
Web Based Customized Design

Morten Benestad Moi

Master of Science in Engineering and ICT

Supervisor: Terje Rølvåg, IPM
Co-supervisor: Ole Ivar Sivertsen, IPM

Ole Skjølingstad, Summit as
Qazi Sohail Ahmad, IPM

Department of Engineering Design and Materials

Submission date: June 2013

Norwegian University of Science and Technology

NORGES TEKNISK
NATURVITENS KAPELIGE UNIVERSITET
INSTITUTT FOR PRODUKTUTVIKLING
OG MATERIALER

MASTEROPPGAVE VAR 2013

FOR

STUD.TECHN. MORTEN BENESTAD MOl

WEBBASERT BRUKERTILPASSET DESIGN
Web based customized design

En Ønsker a lage en generisk løsning hvor en kan utvikle en salgskonfigurator pi en tynn

klient hvor kunden/selger kan endre forhândsoppsatte parametere, og hvor disse parameterac
sendes til en NX sesjon som generere 3D modell og Ønskede eksport formater (iT, 31),
DWG). Resultat sendes kunde.

En ser for oss en kombinasjon av PTS(Product Template Studio), noe autornatisering av data
opprettelse i NX og eksport av Ønskede formater, samt en tilpasset wehlØsning som kan gi
input til en NX sesjon. Nr det gjeldcr selve CAD-parten (PTS) s bør ikke den vre for
komplisert, men brukes bare for i demonstrere løsningen. Dette er en lØsning som burde vre
aktuell for mange bedrifter og produkter. Løsningen kan vere rettet mot kundemarkedet eller
internt i en bedrift. Oppgaven gjennomføres i samarbeid med Summit as i Oslo.

Oppgaven omfatter:

1. Studere aktuelle formater for visualisering av NX-modeller

2. Finnc Ut hvordan NX kan ta inn data og automatisk oppdaterer og eksporterer
modellen

3. Lage en modell som eventuelt kan brukes i Product Template Studio og som kan ta
inn og endre pa forhàndsoppsatte parametere

4. Lage generisk nettside sorn kan brukes som salgskonfigurator og som benytter seg av
modellen og bruker NX til a lage en oppdatert, tilpasset modell

5. Hvis tiden tillater det, kontakte aktuelle bedrifter for a hØre hva de synes om resultatet

Besvarelsen skal ha rued signert oppgavetekst, og redigeres mest mulig som en
forskningsrapport med et sammendrag pa norsk og engeisk, konklusjon, litteraturliste,
innholdsfortegnelse, etc. Ved utarbeidelse av teksten skal kandidaten legge vekt pa a gjØre
teksten oversiktlig og velskrevet. Med henblikk pa lesning av besvarelsen er det viktig at de
nødvendige henvisninger for korresponderende steder i tekst, taheller og figurer anfØres pa

begge steder. Ved bedØrnmelse legges det stor vekt pt at resultater er grundig hearbeidet, at
de oppstilles tabellarisk og/eller grafisk pa en oversiktlig mate og diskuteres utførlig.

Senest 3 ukcr etter oppgavestart skal et A3 ark som illustrerer arbeidet leveres inn. En mal for
dette arket finnes pa instituttets hjemmeside under menyen masteroppgave
(http ://www . ntnu . no/iprn/masteroppgave). Arket skal ogsà oppdateres en uke før innievering
av masteroppgaven.

Besvarelsen skal leveres i elektronisk format via DAIM, NTNUs system for 1)igital
arkivering og innievering av masteroppgaver.

Kontaktpersoner:
Ole SkjØlingstad, Summit as, Email: skjolingstad@summit.no
Qazi Sohail Ahmad, IPM/NTNU
Ole Ivar Sivertsen, IPM/NTNU

Torgeir / do je Rølvftg
1nstitu(1eder Fagherer

NThU
• Norges

naturvitenskapelige universitet
Institutt for produktutvikling
og materialer

Preface

This report was written as the 5th grade master thesis for the engineering and
ICT (Ingeniørvitenskap & IKT) study program at the Norwegian University
of Science and Technology (NTNU) spring 2013. After a three year special-
ization in Product Development and Materials Engineering at the mechanical
engineering program the thesis includes elements from both study programs.

The thesis was given by Summit Systems with Ole Skjølingstad as the com-
pany advisor and was written at the Institute for Product Development and
Materials with Terje Rølvåg as the main faculty advisor. Thanks for the help
and guidance.

Morten Benestad Moi

iii

Abstract

This thesis studies the methods needed to create a web based application to
remotely customize a CAD model. This includes customizing a CAD model by
using a graphical user interface to be able to remotely control the inputs to-
and outputs from the model in NX, and to get the result sent back to the user.

Using CAD systems such as NX requires intensive training, is often a slow
process and gives a lot of room for errors. An intuitive, simple user interface
will eliminate the need for CAD training or CAD experience. The time used
can be reduced by creating smart, parameterizable models that easily can be
customized to the user's requirements. Built in rules in the model and the user
interface can decrease possibility for errors and help maintain the design intent.
By creating a web based solution the user does not need to have a CAD system
installed or licensed on its system to update the model and changes can be made
on the go.

The result of the thesis is a solution where the user can install an application
that can connect to a server that can update a CAD model in NX and send the
result back to the user. The method used in this solution is presented in the
thesis.

iv

Sammendrag

Denne masteroppgaven studerer metodene som trengs for å lage en web basert
løsning for å tilpasse en CAD modell. Dette inkluderer å tilpasse CAD modellen
ved å bruke et brukergrensesnitt som kan fjernstyrer innspill til- og eksporterte
resultater fra modellen i NX, og sende resultatene tilbake til brukeren.

Å bruke CAD systemer som NX krever grundig opplæring, er en tidkrevende
prosess og gir mange muligheter for feil. Et intuitivt og enkelt brukergrensesnitt
vil fjerne behovet for CAD opplæring eller tidligere CAD erfaring. Tidsbruken
i NX kan bli betraktelig redusert ved å lage smarte, parameteriserbare modeller
som enkelt kan tilpasses til brukernes krav. Innebygde regler i modellen og
brukergrensesnittet kan redusere muligheten for feil og hjelpe til å opprettholde
designets hensikt. Ved å lage en web basert løsning trenger ikke brukeren ha
et CAD system installert på sitt system og trenger ikke en egen lisens for å
oppdatere modellen, og tilpasninger kan gjøres hvor og når som helst.

Resultatet av masteroppgaven er en løsning hvor en bruker kan installere en
applikasjon som kan koble seg til en server som kan oppdatere en CAD modell i
NX og sende resultatet tilbake til brukeren. Metoden som er brukt i løsningen
presenteres i masteroppgaven.

v

Contents

1 Introduction 1

1.1 Background . 1
1.2 Custom Board Design . 1
1.3 Objective . 6
1.4 Methodology . 6
1.5 Structure of Thesis . 7
1.6 Software . 10

1.6.1 NX 8.5 . 10
1.6.2 Microsoft Visual Studios 2008 10
1.6.3 JT2GO . 11
1.6.4 FTP Server . 11
1.6.5 Batch File . 11

2 Software Requirements Speci�cation 12

2.1 Purpose . 12
2.2 Scope . 12
2.3 De�nition of Terms . 13
2.4 Intended Use and Users . 14
2.5 Operating Environment . 14
2.6 Overall System Requirements . 14

3 File Formats for Visualization 16

3.1 Overview . 16
3.2 JT . 17
3.3 STEP . 18
3.4 3D PDF . 18
3.5 NX Part Files . 19

vi

3.6 Chapter Discussion . 19

4 Importing, Updating and Exporting in NX 20

4.1 NX Open API . 20
4.2 Importing, Updating and Exporting Results in NX 21

4.2.1 NX Open API Wizard 21
4.2.2 Macro . 21
4.2.3 Journal . 22

4.3 Chapter Discussion . 23

5 Process Description 24

5.1 Overall Process Description . 24
5.2 NX . 27

5.2.1 Overview . 27
5.2.2 Modeling . 28
5.2.3 Run Journal . 29
5.2.4 Update Model . 29
5.2.5 Export Model . 29

5.3 Model . 29
5.3.1 Overview . 29
5.3.2 Create Model . 31
5.3.3 Name Expressions . 32
5.3.4 Create Design Rules . 34
5.3.5 Change Expressions . 35
5.3.6 Choose Export Format . 37

5.4 Journal . 38
5.4.1 Overview . 38
5.4.2 Record Journal . 40
5.4.3 Stop Recording Journal 42
5.4.4 Open in Text Editor . 42
5.4.5 Locate Expressions and File Paths 42
5.4.6 Running a Journal File 43

5.5 Web Based Customizable Design (WBCD) 45
5.5.1 Overview . 45
5.5.2 Import Journal . 47
5.5.3 Search for and Replace Expressions 47
5.5.4 Write New Journal . 47
5.5.5 Open Model . 47

vii

6 Web Based Customizable Design Application 48

6.1 Client-Server Architecture . 48
6.2 Client . 51

6.2.1 Graphical User Interface 51
6.2.2 ISO Standards for Example Flanges 54
6.2.3 Sequence List of Client Application 57

6.3 Server . 60
6.3.1 Server User Interface . 60
6.3.2 Sequence List of Server Application 61

6.4 Communication With Other Software 66

7 Using Web Based Customizable Design 68

7.1 Bene�ts . 68
7.2 Limitations . 70
7.3 Implementation . 70

8 Discussion 72

9 Conclusion and Further Work 80

9.1 Conclusion . 80
9.2 Further Work . 81

Bibliography 82

A Journal File 85

B Web Based Customizable Design Application Source Code 89

B.1 Client Application Source Code 89
B.2 Client Application Designer Source Code 96
B.3 Server Application Source Code 102

C Batch File to Run Journal 107

D NX Open API 108

D.1 NX Open API . 108
D.2 NX Open API commands . 108

D.2.1 Imports . 108
D.2.2 UndoMarkId �SetUndoMark� 109
D.2.3 Unit �FindObject� . 109
D.2.4 Unit �nullUnit� . 109

viii

D.2.5 Expressions �CreateWithUnit� 109
D.2.6 Expressions �EditWithUnit� 110
D.2.7 Session �GetSession� . 110
D.2.8 Open File . 111
D.2.9 Save File . 112
D.2.10 Close File . 112
D.2.11 Export JT �le . 113

E Email from In�nity Innovations 117

ix

List of Figures

1.1 Firewire's Custom Board Design Webpage 3
1.2 Custom Board Design 3D PDF 4
1.3 Custom Board Design queue message 5

4.1 Macro code example . 22
4.2 Journal code example . 22

5.1 Flow chart of the process description 25
5.2 Actions performed by developers and actions performed by ap-

plication . 26
5.3 Flow chart of the process in NX 28
5.4 Flow chart of the modeling in NX 30
5.5 Flange model from NX . 31
5.6 Named expressions in sketch . 32
5.7 Named expressions in a list . 33
5.8 Design rules for hole placement 34
5.9 Hole placement formula . 35
5.10 Changing the value of an expression 36
5.11 Export JT �les . 37
5.12 Flow chart of tasks for Journal 39
5.13 Importing and exporting expressions in NX 41
5.14 Exported expressions in Excel . 41
5.15 Changing the value of an expression example code 42
5.16 Code showing �le path of exported JT �le 43
5.17 Run journal in command prompt window 44
5.18 Run journal by batch �le . 44
5.19 Flow chart of tasks for Journal 46

x

6.1 Client-server architecture illustration 49
6.2 Flow chart of tasks for Client and Server 50
6.3 Graphical User Interface of Web Based Customizable Design . . 51
6.4 Selecting �ange type in Web Based Customizable Design 52
6.5 Design rules in Web Based Customizable Design example 52
6.6 Adding range labels in GUI . 54
6.7 A&N Corporation ISO-LFB Socket Weld Flange 55
6.8 Results from WBCD using ISO standards 56
6.9 Sequence list of Client Application 57
6.10 Customized �ange examples . 59
6.11 Server Console Window . 60
6.12 Sequence List of Server Application 61
6.13 Search string and replace string examples 63
6.14 Batch �le used to run Journal �le 64
6.15 Sequence diagram of communication between software 66

7.1 Implementation changes . 71

xi

List of Tables

1.1 Digital attachments . 9

2.1 List of Abbreviations . 13
2.2 Overall system requirements . 15

3.1 File formats that NX can export 16
3.2 Use of �le formats . 17

5.1 List of important expressions in model 35
5.2 List of available export formats from NX 38

6.1 Pre-made LFB Socket Weld Flanges 55
6.2 Parameters received from client 63

8.1 Overall system requirements status 74

xii

Chapter 1

Introduction

1.1 Background

A surfboard company from Carlsbad, California, called Firewire Surfboards has
created a website where customers can customize stock surfboards to their own
speci�cations and models are automatically updated by NX. Details about this
can be found in Section 1.2. The request from Summit Systems for this thesis
is to create a solution to do the same thing to other models with a focus on the
method of remotely updating a CAD model.

1.2 Custom Board Design

Firewire Surfboards is one of the top rated surfboard companies in the world.
Recently they teamed up with ShapeLogic to create Custom Board Design
(CBD), a web service where surfers can customize stock Firewire surfboards
to their preferred speci�cations and view the result in a 3D PDF �le within just
a few minutes[1].

Firewire is known in the sur�ng community for their unique high-tech ma-
terials such as expanded polystyrene (EPS) foam, aerospace composites, epoxy
resins, carbon rod suspensions and bamboo decks [2]. This gives lighter and
more responsive surfboards but it o�ers challenges in the production phase. To
produce a custom surfboard hours upon hours in CAD systems were needed
by the company's engineers because the surfboards are produced using a Com-
puter Numerical Control (CNC) machine [3]. To be able to compete for the

1

leading position in the market they need to o�er custom shaped surfboards for
their sponsored athletes and the rest of their customers. If every board requires
several hours of CAD work the prices wouldn't be competitive and the backlog
would build up due to the company's limited engineering sta� so they needed
to �nd another option [4].

Firewire teamed up with ShapeLogic who already had CAD expertise from
creating parameterizable models of sets of golf clubs. They created complex
CAD models of Firewire's stock surfboard models that allowed for customiza-
tion within limits set by rules in the web page. The model also automatically
created the CAM �les that includes the CNC paths needed. The system they
created is called "ShapeLogic Design-to-Order Live! for NX." The models were
created using Product Template Studio (PTS) which allows prede�ned models
to be parameterized with inputs from a web service to give the wanted results.
CBD users can tweak the board's length, wide point, nose and tail width, and
thickness to tailor the board to their preferences. The volume of the board,
which is extremely important, yet hard to calculate, could now be calculated by
NX before creating it which is a huge bene�t [3].

In addition to the cost and e�ciency bene�ts it also makes it possible to
create repeatable designs. Repeatable designs have been a problem for cus-
tom made surfboards for a long time. Other surfboard companies usually use
polyurethane (PU) foam cores for their surfboards. These can be machined to
shapes that are up to 85 percent of the design and then they rely on a profes-
sional shaper to shape it to its speci�cations. This means that it is no guarantee
that they will be able to recreate the exact shape if they want a replacement
as surfboards does not last forever. Firewire is able to machine the pre-shaped
boards to 97-98 percent of the design using CNCmachines but the design process
for the CAM production �les was time consuming and needed to be improved
[1][2].

2

Source: [5]

Figure 1.1: Firewire's Custom Board Design Webpage

CBD uses ASP.NET scripting to create a dynamic website that can connect
with NX through NX Open Application Programming Interface (API). The NX
Open API is the critical link between the application in the browser interface
and the 3D parametric models in NX. This allows the custom dimensions that
customers input to be fed directly to the live CAD model[2].

