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Abstract

Reservoir computing (RC), a relatively new approach to machine learning, utilizes un-
trained recurrent neural networks as a reservoir of dynamics to pre-process some temporal
task, making it separable with a linear readout layer. Potentially any sparsely connected
network containing feedback loops can be a reservoir. One such network is the random
Boolean network (RBN), which has previously been used in a reservoir computing setting.

Reservoir computing can be performed with physical or simulated reservoirs. When
using a physical reservoir for computation, as in evolution-in-materio, one is often re-
stricted in how one can perturb and read out the underlying substrate. In this thesis, the
following properties of RBN RC devices are investigated and related to physical reser-
voirs: How task difficulty affects required reservoir size, how much reservoir perturbation
is optimal, the performance of reservoir subsets, and the relationship between an RBNs
attractors and its performance as a reservoir.

Experiments confirm that the required reservoir size increases with the difficulty of the
task at hand, with the largest factor being how many bits of input the reservoir is required to
remember. Simulation of RBN RC systems can therefore aid in deciding the optimal size
of physical reservoirs, given a bridge between the computational power of the reservoir
and RBNs can be deduced. Optimal reservoir perturbation is found to lie at roughly 50%
of the size of the reservoir for RBNs with K = 3. When using smaller slices of a reservoir
for computation, lower amounts of total perturbation will be required as long as these
perturbations are located within the same topological area. Results also show that subsets
of larger reservoirs will perform at least as well as a separate reservoir of equal size. Any
interference from the unused parts of the reservoir is either minimal or slightly positive.
Finally, no relationship is found between the attractors of a RBN and its performance in
a RBN RC system. It can therefore not be used for guiding the construction of accurate
RBNE.
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Sammendrag

Reservoir computing (RC) er en relativt ny teknikk innen maskinlering. Et utrent rekurrent
nevralt nettverk benyttes som et reservoar fyllt av dynamikk for & preprossesere et tem-
porert problem, og dermed gjgre det separerbart med et line@rt avlesingslag. Alle glissne
nettverk med tilbakekoblinger kan potensielt benyttes som et reservoar. Et slikt nettverk
det tilfeldige Boolske nettverket (RBN), som tidligere har blitt brukt i RC-systemer.

Reservoir computing kan benytte bade fysiske og simulerte reservoar. Nar et fysisk
reservoar brukes for beregning, som i evolution-in-materio, har man ofte begrenset adgang
til & pavirke samt lese ut verdier fra materialet. I denne avhandlingen vil felgende egen-
skaper ved RBN RC-systemer bli undersgkt og relatert til fysiske reservoarer: Hvordan
kompleksiteten til oppgaven pavirker stgrrelsen pa reservoaret, hvor mye pavirkning som
er optimalt, hva ytelsen pa subsett av stgrre rerservoarer er, og hva forbindelsen mellom et
RBN:Gs tiltrekkere og dets ytelse som reservoar er.

Vare eksperimenter bekrefter at den ngdvendige stgrrelsen pa reservoaret gker i takt
med vanskelighetsgraden pa oppgaven som skal lgses. Den stgrste faktoren er hvor mange
bits med input som ma huskes. Simuleringer av RBN RC-systemer kan derfor hjelpe i a
avgjore den optimale stgrrelsen pa et fysisk reservoar, gitt man finner en bro mellom malet
for beregningskraft pa det simulerte og fysiske reservoaret. Optimal reservoarpavirkning
er funnet til & ligge pa rundt 50% av stgrrelsen pa reservoaret (for RBN med konnektivitet
3). Nér man bruker et subsett av et reservoar for beregning sé trengs det mindre mengder
med pavirkning, gitt at pavirkingen skjer i samme del av reservoaret som leses av. Vare
resultater viser ogsa at subsett av stgrre reservoar yter like bra som separate reservoar av
den stgrrelsen. En eventuell interferens mellom den ubrukte delen av reservoaret og den
brukte er enten neglisjerbar eller svakt positiv. Det viste seg ingen sammenheng mellom
tiltrekkerne til et RBN og dets ytelse i et RBN RC-system. Dette kan dermed ikke brukes
for & guide konstruksjonen av ngyaktige RBN.
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CHAPTER

1
INTRODUCTION

Reservoir computing (RC) is a category of machine learning that sprang out from the study
of recurrent neural networks (RNNs). It utilizes untrained recurrent neural networks as a
reservoir of dynamics to preprocess a time series problem, transforming it from a temporal
to a spacial one in the reservoir, making it separable with a simple readout layer [17].

Reservoir computing can be used both with physical or simulated reservoirs. The
original Echo State Networks [13] and Liquid State Machines [21] provided the basis
for reservoir computing. As alternative abstractions to RNNs, both cellular automata (CA)
[30] and random Boolean networks [27] were introduced and successfully used in reservoir
computing frameworks. Random Boolean networks (RBNs) [10] are an useful abstraction
over many physical phenomena, most famously used by Kauffman [15] as a model for
the genetic regulatory network. RBNs used in reservoir computing systems are known as
RBN RC systems. In the author’s pre-thesis paper [3], findings about RBN RC systems
from [27] were reproduced and the reusability of trained readout layers investigated. A
neutrality in the state-space of possible RBNs was discovered.

Physical reservoirs take many shapes and forms. In the frequently cited "Pattern recog-
nition in a bucket’ paper [9], the authors use a bucket of water to successfully perform
speech recognition. In [8], a carbon nanotube based substrate is successfully used to evolve
binary logic gates as well as stable cellular automata. These can then be used to build a
CA-based computing paradigm over this unconventional hardware. As cellular automata
are a special case of random Boolean networks, any general findings about RBN RC sys-
tems may be applicable to RC systems using CAs. The wider category of attempting to
harness the power of unconventional physical devices for computation, usually aided by
artificial evolution, is known as evolution-in-materio [20].

When using nontraditional physical devices for computation, as in evolution-in-materio,
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one is often restricted in how one can perturb and read out the underlying substrate. It
might be prohibitively expensive or technologically infeasible to read the entire state of
the reservoir. In [4] the authors use living rat neurons in a microelectrode array to control
an airplane in a flight simulator. Only subsets of the computational substrate are used,
and the neuronal connections even change over time. In addition, the microelectrode array
presents a limited resolution view of the computational substrate. Questions include how
the unused parts of the reservoir impact the parts used for computation, and how large the
reservoir actually needs to be to solve the task at hand.

