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Introduction

The work in this thesis is an attempt to understand entanglement and entangled states

in quantum physics, with an emphasis on the underlying geometric structures. En-

tanglement is a strange feature contained within the quantum mechanical framework,

which was first observed by Erwin Schrödinger and Albert Einstein, and eventually led

to a seminal paper by Einstein, Podolsky and Rosen, published in Physical Review in

1935. The next important contributions to the theory of quantum entanglement was

given by Bell in 1960s, and an experimental demonstration of entanglement, i.e. a real-

ization of the gedanken experiment proposed by EPR in 1935, was finally performed by

Aspect et al. in 1982. A considerable growth of the interest in quantum entanglement

has occurred since the early 1990s, and much of the reason for this is that the tools

of quantum optics and modern instrumentation have made it possible to measure and

manipulate entangled quantum systems in a way which was not possible before.

Motivation

An inherent attribute of entanglement is non-locality, and in the continuation of this,

several non-reductionist features, which are conceptually challenging and philosophi-

cally interesting. There are however several other motivating factors for the study of

entanglement. At the very early stage, entanglement was considered to be merely a

puzzling feature of quantum mechanics, mostly confined to the philosophical realm.

Today, entanglement is considered a resource in quantum information theory, and it

has found several applications within this field. These include quantum computers and

several areas in quantum communications. A problem with entanglement is that it is a

fragile resource, in the sense that it has a tendency to decay. In any entangled system

which interacts with an environment, the entanglement generally will diminish as a

result of this interaction. In order to deal with this loss, methods such as entanglement

distillation have been invented in order to distill less entangled states into more entan-

gled ones. There exists two qualitatively different types of entanglement, called free

and bound entanglement. The type referred to as bound entanglement has been shown

to be impossible to distill in a complete fashion, and they are thus much less useful in

applications.

The separability problem

A fundamental problem related to entanglement, is the separability problem. This is

the problem of determining whether a given quantum state is separable or entangled,

3



4 INTRODUCTION

as it cannot be none or both. For pure quantum states (states of rank one) the problem

is completely solved by Schmidt decomposition, but for mixed quantum states this is

not the case, and the problem is complicated even for the low dimensional cases. Both

from a practical point of view and as part of the theoretical framework of quantum

mechanics, it is an important problem to address.

In 1996 the PPT criterion for determining whether or not a state is entangled,

was presented by Peres. This criterion is based on the partial transposition map.

It appeared to clearly distinguish separable and entangled states, in the sense that

it formulated an easily testable condition which separable states satisfies, but which

entangled states do not. The year after however, Pawel Horodecki provided an example

of an entangled state that also satisfies the condition. The PPT criterion essentially

separates all quantum states into PPT and non-PPT (NPT) states, and all quantum

states belong to exactly one of the two groups, with the separable states as PPT states

for all dimensions NA ×NB. An important fact is that testing whether a state is PPT

or NPT is easily achieved using a computer.

It is known that for the 2 × 2 and 2 × 3 systems, the PPT states are identical to

the separable states, and that the NPT states are identical to the entangled states, so

the Peres criterion is always conclusive. But for larger dimensions, such as for instance

the 3× 3 system, there always exist PPT states that are entangled, so for this case the

PPT criterion can only be used in a contrapositive way, i.e. to prove that a state is not

separable. Since entangled PPT states in this sense seem to have great significance,

their characteristics are worth studying. A natural choice is the 3× 3 system, which is

the next logical step from the 2× 2 and 2× 3 systems.

As mentioned, the PPT criterion introduced by Peres relied on the use of the trans-

position map on one of the two subsystems of a composite quantum system, i.e. partial

transposition. Transposition is an example of a positive map. A positive map essentially

maps all quantum states into quantum states, while a non-positive map will not do so,

i.e. it will map at least one quantum state into a non-quantum state. It is possible

to use positive maps to formulate a much more general criterion for the separability

problem. The PPT criterion then becomes a special case of a larger and more general

formulation of the separability problem. This was done by Michal, Pawel and Ryszard

Horodecki in 1996, and is naturally referred to as the Horodecki criterion. There is a

one-to-one correspondence known as the Choi-Jamiolkowski isomorphism between pos-

itive maps and a subset of Hermitian operators called entanglement witnesses. The

Horodecki criterion states that a quantum state is separable if and only if the expecta-

tion value of all entanglement witnesses in the state are non-negative. If the expectation

value of one (or possibly several) entanglement witnesses in a given quantum state is

negative, then the state is always entangled. One might say that these entanglement

witnesses reveal or are “witnesses” to the entanglement of this state. This criterion is

both necessary and sufficient. The problem is that in order to implement this criterion

we potentially must check for all entanglement witnesses. In order to achieve this, it

is required that we must have knowledge and understanding of the structure of the

set of entanglement witnesses, and since this set is convex, the extremal entanglement

witnesses are particularly important.
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Geometry and experimental mathematics

The approach in this thesis is through geometry. The geometrical aspects of entangle-

ment are interesting in themselves, and might lead to insights which is impossible or

very difficult to arrive at by other methods. Instead of developing explicit examples, it

is then possible to obtain a larger picture by studying the entire set of generic objects,

and also to gain an understanding of the various subsets with specific properties. Of

fundamental importance to our studies is the convex nature of the sets in question. We

study these objects as matrices in convex spaces, and thus knowledge and understand-

ing of the extremal points in these sets is very relevant. Also, since convex sets have

well defined faces, and since all extremal points of the total convex set always lie on

one of these faces, the study of the faces of these sets is essential.

Undertaking completely analytic studies of the geometry of entanglement is in gen-

eral very hard, especially as the dimension of the systems grow. It is therefore very

useful to develop and use numerical tools to aid in these studies. It becomes possible to

gain new information, and to test the feasibility of conjectures and ideas that arise. In

this sense we might call this activity experimental mathematics. It is however important

that analytical developments run alongside the numerical investigations, for example

by providing analytical starting points for further investigations.

Thesis structure

This thesis is organized into two parts. The first part consists of an introduction

into, and a summary of essential features and results from the four papers, which are

themselves presented in part two. Many of the details from the papers are left out,

but some examples and illustrations which are not contained in the papers are found

here. There is also a summary of some of the most important numerical methods used

during the work presented in the papers, a feature which is not included in the papers

themselves. The first part is organized as follows:

� In Chapter 1 we take an historical view of some important aspects of the develop-

ment of quantum mechanics, and the role played by entanglement. It showcases

some reasons why entanglement is interesting. The importance of the work of

John Bell is highlighted, and the experimental contribution of Aspect et al. is

described.

� Chapter 2 gives a short description of entanglement as a resource in several areas

of quantum information theory. We define the nuts and bolts of LOCC and quan-

tum operations, before illustrating quantum dense coding, quantum cryptography,

quantum teleportation and quantum computing.

� In Chapter 3 we develop the mechanics of mixed composite quantum systems.

We look at partial trace and decoherence, and use these considerations to exhibit

some non-reductionist aspects of entanglement. We define partial transposition

and the important sets of density matrices D, separable states S and the PPT

states P . We also look at product vectors in different subspaces of CN, and use
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this to state the range criterion, which is a criterion that any separable state must

satisfy. Finally we discuss the important concept of product transformations, and

symmetries under these.

� Chapter 4 contains a review of convex sets, and some of their important properties.

The use of barycentric coordinates, Carathéodorys theorem and dual cones are

some of the essential features. Some of the important concepts regarding faces on

convex sets are discussed, and a special type of convex sets called simplexes are

defined.

� Chapter 5 then takes us into the geometry of quantum entanglement. We look at

the geometrical nature of the sets D, S and P , and use some of these features to

make two-dimensional plots through these multi-dimensional structures. We then

define some of the tools we need to investigate the structure of the set of PPT

states P , and use these to describe how we can perform perturbations in the set

of PPT states. We end with a description of the faces of the three convex sets D,
S and P .

� In Chapter 6 we discuss the structure of the set of PPT states P for dimensions

3 × 3. We look at the generic states of rank four and five, and describe three

methods for tracing out surfaces of these states. While the extremal entangled

PPT states of rank four show a relatively simple structure, this is not the case for

such states of rank five. For the rank five PPT states there appears to exist a large

number of non-generic types. A generic PPT state of rank five is extremal and

has no product vectors in the kernel, but it is possible to construct non-generic

PPT states of rank five with a non-zero number of product vectors in the kernel.

This is the main theme of Paper 4, but here we discuss these matters quite briefly,

and highlight the perhaps most interesting case, where the kernel contains four

product vectors.

� Chapter 7 contains a description of the strategy pertaining to the use of posi-

tive maps and entanglement witnesses to solve the separability problem. We first

define entanglement witnesses and then describe the one-to-one correspondence

with positive maps. Different types of positive maps are then defined, such as

completely positive maps and decomposable maps. Of profound importance to

our research are the zeros of entanglement witness, and the constraints related

to these zeros, which define two very important types of entanglement witnesses:

quadratic and quartic witnesses. We use these zeros and the facial structure of

the set of entanglement witnesses S◦ to understand extremality on this set, and

then to construct a method for producing such extremal witnesses. This method

is formalised as an algorithm in Section 8.6. Some results from the investigations

on entanglement witnesses are included. Since the set of separable states S and

the set of entanglement witnesses S◦ are dual to each other, it is possible to use

the faces of S◦ to say something about the faces of S. We finally end with a

brief review of the special set of entanglement witnesses called optimal witnesses,
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including a discussion of the so-called SPA separability conjecture. Finally, we

develop a method to transform an entanglement witness to a form which makes

the corresponding positive map both unital and trace-preserving, and details re-

garding the numerical procedures related to this is presented in Section 8.7.

� In Chapter 8 we summarize the essential details of the most important numerical

methods we have used in the four papers. A description of these methods is not

included in the papers themselves, with the exception of the algorithms for finding

extremal witnesses (Paper 2), and for transforming positive maps to unital and

trace-preserving form (Paper 3).