To be able to visualize the design they use Anark Core server to automati-
cally generate a 3D PDF of the custom board. The user can download the 3D
PDF [4], which can be viewed in Adobe Acrobat Reader v9.0 and later versions,
which use the Siemens PLM Software's JT Open data �le format [6] to create

3

the 3D model. In the 3D PDF document the user is able to rotate the surfboard
to see it from di�erent angels. Figure 1.2 shows what the 3D PDF �le looks like
after customizing a board. The adjustments made from the original model are
shown in the menu at the right side of the model in Figure 1.2.

Source: [5]

Figure 1.2: Custom Board Design 3D PDF

For handling several customer clients at the same time CBD uses a queue
system where the 3D model requests are put in a queue and it is estimated
15 second waiting time to handle each request. After testing the site a couple
of times the actual time from pressing the button to request the 3D model to

4

the model being downloadable is about 1 minute and 30 seconds. This system
makes it so that CBD only needs to use one NX license for handling all the
requests. Figure 1.3 shows the message the user sees when waiting in the queue.

Source: [5]

Figure 1.3: Custom Board Design queue message

5

1.3 Objective

The main objective of this project is to create a method for creating a web based
application to remotely customize a CAD model. This includes customizing a
CAD model by using expressions and journaling in NX, to be able to remotely
control the inputs to- and outputs from the model in NX, and to get the result
sent back to the user.

1.4 Methodology

Because of a background from two di�erent study programs, �mechanical engi-
neering� and �engineering and ICT� this master thesis will have a multidisci-
plinary approach on the problem. From the engineering and ICT perspective
the focus is on exploring the application programming interface of NX and cre-
ating the software application that can work over the internet and communicate
with NX and other software such as JT2GO. From the mechanical engineering
perspective is the method of simplifying tasks performed by the user, increase
e�ectiveness and e�ciency, and creating a description of the process based on
product development.

Part of the references in this thesis is from software documentation. These
references don't have a listed author but will be referred to with the name of
the company (e.g. Siemens PLM). Because there is little published research on
�le formats for visualization, blog posts, articles, software documentation and
conversations with NX application engineers were used to reach a conclusion.

A course for introduction to Product Template Studio (PTS) [7] was com-
pleted to research how PTS works but this method was later discarded. The
reason for discarding PTS was that changes made in PTS aren't recorded in the
journal �le used to update the 3D model.

By attending a training course in NX held by Summit Systems in February
2013 it was possible to ask for advice and directions from the NX application
engineers. This helped in deciding what direction to continue in concerning
choice of visualization format and tool for customizing models.

After the training course in NX a model containing several di�erent expres-
sions and design rules was created. The focus of the model was to keep it simple
but still have enough parameters and rules to control the design so that the end
result can be demonstrated to the user.

The next step was to research what methods were available for giving inputs
to NX and how to update models and export the results. Functions researched

6

in this part of the project were PTS, macro and journaling. It was decided
to use journaling because it is a good way to generate code by performing
actions in NX without getting all the unnecessary overhead information a macro
�le creates. This allows the user to record a journal, and perform a speci�c
action and then look at the code generated to see what code is connected to the
actions. . After deciding to use journaling the next step was to �gure out how to
communicate with the application programming interface of NX. This had to be
done by programming in the NX Open API and at this point the development
of the software application had started. With almost no previous knowledge
of programming in Visual Basic except for a short lecture on it in a previous
course at NTNU it was hard to decide what programming language to use for
this thesis. After researching that the NX Open API is compatible with Java,
C++ and .NET languages (VB and C#) but journaling only is compatible with
VB and C# the choice was easier. After a quick consult with Ole Skjølingstad
at Summit Systems it was decided to do the programming in VB. This was
because Summit Systems often uses VB when doing projects for customers, so
it would be bene�cial for them to have the application programmed in VB.

When developing the application the research for how to create the connec-
tion between the server and client application was the main focus. This was
done by watching tutorials and searching through developers forums. Other
methods that were researched were how to import a journal �le to the applica-
tion, how to search in the journal �le, how to upload and download �les from a
FTP server, and how to execute other programs like NX and JT2GO from the
application.

When developing the server application a sample code from a �Multi Threaded
Server Socket Programming in VB.net� tutorial [8] was used as a base to handle
multiple incoming connections from di�erent clients.

1.5 Structure of Thesis

Chapter 1 starts with an introduction to- and the background for the prob-
lem including a detailed description of CBD.

Chapter 2 goes through the software requirements speci�cation which de-
scribes the scope, what is expected, and the requirements of the application.

Chapter 3 presents a literature study of �le formats for visualization of 3D
models.

7

Chapter 4 discusses how to access the NX Open API to be able to access NX
through its programming interface. Appendix D goes through this in greater
detail by describing the NX Open API.

Chapter 5 gives an overview over the process of the Web Based Customizable
Design application by giving a birds eye-view at �rst and then going into detail
on the di�erent working environments.

Chapter 6 describes the software application in detail.

Chapter 7 describes the use of the WBCD application by discussing bene�ts,
limitations and implementation of the application.

Chapter 8 discusses the results from the thesis. This includes revisiting the
software requirements, comparing the result to CBD, explain choices made dur-
ing the thesis.

Chapter 9 concludes the thesis and presents some possibilities for further
work.

Appendix A contains the source code for the journal �le generated by NX.

Appendix B contains the source code for the WBCD client application,
client application design and server application.

Appendix C contains the source code for the batch �le used to run the
journal �le in the WBCD application

Appendix D describes the functions of the code used in the journal �le to be
able to understand the NX Open API.

Appendix E is an email from In�nity Innovations describing their quote for
implementing Anark Core Server (Norwegian email)

8

Digital Attachments A .zip �le is available as a digital attatchment on the
NTNU DAIM system. This .zip �le contains the �les listen in Table 1.1.

File name

Flange_by_WBCD.jt
Flange_for_WBCD.prt

journal �le.vb
WBCD client application designer source code.vb

WBCD client application source code.vb
WBCD server application source code.vb

Table 1.1: Digital attachments

The questions listed in the thesis are answered in the following chapters:

Problem 1 is answered in Chapter 3.

Problem 2 is answered in Chapter 4 where the possible ways to access the NX
programming interface is discussed, in section 5.4 where the use of journaling is
described, and in section 6.3 where the ways the server handles updating and
running journal �les are described.

Problem 3 is answered in Section 5.3 where the model used for the thesis is
discussed. There is also included a guide for what is important when creating
the parametrizable models.

Problem 4 is answered in chapter 6 where an application for remotely cus-
tomizing and updating 3D models in NX is described. This di�ers some from
the problem as an application that only works for this solution was created
where as the problem speci�ed a generic web site. Chapter 8 discusses why this
choice was made. Source code for the solution is found in Appendix B.

Problem 5 was not answered in this thesis. After trying to get in contact with
companies through Summit Systems for several weeks and getting no where it
was decided to drop this problem after discussion with the main faculty advisor,
Terje Rølvåg.

9

1.6 Software

This section gives a description of the software used in this thesis.

1.6.1 NX 8.5

�NX o�ers the industry's broadest suite of integrated, fully associative CAD/-
CAM/CAE applications. NX touches the full range of development processes in
product design, manufacturing and simulation, allowing companies to encour-
age the use of best practices by capturing and re-using product and process
knowledge� [9].

1.6.2 Microsoft Visual Studios 2008

Microsoft Visual Studio is an integrated development environment (IDE) from
Microsoft. It is used to develop console and graphical user interface applications[10].
Visual Studio is a suite of component-based software development tools and
other technologies for building powerful, high-performance applications [11].

This is the program that was used to create the application that can change
the parameters of an NX model over a network connection. Two applications
were created, a Server and a Client. The Client was created as a Windows Form
Application and the Server was created as a Windows Console Application

The decision to use Visual Studio 2008 was made because the NX Open
API wizard does not work in the newer versions of Visual Studio. This was
discovered after having problems installing the wizard and consulting Summit
Systems.

Windows Form Application

Windows Forms is a graphical application programming interface that can be
created in Visual Studios. It is a tool to design user interfaces for applications
programmed in .NET languages such as Visual Basic, C++ and C# (C sharp).

Windows Console Application

A console application is a text-only computer interface. �Consoles provide high-
level support for simple character-mode applications that interact with the user
by using functions that read from standard input and write to standard output
or standard error� [12].

10

1.6.3 JT2GO

JT2GO is a free viewer for JT �les developed by Siemens PLM Software. It is
the most robust 3D visualization format available today and is the world's most
widely used 3D �le format for PLM. It can be downloaded from Siemens' web
pages [13, 6].

1.6.4 FTP Server

File Transfer Protocol (FTP) is a network protocol that is used to transfer �les
between hosts over the internet [14]. For this thesis a FTP server was supplied
by Summit AS. This means that �les can be uploaded to this server by one
host and downloaded by another host. This is used to transfer �les between the
Server application and Client application in this thesis.

1.6.5 Batch File

Batch �les are used to simplify routines or repetitive tasks. It is an unformatted
text �le containing commands to be executed when the system runs the �le. It
has a .bat or .cmd �le name extension [15].

11

Chapter 2

Software Requirements

Speci�cation

2.1 Purpose

This software requirements speci�cation describes an application that can up-
date a NX 8.5 CAD model via the internet. The application can be used to
update models on the go or to create modi�ed versions of a product. The pur-
pose of creating the system is to �gure out how it is possible to remotely update
CAD models with a focus on the method, not the complexity of the end result.

2.2 Scope

The system that is speci�ed, �Web Based Customizable Design�, should be a
program with a graphical user interface that allows the user to change the
values of parameters in a CAD model. A server will be running on a system
that has access to NX 8.5 and can update the CAD model. The user should
be able to do the changes on a remote system and connecting to the system
running the server using internet connection. A CAD model updated to the
selected parameters should be downloaded and opened on the users system.

The system can be viewed as a way to remote control a CAD system and
can give bene�ts by removing possible errors in modeling, reducing design time,
setting design rules and make it possible to make changes on the go. By making

12

a user interface where the user can change the values of parameters the need for
CAD experience will be gone.

2.3 De�nition of Terms

Abbreviation Meaning

WBCD Web Based Customizable Design
GUI Graphical User Interface
CAD Computer Aided Design
CAM Computer Aided Manufacturing
CAE Computer Aided Engineering
NX 8.5 CAD/CAM/CAE program by Siemens
NX Referring to NX 8,5 or previous versions
JT 3D data format by Siemens
FTP File Transfer Protocol
FEM Finite Element Method
FE Finite Element
CBD Custom Board Design

3D PDF 3D visualization format
EPS Expanded Polystyrene
PU Polyurethane
CNC Computer Numerical Control
PTS Product Template Studio
PLM Product Lifecycle Management
API Application Programming Interface

ASP.NET Server-side Web application framework
VB Visual Basic - .NET programming language
C# C sharp, Programming language
C++ Programming language
ISO International Standard Organization

JT2GO JT �le viewer by Siemens
STEP STandardized Exchange and Product model data
TCP Transmission Control Protocol

VBScript Visual Basic Scripting (for web pages)

Table 2.1: List of Abbreviations

13

2.4 Intended Use and Users

Web Based Customizable Design is intended to be used by sales personnel in
meetings to get an updated model to the customer's speci�cations on the go, by
designers that can use di�erent speci�cations on products in a product family
or any other user that want a customized version of the part. The users of Web
Based Customizable Design are not expected to have CAD experience. It is
important that the GUI is simple and intuitive.

2.5 Operating Environment

The software will operate on two or more di�erent systems that are connected
to the internet so they are able to communicate with each other. The server
is an executable �le (.exe) that runs on newer Windows operative systems on
a computer that has NX 8.5 installed. The client is an executable �le (.exe)
and can be run on newer Windows operative systems and only need to have
a program that can view JT �les. A JT viewer such as JT2GO or any major
CAD system can be used to view JT �les.

The server needs to use batch �les, visual basic text �les and command
prompt. The client needs to know the IP address of the server. Both the user
system and the server system need to have the address and credentials of the
FTP Server.

2.6 Overall System Requirements

The overall system requirements for the application are de�ned by the scope,
requests from adviser and the needs discovered while working on the thesis. In
Chapter 8 this table will be revisited to see the status of the requirements in
Table 2.2.

14

Requirement

1 The system should showcase possibilities
for di�erent types of input in the GUI

2 The system can update CAD models

3 The system should be generic and
can be used on any model

4 The system should be able to update
di�erent kinds of parameters

5 The system can use pre-de�ned standard
dimensions on models (ISO standards)

6 The system doesn't require CAD experience to use

7 The system can export updated
CAD models in selected format

8 The NX window is never opened in the process

9 The system should store the result �le
on the user's system

10 The server can handle multiple requests
from users without being restarted

11 The system should be faster
than modeling the part from scratch

12 The client solution should be made as a web site

13 The system does not require NX installed
or licensed on the client

Table 2.2: Overall system requirements

15

Chapter 3

File Formats for Visualization

3.1 Overview

This chapter will discuss some of the di�erent �le formats NX 8.5 can export to
�gure out what format is optimal for visualizing NX-models.

Below is a list of the �le formats that NX can export [16]. The interesting
formats for this thesis are JT, Part �les and STEP.

DWG
DXF
IGES
JT

Parasolid
PROE

SolidWorks
STEP
STL

Part �le

Table 3.1: File formats that NX can export

In addition to the formats NX can export, it is possible to use the 3D PDF
format to visualize 3D models by converting JT �les. The table below shows
the four formats that were studied for this thesis and their uses [17].

16

File format Use

JT 3D Visualization Format

Used for collaboration
No need to undergo multiple translation cycles between
di�erent systems
Once exported it can be used by other CAD systems
Translators available for all major CAD systems

STEP Data Exchanging Format

Used for communication and �le transfer
Transfer all data from one CAD system to another CAD
system
Turned into a proprietary format before being used again

3D PDF Document Format

Used to enable 3D content in PDF documents
NX Part File NX File Format

Used for modeling

Table 3.2: Use of �le formats

Firewire's Custom Board Design uses the JT �le format in collaboration with
Anark Core Server to create a customized 3D PDF �le of the custom board that
includes the 3D solid model of the base design and all the exact dimensions. In
this model it is also possible to compare the customized board to the stock board
that they changed. To visualize this they use selective translucency so the user
can get a feeling of what has been changed compared to the stock model[2].

3.2 JT

JT is the world's most widely used 3D �le format for Product Lifecycle Man-
agement (PLM) [13]. It is the �rst 3D visualization format to get an ISO
International Standard. It is a compact and accurate format that is used to
communicate the very important design information that typically only can be
found in a CAD �le.

Siemens PLM software customers rely on JT to be the most robust 3D
visualization format available today [13]. It can be used to show both CAD �les
and FEM analyzes.

The JT �les are compact and small in size compared to other formats which
makes them suitable for viewing �les on laptops and to be uploaded and down-

17

loaded from online servers. �JT format is an industry focused, high-performance,
lightweight, �exible �le format for capturing and re purposing 3D Product Def-
inition data that enables collaboration, validation and visualization throughout
the extended enterprise� [13].

JT requires a viewer such as JT2GO or a CAD program to be viewed.
JT2GO is free and can easily be downloaded from �Siemens JT Open� [6] and
there are no need to undergo any translation cycles when the �les are viewed in
di�erent systems [17]. Once the JT �le is exported by NX it can be viewed in
all major CAD systems.

3.3 STEP

STEP stands for STandardized Exchange of Product model data. �STEP is
intended to provide industry wide descriptions of engineering systems� [18].
STEP �les are used when CAD �les needs to be transferred from one CAD
system to another CAD system, e.g. from NX 8.5 to Autodesk Inventor. To
be able to be viewed in several di�erent CAD systems the STEP �les needs to
communicate as much information as possible which leads to large �les that are
not suitable for simple visualization purposes. As all CAD systems have di�erent
methods of using the di�erent �le types, the STEP �les are transformed to a
proprietary format before it is ready to be used again.

