	• •		_	mar 21 2013 11:06:46:5 mar 21 2013 11:06:46:5	mar zr. 2013 11:00:44:990. Staning NX Inito Server mar 21 2013 11:06:46:510. Opening NX Session		
1: De	Define all the input and output variables you						
behind	will line to use up cliching ut each up the unlocued s behind the inout variables listed under "Data Inout			•	E	<u> </u>	
Connector"	tor".		_	A	Abort	Close	
N N	Wait for the introspection log to finish loading,					_	
then cli	then click close.	. NX Bronartias			-	Introspection of: C:\Users\carlhs\Dronbox\Mas.	
۲ 3: 2:	A new window will open. Click on the part name.						
A list v	ne deisgn	Preferences				DoorArm_CS_GeometryOptim	IIZATION_VERU3_Kev
µai ai lik ∠	parantiecers fronticite expression lieu in NA.	LI NX Froperres Name	98XN				
- t - t - t		Description Part	CUUSER	carthe/Dropbox/Masteroppdave)	Cilus ersticarthe "Croppbox Master oppgave"/Cart/WitDoorAm CS Geome/Prophilizart.		
UESIUII		Is relative					
	inch une vesign paranterer windnich curresponds cu une	ALCAU Export Lormata	_			Selected Parameter Design_Variable_Corner_Blend6	Comer_Blend6
ii huu ii		Process Inout Connector		Frocess Output Connector		p7	-
n unea	I OLIA DALIALIALIA DALIALIALIA CO	Scheduler		tran	EXIT	Design_Variable_Inner_Offset Design_Variable_Corner_Blend6	
each of		Data Input Connector	4	Data Output Connector		p26	
5: The S	5. The same way you assign the output variables. 🛛 🕌	Comer_Elends	Design_Variable_Comer_Biend8 📷 🖷 📑 RRT		Doorkrm_CS_GeometryOptimization_ver0	p95	i
You will	You will need to apply all the input and output nodes	1 Inner_Offset Large_Cavity_Blend	Design_Variable_Inner_Offset Design_Variable_Large_C≊vth; Ble., ∰1			Design_Variable_Small_Cavity_Bl Design_variable_Outer_Offset	
not net	ow to be able to assign each	Cutor_Offsot	Design_variable_outer_ontset with Design_Variable_3mall_Cavty_Blemith •			Design_Variable_Large_Cavity_Bl p129	
and eve	and every one of them.	сk			Heb	OK Cancel	Refresh

The data output connector called PRT is for the simulations results and has no binoculars.

Topic: Define Objective

Approved By: Terje Rølvåg Name: Espen Nilsen, Carl Skaar Date: 10.04.2013

Design Objective: Identifies the output node and					
represents the optimization objective		ter Expression Editor			2
		Variables	Expression		
		mass	1 mass		
The objective node is connected to output node and allows you to either minimize or maximize the out- put.					
1: Double-click the objective node. The objective					-
node is linked to a output node called "mass". Click	~		Basic Functions		Operators
on the calculator.			sin	tan degToRad	
2: In the Expression Editor define the expression output value through the calculator icon.			asin acos log In	atan radToDeg exp sqrt	
•			abs		
Under "Type" you could either choose minimize or	ť		ceil floor	Lound	4 4 2 6 3 6 *
maximize depending on the objective variable chosen.			min max	interp vect	
		Apply			Cancel
👬 Objective Properties				—	
 Objective Properties 					
Name	MINmass			_	
Description					
Enabled Format	#0000				
Objective Expression Properties				-	
User Expression	mass				
Type	Minimize				
					-
 Data Input Connector 					
OK	Cancel Help				
				l	