It has been shown that reservoir computing using random Boolean networks is a feasi-
ble approach to solving binary time-series problems, as well as being a potentially useful
abstraction over physical reservoir computing devices. In this thesis, the properties of
these RBN RC systems are further investigated, with the motivation of using the results as
a template for instrumenting and performing computations on physical reservoir comput-
ing systems.

The following research questions will be answered in this thesis:

1. How small can a RBN RC system be while still solving its task at > 98% accuracy?
2. Does the optimal amount of reservoir perturbation depend on the task at hand?
3. Does one have to read the state of the entire reservoir to maintain task accuracy?

4. Is there a correlation between the topological characteristics of the RBN (it’s number
of attractors and their lengths) and its performance as a reservoir?

Questions two and three are of specific interest to the implementation of physical reser-
voirs and evolution-in-materio devices. What these approaches have in common is that
physical substrates, with varying degrees of perturbation ability and insight into the in-
ternal state, are used for computation. Their couplings to theoretical frameworks such
as reservoir computing motivate the exploration of the effects of limited perturbation and
readout possibilities on reservoir performance.

1.1 Thesis Structure

The thesis is structured as follows: Chapter 2 provides background information on reser-
voir computing, random Boolean networks, evolution-in-materio, and using RBNs for
reservoir computing. Chapter 3 describes the experimental setup and methodology used
for performing experiments. Chapter 4 contains an in-depth descriptions of each experi-
ment, the results obtained, and a discussion. Chapter 5 concludes the thesis and mentions
further work.




CHAPTER

2
BACKGROUND

2.1 A Brief Introduction to Reservoir Computing

Recurrent Neural Networks (RNNs), as opposed to feed-forward neural networks, are no-
toriously time consuming and difficult to train [25]. This is due to feedback from the
recurrent connections during the training process, allowing small topology changes to
drastically change a network’s position in the fitness landscape.

It was therefore proposed in both [13] as Echo State Networks (ESNs) and [21] as
Liquid State Machines (LSMs) to separate the RNN into two parts, the untrained recurrent
reservoir, and the trained readout layer. The LSM and ESN methods have been unified into
the field of Reservoir Computing, now focusing on the separate training and evolution of
the recurrent and readout parts [17]. Exiting applications of Reservoir Computing include
speech and handwriting recognition, as well as controlling robotics [17].

A generalized model of a Reservoir Computing system is shown in figure 2.1. The
main components are the reservoir and the readout layer. At each time step in the core
model, the reservoir receives the current input signal as well as its previous state. The
reservoir transforms the input, and passes it on to the readout layer. The readout layer
frequently receives the input signal as well. The internal weights of the reservoir are
usually randomized and left untrained, with the weights of the readout layer being adjusted
by some learning algorithm. This can be linear or ridge regression for offline learning, or
recursive least squares for online learning [25].

There are many extensions to the base model. The reservoir and readout layers can
receive a constant bias: The readout’s bias is used for regularizing the reservoir state in
case the problem is ill-posed. This isn’t needed when using a model like ridge regression,
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Figure 2.1: Schematic of a general Reservoir Computing system containing adjustable biases, feed-
back loops, reservoir and readout layers, which are described in section 2.1. Inspired by figures from
[25] and [12].

which performs regularization internally [25]. The reservoir’s bias is used for stabilizing
models which feeds the readout layer back into the reservoir, which may be needed if
the problem entails producing oscillating output [12]. Teacher forcing, that is forcing the
states of the readout layer to those expected by the trainer for the first n time steps, usually
speed up the convergence of the learning method used, and may in some cases be required
to at all achieve stability [14].

For a deeper dive into Reservoir Computing, consult papers [25], [17], and [12].

2.2 Alternatives to Traditional Reservoirs

Any complex dynamical system can in principle be used in a reservoir computing setting.
What properties must these reservoirs have to be able to solve problems?

Complex networks similar to the sparsely connected ones used in ESN and LSM sys-
tems include cellular automata [29] and random Boolean networks [15]. Cellular automata
are regular grids of cells containing some state, each cell connected to its neighbors in the
grid. Cells then update in lockstep according to some shared transition table, creating a
new generation. RBNs can be seen upon as an abstraction over CAs again, allowing for
nonlocal neighbors and variable updating rules. This computational paradigm is known as
Cellular Computing, and provides a potentially powerful alternative to classical comput-
ers, leveraging extreme parallelism, simple components and local state [26].

Both CAs and RBNs have successfully been used in reservoir computing systems [30]
[27]. The RBN reservoir computing approach will be referred to as RBN RC. Both models
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Figure 2.2: An example homogeneous RBN with N = 3, K =2, P = 0.5.

are simple, and can be implemented in software, hardware such as FPGAs, and in materio
[20] [8].

2.3 A Brief Introduction to Boolean Networks

Random Boolean networks were originally developed as a model of gene regulatory net-
works [15], the complex system that regulates how genes in multicellular organisms inter-
act with each other. The model requires no assumptions about the inner workings of the
actual nodes, which allows it to model phenomena where the exact internal workings of
the system may be unknown.

The simplification of a system to a Boolean model doesn’t pose a problem, as any
multivalued network can be transformed to a corresponding binary one.

A RBN is usually described by its number of nodes N and the in-degree K of the
nodes, that is, how many nodes each node depends on (also known as its ancestors). RBNs
can have both homogeneous and heterogeneous in-degrees. In heterogeneous networks,
one usually describes the average connectivity (K) instead.

Each node can have a state of zero or one. The next state of the node is solely deter-
mined by the current combination of states of its ancestors. Each combination leads to a
new state of zero or one, with the probability given by a binomial distribution usually hav-
ing (P) = 0.5. Figure 2.2 visualizes a homogeneous RBN with N = 3, K = 2, P = 0.5.

In the simplest RBN updating scheme, all nodes update in lockstep. This is known as
the Classical RBN updating scheme (CRBN). The states of the RBN at the next time step
t + 1 therefore only depend on the states at the previous time step t. As the number of
RBN states is finite (27-"°%¢*), the system will eventually revisit a previously visited state.
This set of repeating states is known as an attractor, and a deterministic system cannot
escape from it. If the attractor consists of a single state it is known as a point attractor,
otherwise a cycle attractor. The set of states leading towards an attractor is known as its
basin of attraction. A cycle attractor can be observed in figure 2.3b, while a point attractor
is observed in figure 2.3a.