3.4 3D PDF

3D PDF is a way to share 3D models so that they can be viewed on any computer
that has Adobe Acrobat Reader installed. The document-centric outputs are
interactive, meaning you can zoom and rotate the model inside the document
[19].

Creating 3D PDF �les are not as easy as creating the other �le formats.
Anark Core Servers delivers a package that makes this possible and after an
email exchange with the Norwegian Supplier �In�nity Innovations� the price
of the package was estimated to be 6500 NOK for the package of Anark Core
Servers and Adobe Acrobat Pro XI. The email can be found in Appendix E.

18

3.5 NX Part Files

A NX part �le can contain information such as a 3D model, a 2D drawing, or
NX CAM mode programming.

It contains all the information needed for the model to be viewed and edited
in NX but it can not be transferred to any other CAD system. Other programs
can be used to view the NX Part �les but this is not the focus of this thesis [20].

3.6 Chapter Discussion

As described in the previous sections each of the four studied �le formats have
di�erent uses. JT is for visualization, STEP is for exchanging data, 3D PDF
is for documents and NX Part �les are used for modeling, 2D documentation,
simulations and CAM programming.. All the formats have the possibility to
show a 3D model and 3D images exported by NX but for the purpose of this
thesis the JT format should be used for visualization. This was decided because
both the literature study and conversations with employees at Summit showed
that the JT �le format is best suited for visualizing NX models. 3D PDF �les
can be easier to read but the document format makes the model unable to be
used again by another program while the JT �les can both be viewed and later
used in other systems.

With JT �les users can create a mock up of a model. This means that
engineers can validate that products don't interfere with each other before a
prototype is made. This is often used in large assemblies such as oil rigs where
there can be several thousand parts in an assembly. In these assemblies the �le
size of each �le is important because of the computing power needed to view all
parts. The JT �les created from the Web Based Customizable Design program
will be able to be put directly into such an assembly.

19

Chapter 4

Importing, Updating and

Exporting in NX

4.1 NX Open API

�Open API is a collection of routines that allows programs to access and a�ect
the NX Object Model� [21].

To be able to do changes to a model in NX without manually pressing the
buttons in the interface changes must be made through the NX Open API
(Application Programming Interface). �Open API is a collection of routines
that allows programs to access and a�ect the NX Object Model� [21]. An API
can be viewed at as the �backdoor� to NX and is the interface that users need
to access to make custom features for NX. The NX Open API has great support
for .NET programming languages such as VB (Visual Basic) and C# (C sharp).
In this thesis the programming was done in VB.

There are di�erent ways to manipulate NX through the NX Open API. A
program can be coded through a NX Open API Wizard in Visual Studio 2008
(Not supported in newer versions of Visual Studio) or compiled as a standalone
program. Macro �les can be used to manipulate models in NX and do FEM
(Finite Element Method) simulations but this was not the focus of this thesis
and will not be studied. Another option is to make a Journal �le in NX and
modify it so that NX compiles the �le internally.

20

4.2 Importing, Updating and Exporting Results
in NX

Manipulating data in NX can be done in several di�erent ways. This section
will discuss some of these ways.

4.2.1 NX Open API Wizard

In Visual Studio 2005 and 2008 there is a an application wizard that developers
can use to program extension addons or plugins. This doesn't work for the
newer versions of Visual Studio. This wizard helps with generating much of the
code that is standard in every extension to NX. An application wizard can be
described as a guide through a set of steps that the user have to go through.
This is usually set up as a sequence of dialog boxes where the user get several
options, or yes/no options of what code he wants generated. Using a wizard
is great for getting some of the standard code that every program needs that
either is trivial or infrequently used and it is great for linking the program to
the NX Open libraries that are included in the NX install folder. The NX Open
libraries are what make the compiler able to understand NX-speci�c code.

Extensions or plugins created by the NX Open API Wizard can either be
compiled as a stand alone program and run as an .exe �le or compiled directly
in NX by creating a custom button that runs a script.

Appendix D goes through some of the most important commands created
by journal �les for this thesis and describes what their function is. This is the
same type of code that is used in applications coded through the NX Open API
Wizard.

4.2.2 Macro

When a user sets up a macro it sets up a sequence of commands that will be
executed every time someone runs the macro �le [22]. This could also be used
for this purpose, but macro �les generate source code that is very di�cult to
understand and records every mouse-click and keyboard button clicked during
the recording of the macro. This makes it a bad candidate for this thesis because
it is hard to �nd what part of the code is relevant for the developer. Figure 4.1
shows a screen shot of some of the code generated by macros just to give an
example of how hard macros are to work with.

21

Figure 4.1: Macro code example

4.2.3 Journal

Journal is a tool in NX that allows a user to automate routines and is described
in Chapter 5. Section 5.4 �Journal� goes through the steps a user have to go
through to record and edit a journal while Section 5.3 �Model� goes through
the functions used in journaling for this thesis. Figure 4.2 shows what journal
code in Visual Basic looks like and it is easier to work with and understand
than macro code because it the Visual Basic programming language as output.
Journaling does not cover as many functions in NX as macros but covers all the
necessary functions needed for this thesis.

Figure 4.2: Journal code example

22

4.3 Chapter Discussion

It was decided to use journaling because it was a good way to learn how to access
the NX Open API and it was compatible with the needs of this thesis to create
an application to customize a 3D model. It generates all the code needed for
this application and only small parts of the code needs to be changed and those
parts are easy to �nd in the �le. The choice to not use macro �les was made
because they create a lot of unneccessary overhead information (such as mouse
clicks) which makes it hard to �nd the relevant information. This is especially a
big hindrance if the developer is new to programming in NX. Actions performed
in PTS are not recorded by journal �les and PTS was therefore not used for
this thesis.

For a developer to understand the NX Open API he can simply perform an
action while recording a journal �le and review the journal �le later to see what
was added. This would be much harder to do using macro �les.

23

Chapter 5

Process Description

5.1 Overall Process Description

This chapter will describe the process a model goes through. The �ow charts
in this thesis are made with a top-down structure which means that the �rst
�ow charts shows the major steps from a birds-eye view while the following �ow
charts goes more into detail about the di�erent programs and environments.

The process starts with opening NX to create and design the model, modify-
ing it in the journal �le and �nally customizing it in theWeb Based Customizable
Design application. Figure 5.1 is a �ow chart with an overview of the process
of a model. The di�erent colors describe what is going on in di�erent programs
or environments.

24

Figure 5.1: Flow chart of the process description

25

Some of the tasks in the process description are there to show what is done by
the developer of the software while some are there to show what the application
does. Figure 5.2 shows this by framing the actions performed by the developer
and the actions performed by the application.

Figure 5.2: Actions performed by developers and actions performed by applica-
tion

26

5.2 NX

5.2.1 Overview

This section will describe what is done by the developer and what is later done
by the application in NX. Figure 5.3 is a �ow chart with an overview of the
process in NX. The di�erent sections describe what is done by the developer
and what is done by the application.

27

Figure 5.3: Flow chart of the process in NX

5.2.2 Modeling

At the start of the process NX is opened and a model is created and modeled
by the developer as described in Section 5.3 called �Model�.

28

5.2.3 Run Journal

Running the new journal is done at a later stage in the process as can be seen
in the overview �ow chart in Figure 5.1. Running the journal is done by calling
a cmd prompt command window and using the run_journal function to run the
new journal created by WBCD. A more detailed description can be found in
Section 5.4.6.

5.2.4 Update Model

When the user runs the journal the model is automatically updated by NX to
the new values selected by the user in the Web Based Customizable Design
application.

5.2.5 Export Model

The user selects the wanted format to export the model in and chooses what
location to export the model to. It is exported in the selected format to the
selected location by NX. In this thesis the JT �le format is used as export format
because this was �gured out to be the best visualization format in Chapter 3.

5.3 Model

5.3.1 Overview

This section describes the actions done by the developer in the modeling and
sketching environment in NX. Figure 5.4 shows a �ow chart of the tasks done
by the developer when modeling and recording the journal �le.

29

Figure 5.4: Flow chart of the modeling in NX

30

5.3.2 Create Model

The �rst step is to create the model you want to be able to customize.

Figure 5.5: Flange model from NX

For this thesis a simple model of a �ange that can be used to seal connection
between pipes was created. It was chosen to get a model that was easy to work
with and that was not too complex while still having several di�erent parameters
that can be changed.

31

5.3.3 Name Expressions

To identify the important parameters and easily be able to understand what
they control they should be named according to their function. For this thesis
5 expressions were named and these control the 5 parameters it is possible to
customize using the Web Based Customizable Design application.

Figure 5.6: Named expressions in sketch

Figure 5.6 shows how it is possible to name the expressions with names that
describe the function. In this �gure expression p0=outer_diameter describes
the outer diameter while p1=inner_diameter describes the inner diameter. The
Ø in front of the expression name is to show that the dimension is a diameter.

32

Figure 5.7: Named expressions in a list

Figure 5.7 shows a list of all the named expressions used in this thesis.

33

5.3.4 Create Design Rules

The model needs to have a set of rules as to not break the design intent. These
rules can for example be that inner diameter has to be smaller than outer diam-
eter and that the hole diameter has to be smaller than the di�erence between
outer diameter and inner diameter.

Figure 5.8: Design rules for hole placement

An example used in this model is that the holes should be placed centered
between the inner- and outer diameter. By using the named expressions for these
parameters we ensure that when the diameters are changed the hole placement
is updated accordingly. The formula used to decide hole placement is shown
below where DHoleP lacement =the diameter for hole placement, Dinner =the
inner diameter and Douter =the outer diameter.

34

DHoleP lacement =
(Dinner) +

(
Douter−Dinner

2

)
2

Figure 5.9: Hole placement formula

At this point in the process the use of Product Template Studio could be
implemented, but testing showed that changes made in PTS wasn't recorded in
the journal �les and for that reason it was decided not to use PTS to create
rules for the model in this thesis.

5.3.5 Change Expressions

Before doing this step it is important to start recording the journal as described
in Section 5.4.

To make it easy to �nd the parameters you want to be able to change you
should name them with describing names that are easy to �nd. In the table
below one can see the name and units of the expressions in the model.

Expression name Unit

�ange_thickness mm
hole_diameter mm
inner_diameter mm

number_of_holes
outer_diameter mm

Table 5.1: List of important expressions in model

To change the parameters in the important expressions you can access them
by going to Tools -> Expressions (Ctrl + E). This will bring up the list be-
low where you can see the expression names, values and units [23]. For the
expressions to be recorded in the journal �le you need to change the value of
the expression. It doesn't have to be changed to the correct value as this can
be �xed in the journal �le later but it has to be changed into another number.
The units are important because NX creates code in the journal that speci�es
the unit. The unit �mm� is millimeters and the blank �eld is a constant with
no unit.

35

Figure 5.10: Changing the value of an expression

36

5.3.6 Choose Export Format

Save the �le and export it by going to (File -> Export -> Select format) in the
wanted format. For this thesis the JT �le format is selected.

Figure 5.11: Export JT �les

It is important to select �As a Single File� under File Contents in the Or-
ganize JT Files �eld. This ensures that the geometry is saved in the JT �le
without depending on the .prt (part �le) of the model. This makes the �le
monolithic so that it can still be easily viewed after being downloaded from a
FTP server.

37

Exportable �le types

JT
Part

Assembly
STEP
FEM
SIM

Image (.png, .jpeg)
PDF

Draftings

Table 5.2: List of available export formats from NX

Table 5.2 shows some of the �le formats that NX can export. There are
other �le formats that are possible to export but these are not mentioned as
they are not in the scope of this thesis.

5.4 Journal

5.4.1 Overview

This section describes the steps needed to create a journal �le with NX and edit
it.

38

Figure 5.12: Flow chart of tasks for Journal

39

5.4.2 Record Journal

A journal �le is created when you click �Record Journal� in NX. A journal is
like a log of every tool or function you use in NX and is stored in a text �le. You
can run the journal �le at a later time and NX will perform the same actions
again. It is important to start the journal recording before you open the �le you
are using so that NX knows what �le you want to work on. The journal menu
isn't available by default in the NX start up window but by right clicking the
banner and selecting �Journal� you can make it available. The �Record Journal�
button is located at (Tools -> Journal -> Record).

After the model is opened the user has to go through all the steps he would
do every time he want to change something in the model. Change all expressions
that you need to be able to change because this creates a reference to them in
the journal �le. This is what makes it possible to change the parameters of the
model at later stages in the process.

Journal �le can be exported in Visual Basic and C# but in this thesis Visual
Basic is used (.vb �le extension) as this is the same programming language as
the Web Based Customizable Design application is created in.

Further possibilities when recording journal �les

It is also possible to do more advanced operations via the journal �les such as
simulations in NX Nastran and create CAM production �les so that the paths
for a CNC machine can be created automatically for production [2].

In the programming for this thesis the names of the expressions are hard-
coded, meaning that the names are physically coded and if e.g. an expression
name is changed the program will not work anymore. It is possible to research
the use of the export expressions tool from �Tools -> Import and Export Ex-
pressions� to �gure out ways to avoid this Generalproblem.

40

Figure 5.13: Importing and exporting expressions in NX

When exporting expressions an Excel �le is created at the selected output
location. This Excel �le can be opened and variable names, values and units
can be extracted as viewed below.

Figure 5.14: Exported expressions in Excel

Only the named expressions will be exported in the Excel �le.
Custom Board Design (discussed in Section 1.2) exports information such as

the volume of surfboards which is hard to calculate manually. The same method
can also be used to export information on volume and weight of models which
can be useful to e.g. calculate price and amount of materials needed.

These operations are not in the scope of this thesis but are mentioned because
it showcases some additional possible uses of the application.

41

5.4.3 Stop Recording Journal

After going through all the necessary steps in NX press the stop record button
to stop recording the NX session save the journal text �le.

Operations performed before stopping the journal:

• Record Journal

• Open part �le

• Change expressions

• Save �le

• Export JT �le

5.4.4 Open in Text Editor

By editing parameters in the journal �le the Web Based Customizable Design
application is able to change the parameters of a model. To be able to �nd the
location of the expressions and �le paths of the model the journal �le must be
opened in a text editor such as e.g. �Notepad�, �Notepad++� or Visual Studio.
In this �le we can see the code generated by NX when recording the journal
�le, and the language it is coded in is the language selected when recording the
journal. Much of the code is not interesting when the only thing to be changed is
the values of some expressions but the rest should not be removed as NX needs
it to repeat the process. A description of the most important commands found
in the journal �le can be found in Appendix D. For more detailed information
on the classes check the �NX85 NXOpen .Net API Reference� [24].

5.4.5 Locate Expressions and File Paths

When the journal �le has been opened in the text editor the expressions that
were changed when recording the journal can be found by either searching for
the expression names or by scrolling through the document.

Figure 5.15: Changing the value of an expression example code

42

Figure 5.15 shows an example of what the code looks like when the expression
for ��ange_thickness� is changed. It is worth noting that also the unit of the
expression is declared. Similar code is created for the other expressions that
were changed during the recording of the journal �le.

Figure 5.16: Code showing �le path of exported JT �le

Figure 5.16 shows the line of code where the location of the output �le in
the JT format is saved. This is useful because this location is important for
handling the �le after it is exported.

5.4.6 Running a Journal File

There are two ways to run a journal �le. The most common is to use the user
interface in NX and play it by going to Tools -> Journal -> Play and selecting
the journal �le. The other option is to use a command prompt to start NX by
the command �run_journal�.

Run_journal is a command that is used to start a journal �le without start-
ing the NX user interface but perform the action in windowless mode. To execute
the command the command prompt must change directory to the install folder
of NX to be able to reach the UGII.bat �le which starts NX. Run_journal is
followed by the �le path of the journal �le.

