
 

 

 

 
 
 
 

 

 

 

 

Master’s degree thesis 

 

IP501909 MSc thesis, discipline oriented master 

 

A Knowledge-Based Approach for an Open Object 

Oriented Library in Ship Design 

 

Candidatenumber: 1117/Author: Thiago Gabriel Monteiro 

 

Number of pages including this page: 139 

 

Aalesund, 03, June 2016 



 

Mandatory statement  
 
Each student is responsible for complying with rules and regulations that relate to 

examinations and to academic work in general. The purpose of the mandatory statement is 

to make students aware of their responsibility and the consequences of cheating. Failure to 

complete the statement does not excuse students from their responsibility.  

 
 

Please complete the mandatory statement by placing a mark in each box for statements 1-6 

below. 

1. I/we hereby declare that my/our paper/assignment is my/our own 

work, and that I/we have not used other sources or received 

other help than is mentioned in the paper/assignment. 

 

 

  

2. I/we herby declare that this paper 

1. Has not been used in any other exam at another 

department/university/university college 

2. Is not referring to the work of others without 

acknowledgement 

3. Is not referring to my/our previous work without 

acknowledgement 

4. Has acknowledged all sources of literature in the text and in 

the list of references 

5. Is not a copy, duplicate or transcript of other work  

Mark each 

box: 

1.  

 

2.  

 

3.  

 

4.  

 

5.  

 

3. 

I am/we are aware that any breach of the above will be 
considered as cheating, and may result in annulment of the 
examination and exclusion from all universities and university 
colleges in Norway for up to one year, according to the Act 
relating to Norwegian Universities and University Colleges, 
section 4-7 and 4-8 and Examination regulations . 

 

 

 

 

  

4. I am/we are aware that all papers/assignments may be checked 

for plagiarism by a software assisted plagiarism check 

 

 

  

5. I am/we are aware that NTNU will handle all cases of suspected 

cheating according to prevailing guidelines. 

 

  

6. I/we are aware of the NTNU’s rules and regulation for using 

sources. 

 

  

http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf


Publication agreement 
 
 

ECTS credits: 120 

    

Supervisor: Henrique Murilo Gaspar    

 

 

 

 

 

Agreement on electronic publication of master thesis 
 
Author(s) have copyright to the thesis, including the exclusive right to publish the document (The 

Copyright Act §2). 

All these fulfilling the requirements will be registered and published in Brage, with the approval of the 

author(s). 

Theses with a confidentiality agreement will not be published.  

 

 

I/we hereby give NTNU the right to, free of  

charge, make the thesis available for electronic publication:  yes no 

 

 

Is there an agreement of confidentiality?    yes no 
(A supplementary confidentiality agreement must be filled in and included in this document) 

- If yes: Can the thesis be online published when the  

period of confidentiality is expired?    yes no 

 
This master’s thesis has been completed and approved as part of a master’s degree programme 

at NTNU Ålesund. The thesis is the student’s own independent work according to section 6 of 

Regulations concerning requirements for master's degrees of December 1st, 2005. 

    

Date: 03/06/2016 

http://www.hials.no/nor/kvalitet2/kvalitetsutvikling/undervisning/studier_fag_og_undervisning/standard_agreement_execution_of_assignments_english_version


 

 



 

v 

 

 

Master Thesis in Ship Design 

Stud.Techn. Thiago Gabriel Monteiro 

 

“A Knowledge-Based Approach for an Open Object Oriented Library in Ship 
Design” 

 

Spring 2016 

 

Background 

Given the complexity of a vessel, a designer can face several difficulties, which can influence 

the project’s final result. With the competitive maritime market, the old fashion design spiral 

is not anymore sufficient to provide good and innovative solutions for the ship owners, who 

have to operate every day with a lower profit margin. 

This problem requires a new approach to address the design problem in a different way, 

allowing innovation to be the main goal. Only by chasing new concepts can a designer make 

his project stand out from the rest. 

The chosen way for doing so is addressing the design problem using the knowledge based 

system design approach, which will be implemented as an open object oriented library, using 

JavaScript. The design theory, combined with the ship design principle allows the creation of 

a tools library to deal with the vessel design problems in a new way, focusing on the system 

design from the beginning of the design process, not only at its final stages.  

 

Overall aim and focus 

The thesis aims to create a knowledge based and open source ship design library to address, 

mainly, the following topics: 

 System Based Design Applied to Ship Design Process; 

 Open Source Technology Applied to Ship Design Library Development. 

 

Main activities 

During the Pre-Study Phase (Task 1), the following topics will be approached: 

 Task 1.1: Knowledge Based System Design Theory 

 Task 1.2: Ship Design Performance Indicators Study 

 Task 1.3: Open Source Community Concepts 

 

The Model Development Phase (Task 2) will be composed by: 

 Task 2.1: Vessel Prototype Definition and Implementation 



 

vi 

 

 Task 2.2: Tools Library Development 

 Task 2.3: Open Source Ship Design Library Creation 

 

During the Analysis Phase (Task 3), a study will be conducted to evaluate the advantages of 

the open source platform over the stiffer and traditional ship design methods. 

 Task 3.1: Open Source Platform Performance on Ship Design 

 

The Conclusion Phase (Task 4) will address the closure of the project, where time is put in 

the evaluation of all the findings and in the report preparation. 

 Task 4.1: Findings Evaluation 

 Task 4.2: Report Preparation 

 

The following Gantt Chart shows how the tasks are organized during the working period from 

the 15th of January until the 1st of June. 

 

In addition to the specified tasks, a conference paper will be handled at the end of the research. 

 

    Henrique Murilo Gaspar 

  Professor / Main Supervisor 

 



 

vii 

 

Abstract 

A vessel is a complex and integrated system, which is composed by several subsystems and 

parts which can have common interfaces and interact in a non-linear way. With the continuous 

development of ship design techniques, a continuous increase in the amount of information 

generated and handled by the design process can be noted. Having an efficient way of handling 

all this information during the vessel design process is essential to produce a relevant design in 

the competitive ship market.  

This work proposes an investigation about how the conceptual design phase of a vessel can be 

approached and improved using concepts from Knowledge-Based Design, System-Based Ship 

Design and Open Source Software. These theories are combined to put together an Open 

Source Conceptual Ship Design Tools Library, which provides a set of design tools to be 

applied in the beginning of a vessel design process. 

The development of the tools library is approached in details in this work. It is structured using 

the knowledge-based design prototype concept. The vessel is subdivided using system-based 

ship design theory to make the design task less cumbersome and easy to be handled by the tools 

library. JavaScript is used as an open standard to implement the tools library in a web-based 

platform. The way JavaScript should be used in order to better deal with the vessel subdivision 

is also discussed, putting some light in the object oriented programming methodology. 

Once the tools library is implemented, a case study is conducted to evaluate how well and 

appropriate its performance is in a real world problem. This study is done in cooperation with 

Ulstein International, which provided precious information and discussions about their design 

process.  

 

  



 

viii 

 

  



 

ix 

 

Acknowledgements 

Firstly and foremost, I would like to thank my beloved wife Laís, for being always by my side 

during my journey throughout this work. For supporting me when I was too exhausted to stand 

by myself, for taking care of me and giving me all the love I can take. I would also like to thank 

her for helping me reviewing this report’s and correcting several flaws, especially the ones 

related to the English language. 

I would like to thank my supervisor Henrique Murilo Gaspar for directing me towards relevant 

literature, for valuable discussions throughout the semester and for providing traveling grants 

through the EMIS project. Also would like to thank him for all the support he gave me since I 

first arrived in Ålesund, 2 years ago.  

I would also like to thank the team at Ulstein International for their hospitality during the period 

I spent in Ulsteinvik.  I want to thank specially Ali Ebrahimi, for his availability and the 

valuable discussions about conceptual ship design and Per Olaf Brett for providing important 

feedback about the development of the work. 

I would like to give an especial thank for Gabriel Araujo von Winckler, for spending some of 

his time to read my work and give precious feedback. 

Finally, I would like to thank my family, especially my mom Maria, for giving me the 

conditions to achieve all my goals, by providing me a good education and for being always 

ready to lend a helping hand, whenever I need it. 

I dedicate this work to my late father Antonio, who always believed in my potential. He was 

the proudest dad in the world and although was not able to see my main achievements, will 

always be with me in every new challenge I overcome. 

 

Ålesund, June 3 2016 

 

Thiago Gabriel Monteiro 

  



 

x 

 

 

 



 

xi 

 

Table of Contents 

List of figures ...................................................................................................................... xiv 

List of tables ........................................................................................................................ xvi 

Abbreviations ..................................................................................................................... xvii 

1 Introduction ........................................................................................................................ 1 

1.1 Background ................................................................................................................. 1 

1.2 Problem Statement and Research Questions ............................................................... 2 

1.3 Scope ........................................................................................................................... 4 

1.4 Structure of the Thesis................................................................................................. 5 

2 Knowledge-Based Design .................................................................................................. 7 

2.1 What is Design? .......................................................................................................... 7 

2.1.1 Design as a Process .............................................................................................. 8 

2.1.2 Routine, Innovative and Creative Designs........................................................... 9 

2.2 Knowledge-Based Design ......................................................................................... 10 

2.3 Knowledge-Based Design Process ............................................................................ 10 

2.4 Schema and Design Prototype................................................................................... 11 

2.5 Difficulties Applying Knowledge-Based Design ...................................................... 13 

3 Conceptual Ship Design Methodologies .......................................................................... 15 

3.1 Introduction ............................................................................................................... 15 

3.2 Point-Based Design ................................................................................................... 16 

3.3 Set-Based Design ...................................................................................................... 17 

3.3.1 The Effects of Early Decision Making .............................................................. 18 

3.4 System-Based Ship Design ....................................................................................... 21 

4 Open Source Software ..................................................................................................... 27 

4.1 Introduction ............................................................................................................... 27 

4.2 Concept...................................................................................................................... 27 

4.3 Open Source Community .......................................................................................... 29 



 

xii 

 

4.4 How it Can Succeed? ................................................................................................ 30 

4.5 JavaScript as an Open Standard ................................................................................ 31 

4.5.1 Object Oriented Programming in JavaScript ..................................................... 32 

4.5.2 Object Definition in JavaScript .......................................................................... 33 

4.5.3 Why JavaScript? ................................................................................................ 34 

4.5.4 The UML Class Diagram ................................................................................... 35 

5 Research Approach .......................................................................................................... 37 

5.1 Knowledge-Base ....................................................................................................... 38 

5.2 System-Based Design Methodology ......................................................................... 39 

5.2.1 Vessel’s Structure .............................................................................................. 40 

5.2.2 System-Based Ship Design Process ................................................................... 41 

5.3 Vessel Prototype ........................................................................................................ 48 

5.3.1 Object Oriented Programming Implementation in JavaScript: Encapsulation and 

Inheritance........................................................................................................................ 48 

5.3.2 Object-Oriented Representation of Ship Design Knowledge ............................ 51 

5.4 Application Example: Deck Barge ............................................................................ 57 

5.4.1 Introduction ........................................................................................................ 57 

5.4.2 Tools Library Application.................................................................................. 58 

5.4.3 Conceptual Design Result .................................................................................. 61 

6 Case Study ....................................................................................................................... 63 

6.1 Case Description ....................................................................................................... 63 

6.2 Tool Library Application .......................................................................................... 64 

6.3 Results and Analyses ................................................................................................. 73 

7 Concluding Remarks ........................................................................................................ 77 

7.1 Future Work .............................................................................................................. 79 

8 References ........................................................................................................................ 81 

 



 

xiii 

 

APPENDIX A: API DOCUMENTATION 

APPENDIX B: SYSTEM-BASED DESIGN STRUCTURE DATABASE 

APPENDIX C: REGRESSIONS DATABASE 

APPENDIX D: SFI GROUP SYSTEM RELATION 

APPENDIX E: SYSTEM-BASED SHIP DESIGN AND SFI GROUP SYSTEM 

RELATION 

APPENDIX F: SCIENTIFIC PAPER DRAFT 

  



 

xiv 

 

List of figures 

 

Figure 1 - Simplified timeline for information growth in ship design through decades. (Gaspar 

et al., 2012a) ............................................................................................................................... 1 

Figure 2 – Simplified vessel life-cycle (Monteiro et al., 2015) ................................................. 2 

Figure 3 - Project's Scope: Intersection area of the three main topics. ...................................... 5 

Figure 4 - Design as a process. (Gero, 1990) ............................................................................. 8 

Figure 5 – Routine, Innovative and Creative design spaces representation. (Gero, 1990) ...... 10 

Figure 6 - Example of mapping between syntactic and interpretative spaces. (Coyne et al., 

1989) ........................................................................................................................................ 10 

Figure 7 - Prototype schema diagram. (Gero and Rosenman, 1990) ....................................... 13 

Figure 8 – Classic design spiral. (Evans, 1959). ...................................................................... 16 

Figure 9 – Costs evolution through the main design phases. (Gaspar, 2013) .......................... 19 

Figure 10 - Perks of delaying the decision making process. (Bernstein, 1998)....................... 20 

Figure 11 – Comparison Between System-Based Design Spiral - Left (Erikstad and Levander, 

2012) and Conventional Point Based Spiral - Right (Gale and Slutsky, 2014) ....................... 22 

Figure 12 -Payload and ship functions in a cargo vessel. (Levander, 2012) ........................... 23 

Figure 13 – SFI group system’s code structure. (Manchinu and McConnell, 1977) ............... 24 

Figure 14 – SFI main groups structure. (Utne, 2009) .............................................................. 24 

Figure 15 – SFI subdivision examples: Main Group 6. ........................................................... 25 

Figure 16 – Overview of types of software licenses. (Kuei, 1999) ......................................... 28 

Figure 17 – Types of open source users and developers. (Gacek and Arief, 2004) ................ 29 

Figure 18 – Graphical representation of a class. (Booch et al., 1998) ..................................... 35 

Figure 19 - UML relation notations. ........................................................................................ 36 

Figure 20 - Narrower scope used on the research approach. ................................................... 37 

Figure 21 - Conceptual Ship Design Open Source Tools Library architecture. ...................... 38 

Figure 22 - Vessel prototype subdivision structure. ................................................................ 41 

Figure 23 – System-based ship design process workflow. ...................................................... 42 



 

xv 

 

Figure 24 – Example of an OSV function breakdown structure. (Erikstad and Levander, 2012)

.................................................................................................................................................. 43 

Figure 25 – System-based design and SFI Group System special relation example. (Levander, 

2012) ........................................................................................................................................ 44 

Figure 26 - Systems sizing. Adapted from (Levander, 2012) .................................................. 44 

Figure 27 - Vessel sizing. Adapted from (Levander, 2012) .................................................... 45 

Figure 28 - Example of an OSV light and dead weights main groups. (Erikstad and Levander, 

2012) ........................................................................................................................................ 46 

Figure 29 - Form and performance definition stage examples. (Levander, 2012) .................. 47 

Figure 30 – Hierarchical structure of the prototype structural subdivision. ............................ 52 

Figure 31 – Vessel prototype class diagram. ........................................................................... 54 

Figure 32 - Deck barge example. (Brokers, 2016)................................................................... 58 

Figure 33 - Deck barge system breakdown. ............................................................................. 58 

Figure 34 - Class Diagram - Deck Barge. ................................................................................ 59 

Figure 35 – Deck barge model using blocks. ........................................................................... 61 

Figure 36 - Ulstein's NAO FIGHTER (Ulstein, 2016) ............................................................ 64 

Figure 37 – NAO Fighter case study system breakdown. ....................................................... 64 

Figure 38 - Class Diagram – NAO Fighter case study. ........................................................... 65 

Figure 39 - Vertical motion (m/m) as function of wave frequency. Combined movement from 

the pitch and heave at the desired location. ............................................................................. 74 

Figure 40 - Vertical acceleration (m/s2) as function of wave frequency. Combined movement 

from the pitch and heave at the desired location. ..................................................................... 74 

Figure 41 – Total resistance (kN) in function of Froude Number. .......................................... 75 

Figure 42 – Lateral and Top views of the case study’s hull lines. ........................................... 76 

Figure 43 – Cross sectional curves for the case study vessel. ................................................. 76 

 

 

 



 

xvi 

 

List of tables 

 

Table 1 - UML multiplicity notation. ...................................................................................... 36 

Table 2 - UML visibility notation ............................................................................................ 36 

Table 3 – Conceptual design results – main parameters. ......................................................... 62 

Table 4 – NAO FIGHTER’s mission requirements (Ulstein, 2016) ....................................... 63 

Table 5 – Conceptual design results – main parameters. ......................................................... 73 

Table 6 – Comparison between case study and NAO FIGHTER parameters. ........................ 76 

 

  



 

xvii 

 

Abbreviations 

 

CBP  Class-Based Programming 

CSD  Conceptual Ship Design 

DOE  Design of Experiments 

KBD  Knowledge-Based Design 

OOP  Object-Oriented Programming 

OS  Open Standard 

OSS  Open Source Software 

PBD  Point-Based Design 

SBD  Set-Based Design 

SyBSD  System-Based Ship Design 

 

  



 

xviii 

 

 



 

1 

 

1 Introduction 

 

1.1 Background 

The ship design task is complex by nature. A vessel is a complex and integrated system, which 

in composed by several subsystems and parts which can have common interfaces and interact 

in a non-linear way. (Erikstad, 1996) proposed seven characteristics to describe a vessel 

system: it is a self-contained structure operating in the boundary between two fluids; it consists 

of a multi-dimensional, partially non-monetary performance evaluation; there is high-cost of 

error if inefficiently designed; there is shallow knowledge structure between form and function; 

it holds a very traditional industry with preconceived standards; there are strict time and 

resource constraints; it is predominantly one of a kind and custom engineered. 

With the continuous development of ship design techniques, a continuous increase in the 

amount of information generated and handled by the design process can be noted. Figure 1 

presents the idea of this continuous growth through the last sixty years. It does not present a 

complete list of all improvements that happened in this period, but shows some reference 

example about each significant type of growth 

 

Figure 1 - Simplified timeline for information growth in ship design through decades. (Gaspar 

et al., 2012a) 

 

During the vessels’ life-cycle (Figure 2), all these information need to be handle and exchanged 

by several people, being them part of the same company or members of different organizations 

involved with the vessels’ life-cycle. In order to make the design process as efficient as 



 

2 

 

possible, it is important to have a common standard to identify vessel’s systems and 

components to be used for all the parts involved in the life-cycle. 

 

Figure 2 – Simplified vessel life-cycle (Monteiro et al., 2015) 

 

One example of this kind of standard is the SFI Group System, which is a coding system to 

unequivocally identify any vessel component at any point of the vessel’s life-cycle. This kind 

of coding system is useful for solving communication, cost and control issues. SFI is the most 

used and well-known coding system used around the world for vessel design. 

Besides the standard for components and systems identification, there is also the need for a 

common platform for handling different types of analyses results involved in the vessel design 

process. Ship designers already have at their disposal advance techniques to evaluate the 

vessels’ performance according to different merit figures, such as structural resistance, 

hydrodynamic forces, seakeeping capabilities, stability and so on. What they don’t have is a 

common platform to perform all these kinds of analyses, handle the results and combine the 

data, which could definitely improve several aspects of the design process by means of 

accelerating the design tasks, reducing rework, saving time and money and etc. 

The concept of open libraries was developed with the advent of internet, since it became easy 

for people to learn, develop and share knowledge about programming. Web based open source 

software can be an interesting alternative for fulfilling the need for this common platform, since 

several applications can be developed and integrated in a ship design library that can address 

the ship design problem from different angles. The applicability of web oriented open source 

technology needs to be investigated to check the extent of its collaboration to the ship design 

field. 

 

1.2 Problem Statement and Research Questions 

The main objective of this study is to develop an open source conceptual ship design tools 

library which will address vessels’ conceptual design problems using knowledge-based design 

and system based design approaches. This object statement can be a little cumbersome at first 

glance, but it can be easily explained. 



 

3 

 

At first, the concept of a tools library needs to be approached. The term library here refers to a 

collection of objects, which works together to accomplish the required design task. These 

objects are the tools which the library contains and organizes. Think in these objects as 

structures to store and handle knowledge or perform functions, calculation or operation. 

Secondly, the concept of open source software is relevant here, since it provides a powerful 

and yet free platform where the tools library can be implemented. Being developed in an open 

platform allows the library to not be bounded to any proprietary software, which add freedom 

and flexibility while developing and integrating different tools. 

Finally, the conceptual design phase is the beginning of the design process, but still holds a big 

potential to affects the final design. Decisions taken here affect largely the cost structure of the 

product while being cheap to be done. This characteristic makes this phase an obvious target 

for improvement search, which is a problem that the tools library will try to address. 

In this light, the main goal of this study is to develop, using a not proprietary platform, a 

collection of useful and integrated tools to be applied in the conceptual design phase of vessels. 

This problem statement leads to important questions which need to be investigated. They are: 

 Question 1: How can the vessel be efficiently subdivided in order to allow better design 

control and knowledge handle in the initial stages of the design process? 

 Question 2: Which aspects of open source technology can improve the conceptual ship 

design process? 

 Question 3: How to develop a tools library which has a flexible enough structure to 

contemplate the design of any kind of vessel but at the same time is capable of providing 

results that are good enough to compose a solid ground for the continuation of the 

design process? 

Question 1 points to the fact that a vessel is a complex system. It is composed by several 

subsystems, which can interact with each other and have common interfaces. A powerful 

standard to subdivide the vessel in order to make the design process of such a complex system 

more efficient is important to improve the current design process. It is also important to ensure 

that this standard can be used in the next design stages, in order to reduce the amount of rework 

as the project progresses through its lifecycle. 

Question 2 wants to investigate how the advantages (and even the disadvantages) of the open 

source technology can impact in the conceptual design phase of a vessel. Open source 

technology is already well placed in the software development community and had provided 



 

4 

 

improvements to several technological segments due to, mainly, its work philosophy and 

engaged community. 

Question 3 puts some light in the fact that every kind of vessel is a specialized system, designed 

to fulfil specific needs. Even between vessels of the same kind, special requirements can make 

the designs quite different. All these differences can make it difficult to define and implement 

one single structure to handle any kind of vessel design problem in an efficient way. 

 

1.3 Scope 

In order to provide an answer for the research questions the problem will be approach by 

connecting three distinct knowledge areas, using concepts and theories from: knowledge-based 

system design, ship conceptual design and open source technology. 

The knowledge-based design theory is a design methodology used for designing complex 

systems. The prototype, which is one of the main knowledge-based design aspects, is a 

conceptual representation of a design, which provides a framework for storing, handling and 

processing design knowledge. This concept will be used to develop a vessel prototype, 

providing the base for the development of the conceptual vessel design open source tools 

library. 

The conceptual ship design phase lies in the very beginning of the vessel design process. It can 

be approached in several different ways, being the most well-known and applied one (and yet 

maybe the most outdated) the Evan’s Design Spiral. This classical ship design approach can 

work as a baseline for newer design approaches, which is the case of the System-Based Ship 

Design, that learns from the pros and cons of Evan’s Spiral and offers a new methodology for 

handling the initial stages of the ship design task. 

The open source technology is the chosen platform to implement the conceptual design open 

source tools library and JavaScript is the selected open standard, since it is a web-based 

language and can be used to extend the tools library functionalities and capabilities. The use of 

open source technology brings freedom to the tools library development, which would not be 

possible to reach using any proprietary software. 

Some of individuals have already approached up to two of these topics together (the FREE!ship 

project (HydroNShip, 2016), the System-Based Design theory (Levander, 1991) and a 

Knowledge-Based Structural Design System approach (Lee et al., 1996) are some examples), 



 

5 

 

but, to the best of my knowledge, nobody has done it before considering the three topics 

simultaneously, which comprehends this work’s scope. (Figure 3).  

 

Figure 3 - Project's Scope: Intersection area of the 

three main topics. 

 

1.4 Structure of the Thesis 

From hereafter, the thesis is structured as follows: 

 Theory 

Chapter 2 presents the main concept regarding the Knowledge-Based Design theory 

and how knowledge can be used to efficiently design complex systems. Chapter 3 

approaches the conceptual design phase of a vessel, describing its main methodologies 

and making a comparison between them. Chapter 4 discusses the Open Source Software 

concept and its implication, besides introducing the JavaScript language. 

 Methodology 

Chapter 5 develops and presents the methodology that will be used for the analysis. In 

this chapter it will be described how the concepts mentioned in the previews chapters 

are put together to compose the conceptual ship design open source tools library in 

JavaScript. A small case study is presented at the end of the chapter, to exemplify the 

tools library application. 

 Case study 

Scope 



 

6 

 

Chapter 6 presents a more complex case study, applying the developed methodology 

using the requirements for a real vessel, in order to verify how this work’s approach 

can deal with real design problems. 

 Results and discussion 

Finally, Chapter 7 concludes the study and evaluates how it can be extended in the next 

steps of the work. 

  



 

7 

 

2 Knowledge-Based Design 

In this chapter, the design process will be discussed, giving special attention to the knowledge-

based design theory, which will be used to develop a vessel prototype. The prototype will be a 

conceptual schema that provides a framework for storing, handling and processing design 

knowledge. The prototype provides the base for the development of the conceptual vessel 

design open source tools library. 

 

2.1 What is Design? 

A common misunderstanding about design is confusing it with the final artifact. The design is, 

in reality, a description of the final artifact, from where it is possible to make predictions about 

the artifact’s performance. This statement points that the design is not only about coming up 

with ideas and putting them together, but it is also related to predicting and understanding how 

these ideas will behave together. 

A designer is a change agent in the society, whose main objective is to solve an existing 

problem, improving the world around us and trying to make it fit us better. The designer can 

address different issues, such as functionality, meaning, expression and aesthetics, covering 

activities with varying degrees of sophistication. The designer can focus on an adaptation of a 

well-established prototype or a creation of something entirely new. (Coyne et al., 1989) 

Design is a purposeful and goal-oriented activity, which is constrained and involves decision-

making, exploration and learning. (Gero, 1990) Since the design is purposeful and goal-

oriented, a designer is always trying to achieve a desired state or performance. The design is 

also constrained by both the world and the context where it is going to be applied. The 

exploration process consists in evaluating both goal and decision variables (which guide the 

design activity) in order to judge what variables are pertinent or not to represent the model. 

The decision-making process involves choosing what values should be assumed for the 

selected variables, based on performance indicators. The learning process is carried out in 

parallel with the exploration, and should be used for increasing the knowledge about the design 

while the design task progresses. 

Designing is a complex, extensive and ill-structured task, which can be approached in different 

ways that can lead to different results. The design activity can follow a “top-down” (goal to 

artifact) or a “bottom-up” (artifact to goal) approach. It can have different understandings for 

different people and it could be difficult for those people to agree about goals and methods, 



 

8 

 

which can reinforce the ill-structured nature of the design activity. (Coyne et al., 1989) This 

ill-structured nature can also be extended to goals and requirements of the design activity, 

since, usually, the number of free design variables will be greater than the number of equality 

constraints. Thus, the design solution is not uniquely determined by the set of requirements. 

(Nowacki, 2010) 

If the ill-structured characteristics of the design make the tasks and/or goals not clearly defined, 

the designer can solve this by applying decomposition techniques until suitable and 

understandable subtasks and/or goals are achieved. Even decomposing the design problem, 

some issues cannot be considered until some attention is given to the overall solution, which 

may require an iterative process. 

 

2.1.1 Design as a Process 

The design process can be seen as a problem solving process of searching through a state space, 

where the states represent the design solutions. This state space may be large and complex. The 

search will involve making decisions based on goal and decision variables, which can be 

constrained by the world or context where the design is applied or produced. 

The design process can be schematized as shown in Figure 4. From a set of functions, which 

represents a non-structured description of the artifact, the design process provides a structured 

artifact, which can be produced. From this set of functions, it is possible to obtain a set of 

expected behavior for the artifact. From the structure description, it is possible to obtain a set 

of actual behaviors for the artifact. From the comparison between the expected and actual 

behaviors the quality and rightness of the design can be evaluated.  

 

Figure 4 - Design as a process. (Gero, 1990) 

 

According to (Gero and Rosenman, 1990), the design is not a logical process, from where it is 

possible to deduce a structure description from a set of functional requirements. Unlike science 

that aims to generalize results, the design task aims to specify them. The deduction can be used 



 

9 

 

to, from a given design, to predict its behavior and performance unequivocally, but not in the 

opposite direction. The design process can be better classified as an abductive process, since it 

starts from the required results (set of functions) and uses the available knowledge to arrive in 

a description of an artifact that satisfies the initial needs (this description is not necessarily 

unique). More details about different ways of reasoning about a problem can be found on 

Section Error! Reference source not found.. 

 

2.1.2 Routine, Innovative and Creative Designs 

A design can be framed in three different categories according to how conventional it is: a 

routine design, an innovative design and a creative design. (Gero and Rosenman, 1990) 

The more conventional category is the routine design, in which the design approach, the 

problem’s structure variables, expected behavior, functions and common problems are already 

known. On this type of design, the design problem is already well structured and formulated, 

making the instantiating of variables and constraints values the real design problem.  

The innovative design category is less common than the routine design but it is absolutely 

essential. The innovative designs emerge when there are no conventional solutions that meet 

the design requirements. This kind of situation can happen due to a new constraint in the 

problem, the need for a different behavior, the use of a new structural material and so on. So, 

in order to fulfill this need, the routine design space needs to be modified or extended, providing 

a broader design space.  

The least common category of design is the creative design. Although all design is creative 

since the design process provides a description of something new, that did not exist before, the 

creative design category needs a change of paradigms to arise. This change of paradigm will 

demand a new design structure, which should be feed with knowledge that, maybe, doesn’t 

even exist yet. In creative design, the expansion of the routine design space is not sufficient, it 

is necessary to create a new design space.  

Figure 5 presents a representation of the design space of these three kinds of design. 



 

10 

 

 

Figure 5 – Routine, Innovative and Creative design spaces 

representation. (Gero, 1990) 

 

2.2 Knowledge-Based Design 

The knowledge-based design (KBD) process can be seen as a problem solving process of 

searching through a state space defined by the syntactic knowledge (design variables) and the 

interpretative knowledge (design performances), where the states represent the design 

solutions. The searching process should be done using reasoning based on goal and decision 

variables, which can be constrained by the world or context where the design is applied or 

produced. (Coyne et al., 1989) 

The KBD theory can be used to address any design problem by doing the mapping between the 

syntactic and the interpretative spaces (Figure 6). 