� Chapter 9 contains short summaries of the four publications, with some added

remarks on the outlook for further research.

Throughout the thesis attempts have been made to keep the notation as clear and

pedagogical as possible. Even though some of the notation may appear superfluous to

hardened and experienced quantum physicists, underlining and sometimes exaggerating

points or notation is useful to readers without detailed knowledge of this field. Many

of the theorems presented are given without formal proofs, though in some cases a line

of reasoning is given. The papers (particularly paper II) contain more formal proofs.
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Chapter 1

Historical background

An outline of the early developments of quantum mechanics and some of the epistemo-

logically problematic sides of the theory is given. We then discuss the EPR-argument,

and the insight given by John Bell, which effectively closed the possibility of including

quantum mechanics in a local realistic hidden variable theory. The important Aspect

experiment is then presented, and an important set of quantum states called Bell states

are defined.

1.1 The birth of quantum mechanics

Quantum mechanics as a physical theory dates back to the beginning of the 20th cen-

tury. Several theories existed that could describe the fundamental realms of nature

known at the time. These included Isaac Newton’s mechanics and theory of gravity,

the laws of thermodynamics, and James Clerk Maxwell’s elegant and successful sum-

mary of electromagnetism and optics. During the next 20 years the whole foundation

of physics and science was to be revolutionized.

At the start of the 20th century there were several big puzzles in physics. It was

widely believed, especially among the conservative part of the physics community, that

these puzzles could be understood and described within the realm of the established

models. Some of these puzzles were related to fundamental questions regarding the

nature of light, which eventually gave rise to the theory of special relativity, and further

down the line a completely new understanding of gravity. Two of the problems that

gave way to quantum theory was the observed spectral lines of atoms and the so-called

ultraviolet catastrophe. Spectral lines are among the many characteristics of atoms that

are impossible to understand using the classical theory of electromagnetism, because

they imply that the energy states of the atom is a discrete set rather than the continuous

spectrum which is to be expected from classical electromagnetism. The structure of the

atom was discovered by Ernest Rutherford in the early 20th century [1], and led Niels

Bohr to develop the so-called Bohr model of the atom. Also, if the classical theories of

thermodynamics and electromagnetism are used to calculate the amount of radiation

emitted by a black body of temperature T , we get the Rayleigh-Jeans law [2]. The

spectral radiance Bν(T ) summed over all frequencies ν should of course be finite, and

9



10 HISTORICAL BACKGROUND

if we include the frequencies up to visible radiation the Rayleigh-Jeans law works quite

well, but if we include larger frequencies it is a catastrophe, and in fact it diverges to

infinity if we sum over all frequencies.

In 1900 Max Planck submitted two seminal papers [3, 4]. By quantizing oscillators

interacting with the radiation field, he calculated the spectral radiance Bν(T ) and ended

up with a new expression, today known as the Planck distribution. Planck himself

considered the quantization of the interaction with the radiation field to be nothing

more than a mathematical trick, that bore no specific physical significance. However,

in the following years many of the phenomena that were completely unexplainable,

could be understood by using the idea of quantization, including the divergence in the

Rayleigh-Jeans law. The photoelectric effect, which gave Albert Einstein the Nobel

prize, was another triumph for the idea of radiation quanta, i.e. photons [5]. In 1925,

Werner Heisenberg and others invented matrix mechanics [6], and building on Louis de

Broglie’s work [7], Erwin Schrödinger shortly after invented wave mechanics [8]. Though

the two were seemingly different descriptions, it was shown by Schrödinger that the two

approaches are equivalent [9]. The formalized framework established during this period

still defines the platform for how we use quantum mechanics today, but the number of

applications has grown enormously.

While there are no doubts about the successes of quantum mechanics in giving

predictions that are in amazing agreement with observations and experiments, it is

clear that the theory contains many problematic aspects. Many of these problems have

a philosophical origin, and challenge our intuitively based understanding of the nature

of reality.

1.1.1 Determinism and hidden variables

The trade-off that quantum mechanics makes is that it describes outcomes of measure-

ments by probabilities. This lack of certainty about an outcome is well known in many

situations, e.g. the tossing of a coin. The fundamental difference between coins and

electrons is that a coin is made up of a very large amount of subsystems for which

it is impossible (or at least extremely difficult) to have complete knowledge, and this

enforces a statistical description. We assume this is not the case for an electron, and

claim that the quantum mechanical description contained in the state |ψ〉, is the most

complete description we can have. Since the state vector |ψ〉 only contains information

that gives us probabilities, we end up with a non-deterministic description. Claims

that there is a more complete description containing parameters λ1, . . . , λn that are

hidden, so as to make a deterministic theory, are called hidden variable theories (HV).

The existence of such hidden variables would effectively mean that quantum mechanics

is an incomplete theory.

1.1.2 Measurement and realism

In most interpretations of quantum mechanics we are forced to reinterpret the meaning

of the term measurement. If we perform a measurement on a ball to find its colour, and
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find that the ball is red, then intuition tells us that the ball was red before we looked at

it, and that the act of measurement simply revealed an already existing characteristic

of the ball. Say we instead want to measure the spin of an electron, and we arrange

it so that we have the two possible outcomes −1 or +1, corresponding to states |ψ−〉
or |ψ+〉. A non-realistic interpretation of quantum mechanics would then be that the

state of the electron need not be |ψ−〉 nor |ψ+〉, but a superposition. In such a model

the very act of measurement puts the electron in a state that corresponds to the result.

This does not mean that the electron did not have a state before the measurement,

it was simply in a state that did not correspond to a possible outcome of the specific

measurement, and this is a highly non-classical feature.

1.1.3 Non-locality

Another feature of profound importance in quantum mechanics is entanglement. It

was originally Schrödinger and Einstein who first recognized what appeared to be a

“spooky” action at a distance present in the quantum mechanical description of certain

systems. In the paper where Schrödinger introduces his famous cat [10], he also uses

the word “Verschränkung” to describe a rather peculiar non-local feature, which he

later translates to entanglement. Schrödinger observed the existence of global states

|ψ〉AB ∈ HA ⊗ HB of composite systems HA and HB, which cannot be written as a

product of states of the individual subsystems. The term entanglement underlines an

intrinsic order of what appears to be statistical relations between subsystems of the

compound quantum system. This introduces an inherent non-locality into the system.

Earlier the same year Einstein, working at Princeton, submitted a paper with the two

colleagues Boris Podolsky and Nathan Rosen, usually abbreviated the EPR-paper [11].

During a large part of the 1920s Einstein had intense debates with Bohr about the

foundations of quantum mechanics. A debate where Einstein could not find a clinching

argument to prove that quantum mechanics must be incomplete. After his emigration

to the USA he kept thinking about these questions, and finally ended up with what he

thought would settle the debate in his favour.

1.2 The EPR-argument

The EPR-argument is simply based on a thought experiment suggested by Einstein,

Podolsky and Rosen to prove by pure logic, not by actually performing the experi-

ment, that quantum mechanics is not a complete theory of nature. It is referred to

as a “gedanken” experiment because the means to actually conduct such experiments

were not available at the time. Today these experiments can be conducted by utilizing

the many tools that quantum optics provides. The heart of the argument proposed by

Einstein, Podolsky and Rosen was that entanglement is an effect that must exist for

quantum mechanics to be a complete theory of nature, and since the physical impli-

cations of such a “spooky” action at a distance are preposterous, entanglement as a

physical phenomenon cannot exist.
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Before progressing further we must make the following clarifications

Locality

Results of measurements obtained at one location are independent of, i.e. not

correlated to, any actions performed at the system at space-like separation.

Realism

Measurement results are determined by properties the system carries prior to, and

independent of measurements.

This sort of realism is often referred to as counterfactual definiteness. It is worth

noting that the demand for locality does not mean that results of measurements cannot

be correlated. Since we know today that entanglement exists, the argument provided by

Einstein, Podolsky and Rosen is often, and wrongfully, labelled as flawed. Their logic

and argumentation still stand, it is the presumption of local realism which is flawed.

The essential argument can be formulated as: if nature adheres to the principles of

locality and realism, then quantum mechanics is not a complete theory. Most physicists

at the time that were seeking to invalidate the argument never questioned locality as

the wrongful assumption, but rather the assumption of realism. Realism had been

questioned and dismissed by Bohr, Heisenberg and other supporters of the Copenhagen

interpretation. While locality can be quantified through correlation functions from

measurements, the case for realism is far more subtle and difficult, even though we are

dealing with a relatively precise definition here. Clever attempts have been made to

rule out realism as well [12]. The essential setup of the EPR experiment is shown below.

A B
S

xApA xBpB

Figure 1.1: The basic setup of the EPR experiment.

EPR used measurement of the positions xA and xB along with momenta pA and

pB of a pair of identical particles created from a source S. For the sake of the EPR

argument this is sufficient, but if we want to develop these things further we must

introduce spins (or polarizations). An important fact here is that the quantities x and

p are incompatible observables according to quantum mechanics or [xA, pA] �= 0, which

means that a particle cannot have definite values of the same components of position

and momentum at the same time.

It is clear from conservation that a measurement of xA will also give the value for

xB, and likewise a measurement of pA will give the value for pB. Since EPR assume

locality, a measurement on particle A cannot in any way influence the state of particle

B. Since we can choose between measuring xA or pA and thus make this quantity

an element of reality, and since this choice cannot influence the state of particle B

in any way, we must assume that the quantities xB and pB were clearly defined, or
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elements of reality, all along. This is in contradiction to quantum mechanics which

states that particle B cannot attain sharply defined values of both these quantities at

the same time. So, EPR claimed, this means that there exist elements of reality in

this system which quantum mechanics cannot fully describe, ergo, it is an incomplete

theory. So it follows with elegant inevitability that we cannot have nature to be local

and realistic, and make quantum mechanics a complete description of it. Einsteins

idea was that a fuller and better theory would be possible, and that this theory should

include quantum mechanics but contain additional and hidden variables that make the

theory deterministic, local and realistic. As we shall see this idea was demolished by

Bell a little less than ten years after Einstein’s death.