To use the run_journal command a batch �le was created. This batch �le
�rst changes directory to the NX install folder and then running the journal.
Figure 5.17 shows the command prompt that is started by executing the batch
�le.

43

Figure 5.17: Run journal in command prompt window

Figure 5.18 shows the batch �le used to run the journal �le.

Figure 5.18: Run journal by batch �le

44

5.5 Web Based Customizable Design (WBCD)

5.5.1 Overview

This section will only give a short overview over what the WBCD does without
going into detail about how it does it. WBCD uses socket programming to be
able to send information between two computers. Chapter 6 will go into detail
of how the WBCD works.

45

Figure 5.19: Flow chart of tasks for Journal

46

5.5.2 Import Journal

WBCD imports the journal �le that was recorded earlier to be able to make
changes for it.

5.5.3 Search for and Replace Expressions

WBCD uses the expressions the user located in the journal �le to �nd and
change the values to what the user has set as inputs in the application.

5.5.4 Write New Journal

After the values of all expressions have been replaced the application creates a
new journal �le by writing to an empty text �le and saving it as a .vb �le. You
can run the new journal �le in NX to update and export the model

5.5.5 Open Model

After the new journal �le is sent to NX and the model is updated, a JT �le is
exported and WBCD opens it so the user can see the result.

47

Chapter 6

Web Based Customizable

Design Application

6.1 Client-Server Architecture

The Web Based Customizable Design (WBCD) application is based on the
client-server architecture . A client is the computer or application that re-
quests a service from the server [25]. A server is a program that can operate
as a socket listener and clients can send requests to the server via IP (Internet
Protocol) [26]. When a connection request is sent from a client program the
server program creates a TCP (Transmission Control Protocol) socket connec-
tion. TCP is a secure way to deliver ordered and error-checked packets between
computers connected to each other via the internet[27]. This connection makes
the programs able to send bytes back and forth to communicate with each other.
Each time a client connects to the server it is assigned a number to identify the
session.

48

Source: [25]

Figure 6.1: Client-server architecture illustration

The server application was made as a Windows Console Application so that
it can be listening for connections on a speci�ed port. It can be visible for
the user and programmed so that the status of the process is shown in the
console window or running in the background as a hidden process. The server
application is located on a machine that can run NX in windowless mode (hidden
for the user) when the program is running. As long as the server is running it is
listening for connections from client programs on a speci�ed port number. For
this program the port number is 8888. The server uses multi-threading to be
able to handle requests from multiple clients. �Multi-threading is a widespread
programming and execution model that allows multiple threads to exist within
the context of a single process� [28].

The client application was made using the Windows Form Application in
Visual Studios 2008 which makes it possible to easily make a user interface
where the parameters of the customization can be entered.

49

Figure 6.2: Flow chart of tasks for Client and Server

50

6.2 Client

6.2.1 Graphical User Interface

The client application is the part of Web Based Customizable Design the user
sees. A GUI (Graphical User Interface) was created to make the customer
able to easily customize the parameters. The GUI includes an image of the
�ange that can be customized to give the user an idea of what the model looks
like. It was designed in Visual Studio 2008 using a Windows Form Application
template. Figure 6.3 shows a snapshot of the Web Based Customizable Design
client application. The source code for the client application can be found in
Appendix B.1 and the source code for the design can be found in Appendix B.2.

Figure 6.3: Graphical User Interface of Web Based Customizable Design

The GUI has several text boxes or drop-down lists where the user can input
selected parameters. In the text boxes the user manually types the numbers and
in the drop-down lists the user selects the numbers or other alternatives from
the list. The di�erent methods of inputs were added to the GUI to show some of
the possibilities for limiting inputs. Figure6.4 shows the options for the �Flange

51

Type� drop-down list where the user either can select �Custom �ange� or some
per-made �anges with ISO standards. When selecting the ISO standards the
numbers in the text boxes will automatically update to the numbers speci�ed
in the ISO standard so the user can see the exact numbers. The ISO standards
used are discussed in Section 6.2.2.

Figure 6.4: Selecting �ange type in Web Based Customizable Design

The regular text boxes have built in rules for the numbers that are entered
into them. When numbers that break the rule is entered the application will
display a message box that says what rule is broken. Examples of these rules
are that e.g. �Outer diameter has to be larger than Inner Diameter!� such as
shown in Figure 6.5.

Figure 6.5: Design rules in Web Based Customizable Design example

Other rules included in the model will give the following error messages:

• Number of Holes cannot be larger than 12

• Number of Holes cannot be smaller than 1

52

• Hole Diameter must be smaller than 16 mm

• Hole Diameter must be larger than 1 mm

• Select Number of Holes (if nothing is selected in the �Number of Holes�
drop-down list)

• Select Flange Type (if nothing is selected in the �Flange Type� drop-down
list)

Other rules can be added, but the rules above were selected to show some of
the possibilities to limit inputs. To show the range of the inputs simple labels
can be put next to the text boxes and drop-down lists so the user easily can see
what his possibilities are. This has not been implemented in the solution but
Figure 6.6 shows an example of how it could be done.

53

Figure 6.6: Adding range labels in GUI

The �Send Parameters� button sends the selected parameters to the server
and waits for a conformation before downloading and opening the JT �le. The
�Exit� button shuts down the client.

6.2.2 ISO Standards for Example Flanges

To show that it is possible for the application to have pre-made examples of ISO
standard �anges available in the client application three examples were made.
The examples can be selected from the �Flange Type� drop-down list.

54

The examples used in this program are some of the ISO Socket Weld Flanges
from �A&N Corporation ISO �anges and �ttings� [29]

Figure 6.7: A&N Corporation ISO-LFB Socket Weld Flange

The following pre-made �anges were implemented in the model as examples
[29].

ISO LFB LFB63- LFB80- LFB100-
Socket Weld Flange 250-SF 300-SF 400-SF

inches mm inches mm inches mm
Flange Thickness 0,5 12,7 0,5 12,7 0,5 12,7
Hole Diameter 5/8 16 5/8 16 5/8 16
Inner Diameter 2,5 63,5 3 76,2 4 101,6
Number of Holes 4 4 4
Outer Diameter 3,74 95 4,33 110 5,12 130

Table 6.1: Pre-made LFB Socket Weld Flanges

55

When implementing the ISO standard �anges the model was already �nished
and wasn't complex enough to accurately depict the ISO �anges so the �anges
found in the application are as close approximations as possible with the models
complexity. Even though they are not exact models it shows that it is possible
to have pre-parametrized options the user can select. Figure 6.8 shows what the
output from the ISO standard �anges looks like. Note that the scale of the �rst
and second �ange is di�erent than what it appears in the �gure because scale
is poorly visualized in JT2GO. However the user can take simple measurements
in JT2GO like length and diameters to control the scaling.

Figure 6.8: Results from WBCD using ISO standards

56

6.2.3 Sequence List of Client Application

Figure 6.9: Sequence list of Client Application

57

Open Client GUI

When the client is opened it sends a connection request to the server on a
IP address and port number speci�ed in the program. If accepted a socket
connection is created between the two applications. This connection allows the
client to declare a network stream so it can send bytes to the server and receive
bytes from the server.

Change Inputs in GUI

When selecting any of the pre-made ISO standard options from the �Flange
Type� drop-down list the rest of the values in the text boxes below will change
to the values of the ISO standard. This gives the user the possibility to see the
values of the ISO standards.

Click �Send Parameters� Button

This button controls the main function of the application. When this button
is pressed the application executes its main functions. The session number is
increased to match the request count in the Server Application. The parameters
in the text boxes and drop-down lists are read and the values are checked. The
parameters are �nally sent as bytes to the Server Application.

Wait for Response from Server Application

The Client Application listens on port 8888 for a response from the Server
Application.

Receive and Check Response from Server Application

When a response is received from the Server Application the message is checked
to see if the request number at the end of the message is equal to the session
number that was set when the user clicks the �Send Parameters� button. If the
numbers match, the application knows that the Server Application is �nished.

Download and Open JT File from FTP Server

When the con�rmation is received and checked the Client starts to download the
JT �le from the FTP server where the Server Application uploaded it. When
the �le is �nished downloading it is stored and opened on the user system. The

58

�le is opened in the default reader for JT �les on the user system. Figure 6.10
displays examples of the results possible with the WBCD application.

Figure 6.10: Customized �ange examples

59

6.3 Server

6.3.1 Server User Interface

The server application is programmed as a Windows Console Application in
Visual Studio 2008. This means that it has a text based user interface which
runs in a console window on the server. When the server is running the user
interface will look like Figure 6.11. The text lines displayed in the console
window are not important for the application, but are there to give the user
administrating the server application the possibility to see what requests are
made. If an error occurs he can �nd the reason for the error by seeing what the
latest displayed text line was.

Figure 6.11: Server Console Window

When the Server Application is running it is possible for di�erent Client
Applications to connect to it and the same Client Application can connect to
the server several times to get several di�erent models. The source code for the
WBCD server application can be found in Appendix B.3.

60

6.3.2 Sequence List of Server Application

Figure 6.12: Sequence List of Server Application

61

Opening Server Application

When opening the server application it starts to listen on the speci�ed port
for incoming connections from clients on the local IP address (meaning the IP
address of the computer the server is running on). The user interface displays
that the server is listening on port 8888 so all connections to the local IP ad-
dress on port 8888 will be addressed by the Server Application. As long as the
application is open it will listen for incoming connections.

Receive Connection from Client Application

When a Client Application sends a connection request to the Server Application
and the request is accepted it allows a TCP session to be created. The connec-
tion request is sent from the Client Application when it is opened. The server
then assigns a number to this session to be able to identify it from other sessions.
The message �>�>Client No:1 started!� is displayed in the console window.

Listen for Incoming Bytes

When a connection is made the server starts a Network Stream which is listening
for messages sent from the Client Application. When a message is received it
is in byte format and needs to be encoded to ASCII format to be readable as a
text string.

Handle Incoming Message

The text string is displayed in the console window as �>�>From Client: 5,8,40,4,80�
where the numbers 5, 8, 40, and 80 is the values that were selected in the Client
Application GUI. These values are sent in a speci�ed order so the Server Appli-
cation knows which number is for which parameter. The values are separated
by a comma in the text string and are separated by parsing the string between
commas.

62

Position Parameter name Example value

1 Flange Thickness 5
2 Hole Diameter 8
3 Inner Diameter 40
4 Number of Holes 4
5 Outer Diameter 80

Table 6.2: Parameters received from client

Table 6.2 shows the ordering of the values that are sent from the Client Ap-
plication to the Server Application and the values that are used in the example.
Values will vary as the input values vary.

After the values are connected to each parameter they are added to an array
(almost like a list) and the message �>�>Splitting received data array to strings�
is displayed.

Search for- and Replace Parameter Values

Search strings are created for the server to know what to replace. Search strings
are found in the journal �le and are the code generated when changing the values
of expressions.The string that replaces the search string is called a replace string.
A message saying �>�>Declaring search strings and replace strings� is displayed
in the console window.

Figure 6.13: Search string and replace string examples

Figure 6.13 shows an example of a search string can be seen, named search-
StringFlangeThickness, and a replace string, named replaceStringFlangeThick-
ness. The text ��\d�� makes the search string independent of a speci�c number
(integer) in the journal text string so that any number can be used. This will
ensure that a change in the journal �le will not cause errors. The �& str-

63

FlangeThickness&� text takes the value for Flange Thickness that was received
from the client and puts it in the right place.

When the incoming message is handled and strings are declared the journal
text �le is imported to the application. It reads the journal text �le to a string.
The new values received from the client are inserted where the old values were
in the journal �le.

Write New Journal File

After all values are replaced a new journal text �le is created. This �le is separate
from the old journal �le to avoid overwriting it. A message saying �>�>Replaced
values and wrote new �le at newJournalFilePath� is displayed in the console
window where �newJournalFilePath� is the �le path of the new journal �le.

Run Batch File

The next step is to run a batch �le. Using a batch �le the server can start a
command prompt (cmd prompt) window where it can change directory to the
NX install folder and use the run_journal command to execute the updated
journal �le. The text in the batch �le can be seen in Figure 6.14. The text after
�rem� is remarks and will not be executed.

Figure 6.14: Batch �le used to run Journal �le

After the Batch �le is started the server displays the following messages
">�>Batch �le started"
">�>Customizing design"
">�>Exporting JT �le"
After this the Server Application waits until the run_journal process passes

back an exit code which lets it know that the process is �nished. After this
message is received the command window displays ">�>Batch �le �nished".

64

Run Journal

The batch �le executes the run_journal command in the NX install folder.
This command starts a NX 8.5 session where it runs the journal �le described
in Section 5.4 �Journal�. When using this command the command prompt runs
NX in a windowless mode which makes the process save time. The output of
the journal �le is exported as a JT �le for visualization of the new model. When
the journal �nishes the batch �le is stopped and sends the exit code needed for
the Server Application to continue.

Upload File to FTP Server

Before starting to upload the exported �le the console window displays �>�>Starting
upload to FTP server�. The server connects to the FTP server by sending a
FTP Web Request and connecting with speci�ed credentials. The FTP up-
load method is based on a tutorial by HowToStartProgramming.com [30]. For
this thesis a FTP server was set up by Summit Systems and its address was
�ftp://ftp2.summit.no/NTNU/MBM�. After the upload is �nished the console
window displays �>�>JT �le uploaded�.

Send Con�rmation of Completion to Client

The console window displays the request count as �>�>rCount1� as this is request
number 1 in the example. For each request from the same application this count
will increase. This count is important because it makes the client able to see
which con�rmation is from which session. The Server Application sends the
message �CUSTOMIZATION COMPLETED1� because the request count is 1.

End Session

Before the session ends the console window displays �>�>End of session���
����� to make a line so an admin can be able to easily separate the di�erent
sessions. After this message is sent the session with the client is terminated and
the server goes back to listening for incoming connections.

65

6.4 Communication With Other Software

The sequence diagram in Figure 6.15 shows how the WBCD application inter-
acts and communicates with other software. A sequence diagram is often used
in computer science to describe how groups of objects collaborate [31]. Each
participant (Client, Server, Batch �le, NX 8.5 and FTP server) has a lifeline
(vertical line) with an activation bar (vertical orange box) that indicates when it
is active. An arrow from one participant to another is a interaction between the
participants. An arrow that returns to its starting activation bar is a self-call
(step that doesn't involve other participants).

Figure 6.15 shows a scenario where a user uses the WBCD application and
describes what happens before he can open the �le on his system.

Figure 6.15: Sequence diagram of communication between software

The sequence is initiated when a user clicks the �Send Parameters� button in
the WBCD client application. The client connects to the server and sends the

66

parameters after checking them. The connection between the server and client
has been described in Section 6.1.

After the server has done its self-calls it starts a process of running the batch
�le. By starting a process that opens the batch �le the server application can
wait for an exit message to know when the batch �le is �nished. This means
that the server is idle while the batch �le is open.

The content of the batch �le can be seen in Figure 6.14. The batch �le
runs the journal �le in NX 8.5 as described in Figure 5.17. After the journal is
�nished the model has been updated and the result exported. The command
window and batch �le now closes and the exit message is sent to the WBCD
server application. The server now knows that the �le is ready to be uploaded
to the FTP server.

The server application connects to the FTP server and uploads the updated
model, and when completed sends a con�rmation back to the client application.
The client application then connects to the FTP server and downloads and
opens the �le to the users system.

67

Chapter 7

Using Web Based

Customizable Design

This chapter will discuss some of the bene�ts a company can get by using the
WBCD application, some of the limitations in the application and the work that
needs to be done to implement the application on a di�erent system.

7.1 Bene�ts

Explicit Inputs Maintains Design Intent. Using a simple graphical user
interface with limited options available will makes the most important inputs
explicit[7]. This will remove many possibilities for errors made by the users of
CAD systems and will help maintain the creator of the model's design intent.