A criticism of the classical model is that gene regulation networks are updating contin-
uously, as opposed to in lockstep [10]. There are therefore a number of alternate updating
schemes which can be categorized by whether they are deterministic or nondeterministic,
as well as synchronous and asynchronous.
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(a) Ordered phase, K=1(b) Critical phase, K=2(c) Chaotic phase, K=3

Figure 2.3: Trajectories through state-space for RBNs with N = 30, K = [1, 2, 3], visualizing the
different phases. Time flows downwards the lattice, while RBN states are shown along the X-axis.
with the network states plotted horizontally, and time flowing downwards. Images created with the
developed RBN-simulator.

The dynamics of a RBN can be categorized as being in either the ordered, critical, or
chaotic phase. These phases can be identified by how large a part of the network state is
able to change over time, whether similar states tend to converge or diverge over time, and
the networks resistance to perturbations (outside changes to the network).

One way to obtain these phases analytically is by comparing the resulting states of two
identical RBNs where one is subject to some perturbation [10]. For visual identification,
we plot the states of the RBN in a square lattice, with the network states plotted horizon-
tally, and time flowing downwards. A node is drawn as white if its state is one, black
otherwise. The phases are visualized in figure 2.3.

In general, RBNs in the critical phase are the most interesting. These are seemingly
able to support information transmission, storage and modification, all capacities required
for computation [16]. Critical systems are found on the edge of chaos, on the phase tran-
sition between ordered and chaotic networks [10]. For RBNs with (p) = 0.5, critical
dynamics are usually found at (K) = 2 [10], although one could still find networks with
such dynamics for different values of (K).

A thorough introduction to the field of RBNs is available in [10].




Reservoir
Input layer Readout layer

&

Figure 2.4: An example RBN RC system with I = 1,IC' = 2, K = 2, N = 6 with the entire
reservoir sate used for regression. The reservoir transforms the problem from a temporal one to a
multidimensional spatial one. The readout layer the performs some kind of learning on the reservoir
states against the expected output for the current task.

2.4 RBN Reservoir Computing Systems

How does one adapt a RBN for use as a reservoir in a RBN RC device? RBNs aren’t
usually designed to take external input. We do however, have the concept of perturbation,
the external flipping of bits in the network’s state, transition tables or edges. This can be
utilized to create RBNs that take input, by continuously perturbing the RBN nodes by the
bits of the input sequence.

Questions that follow are how many bits should the network consume at a time, how
many of the network nodes should be perturbed by the input at each time step, and what
dynamics must such a reservoir have to allow for the computation of interesting problems?

24.1 A Working System

In [27] functioning RBN RC systems are created and analyzed. These RBN RC systems
have heterogeneous connectivity, consume one bit of input at each time step (I = 1), per-
turbing /C of the N nodes in the process. The readout layer can be any node performing
some kind of regression of the reservoir state against expected output for the current task,
e.g. linear regression. Such a setup is shown in figure 2.4.

2.4.2 Tasks

To measure the real-life performance and accuracy of the RBN RC system, two tasks are
introduced: Temporal density and temporal parity [27]. Both require the reservoir to be
able to retain information for a sliding window of size n, offset by some value ¢, back
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(a) Input
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Figure 2.5: The first 30 elements of a temporal parity task with [n = 3,¢ = 0]. A one is visualized
as white, while a zero is black. We see that correct output at time ¢ is equal to there being an odd
number of 1s in inputs [¢,7 — 1,7 — 2]

through the input stream. The temporal parity task requires us to determine if there were
an odd number of ones in the sliding window, the temporal density task to determine
whether there were a majority of ones. The Former is visualized in figure 2.5.

Both tasks will be used to benchmark the reservoirs created later in this paper.

2.4.3 Computational Capability

For a RBN-reservoir to perform well at computational tasks, it must be able to both forget
past perturbations and keep two input streams that have begun converging separated [2].

These two properties are coined fading memory and separation property, and can be
measured [27] as follows.

Create two equal input streams #1 and #2 of length T'. If measuring fading memory,
flip the first bit in stream #2. If measuring separation property, flip all bits up to bit 7' —¢ in
stream #2 (¢ being the required depth of separation). For both input streams, reset reservoir
state, perturb the reservoir with the input stream, and store the final state. The score of the
measure is then defined as the normalized hamming distance between the resulting states.
The computational capability A of a RBN-reservoir is then defined as

A1y = separation_propertyr; — fading_-memoryr 2.1

Analyzing different RBN-reservoirs with this metric [27], a high A is found to correlate
with critical connectivity ((K') = 2). For all RBN-reservoirs, A drops when increasing
the required separation ¢, and is maximized when one doesn’t have to remember anything
atall (¢t = 0).

2.4.4 Optimal Perturbation

It is found that the optimal amount of reservoir perturbation, adjustable by the number
of connections between the input layer and the reservoir, depends on both the task size,
how many steps in time are required to be remembered, and the dynamics of the reservoir.
Chaotic reservoirs require few input connections to be able to properly spread informa-
tion, but perform poorly on larger tasks due to past perturbations still floating around the
reservoir. Ordered reservoirs quickly forget past perturbations, allowing some success for




larger tasks, but their inability to remember past perturbations renders them useless for
many tasks. Critical reservoirs require connectivity somewhere in the middle. Able to
forget as well as remember, they perform accurately independent of task size.

2.5 Evolution in Materio and Physical Reservoirs

The field of evolution-in-materio [20] concerns the harnessing of unconventional and com-
plex physical materials, using them to perform computation. The process is usually aided
by Artificial Evolution for finding reasonable input-substrate-output mappings. The differ-
ence from classical computation is that the computation is moved from an abstraction over
the hardware (e.g. a modern CPU), and into the material itself. This material can be any-
thing from grown dendritic iron wires which discriminate sound [22] to carbon nanotubes
used for evolving CA rules [8]. Success within this field may result in more efficient use
of materials, and higher computational densities.

In [4], living rat neurons are put in a microelectrode array (MEA) and successfully
used to control an airplane in a flight simulator. Two of sixty electrodes were chosen to
control the pitch and roll of the airplane. The internal *weights’ of the rat brain were
trained by administering a series of electrical impulses to the same electrodes which then
increase or decrease the action potential of the region, correcting behavior. The internal
state of the system is unknown, with the MEA only exposing a limited resolution subset
of the entire system state (around 60 electrodes).