1.3 Bell inequalities

During the 1950s several attempts were made to construct hidden variable theories,

following the proposals that Einstein had made. The currently best known hidden vari-

able theory is due to the physicist and philosopher David Bohm. Originally published

in 1952 [13], it is a non-local hidden variable theory. Bohm unknowingly rediscovered

and extended the idea that de Broglie had proposed and abandoned in 1927 [14]. Hence

this theory is commonly called the de Broglie-Bohm theory. Bohm postulated that any

quantum particle, e.g. an electron, has a hidden “guiding wave” that governs its mo-

tion. Thus, in this theory electrons are quite clearly particles, so that when a double

slit experiment is performed, the trajectory goes through one slit rather than the other.

The trajectory is governed by the hidden guiding wave, and since this guiding wave is

non-local it can produce the wave pattern which is observed.

In 1964 Bell proposed studying correlations between measurements of the spin com-

ponents of two spin-1/2 particles, where the measurement axes for the two particles were

independently oriented [15].

S

ba

Figure 1.2: Illustration of the setup in a Bell experiment. Anti-correlated pairs of spin-1/2 particles pass

through measurement devices in A and B. In A the spin along an axis represented by a is measured,

and likewise b along B.

Suppose we have a source that produces pairs of anti-correlated spin-1/2 particles

that shoot off in opposite directions before they pass through detectors. Assume also

that the detector for particle A is oriented along an axis defined by the unit vector a,

and likewise b for particle B. We also introduce the locality principle when we assume

that the detectors are sufficiently separated so that any action (or measurement) in A,

cannot influence the outcome of an action (or measurement) in B.
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We first treat this system using standard quantum mechanics. The wave function

can be expressed as

|ψ〉 = |ψ〉AB =
1√
2
{|01〉 − |10〉} (1.1)

with the states |01〉 = {|0〉A⊗|1〉B} ∈ HAB and |10〉 = {|1〉A⊗|0〉B} ∈ HAB as product

states made up of basis states from each subspace HA and HB. The component of spin

along a is SA = SAa, and using S = (�/2)σ we find that a measurement of SA gives

±�/2, with probabilities that depend on the orientation of a. Since we are interested

in correlations we must find the expectation value for the joint spin SASB. Using (1.1)

we get

E(a, b) = 〈ψ|SaSb|ψ〉
= −ab = − cos φ

(1.2)

where φ = �(a, b). When φ = 0 you get E(a, b) = −1 which indicates complete anti-

correlation. This type of correlation is easily reproduced classically, and an example

is given by Bell with reference to the socks of monsieur Bertlmann [16]. The function

E here, is nothing more mysterious than the quantum mechanical expression for the

average of joint measurements of the two spins SA and SB.

We now turn to the local hidden variable (LHV) description given by Bell in [15].

We introduce a set of hidden variables λ1, . . . , λn that completely describe the system

in a deterministic way. For our purposes these hidden variables can without loss of

generality be gathered into one parameter λ, and we make no more assumptions about

this hidden variable λ other than that it satisfies a probability distribution p(λ)∫
p(λ)dλ = 1 p(λ) ≥ 0 (1.3)

Measurements of the spin components are now defined by

FA(a, λ) = ±1 FB(b, λ) = ±1 (1.4)

Locality is ensured by the fact that FA only depends on the setting of the measurement

apparatus a in A and λ, and likewise for FB on b and λ. Spin conservation, or total

anti-correlation for φ = 0 is ensured by

FA(a, λ) = −FB(a, λ) (1.5)

The average of joint measurements of the spins is then ξ(a, b) �2/4 where the ξ(a, b) is

factorized with respect to the A and B subsystems, and then weighted by the probability

distribution expressed by the hidden variable λ

ξ(a, b) =

∫
p(λ)FA(a, λ)FB(b, λ) dλ (1.6)



1.4. THE ASPECT EXPERIMENTS 15

where as assumed, E(a,a) = ξ(a,a) = −1.
Now we derive so-called Bell inequalities from this, which are bounds on absolute

values of the function ξ(a, b). We start with

ξ(a, b)− ξ(a, c) =

∫
p(λ)

{
FA(a, λ)FB(b, λ)− FA(a, λ)FB(c, λ)

}
dλ

= −
∫

p(λ)
{
FA(a, λ)FA(b, λ) + FA(b, λ)FB(c, λ)

}
dλ

(1.7)

where c is another angle in subsystem B. Since the functions FA and FB only take

values ±1 we get

|ξ(a, b)− ξ(a, c)| <
∫

p(λ)
{
1 + FA(b, λ)FB(c, λ)

}
dλ

⇒ |ξ(a, b)− ξ(a, c)| < 1 + ξ(b, c)

(1.8)

It should be emphasized that these Bell inequalities say nothing at all about quantum

mechanics, they are derived from very general demands that any LHV theory must

satisfy. If however quantum mechanics is to be included in such a LHV theory, then

the function E in (1.2) must also satisfy (1.8). We can choose the directions a, b and

c to satisfy

�(a, b) = π/3 �(b, c) = π/3 �(a, c) = 2π/3 (1.9)

Using (1.2) we then get

|E(a, b)− E(a, c)| = 1

1 + E(b, c) = 1/2
(1.10)

so for the angles (1.9) clearly

|E(a, b)− E(a, c)| > 1 + E(b, c) (1.11)

which is in clear contradiction to (1.8). This shows that Einstein’s idea of incorporating

quantum mechanics in a larger theory, which should be deterministic and obey local

reality, is not possible. Hidden variable theories, i.e. deterministic descriptions, that

includes quantum mechanics is still possible, but the hidden variables λ1, . . . , λn will

necessarily have to contain non-local features.

1.4 The Aspect experiments

The gradual transition from theoretical considerations to the laboratory began in the

1960s, but the actual realization of the EPR experiment as a convincing test of the

Bell inequalities was not done until 1982, when a set of experiments was conducted

by Aspect et al. [17], usually known as the Aspect experiments. They used entangled
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photon pairs from a two-photon decay in calcium atoms. The schematic is shown in

Figure 1.3.

S

ba

A B

hνA hνB

+1

−1

+1

−1

Figure 1.3: The setup for the Aspect experiments using entangled photon pairs which pass through

polarization filters. The polarization of the photons are then measured along directions defined by a

and b respectively.

Since these are entangled photons we use the Bell state

|ψ〉AB =
1√
2
{|01〉+ |10〉} (1.12)

and we define the quantum mechanical correlation function E(a, b) by

E(a, b) =
N1(a, b)

N2(a, b)
(1.13)

with the two coincidence rates

N1(a, b) = N++(a, b) +N−−(a, b)−N−+(a, b)−N+−(a, b)

N2(a, b) = N++(a, b) +N−−(a, b) +N−+(a, b) +N+−(a, b)
(1.14)

where for example N++ represents, for fixed values of a and b, the number of incidents

where both measurements gave +1. If we calculate this using (1.12), we get in much

the same way as for the spin-1/2 case used by Bell that

E(a, b) = cos 2φ (1.15)

with φ = �(a, b). The correlation function for the LHV theory ξ(a, b) is found in the

same way as for the fermion case

ξ(a, b) =

∫
p(λ)FA(a, λ)FB(b, λ) dλ (1.16)

Several Bell inequalities can be calculated from this. Aspect et al. chose one based on

S = ξ(a, b)− ξ(a, b′) + ξ(a′, b) + ξ(a′, b′) (1.17)

where a and a′ are two possible orientations of the same polarization analyzer in A,

and likewise b and b′ in B. Now, provided that FA(a, λ) and FB(b, λ) both take values

±1 we observe that
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−2 ≤ S(φ) ≤ 2 (1.18)

The directions that were used in one of the Aspect experiments, and that goes into

(1.17) are defined by

ab = a′b = a′b′ = cosφ

ab′ = cos 3φ
(1.19)

The correlations for a large set of φ in the whole range from φ = 0◦ to φ = 180◦ were

then measured. An illustrative depiction of this data is shown in Figure 1.4. The real

set of data presented in [17] contained uncertainty bars which are not shown here. The

blue points are the observed data points and the red curve is the function S(φ) with

the quantum mechanical correlation function E(a, b) = cos 2φ substituted for the LHV

correlation function ξ(a, b) in (1.17). So, the correlations predicted by the LHV theory

are limited to −2 ≤ S(φ) ≤ 2, while the correlations predicted by quantum mechanics

are given by the red curve. The Bell inequalities (1.18) are clearly not satisfied, while

the red curve and the observed data points are in very high agreement.

0 20 40 60 80 100 120 140 160 180
−3

−2

−1

0

1

2

3

φ

S
(φ
)

Figure 1.4: Illustrative depiction of data from one of the Aspect experiments. The blue points are

observed data points, while the red curve is the quantum mechanical prediction of the correlations for

different φ. The Bell inequality −2 ≤ S(φ) ≤ 2 predicted by LHV theories is clearly broken.

It is also easy to see that for some values of φ the Bell inequalities are satisfied. This

means that for these values the measurements give correlations that can be described by

LHV models. This includes the special case for φ = 0◦ where the filters are completely
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aligned, and these correlations can be reproduced by observing the colors of the socks

of monsieur Bertlmann.

Following the Aspect experiments, many similar experiments producing non-local

correlations have been made by several groups [18, 19], and all these experiments have

confirmed the predictions made by quantum mechanics. There is also some evidence

that entanglement between photons can be maintained over long distances, at least

distances well exceeding 100 km [20]. The major problem using fiber optics at such

distances is that transferring single photons with sufficient reliability becomes difficult,

and therefore an effective strategy is to transfer these photons in straight laser beams

through the atmosphere.