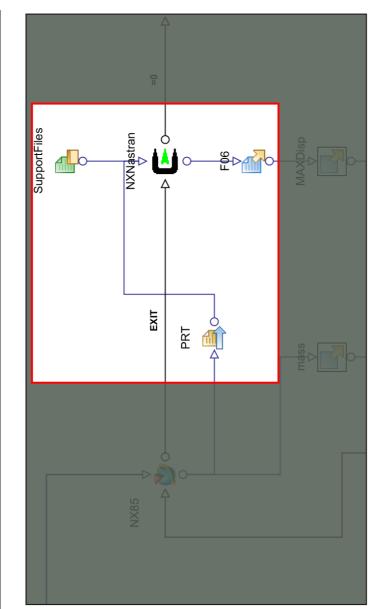
Date: 10.04.2013

Name: Espen Nilsen, Carl Skaar

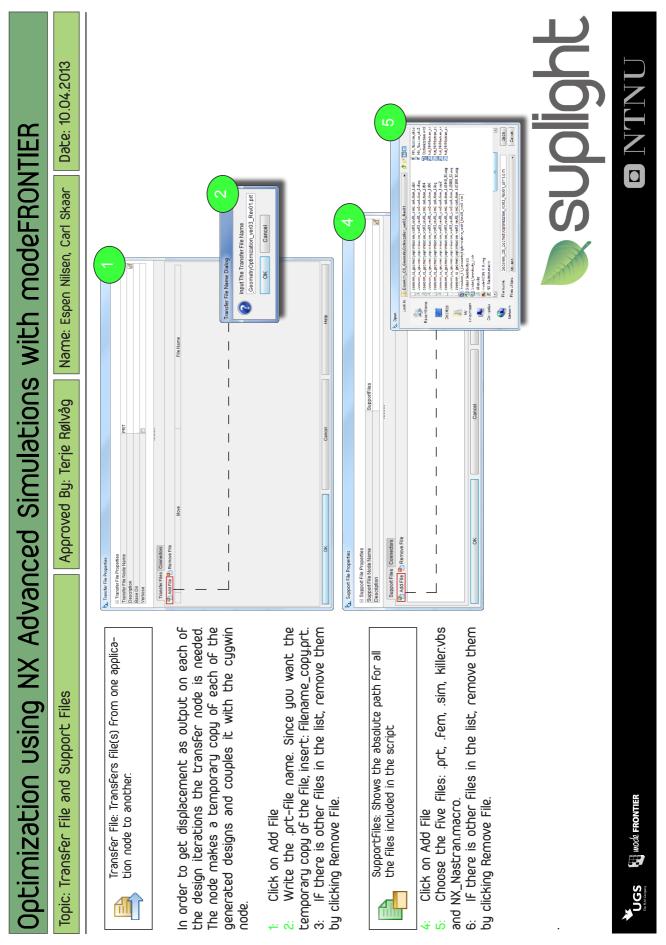
Retrieving Simulations Outputs (displacement) Approved By: Terje Rølvåg Topic:

The NX geometry node is only able to deal with the expressions defined in the .prt-file . Unfortunatly, there is no standard simulation node which can interact with NX Advanced Simulations. The way of retrieving simulation results into modeFRONTINER is to use the Cygwin node. The Cygwin node allows you to run a Script which will run the macro recorded in NX

Transfer File: Transfers File(s) from one application node to another.


Supportfiles: Shows the absolute path for all the files included in the script

Cygwin Shell Script: Executes a script which will load NX and run a macro



Output File: Uses a mining rule which is able to read results out of the .FO6 File. In the next slides we will show you how each of the nodes needs to be defined, changes needed to be done in the script, and how to record a macro in NX 8.5.

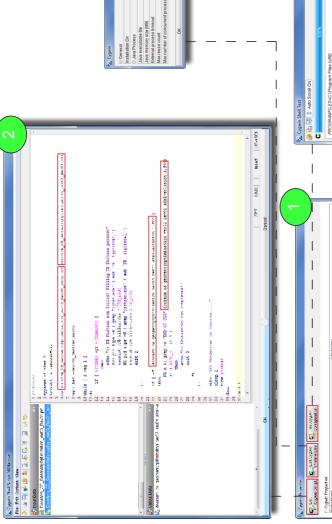
Suplight Suplight

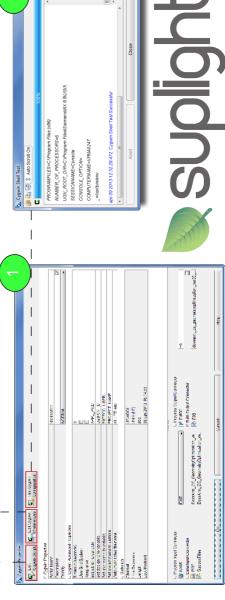
Approved By: Terje Rølvåg

Date: 10.04.2013

Name: Espen Nilsen, Carl Skaar

Topic: Cygwin Shell Script


Cygwin Shell Script: Executes a script which will load NX and run a macro There are no changes needed to be done in the main window. Go ahead and click on "Edit Cygwin Script"