In [8], the computational power of carbon nanotubes, instrumented in a microelectrode
array, is used to evolve the state transition functions of all elementary Cellular Automata.
Artificial Evolution is used to find the correct translation of input/output values to their
respective electrodes. The internal state of the carbon nanotubes are again completely
opaque to the higher computational layers. In addition, the number of electrodes present a
limited resolution view of the substrate.

In the ever-so-cited "Pattern recognition in a bucket’ paper [9], the Liquid State Ma-
chine metaphor is taken literally and a bucket of water is used as a physical reservoir. The
bucket of water receives input via rotors mounted on the edge of the bucket. Input is then
transformed from a temporal into a spatial, with a great deal of nonlinearity introduced by
the bucket. Finally, the reservoir state is read out by taking pictures of the wave-patterns,
using a simple perceptron to classify the resulting state. This setup correctly separates the
xor problem as well as being able to classify the words *one’ and ’zero’ when yelled into
the bucket.

What these approaches have in common is that physical substrates, with varying de-
grees of perturbation ability and insight into the internal state, are used for computation.
Their couplings to theoretical frameworks such as Reservoir Computing motivate the ex-
ploration of the effects of limited perturbation and readout possibilities on reservoir per-
formance.




2.6 Validating RBNs for Reservoir Computing

In the authors pre-thesis paper [3], the dynamics, performance, and viability of RBN RC
systems was investigated. A functioning RBN RC system was implemented, and its results
validated against and found in accordance with those from [27]. The simulation software
from the pre-thesis work has been greatly extended for use in this thesis.

A positive correlation between the computational capability (section 2.4.3) of a reser-
voir and its actual performance is found. The optimal connectivity for homogeneous reser-
voirs is found to be K = 3 as opposed to (K) = 2 for heterogeneous reservoirs [27]. Fi-
nally, the required input connectivity is found to rise with the presence of chaotic dynamics
in the reservoir. The figures backing this conclusion are shown in 2.7 and 2.8.

Finally, a one-to-many mapping between the readout layer of an already-trained RBN
RC system and different RBN RC is found, with there being a seemingly large set of inter-
changeable reservoirs for each readout layer. This neutrality in the space of possible RBNs
make the potential use of a smaller generative genome for evolving RBN RC systems inter-
esting. Even though such a genome will hit fewer points in the RBN fitness landscape than
a fixed genome, a large amount of these points will still be usable for each instance of a
working readout layer. There doesn’t seem to be a tight correlation between the properties
of the RBN from the original RBN RC system, and the equivalent RBNs found through ar-
tificial evolution. In fact, the computational capabilities of figure 2.6a and the connectivity
distributions of figure 2.6b seem much more representative of the general RBN population,
as shown in figure 2.7c. This indicates that while there are many compatible reservoirs for
a given readout layer, the distribution of these compatible reservoirs are likely the same as
the distribution of reservoirs with the same connectivity in general.

The parameters for the temporal parity task used for all experiments is shown in table
1 of appendix A.

0.05—@—{ e o o ol sl % |

1 1 1
0 0.05 0.1 0.15 30 40 50 60 70

Computational Capability Input Connectivity
(a) Evolved RBN input connectivity (b) Evolved RBN Computational Capability

Figure 2.6: Computational Capability and Input Connectivity distributions for RBNs evolved from
a fixed readout layer. The Y-axis shows the CC and IC values for the readout layers original RBN.
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Figure 2.7: Plots for temporal parity 3. The left column shows the accuracies of the sampled
RBNss against their input connectivity for K=1-3 respectively. The figures in the right column plot
the accuracies of the figures to the left against their computational capabilities calculated for 7' =
100,t = 3.
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100,t = 3. Note that the accuracies are much lower in general, with only K = 3 performing
adequately.
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CHAPTER

3
METHODOLOGY

A series of experiments will be performed to investigate the following research questions.
They will shed some light on attributes of RBN RC systems that might be relevant to the
creation and instrumentation of physical reservoirs.

1.

2.

3.1

How small can a RBN RC system be while still solving its task at > 98% accuracy?

Does the optimal amount of reservoir perturbation depend on the task at hand?

. Does one have to read the state of the entire reservoir to maintain task accuracy?

Is there a correlation between the topological characteristics of the RBN (it’s number
of attractors, attractor length) and its performance as a reservoir?

Experimental Setup

The experimental setup used in this thesis is a further developed version of the RBN RC
system used in [3]. It has been extended too support variable output connectivity as well
as input connectivity, and is visualized in figure 3.1. The software is written in the Python
programming language, and is available online on GitHub [18]. It contains a fully func-
tioning RBN RC system, the classification tasks from section 2.4.2, RBN analytics tools,
and a set of procedures for generating distribution statistics from experiment templates.
The RBN RC system’s readout layer uses scikit-learn’s lightweight ridge regression layer
[23]. Statistical and numerical operations are supplied by the NumPy library [28].
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Figure 3.1: Illustration of the RBN RC system used in this thesis. RBN RC parameters are Input
Nodes = 1, Input Connectivity IC = 2, Output Connectivity OC = 3, Number of nodes N = 6. The
Input Connectivity and Output Connectivity is adjustable, and is shown with a shaded background.

3.1.1 RBN Parameters and Sample Sizes

As the number of different RBNs per N-K combination is oppressively large (%)N
[10], the reservoir size, input, and output connectivity experiments will sample 50 RBNs
for each experiment parameter combination. This sample size was regarded adequate as
a sample size of 30 was shown to give satisfactory results for similar experiments in the
pre-thesis work [3].

For the attractor analysis, the number of samples is increased to 500 per experiment
parameter combination. This larger value is chosen as the other experiments have at least
10 parameter combinations, resulting in at least 500 samples.

Note that all our RBNs are of homogeneous connectivity, opposed to the heteroge-
neous connectivity used in [27]. This changes the optimal RBN connectivity for reservoir
computing from (K) = 2 to K = 3, as shown in section 2.6.

The RBN parameters shared for all experiments are shown in table 3.1.

Table 3.1: Common RBN parameters

Parameter Configuration

Connectivity K 3
Bias p 0.5
Operation mode CRBN (Classical synchronous RBN)
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Figure 3.2: The same RBN (N = 100, K = 2,P = 0.5,IC = 50) shown both perturbed
and unperturbed. The Boolean states of the RBN are plotted along the X-axis, with time flowing
downwards.