1.5 Bell states and entanglement

If we have a composite system of two subspaces HA and HB of dimension NA and

NB respectively, this is in quantum mechanics described by a tensor product of the

individual Hilbert spaces

HAB = HA ⊗HB (1.20)

The tensor product of Hilbert spaces is a way to extend the tensor product construction

from vectors to spaces, so that the result of taking a tensor product of two Hilbert spaces

of dimension NA and NB is another Hilbert space of dimension N = NANB. Since a

Hilbert space is an inner product space, the product space must also have a well defined

inner product.

Set a basis for HA as |0〉A, . . . , |NA − 1〉A and for HB as |0〉B, . . . , |NB − 1〉B. Then
a basis for HAB is |i〉A ⊗ |j〉B with 0 ≤ i ≤ NA − 1 and 0 ≤ j ≤ NB − 1. So a general

state |ψ〉AB ∈ HAB can be expressed as

|ψ〉AB =
∑
ij

cij|ij〉 (1.21)

where |ij〉 is short notation for |i〉A ⊗ |j〉B, and of course cij ∈ C. A state |ψ〉AB that

can be written as

|ψ〉AB = |φ〉A ⊗ |χ〉B (1.22)

where |φ〉A =
∑

i ai|i〉A ∈ HA and |χ〉B =
∑

j bj|j〉B ∈ HB is called a product state, or

separable state. The interesting thing, which was originally pointed out by Schrödinger

[10], is that there are states in HAB that cannot be expressed in the form (1.22).

These are entangled states. It is then clear that a quantum state is either entangled or

separable, it cannot be both or neither.

The states (1.1) and (1.12) are called Bell states. They are examples of entangled

states for the case of lowest possible dimensions NA = NB = 2, which is often written

as the 2 × 2 system. There are two more Bell states in addition to the two we have

used so far. We define the four Bell states in the following way
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Definition 1.1 (Bell states).

|α±〉 = 1√
2
{|01〉 ± |10〉}

|β±〉 = 1√
2
{|00〉 ± |11〉}

(1.23)

The product states |00〉, |01〉, |10〉 and |11〉 form a basis for HAB, and so do the

four non-product Bell states |α±〉 and |β±〉. The product states |ij〉 are often called

the computational basis. To demonstrate how the product structure arises for states

in the 2× 2 system we can observe that a general product state in this system can be

written as

|ψ〉 = {a0|0〉A + a1|1〉A} ⊗ {b0|0〉B + b1|1〉B}
= a0b0 |00〉+ a0b1 |01〉+ a1b0 |10〉+ a1b1 |11〉

(1.24)

We see that the Bell states (1.23) cannot be written on this form for any choice of ai, bi,

so they are entangled. Clearly, putting for example a1 = 0 produces the separable state

|ψ〉 = 1√
2
{|00〉+ |01〉} (1.25)

Due to the clear non-factorisable mathematical structure that is present in some quan-

tum states, and taking into consideration the non-local correlations which are clearly

seen in some measurements, there is a wide consensus that some systems in nature

do not adhere to the locality principle. The orthodox Copenhagen interpretation also

claims that nature violates realism. Hidden variable theories are by their very nature

deterministic, but the hidden variables must be able reproduce the correlations that

violate Bell inequalities, i.e. they must operate in a non-local manner.

Any quantum product state, e.g. a state of the form (1.22), can be described by a

LHV theory. So a system described by such a state will only contain correlations of a

local nature, which means by definition that they will satisfy all Bell inequalities. As

long as we restrict ourselves to pure quantum states, by which we mean states that

are described by a single Hilbert state vector, all entangled states will describe systems

that contain non-local correlations, which means that there will be correlations which

break Bell inequalities. Mixed quantum states, which we shall introduce in detail later,

are states that are statistical ensembles of pure states. These states describe a more

general situation than the pure quantum states, and are therefore very useful. For

mixed states the picture is more complex. All separable mixed states are still local

states, in that they can be described by LHV models, and cannot produce correlations

that break Bell inequalities. But examples of entangled mixed states that do not violate

Bell inequalities have been given by Werner [21], these states admit LHV models and

do not contain non-local correlations. It appears that the link between entanglement

and non-local correlations is not straightforward, at least not for mixed states.
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Chapter 2

Entanglement as a resource

During the 1990s it had become clear that entanglement was not only the subject of

philosophical debates, but could be considered a new resource for tasks that cannot be

performed by classical means. The development of tools to exert finely tuned nanoscale

control on quantum systems have been developed, such as for instance to identify, image

and manipulate individual atoms. We here first discuss some basic definitions related

to local operations and classical communications, including some important examples.

We then describe three important applications in the area of quantum communication,

and end with some very brief notes on quantum computers.

2.1 LOCC

Entanglement theory today owes its form in great measure to the discovery and de-

velopment of entanglement manipulation. A natural class of operations suitable for

manipulating entanglement is that of local operations and classical communications or

LOCC [22].

|ψ〉AB|ψ〉A |ψ〉B

LOCC

Figure 2.1: Local quantum operations are performed on a subsystem, and information regarding these

operations are sent to other parts, where this information is used to decide further operations, often

according to a predetermined protocol.

The paradigm of LOCC means that local operations are performed on parts of the

system, and the results of these operations are communicated classically to another

part, where other local operations, based on the classical information received, are

performed. The information passed may be regarding what type of operations were

performed, or in the case that the operations were measurements, what results were

21
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obtained. Usually, complicated and lengthy operations that involve several actions and

reactions on each subsystem are done according to a predetermined protocol.

A central understanding called the monotonicity condition, is that the total amount

of entanglement in a state shared by system A and B cannot be increased by performing

LOCC operations. If for instance the state |ψ〉AB in Figure 2.1 is made from two locally

prepared states |φ〉 = |ψ〉A and |χ〉 = |ψ〉B, it will always be separable. We have claimed

that a quantum state is either entangled or separable, and although this is true there

exist ways to quantify entanglement with the aid of so-called entanglement measures.

There are many types of such measures with different strengths and weaknesses, but

basically an entanglement measure could be described as a function f : |ψ〉 �→ [0, 1].

Clearly all separable states would then have f(|ψ〉) = f(|φ〉 ⊗ |χ〉) = 0, while the Bell

states (1.23) would have f(|α±〉) = f(|β±〉) = 1, since they are known to be maximally

entangled.

2.2 Quantum operations

We will now define some quantum operations for the 2 × 2 system. The first two

examples are both local quantum operations, in the sense that they act only on qubits

locally. But first we define the term qubit.

Definition 2.1 (Qubit). In a two-dimensional Hilbert space we define the quantum

state

|ψ〉 = a0|0〉+ a1|1〉 (2.1)

with a0, a1 ∈ C, as a qubit or quantum bit.

We can use

|0〉 =
(
1

0

)
|1〉 =

(
0

1

)
⇒ |ψ〉 =

(
a0
a1

)
(2.2)

as a matrix representation for the qubit.

The operations X, iY and Z

We first define the operation NOT or X. This operation works like

X

(
a0
a1

)
=

(
0 1

1 0

)(
a0
a1

)
=

(
a1
a0

)
(2.3)

so that X|ψ〉 = a1|0〉 + a0|1〉 and the X operation simply switches the coefficients for

the two states |0〉 and |1〉, which also means for example that X|0〉 = |1〉. Similarly

the Z operation is Z|ψ〉 = a0|0〉 − a1|1〉. We can also use the operation iY defined by

iY|ψ〉 = a1|0〉−a0|1〉. The observant reader will realize that the effects of the operations
X, iY and Z are defined by the Pauli matrices σx, σy and σz.
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Hadamard

We now also define the Hadamard operation H

H

(
a0
a1

)
=

1√
2

(
1 1

1 −1
)(

a0
a1

)
=

a0√
2

(
1

1

)
+

a1√
2

(
1

−1
)

(2.4)

which effectively represents a split of the basis vectors

H|0〉 = 1√
2
{|0〉+ |1〉} = |+〉

H|1〉 = 1√
2
{|0〉 − |1〉} = |−〉

(2.5)

Since each of these are performed on a single qubit, which could represent one half of

an entangled state, they are local operations. If we use the X operation on the first

qubit belonging to subsystem A of the Bell state |β+〉 we get

X |β+〉 = X

(
1√
2
{|00〉+ |11〉}

)
=

1√
2
{|10〉+ |01〉} = |α+〉 (2.6)

which is another Bell state. So by performing a quantum operation on subsystem A

we have changed our part of the entangled state and thus transformed the global state

|β+〉 into another state |α+〉 that still carries maximum entanglement.

CNOT

We now move on to another very important tool in the arsenal of quantum operations,

namely the CNOT operation, which stands for controlled NOT operation. This is a non-

local operation, which means that it defines a protocol that operates on both qubits

in a state |ψ〉AB. The CNOT operation works on product states in such a way that if

the first qubit is |0〉, then it does nothing to the second qubit, but if the first qubit is

|1〉 then it changes the other qubit from |0〉 �→ |1〉 or alternatively from |1〉 �→ |0〉. We

realize the non-local character of this operation since we need to be able to read the

first qubit as a control qubit, and in addition we need to be able to change the second

qubit in accordance with this reading. In total for the CNOT operation

|00〉 �→ |00〉 |01〉 �→ |01〉 |10〉 �→ |11〉 |11〉 �→ |10〉 (2.7)

If we step back again to the matrix representations (2.2) we can use the tensor product

to calculate

|00〉 =

⎛⎜⎜⎝
1

0

0

0

⎞⎟⎟⎠ |01〉 =

⎛⎜⎜⎝
0

1

0

0

⎞⎟⎟⎠ |10〉 =

⎛⎜⎜⎝
0

0

1

0

⎞⎟⎟⎠ |11〉 =

⎛⎜⎜⎝
0

0

0

1

⎞⎟⎟⎠ (2.8)

and a matrix representation for the CNOT operation is then
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C =

⎛⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎠ (2.9)

which is a unitary matrix that cannot be written as a tensor product of local unitary

operations. This is proof that the CNOT operation is a non-local operation. We can

in fact see that the combined operations Hadamard and CNOT will transform a pure

product state into a Bell state. First, Hadamard on system A gives

H|00〉 =
(

1√
2
{|0〉+ |1〉}

)
⊗ |0〉 = 1√

2
{|00〉+ |10〉} (2.10)

which is still a separable state since Hadamard is a local operation. Then CNOT gives

C

(
1√
2
{|00〉+ |10〉}

)
=

1√
2
{|00〉+ |11〉} = |β+〉 (2.11)

It is worth observing that [H,C] �= 0 since the reversed operation is HC|00〉 = H|00〉,
which is separable.