 

Figure 6 - Example of mapping between syntactic and 

interpretative spaces. (Coyne et al., 1989) 

 

2.3 Knowledge-Based Design Process 

(Gero and Rosenman, 1990) structured a process workflow for applying KBD theory in a 

design problem. This workflow is composed by five steps, which are: 

1 - Understand a problem and formulate its functions and behaviors.  



 

11 

 

In this step, the designer needs to investigate the design problem in order to obtain an initial 

understanding about the variables, constraints, functions and goals involved. Some design 

challenges cannot be foreseen by the designer, and will appear as the design process progresses. 

These challenges need to be approached and fixed as soon as possible to allow the design to 

converge to a satisfying solution.  

2 - Arrive at a satisfactory structure vocabulary from which to select. 

It is important for the design to be familiar with the vocabulary of the approached design 

problem. The vocabulary represents the syntactic knowledge and is specific for each design 

problem. 

3 - Select satisfactory structure vocabulary elements. 

Between the applicable vocabulary elements, it is important to approach only the ones really 

relevant to the design problem, in order to simplify the needed structure but without under 

thinking the problem. This selection should be conducted based on the representation of the 

expected behaviors of the designed artifact. 

4 - Configure structure vocabulary elements. 

The designer should apply knowledge in order to configure and relate vocabulary item. The 

knowledge can come from previous experience or be obtained as the design progresses and 

new information and constraints are found. 

5 - Select among competing solutions.  

Once possible design solutions are configured, it is important to correctly evaluate their 

performance to verify how well they meet the design requirements in order to find the best 

possible solution. 

 

2.4 Schema and Design Prototype 

One of the fundamental concepts in KBD is the Schema. Schemas consist of generalizations of 

knowledge obtained from a set of alike design cases. They form a class from which individuals 

can be inferred and must at least be able to incorporate function, structure, behavior, and design 

description and be accessed by elements within these components. (Gero, 1990) The Schemas 

should also be capable of addressing routine, innovative and creative design problems. 

The schemas can be divided in three basic types: archetypes, stereotypes and prototypes. 

Archetypes are the first and often singular examples of their type. Stereotypes are copies 



 

12 

 

without change of an original design, which is ideal for a mass production system. Prototypes 

are the first design over which others are modeled. (Gero, 1990) Usually prototypes are used 

for applying KBD theory, since it allows the derivation of different designs from an initial 

schema. 

Given that designers design from experience, it is needed a system of storing this experience 

in a coherent structure. (Gero and Rosenman, 1990) The prototype should be understood as a 

conceptual schema for knowledge or a clear way of representing the design and its properties. 

The prototype represents a class of elements from which instances of elements can be derived. 

A prototype brings together the three types of variables groups (function, structure, behavior) 

that define the designed artifact and the relation between them, which includes process for 

selecting and obtaining values for variables.  

Instance can be derived by inheriting properties, functions and variables from a generic 

prototype. It is possible to derivate new instances from prototype that have already been derived 

from other prototype, which makes it possible to develop a complex hierarchy in the design 

process. (Gero and Rosenman, 1990) 

A diagram of a prototype schema can be seen in Figure 7. The function properties include the 

intended function in the form of goals and requirements, and the expected behaviors as 

attributes and variables. The structure properties include the vocabulary, the prototype 

description, its configuration and the actual behaviors as attributes and variables of the 

prototype.  

Knowledge plays a big role into the prototype schema. Relational knowledge is required for 

every mapping from a property to another. Besides the relational knowledge, the prototype also 

stores qualitative knowledge, computational knowledge and context knowledge. The 

qualitative knowledge complements the relational knowledge and provides information on the 

effects of changing structure variables values on behavior and function properties. The 

computational knowledge is the quantitative counterpart of qualitative knowledge and specifies 

symbolic or mathematical relationships among the properties variables. The context knowledge 

identifies the external variables for a design situation, which should come from the context 

where the design is inserted. The qualitative and computational knowledges are subjected to 

constraints, which on function properties appear as expected behaviors and on structure 

properties reduce the set of possibilities. 



 

13 

 

 

Figure 7 - Prototype schema diagram. (Gero and Rosenman, 

1990) 

 

2.5 Difficulties Applying Knowledge-Based Design 

According to (Rosenman, et al., 1989), in order to apply the knowledge-based system design 

theory, three main problems should be addressed by the designer: the prototype definition, the 

syntactic spaced definition and the interpretative space definition. 

The prototype should be understood as a Schema, which is used as a conceptual structure for 

organizing knowledge. This schema provides a framework for mapping the characteristics and 

performances of a design, besides carrying all the relevant information about it. The prototype 

definition is a complex problem, especially for a system as complex as a ship. 

This high level of complexity makes it even more important that the mapping process between 

the characteristics and performances be done using correct reasoning. The prototype should be 

prepared to deal with the ship design problem complexity and constraints when applying the 



 

14 

 

performance evaluation tools, in order to provide the best possible results with the minimum 

interference from the user. 

The definition of the syntactic space is a crucial step of the design process, since an individual 

outside the boundaries of this space cannot be evaluated by the prototype. An inaccurate 

definition of the syntactic space could lead to the no consideration of a potentially good 

individual. Again, due to the complexity of a vessel design problem, a good definition of the 

syntactic space is difficult. This space can have dozens of dimensions (depending on how 

complex the system representation will be) and the definition and implementation of the set of 

constraints that limits each dimension is a demanding task. This task can be handled by 

applying design of experiments (DOE) technics (Fisher, 1971) in order to provide an 

appropriated initial population for the design process or by the use of knowledge from experts.  

The definition of the interpretative space covers all the performance evaluation tools that are 

present on the prototype. In the case of this project. these tools aim the assessment of several 

aspects of the vessel’s lifecycle performance while providing a base for the decision making 

process on an early stage of design. The definition, implementation and integration of each tool 

in the vessel prototype represent part of the complexity of this phase. 



 

15 

 

3 Conceptual Ship Design Methodologies 

In this chapter, the more common conceptual ship design methodologies are going to be 

approached. The main aspects of each methodology will be presented and the methodology for 

conducting the studies in this thesis will be chosen. 

 

3.1 Introduction 

As stated by (Gaspar et al., 2012b), a ship is a complex and specific product. It is composed by 

several subsystems, which should work together in order to ensure the correct operation of the 

vessel, making it capable of performing its required tasks as well and efficiently as possible.  

Historically, the ship design process was conducted using Heuristic methodology 

(Papanikolaou, 2010), which means that the design process was learned by means of try and 

error and was highly dependent on past experiences. With the need for achieving better results 

during the design process, analytical models started to be used to relate the vessel’s required 

tasks to the design parameters (or requirements). (Cho and Žanić, 2006) These design 

parameters are the result of an extensive discussion involving the vessel’s stakeholders and 

experienced decisions makers. In this discussion, end-users and people involved in the vessel 

design and construction try to make their desires and expectations count, but also considering 

the tradeoffs they are willing to permit. (Papanikolaou, 2010) 

The ship design task should address all the vessel’s life-cycle, and the latter should consider at 

least the conceptual design phase, the contract and details design phase, the construction and 

fabrication phase, operation and economic life and scrapping and decommissioning. Since the 

different phases of the vessel’s life-cycle have contrasting objectives, it can be taken that the 

final design is a result of a Holistic process, where the whole design should be considered as 

not being only the sum of parts, but should take into account the relation between these parts 

as well. This fact makes the ship design problem so complex that even in its simplest phase 

(namely the conceptual design phase) the design cannot be reduced to its fundamental part, 

being yet present the need for Holistic approach. (Papanikolaou, 2010) 

(Chou, 2004) suggests that the conceptual design process includes four main phases: the 

necessities identification, the requirements definition, the selection of design criteria and the 

development of a solution framework. This process can be addressed, mainly, by using two 

different approaches: the point-based design and the set-based design. 

 



 

16 

 

3.2 Point-Based Design 

The most traditional approach used for initial ship design process is the classical design spiral 

(Figure 8) (Evans, 1959). On the spiral model, the different vessel design features such as 

displacement, volume, weight, stability, seakeeping, should be approached in sequence, 

following the design spiral. On each turn around the spiral, the design features should be 

considered with increasing detail. The model is iterated until a reasonable solution that satisfies 

the design goals is found. Since the design process seeks for a single solution for the problem, 

this approach is called point-based design (PBD). (Parsons, 2003) 

 

Figure 8 – Classic design spiral. (Evans, 1959). 
 

As summarized by (Liker et al., 1996), the PBD process can be divided in five main steps. The 

process begins with the problem definition, based on the design requirements. Several 

alternative design concepts which satisfy the stablished problem are then generated. These 

alternatives are analyzed in order to select the most promising one. The selected alternative is 

evaluated and modified until a solution that matches all the design criteria is found. If, by any 

reason, the selected solution proves itself unfeasible or fails to match one or more of the desired 

goals, the designers should try to select another alternative or, in the worst case, rethink the 

problem definition and restart the process from the beginning. 



 

17 

 

According to (Parsons, 2003), the PBD approach has a big disadvantage related to finding 

optimum solutions. Although it can produce a feasible design that meets all the stakeholders’ 

requirements, there is no way to ensure that this solution is a global optimum (regarding the 

vessel’s key performance indicators) due to the lack of comparisons with other feasible 

solutions. 

Another disadvantage of this approach is related to design convergence. Since the iterative 

process around the design spiral is an extensive and time consuming task, it is usually limited 

by the project’s budget and schedule. The project will be considered complete when these 

resources become scarce, despite of its convergence to an optimum or suboptimum global 

solution (since it matches, at least, the basic design requirements). (Singer et al., 2009) 

 

3.3 Set-Based Design 

The main feature of the set-based design (SBD) methodology is the fact that it defines broad 

sets for the parameters’ design, in order to allow a concurrent design to begin, and keeps these 

sets open, so that the design teams can see the difference in performance and cost among the 

different solutions 

Nowadays, a different approach, taken from the automotive industry, is being used in the ship 

conceptual design. (Brinati et al., 2007) From the study of Toyota’s production system, famous 

for its world-class design and production of automobiles, it led to the conceptualization of Lean 

Manufacturing (Womack et al., 1991). The Toyota design processes produce excellent designs 

in a shorter time than other automobile manufacturers. 

The main features of Toyota’s design process include (Singer et al., 2009): 

 concurrent design based on a broad set of design parameters; 

 more tradeoff information is obtained keeping the set unconstrained for longer time; 

 the set is gradually narrowed instead of abruptly constrained, until a more global 

optimum solution is revealed and refined.  

 the design fidelity increases when the set narrows. 

This design process was characterized by Alan Ward as SBD. It works in a different way from 

the traditional PBD, where the system’s interfaces are specified early in the process, so that the 

design can go on. Usually these definitions and theirs correspondent constrains are imposed 

long before the needed tradeoff information is available, resulting in sub-optimal overall 

designs. (Parsons et al., 1999)  



 

18 

 

The Toyota design process approaches the design process in a different manner than the one 

expected to be the most efficient, and brought with it two paradoxes. The first paradox is related 

to Toyota’s Lean Manufacturing System and Just-In-Time Inventory. Ideally, the economy of 

scale should be the best path to produce good designs with lower price. But while companies 

minimize price by maximizing machine speed and capacity, they also neglect the impact of 

space, transportation, and inventory. Toyota, on the other hand, operated with little to no 

inventory and manufactured vehicles at a lower cost and with better quality. (Singer, 2008) 

The second paradox (Ward et al., 1995) is related to how Toyota is capable of having a shorter 

time to market then other companies even though it delays its decision making process. The 

reasons for that are related to with cost structure, design team influence and knowledge about 

the design process, as it will be discussed in the next section. 

 

3.3.1 The Effects of Early Decision Making 

The PBD methodology values the early decision making. This approach can harm the outcome 

of the design process, mainly due to three factors: evolution of the product’s cost, 

management’s ability to affect these costs, and evolution of the designers’ knowledge about a 

design problem. The negative effect of these factors in the outcome of the design process can 

be reduced by means of delaying the decision making as far as possible. (Bernstein, 1998) 

The first factor to be approached is the product’s cost. The design team is responsible for 

defining everything related to the product’s cost. The chosen design, the way it will be 

produced, how it should be transported and required selling price are all important decisions 

defining the structure of a product’s cost. This decision process is a tricky task, since the 

choices made in the very beginning of the design process (with the least data) have the most 

impact in the product’s costs structure. (Ward et al., 1995) 

At the end of the conceptual design phase, between 60% and 80% of the product’s total life-

cycle cost is determined. (Dierolf and Richter, 1989) Although the impact of the conceptual 

design phase decisions in the final product are enormous, the amount of resources spent in this 

stage are minimal. For a vessel design, the time and money allocated to the conceptual design 

phase are about 2% of that of the design, detailing and construction phases all together. 

(Levander, 1991) 

(Gaspar, 2013) also considered in this evaluation the effect of the changes in the design over 

the vessel’s life-cycle (Figure 9). The cost of removing or correcting a design flaw or making 



 

19 

 

any change in the vessel’s design in the construction phase at the ship yard can be as big as 

1000 times higher than if the same change was made during the conceptual design phase. 

With these considerations, it is possible to notice the importance of the decisions taken in the 

early product development and how they can affect the product’s cost structure. Also, the 

impact in lowering the cost structure of decisions made in the later stages of development is 

very small. (Anderson, 1997) 

 

 

Figure 9 – Costs evolution through the main design phases. (Gaspar, 2013) 
 

Other factor influencing the product’s cost structure is the management’s ability to influence a 

product’s design. During the conceptual design phase, the design team has a great capacity to 

influence the product’s design. As the design progresses, this capacity is greatly diminished. 

This characteristic is due to the fact that the design team constraints the available options for 

design solutions with each decision made. (Krishnan et al., 1991) So, as the design progresses, 

more decisions are made and more constraints are inserted in the design formulation, making 

the management’s power influence the product’s costs structure to decline, while these costs 

increase. 

The conceptual design phase is also characterized by the lack of knowledge from the design 

team. At the beginning of the product’s development, the design team is not really aware about 

the problem’s variables, constraints and user’s needs. As the problem is worked, the knowledge 

starts to consolidate and the design team becomes more capable of making better decisions.  



 

20 

 

As already discussed, these initial decisions have the most impact in the product’s cost 

structure, however they are made when the design team has the least knowledge about the 

product and the process. 

(Erikstad, 1996) corroborates with the relation between the design knowledge and the design 

freedom and how they evolve over the life-cycle of a vessel. At the beginning of the conceptual 

design, no decisions have yet been made, and the only constraints are the ones related to the 

top-level mission requirements. All subsequent decisions will constraint the design freedom. 

The limited design knowledge can be mainly attributed to the uncertainty in the relation 

between the form and the function of the vessel. The uncertainty in these mapping functions 

can be related to the vessel itself or to the vessel’s environment. Especially in the early stages 

of the design process, the mapping between form and function needs to be modelled, in a large 

extent, using heuristic and empirical rules. 

Figure 10 shows how useful delaying the decision make process can be. Firstly, it can delay 

the commitment of costs for a moment when more knowledge about the product and the design 

process is available. Secondly, it can increase the manager’s influence over the late design, 

since several constraints can only be considered when the decisions regarding them are made, 

which would give more options for the product’s design. The knowledge is considered 

unchangeable, since it is already considered that it is obtained as soon as possible. (Bernstein, 

1998) 

 

Figure 10 - Perks of delaying the decision making 

process. (Bernstein, 1998) 
 



 

21 

 

(Kalyanaram and Krishnan, 1997) pointed additional benefits of delaying the decision making 

process: 

 better balance between customer needs and technical feasibility; 

 keeps the design open to receive the latest technology available;  

 more competitive products, both in terms of price and performance; 

better track changes in customer desires. 

 

3.4 System-Based Ship Design 

According to (Hubka and Eder, 1988), who described the bases for technical systems, the 

system thinking has as its main features (Levander, 2012):  

 Delivers the relationships that are valid for all products;  

 Presents an opportunity to treat problems as a whole; 

 Is a necessary pre-condition for a successful design and engineering effort;  

 Provides a framework for the design task and formalizes many logical operations; 

 Supports those human operations, that are not strictly logical, as intuition and creativity.  

Kai Levander, who believed this system approach could help the development of innovative 

vessel designs, applied the idea of system thinking to ship design, developing a design 

methodology called System-Based Ship Design (SyBSD). This methodology works as a 

framework for the vessel design task. This framework is structured over the idea of dividing 

the vessel in different systems, based on their functions, which work together to accomplish 

the desired ship mission. (Levander, 2012) 

Differently from a top-down design approach where the design starts from the vessel and 

continues to detail the vessel’s systems, the SyBSD uses a bottom-up approach, going from the 

vessel’s required functions to the composition of the vessel itself. The designs start from the 

mission specification, which defines task, capacities and expected performance by the vessel’s 

stakeholders. This approach straightens the beginning of the design spiral, delaying the 

beginning of the decision process and reduces the number of iterations needed to find a feasible 

solution. A comparison between the SyBSD spiral and the conventional one can be seen in 

Figure 11. 



 

22 

 

 

Figure 11 – Comparison Between System-Based Design Spiral - Left (Erikstad and Levander, 

2012) and Conventional Point Based Spiral - Right (Gale and Slutsky, 2014) 

According to (Erikstad and Levander, 2012), the SyBSD process can be summarized as 

follows: 

Customer requirements - Mission statement 

 Task, capacity, performance demands, range and endurance; 

 Rules, regulations and preferences; 

 Operating conditions (wind, waves, currents, ice). 

Functional requirements - Initial sizing of the ship 

 Based on capacity, where the areas and volumes needed for cargo spaces and task 

related equipment define the size of the vessel; 

 Based on weight, where the cargo weight and the weight of task related equipment and 

of the ship itself define the size of the vessel. 

Form - Parametric exploration 

 Variation of main dimensions, hull form and layout of spaces on board to satisfy the 

demands for both capacity and weight. 

Engineering synthesis 

 Calculating and optimizing ship performance, speed, endurance and safety. 

Evaluation of the design 

 Calculating building cost and operation’s economics. 

A functional breakdown is used in order to divide the vessel in systems. The vessel is split into 

the categories Ship Systems and Payload Systems. The Ship Systems are all systems related to 

the safe and correct operation of the vessel, without taking the cargo into consideration. The 



 

23 

 

Payload Systems are functions and requirements that generate cash flow for the vessel, which 

can include cargo and cargo related systems but also specific systems for specialized vessels 

such as offshore support vessels, which can have winch and heavy lift cranes. Due to these 

special cases, the Payload Systems can also be called Task Related Systems. An example of 

this division can be seen in Figure 12. 

 

Figure 12 -Payload and ship functions in a cargo vessel. (Levander, 2012) 
 

In order to facilitate data collection, the SyBSD divides the systems based on the structure of 

the SFI Group System. (Urke, 1976) The SFI group system was developed at the Norwegian 

Ship Research Institute and is the most widely used classification system for the maritime and 

offshore industry worldwide. It is an international standard that stablishes a functional 

breakdown of the ships’ technical and economic information and is used by shipping and 

offshore companies, shipyards, consultancies, software suppliers, authorities and classification 

societies. It helps the control of operations by tying together all their procedures such as 

purchasing, accounting, maintenance and technical records. 

The SFI group system provides major advantages for shipping and offshore operations in areas 

such as communication, computerization, cost and quality control, development, education and 

training and standardization. The system is independent of company organization and methods 

of ship building, ship operation, maintenance and repair and when it was established, the basic 

criteria for its design were (Manchinu and McConnell, 1977): 

 It must be applicable to all users; 



 

24 

 

 It must be applicable to all types of ships; 

 It must be simple and easy to understand; 

 It must be capable of future expansion. 

According to (Manchinu and McConnell, 1977), in order to meet the purpose of and the 

requirements to the system, the ships were divided into functions, which structure and 

systemize all the ship’s different systems and components through a three-digit decimal 

classification system with ten main groups at the highest level, from which two groups (0 and 

9) are reserved for especial use. Each of the main groups (one digit numbers) consist of ten 

groups (two digit numbers) and each group is further subdivided into ten subgroups (three digit 

numbers). Hence, the structure of the group system numbers is as follows: 

 

Figure 13 – SFI group system’s code structure. (Manchinu and 

McConnell, 1977) 
 

In the SFI group system, the main groups are divided as shown in Figure 14. Further detailing 

about the group system subdivision can be seen in APPENDIX D. 

 

Figure 14 – SFI main groups structure. (Utne, 2009) 
 

It is also possible to further break this subdivision down using a 6-digit detailed code, as shown 

in Figure 15. 

The correlation between SyBSD and SFI is not completely accurate, since the former does not 

distinguish between payload and ship systems, which results in some minor differences 



 

25 

 

between the subdivisions of these two structures. Although some differences exist, they can be 

overcome making some special relations among discordant items. (Erikstad and Levander, 

2012) The complete correlation between SyBSD and SFI subdivisions can be seen in 

APPENDIX E. 

 

Figure 15 – SFI subdivision examples: Main Group 6. 
 

Since the vessels are usually very generic, they follow a design pattern based on previous 

experience that resembles a scaling process. This traditional approach easily locks the designer 

to his first assumption, making him patch and repair the same design, what makes this 

traditional method not prone to innovation. 

The SyBSD, using a bottom-up approach determines the needed area, volume and weights for 

each vessel’s function, and from this figures estimates the displacement, main dimensions and 

building costs. By doing this evaluation without defining the vessels dimension, the SyBSD 

method does not lock assumptions in the conceptual phase and supports a more creative process 

in the start of the project.  

The SyBSD method is suitable for the early design decisions, and can be considered as a 

checklist that reminds the designer of all the factors that affect the design and records his 

choices. Its use ensures that the design is based on the most fitted basis ship, and reduces the 

number of iterations in the design spiral later on. (Vestbøstad, 2011) The final product of the 

SyBSD method application is a complete description of the new ship, which can be used as an 

advanced start point for the next design phases 



 

26 

 

As discussed in this section, the SyBSD mix characteristics of PBD and SBD in one 

methodology. The straightening of the beginning of the design spiral gives the SyBSD an 

advantage over the PBD towards the SBD. Since the SyBSD methodology is already well 

developed for specific application in ship design tasks, it will be chosen for developing the 

conceptual ship design open source tools library.  

 

 

  



 

27 

 

4 Open Source Software 

This chapter is going to present the main aspects of open source software, including why they 

exist, who makes them possible and how they can succeed. In addition, the open standard 

concept will be introduced in the form of JavaScript, the computational language that will be 

used in this work. 

 

4.1 Introduction 

In order to protect intellectual property and ensure the possibility of profit, several commercial 

software companies keep their software’s source code in secret. The source code is a sequence 

of logical instructions written in a certain programming language and used by a computer to 

execute a given task or achieve a given purpose. In order to protect the source code, companies 

release the program in a binary version (the code converted in a sequence of zeros and ones), 

which can be understood by computer but is difficult for users to interpret. (Simon, 1996) 

This kind of approach goes against the origins of computer programming, where codes were 

written and shared by several individuals, with no commercial interest involved. (von Hippel 

and von Krogh, 2003) To fight this tendency, the now called Open Source Software (OSS) 

movement was created, aiming to ensure free access to the programs’ source code, making it 

possible for users to understand, change, adapt and improve the original programs’ source code. 

 

4.2 Concept 

The term “free software” is not related to price or value. It is about freedom. According to 

(Stallman, 1999) a free software can be called so if an individual user can: 

 Run the program for any purpose; 

 Have access to the program’s source code so it is possible to modify it; 

 Redistribute copies of the original program, either gratis or for a fee; 

 Distribute modified versions of the program. 

The possibility of selling copies of the program is a crucial feature to finance the free and open 

source software development and communities. In order to ensure all this freedom, the copyleft 

licensing concept was developed, adding distribution terms to the conventional copyright 

practice, which gives anyone the right to use, modify and redistribute the code, since the 

distribution terms are kept intact. 



 

28 

 

The licensing is a complex subject in software development and distribution. There are several 

licensing standards for both free and proprietary software. The following diagram (Figure 16) 

by (Kuei, 1999) shows the different categories of software licensing. Some of them limit the 

access to the closed program (proprietary software), some only limit the access to the source 

code (public domain software without source code) while others only impose distribution terms 

(copylefted software). 

 

Figure 16 – Overview of types of software licenses. (Kuei, 

1999) 
 

The use of software patents instead of copyright in order to protect intellectual property is a 

big problem for OSS communities. This mechanism can be applied on the compression 

algorithm used to create file formats such as GIF and MP3. The final users do not need to pay 

anything to use GIF files, but the developers need to pay a license fee in order to use the 

compression algorithm in their programs, which is a big obstacle for OSS development. 

(Bretthauer, 2001) 

In order to ensure that a software respects the open source concept, two main characteristics 

need to be attended: OSS developers are always users and OSS should adhere to the Open 

Source Definition. The first requirement is self-explanatory and matches the idea that the code 

developer has a need to develop the software. The second requirement is defined by 10 

characteristics that every OSS must have (OSI, 2016). The three most important ones refer 

back to the free software definition: 

 The ability to distribute the software freely; 

 The source code’s availability; 

 The right to create derived works through modification. 



 

29 

 

4.3 Open Source Community 

The origins of user innovation communities are back before the advent of OSS communities. 

Innovation communities are not only related to information products such as software code, 

but are also related to physical products. (von Hippel, 2001) Active OSS projects have a well-

defined community. The community organizational structure can vary, but it gathers members 

with common interests around a project. These members can be involved in developing the 

project or even only interested in using its results. According to (Gacek and Arief, 2004), 

people who collaborate with a OSS development always use the produced code. It makes it 

difficult to distinguish between users and developers, since all users have the potential to 

become a collaborator. ((Gacek and Arief, 2004); (Yunwen and Kishida, 2003)) Figure 17 

shows how the OSS structure is organized, presenting the relation between users and several 

types of developers and their functions in the community. 

 

Figure 17 – Types of open source users and developers. 

(Gacek and Arief, 2004) 
 

The group of developers, users and user-turned developers form a community of practice that 

is a group of people who work together pursuing a common objective. In order to be successful, 

an OSS needs a well-structured community to support the collaboration between developer and 

user. (Yunwen and Kishida, 2003) The members of the community (specially the contributors) 

need to be motivated to work in order to provide the ideal conditions for the OSS to progress. 

Most of the contributors are experienced programmers and although most of them act 

voluntarily, some are members of companies that support their participation. (Lakhani et al., 

2002) 



 

30 

 

In order to have better chance to progress, the OSS community needs to have some users with 

innovative profile, these users need to be eager to spread their innovation and this diffusion of 

innovation needs to be able to compete with commercial production. (von Hippel, 2001) 

Usually, OSS communities face two major issues related with the community’s structure: the 

balance of centralization and the meritocratic culture. Depending on how strict the OSS 

community hierarch is, the decision making can be more centralized (for strict hierarchies) or 

more decentralized (for looser organizational structures). In strict communities, the higher 

hierarch people have, the more power they have and, consequently, more control over the 

decision making process. In looser communities, all the developers are in the same level, 

implying in decision making based on full consensus. OSS communities greatly relay on the 

contributors’ perceived merit, which will increase as the contributor collaborate with the 

community development. The more relevant are the contributions the bigger is the power 

owned by the contributor, which can ascend (in some communities) from a passive user to a 

code developer, having more influence in the official releases of the code. The way this kind 

of transition happens, if it happens at all, depends on the project’s organizational structure. 

(Gacek and Arief, 2004) 

 

4.4 How it Can Succeed? 

According to (von Hippel, 2001) “User Innovation Communities Shouldn't Exist, but they do”. 

There are two main factors playing against the OSS communities when compared to 

commercial enterprises. The first one refers to the existence of a financial incentive for 

commercial manufactures. Different from individual developers and innovators who usually 

only benefit from the use of the developed code, the companies can expect to sell their product 

and make profit. The second point refers to the companies’ infrastructure, which can provide 

better production, distribution and field-support capabilities. These factors grant great 

advantages for widespread diffusion of innovation (von Hippel, 2001) 

The OSS work arrangement is completely different from the one in the conventional industry 

style. The OSS systems are built for a potentially bigger number of people, there is no work 

assignment since people work only with what they find pleasant, there are no conventional 

organizational elements such project plan, schedule, or list of deliverables and usually the 

contributors are geographically sparsely distributed. Contrary to what is expected in this kind 

of work arrangement, the OSS development is often equivalent, or even superior to traditionally 

developed products. (Mockus et al., 2000) 



 

31 

 

There is no doubt about the capacity of OSS community to produce good quality products, both 

regarding the quality and the support users receive, although the reasons for that are not 

completely understood and proven yet. One possible advantage of OSS is that the quality of 

the final result tends to be higher, since contributors code with care and creativity due to the 

satisfaction obtained through the work. Also, in an OSS development, problems and defects 

are quickly found and fixed, since there are a lot of people involved not only with the code 

development itself, but also with the use of this code. (Mockus et al., 2000) 

According to (Bonaccorsi and Rossi, 2003) the success and diffusion of a OSS is closely related 

to the positive beliefs that software has among the users. In the presence of well-established 

commercial software standards, the OSS depends largely on several sources of network 

externalities. With no established commercial standards and in the presence of well diffused 

OSS, commercial companies need to heavily invest on R&D aiming to increase quality in order 

to be able to fight the OSS control of the market.  

As also pointed by (Bonaccorsi and Rossi, 2003) simulations, although there is a natural and 

inevitable competition between OSS and commercial software, they “…are likely to coexist 

even in the limit.”. 

 

4.5 JavaScript as an Open Standard 

An OSS needs to be written in a computational language that is not propriety, in other words 

being owned and controlled by one company. An open computational language can be called 

an Open Standard (OS). This is the case of JavaScript, which is a particular implementation of 

the ECMAScript language standard. 

An OS like JavaScript is open but not open source, since is it not a program. It is only a 

document describing expected behaviors for lines of code written in its computational language 

syntax. Although an OS cannot be open source, an implementation of it can be (and in this 

case, it is an OSS). 

In this section, JavaScript is presented as an OS, showing its background, main features and 

justifying why it will be chosen for developing the conceptual ship design open source tools 

library.  



 

32 

 

4.5.1 Object Oriented Programming in JavaScript 

Object-oriented programming (OOP) is a programming paradigm based on the concept of 

"objects", which may contain data and code. In OOP, computer programs are designed by 

making them out of objects that interact with one another. The most popular and developed 

model of the OOP is the class-based programming (CBP). In this model, objects are entities 

that combine data, behavior and identity. The structure and behavior of an object are defined 

by its class, which includes all objects of a specific type. The objects are created based on 

classes and are considered instances of them, inheriting some of their properties. 