ture underneath needs to be updated with the cor-All the text marked within a red box on the picrect filenames. This involves the prt-file, the copy of the .prt file and the .f06 resultfile. These can be picked from the list to the left.

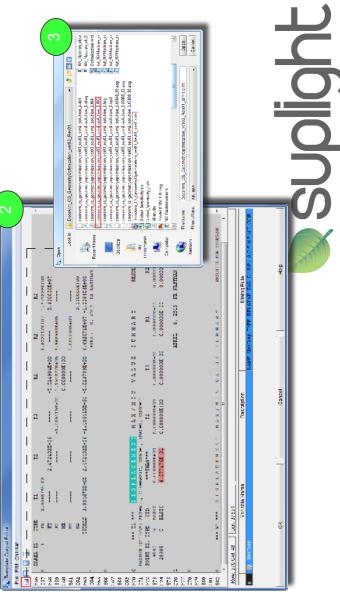
If the NX does not open during the run, define the java executable file. Do this by specifing the path for java exe. Normally this is stored in modeFRON-TIER installation folder:

(c:\ESTECT0\modeFR0NTIER442\jre\bin\java.exe)

Check if the script is able to load.

Output File: Uses a mining rule which is able to read out results from the FOG file and assign it to the output variable

- Click on "Open Output File"
- Click open to update the FO6 File
- Browse to the FOG file and double-click it. N O


There is already a mining rule defined. If you need to add a new mining rule for displacement:

- Mark the text "Displacement"
- Right-click and choose "Relative Position" ல் ல்
- Mark the value you will like obtain from the .F06-File, left Ň

Displacement should become green, and the value Right-click and choose "Select Relative". red. ö

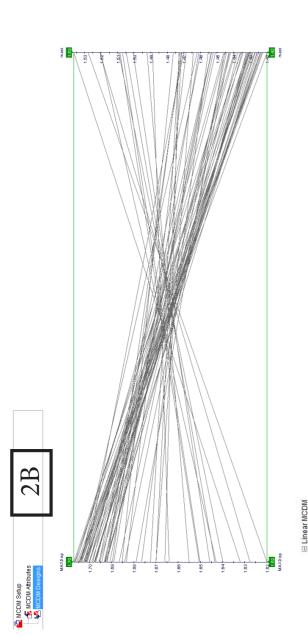
Finaly, run the analysis by clicking project --> run

(-		•		111			4									ς Υ	
					doorarm_cs_geometryoptimization_ver03_rev01_sim1-solution_1.f06			Connector		Help)				titit. 🔟 Baradan 20 Arrest Anticides and Barad
			F06		doorarm_cs_geo		windows-1252	Data Output Connector	MAXDisp	Cancel					 -5.5149904E+05 -1.5.40004E+05 5.400030E+07 	SUPERANCES.	C.CC0000E133
🔛 Output File Properties	Control Control	Output File Properties	Output File Node Name	Description	Output File Name	Include Template in Project	Charset	Data Input Connector	💽 NXNastran	ð				THE II IZ IN	P3 X, 0046 (16) 27 2, 4724020-00		1
		_	_	_	_	-		_	_		 📷 Templete Output Fillon	File Fdf Charaer		DUREN ID	-		1