3.1.2 Testing

To verify that RBN simulation is working, a RBN is created randomly, initial state set
to all zeros, and ran. The results are visualized in Figure 3.2a. We see that the RBN
exhibits stable dynamics, and enters into an attractor around ¢ = 15. In Figure 3.2b
we continuously perturb the RBN with the input stream from the temporal parity task
visualized in Figure 2.5. In the perturbed case, the state trajectory is continuously changed,
preventing the RBN from settling into an attractor. Interestingly enough, there seems to be
a visual similarity between the two cases. Such a pattern is sure to disappear with a RBN
in the chaotic phase.

This erratic pattern of state transitions is then fed into the readout layer, which is then
tasked with finding a linear combination of the RBN states that results in the expected
output for the given task.

3.1.3 Training

To train the RBN RC system we require large training datasets, as well as different, smaller
datasets for testing the trained system. We will use the datasets described in section 2.4.

We then either create a new RBN (initialize it randomly), or load a previously created
RBN from disk. For each bit of input in each dataset, we perturb the input-connected
nodes in the RBN. After each perturbation, the RBN is ran synchronously (CRBN mode)
for one time step. The resulting RBN states are collected, and after the entire dataset is
processed, forwarded to the readout layer.
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To find a suitable mapping from the set of reservoir states and the correct input clas-
sification, ridge regression [11] is used. This version of least squares regression is more
accurate when faced with input collinearity, as well as always being at least as accurate as
ordinary least squares. This process is repeated for all the datasets, and the final regression
parameters are chosen as a combination of the parameters obtained for each individual
dataset. Finally we measure the normalized accuracy of the trained reservoir on the test
dataset, defined as the following:

sum(actual _output # expected_output)

Accuracy =1 — (3.1)

len(correct_output)

3.1.4 Computing the Attractors of a RBN

The number and length of attractors can vary greatly across different RBNs, but is largely
determined by the connectivity of the system [10]. There are a number of ways to estimate
the number of attractors and their properties of a specific RBN. They generally fall some-
where on the spectrum between exact enumeration (exhaustively searching for attractors
from all initial states) and numerical sampling (searching from a subset only). Numerical
sampling is biased for K # 2 [1], and cannot be used for our X = 3 RBNs. A brute-force
exhaustive search quickly becomes infeasible, as the number of RBN states is exponential
in the number of nodes.

The authors home-cooked exhaustive searcher times out for RBNs with more than 15
nodes. A SAT-Based algorithm for finding attractors in CRBNs, which was introduced in
[7], is therefore used. It allows for an increase from 15 to 26 nodes, which should aid in
finding more meaningful results. Its source code is available online at [6].
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CHAPTER

4
EXPERIMENTS

4.1 Minimum Required Reservoir Size and Optimal In-
put Connectivity

4.1.1 Description

Section 2.6 and [3] show that almost all RBN RC systems with N = 100, K = {2,3}
are able to solve the temporal parity 3 task. For temporal parity 5, reservoirs with N =
100, K = 3 are barely able to solve the task, with their X' = {1, 2} brethren being unable
to classify the task correctly.

To find the minimum required reservoir size, as well as how it changes with the tem-
poral memory requirements and complexity of the task at hand, we create a number of
reservoirs with parameters from 4.2. The four tasks used to benchmark the generated
reservoirs are temporal parity 3 and 5 (the number being the window size), as well as
temporal density 3 and 5. These will sometimes be referred to as TP3, TPS, TD3, and
TDS.

As the temporal density task is computationally less expensive than temporal parity
[27], one can expect a smaller required reservoir size than for temporal parity. In addition,
there should be a ’significant’ bump in required reservoir size for larger task windows, as
observed in section 2.6 and [3]. The expected relationship between the difficulties of the
four tasks therefore becomes 17°'D3 <TP3 <TD5 < TP5.

To find which input connectivity gives the greatest population accuracy, one iterates
over all input connectivities, generating accuracy distributions for each one. In section
2.6, the optimal input connectivity is empirically observed to lie around 0.5 - n_nodes .
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Table 4.1: Task parameters. The tasks are explained in detail in chapter 2.4.2

Parameter Configuration

Task type Temporal parity and temporal density
Training dataset length 4 000

Test dataset length 200

N (window size) 3and 5

t (offset) 0

Table 4.2: Reservoir parameters for optimal input connectivity

Parameter Configuration

Nodes 10 to (100, 140) for TP, 5 to (35, 65) for TD
Node step size 10 for TP, 5 for TD

Connectivity 3

Input connectivity [0..n_nodes], step size =5
Output connectivity n_nodes
Sample size 50

The chaotic reservoirs with K = 3 have a slight skew to the right of 0.5. In addition,
the temporal density task might have different input connectivity requirements than the
temporal parity task.

The resulting accuracy distributions will be plotted as box plots (as in section 2.6).
This should allow for visual identification of the minimum required reservoir sizes, as
well as the optimal input connectivities.

4.1.2 Results

We define a "Task accuracy threshold’ as the smallest reservoir size where at least two
reservoirs have the required accuracy on the task. These are presented in figure 4.1 and
table 4.3. The 90% accuracy threshold is also included in table 4.3 as it appears quite a bit
earlier than the 98% threshold for tasks with a window size of 5.

Table 4.3: Accuracy thresholds for all four tasks.

TP3 TP5 TD3 TDS5S
90% accuracy threshold 15 70 5 30
98% accuracy threshold 20 90 10 55

The number of input connectivity plots resulting from the reservoir (table 4.2) and
task parameter (table 4.1) combinations is quite large. Therefore only reservoir sizes of
N = [10...30, 80...100] from the accuracy distributions on the temporal parity 3 task is
shown here (figure 4.2). There is a slight skew to each side of 0.5 - n ,0des dependent
on whether the task chosen is temporal parity or temporal density. This is observable in
figure 4.2 for TP3 and appendix B figures 1 through 7 for the remaining tasks.
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Figure 4.1: Accuracy plots for the required reservoir sizes to reach the 98% accuracy threshold for
each of the four tasks: TP3 (Figure 4.1a), TPS (Figure 4.1b), TD3 (Figure 4.1c) and TDS5 (Figure
4.1d). The x-axis for all plots has been normalized to the largest reservoir size, N = 90.