JavaScript does not follow the CBP model. It is structured as a class free language, where 

objects inherit properties from other objects. This model is called prototype-based since 

behavior reuse is performed via a process of cloning existing objects that serve as prototypes. 

(Stefanov, 2010) This approach is powerful, making the inheritance process easier to 

implement, but it is also way different from what a conventional CBP language is. (Crockford, 

2008) 

An object, which is the JavaScript’s core data type and its only complex one, is an unordered 

list of primitive (Number, String, Boolean, Undefined, and Null) and complex data types that 

are stored as a series of key-value pairs. The key property serves as an identifier while the value 

represents the value of the expression, which can be a primitive or an object value. Each item 

in the list is called a property or, if an item is a function, it is called method. (Stefanov, 2010) 

This easy notation inspired JSON, a popular data interchange format. (Crockford, 2008) An 

example of an object (car) containing both properties (type, model and color) and methods 

(showColor()) can be seen below. 

 

 

 

var car = {                         // car object. 

    type:"Fiat",                    // car object’s property. 

    model:"500",                    // car object’s property. 

    color:"white",                  // car object’s property. 

    showColor : function () {       // car object’s method. 

        alert(this.color)           // showColor method’s description. 

    };  

} 

 

One of the fundamental concepts from OOP is the inheritance concept. Usually in a CBP 

language, objects are instances of classes, from which they can inherit properties and functions. 

In JavaScript, this process is a little different since objects inherit from other objects.  



 

33 

 

Another important concept of OOP is the encapsulation concept. Encapsulation refers to 

enclosing all the functionalities of an object within that object so that the object’s methods and 

properties are hidden from the rest of the application, making it possible to abstract or localize 

a specific set of functionalities on objects. 

These two concepts will be important in this work, since they allow the construction of 

applications with reusable code, scalable architecture, and abstracted functionalities. 

 

4.5.2 Object Definition in JavaScript 

The objects definition in JavaScript can be done in three different ways, using object literals, 

using the new keyword or using the Object.create() method. (Flanagan, 2011) 

The object literals are the simplest way to define and fully initialize an object in JavaScript. It 

can be written as a list of key-values pairs, separated by commas and inside curly brackets. 

Each time an object literal is evaluated it will create and initialize a new object, so the same 

literal can be used to create a bunch of different objects, if used recursively. 

 

 

 

var empty = {};                  // An object with no properties. 

var point = {x:0, y:0};          // Two properties. 

 

The new operator can be used to create and initializes a new object. The new object is created 

using a function invocation, called constructor. Besides offering built-in constructors for 

several types of object, in JavaScript it is possible for the user to define specific constructors 

in order to initialize specific objects. 

 

 
 

var o = new Object();            // Create an empty object: same as {}. 

 

 

The last implementation of JavaScript OS, ECMAScript 5, brings the Object.create() method, 

which can be used to create a new object from a given prototype.  This method has the powerful 

capability of creating object that inherit properties from any object.  

 

 

 

var o1 = Object.create({x:1, y:2}); // o1 inherits properties x and y. 

var o2 = Object.create(null);       // o2 inherits no props or methods. 

 

 



 

34 

 

This great set of forms to define objects makes JavaScript a really eclectic and powerful 

standard for dealing with OOP, avoiding the complication brought by the use of classes and 

also providing great capabilities from an inheritance and code reuse point of view.  

 

4.5.3 Why JavaScript? 

The idea in this work is not only to create an open source tools library, but also to create a ship 

design tool that is simple to use, not computational intensive and requires as minimum effort 

as possible to share designs and results. 

Working with a software that requires to be installed in the computer could make it difficult to 

share results with clients, team members or other stakeholders. Using an online platform for 

the vessel design can reduce this information sharing difficulty, as the only thing one needs to 

access the information about the design is a web browser, and the only thing needed to edit is 

a text editor, reducing the need for client-side software to a minimum. Also, since all the 

processing is done in browser, the computational requirements are low.  

Web development is not restrict to one operational system or one platform, since internet is 

universal. When thinking about client-side web development, JavaScript is an obvious choice. 

JavaScript is so important and popular because it is the language of the web browsers. 

(Crockford, 2008) It is supported by all modern web browsers without the need of plugins, 

since each browser has its own built-in JavaScript engine. (Flanagan, 2011) JavaScript 

composes a triad of web technologies that are essential for web development, together with 

HTML to specify the content of the web page and CSS to specify the presentation of the web 

page. JavaScript is responsible for describing the behavior of the web page. (Flanagan, 2011) 

The position of JavaScript as the main languages in web browser makes its development fast, 

with new tools and libraries being developed all the time by the gigantic JavaScript’s 

community.  

Since JavaScript is prototype-based with first-class functions, supporting object-oriented, 

imperative, and functional programming styles (Flanagan, 2011), its prototype and inheritance 

capabilities make it good choice for dealing with objects to handle the vessel subsystem 

division and the knowledge base data. It has a simple API for working with text, arrays, dates 

and regular expressions, which can be completed using third parties’ APIs. It has no input-

output functionalities, relaying on the environment where it is embedded to handle these 

operations. (Flanagan, 2011) 



 

35 

 

The biggest drawback of JavaScript is the fact it is an OOP language that is PBP model. This 

makes of it an unusual language for most developers, which are accustomed to conventional 

CBP model. Directly using programming techniques from CBP will not work in JavaScript, 

which can be frustrating for an unadvised programmer. (Crockford, 2008) 

 

4.5.4 The UML Class Diagram 

For modeling the static design view of the vessel prototype, the UML Class Diagram (Booch 

et al., 1998) is going to employed. It is the most common diagram for modeling object-oriented 

systems and presents the systems’ classes, interfaces, collaborations and their relationships. 

In order to read a class diagram, some simple knowledge about its representation pattern is 

needed. Firstly, the UML provides a graphical representation of class. This notation allows to 

visualize abstractions created to represent elements of the designed system and lets you 

emphasize the most important parts of these abstractions: their name, attributes (JavaScript 

properties), and operations (JavaScript methods). (Figure 18) 

 

Figure 18 – Graphical representation of a class. 

(Booch et al., 1998) 
 

In UML diagrams, classes can be related using the notations presented in Figure 19.  

The association is the most abstract way to describe the relationship between classes, stating 

that there is some kind of link or dependency between two classes or more.  

The inheritance relation is used to indicate where a class inherits properties and methods from. 

The arrow points from the subclass (child) to the superclass (or parent).  

The realization relation exists between two classes when Class A realizes the behavior specified 

by Class B. 

The dependency relation exists between two elements when changes to the definition of one 

element may cause changes to the definition of the other element. 



 

36 

 

The aggregation can be used in cases where there is a part-of relationship between Class A 

(whole) and Class B (part), but with no strong life-cycle dependency between them.  

The composition relation works in cases where there is a part-of relationship between Class A 

(whole) and Class B (part), but also there is a strong lifecycle dependency between the two and 

the “whole” class has exclusive ownership of its “part” elements. 

 

Figure 19 - UML relation notations. 
 

In order to specify how many instances of a class can be connected by a relationship to an 

instance of another class, the multiplicity concept is used. The multiplicity is placed in the ends 

of the relation arrows and refers to the classes nearest to each end. The UML multiplicity 

notation can be found in Table 1. 

0 No instances  

0..1 No instances, or one instance 

1 Exactly one instance 

0..* Zero or more instances 

* Zero or more instances 

1..* One or more instances 

Table 1 - UML multiplicity notation. 
 

The last UML concept to approach here is the visibility concept. The visibility specifies 

whether an attribute or operator from Class A can or cannot be used by Class B. Table 2 shows 

the visibilities and their symbols, which are placed at the left side of the attribute or operator’s 

name. If the visibility is public, any class can use it. If it is private, only the class who owns it 

can use it. If it is protected, the class who owns it and classes derived from it can use it.  

+ Public 
- Private 
# Protected 

Table 2 - UML visibility 

notation 

  



 

37 

 

5 Research Approach 

In order to build up the open source tools library, I am going to deal with the three main topics 

of this work: KBD, CSD and OSS. The KBD theory will be responsible for the prototype 

concept and knowledge-base. The CSD method selected is the SyBSD theory. The open source 

tools library will be developed using JavaScript as an OS. Selecting the relevant topics in each 

subject, the work scope is reduced and can be seen in Figure 20. 

 

Figure 20 - Narrower scope used on the research approach. 

 

This chapter will be developed following the system architecture presented in Figure 21, where 

the tools library components are organized and their relations stablished. The User provides 

inputs to the library and receives outputs from it. The Tools Library is developed using 

JavaScript, for both Prototype and Knowledge-Base. The Prototype contains the most 

important KBD elements, namely Function, Behavior and Structure. The User’s inputs feed 

the Function block, while the Structure and Behavior blocks are developed using SyBSD 

theory. The Structure and Behavior blocks receive information from the Knowledge Base 

through an Inference Mechanism, respectively from the SyBSD Structure Database and 

Regression Database blocks. 



 

38 

 

 

Figure 21 - Conceptual Ship Design Open Source Tools Library architecture. 

 

Following this architecture, I am going to start this chapter with the Knowledge Base creation 

and organization. Secondly, the way the SyBSD methodology is used to structure the prototype 

and conduct the design process will be presented. Finally yet importantly, the Vessel prototype 

and tools library construction using JavaScript is approached, giving special attention to how 

the OOP capabilities can be used to structure, represent and handle knowledge about the CSD 

process. 

 

5.1 Knowledge-Base 

One important element in KBD is the knowledge-base. It is responsible for storing knowledge 

about the design process, which can be accessed by some sort of inference mechanism to 

retrieve facts, knowledge and control whenever the reasoning process requires. The tools 

library knowledge base was constructed to be the most generic as possible in order to provide 

knowledge to the design of several kinds of vessels and is composed by two databases: the 

Regressions Database and the SyBSD Structure Database. 

The regression database contains important vessel design coefficients regression and 

knowledge about previously built vessels of several types, including container carriers, bulk 

carriers, tankers, ferries, roro and offshore support vessels. As examples of these regressions, 

it is presented below the relation between midsection, prismatic and waterline coefficients and 

Froude number. 



 

39 

 

 

 

var data_CM = [[0, 0.100, 0.200, 0.300, 0.385, 0.400, 0.454, 0.500], 

               [1, 0.998, 0.997, 0.978, 0.900, 0.879, 0.800, 0.740]]; 

 

var data_CP = [[0, 0.100, 0.200, 0.256, 0.300, 0.320, 0.401, 0.500], 

               [1, 0.914, 0.799, 0.699, 0.624, 0.598, 0.550, 0.583]]; 

 

var data_CW = [[0, 0.100, 0.200, 0.219, 0.299, 0.328, 0.400, 0.500], 

               [1, 0.964, 0.915, 0.899, 0.822, 0.800, 0.749, 0.715]]; 

 

 

The complete regressions database can be found in APPENDIX C. 

The SyBSD database contains class definitions based on the SyBSD structure. These classes 

are used to instantiate vessel elements, which compose the vessel’s subsystem, which in turn 

compose the vessel’s systems. Whenever the user instantiates a new element, this database will 

be accessed and the required class structure will be retrieved. As an example, the SyBSD 

structure of the outfitting system can be seen below, where the outfitting system is presented 

with its subsystem structures.  

 

 

 

outfitting 

 

operational_support 

{"area":"", "covered":"", "height":""} 

 

ship_equipment 

{"area":"", "covered":"", "height":""} 

 

rescue_firefighting 

{"number_units": "", "area_unit":"", "covered":"", "height":""} 

 

 

The complete SyBSD database can be found in APPENDIX B. 

 

5.2 System-Based Design Methodology 

The SyBSD methodology was used to define both the vessel structure and the vessel behavior. 

The structure relays on the system subdivision apply in SyBSD theory, which is based on the 

SFI grouping system division. The vessel’s behavior can be obtained from direct application 

of the SyBSD methodology. This application, besides providing the vessel’s main dimensions 

and behaviors, also prepares the terrain for the application of more complex tools, which can 

be used to obtain more complete and complex figures about the vessel’s actual behavior.  



 

40 

 

These two main applications of the SyBSD methodology will be discussed in the following 

sections. 

 

5.2.1 Vessel’s Structure 

The proposed vessel prototype subdivision structure is presented in Figure 22. SyBSD uses a 

simple division for the physical structure of the vessel. There are two main groups of systems: 

Task Related Systems [1.1] and Ship System [1.2]. The Task Related Systems group includes 

any cargo and cargo handling systems and specialized system for offshore support vessels 

which are not related directly to cargo but are related to the money making capacity of the 

vessel. The Ship Systems group includes any system required for the vessel to operate safely 

and considers the Outfitting [1.2.1], Crew [1.2.2], Service [1.2.3] and Machinery Systems 

[1.2.4]. More information about the SyBSD structure can be found in APPENDIX B. 

Besides the vessel physical structure, there are also other important elements to consider in the 

prototype structure. I am defining two JavaScript objects to store data. The first one is related 

to the required functions of the vessel, namely the Mission Requirements object [1.4]. The 

second is responsible for storing the vessel’s main dimensions and behaviors, namely the Main 

Dimensions object [1.5]. 

Lastly, the prototype will hold several JavaScript methods (or functions), which will be 

responsible for data handling, reasoning, knowledge retrieve and knowledge application. The 

methods present in the vessel prototype are: Prototype [1.3.1], Area [1.3.2], Volume [1.3.3], 

Light Weight [1.3.4], Dead Weight [1.3.5], Displacement [1.3.6], Main Dimensions [1.3.7], 

Holtrop [1.3.8], Seakeeping [1.3.9] and Hull Lines [1.3.10]. More information about each 

method and its application can be found in APPENDIX A. 



 

41 

 

 

Figure 22 - Vessel prototype subdivision structure. 

 

5.2.2 System-Based Ship Design Process 

In order to apply the SyBSD methodology, the workflow presented in Figure 23 was developed. 

It includes the main design process the user should perform while applying the ship design 

tools library. Some of the phases relay on the users’ knowledge, while others relay on the 

developed knowledge-base. 

The workflow is divided in 8 phases, which will be detailed hereafter. Each phase is represented 

by a block in Figure 23, and the phase number is identified by the number in the top right corner 

of each block. The SyBSD spiral stages are indicated by the dashed boxes. 

 



 

42 

 

 

Figure 23 – System-based ship design process 

workflow. 

 

Phase 1. The first phase on the workflow represents the Mission stage on the SyBSD spiral. 

Its goal is to obtain the mission requirements from the ship owner. This information will be 

crucial to correctly size the vessel, since it will define parameters such as cargo type and 

capacity, autonomy, speed, crew size, special functions, etc. These parameters are defined 

based on the expected tasks, capacities and performance from the vessel. 

The next three phases compose the Function stage of the SyBSD spiral. 

Phase 2. This phase consists in defining and sizing the relevant systems for the vessel so that 

it is able to perform and fulfill all the mission requirements. This approach can be characterized 



 

43 

 

as a Bottom-Up (Coyne et al., 1989), approach, since it starts from individual subsystems to 

compose the vessel, instead of fitting the subsystems inside the vessel. 

The basic system division of the SyBSD methodology consists of two main subsystems groups: 

Task Related (or Payload Related) Systems and Ship Systems. The first one is related to the 

vessel’s money making potential and will enclose all the system’s need for performing the 

vessel’s specific tasks. These tasks can be related to cargo or people transportation, offshore 

construction, anchor handling, etc. The second subsystems group is related to the vessel’s needs 

to perform the required tasks. This group includes subsystems such as machinery, structure, 

tanks, accommodations, etc. The traditional SyBSD breakdown structure for an offshore 

support vessel can be seen in Figure 24. 

 

Figure 24 – Example of an OSV function breakdown 

structure. (Erikstad and Levander, 2012) 

 

The SyBSD methodology uses a grouping system which is closely related to the one present 

on the SFI Group System. Although they are very similar, the SFI Group System does not 

distinguish between tasks related systems and ship systems. There are also some elements that 

are located in different groups in both grouping systems. In this case, some special relations 

can be made to completely relate the SyBSD theory to SFI Group System. One good example 

of this is the case of the anchor handling and towing equipment, which is part of the task related 



 

44 

 

systems on the SyBSD methodology but is located at the ship equipment category (Item 437) 

on the SFI Group System (Figure 25).  

 

Figure 25 – System-based design and SFI Group System special relation example. (Levander, 2012) 

 

Based on the chosen subdivision, the areas and volumes to accommodate all the subsystems 

need to be calculated. This is made through the information provided by the user. Each class 

of subsystem requires different parameters to define its area and volume. These parameters are 

related to the subsystems’ capacities and functions. More information about the required 

parameters for each class of subsystem can be found on APPENDIX B. For some subsystems, 

area and volume are relevant but there are some subsystems for which only area or volume can 

be important. For example, for tanks and voids systems, the SyBSD methodology is only 

interested in the volume of the system. Figure 26 schematizes the systems’ sizing process. 

 

Figure 26 - Systems sizing. Adapted from (Levander, 2012) 

 



 

45 

 

Phase 3. In this phase, the vessel is sized based on the areas and volumes of all previously 

defined subsystems. The operation is automatically done by the library, considering for each 

subsystem if the area and volume properties are relevant or not and is based on the developed 

knowledge-base. This phase can be summarized according to Figure 27. 

 

Figure 27 - Vessel sizing. Adapted from (Levander, 2012) 

 

Phase 4. In this phase, the vessel displacement is defined. The total displacement of a vessel 

can be basically divided in two categories: Lightweight and Deadweight. According to 

(Parsons, 2003), the first group represents the weight of the vessel that is ready to go to the sea, 

with neither loads nor cargo. It can be roughly divided in structural weight, machinery weight, 

outfitting weight and margin weight. The margin weight is responsible for protecting the design 

from underestimation of the needed displacement. Parsons also states that the Deadweight can 

be portioned in payload (or cargo deadweight), fuel oil weight, lube oil weight, fresh water 

weight, crew and their effects weight and provisions weight. In SyBSD approach, the weight 

estimation is done following the weight groups stablished in Figure 28, which although are 

portioned in a slightly different way from Parsons’ approach, address all the needed weight 

information. 

The estimation of weight at the early parametric stage of design typically involves the use of 

parametric models that are typically developed from weight information for similar vessels. 

The lightship weights estimation was conducted using the representative parameters for each 

item (ship equipment is based on gross volume, accommodation outfitting is based on the 

accommodation area, total installed power is used for machinery and area for hatch covers) and 

a collection of coefficients (APPENDIX C) based on statistical data provided by (Levander, 

2012). This data is divided by lightweight group and ship type, and is presented as regression 

curves, which were included in the knowledge-base. 

For the deadweight groups calculation (excluding the payload weight) the weight estimation is 

based on the consumptions of each resource and their densities. For the Provision and Stores 

and Crew and Their Effects weight groups calculation, coefficients suggested by (Parsons, 



 

46 

 

2003) were included in the knowledge-base, taking also into account the number of people on 

board and the vessel endurance.  

 

Figure 28 - Example of an OSV light and dead weights main groups. 

(Erikstad and Levander, 2012) 

 

Phase 5. The methodology had mitigated the decision process about the vessel’s main 

dimension until now, when a rough idea about the required areas, volumes and weights is 

available. Now, with more knowledge about the system, it is possible to take better decisions 

about the future of the design.  

This phase comprehends the rough estimation of the vessel’s forms (Figure 29). In order to 

specify the vessel’s hull, having the area, volume and weight distribution is crucial but, 

unfortunately, not enough. It is also important to have more specific information such as the 

vessel’s dimension, how the volume is distributed along the hull, where the centers of gravity and 

buoyancy are located and so on. These parameters can be defined, based on both statistical 



 

47 

 

regressions and empirical formulas, which are mostly implemented as expert’s knowledge in the 

knowledge-base. 

 

Figure 29 - Form and performance definition stage examples. (Levander, 2012) 

 

For obtaining the main dimensions, regression analyses from similar vessels will be conducted. 

This approach is useful at a preliminar design stage and its results can be refined at later design 

stages, when the ship designer has more precise information to work with. The regression 

implemented in the regressions database (APPENDIX C) can be found at (Levander, 2012) and 

are presented as separated regression for each kind of vessel, in function of a relevant property 

of each type of vessel. For example, in the case of platform support vessels, the main dimension 

regressions are presented in function of the vessel’s gross tonnage. 

The hull form coefficients (block coefficient, prismatic coefficient, water plane area coefficient 

and mid-section coefficient) can be obtained from the Froude Number, based on regressions 

presented by (Levander, 2012). These regressions are not vessel type dependent, since the 

Froude Number itself already carries enough information about the vessel type. For slender 

and faster vessels, the Froude Number is higher than for bulkier and slower vessels.  

For space and weight balance, several statistical, empirical and numerical expression were 

implemented in the knowledge-base. For most of the parameters related to space and weight 

balance, the expression is vessel type sensitive, so the expected results change according with 

the type of vessel. 

Phase 6. This phase consists in evaluating the main performance indicators of the vessel. These 

indicators can refer to any performance required that the vessel should fulfill, such as maximum 

speed, wave resistance, seakeeping response and so on. They are closely related to the vessel’s 

actual behaviors and should be compared to the expected behaviors in order to attest the 

rightness of the design. 

Form 

Performance 



 

48 

 

This performance evaluation is conducted using JavaScript methods implemented in the tools 

library. Two performance methods were included in the library so far: the Holtrop and the 

Seakeeping methods. The first one gives a rough estimate about the vessel’s wave resistance 

and the second gives some information about the vessel’s seakeeping capabilities. 

Phase 7. This phase consists in an evaluation process, where the user’s knowledge and 

judgment are relevant to decide if the obtained result is good enough, fulfilling all the mission 

requirement without generating an unfeasible result. If, for any reason, the design process 

generates an unpractical design or a design that does not completely fulfill all the requirements, 

the user should return to the Phase 2, and update the subsystems’ definition, using the obtained 

knowledge to make better assumption and decisions. 

Phase 8. In case the result obtained in Phase 7 is a satisfactory design, the SyBSD is completed. 

With a feasible solution, several methods defined in the tools library can be applied to further 

progress the design. If during the application of any extra method any inconsistency is found, 

the user can return to the SyBSD process to perform further modifications. As the conventional 

PBD methodology, the SyBSD is also an iterative process and revisiting past stages of the 

design is a common place on the ship design process. 

 

5.3 Vessel Prototype 

As already stated by (Lee et al., 1996), it is difficult to obtain knowledge to compose a 

knowledge-base. Once the knowledge base is constructed, another problem needs to be 

overcome: how to efficiently handle all this knowledge. One efficient way of doing so is using 

OOP to handle the main elements of the KBD methodology. 

The tools library is going to represent the vessel using an open prototype and in order to 

construct it, I am going to implement the tools library using object oriented programming 

concepts and JavaScript language as an OS. JavaScript was not designed as a conventional 

CBP language, but its object concept can be used to work around this issue. 

 

5.3.1 Object Oriented Programming Implementation in JavaScript: 
Encapsulation and Inheritance 

In order to implement the OOP in JavaScript, I am going to use two different techniques. The 

first one will be the encapsulation, for creating objects with specialized functionalities. The 

second one will be inheritance, for code reuse. 



 

49 

 

The encapsulation concept basically means to putting all the inner workings of an object inside 

that object. To do so, it is needed to identify and define the properties and methods of that 

object, so the encapsulation pattern to construct the object can be applied. Implementing 

inheritance in this application will allow to inheriting functionality from parent functions so 

that the code can be easily reused in the application and extend the functionality of objects, 

which can make use of their inherited functionalities and still have their own specialized 

methods and properties. 

The best encapsulation mechanism in JavaScript is the Combination Constructor/Prototype 

Pattern. (Zakas, 2009) This method is not only capable of dealing with the encapsulation 

matter, but it is also possible to use it in order to implement inheritance through Prototypical 

Inheritance. 

The use of encapsulation makes no sense if you only want to store data inside an object. For 

this kind of task, writing the object by using object literal is sufficient. But when you need to 

create several objects with similar properties and methods, it makes sense to encapsulate all 

these properties and methods inside a function and use it to construct these objects. 

In order to exemplify the use of Combination Constructor/Prototype Pattern technique in 

JavaScript, I am going to present the implementation of the systemPrototype method, which is 

held by the vessel object and is used to instantiate new system objects. Each system object will 

contain subsystem objects instantiated by the user, following the defined SyBSD structure 

database (APPENDIX B). The systemPrototype method will need to write down the 

instantiated subsystems as pairs key-property inside the system object. In addition, each system 

object will have the following method: add, area, delete, input and volume. Since all system 

objects will have the same methods, the Prototypal Inheritance will be used to make the child 

system objects inherit the methods from the parent system object. Each system object will be 

afterward specified with the relevant properties addressed by the user. 

Since I want all vessel systems to have the same methods, I can use a constructor function 

(class in OOP) to encapsulate these methods. In order to create the constructor function, the 

Combination Constructor/Prototype Pattern technique will be used. 

The first step of the creation of the constructor function is to initialize the instance properties. 

These properties will be defined on each System instance that is created. The object doesn’t 

have default properties, but it has a code routine responsible for getting the constructor input, 

searching in the SyBSD structure database for the subsystem classes and instantiating the 

required classes as properties. The properties values will be different for each System, 



 

50 

 

depending on the user’s input. The use of the keyword this inside the function specifies that 

these properties will be unique to every instance of the System object. 

 

 

 

// constructor function definition. 

"systemPrototype": function(subSystem) { 

    // loop for repeating operation according to size of the input. 

    for(i = 0; i < subSystem.length; i++){ 

        // using input to select subsystem’s structures in knowledge 

base. 

        var splited_subSystem 

=knowledge_base.split(subSystem[i][0]+"\n"); 

        if (splited_subSystem.length > 1){ 

            // further subsystem’s structure selection in knowledge 

base. 

            var splited_subSystem2 = splited_subSystem[1].split("\n"); 

            // creating temporary object. 

            var obj = {}; 

            // filling temporary object with subsystem classes. 

            obj[subSystem[i][1]] = JSON.parse(splited_subSystem2[0]); 

            // transfering properties from temp obj to vessel’s system. 

            if(typeof this[subSystem[i][0]] == 'undefined'){ 

               // if the subsystem does not exist yet. 

                this[subSystem[i][0]] = obj; 

            }else{ 

                // if the subsystem already exists. 

                $.extend(this[subSystem[i][0]],obj); 

            } 

        }else{ 

           // error message for incorrect input. 

            alert(subSystem[i][0] + "is not a valid subsystem name."); 

        } 

    } 

} 

 

After the constructor is defined, the next step is to overwrite the prototype property with an 

object literal, where all the methods that will be inherited by all the System instances are 

defined. By overwriting the prototype with a new object literal, all the methods are organized 

in one place, effectively implementing the encapsulation. 

 

 

 

systemPrototype.prototype = {              // overwriting prototype 

method. 

    constructor: systemPrototype,          // overwriting constructor. 

    this.input = function (vector){…},     // defining input method. 

    this.add = function (subSystem){…},    // defining add method. 

    this.delete = function (vector){…},    // defining delete method. 

    this.area = function (){…},            // defining area method. 

    this.volume = function (){…},          // defining volume method. 

} 

 

 

The constructor property of the prototype was overwritten in order to simplify the access to the 

methods, since after overwriting the prototype, the function constructor does not point to the 



 

51 

 

correct prototype anymore. Due to this problem, the user would need to specify the prototype 

property each time a method is called inside it. To avoid this, the new constructor needs to be 

set manually, as it was done. See the example below:  

 

 

 

// method call without overwriting the constructor property manually. 

systemPrototype.prototype.area(); 

 

// method call overwriting the constructor property manually. 

systemPrototype.area(); 

 

  

When overwriting the prototype property, the function is prepared to provide Prototypal 

Inheritance. The properties and methods added on the prototype property will be inherited by 

each instance of the System object, so they can use them and also receive new properties and 

methods. 

 

5.3.2 Object-Oriented Representation of Ship Design Knowledge 

Object-orientation is usually both a language feature and a design methodology. (Meyer, 1988) 

It will be used to represent elements from the KBD theory. This representation will be made 

using some key features from Object-Oriented Design (OOD) (Booch, 1982), such as the 

concept of objects, encapsulation and inheritance. Object-orientation provides a flexible 

platform for developing conceptual design problems. (Zhang et al., 2001) In the next sections, 

the ship design knowledge representation is presented and explained. The system description 

is made using a Class Diagram from Unified Modeling Language (UML). (Booch et al., 1998) 

 

5.3.2.1 Tools Library Structural Subdivision 

In order to help you to better understand how the tools library is organized, in relation to the 

class structure in the object-oriented design methodology, Figure 30 is presented. This figure 

is helpful to understand how the vessel hierarchy is constructed in this prototype. Different 

kinds of subdivisions and organizations can create different hierarchical structures, but the one 

presented here aims to be as close as possible to the original SyBSD one. Since JavaScript’s 

object is the platform used to model the vessel, it is easy to use the objects functionalities to 

organize the system hierarchy.  



 

52 

 

After instantiated, the Vessel is an object, containing properties and methods. The properties 

can be primitive values (such integers or strings) or other objects, while methods are functions 

(which is JavaScript are also objects, but which can perform tasks and operations).  

When instantiated, the Systems are also objects, which contain properties and methods. Since 

they are objects, they can be stored as property of the Vessel object. 

Once instantiated, the Subsystems are also objects, which contain properties. Since they are 

objects, they can be stored as properties of the System objects. 

Lastly, the elements are also instantiated as objects, which contain properties. They can be 

stored as properties of the Subsystem objects. This hierarchical structure can be seen in Figure 

30.  One example of this organizational structure for and individual element would be: 

Vessel( CargoSystem( CargoHoldDryBulk( IronOreHold ) ) ) ) 

It is important to point out here that the SyBSD does not properly show the complex set of 

connections and interfaces between elements, even if they are part of the same system or 

subsystem. These connections and interfaces start to gain more importance in the next stage of 

the design process and cannot be ignored. 

 

Figure 30 – Hierarchical structure of the prototype structural subdivision. 
 



 

53 

 

5.3.2.2 Class Diagram Representation of the Vessel Prototype 

Using the UML class diagram presented in Chapter 4, the object-orient vessel prototype is 

modeled. The representation is crucial for providing such a complex relational structure of all 

the classes composing the vessel prototype.  