Appendix F

A3 Sheet: modeFRONTIER postprocessing

	modeFRO	RONTIER Postprocessing	tproc	essing			
Topic: Postprocessing		Approved By: Terje Rølvåg	Rølvåg	Name: Espen Nilsen, Carl Skaar	lsen, Carl Skaar	Date: 08.05.2013	
This A3 intends to provide a guide to decision making once an optimization has been done. This briefing shows an approach with the use of modeFRONTIERs built in MCDM(-Multi Criteria Decision Making). 1. When an optimization has been run in modeFRONTIER, it presents all the iterations with its design parameters in a design table. From this table one can range the smallest for a design table. From this table one can range the smallest to a design table. From this table one can range the smallest field within an acceptable range regarding one of the two goals. This is done by high-lighting the designs that might be good enough. Right click in the highlighted field and click: mark designs->mark selected. The chosen designs should now be ticked off. In this particular case displacement was chosen as the limiting factor for estimating the best design. 2. A. The next step is: Assessment->Open MCDM panel. Here the variables and goals are displayed in a list in MCDM attributes.	書「ほぜとがなせたぜでいめだせただなれたがなななななななななななななななななななななななななななななななななな	Tannya L Front_Out Hartoout Samag a Bannya L 700000 19	Designar Table Designar Table Immenon Texamolog Texamolog 0000002 10.5000 Texamolog 0000002	All All All All All All All 1386 1			
eters and proceed. Desired range of the naramotors ran also ho snorified manu-	I MCDM Setup						
paratrices car also de specifieu mano- alinio tho attributos	MCDM Designs		Mark Selected • D	Attribute Maximize selected Set Linear selected Attribute M	inear selected ≺ Min	Max	soal Type
	MCDM Algorithms I inear MCDM	0 F	Ball_joint_blend Flange_offset			1.8100E1 2.9600E0	n n 5 2
	C GAMCDM		Flange_thickness Front bushing blend		6.000E0 1.8000E1	7.0000E0	n n D D
	Hurwicz MADM		Hydrobushing blend		1.6000E1	1.8000E1	
	Savage MADM		Thickness_main_plate		1.0000E-2	1.0000E0	
		8			1.6161EC 1.3500EC	1.7050E0 1.4500E0	
							L
					0		ر
Construction of the second sec						NTNU	


Topic: Postprocessing

Name: Espen Nilsen, Carl Skaar Approved By: Terje Rølvåg

Date: 08.05.2013

2. B. Choose the tab called MCDM designs in the left top corner. Here the designs is presented in both a table and a parallel chart. It is possible to slide the green numbers on the chart to isolate the designs within a given range. This chart is mainly to see which designs that are reated to each other.

seems to give the best results in this 3. From here one is given the choice between different algorithms and preferences regarding these. The linear MCDM particular example. Click create MCDM.

0		(,
孋 MCDM Algorithms	🖋 Linear MCDM	🍘 GA MCDM	🌼 Hurwicz MADM	🌼 Savage MADM

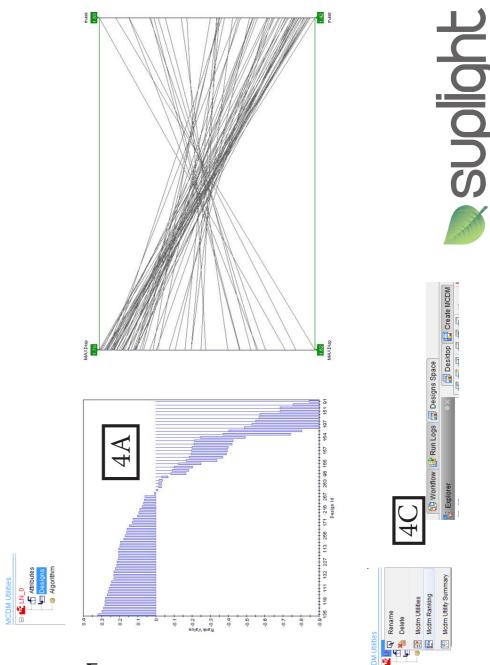
	0	tributes	
3) Generates a ranking list of solutions) Is very precise and fast with few attribute	5) Does not allow the use of more than 4 at	

1) Respects all the attributes relationships 2) Respects all the designs relationships