The quantum operations above can be realized physically in many different ways.

Since the technology for manipulating photons is very well developed, most of the

realizations of entanglement utilize photonic systems [23, 24].

2.3 Applications of entanglement

We will here describe some applications of entanglement. First, in order to illustrate

some of the power of entanglement in communication tasks we will look at some ex-

amples of this. Then we try to give a (very) basic account of the ideas of quantum

computing and quantum computers. The three most prominent applications in the

area of quantum communication are quantum dense coding, quantum cryptography (or

quantum key distribution) and quantum teleportation. All these examples involve the

transmission of information in some quantum form. Quantum computing involves, as

we shall see, the use and manipulation of quantum bits as defined in (2.1) as the tool

for making computations, rather than the traditional bit which is either |0〉 or |1〉.

Quantum dense coding

In classical communication, if we want to send two bits of information, we can accom-

plish this by sending two physical bits to the receiver. By using entanglement we can

send the same amount of information by transmitting only one quantum bit of informa-

tion between the parties. This is known as quantum dense coding or superdense coding

[25], and has had several experimental realizations [26]. The two parties Alice and Bob
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must each control one component, or qubit, of a shared entangled state, say the Bell

state

|β+〉 = 1√
2
{|00〉+ |11〉} (2.12)

Alice is in possession of the qubit at A and Bob of the qubit at B. Now Alice want to

communicate two pieces of information to Bob. She relays this information through her

choice of quantum operation U. She chooses one out of four alternative local operations

on her qubit in A. Firstly she can do nothing, which means that the entangled state is

unchanged U|β+〉 = |β+〉, or she can use the operations X, iY or Z that we defined

earlier. In these cases we get X|β+〉 = |α+〉, iY|β+〉 = |α−〉 and Z|β+〉 = |β−〉.
So the entangled state she shares with Bob will change according to what type of

operation she chooses to do. If she now sends her qubit to Bob, he will be in possession

of both qubits, and can perform measurements on both. If he does the measurement in

the Bell state basis he faces four possible outcomes, corresponding to |α±〉 and |β±〉.
In this way he can determine which of the four operations Alice did on her qubit. The

one information bit Alice sends is either 0 or 1, but it turns into two information bits

which Bob can determine as either 00, 01, 10 or 11.

Quantum cryptography

Another use of entanglement is quantum cryptography, a form of communication where

information is encoded into a stream of qubits, is such a way that it is extremely difficult,

if not impossible, to eavesdrop. Entanglement contains a feature which is very useful

in this matter, namely the fact that if two subsystems A and B are in a pure entangled

state, then no other outside system can be made to share these correlations. The fact

that entanglement represents correlations that cannot be shared by third parties is

connected to entanglement monogamy, which expresses unshareability of entanglement,

as developed by Terhal [27].

There are several quantum key distribution (QKD) protocols that do not use en-

tanglement directly, such as the BB84 protocol [28]. A measurement on a quantum

state will usually irrevocably disturb the state in a non-deterministic and irreversible

manner. The BB84 protocol utilizes this, and the no-clone theorem. The short version

of the no-clone theorem is that it is impossible to make a copy of an unknown quantum

state |ψ〉, while keeping the original unchanged. Cloning an unknown state would make

it possible to exactly measure all the properties of the unknown state simultaneously,

including non-commuting ones, which quantum mechanics expressly forbids.

Closely related to the no-clone theorem is the fact that it is impossible to distinguish

two non-orthogonal states in quantum mechanics. For example if we take the four states

|ψ00〉 = |0〉 |ψ10〉 = |1〉
|ψ01〉 = 1√

2
{|0〉+ |1〉} = |+〉 |ψ11〉 = 1√

2
{|0〉 − |1〉} = |−〉 (2.13)

then it is impossible to distinguish between them with certainty by measurements, and

the BB84 protocol uses this fact.
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1. If Alice wants to send a private key to Bob using the BB84 protocol she begins

with two strings of bits, a and b, each n bits long. She then encodes these two

strings as a string of n qubits

|ψ〉 = |ψa1b1〉 ⊗ . . .⊗ |ψanbn〉 =
n⊗

i=1

|ψaibi〉 (2.14)

While the bit ai can be regarded as the information she wants to send, the bit bi
contains information about which basis ai is encoded in, either bi = 0 for |0〉, |1〉
or bi = 1 for |+〉, |−〉. So, the strings ai, bi are effectively translated, or encoded,

into a quantum state |ψ〉. Complete knowledge of the state |ψ〉 will then give the

strings ai, bi. In fact, together aibi essentially give us an index into the four qubit

states (2.13).

2. Alice sends |ψ〉 over a public quantum channel to Bob. In the middle, Eve is

eavesdropping into the flow of qubits. After Bob receives the string of qubits, all

three parties, namely Alice, Bob and Eve, have their own states.

3. However, since only Alice knows bi, it is virtually impossible for either Bob or Eve

to distinguish the states of the qubits. Also, after Bob has received the qubits,

we know by the no-clone theorem that Eve cannot be in possession of a perfect

copy of the qubits sent to Bob. If Eve makes measurements on qubit ai she risks

disturbing the qubit with a likelihood of 50%, since she do not know bi. So in

effect half of the qubits that Eve measures, and presumably sends on to Bob, will

be wrong.

4. Bob proceeds to generate a string of random bits b′ of the same length as b. Using

b′, he then measures the string he has received from Alice, with the results as a′.
Bob then announces publicly that he has received Alice’s transmission. Alice then

knows she can safely announce b. Bob then communicates over a public channel

with Alice which bi and b′i are not equal. Both Alice and Bob now discard the

qubits ai and a′i where bi and b′i do not match.

5. From the remaining k bits where both Alice and Bob measured in the same

basis, Alice randomly chooses k/2 bits and discloses her choices over the public

channel. Both Alice and Bob announce these bits publicly and run a check to see

if more than a certain number of them agree. If this check passes, Alice and Bob

proceed to use privacy amplification and information reconciliation techniques to

create some number of shared secret keys. Otherwise, they realize with a certain

probability that they have been eavesdropped, so they cancel and start the process

all over.

Today a large number of protocols to conduct QKD exist. A major problem in the

construction of such protocols is the closing of loopholes that allow eavesdroppers to

interfere. Hacking strategies target vulnerabilities in the operation of a QKD protocol
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or deficiencies in the components of the physical devices used in construction of the

QKD system, and the volume of possible attack strategies is massive.

The first public use of QKD happened in Vienna in 2004, when Bank Austria Cred-

itanstalt on behalf of the city of Vienna, transferred �3000 to research groups at Uni-

versität Wien. Today there are several companies offering commercial QKD systems.

Quantum teleportation

We will now discuss the basic theory underlying quantum teleportation, which could

be argued is the most amazing application of entanglement. We assume that Alice

and Bob share a Bell state |β+〉, where as before Alice controls the A qubit and Bob

controls the B qubit of the state

|β+〉 = 1√
2
{|00〉+ |11〉} (2.15)

In addition to her half of the entangled state |β+〉, Alice also controls another qubit

|ψ〉 = a0|0〉+a1|1〉 which she hopes to send or “teleport” to Bob by using only classical

communication, e.g. a telephone. If she in any way tries to measure the state |ψ〉 she
will ruin or change it, so she wants to avoid that. We must remember that the complex

factors a0 and a1 can take on any value.

Alice starts by letting her qubit |ψ〉 interact with her half of |β+〉 so that the

entangled state that Alice and Bob shares becomes

|γ0〉 = 1√
2

(
a0|0〉{|00〉+ |11〉}+ a1|1〉{|00〉+ |11〉}

)
(2.16)

where we use the convention that the first two qubits (from the left) belong to Alice

and the third to Bob. Alice then sends her qubits through a CNOT gate (2.7), and we

have

|γ1〉 = 1√
2

(
a0|0〉{|00〉+ |11〉}+ a1|1〉{|10〉+ |01〉}

)
(2.17)

She then uses a Hadamard gate on the first qubit

|γ2〉 = 1

2

(
a0{|0〉+ |1〉}{|00〉+ |11〉}+ a1{|0〉 − |1〉}{|10〉+ |01〉}

)
(2.18)

This state is now rewritten

|γ2〉 = 1

2

(
|00〉{a0|0〉+ a1|1〉}+ |01〉{a0|1〉+ a1|0〉}

+ |10〉{a0|0〉 − a1|1〉}+ |11〉{a0|1〉 − a1|0〉}
) (2.19)

Please note that the |00〉 in (2.18) and (2.19) is not the same. The expression above

naturally breaks down into four terms. The first term for instance, has Alice’s qubits

as |00〉 and Bob’s qubit as a0|0〉+ a1|1〉 which is the original state |ψ〉.
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Alice now performs a measurement on her two qubits in the state |γ2〉 in the product

basis |ij〉. If her result is for instance |00〉 she reports this to Bob. He then knows that

his qubit is a perfect copy of the initial qubit |ψ〉, since |ψ〉 is perfectly correlated to

|00〉. If Alice measures, say |10〉, then he knows his qubit is a0|0〉 − a1|1〉. He can

perform an appropriate local quantum operation U on his qubit to reproduce the state

|ψ〉. So in total, for |00〉 he does nothing (U = I), for |01〉 he uses U = X, |10〉 means

he uses U = Z and finally if Alice reports |11〉 from her measurement, he uses the

operation U = ZX.