The representation done here is a simplified one, where some less relevant aspects of the class 

diagram were neglected, such as methods’ arguments, relations’ labeling and responsibilities’ 

definition. The neglected aspects can be useful in several situations, but for the reason the 

diagram is used here (mostly to make the relations between classes clearer) they are not needed. 

The main objective with this simplification was to make the diagram more readable in the 

limited space provided by this report’s pages. 

The vessel prototype class diagram can be seen in Figure 31. The main class of the vessel 

prototype is the Vessel class. Its attributes and operations are specified, although the input 

parameters for the operations were omitted. 

The Vessel class is composed by System classes. This System classes are related to the Vessel 

class by means of composition relations of multiplicity zero or one, since each Vessel class can 

have zero or only one of each System class. 

The System classes do not have any default attribute or operation, but they inherit operations 

from the class VesselSystem, which they are connected to by inheritance relations (which has 

no multiplicity). 

The attributes of the System classes are represented by the Subsystem classes, which are 

connected to their respective System class by means of composition relations of multiplicity 

zero or more. This happens because System classes can contain any number of their respective 

Subsystem classes. 

All the attributes and operations of the vessel prototype were considered public, since they all 

need to be manipulated by the Vessel class. 

 



 

54 

 

 

Figure 31 – Vessel prototype class diagram. 

 

 

 

 

 



 

55 

 

5.3.2.3 The Vessel Class 

This vessel prototype is constructed as a class called Vessel. As it can be seen from Figure 31, 

it works as a container to receive all the vessel’s systems and subsystems. It also stores and 

organizes all the vessel’s properties and methods.  

The Vessel class has two default properties, missionRequirements and mainDimensions. Both 

of these properties are JavaScript objects, which store all the vessel’s properties and its values. 

The missionRequirements object will store the data used to instantiate the vessel class and the 

mainDimensions object will store the results from the conceptual design process, after the 

application of the mainDimensionsCalc method. 

The Vessel class has several default methods, which are area, deadWeight, displacement, 

holtrop, lightWeight, mainDimensionsCalc, shipMotion, systemPrototype and volume. The 

methods area, volume, deadWeight, lightweight and displacement all self-explanatories and 

will provide, according to the systems and subsystems defined by the user, the vessel area, 

volume, deadweight, lightweight and displacement, respectively. The mainDimensionsCalc 

method calculates the vessels main dimensions and stores the results in the Vessel’s 

mainDimensions property. The holtrop method applies the Holtrop methodology to the vessel, 

after the main dimensions are calculated. The shipMotion method calculates an approximate 

response for the seakeeping motion of the vessel, also after the main dimensions are calculated. 

The systemPrototype method is responsible for instantiating new systems inside the vessel 

object created using the Vessel class.  

 

5.3.2.4 The VesselSystem Class 

The VesselSystem is a superclass from where the System classes inherit (Figure 31). It has no 

default properties, but presents several default methods, which are add, area, delete, input and 

volume. The area and volume methods provide a way to calculate the system objects area and 

volume, which are important in order to size the vessel. The other three methods are responsible 

for data handling inside the system objects. The add method provides a way of adding 

subsystem property values once the subsystems are instantiated. The delete method removes 

one instantiated element inside a subsystem object or even a whole subsystem object from the 

current system object. The input method provides a way of changing some already defined 

subsystem’s properties, without the need to reinsert all the properties for a subsystem’s element 

using the add method. 



 

56 

 

5.3.2.5 The System Classes 

The System classes are sub classes that inherit from the superclass VesselSystem (Figure 31). 

For this tools library, I defined five System classes, aiming to cover the main vessel systems: 

CargoSystem, OutfittingSystem, CrewSystem, MachinerySystem and ServiceSystem. These 

classes inherit their methods from their parent class (VesselSystem), which were already 

defined in the previous section. These classes do not have any default properties, but they are 

used to store subsystem object instantiated by the user. 

The System classes are instantiated using the method systemPrototype (from the Vessel class), 

which uses the VesselSystem class as a constructor. The systemPrototype argument is used to 

specify which elements (and the subsystems these elements belong to) the user wants to 

instantiate inside each system object. 

As it is possible to see in Figure 31, each instance of the Vessel class can have up to one instance 

of each System class. It is possible for a design not to have one or more of the System classes, 

once these classes are not applicable for the type of vessel being designed. 

 

5.3.2.6 The Subsystem Classes 

The Subsystem classes are used to instantiate subsystem objects containing subsystem 

elements. The number of subsystem classes are quite extensive and each System class has its 

related Subsystem classes. The System classes and their related Subsystem classes can be seen 

in Figure 31 or in the following list: 

CargoSystem: CargoRelatedSpaces, CargoHoldsDryBulk, CargoHoldsLiquidBulk, CargoHoldsContainer, 

CargoTanksLiquidDryBulk, CargoDecksContainer, CargoDecksRORO and CargoDecksGeneral; 

OutfittingSystem: OperationalSupport, ShipEquipment and RescueFirefighting; 

ServiceSystem: TechnicalSpacesAccommodation, ShipService and CateringSpaces;  

HotelServices: CrewSystem, Accommodation, CommonSpaces and EmergencyStairways;  

MachinerySystem: MachinerySpaces, ConsumablesTanks and BallastVoids. 

By using Subsystem classes, it is possible to define all sorts of elements that a vessel can 

contain. These classes contain no default methods, but have their own properties (Figure 31 or 

APPENDIX B), which need to be filled by the user, providing the structure of the subsystems’ 

elements. Subsystem classes are called by the systemPrototype method, which create instances 

of them as subsystem objects, which in turn are stored as System objects properties.  



 

57 

 

As stated in Figure 31, all System classes can have any number of Subsystem classes elements 

instances, according to the user’s needs. These instances will be grouped according the 

subsystems they belong to. 

 

5.3.2.7 Elements 

Elements are the elementary instances in the tools library. They are instantiated based on the 

Subsystem classes definitions. From the same Subsystem class, it is possible to instantiate as 

many elements as needed. The knowledge base is used in the instantiation process through the 

use of the inheritance concept, where the elements inherit the properties from the Subsystems 

classes.  

 

5.4 Application Example: Deck Barge 

As a simple example of the research approach application, a simple deck barge conceptual 

design is going to be developed. From the cargo capacity requirement, the barge’s light and 

dead weights and main dimensions will be calculated. 

 

5.4.1 Introduction 

Barges can be self-propelled or pushed/pulled by a towboat. For this example to be as simple 

as possible, the barge will be considered as non-self-propelled. It won’t have ballast control 

capabilities either. This way the machinery, crew and service systems can be disregarded. Deck 

barges do not have cargo holds. All their cargo (usually carried in the form of containers or 

general cargo) is kept on the barge weather deck, which will limit the cargo system analysis to 

only consider the deck cargo system. Outfitting will be considered in order to take into account 

some parts of the barge, such as mooring decks and rope storage. An example of this kind of 

barge can be seen in Figure 32. 



 

58 

 

 

Figure 32 - Deck barge example. (Brokers, 2016) 

 

5.4.2 Tools Library Application 

In this example, the deck barge will not have either any kind of machinery or any crew and 

service facilities. The deck barge will be divided considering only a deck cargo system, an 

outfitting system and the hull. (Figure 33) 

 

Figure 33 - Deck barge system breakdown. 

 

This system breakdown can be implemented using the tools library based on the class structure 

presented in the class diagram in Figure 34. This representation was constructed using Figure 

31 as a reference and excising all unnecessary classes to represent this simplified example. 



 

59 

 

 

Figure 34 - Class Diagram - Deck Barge. 

 

In order to construct this barge structure, the design process begins by instantiating a new vessel 

object using the tools library Vessel constructor. This vessel object will hold all information 

about the barge and its systems. The input parameters are vessel type (“deck_barge”), cargo 

hold capacity (0), cargo deck capacity (4000 ton), crew size (0), vessel speed (0), installed 

power (0), autonomy (0) and operational area (“inland waterway”): 

 

 

 

Simple_Barge = new vessel("deck_barge",0,4000,0,0,0,0,"Inland 

Waterway"); 

 

 

The next step consists in instantiating a cargo system object, to hold cargo subsystem object 

instances. In order to do so, a vector containing the subsystems to be instantiated (subsystems 

category-subsystems name pairs) in the cargo system is defined. This vector is used as the input 

of the systemPrototype method, which will define empty subsystems elements according to the 

specified subsystem categories. For more information about subsystems categories, please 

check APPENDIX B. 

 



 

60 

 

 

 

var cargo_system = [["cargo_decks_general", "open_cargo_deck"]]; 

 

Simple_Barge.cargo_system = new Simple_Barge.systemPrototype( 

cargo_system); 

 

 

After the cargo system and its subsystems are specified, it is time to define the subsystems’ 

properties. This can be done by using the input method, held by any system instance. The 

parameters to be input depend on the subsystem categories. For more information about which 

parameters need to be input for each subsystems categories, please check APPENDIX B. In 

this case, the expected cargo capacity of the deck was set to 4000 tons, the expected deck load 

was set to 5 ton/m2, the actual deck load was set to 4000 tons and an additional margin of 5% 

was included for safety reasons. 

 

 

 

Simple_Barge.cargo_system.input([["open_cargo_deck",["capacity", 4000, 

"deck_load", 5, "load", 4000, "add_on", 5]]]); 

 

 

For the outfitting system definition, the same process used for the cargo system needs to be 

repeated. Firstly, a vector containing the subsystem category – subsystem name pairs that will 

be instantiated is defined. After that, this vector is used as an input for the systemPrototype 

constructor for instantiating the new outfitting system. 

 

 

 

var outfitting = [["ship_equipment", "mooring_deck_forward"], 

                  ["ship_equipment", "mooring_deck_aft"]]; 

 

Simple_Barge.outfitting = new Simple_Barge.systemPrototype( 

outfitting); 

 

 

The next step will be fulfilling the outfitting subsystems with their properties values. Here, the 

input method was used again to define the subsystem’s occupied areas (m2), covered area (%) 

and element height (m). 

 

 

 

Simple_Barge.outfitting.input([["mooring_deck_forward", ["area", 75, 

"covered", 100, "height", 1.5]], 

                               ["mooring_deck_aft", ["area", 10, 

"covered", 100, "height", 1.5]]]); 

 

 



 

61 

 

The hull subsystem doesn’t need to be instantiated. It will be defined according to the required 

area and volume for the vessel. Once all the required systems and subsystems are instantiated, 

the last step in the conceptual design phase for obtaining the vessel’s main dimensions is using 

the mainDimensionCalc method, held by the Vessel object. This method does not require any 

input, since all need information is gathered from the tools library database (see APPENDIX 

C) and from the instantiated systems. 

 

 
 

Simple_Barge.mainDimensionsCalc(); 

 

 

5.4.3 Conceptual Design Result 

The results obtained from this design example can be seen on the mainDimensions object, held 

by the Vessel object (Table 3). Figure 35 presents a simplified model of the designed deck 

barge, which shows the blocks which compose the design (on red the hull, on blue the main 

deck and on green the mooring decks). 

 

Figure 35 – Deck barge model using blocks. 

 



 

62 

 

Table 3 – Conceptual design results – main 

parameters. 
Beam (m) 22.356 

Metacentric height above 
center of buoyancy (m) 

14.207 

Beam/Depth 4.826 

Block coeff 0.838 

Center of gravity coeff 0.775 

Mid ship coeff 1 

Prismatic coeff 0.838 

Vertical prismatic coeff 0.838 

Waterline coeff 1 

Depth (m) 4.632 

Froude number 0 

Metacentric height above 
center of gravity (m) 

12.483 

Vertical center buoyancy(m)  1.865 

Vertical center gravity (m) 3.589 

Length/Beam 3.339 

Length/Depth 16.117 

LCB (%) 0.088 

Length perpendiculars (m) 72.473 

Length waterline (m) 74.647 

Draft (m) 3.427 

Draft/Depth 0.740 

Deadweight (ton) 4000 

Displacement (ton) 4770.757 

Lightweight (ton) 770.757 

Slenderness ratio 4.471 
 

 

  



 

63 

 

6 Case Study 

This case study is used as a benchmark to verify how fair a result is obtained by applying the 

developed tools library. The idea is to apply the tools library to a real design problem and verify 

how it behaves and how it can be used to handle a bigger amount of data and requirements. 

6.1 Case Description 

The case study is based on the PSV NAO FIGHTER (Figure 36). The vessel belongs to the 

PX121 product family (which is a medium-size class) and was designed by Ulstein Design & 

Solutions AS, constructed by Ulstein Verft AS and owned by Nordic Amercian Offshore 

(NAO). 

In this case study, the tools library is applied aiming to attend the NAO FIGHTER’s mission 

requirements (Table 4). The results obtained from the tools library application are compared to 

the real vessel parameters in order to verify how realistic (or unrealistic) the final concept is. 

Since the result of the tools library is only a preliminary concept, it is not expected to obtain a 

perfect matchup between the results, but instead, a deviance of about 10% to more or less is 

expected and considered fine. The library application will be done considering a subsystem 

division that is common for PSV vessels but can be a little bit different from the NAO 

FIGHTER’s subdivision since its exact subdivision is unknown, but close results are expected 

anyway. 

 
Table 4 – NAO FIGHTER’s mission 

requirements (Ulstein, 2016) 

 

Tunnel thruster 1

Retractable thruster 1

Azimuth thruster 2

Speed (max) 15.9 kn

Accommodation 24 POB

Deck area 850 m2

Fuel Oil (MDO) 1474 m3

Fresh Water 1033 m3

Ballast water/Drill water 1676 m3

Liquid mud (sp. gr.2,8 t/m3) 1307 m3

Brine (sp. gr.2,5 t/m3) 1307 m3

Cement (4 tanks) 254 m3

LFL* (4 tanks) 153 m3

Base oil 259 m3

NAO FIGHTER Requirements



 

64 

 

 

Figure 36 - Ulstein's NAO FIGHTER (Ulstein, 2016) 
 

6.2 Tool Library Application 

In this case study, the vessel has all the ship systems. In the task related systems, the only one 

present is the cargo system, since this vessel is a PSV whose only attribution is to transport 

cargo. The system breakdown structure can be seen in (Figure 37). 

 

Figure 37 – NAO Fighter case study system breakdown. 

 

This system breakdown can be implemented using the tools library based on the class structure 

presented in the class diagram in Figure 38. This representation was constructed using Figure 



 

65 

 

31 as a reference and excising all unnecessary classes to represent this specific case study. The 

class diagram is not needed in order to apply the tools library, but it is used here to better 

illustrate the prototype to be developed. 

 

Figure 38 - Class Diagram – NAO Fighter case study. 

 

In order to construct this PSV structure, a new vessel object needs to be instantiated using the 

tools library Vessel constructor. This vessel object will hold all information about the ship and 

its systems. The input parameters are vessel type (“PSV”), cargo hold capacity (4000 ton), 

cargo deck capacity (2025 ton), crew size (24), vessel speed (15.85 knots), installed power 

(6000 kW), autonomy (1000 km) and operational area (“North Sea”): 

 

 

 

NAO_Fighter = new vessel("PSV",4000,2025,24,15.85,6000,1000,"North 

Sea"); 

 

 



 

66 

 

The next step consists in instantiating a cargo system object, to hold cargo subsystem object 

instances. In order to do so, a vector containing the subsystems to be instantiated (subsystems 

category-subsystems name pairs) in the cargo system is defined. This vector is used as the input 

of the systemPrototype method, which will define empty subsystems elements according to the 

specified subsystem categories. For more information about subsystems categories, please 

check APPENDIX B. 

 

 

 

var cargo_system = [ 

    ["cargo_decks_general", "open_cargo_deck"] 

    ["cargo_tanks_liquid_and_dry_bulk","brine_and_mud"], 

    ["cargo_tanks_liquid_and_dry_bulk","fresh_water"], 

    ["cargo_tanks_liquid_and_dry_bulk","lfl"], 

    ["cargo_tanks_liquid_and_dry_bulk","base_oil"], 

    ["cargo_tanks_liquid_and_dry_bulk","cement"], 

    ["cargo_related_spaces","transfer_pumps_and_piping"] 

]; 

 

NAO_Fighter.cargo_system = new NAO_Fighter.systemPrototype( 

cargo_system); 

 

 

After the cargo system and its subsystems are specified, it is time to define the subsystems 

properties. This can be done using the input method, held by any system instance. The 

parameters to be input depend on the subsystem categories. For more information about which 

parameters need to be input for each subsystems categories, please check APPENDIX B. In 

this case, the expected cargo capacity of the deck was set to 2025 tons, the expected deck load 

was set to 2.5 ton/m2, the actual deck load was set to 0 tons and an additional margin of 5% 

was included for safety reasons. Since the vessel cannot have full deck and tank loads at the 

same time, the actual load in the deck was set to zero, but the space needed still included in the 

areas and volumes calculation. The other tanks were set as specified by the requirements and 

can be seen below. 

 

 

 

NAO_Fighter.cargo_system.input([ 

    ["open_cargo_deck",["capacity", 2025, "deck_load", 2.5, "load", 0, 

"add_on", 5]], 

    ["brine_and_mud",["capacity",1300, "density",1.1, "add_on",5, 

"filling",100, "height",3.9]], 

    ["fresh_water",["capacity",800,"density", 1, "add_on",5, 

"filling",100, "height",3.9]], 

    ["lfl",["capacity",150, "density",0.75, "add_on",5, "filling",100, 

"height",3.9]], 

    ["base_oil",["capacity",260, "density", 0.88, "add_on",5, 

"filling",100, "height",3.9]], 



 

67 

 

    ["cement",["capacity",250, "density",1.2, "add_on",5, 

"filling",100, "height",3.9]], 

    ["transfer_pumps_and_piping", ["number_ units",3,"length", 3, 

"width",2,"height",3.9]] 

]); 

 

 

For the outfitting system definition, the same process used for the cargo system needs to be 

repeated. Firstly, a vector containing the subsystem category – subsystem name pairs that will 

be instantiated is defined. After that, this vector is used as an input for the systemPrototype 

constructor for instantiating the new outfitting system. 

 

 

 

var outfitting = [ 

    ["ship_equipment","tunnel_thrusters"], 

    ["ship_equipment","retractable_thrusters"], 

    ["ship_equipment","steering_gear"], 

    ["ship_equipment", "mooring_deck_forward"], 

    ["ship_equipment", "mooring_deck_aft"], 

    ["ship_equipment","incinerator_plant"], 

    ["ship_equipment","decks_stores"], 

    ["ship_equipment","rope_stores"], 

    ["rescue_firefighting","fast_rescue_boats"], 

    ["rescue_firefighting","life_saving_appliances"], 

    ["rescue_firefighting","fire_monitors"] 

]; 

 

NAO_Fighter.outfitting = new NAO_Fighter.systemPrototype(outfitting); 

 

 

The next step will be fulfilling the outfitting subsystems with their property values. Here, the 

input method was used again to define the subsystem’s occupied areas (m2), covered area (%), 

element height (m), number of unit of a certain element and area per unit of this element (m2). 

 

 

 

NAO_Fighter.outfitting.input([ 

    ["tunnel_thrusters",["area",20, "covered",100, "height",6]], 

    ["retractable_thrusters",["area",10, "covered",100, "height",9.5]], 

    ["steering_gear",  ["area",50, "covered",100, "height",3.9]], 

    ["mooring_deck_forward", ["area", 75, "covered", 100, "height", 

2.9]], 

    ["mooring_deck_aft", ["area", 10, "covered", 100, "height", 3]], 

    ["incinerator_plant",["area",10, "covered",100, "height",3]], 

    ["decks_stores",["area",40, "covered",100, "height",3]], 

    ["rope_stores",["area",40, "covered",100, "height",3]], 

    

["fast_rescue_boats",["number_units",1,"area_unit",25,"covered",100, 

"height",4]], 

    ["life_saving_appliances",["number_units",40, "area_unit",0.5, 

"covered",100, "height",2]], 

    ["fire_monitors",["number_units",2, "area_unit",4, "covered",0, 

"height",3]] 

]); 



 

68 

 

For the crew facilities system definition, the same process used for instantiating new systems 

needs to be repeated. Firstly, a vector containing the subsystem category – subsystem name 

pairs that will be instantiated is defined. After that, this vector is used as an input for the 

systemPrototype constructor for instantiating the new crew system. 

 

 

 

var crew_facilities = [ 

    ["crew_accommodation","captain_class_suite"], 

    ["crew_accommodation","officer_cabin"], 

    ["crew_accommodation","crew_single"], 

    ["crew_accommodation","crew_double"], 

    ["crew_accommodation","cabin_corridors_wall_lining"], 

    ["crew_common_spaces","mess_room"], 

    ["crew_common_spaces","officers_dayroom"], 

    ["crew_common_spaces","crew_dayroom"], 

    ["crew_common_spaces","duty_mess"], 

    ["crew_common_spaces","gymnesium"], 

    ["crew_common_spaces","laundry_linen"], 

    ["crew_common_spaces","change_room"], 

    ["crew_common_spaces","toilets"], 

    ["crew_common_spaces","corridors"], 

    ["crew_emergency_stairways","main_stair"], 

    ["crew_emergency_stairways","service_stairs_fore"], 

    ["crew_emergency_stairways","service_stairs_aft"] 

]; 

 

NAO_Fighter.crew_facilities = new 

NAO_Fighter.systemPrototype(crew_facili ties); 

 

 

The next step will be fulfilling the crew facilities subsystems with their properties values. Here, 

the input method was used again to define the subsystem’s number of cabins of each type, 

number of bed per cabin of each type, area occupied by each cabin (m2), height of each cabin 

(m), number of crew member to use certain facility, area required per crew member (m2), height 

of facility (m), number of decks occupied by a certain installation, area required per deck (m2) 

and height of each deck (m). 

 



 

69 

 

 

 

NAO_Fighter.crew_facilities.input([ 

    ["captain_class_suite",["number_cabins",2, "beds_cabins",1, 

"area_cabins",30, "height",2.9]], 

    ["officer_cabin",["number_cabins",4, "beds_cabins",1, 

"area_cabins",20, "height",2.9]], 

    ["crew_single",["number_cabins",8, "beds_cabins",1, 

"area_cabins",15, "height",2.9]], 

    ["crew_double",["number_cabins",5, "beds_cabins",2, 

"area_cabins",15, "height",2.9]], 

    ["cabin_corridors_wall_lining",["number_cabins",1, "beds_cabins",0, 

"area_cabins",70, "height",2.9]], 

    ["mess_room",["crew",20, "area_crew",3, "height",2.9]], 

    ["officers_dayroom",["crew",10, "area_crew",3, "height",2.9]], 

    ["crew_dayroom",["crew",20, "area_crew",3, "height",2.9]], 

    ["duty_mess",["crew",10, "area_crew",2.5, "height",2]], 

    ["gymnesium",["crew",24, "area_crew",1, "height",3]], 

    ["laundry_linen",["crew",24, "area_crew",0.3, "height",2.9]], 

    ["change_room",["crew",24, "area_crew",0.5, "height",3]], 

    ["toilets",["crew",24, "area_crew",0.3, "height",3]], 

    ["corridors",["crew",24, "area_crew",1, "height",3]], 

    ["main_stair",["decks",7, "area_deck",10, "height",2.9]], 

    ["service_stairs_fore",["decks",3, "area_deck",6, "height",3]], 

    ["service_stairs_aft",["decks",3, "area_deck",6, "height",3]] 

]); 

 

 

For the service facilities system definition, the same process used for instantiating new systems 

needs to be repeated. Firstly, a vector containing the subsystem category – subsystem name 

pairs that will be instantiated is defined. After that, this vector is used as an input for the 

systemPrototype constructor for instantiating the new service system. 

 

 

 

var service_facilities = [ 

    ["ship_service","wheelhouse"], 

    ["ship_service","ship_offices"], 

    ["ship_service","iscp_office"], 

    ["ship_service","conference_room"], 

    ["ship_service","hospital"], 

    ["catering_spaces","galleys"], 

    ["catering_spaces","galley_provision_store"], 

    ["catering_spaces","dry_provision_store"], 

    ["catering_spaces","cold_provision_store"], 

    ["catering_spaces","scullery"], 

    ["hotel_services","linen_store"], 

    ["hotel_services","ship_laundry"], 

    ["hotel_services","storage_spaces_in_the_accommodation"], 

    ["hotel_services","cleaning_lockers"], 

    ["technical_spaces_accommodation","ac_rooms_and_ducting"], 

    ["technical_spaces_accommodation","electric_substations"], 

    

["technical_spaces_accommodation","instrument_room_under_wheelhouse"], 

    ["technical_spaces_accommodation","void_spaces_in_deckhouse"] 

]; 

 



 

70 

 

NAO_Fighter.service_facilities = new 

NAO_Fighter.systemPrototype(service _facilities); 

 

 

The next step will be fulfilling the service facilities subsystems with their property values. 

Here, the input method was used again to define the subsystem’s number of crew members to 

use a certain facility, area required per crew member (m2), height of facility (m). 

 

 

 

NAO_Fighter.service_facilities.input([ 

    ["wheelhouse",["crew",24, "area_crew", 8, "height", 3.1]], 

    ["ship_offices",["crew",24, "area_crew", 1.5, "height", 2.9]], 

    ["iscp_office",["crew",24, "area_crew", 0.2, "height", 2.9]], 

    ["conference_room",["crew",24, "area_crew", 1, "height", 2.9]], 

    ["hospital",["crew",24, "area_crew", 0.6, "height", 2.9]], 

    ["galleys",["crew",24, "area_crew", 0.8, "height", 2.9]], 

    ["galley_provision_store",["crew",24, "area_crew", 0.2, "height", 

2.9]], 

    ["dry_provision_store",["crew",24, "area_crew", 2, "height", 3]], 

    ["cold_provision_store",["crew",24, "area_crew", 1, "height", 3]], 

    ["scullery",["crew",24, "area_crew", 0.2, "height", 2.9]], 

    ["linen_store",["crew",24, "area_crew", 0.3, "height", 3]], 

    ["ship_laundry",["crew",24, "area_crew", 0.6, "height", 3]], 

    ["storage_spaces_in_the_accommodation",["crew",24, "area_crew", 

1.5, "height", 3]], 

    ["cleaning_lockers",["crew",24, "area_crew", 0.5, "height", 3]], 

    ["ac_rooms_and_ducting",["crew",24, "area_crew", 2, "height", 2]], 

    ["electric_substations",["crew",24, "area_crew", 0.2, "height", 

2.9]], 

    ["instrument_room_under_wheelhouse",["crew",24, "area_crew", 4, 

"height", 2]], 

    ["void_spaces_in_deckhouse",["crew",24, "area_crew", 2, "height", 

2]] 

]); 

 

 

 

For the machinery system definition, the same process used for instantiating new systems needs 

to be repeated. Firstly, a vector containing the subsystem category – subsystem name pairs that 

will be instantiated is defined. After that, this vector is used as an input for the systemPrototype 

constructor for instantiating the new machinery system. 

 

 

 

var machinery = [ 

    ["machinery_spaces","main_and_auxiliary_engine_rooms"], 

    ["machinery_spaces","shaftlines_propellers_propulsion_thrusters"], 

    ["machinery_spaces","emergency_generator_and_battery_room"], 

    ["machinery_spaces","pump_rooms_and_equipment_spaces"], 

    ["machinery_spaces","workshops_and_stores"], 

    ["machinery_spaces","ecr_and_switchboard_room"], 



 

71 

 

    ["machinery_spaces","fire_fighting_system_and_co2_room"], 

    ["machinery_spaces","engine_casing"], 

    ["machinery_spaces","air_intakes"], 

    ["machinery_spaces","funnel"], 

    ["consumables_tanks","fuel_oil"], 

    ["consumables_tanks","lub_oil"], 

    ["consumables_tanks","fresh_water"], 

    ["consumables_tanks","sewage_and_grey_water"], 

    ["ballast_and_voids","ballast_water"] 

]; 

 

NAO_Fighter.machinery = new NAO_Fighter.systemPrototype(machinery); 

 

 

The next step will be fulfilling the machinery subsystems with their property values. The 

installed power defined when creating the vessel object, was a rough guess. This value can be 

changed by the tools library in the next steps of the design process, but for now it is used to 

define the machinery system’s subsystems properties. The value is stored in a variable just to 

reduce the code to be typed. The input method was used again to define the subsystem’s number 

of units used by a certain element (these units can be kW or number of decks), the area per unit 

occupied by this element (m2), the height (m), for tanks of consumables, the reference unit 

(installed power or number of hours per day used), the consumption, the endurance (days), the 

density (ton/m3) and a safety margin and, for tanks of non-consumables, the density (ton/m3) 

and volume (m3). Note that the ballast water tanks were specified with density zero, to account 

for the volume but without considering the weight of the full tank, since the vessel is being 

defined in a loaded condition were the ballast tanks do not need to be filled. 

 

 

 

var installedPower = NAO_Fighter.missionRequirements.installedPower; 

NAO_Fighter.machinery.input([ 

    ["main_and_auxiliary_engine_rooms",["unit",installedPower, 

"area_unit",0.035, "height",4.3]], 

    

["shaftlines_propellers_propulsion_thrusters",["unit",installedPower, 

"area_unit",0.01, "height",4.1]], 

    ["emergency_generator_and_battery_room",["unit",installedPower, 

"area_unit",0.02, "height",2.9]], 

    ["pump_rooms_and_equipment_spaces",["unit",installedPower, 

"area_unit",0.003, "height",3.9]], 

    ["workshops_and_stores",["unit",installedPower, "area_unit",0.003, 

"height",3.9]], 

    ["ecr_and_switchboard_room",["unit",installedPower, 

"area_unit",0.003, "height",3.9]], 

    ["fire_fighting_system_and_co2_room",["unit",installedPower, 

"area_unit",0.002, "height",3.45]], 

    ["engine_casing",["unit",6, "area_unit",40, "height",3]], 

    ["air_intakes",["unit",3, "area_unit",15, "height",3]], 

    ["funnel",["unit",1, "area_unit",8, "height",5]], 

    ["fuel_oil",["unit",installedPower, "consumption",0.0002, 

"endurance",2, "density",0.95, "margin",20]], 



 

72 

 

    ["lub_oil",["unit",installedPower, "consumption",0.000001, 

"endurance",2, "density",0.89, "margin",20]], 

    ["fresh_water",["unit",24, "consumption",0.0085, "endurance",2, 

"density",1, "margin",20]], 

    ["sewage_and_grey_water",["unit",24, "consumption",0.0085, 

"endurance",2, "density",1, "margin",20]], 

    ["ballast_water",["density",0, "volume",2000]] 

]); 

 

 

The hull subsystem does not need to be instantiated. It will be defined according to the required 

area and volume for the vessel. Once all the required systems and subsystems are instantiated, 

the last step in the conceptual design phase for obtaining the vessel’s main dimensions is using 

the mainDimensionCalc method, held by the Vessel object. This method does not require any 

input, since all needed information is gathered from the tools library database (see APPENDIX 

C) and from the instantiated systems. 