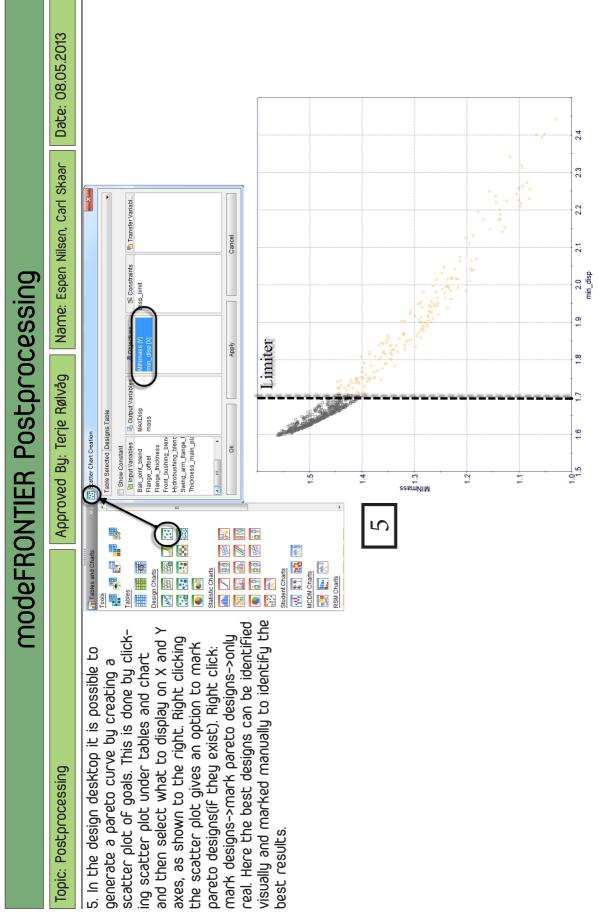

Linear Search Algorithm for MCDM. It helps the research of a reasonable solution among a set of available ones. Main features are :

Parameters	Training Cycles	Preference Margin

Training Cycles	[0,28] 28
Preference Margin	[0.0,1.0] 1.0
Indifference Margin	[0.0,1.0]



mcdm ranking. 4. C. These tables is now located in design space tab->desktop tab.


utility(LN_0 in this case) and choose

	Rank Value	0.320	0.296	0.289	0.282	0.281	0.279	0.268	0.262	0.258	0.250	0.245	0.232	0.232	0.231	0.223	0.216	0.213	0.209	0.205	0.205	0.204	0.199	0.195	0.177	0.169	0.161	0.160	0.145	0.129
	mass	1.4180E0	1.4204E0	1.4211E0	1.4218E0	1.4219E0	1.4221E0	1.4232E0	1.4238E0	1.4242E0	1.4250E0	1.4255E0	1.4268E0	1.4268E0	1.4269E0	1.4277E0	1.4284E0	1.4287E0	1.4291E0	1.4295E0	1.4295E0	1.4296E0	1.4301E0	1.4305E0	1.4323E0	1.4331E0	1.4339E0	1.4340E0	1.4355E0	1.4371E0
	MAXDisp	1.7009E0	1.7010E0	1.7015E0	1.6984E0	1.7001E0	1.7003E0	1.6962E0	1.6981E0	1.6916E0	1.6953E0	1.7029E0	1.6996E0	1.6987E0	1.6965E0	1.6937E0	1.6939E0	1.6942E0	1.6989E0	1.6975E0	1.6975E0	1.6889E0	1.7004E0	1.6885E0	1.7033E0	1.6920E0	1.7027E0	1.6977E0	1.6886E0	1.6972E0
Designs	_	135	130	241	126	118	239	124	234	111	214	292	233	132	97	231	211	227	168	218	165	113	290	121	208	256	298	286	107	171

4B

modeFRONTIER Postprocessing

Topic: Sensitivity analysis

Approved By: Terje Rølvåg Name: Espen Nilsen, Carl Skaar

Date: 08.05.2013

6. In case parameter sensitivity is of interest, this can be created by the scatter matrix chart under pears. This shows the correlation between paramcop tab) Choose all the input and output variables. statistics chart. These tools is located in the left oottom corner of the modeFRONTIER desktop.(renember to be located in:design space tab->desketers and goals. The four most important paramoptimizations to save time. As an example in this and correlation value, the impact each parameter mpact on MAXDisp and the same parameter has Click ok and the matrix scatter to the right apcase one can see that Flange_offset has a great ias almost an opposite effect on the conflicting eters is highlighted and shows by a strong color ias on the goal. As one can see the parameters dentify parameters that can be excluded from goals as one would expect. This can be used to almost exactly the opposite effect on mass.