What effectively happens when Alice performs her measurement is that all informa-

tion about the state |ψ〉 is irreversibly destroyed in A but reappears in B. Hence the

name quantum teleportation. The reason this works is due to the initial point where

Alice interacts the qubit |ψ〉 with her qubit of the entangled state |β+〉, by doing this

she “imprints” information about |ψ〉 into the entangled state |β+〉. It is worth noting

that there is no instant transport of energy going on, which one could be led to believe

from the term “teleportation”, and also since Bob cannot know the state |ψ〉 before he

receives classical information from Alice about the result of her measurement, there is

no instant information transport.

The quantum copier is a bit like a copy machine that makes a perfect copy of an

unopened letter, but changes or ruins the original in an unpredictable way.

Quantum computing

The idea behind quantum computers is the distinction between bits and qubits. A

classical bit in a classical computer is somewhat like a light switch, it is either on or

off. We have looked at qubits before, and we refresh from (2.1)

|ψ〉 = a0|0〉+ a1|1〉 (2.20)

A switch in the state |ψ〉 is neither in state |0〉 nor |1〉, but in a superposition with

weights |a0|2 and |a1|2. Since a classical bit is either 0 or 1, a simulation of N two-level

systems requires 2N bits, while a quantum computer requires only N bits. For large N

the difference can be quite substantial.

In general, a quantum computer that maintains a sequence of N qubits can be in

an arbitrary superposition of up to 2N different states simultaneously. This compares

to a normal computer that can only be in one of these 2N states at any one time.

A quantum computer operates by setting the qubits in a controlled initial state that

represents the problem at hand and by manipulating those qubits with a fixed sequence

of quantum logic operations. The sequence of gates to be applied is called a quantum

algorithm. The calculation ends with a measurement, collapsing the system of qubits

into one of the 2N pure states, where each qubit is purely zero or one. The outcome

can therefore be at most N classical bits of information. Quantum algorithms are often

non-deterministic, in that they provide the correct solution only with a certain known

probability. However, by repeatedly initializing, running and measuring the quantum

computer, the probability of getting the correct answer can (and must) be increased.
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An example of a realized quantum computer is the NMR quantum computer, based

on nuclear magnetic resonance [29]. The qubits in such a computer are the spin states

of molecules. These can be manipulated by varying a magnetic field which interacts

with the spins. Using a setup with seven qubits, such a system has been used to factor

the number 15 = 3 · 5, an experimental demonstration of the principle of the quantum

algorithm known as Shor’s algorithm.

The big problem with quantum computers is the loss and degradation of entan-

glement. It is a result of the quantum state interacting with the environment, and is

sometimes referred to as decoherence. In most applications in quantum computation,

the states used are pure entangled states, but as they interact with the environment

they will become more and more mixed. This puts limits not only on the operation

of quantum computers, but also on most forms of quantum communications involving

entanglement.
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Chapter 3

Quantum mechanics of composite

systems

We will first define the basic principles of quantum mechanics, and then move on the

description of composite quantum systems, which involves the use of tensor products.

For those who have suffered at least one course in quantum mechanics this should

mostly be well known material. We also define the operations partial trace and partial

transposition, and give some examples to underline their importance. The concept

of product vectors in various subspaces is discussed, and also related concepts such

as entangled subspaces and the range criterion. We end by showing the usefulness of

product transformations in the description of these quantum systems.

3.1 Fundamental principles of quantum mechanics

We define the basic postulates of quantum mechanics, first for pure quantum states,

and we then develop the formalism for mixed states and density matrices.

Pure quantum states

A pure state in quantum mechanics is usually represented by a vector in a complex

inner product space, usually referred to as a Hilbert space H. Since H is a vector space

the superposition principle applies, which means that if |ψ1〉, |ψ2〉 ∈ H then the sum

|ψ1〉+ |ψ2〉 ∈ H. A vector space must also be closed under multiplication, which means

that also c|ψ1〉 ∈ H for c ∈ C. The vectors c|ψ1〉 and |ψ1〉 represent the same physical

state, so the space of physical states is a projective space of lines in H. The only vector

that cannot be projected onto a physical state is thus the zero vector.

Since the Hilbert space is an inner product space we also need an inner product.

In the conventional Dirac notation |ψ1〉† = 〈ψ1|, and we put the inner product 〈ψ1, ψ2〉
of |ψ1〉 and |ψ2〉 as 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉∗. It is possible, and often practical to write

the Hilbert space vector |ψ〉 simply as an N × 1 matrix ψ ∈ C
N. In this notation

〈ψ| = ψ† and the inner product becomes 〈ψ1, ψ2〉 = ψ†
1ψ2, while the outer product

|ψ1〉〈ψ2| = ψ1ψ
†
2. Occasionally we use ψk to mean the kth basis vector in a basis

ψ1, . . . , ψn, and occasionally we take ψk to be the kth component of a vector ψ ∈ C
N,

31
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i.e. a scalar. In short, context often dictates the meaning. In some cases, as illustrated

in Chapters 1 and 2, we prefer to use the Dirac notation because it is more convenient

and illustrates more clearly the main points.

To every observable there is associated an Hermitian operator F, where Hermitian

implies that F† = F. For the case of an N -dimensional Hilbert space, a representation

of F could be an N ×N complex matrix. The matrix F will have a set of eigenvectors

en with corresponding real eigenvalues λn for 1 ≤ n ≤ N

Fen = λnen (3.1)

where the set λn may or may not be degenerate. For any matrix F that represents F,

the rank of F is equal to the number of eigenvalues λm �= 0. For an eigenvector basis en
we will find the elements of F = Fij = e†iFej. If the system is in the state ψ, the results

of a measurement of the observable F in the eigenvector basis en, will always be one

of the eigenvalues λn with probability e†nψ, and a measurement will always leave the

system in the state en corresponding to the result. The average value of measurements

in the state ψ is given by the expectation value

〈F〉 = ψ†Fψ (3.2)

Any matrix F for which FF † = F †F is a normal matrix. It is easy to see that any

Hermitian matrix is normal. A well known and important result for normal matrices is

the spectral theorem, which states that any normal matrix F can be written in terms

of its eigenvalues and eigenvectors

F =
∑
n

λn (ene
†
n) (3.3)

where the eigenvectors form a complete set
∑

n ene
†
n = I.

Mixed quantum states

For a system represented by a pure vector state ψ ∈ H the entropy is zero, but from

statistical mechanics we know that any irreversible change that occurs in a system will

increase entropy or create disorder. For a pure vector state the uncertainty about the

outcome of any measurement is not due to the lack of information about the system. In

standard interpretations of quantum mechanics a pure state ψ = λ1e1+λ2e2 represents

the maximum amount of information we can have. Any uncertainties are purely non-

classical, and related to the statistical interpretation of the state vector ψ. If we perform

a measurement on this system in a en basis we would get a result that corresponded

either to e1 or e2, with probabilities |λ1|2 and |λ2|2. The system is in a pure quantum

state, which is a neither nor state that is impossible for golf balls, but possible for

electrons.

On the other hand, if we have a system which is described by an ensemble ψk, with

pk as the probability associated with the state ψk, we could regard this as a probability
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distribution or statistical ensemble of several quantum mechanical states. This state is

either or, a type of distribution which is possible for both golf balls and electrons. The

average value of a measurement on an observable F is then

〈F〉 =
∑
k

pk (ψ
†
kFψk) =

∑
k

pk〈F〉k (3.4)

which is a sum of the average values from (3.2) weighted by the pk. On this note we

can introduce the concept of a density operator.

Definition 3.1 (Density operator). We define the probability distribution of projections

ψkψ
†
k onto the state vectors ψk ∈ H

ρ =
∑
k

pk (ψkψ
†
k) pk > 0

∑
k

pk = 1 (3.5)

as a density operator or density matrix on H.
The two conditions that pk > 0 and

∑
k pk = 1 can be inferred from the fact that

the matrix ρ is considered to represent a probability distribution. The latter implies

that tr(ρ) = 1. We take the expectation value of a density operator in any vector ψ

ψ†ρψ =
∑
k

pk|ψ†
kψ|2 ≥ 0 (3.6)

The fact that ψ†ρψ ≥ 0 for any state ψ means that ρ has all non-negative eigenvalues

λk ≥ 0, i.e. it is a positive operator and this is usually written ρ ≥ 0. It follows from

this and the spectral representation of ρ that ψ†ρψ ≥ 0 if and only if ρψ ≥ 0.

So, based on this we define an Hermitian positive semidefinite N × N matrix of

unit trace which can be expressed in the form (3.5), to be a density matrix on the

N -dimensional Hilbert space H.
Definition 3.2 (The set D). The set of matrices formed by the density matrices is

usually written

D = DN = {ρ ∈ HN | ρ ≥ 0, tr(ρ) = 1} (3.7)

The natural structure of the set HN of Hermitian N ×N matrices is that of a real

Hilbert space of dimension N2, where for X, Y ∈ HN

〈X, Y 〉 = tr(X†Y ) = tr(XY ) (3.8)

is a well defined inner product, called the Hilbert-Schmidt inner product. This gives

us access in the matrix space to concepts such as distances |X − Y |2 = tr[(X − Y )2]

and angles cos θ = tr(XY ), and from the latter orthogonality as tr(XY ) = 0. Note

that if the Hilbert-Schmidt norm of a matrix X is one, this means that tr(X2) = 1,

which if rank(X) > 1 in turn implies that tr(X) < 1. Since we insist that tr(ρ) = 1,

the Hilbert-Schmidt norm has its main use in geometrical aspects, such as distances.
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The average value of an operator F in terms of the density matrix is

〈F〉 = tr(Fρ) =
∑
k

pk (ψ
†
kFψk) (3.9)

If the number of terms in the decomposition (3.5) is equal to one, we have only one state

ψ1 with probability one. The density matrix then represents a pure state ρ1 = ψ1ψ
†
1, a

state of rank one. For the cases where k > 1 in (3.5) we have a genuinely mixed state,

and since ρ is Hermitian (normal), we can utilize (3.3) to show that tr(ρ2) =
∑

k p
2
k < 1.