 

 
 

NAO_Fighter.mainDimensionsCalc(); 

 

 

With the application of the mainDimensionCalc method, a new estimate was made for the 

installed power, and the initial guess was substituted in the mission requirements. With the new 

value, it is important to define again the properties of the machinery system and afterwards that 

reapply the mainDimensionCalc method. This is important since the installed power is used to 

define a lot of properties in the machinery system. 

 

 

 

var installedPower = NAO_Fighter.missionRequirements.installedPower; 

NAO_Fighter.machinery.input([ 

    ["main_and_auxiliary_engine_rooms",["unit",installedPower, 

"area_unit",0.035, "height",4.3]], 

    

["shaftlines_propellers_propulsion_thrusters",["unit",installedPower, 

"area_unit",0.01, "height",4.1]], 

    ["emergency_generator_and_battery_room",["unit",installedPower, 

"area_unit",0.02, "height",2.9]], 

    ["pump_rooms_and_equipment_spaces",["unit",installedPower, 

"area_unit",0.003, "height",3.9]], 

    ["workshops_and_stores",["unit",installedPower, "area_unit",0.003, 

"height",3.9]], 

    ["ecr_and_switchboard_room",["unit",installedPower, 

"area_unit",0.003, "height",3.9]], 

    ["fire_fighting_system_and_co2_room",["unit",installedPower, 

"area_unit",0.002, "height",3.45]], 

    ["engine_casing",["unit",6, "area_unit",40, "height",3]], 

    ["air_intakes",["unit",3, "area_unit",15, "height",3]], 

    ["funnel",["unit",1, "area_unit",8, "height",5]], 

    ["fuel_oil",["unit",installedPower, "consumption",0.0002, 

"endurance",2, "density",0.95, "margin",20]], 



 

73 

 

    ["lub_oil",["unit",installedPower, "consumption",0.000001, 

"endurance",2, "density",0.89, "margin",20]], 

    ["fresh_water",["unit",24, "consumption",0.0085, "endurance",2, 

"density",1, "margin",20]], 

    ["sewage_and_grey_water",["unit",24, "consumption",0.0085, 

"endurance",2, "density",1, "margin",20]], 

    ["ballast_water",["density",0, "volume",2000]] 

]); 

 

NAO_Fighter.mainDimensionsCalc(); 

 

 

6.3 Results and Analyses 

The results obtained from this design example can be seen on the mainDimensions object, held 

by the Vessel object (Table 5). The obtained results do not show anything that raises any worry 

about the feasibility of the design. All the parameters are quite normal for a PSV of this size. 

Table 5 – Conceptual design results – 

main parameters. 
Beam (m) 19.39 

Metacentric height above 
center of buoyancy (m) 

6.52 

Beam/Depth 2.44 

Block coeff. 0.675 

Center of gravity coeff. 0.74 

Mid ship coeff. 0.985 

Prismatic coeff. 0.685 

Vertical prismatic coeff. 0.807 

Waterline coeff. 0.836 

Depth (m) 7.94 

Froude number 0.28 

Metacentric height above 
center of gravity (m) 

1.19 

Vertical center buoyancy(m)  2.73 

Vertical center gravity (m) 8.06 

Length/Beam 4.48 

Length/Depth 10.93 

LCB (%) -0.022 

Length perpendiculars (m) 84.29 

Length waterline (m) 86.82 

Draft (m) 4.93 

Draft/Depth 0.62 

Deadweight (ton) 2997.06 

Displacement (ton) 5568.23 

Installed Power (kW) 7789.15 

Lightweight (ton) 2571.17 

Slenderness ratio 4.94 
 

 



 

74 

 

It is also possible to apply the shipMotion method to obtain an estimative of the vessel response 

for a specific sea state. In the case below, the method evaluates the vessel response (in its center 

of gravity) for a sea state of wave in beam sea, with 2 m amplitude and natural period of 6.5 s. 

 

 

 

NAO_Fighter.shipMotion(NAO_Fighter.mainDimensions.Lwl,NAO_Fighter.mainD

imensions.B,NAO_Fighter.mainDimensions.Cb,NAO_Fighter.mainDimensions.T,

NAO_Fighter.missionRequirements.speed,90,0,2,NAO_Fighter.mainDimensions

.Cwl, NAO_Fighter.mainDimensions.GM,6.5,20,0.6,'main_graphic'); 

 

 

Figure 39 shows an example of movement plot from the shipMotion method. 

 

Figure 39 - Vertical motion (m/m) as function of wave frequency. 

Combined movement from the pitch and heave at the desired location. 
 

Figure 40 shows an example of acceleration plot from the shipMotion method. 

 

Figure 40 - Vertical acceleration (m/s2) as function of wave frequency. 

Combined movement from the pitch and heave at the desired location.  



 

75 

 

Other method implemented in the library and that can be applied in this case is the holtrop 

method. It can give a rough guess about the resistance the vessel would experience while 

cruising in a specific speed. The details about this method application can be found in 

APPENDIX A.  

 

 

 

NAO_Fighter.holtrop(NAO_Fighter.mainDimensions.Lwl,NAO_Fighter.mainDime

nsions.B,NAO_Fighter.mainDimensions.T,NAO_Fighter.mainDimensions.T,NAO_

Fighter.mainDimensions.Lcb,NAO_Fighter.mainDimensions.Cb,NAO_Fighter.ma

inDimensions.Cm,NAO_Fighter.mainDimensions.Cwl,NAO_Fighter.missionRequi

rements.speed,1,1,3,[0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0],'ma

in_graphic2'); 

 

 

Figure 41 shows the expected curve of resistance for the vessel for different Froude numbers 

(and consequently, different speeds), although it is possible to also obtain the resistance value 

for a specific speed. 

 

Figure 41 – Total resistance (kN) in function of Froude Number. 

 

For the special case of OSV, a method which can draw the hull lines of a X-BOW inspired 

vessel was developed. This method is not fully implemented in the library, but one example of 

its application in this case study can be seen in Figure 42 and Figure 43 . 



 

76 

 

 

Figure 42 – Lateral and Top views of the case study’s hull lines. 
 

 

Figure 43 – Cross sectional curves for the case study vessel. 
 

The results obtained from the application of the tools library can be compared with the original 

vessel’s parameters. Table 6 presents these figures and also the deviance of the obtained values 

from the original design. 

Table 6 – Comparison between case study and NAO 

FIGHTER parameters. 

 
 

Some parameters have no deviance at all, since they were set as required values, from which 

the design was built around. For the other main parameters, it is possible to verify cases where 

the deviation goes almost 10% up and almost 10% down.  

Luckily enough, the obtained values are all inside the required range of ± 10%, with the only 

iteration being made to adjust the installed power value. If the obtained results were not as 

close to the real vessel as these ones, it would not necessarily indicate a failed design. As long 

as none of the parameters makes the design unfeasible for any reason, it can be considered as 

a new design solution. 

Deviation

Length 84.20 m 83.40 m 1%

Beam 19.30 m 18.00 m 7%

Dead weight 2997 tonnes 3300 tonnes -9%

Draught (max) 6.53 m 6.00 m 9%

Speed (max) 15.85 kn 15.85 kn 0%

Accommodation 24 POB 24 POB 0%

Deck area 850 m2 850 m2 0%

NAO FIGHTERCase Study



 

77 

 

7 Concluding Remarks 

 

After applying the open source conceptual ship design tools library in a real design problem, I 

concluded that the tools library can be successfully used to handle the conceptual design phase 

of a vessel. The quality of the results is strongly connected to the designer’s knowledge about 

the vessel structure, subdivision and elements. The library also relays on an extensive database 

that is constructed using information from previous vessels. The quality of this database also 

has the potential to greatly impact the final concept, so it should be kept updated and organized 

in order to ensure the most trustable results. 

It is possible to argue that the tools library is not only a collection of ship design function as it 

was expected in the beginning of this study. This is due to the fact that the design decisions 

taken during the tools library development have defined a stiff structure for the vessel object, 

which needs to be followed by the user in order to correctly apply the design functions. This 

stiff structure makes the tools library be more similar to a framework than to a conventional 

library of functions. 

While doing the problem statement, I have defined 3 main resource questions to investigate 

through this study. They were: 

 Question 1: How can the vessel be efficiently subdivided in order to allow better design 

control and knowledge handle in the initial stages of the design process? 

 Question 2: Which aspects of open source technology can improve the conceptual ship 

design process? 

 Question 3: How to develop a tools library that has a structure flexible enough to 

contemplate the design of any kind of vessel but at the same time is capable of providing 

results that are good enough to compose a solid ground for the continuation of the 

design process? 

Regarding the first research question, the use of OOP and the concept of classes to represent 

the vessel’s systems and subsystems proved to be an efficient way of handling the conceptual 

design knowledge. Having the vessel divided in subsystems and elements, which can be 

attributed to classes in a OOP language, works very well to approach a complex design problem 

by dividing it in smaller and simpler problems, that can be solved individually.  

At the moment, the biggest drawback of the tools library is that it applies the SyBSD theory 

directly, which does not provide a mechanism to consider the systems, subsystems and 



 

78 

 

elements interdependencies and interfaces. In a product with such a complex structure as a 

vessel, neglecting this type of relation will, inevitably, lead to design problems, especially in 

the more advanced design stages. Since these effects are less relevant in the conceptual design 

phase, the tools library can be applied to the conceptual design but should not be applied, in its 

current development stage, to further design phases. 

When evaluating the second research question, I have noticed that the freedom and power 

provided by the open source technology make the tools library possibilities almost endless. 

Since the tools library is developed in an OSS, it is free and, consequently, more accessible to 

end users, which can be constrained by high costs related to licensing fees of commercial 

software packages. Since the code is open, the tools library can be continuously improved by 

interested users. There is no limitation to its functionality, since when a limitation is found, it 

can be corrected or extinguished by the adding of new tools. 

One of the strongest points in the conceptual ship design tools library is its modularity. As 

presented in Chapter 5, the library in composed by several design tools organized under the 

Vessel object’s methods. As the need for different functionalities appears, new tools can be 

added to the library without the need to modify the functions that are already there. The new 

functions just need to be developed having in mind the Vessel object’s hierarchy and structure. 

New systems and subsystem structures can also be easily added by just updating the SyBSD 

Structure Database. The modular characteristic makes the tools library a very flexible and 

powerful ship design tool. 

The choice for JavaScript as an OSS was not aleatory. At first, it is a web-based programming 

language which is present in all the web browsers. It is easy and intuitive to code, what 

collaborates with its fast development and spread. Developing the library to be accessed via 

web browsers reduces the needs for client side software to a minimum, also reducing the 

computational requirements for the user’s hardware. When developed for web, the tools library 

became accessible for any operational system and device, which also contributes to increase 

the application reach. The web can also be used as a platform for cooperative development, 

where design teams can store, share and discuss the design task. Having a tools library that 

support natively the internet as a platform makes the development of this collaborative design 

environment easier. 

Finally, while investigating the third research question, the way I found to make the tools 

library the most generic as possible was by SyBSD theory to simplify the systems, subsystems 

and elements definitions as much as possible. Having design elements being represented by a 



 

79 

 

handful set of parameters, considering only which is highly relevant, makes these definitions 

as simple and generic as possible. That way, the same element structure can be reused for 

different elements, which also works well with the OOP philosophy. When using a simplified 

definition for systems, subsystems and elements, the generic design tools library just need a 

well-structured knowledge base (more specifically the SyBSD Structure database) to handle 

the design task without any complication. 

7.1 Future Work  

The tools library is suitable enough for addressing the conceptual design phase, but lacks 

support for further and more detailed stages of design. The capacity to store and handle data 

can be increased in order to make detail design a reality, especially considering the systems 

communication and interfaces, implementing a mix of SyBSD and Holistic design processes. 

This improvement in the library can be difficult to implement, since its whole structure is based 

on isolating systems, subsystems and elements, but definitely worth investigating in a further 

study. 

One of the greatest points of the OSS is its fantastic community, which can work together in 

the direction of a common goal, by helping improving the original code, suggesting and 

implementing changes and new features, finding and correcting bugs and so on. In this work, 

this aspect of the OSS was not investigated and can be a field for future study in order to further 

investigate how the OSS technology can impact the ship design task. 

The library offers a great set of ship design functions, which can be further expanded, but 

misses a native support for a graphic user interface (GUI). Right now, a user needs to hardcode 

a GUI and link it with the vessel object and its properties and methods. Having a GUI library 

which has this integration already done and giving the user the opportunity to customize it if 

he or she wants, could make it more appealing for people who are not very experienced with 

JavaScript or with coding at all. 

  



 

80 

 

 



 

81 

 

8 References 

ANDERSON, D. M. 1997. Agile product development for mass customization : how to 

develop and deliver products for mass customization, niche markets, JIT, build-to-

order, and flexible manufacturing, Chicago, Irwin Professional Pub. 

BERNSTEIN, J. I. 1998. Design methods in the aerospace industry : looking for evidence of 

set-based practices. M s, Massachusetts Institute of Technology, Technology and 

Policy Program. 

BONACCORSI, A. & ROSSI, C. 2003. Why Open Source software can succeed. Research 

Policy, 32, 1243-1258. 

BOOCH, G. 1982. Object-oriented design. ACM SIGAda Ada Letters, I, 64-76. 

BOOCH, G., RUMBAUGH, J. & JACOBSON, I. 1998. Unified Modeling Language User 

Guide, The, Addison Wesley  

BRETTHAUER, D. 2001. Open Source Software: A History. UConn Libraries Published 

Works. 

BRINATI, H. L., AUGUSTO, O. B. & DE CONTI, M. B. 2007. Learning Aspects of 

Procedures for Ship Conceptual Design Based on First Principles. International 

Conference on Engineering Education. 

BROKERS, D. 2016. 86 m (282-feet) Ballastable Deck Barge [Online]. Available: 

http://www.workbargebrokers.com/product/1275/130503-bd [Accessed 1 June 2016]. 

CHO, K. N. & ŽANIĆ, V. Design principles and criteria.  16th International Ship and 

Offshore Structures Congress, 2006. 

CHOU, Y.-C. 2004. Applying Neural Networks in Quality Function Deployment Process for 

Conceptual Design. Journal of the Chinese Institute of Industrial Engineers, 21, 587-

596. 

COYNE, R. D. D., ROSENMAN, M. A., RADFORD, A. D., BALACHANDRAN, M. & 

GERO, J. S. 1989. Knowledge-Based Design Systems, Addison-Wesley Longman 

Publishing Co., Inc. 

CROCKFORD, D. 2008. JavaScript: The Good Parts, " O'Reilly Media, Inc.". 

DIEROLF, D. A. & RICHTER, K. J. 1989. Computer-Aided Group Problem Solving for 

Unified Life Cycle Engineering (ULCE). Alexandria: Institute for Defense Analyses. 

ERIKSTAD, S. O. 1996. A decision support model for preliminary ship design. PhD Thesis, 

NTNU. 

ERIKSTAD, S. O. & LEVANDER, K. System Based Design of offshore support vessels.  

Proceedings 11th International Marine Design Conference—IMDC201, 2012. 

EVANS, J. H. 1959. Basic Design Concepts. Journal of the American Society for Naval 

Engineers, 71, 671-678. 

http://www.workbargebrokers.com/product/1275/130503-bd


 

82 

 

FISHER, R. A. 1971. The design of experiments. 

FLANAGAN, D. 2011. JavaScript: The definitive guide, " O'Reilly Media, Inc.". 

GACEK, C. & ARIEF, B. 2004. The many meanings of open source. IEEE Software, 21, 34-

40. 

GALE, P. A. & SLUTSKY, J. 2014. Ship design. Available: 

http://www.accessscience.com/content/ship-design/619500. 

GASPAR, H. M. 2013. Handling Aspects of Complexity in Conceptual Ship Design. PhD 

Thesis, NTNU. 

GASPAR, H. M., RHODES, D., ROSS, A. & ERIKSTAD, S. O. 2012a. Handling 

complexity aspects in conceptual ship design. International Maritime Design 

Conference. Glasgow, UK. 

GASPAR, H. M., RHODES, D. H., ROSS, A. M. & ERIKSTAD, S. O. 2012b. Addressing 

Complexity Aspects in Conceptual Ship Design: A Systems Engineering Approach. 

Journal of Ship Production and Design, 28, 145-159. 

GERO, J. S. 1990. Design prototypes: a knowledge representation schema for design. AI 

magazine, 11, 26. 

GERO, J. S. & ROSENMAN, M. A. 1990. A conceptual framework for knowledge-based 

design research at Sydney University's design computing unit. Artificial Intelligence in 

Engineering, 5, 65-77. 

HOLTROP, J. 1984. A Statistical Reanalysis of Resistance and Propulsion Data. 

International Shipbuilding Progress, Vol 31. 

HOLTROP, J. & MENNEN, G. 1982. An approximate power prediction method. 

International Shipbuilding Progress, Vol 29. 

HUBKA, V. & EDER, W. 1988. Theory of Technical Systems, New York, Spring. 

HYDRONSHIP. 2016. FREE!ship [Online]. Available: http://www.hydronship.net [Accessed 

April 2016]. 

JENSEN, J. J., MANSOUR, A. E. & OLSEN, A. S. 2004. Estimation of ship motions using 

closed-form expressions. Ocean Engineering, 31, 61-85. 

KALYANARAM, G. & KRISHNAN, V. 1997. Deliberate Product Definition: Customizing 

the Product Definition Process. Journal of Marketing Research, 34, 276. 

KRISHNAN, V., EPPINGER, S. D. & WHITNEY, D. E. 1991. Towards a cooperative 

design methodology : analysis of sequential decision strategies, Cambridge, Mass., 

Sloan School of Management, Massachusetts Institute of Technology. 

KUEI, C. 1999. Categories of Free and Non-Free Software in Open Sources. In: DIBONA, 

C., OCKMAN, S. & STONE, M. (eds.) Open sources : voices from the open source 

revolution. 1st ed. Beijing ; Sebastopol: O'Reilly. 

http://www.accessscience.com/content/ship-design/619500
http://www.hydronship.net/


 

83 

 

LAKHANI, K., WOLF, B., BATES, J. & DIBONA, C. 2002. The Boston Consulting Group 

Hacker Survey. 

LEE, K.-H., LEE, D. & HAN, S.-H. 1996. Object-oriented approach to a knowledge-based 

structural design system. Expert Systems with Applications, 10, 223-231. 

LEVANDER, K. 1991. System-based passenger ship design. 4th Int. Marine Systems Design 

Conference (IMSDC’91). Kobe. 

LEVANDER, K. 2012. System Based Ship Design Kompendium. 

LIKER, J. K., SOBEK, D. K., WARD, A. C. & CRISTIANO, J. J. 1996. Involving suppliers 

in product development in the United States and Japan: evidence for set-based 

concurrent engineering. IEEE Transactions on Engineering Management, 43, 165-178. 

MANCHINU, A. & MCCONNELL, F. The SFI coding and classification system for ship 

information.  REAPS Technical Symposium, 1977. 

MEYER, B. 1988. Object-oriented software construction, Prentice hall New York. 

MOCKUS, A., FIELDING, R. T. & HERBSLEB, J. 2000. A case study of open source 

software development: the Apache server. 263-272. 

MONTEIRO, T. G., ANDRADE, S. L. & GASPAR, H. M. 2015. Product Life-Cycle 

Management In Ship Design: From Concept To Decommission In A Virtual 

Environment. 178-184. 

NOWACKI, H. 2010. Five decades of Computer-Aided Ship Design. Computer-Aided 

Design, 42, 956-969. 

OSI. 2016. The Open Source Definition [Online]. Available: https://opensource.org/osd 

[Accessed 1 June 2016]. 

PAPANIKOLAOU, A. 2010. Holistic ship design optimization. Computer-Aided Design, 42, 

1028-1044. 

PARSONS, M. G. 2003. Parametric Design. In: LAMB, T. (ed.) Ship Design and 

Construction. Jersey City, NJ: Society of Naval Architects and Marine Engineers. 

PARSONS, M. G., SINGER, D. J. & SAUTER, J. A. 1999. A Hybrid Agent Approach For 

Set-Based Conceptual Ship Design. International Conference on Computer 

Applications in Shipbuilding. Cambridge, MA. 

SIMON, E. 1996. Innovation and intellectual property protection: the software industry 

perspective. The Columbia Journal of World Business, 31, 30-37. 

SINGER, D. J., DOERRY, N. & BUCKLEY, M. E. 2009. What Is Set-Based Design? Naval 

Engineers Journal, 121, 31-43. 

STALLMAN, R. 1999. The GNU Operating System and the Free Software Movement. In: 

DIBONA, C., OCKMAN, S. & STONE, M. (eds.) Open sources : voices from the open 

source revolution. 1st ed. Beijing ; Sebastopol: O'Reilly. 

https://opensource.org/osd


 

84 

 

STEFANOV, S. 2010. JavaScript Patterns, O'Reilly Media. 

ULSTEIN. 2016. NAO Fighter [Online]. Available: http://ulstein.com/references/blue-fighter 

[Accessed 1 June 2016]. 

URKE, T. 1976. SFI GROUP SYSTEM - A CODING SYSTEM FOR SHIP 

INFORMATION. 

UTNE, I. B. 2009. Life cycle cost (LCC) as a tool for improving sustainability in the 

Norwegian fishing fleet. Journal of Cleaner Production, 17, 335-344. 

VESTBØSTAD, Ø. 2011. System Based Ship Design for Offshore Vessels. Institutt for 

industriell økonomi og teknologiledelse. 

VON HIPPEL, E. 2001. Innovation by User Communities: Learning from Open-Source 

Software MIT Sloan School of Management. 

VON HIPPEL, E. & VON KROGH, G. 2003. Open Source Software and the “Private-

Collective” Innovation Model: Issues for Organization Science. Organization Science, 

14, 209-223. 

WARD, A., LIKER, J. K., CRISTIANO, J. J. & SOBEK, D. K. I. 1995. The second Toyota 

paradox: How delaying decisions can make better cars faster. Long Range Planning, 

28, 129. 

WOMACK, J. P., JONES, D. T. & ROOS, D. 1991. The machine that changed the world : 

how Japan's secret weapon in the global auto wars will revolutionize western industry, 

New York, NY, HarperPerennial. 

YUNWEN, Y. & KISHIDA, K. 2003. Toward an understanding of the motivation of open 

source software developers. 419-429. 

ZAKAS, N. C. 2009. Professional javascript for web developers, John Wiley & Sons. 

ZHANG, W. Y., TOR, S. B. & BRITTON, G. A. 2001. A Prototype Knowledge-Based 

System for Conceptual Synthesis of the Design Process. The International Journal of 

Advanced Manufacturing Technology, 17, 549-557. 

 

 

http://ulstein.com/references/blue-fighter


 

 

APPENDIX A: API Documentation 

These methods are available for the Vessel-object. When applicable, some methods are 

identified using the code convention from Figure 22.  

 

 

Vessel prototype 

 vessel(vesselType, cargoHoldCapacity, cargoDeckCapacity, crewSize,  

        serviceSpeed, installedPower, autonomy, operationalArea) [1] 

 

Creates a new vessel. This method should be used as an object constructor, using the keyword 

new. The constructor will create a vessel object containing the standard objects 

missionRequirements [1.4] and mainDimensions [1.5] and some methods. The first object 

stores the mission requirements used to create the vessel object and the second one stores all 

calculated parameters for the vessel. This constructor requires the following inputs: vessel type 

(string, for accepted values refer to APPENDIX B), cargo hold capacity (number), cargo deck 

capacity (number), crew size (number), service speed (number, in knots), initial guess for 

installed power (number, in kilo Watts), vessel autonomy (number, in nautical miles) and 

operational area (string). Example usage: 

 

 
 

Vessel = new vessel("PSV",50000,0,24,15.85,6000,5000,"North Sea"); 

 

 

 

Subsystems prototype method 

 

 systemPrototype(subSystem) [1.3.1] 

 

Create a new system as an object inside the main object, vessel. This method should be used 

as an object constructor, using the new keyword. The input subsystem is a vector containing 

pairs “subsystem category – subsystem element”. Subsystems’ categories are pre-defined and 

specified at the knowledge base (check the APPENDIX B for further information). The 

specification contains the required information that need to be provided for each category. The 

subsystem categories define to which category the element which is being defined belongs. 



 

 

Subsystems’ elements are specified by the user according to what he or she needs to specify in 

order to define each subsystem present in the vessel. It is important to couple each subsystem 

element with a subsystem category which allows the correct specification of the element. The 

subsystem created will be have all the subsystem’s element properties empty and they need to 

be filled afterwards. Example usage: 

 

 

 

var cargo_system = [["cargo_decks_general", "open_cargo_deck"], 

                    ["cargo_holds_dry_bulk", "iron_ore"]]; 

 

Vessel.cargo_system = new Vessel.systemPrototype(cargo_system); 

 

 

 input(vector) 

 

input is a method owned by any subsystem created using the method systemPrototype. It is 

responsible for inserting values in the subsystems’ elements parameters. The input vector is a 

vector containing pairs “subsystem element – parameters values”. The subsystem elements are 

the ones specified by the user when he or she creates each subsystem. The parameters values 

are vectors containing the properties and properties values of each element specified by the 

user. The required parameters for each category of element can be check at the knowledge-

base. Example usage: 

 

 

 

Vessel.cargo_system.input([["open_cargo_deck",["capacity",2025, 

"deck_load ",2.5, "load",0, "add_on",5]], 

                          [["iron_ore",["weight",50000, 

"stowage_factor", 0.31, "filling",50]]]); 

 

 

 add(subSystem) 

 

add is a method owned by any subsystem created using the method prototype. It is responsible 

for inserting new elements in a subsystem already created. The input subSystem is a vector 

containing pairs “subsystem category – subsystem element”. For further references about the 

input subSystem, check the “prototype(subSystem)” reference. Example usage: 

 

 
 

Vessel.cargo_system.add([["cargo_related_spaces","crane"]]); 

 



 

 

 delete(vector) 

 

delete is a method owned by any subsystem created using the method systemPrototype. It is 

responsible for removing elements in a subsystem already created or deleting the entire 

subsystem. The input vector containing pairs “item to be deleted – item class”. The item to be 

deleted is the name of the item the user wants to delete. It can be one specified element or a 

subsystem containing one or more elements. The item class identify the class of the item that 

will be deleted. It accepts two values: “element” for deleting individual elements and 

“sub_system” for deleting entire subsystems. Example usage: 

 

 

 

Vessel.cargo_system.delete([["crane","element"]]); 

 

Vessel.cargo_system.delete([["cargo_related_spaces","sub_system"]]); 

 

 

 area() 

 

area is a method owned by any subsystem created using the method systemPrototype. It is 

responsible for calculating the total area of the system to which the method belongs. The total 

area is based on the area of each defined subsystem, which are composed by the areas of each 

element defined by the user inside each subsystem. This method does not take any input. 

Example usage: 

 

 
 

var cargoSystemArea = Vessel.cargo_system.area(); 

 

 

 volume() 

 

volume is a method owned by any subsystem created using the method systemPrototype. It is 

responsible for calculating the total area of the system to which the method belongs. The total 

volume is based on the volume of each defined subsystem, which are composed by the volumes 

of each element defined by the user inside each subsystem. This method does not take any 

input. Example usage: 

 

 
 

var cargoSystemVolume = Vessel.cargo_system.volume(); 

 

 



 

 

 

Vessel’s Total Area, Volume and Weights methods 

 

 area() [1.3.2] 

 

Besides being a method present on any subsystem created using the method systemPrototype, 

area is also a method owned by the vessel itself. It is responsible for calculating the total area 

of the vessel based on the area of each vessel’s system. This method does not take any input. 

Example usage: 

 

 
 

var vesselArea = Vessel.area(); 

 

 

 volume() [1.3.3] 

 

Besides being a method present on any subsystem created using the method systemPrototype, 

volume is also a method owned by the vessel itself. It is responsible for calculating the total 

volume of the vessel based on the volume of each vessel’s system. This method does not take 

any input. Example usage: 

 

 
 

var vesselVolume = Vessel.volume(); 

 

 

 lightWeight() [1.3.4] 

 

lightWeight is a method owned by the vessel. It is responsible for estimating the vessel’s light 

weight, based on the areas and volumes information of each vessel’s system and weight 

coefficients present in the knowledge-base. The weight coefficients vary according to the 

vessel type. Check the knowledge base for further information on weight coefficients. This 

method does not take any input. Example usage: 

 

 
 

var vesselLightWeight = Vessel.methods.lightWeight(); 

 

 

 

 



 

 

 deadWeight() [1.3.5] 

 

deadWeight is a method owned by the vessel. It is responsible for estimating the vessel’s dead 

weight, based on the amount and type of cargo, installed power and crew size. and weight 

coefficients present in the knowledge-base. Check the knowledge base for further information 

on weight coefficients. This method does not take any input. Example usage: 

 

 
 

var vesselDeadWeight = Vessel.deadWeight(); 

 

 

 displacement() [1.3.6] 

 

displacement is a method owned by the vessel. It is responsible for calculating the vessel’s total 

displacement based on the vessel’s light and dead weight. This method does not take any input. 

Example usage: 

 

 
 

var vesselDisplacemente = Vessel.displacement(); 

 

 

 

 

Calculation methods 

 

 mainDimensionsCalc() [1.3.7] 

 

mainDimensionsCalc is a method owned by the vessel. It is responsible for calculating the 

vessel’s main dimensions, coefficients and dimensionless parameters, based on several 

empirical expressions and information from previous vessels present in the knowledge-base. 

Check the knowledge base for further information on coefficients and regressions. This method 

does not take any input. Example usage:  

 

 

 

Vessel.methods.mainDimensionsCalc(); 

 

// accessing calculated properties 

var vesselLengthPP = Vessel.mainDimensions.Lpp; 

var vesselBeam = Vessel.mainDimensions.B; 

 



 

 

A list of all properties calculated by the method mainDimensionsCalc with their respective 

keys to identify each property inside the object mainDimensions can be found on Table A1. 