We confirm this skew by calculating the optimal input connectivity for each task as
follows:

task task

n_nodes

optimal ic***" = average(maz_accuracy_ic /n_nodes) 4.1

. task . .. . . .
where max_accuracy_ic,'37 ;.. is the connectivity which gives the highest number of

high-accuracy reservoirs for that task and reservoir size. The results are presented in table

4.4, with the chosen values of maz_accuracy-ict®* , presented in table 2 in appendix
B.
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Table 4.4: Optimal input connectivities as fraction of reservoir size.

T=3 T=5
Temporal parity  0.528  0.489
Temporal density 0.439  0.443

4.1.3 Discussion
Required Reservoir Size

The suspected ordering of the task difficulties, T'D3 < TP3 < T'D5 < TP5, is con-
firmed in figure 4.1 and table 4.3. A reservoir of size 20 is large enough to correctly predict
TP3, quite a bit lower than the 100 nodes used in section 2.6 (figure 2.7¢). A reservoir of
size 90 appears sufficient for TP5, rather close to the 100 nodes used in used in section
2.6 (figure 2.8e). The entire accuracy distribution doesn’t increase significantly until 120
nodes, as seen in figure 4 in the appendix. A tiny reservoir of size 10 is sufficient for TD3,
with a reservoir of size 5 achieving 90% accuracy! There is a corresponding ramp-up in
required reservoir size to 55 to achieve 98% accuracy on TDS.

For the same window size, temporal parity requires a larger reservoir than temporal
density, and the additional computational requirements of remembering five time steps
into the past requires a significant ramp-up in reservoir size. The memory capacity of an
Echo State Network trained on Independent and identically distributed data (as both our
tasks are) is bounded by the size of the reservoir [12]. A randomly generated reservoir
is statistically unlikely to be able to attain this bound, as additional constraints on the
reservoir topology are required [12]. One such specially crafted RBN RC system is the
one consisting solely of nodes passing their states forward to the next node each time step,
only the first node being perturbed and all nodes read out. The memory bound for the
RBN RC systems used here seem lower than their computationally more powerful ESN
forefathers, which is corroborated by the significant increase in required reservoir size for
tasks with window size 5. This isn’t that surprising as the RBN RC system is a much
simpler model of computation than the connected sigmoid nodes of the ESN RC system.

When using Reservoir Computing as an abstraction over a physical device (e.g. an
evolution-in-materio device), empirical results from simulation can be used to aid in the
suggestion of the required physical reservoir size. One would need a way to roughly
quantify the computational power contained in the simulated RBN as well as that of the
computational substrate, so that one can convert the results to meaningful physical sizes.
This is the case for systems such as the cellular automata implemented in carbon nanotubes
[8], as cellular automata are a special case of RBNs.

Optimal Input Connectivity

Temporal density had an optimal input connectivity of roughly 0.44, while temporal parity
lay around roughly 0.50 (table 4.4). These values differed relatively little across tasks. This
is to be expected, as the reservoir connectivity is the main factor in how large a reservoir
perturbation is required [27], as discussed in section 2.4.4.

The net decrease in optimal IC from temporal parity 3 to 5 can be explained by the
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input needing to be remembered for longer in the network. A lower amount of perturbation
results in less overriding of already-stored information in the reservoir. This conclusion
is a bit hairy however, as there isn’t a corresponding decrease in optimal IC for temporal
density, which already lies at a low 0.44. These variations could also be explained by
variance the optimal IC sampling process described in subsection 4.1.2.

Finally, these findings can be used to assist in choosing the degree of perturbation in a
real-life reservoir computing system, given a rough idea of what dynamical regime it may
exist in (chaotic, critical, stable). When instrumenting the rat neurons for airplane automa-
tion in [4], only two of the sixty available microelectrodes of the MEA were used even
though the computational substrate stretched under all of them. The same two microelec-
trodes were used for both perturbing the substrate and reading out its state. This indicates
that the required amount of perturbation may depend on how large a part of the reservoir
one actually uses, due to the spatial locality of computation in physical reservoirs. There
might not be a need for additional perturbing of the neurons furthest away from the readout
microelectrodes, as the effect might be minimal at the readout location.
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Figure 4.2: Plots of input connectivity against accuracy on TP3. Reservoir sizes [40..70] are omitted
for brevity. Note that the optimal input connectivity tends slightly to the right of the middle for all
reservoir sizes. The omitted plots are presented in figures 1 and 2 in appendix B.

22



4.2 Minimum Required Output Connectivity

4.2.1 Description

One isn’t always able to fully instrument a computational substrate used for reservoir com-
puting. While a microelectrode array gives coarse-grained access to smaller substrates than
ever, one is still limited to a number of samples equal to the number of microelectrodes in
the array. Other reasons can include instrumentation being prohibitively expensive, physi-
cally impractical or impossible, or quantum effects changing the material as one observes
it. These situations result in less internal state and potentially less computational power
being exposed to the user.

How does this restricted viewing of the reservoir state affect its predictive behavior?
If there is an interference effect between the unobserved parts of the reservoir, does this
effect increase the computational ability of the observed subset or decrease it? To test this
hypothesis, chosen subsets of larger reservoirs will be compared to separate reservoirs of
that exact size. This subset should perform better, equal, or worse than the independent
reservoir, and therefore answer the hypothesis.

To reduce the search space, only temporal parity 3 and 5 will be used for these exper-
iments. In addition, all reservoirs will have a fixed input connectivity of 50%, backed by
the findings of optimal IC from the previous section (as summarized in table 4.3). Reser-
voir subsets will be chosen randomly from all available nodes, which only seems fitting
given the random nature of the RBN and the lack of a meaningful physical projection. The
reservoir parameters used for this experiment are shown in table 4.5, with the parameters
for temporal parity staying the as for the previous experiments (table 4.1).

Table 4.5: Reservoir parameters for optimal output connectivity

Parameter Configuration

Task Temporal parity 3 and 5
Nodes 10 to (100, 140), step size=10
Connectivity 3

Input connectivity n_nodes/2

Subset size [0..n_nodes], step size=10
Sample size 50

4.2.2 Results

For easier comparison of the performance of a reservoir subset against reservoirs of that
exact size, plots aggregating the best accuracy distributions for each reservoir size are
created. These are based on the accuracy distribution for the optimal input connectivity
for that reservoir size, as shown in table 2 in appendix B. These are then compared to the
subset-accuracy plots created from the parameters of table 4.5.