So only for a pure state do we have ρ2 = ρ, which is then an idempotent projection

operator onto a single pure state. So, the trace of the square of ρ is a measure of how

mixed ρ is, where tr(ρ2) = tr(ρ) = 1 means no mixing at all. The maximum amount of

mixing for a state ρ on an N -dimensional Hilbert space is the maximally mixed state

ρ = I/N (3.10)

with I as the N ×N identity matrix. We realize that this state is the one which gives

minimal knowledge about the system, since all the states in the ensemble ψk are equally

weighted with pk = 1/N .

It is a tempting and common fallacy to suppose that the ensemble of states ψk along

with probability factors pk, which is used to compose a density matrix has a special

physical significance. This is however not the case. To illustrate this we look at the

2× 2 density matrix

ρ =
3

4
|0〉〈0|+ 1

4
|1〉〈1| (3.11)

with |0〉 and |1〉 as for instance (2.2). Suppose we defined the two states

|a〉 =
√

3

4
|0〉+

√
1

4
|1〉

|b〉 =
√

3

4
|0〉 −

√
1

4
|1〉

(3.12)

then we see that

ρ =
1

2
|a〉〈a|+ 1

2
|b〉〈b| = 3

4
|0〉〈0|+ 1

4
|1〉〈1| (3.13)

So the construction of mixed density matrices is not bijective, in the sense that there

is no unique decomposition of ρ into an ensemble. For most cases there are infinitely

many such decompositions, and the spectral decomposition (3.3) is always one of them.

It therefore does not make any sense to ask out of which states a mixed state was

originally constructed. For pure states, i.e. states of rank one, the decomposition will

however always be unique.
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3.2 Tensor product states

It is important to describe several subsystems (usually particles) with a single quantum

state. These states are elements of a tensor product space. If we assume a bipartite

quantum states with system A described by an NA-dimensional Hilbert space HA, and

likewise for B by the NB-dimensional Hilbert space HB, then this Hilbert space will be

H = HA⊗HB, with the complex tensor product CN = C
NA⊗C

NB. The tensor product

is a way of putting vector spaces together to form larger vector spaces. The construction

is crucial to understanding the quantum mechanics of multiparticle systems.

Pure tensor product states

Consider two quantum systems A and B. As above, |HA| = NA and |HB| = NB. We

start with the construction of a state of the composite system AB of the form ψ = φ⊗χ
with φ ∈ HA and χ ∈ HB, and call this a product state. A very important observation

is that states of this product form, do not make up a vector space, because we realize

that a combination of two product vectors

ψ = c1 (φ1 ⊗ χ1) + c2 (φ2 ⊗ χ2) (3.14)

with c1, c2 ∈ C, is not generally a product vector. The total set of product vectors is

therefore called the Cartesian product of HA and HB, i.e. the set of all ordered pairs

consisting of a vector from HA and a vector from HB.

Since a general principle of quantum mechanics is that systems are described by

complex vector spaces, we must insist that the superposition principle also holds for

composite quantum systems. This means that the appropriate state space for the

composite system is not just the Cartesian product, but rather the entire vector space

spanned by product vectors ψ = φ ⊗ χ. The states that are not of product form

ψ = φ ⊗ χ are then the entangled quantum states for the system. The vector space

H = HAB = HA ⊗HB spanned by the product vectors, is called the tensor product of

HA and HB. The inner product of H is defined by

(φ1 ⊗ χ1)
†(φ2 ⊗ χ2) = (φ†

1φ2)(χ
†
1χ2) (3.15)

Any vector ψ ∈ H can be written as a linear combination of product vectors. All the

vectors in the products can be expanded in orthonormal bases φi with i = 1, . . . , NA

for A, and χj with 1, . . . , NB for B. For the product vectors φi ⊗ χj we can write in

increasing order of omitting redundancies

|φi〉 ⊗ |χj〉 ≡ |φi〉|χj〉 ≡ |φi, χj〉 ≡ |i, j〉 ≡ |ij〉 (3.16)

For ease of notation we here use Dirac notation, so that the expansion of an arbitrary

vector in H is then

|ψ〉 =
∑
ij

|ij〉〈ij|ψ〉 =
∑
ij

cij|ij〉 (3.17)
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which indeed makes the dimension of |H| = N = NANB. The coefficients cij = 〈ij|ψ〉
can be written as an NANB × 1 column vector, so we can effectively think of a vector

in H = HA ⊗HB as an NA-dimensional vector whose components are NB-dimensional

vectors.

|ψ〉 =

⎛⎜⎜⎜⎝
c1
c2
...

cNA

⎞⎟⎟⎟⎠ with ck =

⎛⎜⎜⎜⎝
ck1
ck2
...

ckNB

⎞⎟⎟⎟⎠ (3.18)

If the coefficients cij = 〈ij|ψ〉 factor as cij = aibj then

|ψ〉 =
∑
ij

aibj|ij〉 =
(∑

i

ai|i〉
)
⊗
(∑

j

bj|j〉
)

= |φ〉 ⊗ |χ〉 (3.19)

which is a product state in HN . Contrasted with the general form (3.17), the demand

that cij = aibj is not generally satisfied. It is for example easy to see that for the 2× 2

system, where |ψ〉 would be a 4× 1 vector with coefficients ψi, we would need to have

ψ1ψ4 = ψ2ψ3 for this to be the case, or equivalently c11c22 = c12c21. We see here the

correspondence between the double index system ij and the indices for the NANB × 1

vector |ψ〉, in that we write the components of |ψ〉 as ψI = ψij where

I = 1, 2, . . . , NB, NB + 1, NB + 2, . . . , N

�
ij = 11, 12, . . . , 1NB, 21, 22, . . . , NANB

(3.20)

Schmidt decomposition

For pure states the problem of determining whether a state is separable or entangled, is

completely solved due to Schmidt decomposition [30], which is essentially a restatement

of the singular value decomposition scheme. When formulated for our purposes this

decomposition essentially means that for any vector ψ ∈ C
N = C

NA ⊗ C
NB there

exists an integer r such that 1 ≤ r ≤ min(NA, NB), a set of real numbers ci > 0, and

orthonormal sets of vectors φi ∈ C
NA and χi ∈ C

NB such that

ψ =
r∑

i=1

ci (φi ⊗ χi) (3.21)

with
∑r

i=1 c
2
i = 1. This scheme is possible because the orthonormal vectors φi and χi

are chosen differently for each vector ψ, and are not fixed like a complete orthonormal

basis would be. The minimum integer r = rmin allowed for the form (3.21) is called the

Schmidt rank of ψ, and rmin = 1 if and only if ψ is separable.

The important thing is that the task of finding the Schmidt decomposition of a

general state ψ is numerically easy.
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Tensor products of operators

We now move to operators acting on the tensor product space H = HA⊗HB. We have

seen that we can use for instance (φ1 ⊗ χ1)(φ2 ⊗ χ2)
† = φ1φ

†
2 ⊗ χ1χ

†
2, and this arranges

the outer product for states in H, as a tensor product of outer product operators for

the individual systems A and B. We now let F = A⊗B be a product operator on H.
Recalling (3.16) and (3.20) we then write FIK = Fij;kl with I ↔ ij and K ↔ kl as

F =

(∑
ik

Aik|i〉〈k|
)
⊗
(∑

jl

Bjl|j〉〈l|
)

(3.22)

so effectively we get

F =
∑
ij;kl

AikBjl|i〉〈k| ⊗ |j〉〈l| =
∑
ij;kl

AikBjl|ij〉〈kl| (3.23)

The matrix F above is thus an NA×NA matrix, where each component is an NB ×NB

matrix. To observe of this works we write an operator A⊗ I with A acting on HA and

the identity I acting on HB

A⊗ I =
∑
ij;kl

Aik|i〉〈k| ⊗ |j〉〈j| =
∑
ij;kl

Aik|ij〉〈kj| (3.24)

where the l component becomes superfluous since the j component is sufficient to carry

the identity operation. Also, a useful expression for the expectation value of an operator

F, which need not necessarily be a product operator of the form (3.22), in a product

state ψ = φ⊗ χ is then

(φ⊗ χ)†F(φ⊗ χ) =
∑
ij;kl

φ∗
iχ

∗
jFij;klφkχl (3.25)

This is a bilinear form in the coordinates φi, φk, χj, χl of φ and χ, with i, k = 1, . . . , NA

and j, l = 1, . . . , NB. Its significance will become very clear in Chapter 7. A product

operator F = A ⊗ B makes operations on each subsystem individually, and we can

easily calculate 〈A⊗B〉 in a product state

(φ⊗ χ)†(A⊗B)(φ⊗ χ) = (φ†Aφ)⊗ (χ†Bχ) = 〈A〉〈B〉 (3.26)

so as expected, the expectation values factorize. Of course for an entangled state

ψ �= φ⊗ χ this may very well not be the case.