Table A1 – List of properties calculated by the method 

main_dimensions_calc. 

 

 

holtrop(LWL, BREADTH, TF, TA, LCB, CB, CSM, CWL, VS, B, TR, CSTERN, 

         APP, AREA_APP, div_id) [1.3.8] 

 

holtrop is a method owned by the vessel. It is responsible for calculating the vessel’s 

hydrodynamic resistance, based on the Holtrop Method. ((Holtrop and Mennen, 1982), 

(Holtrop, 1984)) The Holtrop method based on statistical regression of model tests and results 

from ship trials. The method is used to estimate the resistance of displacement ships and can 

result in inaccurate values for other types of vessels. This method takes as input the following 

parameters: waterline length, beam, draught forward, draught afterward, longitudinal center of 

buoyance, block coefficient, main section coefficient, waterline coefficient, service speed (in 

knots), vessel has bulbous bow (binary), vessel has transom stern (binary), stern type 

Parameter object key

Beam B

Transversal metacentric height BM

B/D ratio B_D

Block coefficient Cb

Center of gravity coefficient Ckg

Main section coefficient Cm

Prismatic coefficient Cp

Vertical prismatic coefficient Cpv

Waterline coefficient Cwl

Depth D

Froude number Fn

Transversal Metacentric Height GM

Vertical position of center of buoyance KB

Vertical position of Center of gravity KG

L/B ratio L_B

L/D ratio L_D

Longitudinal center of buoyance Lcb

Length between perpendiculars Lpp

Length at the waterline Lwl

Draught T

T/D ratio T_D

Dead weight dead_weight

Displacement displacement

Installed Power installed_power

Light weight light_weight

Slenderness ratio slenderness



 

 

coefficient (Table A2), vector describing presence of different appendages – zero if the 

appendages does not exist or the coefficient value otherwise (Table A3) - ( 11x1 vector), vector 

describing area of present appendages ( 11x1 vector) 

and the div id where the resistance graphic will be plotted. For further information about the 

Holtrop method refer to ((Holtrop and Mennen, 1982), (Holtrop, 1984)). Example usage: 

 

 

 

var vesselResistance = Vessel.holtrop(Vessel.mainDimensions.Lwl, 

Vessel.mainDimensions.B, Vessel.mainDimensions.T, Vessel.mainDimensions 

.T, Vessel.mainDimensions.Lcb, Vessel.mainDimensions.Cb, Vessel.mainDim 

ensions.Cm, Vessel.mainDimensions.Cwl, Vessel.missionRequirements.spe 

ed, 1, 1, 3, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0], 'plot_holtrop'); 

 

 

The following tables contain relevant information about the types and coefficients for different 

sterns and appendages. 

Table A2 - Stern coefficients types: and 

values. 

 
 

Table A3 - Appendages types and values. 

 

 

 

 

Pram with Gondola 1

V-Shaped Sections 2

Normal Section Shape 3

U-Shaped Sections with Hognes Stern 4

Stern Coefficient 

Rudder behind Skeg 1.5 - 2.0

Rudder behind Stern 1.3 - 1.5

Twin-Screw Balance Rudders 2.8

Shaft Brackets 3.0

Skeg 1.5 - 2.0

Strut Bossings 3.0

Hull Bossings 2.0

Shafts 2.0 - 4.0

Stabilizer Fins 2.8

Dome 2.7

Bilge Keel 1.4

Appendage

Name Value Range



 

 

 

 shipMotion(LWL, BREADTH, CB, T, VS, heading, Position, Wave_Amp 

litude, Cwp, GM, natural_period, critical_damping_percentage,delta, 

div_id) [1.3.9] 

 

shipMotion is a method owned by the vessel. This method provides a graphical representation 

of estimated motion responses and bending moment for ships, based on geometric 

characteristics and operational profile (Jensen et al., 2004). This method takes as input the 

following parameters: waterline length, beam, block coefficient, draught, service speed (in 

knots), vessel heading, longitudinal position on the vessel where the user wishes to study the 

motion in relation to the center of gravity, wave amplitude, waterline coefficient, metacentric 

height, wave natural period, critical damping percentage, prismatic length ratio and the div id 

where the motion graphics will be plotted. For further information about the method refer to 

(Jensen et al., 2004). Example usage: 

 

 

 

Vessel.shipMotion(Vessel.mainDimensions.Lwl, Vessel.mainDimensions.B, 

Vessel.mainDimensions.Cb, Vessel.mainDimensions.T, Vessel.Requirements. 

speed, 90, 0, 2, Vessel.mainDimensions.Cwl, 4.2, 6.5, 20, 0.6, 

'plot_ship_motion'); 

 



 

 

APPENDIX B: System-Based Design Structure Database 

This database is responsible for storing the structural organization of the vessels systems and 

subsystems. Each subsystem is represented by one class, which contains the required properties 

for that category of element. Any subsystem present inside the vessel can be instantiated using 

this SyBSD structure database. The systems are identified using the reference number from 

Figure 22. 

 

CargoSystem [1.1] 

 

CargoRelatedSpaces 

{"number_units": "", "length": "", "width": "", "height": ""} 

 

CargoHoldsDryBulk 

{"weight":"", "stowage_factor":"", "filling":""} 

 

CargoHoldsLiquidBulk 

{"volume":"", "density":"", "filling":""} 

 

CargoHoldsContainer 

{"number_units": "", "length": "", "width": "", "height": "", 

"cell_guide_width": ""} 

 

CargoTanksLiquidDryBulk 

{"capacity":"", "density":"", "add_on":"", "filling":"", 

"height":""} 

 

CargoDecksContainer 

{"number_units": "", "length": "", "width": "", "units_in_stack": 

"", "cell_guide_width": ""} 

 

CargoDecksRORO 

{"lanes":"", "width":"", "add_on":"", "height":"", 

"weight_lanes":""} 

 

CargoDecksGeneral 

{"capacity":"", "deck_load":"", "load":"", "add_on":""} 

 

 

 

OutfittingSystem [1.2.1] 

 

OperationalSupport 

{"area":"", "covered":"", "height":""} 

 

ShipEquipment 

{"area":"", "covered":"", "height":""} 

 

RescueFirefighting 

{"number_units": "", "area_unit":"", "covered":"", "height":""} 



 

 

CrewSystem [1.2.2] 

 

CrewAccommodation 

{"number_cabins": "", "beds_cabins": "", "area_cabins":"", 

"height":""} 

 

CrewCommonSpaces 

{"crew": "", "area_crew":"", "height":""} 

 

CrewEmergencyStairways 

{"decks": "", "area_deck":"", "height":""} 

 

 

 

ServiceSystem [1.2.3] 

 

ShipService 

{"crew": "", "area_crew":"", "height":""} 

 

CateringSpaces 

{"crew": "", "area_crew":"", "height":""} 

 

HotelServices 

{"crew": "", "area_crew":"", "height":""} 

 

TechnicalSpacesAccommodation 

{"crew": "", "area_crew":"", "height":""} 

 

 

 

MachinerySystem [1.2.4] 

 

MachinerySpaces 

{"unit": "", "area_unit":"", "height":""} 

 

ConsumablesTanks 

{"unit": "", "consumption": "", "endurance":"", "density":"", 

"margin":""} 

 

BallastVoids 

{"density":"", "volume": ""} 

 



 

 

APPENDIX C: Regressions Database 

 

 

var data_CM = [[0.000, 0.100, 0.200, 0.300, 0.385, 0.400, 0.454, 0.500], 

               [1.000, 0.998, 0.997, 0.978, 0.900, 0.879, 0.800, 0.740]]; 

            

var data_CP = [[0.000, 0.100, 0.200, 0.256, 0.300, 0.320, 0.401, 0.500], 

               [1.000, 0.914, 0.799, 0.699, 0.624, 0.598, 0.550, 0.583]]; 

 

var data_CW = [[0.000, 0.100, 0.200, 0.219, 0.299, 0.328, 0.400, 0.500], 

               [1.000, 0.964, 0.915, 0.899, 0.822, 0.800, 0.749, 0.715]]; 

 

var data_CB = [[0.000, 0.100, 0.197, 0.253, 0.300, 0.385, 0.400, 0.500], 

               [1.000, 0.914, 0.799, 0.699, 0.611, 0.498, 0.484, 0.431]]; 

 

var data_Ckg = { 

    "cargo_container": {"small":[[100, 6000], 

                                 [0.6, 0.8]], 

                        "big":[[6001, 18000], 

                               [0.58, 0.64]]}, 

    "roro": [[500, 4100], 

             [0.6, 0.8]],  

    "ropax": [[1000, 75000], 

              [0.6, 0.8]],  

    "bulk_carrier": [[500, 400000], 

                     [0.55, 0.58]], 

    "tanker": [[500, 415000], 

               [0.52, 0.54]], 

    "PSV": [[100, 5500], 

            [0.6, 0.8]], 

    "AH&T": [[500, 9000], 

             [0.6, 0.8]], 

    "OSCV": [[3500, 18000], 

             [0.6, 0.8]], 

    "deck_barge": [[272.156, 4535.925], 

                   [0.6, 0.8]] 

}; 

 

var data_payload_related_outfitting = { 

    "cargo_container": [[7019.099, 15765.824, 25173.590, 29356.983, 

50154.849, 59708.826, 75153.481, 100157.113], 

                        [0.0140, 0.0120, 0.0105, 0.0100, 0.0084, 0.0080, 

0.0075, 0.0070]], 

    "roro": [[4174.502, 10446.697, 25096.470, 49965.473], 

             [0.0070, 0.0060, 0.0048, 0.0040]], 

    "ropax": [[4017.237, 12777.122, 24947.364, 50081.152, 75089.653], 

              [0.0050, 0.0040, 0.0035, 0.0029, 0.0027]], 

    "bulk_carrier": [[6098.93, 24811.68, 49946.26, 75215.99, 100095.52, 

124975.05, 150116.47], 

                     [0.0040, 0.0031, 0.0026, 0.0024, 0.0024, 0.0024, 

0.0024]], 

    "tanker": [[7922.685, 25066.465, 50071.150, 75209.938, 100155.336, 

125034.735, 150110.947], 

               [0.0033, 0.0026, 0.0021, 0.0019, 0.0020, 0.0020, 0.0020]], 

    "PSV": [[994.27, 5000.66, 5918.93, 9959.92, 14981.43, 19008.14], 

            [0.0184, 0.0107, 0.0100, 0.0075, 0.0056, 0.0045]], 

    "AH&T": [[4014.047, 5024.011, 6922.088, 9983.741, 10534.853], 

             [0.0422, 0.0412, 0.0401, 0.0386, 0.0384]], 

    "OSCV": [[958.82, 3049.46, 5010.78, 9978.57, 14993.01, 19004.74], 

             [0.0369, 0.0312, 0.0279, 0.0238, 0.0215, 0.0201]], 

    "deck_barge": [[272.156 , 544.311, 1315.418, 1859.729, 4535.925], 



 

 

                   [0, 0, 0, 0, 0]] 

}; 

 

var data_accommodation_weight = { 

    "cargo_container": [[1010.989, 1802.198, 3714.286, 6065.934],  

                        [0.206, 0.200, 0.187, 0.175]],  

    "roro": [[1010.989, 1802.198, 3714.286, 6065.934], 

             [0.206, 0.200, 0.187, 0.175]],  

    "ropax": [[2153.846, 2989.011, 9934.066, 20000.000, 30065.934, 

39956.044, 50021.978], 

              [0.204, 0.200, 0.170, 0.155, 0.151, 0.151, 0.151]],  

    "bulk_carrier": [[1010.989, 1802.198, 3714.286, 6065.934], 

                     [0.206, 0.200, 0.187, 0.175]],  

    "tanker": [[1010.989, 1802.198, 3714.286, 6065.934], 

               [0.206, 0.200, 0.187, 0.175]], 

    "PSV": [[798.771, 990.783, 1996.928, 2995.392, 3993.856, 4496.928], 

            [0.210, 0.203, 0.185, 0.176, 0.169, 0.167]], 

    "AH&T": [[798.771, 990.783, 1996.928, 2995.392, 3993.856, 4496.928], 

             [0.210, 0.203, 0.185, 0.176, 0.169, 0.167]], 

    "OSCV": [[798.771, 990.783, 1996.928, 2995.392, 3993.856, 4496.928], 

             [0.210, 0.203, 0.185, 0.176, 0.169, 0.167]], 

    "deck_barge": [[272.156 , 544.311, 1315.418, 1859.729, 4535.925], 

                   [0, 0, 0, 0, 0]] 

}; 

 

var data_machinery_weight = { 

    "cargo_container": [[6026.98, 9986.95, 14904.27, 19995.65, 30091.38, 

40100.09, 49978.24], 

                        [0.100,0.089, 0.080, 0.074, 0.067, 0.064, 0.063]], 

    "roro": [[3981.723, 9943.429, 20039.164, 30091.384, 35400.348], 

             [0.0500, 0.0415, 0.0375, 0.0359, 0.0353]], 

    "ropax": [[4068, 6462.1, 10030.5, 19995.7, 30091.4, 40056.6, 49978.2], 

              [0.0652, 0.0603, 0.0553, 0.0490, 0.0470, 0.0460, 0.0452]], 

    "bulk_carrier": [[3938.2, 7941.7, 10030.5, 19299.4, 30091.4, 37576.2], 

                     [0.1381, 0.1201, 0.1144, 0.1001, 0.0918, 0.0880]], 

    "tanker": [[3938.21, 7941.69, 10030.46, 19299.39, 30091.38, 37576.15], 

               [0.1381, 0.1201, 0.1144, 0.1001, 0.0918, 0.0880]], 

    "PSV": [[2922.37, 6255.71, 9954.34, 18082.19, 20000.00, 27990.87], 

            [0.0450, 0.0377, 0.0339, 0.0298, 0.0292, 0.0272]], 

    "AH&T": [[2922.37, 6255.71, 9954.34, 18082.19, 20000.00, 27990.87], 

             [0.0450, 0.0377, 0.0339, 0.0298, 0.0292, 0.0272]], 

    "OSCV": [[2922.37, 6255.71, 9954.34, 18082.19, 20000.00, 27990.87], 

             [0.0450, 0.0377, 0.0339, 0.0298, 0.0292, 0.0272]], 

    "deck_barge": [[272.16 , 544.31, 1315.42, 1859.73, 4535.93], 

                   [0, 0, 0, 0, 0]] 

}; 

 

var data_ship_system_weight = { 

    "cargo_container": [[5903.56, 10530.48, 25065.13, 49764.04, 74986.72, 

100076.02], 

                        [0.0070, 0.0060, 0.0042, 0.0029, 0.0024, 0.0022]], 

  

    "roro": [[3917.365, 12643.157, 24799.158, 32328.567, 49762.702], 

             [0.0080, 0.0060, 0.0045, 0.0040, 0.0032]], 

    "ropax": [[3915.59, 5105.75, 17000.39, 24794.93, 49758.03, 74980.88], 

              [0.0083, 0.0080, 0.0060, 0.0053, 0.0040, 0.0035]], 

    "bulk_carrier": [[5773.959, 8549.736, 24934.201, 49764.980, 74987.663, 

100076.914, 125032.899, 149923.086], 

                     [0.0065, 0.0060, 0.0040, 0.0027, 0.0023, 0.0020, 

0.0020, 0.0020]], 



 

 

    "tanker": [[5773.959, 8549.736, 24934.201, 49764.980, 74987.663, 

100076.914, 125032.899, 149923.086], 

               [0.0065, 0.006, 0.004, 0.003, 0.0023, 0.002,0.002, 0.002]], 

    "PSV": [[1013.825, 1351.767, 3379.416, 4976.959, 8448.541, 10015.361, 

15023.041, 18986.175], 

            [0.0127, 0.012, 0.01, 0.0091, 0.008, 0.0076, 0.0067, 0.0062]], 

    "AH&T": [[1013.825, 1351.767, 3379.416, 4976.959, 8448.541, 10015.361, 

15023.041, 18986.175], 

             [0.0127, 0.012, 0.01, 0.009, 0.008, 0.0076, 0.0067, 0.0062]], 

    "OSCV": [[1013.825, 1351.767, 3379.416, 4976.959, 8448.541, 10015.361, 

15023.041, 18986.175], 

             [0.0127, 0.012, 0.01, 0.009, 0.008, 0.0076, 0.0067, 0.0062]], 

    "deck_barge": [[272.156 , 544.311, 1315.418, 1859.729, 4535.925], 

                   [0, 0, 0, 0, 0]] 

}; 

 

var data_ship_outfitting = { 

    "cargo_container": [[6039.173, 11099.021, 25136.017, 50108.814, 

75408.052, 100054.407],  

                        [0.0092, 0.0080, 0.0060, 0.0043, 0.0038, 0.0035]],  

    "roro": [[4080.522, 12894.450, 24972.797, 50108.814], 

             [0.0100, 0.0080, 0.0062, 0.0046]],  

    "ropax": [[4080.522, 6202.394, 16648.531, 24972.797, 43090.316, 

49945.593, 75081.610], 

              [0.0106, 0.0100, 0.0080, 0.0070, 0.0060, 0.0058, 0.0054]],  

    "bulk_carrier": [[7997.824, 9303.591, 24972.797, 49945.593, 75081.610, 

100054.407, 125027.203, 150000.000], 

                     [0.0083, 0.0080, 0.0057, 0.0040, 0.0036, 0.0033, 

0.0031, 0.0030]],  

    "tanker": [[7997.824, 9303.591, 24972.797, 49945.593, 75081.610, 

100054.407, 125027.203, 150000.000], 

               [0.0083, 0.0080, 0.0057, 0.0040, 0.0036, 0.0033, 0.0031, 

0.0030]], 

    "PSV": [[1003.040, 1641.337, 3677.812, 5015.198, 5516.717], 

            [0.0132, 0.0119, 0.0100, 0.0093, 0.0090]], 

    "AH&T": [[4012.158, 4468.085, 5015.198, 7264.438, 10000.000], 

             [0.0146, 0.0140, 0.0135, 0.0120, 0.0107]], 

    "OSCV": [[3009.119, 4984.802, 6322.188, 9969.605, 14984.802, 

18996.960], 

             [0.0078, 0.0065, 0.0060, 0.0052, 0.0045, 0.0041]], 

    "deck_barge": [[272.156 , 544.311, 1315.418, 1859.729, 4535.925], 

                   [0.01, 0.09, 0.08, 0.07, 0.06]] 

}; 

 

var data_hull_weight = { 

    "cargo_container": [[5934.938, 24904.064, 49651.143, 75161.347, 

99799.407, 124764.521],  

                        [0.103, 0.087, 0.080, 0.077, 0.074, 0.072]],  

 

    "roro": [[3863.597, 13021.106, 24904.064, 49760.160, 75052.329], 

             [0.116, 0.100, 0.091, 0.082, 0.081]],  

    "ropax": [[3863.597, 13021.106, 24904.064, 49760.160, 75052.329], 

              [0.116, 0.100, 0.091, 0.082, 0.081]],  

    "bulk_carrier": [[6043.956, 14220.304, 24904.064, 41910.867, 

49760.160, 74943.311, 99799.407, 124655.503, 149947.671], 

                     [0.117, 0.100, 0.090, 0.080, 0.078, 0.073, 0.070, 

0.069, 0.067]],  

    "tanker": [[6043.956, 17599.860, 24795.046, 49760.160, 75161.347, 

99799.407, 124764.521, 149838.653], 

               [0.122, 0.100, 0.094, 0.083, 0.079, 0.076, 0.074, 0.072]], 



 

 

    "PSV": [[1003.135, 4137.931, 4952.978, 10000.000, 14984.326, 

19028.213], 

            [0.1794, 0.1598, 0.1569, 0.1473, 0.1416, 0.1387]], 

    "AH&T": [[1003.135, 4137.931, 4952.978, 10000.000, 14984.326, 

19028.213], 

             [0.1794, 0.1598, 0.1569, 0.1473, 0.1416, 0.1387]], 

    "OSCV": [[1003.135, 4137.931, 4952.978, 10000.000, 14984.326, 

19028.213], 

             [0.1794, 0.1598, 0.1569, 0.1473, 0.1416, 0.1387]], 

    "deck_barge": [[272.156 , 544.311, 1315.418, 1859.729, 4535.925], 

                   [0.333, 0.250, 0.224, 0.200, 0.190]] 

}; 

 

var data_deck_house_weight = { 

    "cargo_container": [[3863.597, 25013.082, 49869.178, 75052.329, 

99908.425], 

                        [0.078, 0.060, 0.057, 0.056, 0.056]], 

    "roro": [[3863.597, 25013.082, 49869.178, 75052.329, 99908.425], 

             [0.078, 0.060, 0.057, 0.056, 0.056]],  

    "ropax": [[3863.597, 25013.082, 49869.178, 75052.329, 99908.425], 

              [0.078, 0.060, 0.057, 0.056, 0.056]], 

    "bulk_carrier": [[3863.597, 25013.082, 49869.178, 75052.329, 

99908.425], 

                     [0.078, 0.060, 0.057, 0.056, 0.056]],  

    "tanker": [[3863.597, 25013.082, 49869.178, 75052.329, 99908.425], 

               [0.078, 0.060, 0.057, 0.056, 0.056]], 

    "PSV": [[1003.135, 4984.326, 10000.000, 15015.674, 19028.213], 

            [0.1038, 0.0870, 0.0798, 0.0765, 0.0751]], 

    "AH&T": [[1003.135, 4984.326, 10000.000, 15015.674, 19028.213], 

             [0.1038, 0.0870, 0.0798, 0.0765, 0.0751]], 

    "OSCV": [[1003.135, 4984.326, 10000.000, 15015.674, 19028.213], 

             [0.1038, 0.0870, 0.0798, 0.0765, 0.0751]], 

    "deck_barge": [[272.156 , 544.311, 1315.418, 1859.729, 4535.925], 

                   [0, 0, 0, 0, 0]] 

}; 

 

var data_similar_vessels = { 

    "cargo_container": { 

        "Lpp": [[355.45, 1408.62,2022.77, 2658.56, 4039.45, 4411.86, 

6011.07, 7149.84, 8025.70, 9996.15, 12010.12, 13980.15,15993.95,8007.54], 

                [98.855, 150.763, 177.481, 199.618, 242.366, 250.000, 

283.588, 300.382, 311.069, 330.916, 346.183, 358.397, 370.611, 379.008]], 

        "Beam": [[162.284, 703.892, 2000.700, 4022.842, 6015.397, 

8008.253, 10001.304, 11994.440, 14017.875, 16026.290, 18034.747], 

                 [12.854, 20.131, 27.696, 34.408, 39.051, 42.696, 45.699, 

48.417, 50.849, 52.996, 55.000]], 

        "Draught": [[178.896, 2013.891, 4031.253, 6018.840, 8021.567, 

10024.376, 12042.286, 13999.976, 16017.906, 18005.736],     

                    [4.292, 9.764, 11.415, 12.264, 12.925, 13.396, 13.774, 

14.104, 14.434, 14.717]], 

        "Depth": [[151.03,276.90,654.50,1258.65,1988.67,3045.94, 4279.42, 

6016.36, 8017.62, 10018.88, 12787.91, 14021.39, 16035.24, 18023.91], 

                  [5.788, 7.523, 10.124, 12.883, 15.090, 17.770, 20.056, 

22.815, 25.338, 27.545, 30.068, 31.014, 32.590, 34.009]], 

        "Aux_Power": [[0.00, 1990.81, 3996.93, 5957.12, 7993.87, 10000.00, 

11975.49, 14012.25, 16033.69, 18009.18], 

                      [0.092, 3.159, 5.872, 8.585, 11.180, 14.128, 16.370, 

18.729, 21.324, 23.683]], 

        "Prop_Power": { 

            "17-20": [[490.046, 1102.603, 1990.812, 2450.230], 

                      [5.990, 10.000, 14.718, 16.841]], 



 

 

            "21-23": [[2633.997, 3981.623, 5972.435, 7993.874, 10015.314, 

11975.498, 13996.937, 16018.377, 18024.502], 

                      [24.862, 30.996, 38.073, 43.971, 49.633, 54.115, 

58.598, 62.608, 66.501]], 

            "24-26": [[3705.972, 5972.435, 8024.502, 10015.314, 11975.498, 

12986.217, 13996.937, 14977.029], 

                      [40.668, 52.464, 61.782, 69.567, 76.527, 80.066, 

83.368, 86.435]] 

        } 

    }, 

 

    "roro": { 

        "Lpp": [[657.12, 1000.664, 1508.072, 2007.605, 2507.093, 3006.541, 

3509.884, 4052.228], 

                [97.66, 114.62, 134.50, 150.585, 164.327, 176.02, 187.427, 

198.830]], 

        "Beam": [[661.506, 1008.716, 1506.288, 2007.653, 2501.270, 

3002.571, 3507.721, 4062.977], 

                 [17.89,19.87, 21.99, 23.60, 24.93, 26.05, 27.14, 28.13]], 

        "Draught": [[650.980, 996.078, 1494.118, 2000.000, 2498.039, 

2996.078, 3494.118, 4043.137],     

                    [5.60, 5.93, 6.25, 6.44, 6.60, 6.76, 6.85, 6.99]], 

        "Depth": [[652.031, 835.518, 1005.898, 1281.127, 1500.655, 

1779.161, 2001.966, 2500.000, 3001.311, 3496.068, 4039.974],     

                  [12.345, 12.933, 13.405, 14.033, 14.484, 14.975, 15.289, 

15.996, 16.526, 17.016, 17.487]], 

        "Depth_main_deck": [[645.48, 842.07, 999.35, 1307.34, 1661.21, 

2001.97, 2500.00, 2998.03, 3496.07, 4033.42],     

                            [6.731, 7.084, 7.359, 7.712, 8.026, 8.379, 

8.694, 8.968, 9.282, 9.557]], 

        "Aux_Power": [[656.447, 1006.289, 1501.572, 2000.786, 2500.000, 

2999.214, 3498.428, 4044.811], 

                      [0.98,1.30, 1.64, 2.028, 2.38, 2.690, 2.97, 3.246]], 

        "Prop_Power": { 

            "15-18": [[652.55,1006.29,1501.57, 2000.79, 2500.00, 2908.81], 

                      [4.749, 6.120, 7.842, 9.387, 10.687, 11.775]], 

            "19-21": [[1257.862, 1505.503, 2000.786, 2500.000, 2999.214, 

3498.428, 4001.572, 4500.786, 5000.000], 

                      [11.470, 12.172, 13.472, 14.560, 15.507, 16.349, 

17.120, 17.856, 18.556]], 

 

            "22-26": [[1757.075, 2000.786, 2500.000, 2999.214, 3498.428, 

3997.642, 4500.786, 5000.000], 

                      [19.143, 19.951, 21.496, 22.831, 24.025, 25.113, 

26.130, 27.113]] 

        } 

    }, 

                             

    "ropax": { 

        "Lpp": [[2449.58, 9917.84, 19895.44, 29992.53, 39970.12, 49947.72, 

59925.31, 69902.91, 74981.32], 

                [70.45, 113.11, 143.79, 165.65, 183.28, 197.74, 210.43, 

222.07, 228.06]], 

        "Beam": [[117.99, 1887.90, 7492.62, 9970.50, 20000.00, 29970.50, 

40000.00, 49970.50, 60058.99, 69970.50, 75162.24], 

                 [9.192, 14.987, 19.933, 21.205, 24.502, 26.716, 28.412, 

29.778, 30.956, 31.992, 32.510]], 

        "Draught": [[2477.876, 3775.811, 10029.499, 20000.000, 29970.501, 

40000.000, 50029.499, 60000.000, 70029.499, 75162.242], 

                    [3.58, 4.00, 5.09, 5.82, 6.27, 6.60, 6.86, 7.07, 7.23, 

7.308]], 



 

 

        "Depth": [[2510.76,5267.69, 9993.84, 14720.00, 20233.84, 25452.30, 

30080.000, 40024.61, 49969.23, 60012.308, 69956.923,75175.385], 

                  [11.563, 12.628, 13.457, 13.971, 14.426, 14.723, 14.881, 

15.318, 15.616, 15.835, 16.035, 16.154]], 

        "Depth_main_deck": [[2412.30,3889.23, 6350.76, 10092.30, 14818.46, 

20036.92,24369.23,30080.00,36184.61,40024.61,44947.69, 49969.23, 60012.30, 

69956.92, 75076.92], 

                            [5.29,6.00,6.71, 7.46, 8.05, 8.45, 8.72, 9.04, 

9.28, 9.44, 9.68, 9.83, 10.11, 10.31, 10.43]], 

        "Aux_Power": [[2295.80, 10007.35, 19955.85, 29963.20, 40029.43, 

50095.65, 59985.28, 70051.50, 75172.92], 

                      [0.86,2.27,3.59,4.81,6.13,7.26, 8.39, 9.43, 10.00]], 

        "Prop_Power": { 

            "15-20": [[2472.40, 10007.35, 19955.85, 29904.34, 40029.43], 

                      [3.499, 8.022, 12.073, 15.559, 18.479]], 

            "20-25": [[2060.338, 10007.358, 19955.850, 29963.208, 

40029.433, 50036.792, 60103.017, 70051.508, 75172.921], 

                      [5.666,12.638,18.291,23.001, 26.864, 30.350, 33.553, 

36.474, 37.981]], 

            "25-30": [[14716.70, 20014.71, 30022.07, 40029.43, 50095.65, 

55393.67], 

                      [28.466, 32.894, 39.960, 45.707, 50.794, 53.244]], 

            "30-32": [[25136.130, 29963.208, 40029.433, 50095.659], 

                      [47.308, 51.548, 60.027, 67.187]] 

        } 

    }, 

 