Improves Consistency in Designs. When di�erent employees needs to use
a part that is similar to an already existing part they might start from scratch
and make one in their own way. This will in the end give a large amount of
models that are supposed to be the same but are built in completely di�erent
ways. WBCD will keep the design in CAD models consistent.

Hides Complexity of Internal Model. When working with CAD mod-
els they can easily be very complex and hard to understand, especially when
working on a model created by someone else which is often the case in large

68

companies. The need to understand the design knowledge of the creator of the
model is removed. The complexity of the internal model is hidden for the user
who can only see the simple UI in the WBCD application [7].

Simple UI Accelerates Process. When only presented 5 customizable pa-
rameters the process of changing the values is as quick and e�cient as possible
[7].

Design time can be reduced for products in a product family by quickly
selecting requested features and dimensions.

Productivity Savings From Using Parametric Models. Firewire surf-
boards can by using CBD complete CAD and CAM models that are 98% com-
pleted including CNC tools that only needs some small �nishing touches [2, 1].

Remote Access. As the client application uses the internet to communicate
the server application gives the solution the ability to access a CAD model on
the go which is great for making quick changes. Changes can be performed on
the go by anyone, for example in a meeting and it doesn't require an installed
CAD system.

No CAD Experience Needed. The application can be used by anyone who
knows how to use a computer. No CAD experience is needed which makes the
application perfect for e.g. sales personnel.

Multiple Possible Usage Areas. The application can either be used to-
wards customers, internally in a company or both.

Hides Secret Design Knowledge A company wants customers to be able to
order customized products that are limited by the rules for maintaining design
intent, and they want the results of the design choices to be sent back to the
customers. To avoid sending out a complete, heavy parametric model which
contains the �rms secret knowledge on design intent and details in how the
parts are constructed they can use the WBCD application.

69

7.2 Limitations

As the application is programmed to establish a solution to the problem set in
the thesis, focus has been on completing the process and not on making the
solution robust in every possible way. This has led to some limitations in the
program that will be discussed in this section.

The server application will only work when running on the system it was
developed on. This is because the client uses a static IP address to connect to
the server. The �le paths that link to part �les, JT �les, journal �les and batch
�les are also hard coded for the developing system. These variables can easily
be changed in the developing code by changing the strings for �le paths and IP
addresses.

The user needs to have a CAD system or a JT viewer such as JT2GO [13]
installed to view the result �les.

The application only works for the speci�c model used in this thesis. When
creating the search and replace algorithm the developer needs to �gure out the
expression names used and change the search strings to be able to update the
model.

Only the parameters that are speci�ed in the development of the model can
be customized. Further customization of the model needs to be done in a CAD
system.

The �les are downloaded to a folder speci�ed by the source code and it is not
possible for the user to change the location of the �le. This should be changed
in the implementation of a generic solution.

7.3 Implementation

When implementing the solution on another system or for another model the
entire solution would have to be tailored. This section discusses what needs to
be done if this solution should be implemented for a new 3D model on a di�erent
system, not what should be done when developing a new, generic solution. Fig-
ure 7.1 shows what needs to be changed during implementation of the solution
on a di�erent system. This includes creating new 3D models and changing the
source code for the application to adapt to the new system.

70

Figure 7.1: Implementation changes

71

Chapter 8

Discussion

General

The method needed to develop a generic web based application to remotely
customize a CAD model have been researched in this thesis. Di�erent visualiza-
tion formats had to be studied, along with the programming interface of NX to
understand how to import data, update models, and export the results. A 3D
model with customizable parameters had to be created, designed and used in
PTS. A web based solution to con�gure the parameters had to be programmed.

The result was that a method for remotely customizing a CAD model was
established. The problem stated that a generic solution was the goal, but this
proved to be di�cult to complete in the duration of a master thesis. An example
solution has been created but it is limited to the system it is created on and the
model it is based on. The solution is called Web Based Customizable Design
(WBCD). To be able to use the method on other systems and for other products
further development and customization is needed. Included in the solution is
all of the requested functions for remotely customizing a 3D model. The most
�tting visualization format for this thesis is JT but there are possibilities for
including other export formats when customizing the application. Importing
parameters, updating models and exporting results is possible by accessing NX
through journaling. A guide for creating a model that can be used for the appli-
cation is included in the thesis but the use of Product Template Studio (PTS)
turned out to be excessive because changes made in PTS were not recorded in
the journal �le. The solution programmed consists of a server application run-

72

ning on a machine with NX 8.5 installed and a client application on a remote
device. The user can choose parameters in the GUI and send them to the server
which updates a 3D CAD model via journal �les and uploads the result to a
FTP server. The client downloads the result and opens the �le for the user.

73

System Requirement Status

1 The system should showcase possibilities
for di�erent types of input in the GUI

2 The system can update CAD models

3 The system should be generic and
can be used on any model

4 The system should be able to update
di�erent kinds of parameters

5 The system can use pre-de�ned standard
dimensions on models (ISO standards)

6 The system doesn't require CAD experience to use

7 The system can export updated
CAD models in selected format

8 The NX window is never opened in the process

9 The system should store the result �le
on the user's system

10 The server can handle multiple requests
from users without being restarted

11 The system should be faster
than modeling the part from scratch

12 The client solution should be made as a web site

13 The system does not require NX installed
or licensed on the client

= completed
= partially completed
= not completed

Table 8.1: Overall system requirements status

Generic

Creating a generic solution for this method proved to be di�cult to complete
given the limited time of a masters thesis. To be able to make a generic solution

74

there �rst needs to be developed a solution that later can be improved to be
able to include functions so that it can be used for other models as well. By the
time the development of the method and solution was �nished there was not
enough time to focus on improving the application and therefore the status of
System Requirement number 3 in Table 2.2 is set as �not completed�. Creating
a generic solution using the method described in this thesis is the next step in
the list of further work.

Comparison with CDB

Because the thesis is based on a previous solution by Firewire Surfboards, Cus-
tom Board Design (CBD) it is natural to compare the two solutions. The main
di�erence is that CBD is a web page programmed in ASP.NET while WBCD
is an application programmed in VB which gives the two solutions di�erent
functions and appearances. CBD is also more complex as the user can select
and customize several di�erent stock surfboards where as WBCD only uses one
model.

When deciding how to structure the solution the options were to create either
a web page or a client application to communicate with the server application
that can run and update a NX model. Choosing a web site would mean that
half of the solution would have to be programmed in VBScript or ASP.NET
while the server application would be programmed in VB. Learning to code
in a new programming language is a highly time consuming process. With
almost no experience in creating web sites and the time it would take to learn
a new programming language it was decided to not create a web site but create
an application that would have the same function as a web site. This means
that there is an extra installation process for the client application that would
have been avoided if the website option was selected. This is why System
Requirement number 12 in Table 2.2 is set as �not completed�.

When designing the WBCD client application the focus was on keeping it
simple and intuitive. The design was greatly inspired by the CBD web site [5]
where there is an image of the model to give an impression of what the part
will look like and the customizable parameters are listed next to the image.
It was important to give the parameters disambiguous names like the CBD
web site does so the user easily can understand what parameter controls what
function. The need to understand the design knowledge of the creator of the
model is removed. It will be important to continue in the same style when
implementing the solution for other models by keeping the design simple and

75

the parameter names disambiguous. A possibility can be to have a clickable link
behind the di�erent parameters that links to an image that describes or circles
the parameter.

When designing the server application it was important that it could be
running without needing any interaction and the easiest way to do this was to
create a console application. If the system that is running the server is used for
other purposes (not a dedicated Web Based Customizable Design server) the
console application can be hidden so the server runs in the background. No
information was available about how CBD's server worked and emails sent to
Firewire and ShapeLogic requesting details were never answered.

The server can handle multiple requests from the same client in a row without
being restarted but it crashes if several clients try to connect to the server at
the same time. System Requirement number 10 in Table 2.2 is yellow because
the requirement status is set as �partially completed�.

After requests from Summit Systems the possibility for di�erent type of
input methods were added to the client design to showcase the possibility to
both have text boxes (where the user has to type in the values) and drop-down
lists (where the user selects a value from a list). This meant that additional
checks had to be added to the application to check that the user had selected
values in all of the drop-down lists. Summit Systems also requested that some
pre-made examples were implemented in the solution to showcase the possibility
to have a list of di�erent available designs in a product family in the same model.
This lead to the implementation of the ISO standards of the �A&N Corporation
ISO �anges and �ttings� [29] discussed in Section 6.2.2.

The possibility to choose di�erent starting models in CBD is something
that can be studied further and would bene�t WBCD. This can be bene�cial
if a company has a product family that requires di�erent CAD models to be
used (such as the di�erent stock models of surfboards) but they are so similar
that having both options in the same application is logical. This works in CBD
because all of the surfboards can be customized in the same ways (length, width,
thickness). For this to work for WBCD the selected starting model would have
to decide what customizable parameters should be displayed in the GUI.

The output format from the two solutions are also di�erent. CBD uses 3D
PDF �les because their application is aimed at customers that don't normally
use CAD programs. WBCD uses the JT format because the users are expected
to have the possibility to view these �les either with a free JT viewer such as
JT2GO or a CAD system. The 3D PDF output was researched for the WBCD
but after consulting In�nity Innovations it was decided to be too expensive and
not deemed necessary to complete the application as it has di�erent intended

76

user base. Summit Systems were clear on their recommendation to use JT as
the visualization format for the thesis.

3D Model

At the start of the project there were no requirements to the 3D model that
would be used in the application. The factors that were important were that
the model should be simple, that some of basic design rules were included, and
that there were several customizable parameters. Choosing a �ange was done
to get a model with low complexity that everyone easily could understand and
changes could be seen easily while still having several changeable parameters.
The number of customizable parameters was chosen because it was the number
of parameters needed to make the simple �ange model and it meets the require-
ment to use di�erent types of expressions (millimeters and constants).

Design Rules

The design rules are one of the major bene�ts of using a product con�gurator
such as WBCD. It allows the user to customize the model the way he wants
within the limits of the model without being able to break the design intent
of the model. Implementing design rules can be done in two di�erent ways
and both kinds should be used to obtain the best result. Rules can either be
implemented in the model �le in NX or in the GUI of the client application. The
rules that are implemented in the model �le in NX should be rules that makes
the design unable to break the design intent (e.g. hole size larger than the �ange
diameter) and rules for placing components (e.g. hole placement between outer
and inner diameter) while rules that control for example size of the component
or if all features have been selected can be implemented in the GUI.

The di�erence between the two types of implementation is the point in the
process where they are detected and their consequences. If the rules of the GUI
are broken a message box immediately pops up to notify the user. These errors
are easy to �x by not allowing the process to continue and make the user select
new values and therefore has no large consequences. As many as possible of the
rules needed should be applied in the GUI because these rules are there to make
sure that the design rules in the model �le in NX are not broken. If rules are
broken in the model �le, NX will fail when the application attempts to run the
journal �le. This will cause the application to stop and no result will be created

77

and will give major consequences for the user.

NX Programming Interface

The programming interface in NX is described in the NX 7.5 documentation [21]
but there is no clear guide available on how to start using it. Understanding
how to access the programming interface of NX was done with a lot of trial and
error. After consulting Summit Systems for how to access NX it was decided to
use journaling because it is an good way to generate code by performing actions
in NX without getting all the unnecessary overhead information a macro �le
creates. This allows the user to record a journal, and perform a speci�c action
and then look at the code generated to see what code is connected to the actions.
The reason for not using PTS when designing the model is that it is developed
by an external company and the actions performed are not recorded by the
journal used to customize the model and it is therefore incompatible with the
WBCD solution. Appendix D discusses the code needed for this thesis. One of
the problems encountered when testing the journaling was to be able to export
JT �les and use them in di�erent locations on the system than where it was
generated by NX. By default NX creates a JT �le that references a sub-jt �le
in a folder where the original JT �le is created. If only the JT �le is moved
without the associated sub-jt �le it cannot be opened. By selecting a monolithic
output the JT �le stores all the geometry information and is able to visualize
the model when moved to di�erent systems.

Further Possibilities with Journaling

When recording journals some further possibilities were discussed in Section 5.4.
These were mentioned to inform readers that there are many more possibilities
for making generic solutions by exporting lists from NX and creating methods
that can import e.g parameter names automatically. The choice to not focus
on these methods was made because this would branch out from the goal of
establishing a method for customization of parameters, so even though it would
bring interesting aspects into the thesis it was not prioritized.

78

Flow Charts

When describing the method using �ow charts it is di�cult to explain every-
thing in a single �gure. Therefore the top-down approach has been used to
focus on the current working environment to give more detailed �ow charts in
the later chapters.

Creating a Generic Solution

A generic solution should be able to use di�erent 3D models and change di�erent
parameters. To be able to create this the developer needs to �nd a way to create
a dynamic user interface that adapts to the model selected by updating image
and the available customizable parameters. A set of parameterized 3D models
with associated journal �les must be created for the di�erent products in the
generic solution. It is important to include information on which model the user
selected in the client in the message sent to the server so the server knows what
model to update and what journal to use.

Journaling works great for updating simple 3D models but when they start
to get very complex there might be a need to use other methods of updating the
models. The developer should research the possibility to use macro �les instead
of journaling so Product Template Studio could be included if that is required.

The developer of a generic solution would need knowledge on parametrization
of 3D models in NX and programming skills in Visual Basic (including socket
programming). Developing a new solution can either be based on the WBCD
application source code or started from scratch and only consulting the source
code to see what methods was used. It would be recommended to start from
scratch if the goal is a generic solution but using the WBCD method.

79

Chapter 9

Conclusion and Further Work

9.1 Conclusion

This thesis explains the method for making a web based application to remotely
customize a CAD model. A method for creating a 3D model and recording a
journal to be able to change parameters has been described. An application
has been created that is able to remotely customize 3D models to show that the
method works. The application works on the system it was developed on and the
model it was developed for but further work is needed if it is to be implemented
on other systems. The solution consists of a server that runs on a system with
NX installed that can update the model with the requested parameters sent
from a user through a client application.

Di�erent �le formats for visualizing CAD models and how to access the
programming interface of NX have been studied. Methods for importing data,
updating models and exporting the results have been developed using expres-
sions and journaling.

Bene�ts from the application includes maintained design intent in CADmod-
els, reduced modeling time, gives remote access and removes the need for CAD
experience and training for the end user.

The purpose of the thesis has been achieved by developing a method and
creating a solution. Contacting companies after �nishing the solution was not
completed because of limited time.

80

9.2 Further Work

The focus of this thesis was to �nd a method for the problem, not to create
a robust solution. Therefore the next step is to create a robust solution using
the methods described in the thesis with a focus on being able to customize it
for di�erent CAD models with di�erent parameters, making it a more generic
solution. This includes researching the possibility to record functions used in
Product Template Studio with macro �les for more complex models.

Creating a web site instead of the client application is the next step to make
the solution easily accessible for the user and remove the installation process.
This also means that there is a possibility to use the solution in a web shop
where customers can customize products themselves.

A real implementation for a speci�c customer requirement would possibly
add some complexity to the solution, as other requirements could be introduced.
Speci�c naming of �les, feedback to the company who and when a customer
downloaded a part, or other functionality that customers would look for in such
a solution.

81

Bibliography

[1] Bruce Pettibone. Siemens looks at �rewire's cbd. Available at: http:

//vimeo.com/42175880, 2011.

[2] Bruce Pettibone. Serving up engineer-to-order surfboards.
Available at: http://www.knovelblogs.com/2011/10/04/

ec-serving-up-engineer-to-order-surfboards/, 2011.

[3] SiemensPLM. Case study - nx cad tehcnology drives custom
surfboard design. Available at: http://www.plm.automation.

siemens.com/no_no/about_us/success/case_study.cfm?Component=

123472&ComponentTemplate=1481, 2011.