Figure 4.3 shows this comparison for task TP3, up to a reservoir size of 100. Figure
4.4 shows the same comparison for task TPS, up to a reservoir size of 140. The subset-
accuracy plots for reservoir sizes < 100 and < 140 not presented here are shown in figures
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Figure 4.3: Accuracy plots for task TP3. Figure 4.3a shows the best performing n-sized reservoirs
up to a size of 100. Figure 4.3b shows reservoir performance for subsets of reservoirs of size 100.
All n-sized subsets perform virtually identical to their same-sized reservoirs.

8 through 11 in appendix C.

4.2.3 Discussion

The resulting distributions from reservoir subsets and same-sized reservoirs are extremely
similar, as seen in figures 4.3 and 4.4. The fact that reservoir subsets perform almost
identically to the same-sized subsets indicates that any interference from the unused parts
of the reservoir may be minimal. Additionally, as soon as the reservoir subset size is as
large as the minimum required reservoir size, 20 for TP3 and 90-100 for TPS (table 4.3),
performance reaches a plateau with no need to further increase the size of the observed
subset.

There seems to be a slight increase in population accuracy for small values of N (10,
20) however. An even larger sample size would probably be needed to decide whether this
is randomness or positive interference from the unused parts of the reservoir. Selecting
10 nodes from 100 or 140, of which 50 and 70 respectively receive input each tick, might
result in a heavy bias towards either side. Further, there is a possibility that slightly better
subset performance could have been achieved by generating reservoirs for all ICs instead
of using a flat IC of 50%, and then selecting the best one. Even though the average optimal
IC is quite close to 50%, the backing data may lie slightly to either side, as seen in table
4.5.

Another concern is in what way, if any, a smaller set of reservoir states affects the
model used for learning the mapping from reservoir states to classification. Using too
many predictor variables in a linear model might result in overfitting the problem, while
too few may result in low accuracies. The problem of redundant or useless variables is
lessened if one uses an algorithm which includes regularization, such as ridge regression
[11]. The regularization penalty rewards smaller coefficients which in turn leads to useless
variables being eliminated almost completely, but they cannot be totally zeroed within
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Figure 4.4: Accuracy plots for task TP5. Figure 4.4a shows the best performing n-sized reservoirs
up to a size of 140, Figure 4.4b shows reservoir performance for subsets of reservoirs of size 140.
All n-sized subsets perform virtually identical to their same-sized reservoirs.

this model. Algorithmic regression variable subset selection which completely eliminates
unneeded variables exists [19], but may not be useful for systems with a small readout-
to-reservoir ratio. Such a system is the sixty electrodes stuck into a large soup of rat
neurons [4]. Any redundancy in the neurons must surely be dominated by the nonlinearity
each microelectrode aggregates from all nearby neurons, reducing the need for variable
elimination.

In a continuously growing and expanding reservoir, such as the one consisting of rat
neurons, the computational capabilities of the system would presumably grow monoton-
ically with the increase in matter to the system. These results indicate that as long as
one has instrumented a large enough part of the reservoir in the first place, one will not
have to re-instrument it in the future (as long as the task doesn’t change to a significantly
more complex one requiring additional data points). The readout layer might have to be
recalibrated, however. A regression model trained on a certain reservoir might not work
as well on one with a slightly altered topology. In section 2.6 it is found that there ex-
ists a neutrality in the set of RBNs used for reservoir computing. That is, if one were to
re-use a trained readout layer from a well-performing reservoir, there will be a number
of different RBNs that perform accurately together with the re-used readout layer. It was
not investigated whether these functionally equivalent reservoirs were structurally similar.
If they are, one might not have to retrain the model every time the substrate evolves, as
small changes to the topology might jump to a similarly well-performing RBN due to the
inherent neutrality.
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4.3 Analyzing Reservoir Dynamics

4.3.1 Description

When analyzing Random Boolean Networks one often does so in aggregate, looking at the
population averages of the attributes of RBNs of a certain construction. This due to there
being large variances in individual RBN dynamics [10]. One often looks at whether the
average network is chaotic, stable, or critical, and the number of attractors, their size, their
basins, and state-space transient times. The expected averages of these properties can then
be obtained given a networks connectivity and size.

One indicator of reservoir performance used both in [27] and in the pre-thesis work
[3] is Computational Capability, but what others are there? Is there a deeper link between
a well-performing RBN used for computation and its topology and dynamical properties?
What correlation, if any, is there between a RBNs number of attractors, their lengths, and
its computational powers? If a relationship is found, does a change in task complexity
constrain what the averages of those values are? Such a finding can aid in the construc-
tion of RBNs by generative genomes, by favoring those which generate an optimal set of
attractors for instance.

The number of attractors and their lengths will be calculated by help of the SAT-solver
described in section 3.1.4. It allows for reservoirs with a size of up to 26 to be analyzed
within reasonable time limits. The task temporal density will be used to investigate the
attractor-accuracy relationship, as n_nodes = 26 is on the verge of solving TD5 with 90%
accuracy 4.3. Temporal parity would require too large a reservoir (at least 70). Parameters
for the experiment are shown in table 4.6

Table 4.6: Parameters for analysis of reservoir dynamics

Parameter Configuration

Task Temporal density 3 and 5
Nodes 26

Connectivity 3

Input connectivity 13

Output connectivity 26

Sample size 500

4.3.2 Results

The distributions of the attractors and corresponding lengths for each set of 500 generated
RBNs for TD3 and TDS are shown in figures 4.5a and 4.5c. The 273 RBNs which gained
at least 95% accuracy on TD3 are shown in figure 4.5b. For TD5 the threshold is lowered
to 85%, with the 116 matching RBNss this criteria shown in figure 4.5d. This as there only
were 24 RBNs with an accuracy of at least 90%, a much too low number to say anything
useful.

It is difficult to find theoretical estimates for the mean number of attractors and their
lengths for RBNs with connectivity other than K = 1 [5] and K = 2 [24]. The combined
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distribution of 1000 RBNs (500 from TD3, 500 from TDS) is therefore used to gain an
empirical intuition of what the expected values might be, and is shown in figure 4.5e.

The means of the attractor lengths and corresponding number of attractors for each of
the figures in 4.5 are tabulated in table 4.7.