    "bulk_carrier": { 

        "Lpp": [[5301.04, 11780.10, 23560.20, 55955.49, 112500, 168160.99, 

224410.99, 280955.49, 336910.99, 393455.49], 

                [96.980, 121.856, 150.422, 195.131, 241.711, 274.012, 

299.407, 320.658, 339.605, 356.250]], 

        "Beam": [[4400.96,11149.10,24352.00, 39902.07, 48997.40, 98581.60, 

148459.19, 197163.20, 247334.19, 296918.39, 346209.1988, 375548.9614], 

                 [15.100, 19.880, 25.618, 30.080, 31.992, 40.120, 46.096, 

50.478, 54.303, 57.809, 60.677, 62.351]], 

        "Draught": [[5336.00,15285.90,29895.83,49460.76,99081.90,120968.95 

,148399.33,198003.44,247311.72, 296910.43, 346214.56, 374804.96], 

                    [5.912, 8.191, 10.014, 11.610, 14.202, 15.028, 15.969, 

17.393, 18.533, 19.587, 20.442, 20.926]], 

        "Depth": [[4015.05, 7528.23, 15558.34,26599.74,39648.68, 50188.20, 

70263.48, 99874.52,127979.92, 149058.97, 199749.05, 249435.383, 299623.58, 

350062.73, 380928.48], 

                  [8.828, 10.081, 12.307, 14.534, 16.273, 17.455, 19.333, 

21.453, 23.017, 24.268, 26.421, 28.227, 29.754, 31.211, 31.974]], 

        "Aux_Power": [[4954.67, 22150.33, 38180.17, 49255.34, 98510.68, 

148640.38, 198187.17, 247151.06, 296406.41, 345953.20, 375972.73], 

                      [1.005, 1.405, 1.565, 1.644, 2.004, 2.204, 2.403, 

2.523, 2.683, 2.763, 2.803]], 

        "Prop_Power": [[5246.13, 15155.49, 32934.05, 49255.34, 74903.09, 

98802.13, 119495.21, 148640.38,197895.73,247151.07,296406.4112, 345953.20, 

375972.74], 

                       [2.88,5.04, 7.63, 9.39, 11.71, 13.66, 14.98, 16.90, 

19.58, 22.05, 24.25, 26.25, 27.45]] 

    }, 

 

    "tanker": { 

        "Lpp": [[330.39, 5947.13, 23127.75, 49889.86, 99779.73, 150330.39, 

199559.471, 250110.132, 300000.000, 349889.868, 407048.458], 

                [49.054, 100.135, 150.270, 191.892, 236.351, 268.041, 

292.162, 313.446, 331.419, 347.500, 364.054]], 



 

 

        "Beam": [[1358.76,9919.91,34176.04,50549.29, 100958.81, 151026.50, 

200761.34, 250491.70, 300546.40, 350272.28, 400323.40, 409156.03], 

                 [9.178, 19.863, 30.055, 34.000, 42.466, 48.219, 52.904, 

56.767, 60.137, 63.178, 65.890, 66.384]], 

        "Draught": [[324.44,1946.65,27901.95,49315.07,99927.90,149891.85, 

199855.80, 250144.20, 299783.71, 350072.10, 400684.93, 408795.96], 

                    [3.031, 5.000, 10.028, 11.821, 14.529, 16.357, 17.764, 

19.030, 20.014, 20.963, 21.807, 21.983]], 

        "Depth": [[523.865, 2095.460, 5238.650, 11001.164, 22002.328, 

36146.682, 50291.036, 72293.364, 100058.207, 149563.446, 200116.414, 

249883.586, 300436.554, 350203.725, 407043.073], 

                  [4.92, 6.96, 8.92, 11.26, 13.75, 16.176, 17.913, 20.102, 

22.217, 25.275, 27.654, 29.617, 31.429, 32.977, 34.601]], 

        "Aux_Power": [[647.48, 9064.75, 25251.80, 50179.86, 100683.45, 

150215.83, 200395.68,250575.54,300107.91, 350287.77,399820.14, 407913.67], 

                      [0.101, 1.655, 2.268, 2.645, 3.069, 3.257, 3.445, 

3.587, 3.681, 3.775, 3.869, 3.869]], 

        "Prop_Power": [[0.00,6151.8,13920.86,29784.17,50179.86, 100683.45, 

150215.83,200395.68,250899.28,30011.91,350611.51,399820.14,408237.41], 

                       [1.090, 3.116, 5.000, 7.826, 10.511, 15.834, 

19.838, 23.419, 26.622, 29.448, 32.227, 34.630, 35.101]] 

    }, 

 

    "PSV": { 

        "Lpp": [[24.615, 98.462, 295.385, 787.692, 1427.692, 1969.231, 

2560.000, 3963.077, 4972.308], 

                [17.037, 25.000, 35.563, 49.865, 61.891, 69.204, 75.217, 

87.568, 94.718]], 

        "Beam": [[21.671, 117.271, 357.920, 985.158, 1612.991, 2023.601, 

2990.034, 3980.866, 4971.807], 

                 [5.168, 7.514, 9.973, 13.158, 15.114, 16.176, 18.077, 

19.531, 20.761]], 

        "Draught": [[12.422, 198.758, 633.540, 1416.149, 2000.000, 

2819.876, 4012.422, 4956.522], 

                    [1.84, 3.02, 3.99, 4.99, 5.47, 6.01, 6.63, 7.03]], 

        "Depth": [[27.530, 103.779, 255.536, 683.887, 1212.477, 1703.113, 

2495.443, 3438.420, 4016.706, 5009.775], 

                  [2.10,2.86,3.74,4.81,5.64,6.24,7.00, 7.67, 8.02, 8.55]], 

        "Installed_Power": [[38.810, 595.084, 1371.281, 1992.238, 

3208.279, 3984.476, 5019.405], 

                            [439.269, 2217.478, 3716.988, 4938.842, 

6826.451, 7936.639, 9212.96]], 

        "Prop_Power": [[12.91,1097.48,1962.56,3214.98, 3963.85, 4544.87], 

                       [477.80,2013.73,3247.14,4992.48,6086.30, 6900.80]] 

    }, 

 

    "AH&T": { 

        "Lpp": [[393.846, 873.846, 1403.077, 1969.231, 3064.615, 3987.692, 

5981.538, 7975.385, 8344.615], 

                [38.814, 49.540, 58.640, 65.141, 75.217, 81.880, 92.768, 

101.706, 103.007]], 

        "Beam": [[526.88, 912.88, 1709.75, 2821.13, 4005.27, 5431.26, 

7026.65, 8307.82], 

                 [10.64,12.60,15.06, 17.29, 19.084, 20.85, 22.38, 23.56]], 

        "Draught": [[459.627, 857.143, 1229.814, 1975.155, 2993.789, 

3987.578, 5975.155, 7975.155, 8385.093], 

                    [3.80,4.50,5.014,5.72, 6.46, 6.99, 7.88, 8.57, 8.69]], 

        "Depth": [[507.955, 608.722, 885.817, 1313.666, 1930.010, 

2797.690, 3614.933, 4557.752, 5412.525, 6594.037, 7549.234, 8391.286], 

                  [4.759, 4.991, 5.615, 6.240, 6.911, 7.651, 8.229, 8.761, 

9.201, 9.733, 10.103, 10.404]], 



 

 

        "Installed_Power": [[478.655, 905.563, 1448.900, 1966.365, 

2302.717, 3130.660, 3984.476, 4993.532, 5976.714, 7037.516, 8331.177], 

                            [3274.53, 4997.48, 7109.43, 8943.36, 9999.158, 

12499.637, 15055.661, 17722.487, 20055.682, 22722.365, 25777.722]], 

        "Prop_Power": [[477.728, 761.782, 1149.128, 1949.645, 2943.835, 

3976.759, 5151.711, 5990.962, 7682.376, 8327.954], 

                       [2667.854, 3786.073, 4997.291, 7326.428, 9958.143, 

12356.667, 14918.031, 16664.327, 20017.027, 21227.644]] 

    }, 

 

    "OSCV": { 

        "Lpp": [[3766.15, 4652.31, 5932.31, 7015.39, 8000.00, 9981.538, 

10756.923, 11987.692, 13981.538, 16000.000, 17501.538, 18116.923], 

                [84.642, 91.468, 100.244, 106.419, 111.945, 121.696, 

124.946, 130.146, 137.947, 145.098, 149.973, 152.086]], 

        "Beam": [[3763.32,4585.16,5310.35,5987.26,6760.87,7655.34, 

8912.55,9988.46,11088.55,11995.21,13240.42, 13989.97, 15972.67, 18124.65], 

                 [19.307, 20.146, 20.817, 21.321, 21.881, 22.553, 23.281, 

23.841, 24.401, 24.877, 25.410, 25.718, 26.475, 27.260]], 

        "Draught": [[3788.820, 4608.696, 5975.155, 7987.578, 10024.845, 

11987.578, 13031.056, 14000.000, 16012.422, 18099.379], 

                    [5.660, 6.002, 6.439, 6.990, 7.427, 7.825, 7.996, 

8.176, 8.489, 8.764]], 

        "Depth": [[3827.23, 4682.06, 5587.14, 6743.55, 7598.22, 9031.01, 

10539.12, 11795.87, 12926.92, 13932.23, 15163.78, 17526.25], 

                  [7.119, 7.605, 8.090, 8.646, 8.993, 9.548, 10.045, 

10.450, 10.809, 11.052, 11.399, 11.977]], 

        "Installed_Power": [[3803.364, 4734.799, 5976.714, 6649.418, 

7943.079, 10000.000, 11979.301, 13997.413, 15989.651, 18137.128], 

                            [6324.240, 7545.231, 9099.064, 10042.688, 

11596.376, 14037.820, 16284.818, 18531.709, 20695.246, 22969.585]], 

        "Prop_Power": [[3783.086, 4893.480, 6003.873, 7320.852, 7992.253, 

9954.810, 11994.835, 14009.038, 15958.683, 18089.090], 

                       [3266.210, 3939.612, 4613.014, 5449.105, 5843.811, 

6888.187, 7979.003, 8999.949, 9951.115, 10971.790]] 

    }, 

 

    "deck_barge": { 

        "Lpp": [[272.156, 544.311, 1315.418, 1859.729, 4535.925], 

                [30.48, 45.72, 59.436, 60.96, 76.2]], 

        "Beam": [[272.156, 544.311, 1315.418, 1859.729, 4535.925], 

                 [7.9248, 9.7536, 10.668, 15.24, 21.9456]], 

        "Draught": [[272.156, 544.311, 1315.418, 1859.729, 4535.925], 

                    [1.8288, 1.829, 2.7432, 2.7432, 3.81]], 

        "Depth": [[272.156, 544.311, 1315.418, 1859.729, 4535.925], 

                  [2.471, 2.471, 3.707, 3.707, 5.149]], 

        "Installed_Power": [[272.16 , 544.31, 1315.42, 1859.73, 4535.925], 

                            [0, 0, 0, 0, 0]], 

        "Prop_Power": [[272.156 , 544.311, 1315.418, 1859.729, 4535.925], 

                       [0, 0, 0, 0, 0]] 

    } 

}; 

 

 

  



 

 

APPENDIX D: SFI Group System 

 

Figure D1 - SFI Group System Structure. (Levander, 2012) 



 

 

 



 

 

APPENDIX E: System-Based Ship Design and SFI Group 
System Relation 

 

Figure E1 - SyBSD and SFI relation- Ship Functions. (Levander, 2012) 

 



 

 

 

Figure E2 - SyBSD and SFI relation- Task Related Functions. (Levander, 2012) 

 

 



 

 

APPENDIX F: Scientific Paper Draft 

An Open Source Approach For A Conceptual Ship Design Tools Library
 

Thiago G. Monteiro; Henrique M. Gaspar 

Faculty of Maritime Technology and Operations 

Norwegian University of Science and Technology in Aalesund 
Postboks 1517 N-6025 – Aalesund – Norway 

E-mail: thiagogabrielm@gmail.com; E-mail: henrique.gaspar@ntnu.no

 

 

 

KEYWORDS 

Conceptual Ship Design, JavaScrip, Open Source 

Software, System-Based Ship Design. 

 

ABSTRACT 

A vessel is a complex and integrated system, 

which in composed by several subsystems and parts 

which can have common interfaces and interact in a non-

linear way. With the continuous development of ship 

design techniques, a continuous increase in the amount 

of information generated and handled by the design 

process can be noted. Having an efficient way of 

handling all this information during the vessel design 

process in essential to produce relevant designs in the 

competitive ship market.  

This work proposes an investigation about how 

the conceptual design phase of a vessel can be approach 

and improved using concepts from Knowledge-Based 

Design, System-Based Ship Design and Open Source 

Software. These theories are combined to put together an 

Open Source Conceptual Ship Design Tools Library, 

which provides a set of design tools to be applied in the 

beginning of a vessel design process. 

The development of the tools library is 

approached in details in this work. It is structured using 

knowledge-based design prototype concept. The vessel is 

subdivided using system-based ship design theory to 

make the design task less cumbersome and easy to be 

handled by the tools library. JavaScript is used as an open 

standard to implement the tools library in a web-based 

platform. The way JavaScript should be used in order to 

better deal with the vessel subdivision is also discussed, 

putting some light in the object oriented programming 

methodology. 

Once the tools library is implemented, a case 

study is conducted to evaluate how well and appropriate 

its performance is in a real world problem. This study is 

done in cooperation with Ulstein, which provide precious 

information and discussions about their design process. 

 

1. Introduction 

The ship design task is complex by nature. A 

vessel is a complex and integrated system, which in 

composed by several subsystems and parts which can 

have common interfaces and interact in a non-linear way. 

(Erikstad, 1996) proposed seven characteristics to 

describe a vessel system: is a self-contained structure 

operating in the boundary between two fluids; it consists 

of a multi-dimensional, partially non-monetary 

performance evaluation; high-cost of error if inefficient 

design; shallow knowledge structure between form and 

function; traditional industry with preconceived 

standards; strict time and resource constraints; 

predominantly one of a kind and engineered to order 

solutions. 

With the continuous development of ship design 

techniques, a continuous increase in the amount of 

information generated and handled by the design process 

can be noted. (Gaspar et al., 2012) 

During the vessels’ life-cycle, all these 

information need to be handle and exchanged by several 

people, being them part of the same company or members 

of different organizations involved with the vessels’ life-

cycle. In order to make the design process as efficient as 

possible, it is important a common standard to identify 

vessel’s systems and components to be used for all the 

parts involve in the life-cycle. 

One example of this kind of standard is the SFI 

Group System, which is a coding system to 

unequivocally identify any vessel component at any point 

of the vessel’s life-cycle. This kind of coding system is 

useful for solving communication, cost and control 

issues. SFI is the most used and well-known coding 

system used around the world for vessel design. 

Besides the standard for components and 

systems identification, there is also the need for a 

common platform for handling different types of 

analyses results involved in the vessel design process. 

Ship designer already have at their disposal advance 

techniques to evaluate the vessels’ performance 

according to different merit figures, such structural 

resistance, hydrodynamic forces, seakeeping capabilities, 

stability and so on. What they don’t have is a common 

platform to perform all these kinds of analyses, handle 

the results and combine the data, which could definitely 

improve several aspects of the design process by means 

of accelerating the design tasks, reducing rework, saving 

time and money and etc. 

The concept of open libraries was developed 

with the advent of internet, since it became easy for 

people to learn, develop and share knowledge about 

mailto:thiagogabrielm@gmail.com


 

 

programming. Web based open source software can be 

an interesting alternative for fulfilling the need for this 

common platform, since several applications can be 

developed and integrated in a ship design library which 

can address the ship design problem from different 

angles. The applicability of web oriented open source 

technology need to be investigated to check the extent of 

its collaboration to the ship design field. 

1.1. Problem Statement 

The main objective of this study is to develop an 

open source conceptual ship design tools library which 

will address vessels’ conceptual design problem using 

knowledge based design and system based design 

approaches. This object statement can be a little 

cumbersome at first glance, but it can be easily explained. 

At first, the concept of a tools library need to be 

approached. The term library here refers to a collection 

of objects, which work together to accomplish the 

required design task. These objects are the tools which 

the library contains and organizes. Think in these objects 

as structures to store and handle knowledge or perform 

functions, calculation or operation. 

Secondly, the concept of open source software 

is relevant here, since it provides a powerful and yet free 

platform where the tools library can be implemented. 

Being developed in an open platform allows the library 

to not be bounded to any proprietary software, which add 

freedom and flexibility while developing and integrating 

different tools. 

Last but not least, the conceptual design phase 

is the beginning of the design process, but still holds a big 

potential affects the final design. Decisions taken here 

affect largely the cost structure of the product while being 

cheap to be done, making this phase an obvious target for 

improvement search, which the tools library will try to 

address. 

In this light, the main goal of this study is to 

develop, using a not proprietary platform, a collection of 

useful and integrated tools to be applied in the conceptual 

design phase of vessels. This problem statement leads to 

important questions which need to be investigated. They 

are: 

Question 1: How can the vessel be efficiently 

subdivided in order to allow better design control and 

knowledge handle in the initial stages of the design 

process? 

Question 2: Which aspects of open source 

technology can improve the conceptual ship design 

process? 

Question 3: How to develop a tools library 

which has a structure flexible enough to contemplate the 

design of any kind of vessel but at the same time be 

capable of providing results which are good enough to 

compose a solid ground for the continuation of the design 

process? 

2. Knowledge-Based Design  

The knowledge-based design (KBD) process 

can be seen as a problem solving process of searching 

through a state space defined by the syntactic knowledge 

(design variables) and the interpretative knowledge 

(design performances), where the states represent the 

design solutions. The searching process should be done 

using reasoning based on goal and decision variables, 

which can be constrained by the world or context where 

the design is applied or produced. (Coyne et al., 1989) 

The KBD theory can be used to address any 

design problem by doing the mapping between the 

syntactic and the interpretative spaces (Figure 1). One 

tool to handle knowledge while trying to do this mapping 

is the Design Prototype. 

 

 
Figure 1 - Example of mapping between syntactic and 

interpretative spaces. (Coyne et al., 1989) 

2.1. Knowledge and Design Prototype 

Given that designers design from experience, it 

is needed a system of storing this experience in a coherent 

structure. (Gero and Rosenman, 1990) The prototype 

should be understood as a conceptual schema for 

knowledge or a clear way of representing the design and 

its properties. 

The prototype represents a class of elements 

from which instances of elements can be derived. A 

prototype brings together the three types of variables 

groups (function, structure, behavior) which define the 

designed artifact and the relation between them, which 

includes process for selecting and obtaining values for 

variables.  

Instance can be derived by inheriting properties, 

functions and variables from a generic prototype. It is 

possible to derivate new instance from prototype which 

have already been derivate from other prototype, which 

make possible to develop a complex hierarchy in the 

design process. (Gero and Rosenman, 1990) 

A diagram of a prototype schema can be seen in 

Figure 2. The function properties include the intended 

function in the form of goals and requirements, and the 

expected behaviors as attributes and variables. The 

structure properties include the vocabulary, the prototype 

description, its configuration and the actual behaviors as 

attributes and variables of the prototype. 



 

 

Knowledge plays a big hole into the prototype 

schema. Relational knowledge is required for every 

mapping from a property to another property. Besides the 

relational knowledge, the prototype also stores 

qualitative knowledge, computational knowledge and 

context knowledge. The qualitative knowledge 

complements the relational knowledge and provides 

information on the effects of changing structure variables 

values on behavior and function properties. The 

computational knowledge is the quantitative counterpart 

of qualitative knowledge and specifies symbolic or 

mathematical relationships among the properties 

variables. The context knowledge identifies the external 

variables for a design situation, which should come from 

the context where the design is inserted. The qualitative 

and computational knowledges are subjected to 

constraints, which on function properties appear as 

expected behaviors and on structure properties reduce the 

set of possibilities. 

 

 
Figure 2 - Prototype schema diagram. (Gero and 

Rosenman, 1990) 

3. System-Based Ship Design 

According to (Hubka and Eder, 1988), who 

described the bases for technical systems, the system 

thinking has as its main features (Levander, 2012):  

 Delivers the relationships that are valid for all 

products;  

 Presents an opportunity to treat problems as a 

whole; 

 Is a necessary pre-condition for a successful 

design and engineering effort;  

 Provides a framework for the design task and 

formalize many logical operations; 

 Supports those human operations, that are not 

strictly logical, like intuition and creativity.  

Kai Levander, who believed that this system 

approach could help the development of innovative 

vessel designs, applied the idea of system thinking to ship 

design, developing a design methodology called System-

Based Ship Design (SyBSD). This methodology works 

as a framework for the vessel design task. This 

framework is structured over the idea of dividing the 

vessel in different systems, based on their functions, 

which work together to accomplished the desired ship 

mission. (Levander, 2012) 

Different from a top-down design approach where 

the design starts from the vessel and continue to detail the 

vessel’s systems, the SyBSD uses a bottom-up approach, 

going from the vessel’s required functions to the 

composition of the vessel itself. The designs start from 

the mission specification, which defines task, capacities 

and expected performance by the vessel’s stakeholders. 

This approach straightens the beginning of the design 

spiral, delaying the beginning of the decision process and 

reduces the number of iterations needed to find a feasible 

solution. The SyBSD spiral can be seen in Figure 3. 

 

 
Figure 3 - System-Based Design Spiral (Erikstad and 

Levander, 2012) 

 

According to (Erikstad and Levander, 2012), the 

SyBSD process can be summarized as follow: 

Customer requirements - Mission statement 

 Task, capacity, performance demands, range 

and endurance; 

 Rules, regulations and preferences; 

 Operating conditions (wind, waves, currents, 

ice). 

Functional requirements - Initial sizing of the ship 

 Based on capacity, where the areas and volumes 

needed for cargo spaces and task related 

equipment defines the size of the vessel; 

 Based on weight, where the cargo weight and 

the weight of task related equipment and of the 

ship itself defines the size of the vessel. 

Form - Parametric exploration 

 Variation of main dimensions, hull form and 

layout of spaces on board to satisfy the demands 

for both capacity and weight. 

 



 

 

Engineering synthesis 

 Calculating and optimizing ship performance, 

speed, endurance and safety. 

Evaluation of the design 

 Calculating building cost and operation 

economic. 

A functional breakdown is used in order to divide the 

vessel in systems. The vessel is split into the categories 

Ship Systems and Payload Systems. The Ship Systems 

are all systems related to the safe and correct operation of 

the vessel, without taking the cargo into consideration. 

The Payload Systems are functions and requirements 

which generates cash flow for the vessel, which can 

include cargo and cargo related systems but also specific 

systems for specialized vessel such offshore support 

vessels, which can have winch and heavy lift cranes. Due 

to this special cases, the Payload Systems can also be 

called Task Related Systems. An example of this division 

can be seen in Figure 4.

 

 
Figure 4 - Payload and ship functions in a cargo vessel. (Levander, 2012) 

In order to facilitate data collection, the SyBSD 

divides the systems based on the structure of the SFI 

Group System. (Urke, 1976) The SFI group system was 

developed at the Norwegian Ship Research Institute and 

is the most widely used classification system for the 

maritime and offshore industry worldwide. It is an 

international standar,d which stablishes a functional 

breakdown of the ships technical and economic 

information and is used by shipping and offshore 

companies, shipyards, consultancies, software suppliers, 

authorities and classification societies. It helps the 

control of operations by tying together all their 

procedures such as purchasing, accounting, maintenance 

and technical records. 

The correlation between SyBSD and SFI is not 

completely accurate, since the former does not 

distinguish between payload and ship systems (Figure 5), 

which results is some minor differences between the 

subdivision of these two structures. Although some 

differences exist, they can be overcome making some 

special relations among discordant items. (Erikstad and 

Levander, 2012) 

 

 
Figure 5 - SFI main groups structure. (Utne, 2009) 

 

Since the vessel are usually generic, they follow 

a design pattern based on previous experience with 

resembles a scaling process. This traditional approach 

easily locks the designer to his first assumption, making 



 

 

him patch and repair the same design, what makes this 

traditional method not prone to innovation. 

The SyBSD, using a bottom-up approach 

determines the needed area, volume and weights for each 

vessel’s function, and from this figures estimates the 

displacement, main dimensions and building costs. By 

doing this evaluation without defining the vessels 

dimension, the SyBSD method does not lock 

assumptions in the conceptual phase and supports a more 

creative process in the start of the project.  

The SyBSD method is suitable for the early 

design decisions, and can be considered as a checklist 

that reminds the designer of all the factors that affect the 

design and record his choices. Its use ensure that the 

design is based on the most fitted basis ship, and reduces 

the number of iterations in the design spiral later on. 

(Vestbøstad, 2011) The final product of the SyBSD 

method application is a complete description of the new 

ship, which can be used as an advanced start point for the 

next design phases. 

3.1. The Perks of Delaying Decision Making 

SyBSD methodology delays the start of the 

decision making process while the traditional ship design 

spiral methodology value the early decision making. This 

traditional approach can prejudice the outcome of the 

design process, mainly due to three factor: evolution of 

product’s cost, management’s ability to affect these 

costs, and evolution of designers’ knowledge about a 

design problem. The negative effect of these factor in the 

outcome of the design process can be reduced by mean 

of delaying the decision making as far as possible. 

(Bernstein, 1998) 

The first factor to be approached is the product’s 

cost. The design team is responsible for defining 

everything related with the product’s cost. The chosen 

design, the way it will be produced, how it should be 

transported, required sale price are all important 

decisions defining the structure of a product’s cost. This 

decision process is a tricky task, since the choices made 

in the very beginning of the design process (with the least 

data) have the most impact in the product’s costs 

structure. (Ward et al., 1995) 

At the end of the conceptual design phase 

between 60% and 80% of the product’s total life-cycle 

cost is determined. (Dierolf and Richter, 1989) Although 

the impact of the conceptual design phase decisions in the 

final product are enormous, the amount of resources 

spent in this stage are minimal. For a vessel design, the 

time and money allocated to the conceptual design phase 

are about 2% of that of the design, detailing and 

construction phases all together. (Levander, 1991) 

(Gaspar, 2013) also considered in this 

evaluation the effect of the changes in the design over the 

vessel life-cycle (Figure 6). The cost of removing or 

correcting a design flaw or making any change in the 

vessel design in the construction phase at the ship yard 

can be as big as 1000 times higher than if the same 

change was made during the conceptual design phase. 

With these considerations, it is possible to 

notice the importance of the decisions made in the early 

product development and how they can affect the 

product’s cost structure. Also, the impact in lowering the 

cost structure of decisions made in the later stages of 

development are small. (Anderson, 1997)

 

 
Figure 6 - Costs evolution through the main design phases. (Gaspar, 2013) 

Other factor influencing the product’s cost 

structure is the management’s ability to influence a 

product’s design. During the conceptual design phase, 

the design team has a great capacity to influence the 

product’s design. As the design progress, this capacity is 

greatly diminished. This characteristic is due to the fact 

that the design team constraint the available options for 

design solution with each decision made. (Krishnan et al., 



 

 

1991) So, as the design progress, more decisions are 

made and more constraints are inserted in the design 

formulation, making the management’s power to 

influence the product’s costs structure decline, while 

these costs increase. 

The conceptual design phase is also 

characterized by the lack of knowledge from the design 

team. At the beginning of the product’s development the 

design team is not really aware about the problem’s 

variables, constraints and user’s needs. As the problem is 

worked, the knowledge starts to be consolidate and the 

design team becomes more capable of making better 

decisions.  

As already discussed, these initial decisions 

have the most impact in the product’s cost structure, 

however they are made when the design team has the 

least knowledge about the product and the process. 

(Erikstad, 1996) corroborates with the relation 

between the design knowledge and the design freedom 

and how they evolve over the life-cycle of a vessel. At 

the beginning of the conceptual design, no decisions have 

yet been made, and the only constraint are that related to 

the top-level mission requirements and all subsequent 

decisions will constraint the design freedom. 

The limited design knowledge can be mainly 

attributed to the uncertainty in the relation between the 

form and the function of the vessel. The uncertainty in 

these mapping functions can be related to the vessel itself 

or to the vessel’s environment. Specially in the early 

stages of the design process the mapping between form 

and function need to be modelled, in a large extent, using 

heuristic and empirical rules. 

Figure 7 show how useful delaying the decision 

make process can be. 

 

 
Figure 7 - Perks of delaying the decision making process. 

(Bernstein, 1998) 

 

Firstly, it can delay the commitment of costs for 

a moment when more knowledge about the product and 

the design process is available. Secondly, it can increase 

the manager’s influence over the late design, since 

several constraints can be considered only when the 

decisions regarding them are made, which would give 

more options for the product’s design. The knowledge is 

considered unchangeable, since it is already considered 

that it is obtained as soon as possible. (Bernstein, 1998) 

(Kalyanaram and Krishnan, 1997) pointed 

additional benefits of delaying the decision making 

process: 

 better balance between customer needs and 

technical feasibility; 

 keep the design open to receive the latest 

technology available;  

 more competitive products, both in terms of 

price and performance; 

 better track changes in customer desires. 

4. Open Source Technology and JavaScript 

In order to protect intellectual property and 

ensure the possibility of profit, several commercial 

software companies keep their software’s source code in 

secret. The source code is a sequence of logical 

instructions written in a certain programming language 

and used by a computer to execute a given task or achieve 

a given purpose. In order to protect the source code, 

companies release the program in a binary version (the 

code converted in a sequence of zeros and ones), which 

can be understood by computer but is difficult for users 

to interpret. (Simon, 1996) 

This kind approach goes against the origins of 

computer programming, where codes were written and 

shared by several individuals, with no commercial 

interested involved. (von Hippel and von Krogh, 2003) 

To fight this tendency, the now called Open Source 

Software (OSS) movement was created, aiming to ensure 

free access to programs’ source code, making possible 

for users to understand, change, adapt and improve the 

original programs’ source code. 

The term “free software” is not related to price or 

value. It is about freedom. According to (Stallman, 1999) 

a free software can be called like this if an individual user 

can: 

 Run the program for any purpose; 

 Have access to the program’s source code so it 

is possible to modify it; 

 Redistribute copies of the original program, 

either gratis or for a fee; 

 Distribute modified versions of the program. 

The possibility of selling copies of the program is a 

crucial feature to finance the free and open source 

software development and communities. In order to 

ensure all this freedom, the copyleft licensing concept 

was developed, adding distribution terms to the 

conventional copyright practice, which give anyone the 

right to use, modify and redistribute the code, since the 

distribution terms are kept intact. 

The licensing is a complex subject in software 

development and distribution. There are several licensing 

standards for both free and proprietary software. The 



 

 

following diagram (Figure 8) by (Kuei, 1999) shows the 

different categories of software licensing. Some of them 

limit the access to the closed program (proprietary 

software), some only limit the access to the source code 

(public domain software without source code) while 

others only impose distribution terms (copylefted 

software). 