Scatter Matrix Chart Creation	Creation			×
Table Selected Designs Table	gns Table			
Show Constant				
省 Input Variables	Qutput Variables	🛹 Objectives	😵 Constraints	Transfer Variabl
Ball_Joint_Diend [1] Flange_differ[2] Flange_differ[2] Front_bushing_blenc Swing_arm_flange_ Thickness_main_pit	MAXOISp [8] mass [9]	min_weight	Disp_limit Mass_limit	
Use Categories				
ŏ		Apply		Cancel

mas	自由自							1 - Company	4
MAXDisp			2000 000 000 000 000 000 000 000 000 00						0.983
4	00 800 800							0.062	-0.163
Swing_arm_flange						harren	0.031	916 0*	0.882
Hydrobushing_blend					Mandal	0.540	0.412	187.0	774.0
Front_bushing_ble				MM-M	00+0	0.860	0.051	0.56	102.0-
Flange_thickness		· · · · · · · · · · · · · · · · · · ·	LA L	0.262	0.045	0.144	0.250	0.056	800.0
Flange_offset			0.367	0.374	-0.247	-0.418	710.0-	0.662	0.015
Ball_joint_blend	A M M	0.041	-0.165	690°0-	0.201	600°0-	0.169	0.032	750.0-
	Ball_joint_blend	Flange_offset	Flange_thickness	Front_bushing_blend	Hydrobushing_blend	Swing_arm_flange_thickness	Thickness_main_plate	MAXDisp	mass
	Bail Joint, blend C Flange, drifet D Flange, Phichness ([Front, Dushing, Jay) C Hydrobushing, Jend C King, am, Hange, [Phichness, main, D-] MAXDisp	Bal Jahl Mend Flange, after Annae Korn Lusting, Jahr Andreas (Anna Jahr Jahr Andreas) (Annae Anna Jahr Jahr Andreas) (Annae Annae Anna Jahr Jahr Andreas) (Annae Annae Anna Jahr Jahr Andreas) (Annae Annae Ann	Ball Joint, Linici Flange, Linici Motosting, Linici Motosting, Linici Motosting, Linici Range, Linici Flange, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici Motosting, Linici	Ball, Joint term Tange, utern Tange, utern Models Models <td></td> <td></td> <td></td> <td></td> <td></td>					