Table 4.7: Means and medians of the different RBN subsets’ attractor lengths and number of attrac-
tors

Minimum Attractor length Number of attractors
Accuracy Mean Median Mean Median

TD3 95% 13.90 8.67 597 5.00
ALL 1345 8.50 598 5.00
TDS 85% 11.79 7.90 6.20  5.00
ALL 12.44  7.67 6.09 5.00
TD3+TD5 ALL 1295 8.12 6.04 5.00

4.3.3 Discussion

First we look at the total distribution of attractors and their lengths in figure 4.5e. Observe
from table 4.7 that the median number of attractors and lengths is 5.00 and 8.12 respec-
tively. The most frequent mean attractor length is 3—4 however, with the means being
heavily skewed upwards due to a few 256-length outliers. Most RBNs are located in the
area of 2—7 attractors and a mean length of 2-8.

While comparing the figures for TD3 and TDS5 against their accuracy-restricted ver-
sions next to them, one notices a trend. For both TD3 (figures 4.5a — 4.5b) and TD5
(figures 4.5c — 4.5d) the accuracy restricted versions seem to mimic the overall reservoir
distributions for that task. This assumption is confirmed by for each task comparing the
means and medians of the restricted versions to those not, in table 4.7. There is but a mi-
nuscule difference in the means and medians of TD3 95% versus all TD3, equally so for
TDS 85% versus all TDS.

There are two possible conclusions to be drawn from this: For RBNs with K = 3,p =
0.5, N = 26, those with 4-5 attractors and mean lengths of 3—4 perform optimally; Or sim-
ply that for those parameters, most RBNs would fall within this range. The last conclusion
is supported by figure 4.5e. This would mean that a RBNs performance as a reservoir has
little correlation to the properties of its attractors.

In [27] the authors note that due to continuous perturbation, computation cannot solely
depend on the attractors of the system. The system can still be caught by an attractor, but
it is unlikely, although not impossible, that it would permanently settle in one. For the
RBN RC systems benchmarked in this paper, the large amount of perturbation (50% of
the reservoir) would require attractors to have humongous basins to successfully prevent
computation. Small attractor basins and large transient times could still be indicators of
reservoir performance, as they would allow for more unique paths through state space
without immediately leading to an attractor. Chaotic reservoirs are characterized by long
transient times and a large sensitivity to perturbations, with states quickly diverging [10].
This could explain why reservoirs with an homogeneous connectivity of three perform
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Figure 4.5: Figures 4.5a and 4.5b show the distribution of the 500 RBNs generated for TD3, and
the 273 of 500 that had an accuracy >= 0.95% on TD3, respectively. Figures 4.5¢ and 4.5d show
the distribution of the 500 RBNs generated for TDS5, and the 116 of 500 that had an accuracy >=
0.85% on TD35, respectively. Figure 4.5e shows the combined distribution of mean attractor lengths
and number of attractors for for all 1000 generated RBNs. It is used as an estimate of the common
values for RBNs with parameters K = 3,p = 0.5, N = 26.
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better than those with a connectivity of two. Perturbations would result in large changes
to the reservoir state, something that might lessen the burden on the algorithm tasked with
finding a suitable mapping to a classification.
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CHAPTER

5
CONCLUSION

5.1 Conclusion

Experiments confirm that the required reservoir size increases with the difficulty of the task
at hand, with the largest factor being how many bits of input the reservoir is required to
remember. Simulation of RBN RC systems can therefore aid in deciding the optimal size
of physical reservoirs, given a bridge between the computational power of the reservoir
and RBNs can be deduced.

Optimal reservoir perturbation is found to lie at roughly 50% of the size of the reservoir
for RBNs with K = 3. When using smaller slices of a reservoir for computation, lower
amounts of total perturbation will be required as long as these perturbations are located
within the same topological area.

Results also show that subsets of larger reservoirs will perform at least as well as a
separate reservoir of equal size. Any interference from the unused parts of the reservoir is
either minimal or slightly positive.

Finally, no relationship is found between the attractors of a RBN and its performance
in a RBN RC system. It can therefore not be used for guiding the construction of accurate
RBNS.

5.2 Further Work

When using a computational substrate such as living rat neurons [4], the connections and
size of the substrate may change over time. It would be interesting to study how much
of a RBN in a RC system can be manipulated before its predictive power collapses, and
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the readout layer has to be retrained. These changes would include flipping bits in tran-
sition tables and changing internal edges in the network. If one can relate the network’s
robustness to perturbations to a regression model’s resistance to variance in the predictor
variables, a metric of RBN RC robustness can be developed. It would relate the amount of
change in the RBN to the expected reduction of reservoir accuracy.

Another question is in what degree does a reservoirs optimal input connectivity change
with regards to what physical subset of the substrate is used? The topology of a RBN is
randomly generated and doesn’t inherently have a physical mapping, so one would have to
be created for this experiment. In the water bucket RC system [9], one would expect that
perturbing one part of the reservoir would result in a larger effect in that area rather than
the other side of the bucket. If one were to observe this smaller part of the total reservoir
only, the hypothesis would be that the perturbation within this restricted area would have
to be smaller than if one were to use the entire reservoir for computation.
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Appendix

A Background chapter bonus content

Table 1: Task parameters for the pre-thesis project.

Parameter

Configuration

Task type

Training dataset length
Test dataset length

N (window size)

t (offset)

Temporal parity
4 000

200

3and5

0
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B Minimum required reservoir size, optimal input connectivity

Table 2: Optimal input connectivity values for task / reservoir size combinations as identified from
figures 1 through 7. A value of ’-” means that the reservoir size wasn’t used for that task.

N TP3 TP5S TD3 TDS

5 - - 2 -
10 5 - 5 5
5 - - 5 5
20 10 - 10 10
25 - - 10 10
30 15 15 15 15
35 - - - 15
40 15 20 - 15
45 - - - 20
50 30 20 - 25
55 - - - 25
60 30 30 - 25
65 - - - 30
70 40 30 - -
80 50 40 - -
90 50 45 - -
100 55 50 - -
110 - 55 - -
120 - 60 - -
130 - 70 - -
140 - 70 - -
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Figure 10: Plots for reservoir subset size against accuracy for temporal parity 5 (1 of 2)
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Figure 11: Plots for reservoir subset size against accuracy for temporal parity 5 (2 of 2)
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