[4] Nev Hyman. Nev discussing the custom board design (cbd) platform. Avail-
able at: http://vimeo.com/42239207, 2012.

[5] Firewire. Custom board design webpage. Available at: http://custom.

firewiresurfboards.com/, 2013.

[6] SiemensPLM. Jt open. Available at: http://www.plm.automation.

siemens.com/en_us/products/open/jtopen/, 2013.

[7] Summit Systems. Introduction to product template studio (pts) author
(nx7.5). Course catalog, April 2010.

[8] Issac. Multi threaded server socket programming in vb.net. Available
at: http://www.java-samples.com/showtutorial.php?tutorialid=

1064, 2013.

[9] SiemensPLM. What is plm software? Available at: http://www.plm.

automation.siemens.com/en_us/plm/index.shtml, 2013.

82

[10] Wikipedia. Visual studio. Available at: http://en.wikipedia.org/wiki/
Visual_Studio, May 2013.

[11] Microsoft Developer Network. Visual studio resources. Available at: http:
//msdn.microsoft.com/en-us/vstudio/cc136611.aspx, May 2013.

[12] Microsoft Developer Network. Consoles. Available at: http://msdn.

microsoft.com/en-us/library/ms682010(v=vs.85).aspx, Oct 2012.

[13] SiemensPLM. Jt2go. Available at: http://www.plm.

automation.siemens.com/en_us/products/teamcenter/

lifecycle-visualization/jt2go/index.shtml, 2013.

[14] Wikipedia. File transfer protocol. Available at: http://en.wikipedia.

org/wiki/File_Transfer_Protocol, May 2013.

[15] Microsoft Windows Documentation. Using batch �les. Available
at: http://www.microsoft.com/resources/documentation/windows/

xp/all/proddocs/en-us/batch.mspx?mfr=true, May 2013.

[16] Archdaily. Nx 8 from siemens plm software cad systems. Available at:
http://cad-systems.archdaily.com/l/20/NX-8, Feb 2013.

[17] PJ Jakovljevic. Siemens jt data format gets a nod from iso. Avail-
able at: http://blog.technologyevaluation.com/blog/2013/01/29/

siemens%E2%80%99-jt-data-format-gets-a-nod-from-iso/, Jan 2013.

[18] Anthony N. Godwin Richard M. Botting. Analysis of the step standard data
access interface using formal methods. Computer Standards & Interfaces,
10:437�455, 1995.

[19] Adobe. 3d solutions. Available at: http://www.adobe.com/

manufacturing/solutions/3d_solutions/, Feb 2013.

[20] Productionmachining.com. Software enhanced to read nx part
�les. Available at: http://www.productionmachining.com/products/

software-enhanced-to-read-nx-part-files, Aug 2010.

[21] SiemensPLM. Nx 7.5 documentation, 2009.

[22] Wikipedia. Macro (computer science). Available at: http://en.

wikipedia.org/wiki/Macro_(computer_science), May 2013.

83

[23] Sham Tickoo. NX 8.5 for Designers. Cadcim Technologies, 2013.

[24] SiemensPLM. Nx85 nxopen .net api reference, 2013.

[25] Wikipedia. Client-server model. Available at: https://en.wikipedia.

org/wiki/Client%E2%80%93server_model, May 2013.

[26] Comer and Stevens. Vol III: Client-Server Programming and Applications.
Internetworking with TCP/IP. Department of Computer Sciences, Purdue
University� 1993.

[27] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols.
Addison-Wesley Professional, 1993.

[28] Wikipedia. Thread (computing). Available at: http://en.wikipedia.

org/wiki/Multithreading_(software), May 2013.

[29] A&N Corporation. A&n corporation iso �anges and �ttings. Available
at: http://www.ancorp.com/familyPDFs/file725200881303AM63.pdf,
2013.

[30] HowToStartProgramming. Ftp upload. Avail-
able at: http://howtostartprogramming.com/vb-net/

vb-net-tutorial-26-ftp-upload/, 2010.

[31] Martin Fowler. UML Distilled: A Brief Guide to the Standard Objerct
ModModel Language. Addison-Wesley, third edition edition, 2004.

84

Appendix A

Journal File

85

' NX 8.5.0.23

' Journal created by HOLMSEN on Mon Mar 11 18:01:43 2013 W. Europe Standard

Time

'

Option Strict Off

Imports System

Imports NXOpen

Module NXJournal

Sub Main (ByVal args() As String)

Dim theSession As Session = Session.GetSession()

' --

' Menu: File->Open...

' --

Dim basePart1 As BasePart

Dim partLoadStatus1 As PartLoadStatus

basePart1 =

theSession.Parts.OpenBaseDisplay("C:\Users\HOLMSEN\Desktop\NX_modeling\Flan

ge_expressions.prt", partLoadStatus1)

Dim workPart As Part = theSession.Parts.Work

Dim displayPart As Part = theSession.Parts.Display

partLoadStatus1.Dispose()

Dim markId1 As Session.UndoMarkId

markId1 = theSession.SetUndoMark(Session.MarkVisibility.Visible, "Enter

Gateway")

Dim markId2 As Session.UndoMarkId

markId2 = theSession.SetUndoMark(Session.MarkVisibility.Visible, "Enter

Modeling")

' --

' Menu: Tools->Expression...

' --

Dim markId3 As Session.UndoMarkId

markId3 = theSession.SetUndoMark(Session.MarkVisibility.Visible,

"Expression")

Dim expression1 As Expression =

CType(workPart.Expressions.FindObject("flange_thickness"), Expression)

Dim unit1 As Unit = CType(workPart.UnitCollection.FindObject("MilliMeter"),

Unit)

workPart.Expressions.EditWithUnits(expression1, unit1, "6")

Dim expression2 As Expression =

CType(workPart.Expressions.FindObject("hole_diameter"), Expression)

workPart.Expressions.EditWithUnits(expression2, unit1, "8")

Dim expression3 As Expression =

CType(workPart.Expressions.FindObject("inner_diameter"), Expression)

workPart.Expressions.EditWithUnits(expression3, unit1, "40")

Dim expression4 As Expression =

CType(workPart.Expressions.FindObject("number_of_holes"), Expression)

Dim nullUnit As Unit = Nothing

workPart.Expressions.EditWithUnits(expression4, nullUnit, "6")

Dim expression5 As Expression =

CType(workPart.Expressions.FindObject("outer_diameter"), Expression)

workPart.Expressions.EditWithUnits(expression5, unit1, "80

")

Dim nErrs1 As Integer

nErrs1 = theSession.UpdateManager.DoUpdate(markId3)

' --

' Menu: File->Export->JT...

' --

Dim markId4 As Session.UndoMarkId

markId4 = theSession.SetUndoMark(Session.MarkVisibility.Visible, "Start")

Dim jtCreator1 As JtCreator

jtCreator1 = theSession.PvtransManager.CreateJtCreator()

jtCreator1.IncludePmi = JtCreator.PmiOption.PartAndAsm

jtCreator1.ConfigFile = "C:\Program Files (x86)\Siemens\NX

8.5\pvtrans\tessUG.config"

jtCreator1.JtfileStructure = JtCreator.FileStructure.Monolithic

jtCreator1.AutolowLod = True

jtCreator1.PreciseGeom = True

theSession.SetUndoMarkName(markId4, "Export JT Dialog")

Dim listCreator1 As ListCreator

listCreator1 = jtCreator1.NewLevel()

listCreator1.Chordal = 0.001

listCreator1.Angular = 20.0

listCreator1.TessOption = ListCreator.TessellationOption.Defined

jtCreator1.LodList.Append(listCreator1)

Dim listCreator2 As ListCreator

listCreator2 = jtCreator1.NewLevel()

listCreator2.Chordal = 0.001

listCreator2.Angular = 20.0

listCreator2.TessOption = ListCreator.TessellationOption.Defined

jtCreator1.LodList.Append(listCreator2)

Dim listCreator3 As ListCreator

listCreator3 = jtCreator1.NewLevel()

listCreator3.Chordal = 0.001

listCreator3.Angular = 20.0

listCreator3.TessOption = ListCreator.TessellationOption.Defined

jtCreator1.LodList.Append(listCreator3)

listCreator2.Chordal = 0.0035

listCreator2.Angular = 0.0

listCreator2.Simplify = 0.4

listCreator2.AdvCompression = 0.5

listCreator3.Chordal = 0.01

listCreator3.Angular = 0.0

listCreator3.Simplify = 0.1

listCreator3.AdvCompression = 1.0

Dim markId5 As Session.UndoMarkId

markId5 = theSession.SetUndoMark(Session.MarkVisibility.Invisible, "Export

JT")

theSession.DeleteUndoMark(markId5, Nothing)

Dim markId6 As Session.UndoMarkId

markId6 = theSession.SetUndoMark(Session.MarkVisibility.Invisible, "Export

JT")

jtCreator1.OutputJtFile =

"C:\Users\HOLMSEN\Desktop\NX_modeling\Flange_expressions.jt"

'jtCreator1.OutputJtFile =

"C:\Users\HOLMSEN\Dropbox\MASTER\Flange_expressions.jt"

Dim nXObject1 As NXObject

nXObject1 = jtCreator1.Commit()

theSession.DeleteUndoMark(markId6, Nothing)

theSession.SetUndoMarkName(markId4, "Export JT")

jtCreator1.Destroy()

' --

' Menu: Tools->Journal->Stop Recording

' --

End Sub

End Module

Appendix B

Web Based Customizable

Design Application Source

Code

B.1 Client Application Source Code

This is the code that controls the functions used by the WBCD client application
as discussed in Section 6.2.1. The source code is also attached in the .zip �le
delivered on DAIM.

89

Imports System.Net.Sockets

Imports System.Text

Imports System.IO

Imports System.Net

Public Class Form1

 Dim clientSocket As New System.Net.Sockets.TcpClient()

 Dim serverStream As NetworkStream

 Dim parameterCounter As Integer = 0

 'Private Sub btnConnect_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnConnect.Click

 ' connect("")

 'End Sub

 Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 connect("")

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Try

 parameterCounter = parameterCounter + 1

 txtReceivedText.Text = ""

 Dim button1clicked As Boolean = True

 'connect("")

 While button1clicked = True

 Dim serverStream As NetworkStream = clientSocket.GetStream()

 If serverStream.CanWrite And serverStream.CanRead Then

 Try

 Dim FlangeThickness As String = TextBox1.Text

 Dim HoleDiameter As String = TextBox2.Text

 Dim InnerDiameter As String = TextBox3.Text

 Dim numberOfHoles As String = ComboBox1.SelectedItem

 Dim OuterDiameter As String = TextBox5.Text

 'values are rounded to nearest integer

 Dim numInnerDia As Integer

 Dim numOuterDia As Integer

 Dim numHoleDiameter As Integer

 numInnerDia = CInt(InnerDiameter)

 numOuterDia = CInt(OuterDiameter)

 numHoleDiameter = CInt(HoleDiameter)

 If numInnerDia > numOuterDia Then

 MessageBox.Show("Outer Diameter has to be larger

than Inner Diameter!")

 button1clicked = False

 Exit While

 End If

 If numberOfHoles > 12 Then

 MessageBox.Show("Number of holes cannot be larger

than 12!")

 button1clicked = False

 Exit While

 ElseIf numberOfHoles < 1 Then

 MessageBox.Show("Number of holes cannot be smaller

than 1!")

 button1clicked = False

 Exit While

 End If

 If numHoleDiameter > 16 Then

 MessageBox.Show("Hole Diameter must be smaller

than 16 mm!")

 button1clicked = False

 Exit While

 ElseIf numHoleDiameter < 1 Then

 MessageBox.Show("Hole Diameter must be larger than

1 mm!")

 button1clicked = False

 Exit While

 End If

 If numberOfHoles = "" Then

 MessageBox.Show("Select number of holes!")

 button1clicked = False

 Exit While

 Else

 'MessageBox.Show("number of holes = " &

numberOfHoles)

 End If

 Dim flangeType As String = ComboBox2.SelectedItem

 If flangeType = "" Then

 MessageBox.Show("Select Flange type")

 button1clicked = False

 Exit While

 ElseIf flangeType = "Custom flange" Then

 'do nothing

 ElseIf flangeType = "ISO LFB63-250-SF" Then

 ComboBox1.SelectedItem = "4"

 ComboBox1.Text = "4"

 FlangeThickness = "6"

 HoleDiameter = "8"

 InnerDiameter = "64"

 numberOfHoles = "4"

 OuterDiameter = "95"

 ElseIf flangeType = "ISO LFB80-300-SF" Then

 ComboBox1.SelectedItem = "4"

 ComboBox1.Text = "4"

 FlangeThickness = "6"

 HoleDiameter = "8"

 InnerDiameter = "76"

 numberOfHoles = "4"

 OuterDiameter = "110"

 ElseIf flangeType = "ISO LFB100-400-SF" Then

 ComboBox1.SelectedItem = "4"

 ComboBox1.Text = "4"

 FlangeThickness = "6"

 HoleDiameter = "8"

 InnerDiameter = "102"

 numberOfHoles = "4"

 OuterDiameter = "130"

 ComboBox1.Update()

 Else

 MessageBox.Show("Select Flange type")

 button1clicked = False

 Exit While

 'MessageBox.Show("flange type: " & flangeType)

 End If

 'MessageBox.Show("flange type: " & flangeType)

 'Send message to the server

 Dim SendBytes As Byte() = Nothing

 SendBytes = Encoding.ASCII.GetBytes(FlangeThickness +

"," + HoleDiameter + "," + InnerDiameter +"," +

numberOfHoles +"," + OuterDiameter + " ")

 serverStream.Write(SendBytes, 0, SendBytes.Length)

 'Read the NetworkStream (serverStream) into a byte

buffer

 txtReceivedText.Clear()

 Dim bytes(clientSocket.ReceiveBufferSize) As Byte

 serverStream.Read(bytes, 0,

CInt(clientSocket.ReceiveBufferSize))

 'Output the data received from the host to the console

 Dim returnData As String =

Encoding.ASCII.GetString(bytes)

 txtReceivedText.Text = txtReceivedText.Text +

Environment.NewLine + _

 "[Client]: " & returnData

 'check if received text is "customization completed"

 If InStr(txtReceivedText.Text, "CUSTOMIZATION

COMPLETED" & parameterCounter) > 0 Then

 'MessageBox.Show("inside instr if")

 txtReceivedText.Clear()

 Dim jtFilePath As String =

"C:\Users\HOLMSEN\Desktop\NX_modeling\flange_expressions.jt"

 Dim ftpFilePath As String =

"ftp://ftp2.summit.no/NTNU/MBM/Flange_expressions.jt"

 Dim ftpDownloadedFilePath = "C:\New

Folder\flange_expressions_downloaded.jt"

'This method downloads the file from the FTP

server and opens it.

 My.Computer.Network.DownloadFile(ftpFilePath,

ftpDownloadedFilePath, "ntnu", "master", False,

100000, True)

 Process.Start(ftpDownloadedFilePath)

 txtReceivedText.Text = txtReceivedText.Text +

Environment.NewLine + "[Client]: Opened JT file"

 txtReceivedText.Clear()

 'clientSocket.Close()

 button1clicked = False

 Exit While

 Else

 End If

 Catch exc As Exception

 MessageBox.Show(exc.ToString)

 End Try

 Else

 If Not serverStream.CanWrite Then

 txtReceivedText.Text = txtReceivedText.Text +

Environment.NewLine + "[Client]: can not write

data to this stream"

 serverStream.Close()

 Else

 If Not serverStream.CanRead Then

 txtReceivedText.Text = txtReceivedText.Text +

Environment.NewLine + " [Client]: can not read

data from this stream"

 serverStream.Close()

 End If

 End If

 End If

 End While

 Catch ex As Exception

 MessageBox.Show(ex.ToString)

 End Try

 End Sub

 Sub connect(ByVal connectValue As String)

 Try

 msg("Client Started")

 'Declares IPaddress and port and tries to connect to server

 Dim localAddr As IPAddress = IPAddress.Parse("129.241.62.200")

 Dim intPort As Integer = "8888"

 clientSocket.Connect(localAddr, intPort)

 'Changes label1 to ...