Suplight Bhrun

modeFRONTIER Postprocessing

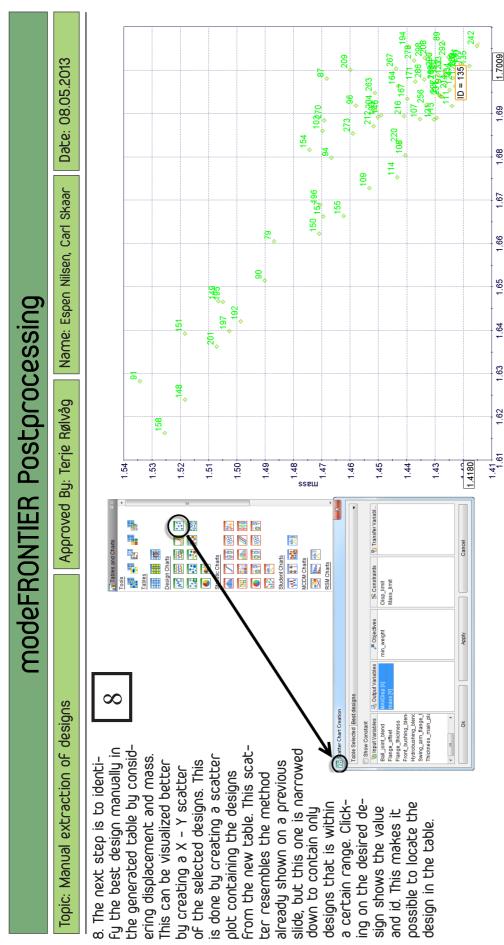
Topic: Manual extraction of designs

Approved By: Terje Rølvåg N

Name: Espen Nilsen, Carl Skaar

Date: 08.05.2013

In case the MCDM utility does not work satisfactory or modeFRONTIER is unable to mark pareto designs automatically, it is of course possible to do the process manual. One of the ways of doing that is described in detail in the following.


 \sim

7. First one would have to rank the displacement in descending order from lowest to highest. Then one would have to mark the feasible design that meets the requirements. Right click and choose create table and only keep marked ticked in the next dialog box.