 
Figure 8 - Overview of types of software licenses. (Kuei, 

1999) 

4.1. JavaScript as an Open Standard 

An OSS needs to be written in a computational 

language which is not propriety, in other words being 

owned and controlled by one company. An open 

computational language can be called an Open Standard 

(OS). This is the case of JavaScript, which is a particular 

implementation of the ECMAScript language standard. 

An OS like JavaScript is open but not open 

source, since is it not a program. It is only a document 

describing expected behaviors for lines of code written in 

its computational language syntax. Although an OS 

cannot be open source, an implementation of it can be 

(and in this case it is an OSS). 

In this section, JavaScript is presented as an OS, 

presenting its background, main features and justifying 

why it will be the choice for developing the conceptual 

ship design open source tools library. 

4.2. Object Oriented Programming in JavaScript 

Object-oriented programming (OOP) is a 

programming paradigm based on the concept of 

"objects", which may contain data and code. In OOP, 

computer programs are designed by making them out of 

objects that interact with one another. The most popular 

and developed model of the OOP is the class-based 

programming (CBP). In this model, objects are entities 

that combine data, behavior and identity. The structure 

and behavior of an object are defined by its class, which 

includes all objects of a specific type. The objects are 

created based on classes and are considered instances of 

them, inheriting some of their properties. 

JavaScript does not follow the CBP model. It is 

structured as a class free language, where object inherit 

properties from other objects. This model is called 

prototype-based since behavior reuse is performed via a 

process of cloning existing objects that serve as 

prototypes. (Stefanov, 2010) This approach is powerful, 

making the inheritance process easier to implement, but 

it is also different from what a conventional CBP 

language is. (Crockford, 2008) 

An object, which is the JavaScript’s core data 

type and its only complex one, is an unordered list of 

primitive (Number, String, Boolean, Undefined, and 

Null) and complex data types that is stored as a series of 

key-value pairs. The key property serves as an identifier 

while the value represents the value of the expression, 

which can be a primitive or an object value. Each item in 

the list is called a property or, if an item is a function, it 

is called method. (Stefanov, 2010) This easy notation 

inspired JSON, a popular data interchange format. 

(Crockford, 2008) An example of an object (car) 

containing both properties (type, model and color) and 

methods (showColor()) can be seen below. 
 
var car = {                  // car object. 

    type:"Fiat",             // property. 

    model:"500",             // property. 

    color:"white",           // property. 

    showColor: function (){  // method. 

        alert(this.color) 

    };  

} 

 

One of the fundamental concepts from OOP is 

the inheritance concept. Usually in a CBP language, 

objects are instances of classes, from which they can 

inherit properties and functions. In JavaScript, this 

process is a little different since object inherit from other 

objects.  

Other important concept of OOP is the 

encapsulation concept. Encapsulation refers to enclosing 

all the functionalities of an object within that object so 

that the object’s methods and properties are hidden from 

the rest of the application, allowing to abstract or localize 

specific set of functionalities on objects. 

This two concept will be important since they 

allow the build of applications with reusable code, 

scalable architecture, and abstracted functionalities. 

4.3. Why JavaScript? 

The idea in this work is not only create an open 

source tools library, but also to create a ship design tool 

which is simple to use, not computational intensive and 

requires as minimum effort as possible to share designs 

and results. 

Working with a software which requires to be 

installed in the computer could make it difficult to share 

result with clients, team members or other stakeholders. 

Using an online platform for the vessel design can reduce 

these information sharing difficulty, as the only thing one 

need to access the information about the design is a web 

browser, and the only thing needed to edit is a text editor, 

reducing the need for client-side software to a minimum. 

Also, since all the processing is done in browser, the 

computational requirements are very low. 

Web development is not restrict to one 

operational system or one platform, since internet is 



 

 

universal. When thinking about client-side web 

development, JavaScript is an obvious choice. JavaScript 

is so important and popular because it is the language of 

the web browsers. (Crockford, 2008) It is supported by 

all modern web browsers without the need of plugins, 

since each browser has its own built-in JavaScript engine. 

(Flanagan, 2011) JavaScript composes a triad of web 

technologies essential for web development, together 

with HTML to specify the content of the web page and 

CSS to specify the presentation of the web page. 

JavaScript is responsible for describing the behavior of 

the web page. (Flanagan, 2011) 

The position of JavaScript as the main 

languages in web browser makes it development very 

fast, with new tools and libraries been developed all the 

time, by the gigantic JavaScript’s community. 

Since JavaScript is prototype-based with first-

class functions, supporting object-oriented, imperative, 

and functional programming styles (Flanagan, 2011), its 

prototype and inheritance capabilities make it an good 

choice for dealing with objects to handle the vessel 

subsystem division and the knowledge base data. It has a 

simple API for working with text, arrays, dates and 

regular expressions, which can be completed using third 

parties’ APIs. It has no input-output functionalities, 

relaying on the environment where it is embedded to 

handle these operations. (Flanagan, 2011) 

The biggest drawn back of JavaScript is the fact 

that it is an OOP language which is PBP model. This 

makes it an unusual language for most developers, which 

are used to conventional CBP model. Using, directly, 

programming techniques from CBP will not work in 

JavaScript, which can be frustrating for an unadvised 

programmer. (Crockford, 2008) 

5. Research Approach 

The methodology for this work will be 

developed following the system architecture presented in 

Figure 9, where the tools library components are 

organized and their relations stablished. The User 

provides inputs to the library and receives outputs from 

it. The Tools Library is developed using JavaScript, for 

both Prototype and Knowledge-Base. The Prototype 

contains the most important KBD elements, namely 

Function, Behavior and Structure. The User’s inputs feed 

the Function block, while the Structure and Behavior 

blocks are developed using SyBSD theory. The Structure 

and Behavior blocks receive information from the 

Knowledge Base through an Inference Mechanism, 

respectively from the SyBSD Structure Database and 

Regression Database blocks.

 

 
Figure 9 - Conceptual Ship Design Open Source Tools Library architecture. 

5.1. Knowledge-Base 

One important element in KBD is the 

knowledge-base. It is responsible for storing knowledge 

about the design process, which can be accessed by some 

sort of inference mechanism to retrieve facts, knowledge 

and control whenever the reasoning process requires. The 

tools library knowledge base was constructed to be the 

most generic as possible in order to provide knowledge 

to the design of several kinds of vessels and is composed 

by two databases: the Regressions Database and the 

SyBSD Structure Database. 

The regression database contains important 

vessel design coefficients regression and knowledge 

about previously built vessels of several types, including 

container carriers, bulk carriers, tankers, ferries, roro and 

offshore support vessels.  

The SyBSD database contains classes 

definitions based on the SyBSD structure. These classes 

are used to instantiate vessel elements, which compose 

the vessel’s subsystem, which compose the vessel’s 



 

 

systems. Whenever the user instantiated a new element, 

this database will be accessed and the required class 

structure will be retrieved.  

5.2. Vessel Structure 

The proposed vessel prototype subdivision 

structure is presented in Figure 10. SyBSD uses a simple 

division for the physical structure of the vessel. There are 

two main groups of systems: Task Related Systems [1.1] 

and Ship System [1.2]. The Task Related Systems group 

includes any cargo and cargo handling systems and 

specialized system for offshore support vessels which are 

not related directly to cargo but is related to the money 

making capacity of the vessel. The Ship Systems group 

includes any system required for the vessel to safely 

operate and considers the Outfitting [1.2.1], Crew [1.2.2], 

Service [1.2.3] and Machinery Systems [1.2.4]. 

Besides the vessel physical structure, there is 

also other important elements to consider in the prototype 

structure. We are defining two JavaScript objects to store 

data. The first one is related to the required functions of 

the vessel, namely the Mission Requirements object 

[1.4]. The second one is responsible for storing the 

vessel’s main dimensions and behaviors, namely the 

Main Dimensions object [1.5]. 

Last but not least the prototype will hold several 

JavaScript methods (or function), which will be 

responsible for data handling, reasoning, knowledge 

retrieve and knowledge application. The methods present 

in the vessel prototype are: Prototype [1.3.1], Area 

[1.3.2], Volume [1.3.3], Light Weight [1.3.4], Dead 

Weight [1.3.5], Displacement [1.3.6], Main Dimensions 

[1.3.7], Holtrop [1.3.8], Seakeeping [1.3.9] and Hull 

Lines [1.3.10].

 

 
Figure 10 - Vessel prototype subdivision structure. 

5.3. System-Based Ship Design Process 

In order to apply the SyBSD methodology, the 

workflow presented in Figure 11 was developed. It 

includes the main design process the user should perform 

while applying the ship design tool library. Some of the 

phases relay on users’ knowledge, while others relay on 

the developed knowledge-base.  

The tools library user will have direct 

interaction with phases 1 2 and 7 of this workflow. The 

phase 1 and 2 are used for data input while the phase 7 is 

used by the user to check the feasibility of the obtained 



 

 

concept. If the answer for phase 7 is negative, the user 

need to redefine some systems input and reapply the tolls 

library. 

 

 
Figure 11 - System-based ship design process workflow. 

 

5.4. Vessel Prototype 

We are going to represent the vessel using an 

open prototype and in order to construct it, we are going 

to implement the tools library using object oriented 

programming concepts and JavaScript language as an 

OS. JavaScript was not design as a conventional CBP 

language, but its object concept can be used to work 

around this issue. 

5.4.1 Object Oriented Programming Implementation 

in JavaScript: Encapsulation and Inheritance 

In order to implement the OOP in JavaScript, we 

are going to use to different techniques. The first one will 

be the encapsulation, for creating objects with specialized 

functionalities. The second one will be inheritance, for 

code reuse. 

The encapsulation concept basically means to 

put all the inner workings of an object inside that object. 

To do so, we need to identify and define the properties 

and methods of that object, so we can apply an 

encapsulation pattern to construct the object. 

Implementing inheritance in this application will allow to 

inherit functionality from parent functions so that we can 

easily reuse code in the application and extend the 

functionality of objects, which can make use of their 

inherited functionalities and still have their own 

specialized methods and properties. 

The best encapsulation mechanism in 

JavaScript is the Combination Constructor/Prototype 

Pattern. (Zakas, 2009) This method is not only capable of 

dealing with the encapsulation matter, but it is also 

possible to use it in order to implement inheritance 

through Prototypical Inheritance. 

The use of encapsulation makes no sense if you 

just want to store some data inside an object. For this kind 

of task, writing the object using object literal is sufficient. 

But when you need to create several object with similar 

properties and methods, it makes sense to encapsulate all 

this properties and methods inside a function and use it 

to construct these objects. 

In order to exemplify the use of Combination 

Constructor/Prototype Pattern technique in JavaScript, 

we are going to approach the implementation of the 

systemPrototype method, which is held by the vessel 

object and is used to instantiate new system objects. Each 

system object will contain subsystem objects instantiated 

by the user, following the defined SyBSD structure 

database. So the systemPrototype method will need to 

write down the instantiated subsystems as pairs key-

property inside the system object. Also, each system 

object will have the following method: add, area, delete, 

input and volume. Since all system objects will have the 

same methods, the Prototypal Inheritance will be used to 

make the child system objects inherit the methods from 

the parent system object. Each system object will be 

afterward specified with the relevant properties 

addressed by the user. 

Since we want all vessel systems to have the 

same methods, we can use a constructor function (class 

in OOP) to encapsulate these methods. In order to create 

the constructor function, we will use the Combination 

Constructor/Prototype Pattern technique. 

The first step of the creation of the constructor 

function is to initialize the instance properties. These 

properties will be defined on each System instance that is 

created. The object doesn’t have default properties, but 

has a code routine responsible for getting the constructor 

input, searching in the SyBSD structure database for the 

subsystem classes and instantiate the required classes as 

properties. So the properties values will be different for 

each System, depending on the user’s input.  

After the constructor is defined, the next step is 

to overwrite the prototype property with an object literal, 

where we define all the methods that will be inherited by 

all the System instances. By overwriting the prototype 

with a new object literal we have all the methods 

organized in one place, effectively implementing the 

encapsulation. 

When overwriting the prototype property, we 

are preparing the function to provide Prototypal 



 

 

Inheritance. The properties and methods added on the 

prototype property will be inherited by each instance of 

the System object, so they can use them and also receive 

new properties and methods. 

5.4.2 Class Diagram Representation of the Vessel 

Prototype 

For modeling the static design view of the vessel 

prototype the UML Class Diagram (Booch et al., 1998) 

is going to employed. It is the most common diagram for 

modeling object-oriented systems and presents the 

systems’ classes, interfaces, collaborations and their 

relationships. 

Using the UML class diagram the object-orient 

vessel prototype is modeled. The representation is crucial 

for presenting such a complex relational structure of all 

the classes composing the vessel prototype.  

The representation done here is a simplified one, 

where some less relevant aspects of the class diagram 

were neglected, such as methods’ arguments, relations’ 

labeling and responsibilities’ definition. The neglected 

aspect can be useful in several situations, but for the 

reason the diagram is used here (mostly to make the 

relations between classes clearer) they are not needed. 

The main objective with this simplification was to make 

the diagram more readable in the limited space provided 

by this report’s pages. 

The vessel prototype class diagram can be seen 

in Figure 13. The main class of the vessel prototype is the 

Vessel class. Its attributes and operations are specified, 

although the input parameters for the operations were 

omitted. 

The Vessel class is composed by System classes. 

This System classes are related to the Vessel class by 

mean of composition relations of multiplicity zero or one, 

since each Vessel class can have zero or only one of each 

System class. 

The System classes don’t have any default 

attribute or operation, but they inherit operations from the 

class VesselSystem, which they are connected to by 

inheritance relations (which have no multiplicity). 

The attributes of the System classes are 

represented by the Subsystem classes, which are 

connected to their respective System class by mean of 

composition relations of multiplicity zero or more. This 

happens because System classes can contain any number 

of their respective Subsystem classes. 

All the attributes and operations of the vessel 

prototype were considered public, since they all need to 

be manipulated by the Vessel class. 

6. Case Study 

The case study is based on the PSV NAO 

FIGHTER. The vessel belongs to the PX121 product 

family (which is a medium-size class) and was designed 

by Ulstein Design & Solutions AS, constructed by 

Ulstein Verft AS and is owned by Nordic Amercian 

Offshore (NAO). 

In this case study, the tools library is applied 

aiming to attend the NAO FIGHTER’s mission 

requirements (Table 1). The results obtained from the 

tools library application are compared with the real vessel 

parameters in order to verify how realistic (or unrealistic) 

the final concept is. Since the result of the tools library is 

only a preliminary concept, it is not expected to obtain a 

perfect matchup between the results, but instead, a 

deviance of about 10% to more or less is expected and 

considered fine. The library application will be done 

considering a subsystem division which is common for 

PSV vessel but can be a little bit different from the NAO 

FIGHTER’s subdivision since its exact subdivision is 

unknown, but it is expected close results anyways. 

 
Table 1 - NAO Fighter’s mission 

requirements (Ulstein, 2016) 

 

6.1. Tools Library Application 

In this case study, the vessel has all the ship 

systems. In the task related systems, the only present is 

the cargo system, since this vessel is a PSV which the 

only attribution is to transport cargo. The system 

breakdown structure can be seen in (Figure 12) 

 

 
Figure 12 - NAO Fighter case study system breakdown 

.

Tunnel thruster 1

Retractable thruster 1

Azimuth thruster 2

Speed (max) 15.9 kn

Accommodation 24 POB

Deck area 850 m2

Fuel Oil (MDO) 1474 m3

Fresh Water 1033 m3

Ballast water/Drill water 1676 m3

Liquid mud (sp. gr.2,8 t/m3) 1307 m3

Brine (sp. gr.2,5 t/m3) 1307 m3

Cement (4 tanks) 254 m3

LFL* (4 tanks) 153 m3

Base oil 259 m3

NAO FIGHTER Requirements



 

 

 
Figure 13 - Vessel prototype class diagram. 

In order to construct this PSV structure, we need 

to begin by instantiating a new vessel object using the 

tools library Vessel constructor. This vessel object will 

hold all information about the ship and its systems. The 

input parameters are vessel type (“PSV”), cargo hold 

capacity (4000 ton), cargo deck capacity (2025 ton), crew 

size (24), vessel speed (15.85 knots), installed power 

(6000 kW), autonomy (1000 km) and operational area 

(“North Sea”). 

The next step consists of instantiating system 

objects, to hold subsystem object instances, which hold 

elements instances. After defined, the elements need to 

be initialized, insertinf the required properties. In this 

case study, the instatiated systems, subsystems and 

elements are presented below: 

 

cargo system 

    cargo decks general: open cargo deck 

    cargo tanks liquid and dry bulk: brine and mud, 

fresh water, lfl, base oil, cement 

    cargo related spaces: transfer pumps and piping 

 

outfitting 

    ship equipment: tunnel thrusters, retractable 

thrusters, steering gear, mooring deck forward, mooring 

deck aft, incinerator plant, decks stores, rope stores 

    rescue firefighting: fast rescue boats, life saving  

appliances, fire monitors 

 

crew facilities 

    crew accommodation: captain class suite, officer 

cabin, crew single, crew double, cabin corridors wall 

lining 

    crew common spaces: mess room, officers dayroom, 

crew dayroom, duty mess, gymnesium, laundry linen, 

change room, toilets, corridors 



 

 

    crew emergency stairways: main stair, service stairs 

fore, service stairs aft 

 

service facilities 

    ship service: wheelhouse, ship offices, iscp office, 

conference room, hospital 

    catering spaces: galleys, galley provision store, dry 

provision store, cold provision store, scullery 

    hotel services: linen store, ship laundry, storage 

spaces in the accommodation, cleaning lockers 

    technical spaces accommodation: ac rooms and 

ducting, electric substations, instrument room under 

wheelhouse, void spaces in deckhouse 

 

machinery 

    machinery spaces: main and auxiliary engine rooms, 

shaftlines propellers propulsion thrusters, emergency 

generator and battery room, pump rooms and equipment 

spaces, workshops and stores, ecr and switchboard room, 

fire fighting system and CO2 room, engine casing, air 

intakes, funnel 

    consumables tanks: fuel oil, lub oil, fresh water, 

sewage and grey water 

    ballast and voids: ballast water 

 

The hull subsystem doesn’t need to be 

instantiated. It will be defined according to the required 

area and volume for the vessel. Once all the required 

systems and subsystems are instantiated, the last step in 

the conceptual design phase for obtaining the vessel’s 

main dimensions is using the mainDimensionCalc 

method, held by the Vessel object. This method does not 

require any input, since all need information is gathered 

from the tools library database and from the instantiated 

systems. 

6.2. Results and Analyses 

The results obtained from this design example 

can be seen on the mainDimensions object, held by the 

Vessel object (Table 2). The obtained results don’t show 

anything which raises any worried about the feasibility of 

the design. All the parameters are quite normal for a PSV 

of this size. 

It is also possible to apply the shipMotion 

method to obtain an estimative of the vessel response for 

a specific sea state. For example, the method can 

evaluates the vessel response (in its center of gravity) for 

a sea state of wave in beam sea, with 2 m amplitude and 

natural period of 6.5 s. Figure 14 shows an example of 

movement plot from the shipMotion method. 

Other method implemented in the library and 

which can be applied in this case is the holtrop method. 

It can give a rough guess about the resistance the vessel 

would experience while cruising in a specific speed. 

Figure 15 shows the expected curve of resistance for the 

vessel for different Froude numbers (and consequently, 

different speeds), although it is possible to also obtain the 

resistance value for a specific speed. 

 

 

Table 2 - Conceptual design results – 

main parameters. 

 
 

 
Figure 14 - Vertical motion (m/m) as function of wave 

frequency. Combined movement from the pitch and 

heave at CoG. 

 

 
Figure 15 - Total resistance (kN) in function of Froude 

Number. 

 



 

 

The results obtained from the application of the 

tools library can be compared with the original vessel’s 

parameters. Table 3 presents these figures and also the 

deviance of the obtained values from the original design. 

Some parameters have no deviance at all, since they were 

set as required values, from which the design was built 

around. For the other main parameters, it is possible to 

verify cases where the deviation goes almost 10% up and 

almost 10% down.  

Luckily enough, the obtained values are all 

inside the required range of ± 10%. If the obtained results 

were not as close of the real vessel as these ones, it would 

not necessarily indicate a failed design. As long as none 

of the parameters make the design unfeasible for any 

reason, it can be considered as a new design solution. 

 
Table 3 - Comparison between case study and NAO 

Fighter parameters 

 

7. Concluding Remarks 

After applying the open source conceptual ship 

design tools library in a real design problem, I concluded 

that the tools library can be successful used to handle the 

conceptual design phase of a vessel. The quality of results 

is strongly connected to the designer’s knowledge about 

the vessel structure, subdivision and elements. The 

library also relays on an extensive database which is 

constructed using information from previous vessel. The 

quality of this database also has the potential to greatly 

impact the final concept, so it should be kept updated and 

organized in order to ensure the most trustable results. 

While doing the problem statement, I have 

defined 3 main resource questions to investigate through 

this study. Regarding the first research question, the use 

of OOP and the concept of classes to represent vessel’s 

systems and subsystems proved to be a very efficient way 

of handling the conceptual design knowledge. Having the 

vessel divided in subsystems and elements, which can be 

attributed to classes in a OOP language, works well to 

approach a complex design problem by dividing it in 

smaller and simpler problems, which can be solved 

individually.  

At the moment, the biggest drawn back of the 

tools library is that it applies the SyBSD theory directly, 

with does not provide a mechanism to consider the 

systems, subsystems and elements interdependencies and 

interfaces. In a product with such a complex structure as 

a vessel, neglecting this type of relation will, inevitably, 

lead to design problems, especially in the more advanced 

design stages. Since these effects are less relevant in the 

conceptual design phase, the tools library can be applied 

to the conceptual design but should not be applied, in its 

current development stage, to further design phases. 

When evaluating the second research question, 

I have noticed that the freedom and power provided by 

open source technology make the tools library 

possibilities almost endless. Since the tools library is 

developed in an OSS, it is free and, consequently, more 

accessible to end users, which can be constrained by high 

costs related to licensing fees of commercial software 

packages. Since the code is open, the tools library can be 

continuously improved by interested users. There is no 

limitation to its functionality, since when a limitation is 

found, it can be corrected or extinguished by the adding 

of new tools. 

One of the strongest point in the conceptual ship 

design tools library is its modularity. As presented in 

Chapter 5, the library in composed by several design 

tools organized under the Vessel object’s methods. As 

the need for different functionalities appears, new tools 

can be added to the library without the need to modify the 

functions that are already there. The new functions just 

need to be developed having in mind the Vessel object’s 

hierarchy and structure. New systems and subsystem 

structures can also be easily added by just updating the 

SyBSD Structure Database. The modular characteristic 

makes the tools library a very flexible and powerful ship 

design tool. 

The choice for JavaScript as an OSS was not 

aleatory. At first, it is a web-based programming 

language which is present in all the web browsers. It is 

easy and intuitive to code, which collaborates with its fast 

development and spread. Developing the library to be 

accessed via web browsers reduces the needs for client 

side software to a minimum, also reducing the 

computational requirements for the user’s hardware. 

When developed for web, the tools library became 

accessible for any operational system and device, which 

also contributes to increase the application reach. The 

web can also be used as a platform for cooperative 

development, where design teams can store, share and 

discuss the design task. Having a tools library which 

supports natively the internet as a platform makes the 

development of this collaborative design environment 

easier 

Finally, while investigating the third research 

question, the way I found to make the tools library the 

most generic as possible was by SyBSD theory to 

simplify as much as possible the systems, subsystems and 

elements definitions. Having design elements being 

represented by a handful set of parameters, considering 

only which is highly relevant, make these definitions as 

simple and generic as possible. That way, the same 

element structure can be reused for different elements, 

which also works very well with the OOP philosophy. 

When using a simplified definition for systems, 

subsystems and elements, the generic design tools library 

just need a well-structured knowledge base (more 

specifically the SyBSD Structure database) to handle the 

design task without any complication. 

Deviation

Length 84.20 m 83.40 m 1%

Beam 19.30 m 18.00 m 7%

Dead weight 2997 tonnes 3300 tonnes -9%

Draught (max) 6.53 m 6.00 m 9%

Speed (max) 15.85 kn 15.85 kn 0%

Accommodation 24 POB 24 POB 0%

Deck area 850 m2 850 m2 0%

NAO FIGHTERCase Study



 

 

7.1. Future Work 

The tools library is suitable enough for 

addressing the conceptual design phase, but lack support 

for further and more details stages of design. The 

capacity to store and handle data can be increased in 

order to make detail design a reality, especially 

considering the systems communication and interfaces, 

implementing a mix of SyBSD and Holistic design 

processes. This improvement in the library can be 

difficult to implement, since its whole structure is based 

on isolating systems, subsystems and elements, but 

definitely worth investigating in a further study. 

One of the greatest points of the OSS is its 

fantastic community, which can work together in 

direction of a common goal, by helping improving the 

original code, suggesting and implementing changes and 

new features, finding and correcting bugs and so on. In 

this work, this aspect of the OSS was not investigated and 

can be a field for future study in order to further 

investigate how the OSS technology can impact the ship 

design task. 

The library offers a great set of ship design 

functions, which can be further expanded, but miss a 

native support for a graphic user interface (GUI). Right 

now, a user need to hardcode a GUI and link it with the 

vessel object and its properties and methods. Having a 

GUI library which this integration already done and 

given the user the opportunity to customize it if he or she 

wants it, could make it more appealing for people which 

are not very experienced with JavaScript or with coding 

at all. 

REFERENCES 

ANDERSON, D. M. 1997. Agile product development for 

mass customization : how to develop and deliver 

products for mass customization, niche markets, JIT, 

build-to-order, and flexible manufacturing, Chicago, 

Irwin Professional Pub. 

BERNSTEIN, J. I. 1998. Design methods in the aerospace 

industry : looking for evidence of set-based 

practices. M s, Massachusetts Institute of 

Technology, Technology and Policy Program. 

BOOCH, G., RUMBAUGH, J. & JACOBSON, I. 1998. 

Unified Modeling Language User Guide, The, 

Addison Wesley  

COYNE, R. D. D., ROSENMAN, M. A., RADFORD, A. D., 

BALACHANDRAN, M. & GERO, J. S. 1989. 

Knowledge-Based Design Systems, Addison-Wesley 

Longman Publishing Co., Inc. 

CROCKFORD, D. 2008. JavaScript: The Good Parts, " 

O'Reilly Media, Inc.". 

DIEROLF, D. A. & RICHTER, K. J. 1989. Computer-Aided 

Group Problem Solving for Unified Life Cycle 

Engineering (ULCE). Alexandria: Institute for 

Defense Analyses. 

ERIKSTAD, S. O. 1996. A decision support model for 

preliminary ship design. PhD Thesis, NTNU. 

ERIKSTAD, S. O. & LEVANDER, K. System Based Design 

of offshore support vessels.  Proceedings 11th 

International Marine Design Conference—

IMDC201, 2012. 

FLANAGAN, D. 2011. JavaScript: The definitive guide, " 

O'Reilly Media, Inc.". 

GASPAR, H. M. 2013. Handling Aspects of Complexity in 

Conceptual Ship Design. PhD Thesis, NTNU. 

GASPAR, H. M., RHODES, D., ROSS, A. & ERIKSTAD, S. 

O. 2012. Handling complexity aspects in conceptual 

ship design. International Maritime Design 

Conference. Glasgow, UK. 

GERO, J. S. & ROSENMAN, M. A. 1990. A conceptual 

framework for knowledge-based design research at 

Sydney University's design computing unit. 

Artificial Intelligence in Engineering, 5, 65-77. 

HUBKA, V. & EDER, W. 1988. Theory of Technical Systems, 

New York, Spring. 

KALYANARAM, G. & KRISHNAN, V. 1997. Deliberate 

Product Definition: Customizing the Product 

Definition Process. Journal of Marketing Research, 

34, 276. 

KRISHNAN, V., EPPINGER, S. D. & WHITNEY, D. E. 

1991. Towards a cooperative design methodology : 

analysis of sequential decision strategies, 

Cambridge, Mass., Sloan School of Management, 

Massachusetts Institute of Technology. 

KUEI, C. 1999. Categories of Free and Non-Free Software in 

Open Sources. In: DIBONA, C., OCKMAN, S. & 

STONE, M. (eds.) Open sources : voices from the 

open source revolution. 1st ed. Beijing ; Sebastopol: 

O'Reilly. 

LEVANDER, K. 1991. System-based passenger ship design. 

4th Int. Marine Systems Design Conference 

(IMSDC’91). Kobe. 

LEVANDER, K. 2012. System Based Ship Design 

Kompendium. 

SIMON, E. 1996. Innovation and intellectual property 

protection: the software industry perspective. The 

Columbia Journal of World Business, 31, 30-37. 

STALLMAN, R. 1999. The GNU Operating System and the 

Free Software Movement. In: DIBONA, C., 

OCKMAN, S. & STONE, M. (eds.) Open sources : 

voices from the open source revolution. 1st ed. 

Beijing ; Sebastopol: O'Reilly. 

STEFANOV, S. 2010. JavaScript Patterns, O'Reilly Media. 

ULSTEIN. 2016. NAO Fighter [Online]. Available: 

http://ulstein.com/references/blue-fighter [Accessed 

1 June 2016]. 

URKE, T. 1976. SFI GROUP SYSTEM - A CODING 

SYSTEM FOR SHIP INFORMATION. 

UTNE, I. B. 2009. Life cycle cost (LCC) as a tool for 

improving sustainability in the Norwegian fishing 

fleet. Journal of Cleaner Production, 17, 335-344. 

VESTBØSTAD, Ø. 2011. System Based Ship Design for 

Offshore Vessels. Institutt for industriell økonomi 

og teknologiledelse. 

VON HIPPEL, E. & VON KROGH, G. 2003. Open Source 

Software and the “Private-Collective” Innovation 

Model: Issues for Organization Science. 

Organization Science, 14, 209-223. 

WARD, A., LIKER, J. K., CRISTIANO, J. J. & SOBEK, D. 

K. I. 1995. The second Toyota paradox: How 

delaying decisions can make better cars faster. Long 

Range Planning, 28, 129. 

ZAKAS, N. C. 2009. Professional javascript for web 

developers, John Wiley & Sons. 

 

http://ulstein.com/references/blue-fighter

	Cover Page
	Monteiro - Thesis Final Version - 02MAR16 - Prepared for Cover Page
	Scientific Paper Draft - An Open Source Approach For A Conceptual Ship Design Tools Library