 'Label1.Text = "Web Basec Customized Design - Server Connected

..."

 Catch ex As Exception

 MessageBox.Show("Connection Failed." & Environment.NewLine & "No

response from server", "Error")

 MessageBox.Show(ex.ToString)

 Exit Try

 End Try

 End Sub

 Sub msg(ByVal mesg As String)

 'TextBox1.Text = TextBox1.Text + Environment.NewLine + " >> " + mesg

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

 clientSocket.Close()

 Me.Close()

 End Sub

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs)

 End Sub

 Private Sub TextBox1_TextChanged(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles TextBox1.TextChanged

 End Sub

 Private Sub ComboBox1_SelectedIndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox1.SelectedIndexChanged

 End Sub

 Private Sub Label1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Label1.Click

 End Sub

 Private Sub ComboBox2_SelectedIndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ComboBox2.SelectedIndexChanged

 Dim flangeType As String = ComboBox2.SelectedItem

 If flangeType = "ISO LFB63-250-SF" Then

 TextBox1.Text = "6"

 TextBox2.Text = "8"

 TextBox3.Text = "64"

 ComboBox1.SelectedItem = "4"

 TextBox5.Text = "95"

 Me.Update()

 ElseIf flangeType = "ISO LFB80-300-SF" Then

 TextBox1.Text = "6"

 TextBox2.Text = "8"

 TextBox3.Text = "76"

 ComboBox1.SelectedItem = "4"

 TextBox5.Text = "110"

 Me.Update()

 ElseIf flangeType = "ISO LFB100-400-SF" Then

 TextBox1.Text = "6"

 TextBox2.Text = "8"

 TextBox3.Text = "102"

 ComboBox1.SelectedItem = "4"

 TextBox5.Text = "130"

 Me.Update()

 End If

 End Sub

End Class

B.2 Client Application Designer Source Code

This is the code that decides the design of the user interface of the WBCD client
application as discussed in Section 6.2.1. The source code is also attached in
the .zip �le delivered on DAIM.

96

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _

Partial Class Form1

 Inherits System.Windows.Forms.Form

 'Form overrides dispose to clean up the component list.

 <System.Diagnostics.DebuggerNonUserCode()> _

 Protected Overrides Sub Dispose(ByVal disposing As Boolean)

 Try

 If disposing AndAlso components IsNot Nothing Then

 components.Dispose()

 End If

 Finally

 MyBase.Dispose(disposing)

 End Try

 End Sub

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> _

 Private Sub InitializeComponent()

 Dim resources As System.ComponentModel.ComponentResourceManager = New

System.ComponentModel.ComponentResourceManager(GetType(Form1))

 Me.Button1 = New System.Windows.Forms.Button

 Me.TextBox1 = New System.Windows.Forms.TextBox

 Me.Label1 = New System.Windows.Forms.Label

 Me.Button2 = New System.Windows.Forms.Button

 Me.TextBox2 = New System.Windows.Forms.TextBox

 Me.TextBox3 = New System.Windows.Forms.TextBox

 Me.TextBox5 = New System.Windows.Forms.TextBox

 Me.Label2 = New System.Windows.Forms.Label

 Me.Label3 = New System.Windows.Forms.Label

 Me.Label4 = New System.Windows.Forms.Label

 Me.Label5 = New System.Windows.Forms.Label

 Me.Label6 = New System.Windows.Forms.Label

 Me.txtReceivedText = New System.Windows.Forms.TextBox

 Me.PictureBox1 = New System.Windows.Forms.PictureBox

 Me.ComboBox1 = New System.Windows.Forms.ComboBox

 Me.ComboBox2 = New System.Windows.Forms.ComboBox

 Me.Label7 = New System.Windows.Forms.Label

 CType(Me.PictureBox1,

System.ComponentModel.ISupportInitialize).BeginInit()

 Me.SuspendLayout()

 '

 'Button1

 '

 Me.Button1.Location = New System.Drawing.Point(27, 455)

 Me.Button1.Name = "Button1"

 Me.Button1.Size = New System.Drawing.Size(97, 23)

 Me.Button1.TabIndex = 0

 Me.Button1.Text = "Send Parameters"

 Me.Button1.UseVisualStyleBackColor = True

 '

 'TextBox1

 '

 Me.TextBox1.Location = New System.Drawing.Point(148, 315)

 Me.TextBox1.Name = "TextBox1"

 Me.TextBox1.Size = New System.Drawing.Size(107, 20)

 Me.TextBox1.TabIndex = 1

 Me.TextBox1.Text = "5"

 '

 'Label1

 '

 Me.Label1.AutoSize = True

 Me.Label1.Location = New System.Drawing.Point(27, 13)

 Me.Label1.Name = "Label1"

 Me.Label1.Size = New System.Drawing.Size(156, 13)

 Me.Label1.TabIndex = 2

 Me.Label1.Text = "Web Based Customized Design"

 '

 'Button2

 '

 Me.Button2.Location = New System.Drawing.Point(148, 455)

 Me.Button2.Name = "Button2"

 Me.Button2.Size = New System.Drawing.Size(102, 23)

 Me.Button2.TabIndex = 3

 Me.Button2.Text = "Exit"

 Me.Button2.UseVisualStyleBackColor = True

 '

 'TextBox2

 '

 Me.TextBox2.Location = New System.Drawing.Point(148, 341)

 Me.TextBox2.Name = "TextBox2"

 Me.TextBox2.ShortcutsEnabled = False

 Me.TextBox2.Size = New System.Drawing.Size(107, 20)

 Me.TextBox2.TabIndex = 6

 Me.TextBox2.Text = "8"

 '

 'TextBox3

 '

 Me.TextBox3.Location = New System.Drawing.Point(148, 368)

 Me.TextBox3.Name = "TextBox3"

 Me.TextBox3.Size = New System.Drawing.Size(107, 20)

 Me.TextBox3.TabIndex = 8

 Me.TextBox3.Text = "40"

 '

 'TextBox5

 '

 Me.TextBox5.Location = New System.Drawing.Point(148, 422)

 Me.TextBox5.Name = "TextBox5"

 Me.TextBox5.Size = New System.Drawing.Size(107, 20)

 Me.TextBox5.TabIndex = 10

 Me.TextBox5.Text = "80"

 '

 'Label2

 '

 Me.Label2.AutoSize = True

 Me.Label2.Location = New System.Drawing.Point(27, 315)

 Me.Label2.Name = "Label2"

 Me.Label2.Size = New System.Drawing.Size(91, 13)

 Me.Label2.TabIndex = 11

 Me.Label2.Text = "Flange Thickness"

 '

 'Label3

 '

 Me.Label3.AutoSize = True

 Me.Label3.Location = New System.Drawing.Point(27, 341)

 Me.Label3.Name = "Label3"

 Me.Label3.Size = New System.Drawing.Size(74, 13)

 Me.Label3.TabIndex = 12

 Me.Label3.Text = "Hole Diameter"

 '

 'Label4

 '

 Me.Label4.AutoSize = True

 Me.Label4.Location = New System.Drawing.Point(27, 394)

 Me.Label4.Name = "Label4"

 Me.Label4.Size = New System.Drawing.Size(86, 13)

 Me.Label4.TabIndex = 14

 Me.Label4.Text = "Number of Holes"

 '

 'Label5

 '

 Me.Label5.AutoSize = True

 Me.Label5.Location = New System.Drawing.Point(27, 368)

 Me.Label5.Name = "Label5"

 Me.Label5.Size = New System.Drawing.Size(76, 13)

 Me.Label5.TabIndex = 13

 Me.Label5.Text = "Inner Diameter"

 '

 'Label6

 '

 Me.Label6.AutoSize = True

 Me.Label6.Location = New System.Drawing.Point(27, 422)

 Me.Label6.Name = "Label6"

 Me.Label6.Size = New System.Drawing.Size(78, 13)

 Me.Label6.TabIndex = 15

 Me.Label6.Text = "Outer Diameter"

 '

 'txtReceivedText

 '

 Me.txtReceivedText.Location = New System.Drawing.Point(30, 43)

 Me.txtReceivedText.Multiline = True

 Me.txtReceivedText.Name = "txtReceivedText"

 Me.txtReceivedText.Size = New System.Drawing.Size(228, 126)

 Me.txtReceivedText.TabIndex = 7

 '

 'PictureBox1

 '

 Me.PictureBox1.Image = CType(resources.GetObject("PictureBox1.Image"),

System.Drawing.Image)

 Me.PictureBox1.Location = New System.Drawing.Point(30, 34)

 Me.PictureBox1.Name = "PictureBox1"

 Me.PictureBox1.Size = New System.Drawing.Size(258, 234)

 Me.PictureBox1.TabIndex = 16

 Me.PictureBox1.TabStop = False

 '

 'ComboBox1

 '

 Me.ComboBox1.FormattingEnabled = True

 Me.ComboBox1.Items.AddRange(New Object() {"2", "4", "6", "8"})

 Me.ComboBox1.Location = New System.Drawing.Point(148, 395)

 Me.ComboBox1.Name = "ComboBox1"

 Me.ComboBox1.Size = New System.Drawing.Size(107, 21)

 Me.ComboBox1.TabIndex = 17

 Me.ComboBox1.Text = "Select"

 '

 'ComboBox2

 '

 Me.ComboBox2.FormattingEnabled = True

 Me.ComboBox2.Items.AddRange(New Object() {"Custom flange", "ISO LFB63-

250-SF", "ISO LFB80-300-SF", "ISO LFB100-400-SF"})

 Me.ComboBox2.Location = New System.Drawing.Point(148, 288)

 Me.ComboBox2.Name = "ComboBox2"

 Me.ComboBox2.Size = New System.Drawing.Size(140, 21)

 Me.ComboBox2.TabIndex = 18

 Me.ComboBox2.Text = "Select"

 '

 'Label7

 '

 Me.Label7.AutoSize = True

 Me.Label7.Location = New System.Drawing.Point(27, 291)

 Me.Label7.Name = "Label7"

 Me.Label7.Size = New System.Drawing.Size(66, 13)

 Me.Label7.TabIndex = 19

 Me.Label7.Text = "Flange Type"

 '

 'Form1

 '

 Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)

 Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font

 Me.ClientSize = New System.Drawing.Size(574, 494)

 Me.Controls.Add(Me.Label7)

 Me.Controls.Add(Me.ComboBox2)

 Me.Controls.Add(Me.ComboBox1)

 Me.Controls.Add(Me.PictureBox1)

 Me.Controls.Add(Me.Label6)

 Me.Controls.Add(Me.Label4)

 Me.Controls.Add(Me.Label5)

 Me.Controls.Add(Me.Label3)

 Me.Controls.Add(Me.Label2)

 Me.Controls.Add(Me.TextBox5)

 Me.Controls.Add(Me.TextBox3)

 Me.Controls.Add(Me.txtReceivedText)

 Me.Controls.Add(Me.TextBox2)

 Me.Controls.Add(Me.Button2)

 Me.Controls.Add(Me.Label1)

 Me.Controls.Add(Me.TextBox1)

 Me.Controls.Add(Me.Button1)

 Me.Name = "Form1"

 Me.Text = "Web Based Customized Design"

 CType(Me.PictureBox1,

System.ComponentModel.ISupportInitialize).EndInit()

 Me.ResumeLayout(False)

 Me.PerformLayout()

 End Sub

 Friend WithEvents Button1 As System.Windows.Forms.Button

 Friend WithEvents TextBox1 As System.Windows.Forms.TextBox

 Friend WithEvents Label1 As System.Windows.Forms.Label

 Friend WithEvents Button2 As System.Windows.Forms.Button

 Friend WithEvents TextBox2 As System.Windows.Forms.TextBox

 Friend WithEvents TextBox3 As System.Windows.Forms.TextBox

 Friend WithEvents TextBox5 As System.Windows.Forms.TextBox

 Friend WithEvents Label2 As System.Windows.Forms.Label

 Friend WithEvents Label3 As System.Windows.Forms.Label

 Friend WithEvents Label4 As System.Windows.Forms.Label

 Friend WithEvents Label5 As System.Windows.Forms.Label

 Friend WithEvents Label6 As System.Windows.Forms.Label

 Friend WithEvents txtReceivedText As System.Windows.Forms.TextBox

 Friend WithEvents PictureBox1 As System.Windows.Forms.PictureBox

 Friend WithEvents ComboBox1 As System.Windows.Forms.ComboBox

 Friend WithEvents ComboBox2 As System.Windows.Forms.ComboBox

 Friend WithEvents Label7 As System.Windows.Forms.Label

End Class

B.3 Server Application Source Code

This is the code that controls the functions and user interface of the WBCD
server application as discussed in Section 6.3.1. The source code is also attached
in the .zip �le delivered on DAIM.

102

Imports System.Net

Imports System.Net.Sockets

Imports System.Text

Imports System.IO

Imports System.Text.RegularExpressions

'code from http://www.java-samples.com/showtutorial.php?tutorialid=1064

'for the threaded server

Module WBCD_Server

 Sub Main()

 Dim localIpAddress As IPAddress = IPAddress.Parse("129.241.62.200")

 Dim localPort As Integer = "8888"

 Dim serverSocket As New TcpListener(localIpAddress, localPort)

 Dim clientSocket As TcpClient = Nothing

 Dim counter As Integer

 Dim parameterCounter As Integer = 0

 serverSocket.Start()

 msg("Server listening on port: " & localPort)

 counter = 0

 While (True)

 counter += 1

 clientSocket = serverSocket.AcceptTcpClient()

 msg("Client No:" + Convert.ToString(counter) + " started!")