	lass li	1.4514E0	1.4242E0	1.4581E0	I.4331E0	.4399E0	I.4277E0	1.4284E0	I.4287E0	1.4514E0	I.4250E0	I.4232E0	I.4432E0	I.4269E0	.4371E0	I.4295E0	I.4295E0	I.4340E0	1.4684E0	I.4238E0	I.4218E0	I.4268E0	1.4291E0	.4268E0	1.4602E0	I.4219E0	I.4441E0	I.4221E0	1.4301E0	I.4180E0	1.4204E0	1.4211E0	1.4376E0	I.4339E0	1.4255E0	I.4323E0	I.4396E0	1.4154E0
	isp limit 💑 I	1.6906E0	1.6916E0	1.6917E0	1.6920E0	1.6933E0	1.6937E0	1.6939E0	1.6942E0	1.6946E0	1.6953E0	1.6962E0	1.6962E0	1.6965E0	1.6972E0	1.6975E0	1.6975E0	1.6977E0	1.6980E0	1.6981E0	1.6984E0	1.6987E0	1.6989E0	1.6996E0	1.7000E0	1.7001E0	1.7003E0	1.7003E0	1.7004E0	1.7009E0	1.7010E0	1.7015E0	1.7021E0	1.7027E0	1.7029E0	1.7033E0	1.7053E0	1.7055E0
	🖅 min wei 🚁 Disp limit 🚁 Mass	1.4514E0	1.4242E0	1.4581E0	1.4331E0	1.4399E0	1.4277E0	1.4284E0	1.4287E0	1.4514E0	1.4250E0	1.4232E0	1.4432E0	1.4269E0	1.4371E0	1.4295E0	1.4295E0	1.4340E0	1.4684E0	1.4238E0	1.4218E0	1.4268E0	1.4291E0	1.4268E0	1.4602E0	1.4219E0	1.4441E0	1.4221E0	1.4301E0	1.4180E0	1.4204E0	1.4211E0	1.4376E0	1.4339E0	1.4255E0	1.4323E0	1.4396E0	1.4154E0
	🛃 mass 🛃	0	I.4242E0	I.4581E0	I.4331E0	I.4399E0	I.4277E0	I.4284E0	I.4287E0	I.4514E0	I.4250E0	I.4232E0	I.4432E0	I.4269E0	I.4371E0	I.4295E0	I.4295E0	I.4340E0	I.4684E0	I.4238E0	I.4218E0	I.4268E0	I.4291E0	o: N	8								8	0302011	I.4396E0	1.4154E0		
Desions Table			1.6916E0 ·	1.6917E0	1.6920E0	1.6933E0	1.6937E0 ·	1.6939E0 ·	1.6942E0	1.6946E0 ·	1.6953E0 '	1.6962E0 1	1.6962E0 ·	1.6965E0	1.6972E0	1.6975E0	1.6975E0	1.6977E0	1.6980E0	1.6981E0	1.6984E0	1.6987E0	1.6989E0 1		IJ								Freeze Transfer Variables, Objectives and Constraints		Cancel	1.1 VUULV	1.7053E0	1.7055E0
	Thickne 🔩	1.4000E-1	1.0000E0	3.3000E-1	4.6000E-1	3.0000E-2	5.0000E-1	4.4000E-1	5.0000E-1	3.8000E-1	3.8000E-1	9.6000E-1	3.0000E-2	7.3000E-1	I.0000E-2	I.0000E-2	1.2000E-1	1.9000E-1	I.0000E-1	5.3000E-1	9.4000E-1	8.8000E-1	I.0000E-2													1-10006-	4.1000E-1	5.2000E-1
	🎽 Swing a 🎽 Thickne 📑 MAXDisp	1.5600E1 4	1.6000E1	1.5900E1 3	1.6000E1 4	1.5800E1 3	1.6000E1	1.6000E1 4	1.6000E1 5	1.6000E1 3	1.6000E1 3	1.6000E1 9	1.5700E1 3	1.6000E1 7	1.5800E1 1	1.6000E1 1	1.6000E1 4	1.5900E1 4	1.5500E1 1	1.6000E1	1.6000E1	1.5900E1 8	1.6000E1 1	alde		cione		Inherit designs information	or Virtual)							1.300011	1.5100E1 4	1.6000E1
	Hydrobu 🎦	1.7700E1	1.7800E1	1.7800E1	1.7700E1	1.6300E1	1.7100E1	1.6900E1	1.7200E1	1.8000E1	1.7000E1	1.7800E1	1.6300E1	1.7700E1	1.6100E1	1.6400E1	1.7700E1	1.7900E1	1.8000E1	1.7100E1	1.7800E1	1.8000E1	1.6700E1	Create New Ta	Create New Table	Name Beet decirue		Inherit design	Type (Real or Virtual)	Category	Marked		Freeze Tra	č	ð	1.10001.1	1.6600E1	1.7200E1
	Front bu 🎦	2.1400E1	1.8200E1	1.9500E1	1.8000E1	1.8300E1	1.9000E1	1.9300E1	1 020051	Ctrl+X 1	Ctrl+C	1		Delete 1	-	•	-	-	,	-	-	-	-		•	*			•			•		Ctrl+F		J	2.0400E1	1.9000E1
	Flange t 🎦	6.6000E0	7.0000E0	6.8000E0	6.3000E0	6.3000E0	6.3000E0	6.3000E0								Columns	sumi		olumns		Create Kobust Design		_			igns		S	gns		ble	nart (Static)	(ninic) III		Fait Toble Deserves	saniadoru	6.9000E0	6.2000E0
	Flange 🎽	4.0000E-2	2.2000E-1	8.5000E-1	1.4000E-1	1.7000E-1	4.0000E-2	7.0000E-2		Cut	Copv		Laste	🔒 Delete		EX Select In Columns	Grder Columns		Format Columns		Create KO	-	Quick Run	Select		m Mark Designs	Cataoriae		Edit Designs		Create Table	SV Create Chart (Static)		Find			1.0000E-2	4.0000E-2
	🎽 Ball join 🎽 Flange 🎽 Flange t 🎽 Front bu 🎽 Hydrobu	1.7400E1	1.7200E1	1.8000E1	1.7900E1	1.7400E1	1.7700E1	1.7600E1	1.7700E1	1.7900E1 8	1.7600E1	1.7300E1	1.7600E1	1.7600E1	1.7500E1	1.7400E1 🗄	1.7600E1	1.7900E1	1.7900E1	1.7700E1	1.7400E1	1.7600E1	1.7200E1	1.7600E1	1.7300E1 ^E	1.7500E1	1.8100E1	1.7700E1 ^{III}	1.8000E1	1.7500E1	1.7400E1	1.7700E1	1.8000E1	1.8000E1	1.8000E1	1.7500E1	1.7400E1	1.7700E1
	CATEGORY 🎦	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE	SIMPLE														
	Σ																																					
	8	04	7		8	57	20	=	27	ŝ	14	24	2		2	<u>85</u>	2	88		4	8	8	8	ŝ	60	2	57	8	8	ŝ	8	1	82	8	8	ø	94	5

Suplight Suplight

MAXDisp

UGS 🛃 wode FRONTIER