 Dim client As New handleClinet

 client.startClient(clientSocket, Convert.ToString(counter))

 End While

 clientSocket.Close()

 serverSocket.Stop()

 msg("exit")

 'Console.ReadLine()

 End Sub

 Sub msg(ByVal mesg As String)

 mesg.Trim()

 Console.WriteLine(" >> " + mesg)

 End Sub

 Public Class handleClinet

 Dim clientSocket As TcpClient

 Dim clNo As String

 Public Sub startClient(ByVal inClientSocket As TcpClient, _

 ByVal clineNo As String)

 Me.clientSocket = inClientSocket

 Me.clNo = clineNo

 Dim ctThread As Threading.Thread = New Threading.Thread(AddressOf

doChat)

 ctThread.Start()

 End Sub

 Private Sub doChat()

 Dim requestCount As Integer

 Dim bytesFrom(10024) As Byte

 Dim dataFromClient As String

 Dim sendBytes As [Byte]()

 Dim serverResponse As String

 Dim rCount As String

 requestCount = 0

 While (True)

 Try

 requestCount = requestCount + 1

 Dim networkStream As NetworkStream = _

 clientSocket.GetStream()

 networkStream.Read(bytesFrom, 0,

CInt(clientSocket.ReceiveBufferSize))

 dataFromClient =

System.Text.Encoding.ASCII.GetString(bytesFrom)

 'remove null characters from string

 dataFromClient = dataFromClient.Replace(vbNullChar, "")

 msg("From Client: " & dataFromClient)

 'declare array

 Dim arrayExpressions() As String

 'split array at ","

 arrayExpressions = dataFromClient.Split(",")

 Dim strFlangeThickness As String = arrayExpressions(0)

 Dim strHoleDiameter As String = arrayExpressions(1)

 Dim strInnerDiameter As String = arrayExpressions(2)

 Dim strNumberOfHoles As String = arrayExpressions(3)

 Dim strOuterDiameter As String = arrayExpressions(4)

 msg("Splitting received data array to strings")

 Dim strJournalFilePath As String =

"C:\Users\HOLMSEN\Desktop\NX_modeling\journal_test_all.vb"

 Dim strNewJournalFilePath As String =

"C:\Users\HOLMSEN\Desktop\NX_modeling\journal_test_all2.vb"

 'Dim batchFilePath As String = "C:\Program Files

(x86)\Siemens\NX 8.5\UGII\morten.bat"

 Dim batchFilePath As String =

"C:\Users\HOLMSEN\Desktop\NX_modeling\morten.bat"

 Dim jtFilePath As String =

"C:\Users\HOLMSEN\Desktop\NX_modeling\flange_expressions.jt"

 Dim ftpFilePath As String =

"ftp://ftp2.summit.no/NTNU/MBM/Flange_expressions.jt"

 '---------------------SEARCH AND REPLACE---------------

 'Declare all searchStrings and replaceStrings

 Dim searchStringFlangeThickness As String = "(expression1,

unit1, ""\d+"")"

 Dim replaceStringFlangeThickness As String = "expression1,

unit1, """ & strFlangeThickness & """"

 Dim searchStringHoleDiameter As String = "(expression2,

unit1, ""\d+"")"

 Dim replaceStringHoleDiameter As String = "expression2,

unit1, """ & strHoleDiameter & """"

 Dim searchStringInnerDiameter As String = "(expression3,

unit1, ""\d+"")"

 Dim replaceStringInnerDiameter As String = "expression3,

unit1, """ & strInnerDiameter & """"

 Dim searchStringNumberOfHoles As String = "(expression4,

nullUnit, ""\d+"")"

 Dim replaceStringNumberOfHoles As String = "expression4,

nullUnit, """ & strNumberOfHoles & """"

 Dim searchStringOuterDiameter As String = "(expression5,

unit1, ""\d+"")"

 Dim replaceStringOuterDiameter As String = "expression5,

unit1, """ & strOuterDiameter & """"

 msg("Declaring searchstrings and replacestrings")

 Dim objectReader As New StreamReader(strJournalFilePath)

 Dim textboxJournal As String = objectReader.ReadToEnd

 textboxJournal = Regex.Replace(textboxJournal,

searchStringFlangeThickness, replaceStringFlangeThickness)

 textboxJournal = Regex.Replace(textboxJournal,

searchStringHoleDiameter, replaceStringHoleDiameter)

 textboxJournal = Regex.Replace(textboxJournal,

searchStringInnerDiameter, replaceStringInnerDiameter)

 textboxJournal = Regex.Replace(textboxJournal,

searchStringNumberOfHoles, replaceStringNumberOfHoles)

 textboxJournal = Regex.Replace(textboxJournal,

searchStringOuterDiameter, replaceStringOuterDiameter)

 Dim strWrite As New StreamWriter(strNewJournalFilePath)

 strWrite.Write(textboxJournal)

 strWrite.Close()

 objectReader.Close()

 msg("Replaced values and wrote new file at " &

 strNewJournalFilePath)

 '-----------RUN BATCH WHICH RUNS JOURNAL

 Dim objProcess As System.Diagnostics.Process

 objProcess = New System.Diagnostics.Process()

 objProcess.StartInfo.FileName = batchFilePath

 objProcess.StartInfo.WindowStyle =

 ProcessWindowStyle.Normal

 objProcess.Start()

 msg("Batch file started")

 msg("Customizing design")

 msg("Exporting JT file")

 'Wait until the process passes back an exit code

 objProcess.WaitForExit()

 'Free resources associated with this process

 objProcess.Close()

 'objProcess.Dispose()

 msg("Batch file finished")

 '------------------UPLOAD JT FILE TO FTP SERVER

 'this code uploads the JT file to the FTP server so it can

 be downloaded by the client

'FTP Upload method based on this tutorial by How To Start

Programming

'http://howtostartprogramming.com/vb-net/vb-net-tutorial-

26-ftp-upload/

 msg("Starting upload to FTP server")

Dim UploadRequest As System.Net.FtpWebRequest =

DirectCast(System.Net.WebRequest.Create(ftpFilePath),

System.Net.FtpWebRequest)

UploadRequest.Credentials = New

System.Net.NetworkCredential("ntnu", "master")

UploadRequest.Method =

System.Net.WebRequestMethods.Ftp.UploadFile

Dim file() As Byte =

System.IO.File.ReadAllBytes(jtFilePath)

Dim stream As System.IO.Stream =

UploadRequest.GetRequestStream()

 stream.Write(file, 0, file.Length)

 stream.Close()

 stream.Dispose()

 msg("JT file uploaded")

 '---------send CUSTOMIZATION COMPLETED to client---------

 'msg("From client" + clNo + dataFromClient)

 rCount = Convert.ToString(requestCount)

 msg("rCount" & rCount)

 serverResponse = "CUSTOMIZATION COMPLETED" & rCount

 sendBytes = Encoding.ASCII.GetBytes(serverResponse)

 networkStream.Write(sendBytes, 0, sendBytes.Length)

 networkStream.Flush()

 'msg(serverResponse & "(server response)")

 msg("End of session--------------------------------")

 Catch ex As Exception

 'MsgBox(ex.ToString)

 End Try

 End While

 End Sub

 End Class

End Module

Appendix C

Batch File to Run Journal

Listing C.1: Journal �le

cd C:\ Program Files (x86) \Siemens\NX 8.5\UGII
run_journal C: \ Users \HOLMSEN\Desktop\NX_modeling\

journa l_te s t_a l l 2 . vb
rem pause

107

Appendix D

NX Open API

D.1 NX Open API

This appendix will go through some of the NX Open API commands that are
needed in the journal �les by describing what some of the important commands
do.

D.2 NX Open API commands

This section will explain some of the commands that are used in the NX Open
API (Application Programming Interface).

D.2.1 Imports

Imports System

Imports NXOpen

To be able to understand the commands that NX uses the journal �le needs to
import the System.dll and NXOpen.dll libraries.

108

D.2.2 UndoMarkId �SetUndoMark�

Dim markId1 As Se s s i on . UndoMarkId markId1 = theSe s s i on
. SetUndoMark (Se s s i on . MarkV i s i b i l i t y . V i s i b l e , "
Express ion ")

This command creates a markId from the expression command which can be
found in the �recent commands list� and also in the �undo� function

D.2.3 Unit �FindObject�

Dim unit1 As Unit =

CType(workPart . Un i tCo l l e c t i on . FindObject ("Mi l l iMeter ")
, Unit)

This command creates an object for what kind of unit is used, in this case
�MilliMeter�

D.2.4 Unit �nullUnit�

Dim nu l lUn i t As Unit = Nothing

This command declares a unit which is a constant that has no dimension.

D.2.5 Expressions �CreateWithUnit�

109

Dim expre s s i on1 As Express ion expre s s i on1 =workPart .
Expres s ions . CreateWithUnits ("
Created_Expression_by_MORTENMOI=999999999" , un i t1)

This command creates an expression and a value. �Created_Expression_by_MORTENMOI�
is the expression name and �999999999� is the value. CreateWithUnits speci�es
that an expression is created and states what unit is used. In this case it is
unit1 which was declared to be �millimeters� in D.2.3.

D.2.6 Expressions �EditWithUnit�

Dim expre s s i on1 As Express ion =

CType(workPart . Expres s ions . FindObject ("
Created_Expression_by_MORTENMOI") , Express ion)

Dim unit1 As Unit = CType(workPart . Un i tCo l l e c t i on .
FindObject ("Mi l l iMeter ") , Unit)

workPart . Expres s ions . EditWithUnits (expres s ion1 , unit1 ,
" 888888888")

The �rst lines declares the expression by searching through the expression family
class to �nd �Created_Expression_by_MORTENMOI�.

The second paragraph declares the unit of the expression and the third para-
graph edits the expression by expression name (expression1), unit (unit1=millimeter)
and value (88888888)

D.2.7 Session �GetSession�

Module NXJournal
Sub Main (ByVal args () As String)

110

Dim theSe s s i on As Se s s i on = Ses s i on . GetSess ion ()
'
'INSERT CODE TO EXECUTE HERE
'
End Sub

End Module

When NX is running a session it needs to declare it and uses the command
GetSession to connect to the session currently running.

D.2.8 Open File

This is an example of code generated when a �le is opened in NX 8.5

Dim basePart1 As BasePart Dim partLoadStatus1 As
PartLoadStatus basePart1 =

theSe s s i on . Parts . OpenBaseDisplay ("C: \ Users \HOLMSEN\
Desktop\NX_modeling\Flange_express ions . prt " ,
partLoadStatus1)

Dim workPart As Part = theSe s s i on . Parts .Work
Dim d i sp layPar t As Part = theSe s s i on . Parts . Display

partLoadStatus1 . Dispose ()

Dim markId1 As Se s s i on . UndoMarkId markId1 = theSe s s i on
. SetUndoMark (Se s s i on . MarkV i s i b i l i t y . V i s i b l e , "Enter
 Gateway")

Dim markId2 As Se s s i on . UndoMarkId markId2 = theSe s s i on
. SetUndoMark (Se s s i on . MarkV i s i b i l i t y . V i s i b l e , "Enter
 Modeling")

111

It starts of by loading the BasePart and Base Display from the �le path of
the opened �le. After this it sets the current part to �work part� and �displayed
part� and it updates the MarkId's for entering Gateway mode and Modeling
mode.

D.2.9 Save File

Dim partSaveStatus1 As PartSaveStatus

partSaveStatus1 = workPart . SaveAs ("C: \ Users \HOLMSEN\
Desktop\NX_modeling\Flange_express ions_save_test ")

partSaveStatus1 . Dispose ()

This code is used to save the part. A new partname can be selected in the �le
path to save a new �le that doesn't overwrite an old �le.

D.2.10 Close File

Dim anyPartsModif ied1 As Boolean
Dim partSaveStatus1 As PartSaveStatus

theSe s s i on . Parts . SaveAll (anyPartsModif ied1 ,
partSaveStatus1)

partSaveStatus1 . Dispose ()

theSe s s i on . Parts . C lo seAl l (BasePart . CloseModi f i ed .
CloseModif ied , Nothing)

workPart = Nothing
d i sp layPar t = Nothing

This code is used to save and close all open parts in NX.

112

D.2.11 Export JT �le

Dim markId1 As Se s s i on . UndoMarkId markId1 = theSe s s i on
. SetUndoMark (Se s s i on . MarkV i s i b i l i t y . V i s i b l e , " Star t
")

Dim j tCrea to r1 As JtCreator j tCrea to r1 = theSe s s i on .
PvtransManager . CreateJtCreator ()

j tCrea to r1 . IncludePmi = JtCreator . PmiOption . PartAndAsm

j tCrea to r1 . Con f i gF i l e = "C:\ Program F i l e s (x86) \
Siemens\NX 8 .5\ pvtrans \tessUG . c on f i g "

j tCrea to r1 . AutolowLod = True

j tCrea to r1 . PreciseGeom = True

theSe s s i on . SetUndoMarkName(markId1 , "Export JT Dialog "
)

Dim l i s tC r e a t o r 1 As L i s tCrea to r l i s tC r e a t o r 1 =
j tCrea to r1 . NewLevel ()

l i s tC r e a t o r 1 . Chordal = 0.001

l i s tC r e a t o r 1 . Angular = 20 .0

l i s tC r e a t o r 1 . TessOption = Li s tCrea to r .
Te s s e l l a t i onOpt i on . Def ined

j tCrea to r1 . LodList . Append(l i s tC r e a t o r 1)

Dim l i s tC r e a t o r 2 As L i s tCrea to r l i s tC r e a t o r 2 =
j tCrea to r1 . NewLevel ()

l i s tC r e a t o r 2 . Chordal = 0.001

113

l i s tC r e a t o r 2 . Angular = 20 .0

l i s tC r e a t o r 2 . TessOption = Li s tCrea to r .
Te s s e l l a t i onOpt i on . Def ined

j tCrea to r1 . LodList . Append(l i s tC r e a t o r 2)

Dim l i s tC r e a t o r 3 As L i s tCrea to r l i s tC r e a t o r 3 =
j tCrea to r1 . NewLevel ()

l i s tC r e a t o r 3 . Chordal = 0.001

l i s tC r e a t o r 3 . Angular = 20 .0

l i s tC r e a t o r 3 . TessOption = Li s tCrea to r .
Te s s e l l a t i onOpt i on . Def ined

j tCrea to r1 . LodList . Append(l i s tC r e a t o r 3)

l i s tC r e a t o r 2 . Chordal = 0.0035

l i s tC r e a t o r 2 . Angular = 0 .0

l i s tC r e a t o r 2 . S imp l i f y = 0 .4

l i s tC r e a t o r 2 . AdvCompression = 0 .5

l i s tC r e a t o r 3 . Chordal = 0 .01

l i s tC r e a t o r 3 . Angular = 0 .0

l i s tC r e a t o r 3 . S imp l i f y = 0 .1

l i s tC r e a t o r 3 . AdvCompression = 1 .0

114

Dim markId2 As Se s s i on . UndoMarkId markId2 = theSe s s i on
. SetUndoMark (Se s s i on . MarkV i s i b i l i t y . I n v i s i b l e , "
Export JT")

theSe s s i on . DeleteUndoMark (markId2 , Nothing)

Dim markId3 As Se s s i on . UndoMarkId markId3 = theSe s s i on
. SetUndoMark (Se s s i on . MarkV i s i b i l i t y . I n v i s i b l e , "
Export JT")

j tCrea to r1 . OutputJtFi le = "C:\ Users \HOLMSEN\Desktop\
NX_modeling\Flange_express ions . j t "

Dim nXObject1 As NXObject nXObject1 = j tCrea to r1 .
Commit ()

theSe s s i on . DeleteUndoMark (markId3 , Nothing)

theSe s s i on . SetUndoMarkName(markId1 , "Export JT")

j tCrea to r1 . Destroy ()

Exporting a JT �le creates a lot of code that should not be tweaked but the line
below is where you can specify the output �le path of the JT �le.

j tCrea to r1 . OutputJtFi le =

"C:\ Users \HOLMSEN\Desktop\NX_modeling\
Flange_express ions . j t "

It is important to select the exported JT �le as a monolithic structure when
it is going to be viewed at a machine that does not have access to the original
NX part �les of the model. The following line makes the JT model �monolithic�
which means that all information and shapes are stored in the JT �les, not just
references to the part �les.

115

j tCrea to r1 . J t f i l e S t r u c t u r e = JtCreator . F i l e S t r u c tu r e .
Monol i th ic

116

117

Appendix E

Email from In�nity

Innovations

Hei igjen
Takk for info.

Selve 3d pdf teknologien er utviklet for Adobe av en 3.part

Vi kan levere en frittstående konverter som tar inn bl.a. jt opptil v 9.5 med
BREP, Tessellated, PMI egenskaper avhengig av valgt internt format. Deretter
saves dette som 3d pdf � det kreves også Acrobat Pro til dette.
Konverteren kan leveres med Acrobat Pro XI i pakken, men kan bestilles separat
hvis man allerede eier Acrobat � oppgradering til v XI er også en opsjon.
Priser standalone :

Importeren u/ Acrobat kr 3.250
Importeren m/ Acrobat Pro XI kr 6.500
Prisene er eks mva, men inkl 1 års oppgradering/vedlikehold.
Det �nnes også mange tilleggsprodukter for distribusjon/samarbeide etc av 3d
pdf.
Vi kan også levere en testversjon hvis ønsket.

Mvh/Regards
Paul Batt-Rawden
In�nity Innovations Norway
www.in�nity.no

118