Mixed tensor product states

We can now define density matrices ρ = ρAB on a tensor product space H = HA⊗HB,

and these will respect the real tensor product HN = HNA
⊗ HNB

. If we consider the

ensemble ψk ∈ H with the probability distribution pk, this gives rise to a density matrix
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ρ =
∑
k

pk (ψkψ
†
k) =

∑
k

pkρk (3.27)

where
∑

k pk = 1 and all pk ≥ 0. So the mixed tensor product state ρ is a convex

sum of outer products on H. Since the density matrix ρ =
∑

k pkρk is a convex sum

of individual density matrices ρk of lesser rank, it could be viewed as an ensemble of

ensembles, but we usually prefer to write ρk = ψkψ
†
k, so that rank(ρk) = 1 for all k.

Further, we follow Werner [21], and make the definition

Definition 3.3 (Separable states). A density matrix ρ is separable if it can be expressed

in the form

ρ =
∑
k

pk (φkφ
†
k ⊗ χkχ

†
k) =

∑
k

pk (μk ⊗ τk) (3.28)

with μk ∈ DNA
and τk ∈ DNB

. The complete set of separable states is S.
If this is not possible, the mixed state ρ is entangled. So for ρ to be separable there

must exist an ensemble ψk, where all ψk = φk⊗χk, along with a probability distribution

pk, such that the form (3.28) is possible.

As we have seen, a density matrix may be constructed from a whole range of different

ensembles, so the defining property for a separable density matrix is that the form (3.28)

is one of the possible. We saw a very simple example of this in (3.13), but purely to

illustrate the complexity involved even for low dimensional cases such as the 2 × 2

system, we consider another example. In the |ij〉 basis we consider the state defined by

ρ =
3

24
|00〉〈00|+

√
2

24
i |00〉〈01|+

√
2

12
i |00〉〈11|

−
√
2

24
i |01〉〈00|+ 1

4
|01〉〈01| −

√
2

12
i |01〉〈10|

+

√
2

12
i |10〉〈01|+ 5

24
|10〉〈10| −

√
2

24
i |10〉〈11|

−
√
2

12
i |11〉〈00|+

√
2

24
i |11〉〈10|+ 5

12
|11〉〈11|

(3.29)

If we employ the representation (2.8) we can write

ρ =

⎛⎜⎜⎜⎜⎜⎝
3
24

√
2

24
i 0

√
2

12
i

−
√
2

24
i 1

4
−

√
2

12
i 0

0
√
2

12
i 5

24
−

√
2

24
i

−
√
2

12
i 0

√
2

24
i 5

12

⎞⎟⎟⎟⎟⎟⎠ (3.30)

To unveil that this matrix represents a separable state, i.e. it can be written in the

form (3.28), is not trivial. Still, one possibility is

ρ =
1

2
(μ1 ⊗ τ1) +

1

2
(μ2 ⊗ τ2) (3.31)
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where

μ1 =
1

2
|1〉〈1|+ 1

2
|−〉〈−| τ1 = |γ+〉〈γ+|

μ2 =
1

2
I/4 +

1

2
|+〉〈+| τ1 = |γ−〉〈γ−|

(3.32)

where |±〉 are defined by (2.5), |γ±〉 = 1√
3
|0〉 ±

√
2
3
i |1〉 and we recognize I/4 as the

maximally mixed state.

For the pure separable state ψ = φ ⊗ χ we saw that 〈A ⊗ B〉 = 〈A〉〈B〉 so that

no quantum correlations could exist. Mixed separable states will in general contain

correlations, but these correlations are purely classical. For example the state

ρ =
1

2
|00〉〈00|+ 1

2
|11〉〈11| (3.33)

is correlated, in the sense that any measurement in the basis |0〉, |1〉 in either subsystem

will always yield the same result. It can be compared to the correlations that exist in the

Bell state (1.12) when the angle between the axes of measurements of the polarizations

is φ = 0◦.

3.3 Partial trace

For composite systems the partial trace is a trace operation with respect to a subset

of the systems. In many ways this is the opposite operation to combining two Hilbert

spaces.

Definition 3.4 (Partial trace). For a general ρ = ρij;kl on HA⊗HB, we can define the

partial trace with respect to system B by

ρij;kl → ρik =
∑
j

ρij;kj = trB(ρ) (3.34)

where the indices ik represent system A and jl system B.

What actually happens is that we trace out, or average over all correlations that may

or may not be present in the state. One may of course equivalently do the partial trace

operation with respect to system A. The ranks rA and rB of the states ρA = trB(ρ) and

ρB = trA(ρ) are called the local ranks of ρ. The physical interpretation of ρA = trB(ρ)

is that it provides the correct measurement statistics for measurements that could be

made on system A. For the case of the product state ρ = μ⊗ τ , we have

trB(μ⊗ τ) = μ tr(τ) = μ (3.35)

which could be expected. A less trivial example is the Bell state |β+〉 = (|00〉+|11〉)/√2.
This state has a density operator
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ρ = |β+〉〈β+|

=

(
1√
2
{|00〉+ |11〉}

)(
1√
2
{〈00|+ 〈11|}

)
=

1

2
(|00〉〈00|+ |11〉〈00|+ |00〉〈11|+ |11〉〈11|)

(3.36)

or in the standard matrix representation

ρ =
1

2

⎛⎜⎜⎜⎝
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞⎟⎟⎟⎠ (3.37)

Tracing out the second qubit can be done in different ways. Observing that the partial

trace trB(|ij〉〈kl|) is the matrix 〈l|j〉 (|i〉〈k|) and that the basis |ij〉 is orthonormal we

can appeal to (3.36) to get

ρA =
1

2
|0〉〈0|+ 1

2
|1〉〈1| = I/2 (3.38)

The same answer could have been achieved by replacing the four 2× 2 submatrices in

(3.37) with their trace.

Since the state I/2 is a mixed state, this is a remarkable result. The state of the joint

system of qubits is a pure state, that is a state of which we have complete knowledge or

certainty. But the state of the first qubit (and by symmetry also the second) is a mixed

state, of which we have less knowledge, and in this case even minimal knowledge since

the state I/2 is the maximally mixed state. The strange property that we have more

knowledge about the whole system than the parts of it, is a highly non-reductionist

effect, which is entirely due to entanglement.

3.4 Decoherence

It is an easy mistake to assume that a convex mix of two density matrices for two

entangled states, is again an entangled state. Let us again use the Bell states (1.23) to

illustrate an important concept. The Bell states are known to be maximally entangled.

We take an even mix of the two states |β+〉 and |β−〉

ρ =
1

2
|β+〉〈β+|+ 1

2
|β−〉〈β−| (3.39)

Again using the basis |ij〉 and drawing from (3.36) and (3.37) we observe that the

density matrix for the state |β±〉 is (|00〉〈00| ± |11〉〈00| ± |00〉〈11|+ |11〉〈11|) /4, so the

two middle terms cancel when we make the sum (3.39), and we get the separable state

ρ =
1

2
|00〉〈00|+ 1

2
|11〉〈11| (3.40)
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In general if a state evolves from ρ1 → ρ2 in such a way that it becomes increasingly

mixed, i.e. tr(ρ21) > tr(ρ22) this is known as decoherence or quantum noise. As a general

rule any type of mixing will destroy some entanglement in the total state. In many cases

the state may stay entangled, but as a rule it will be less entangled. To understand

this further we would need to develop a theory of how to quantify the amount of

entanglement for a state ρ. As was mentioned in Section 2.1 we can employ the use

of entanglement measures, but as the theory of entanglement measures is a formidable

subject we will not dwell into it further.

The most common way of looking at decoherence is to imagine that we control

two systems A and B described by H = HA ⊗ HB, and that we wish to perform

quantum operations on these. We now introduce a third system E, which represents the

environment, and over which we have none or very limited control. We then effectively

have a tripartite system

H = HA ⊗HB︸ ︷︷ ︸
Control

⊗ HE (3.41)

of which we can control only A and B. The interactions between the AB system and

the environment E will in general involve adding terms to the density matrix ρAB.

This will lead to a more mixed state, and inevitably to loss of entanglement, and an

accompanied loss of non-local correlations between parts A and B of the system.

In many applications in quantum information this is a formidable problem, and

since the desired working states for the AB system are pure states, any mixing with

the environment is highly undesirable. The ability of an entangled state ρ to withstand

mixing with the environment, which leads to loss of entanglement, is called robustness

of entanglement, and is an area of considerable research activity. The biggest challenge

today if one is hoping to build and operate quantum computers of a sufficient size and

complexity, is decoherence.

Finally, a skill which is very practical for any quantum physicist in social situations,

is to be able to answer questions about the before mentioned Schrödingers cat. The

seemingly paradoxical situation is easily resolved by appealing to decoherence. One

assumes that the cat should be in a superposition between dead and alive, or rather in

an entangled state with the poison trap. Any such superposition would be immediately

ruined by decoherence, so putting the cat into the wanted superposition is altogether

impossible. One may argue that the cat is quite rightly in a quantum state, but in a

mixed and incredibly complex one.

3.5 PPT states

We have defined and investigated two important sets of matrices on the Hilbert space

H = HA ⊗HB, namely the set of density matrices D, and the set of separable density

matrices S ⊂ D. We will now define a third set which will also be a subset of D, and
to start us up we will define an operation called partial transposition.
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3.5.1 Partial transposition

This is an operation where the part of a density matrix ρ on H = HA ⊗ HB that

corresponds to system B, is transposed. The transpose map T : Mij �→Mji is a positive

map in the sense that if a matrix M = Mij is positive, meaning that all eigenvalues

λi ≥ 0, then so will the transpose MT = Mji. Since transposition also preserves trace,

this means that a density matrix is mapped into a density matrix by transposition. For

any matrix ρ acting on H = HA ⊗HB partial transposition is defined by the product

operator I⊗T
ρP = (I⊗T)ρ (3.42)

which may or may not be a positive matrix. The identity operator I and transposition

operator T works on system A and B respectively. In matrix notation a more compact

and more useful way of doing this is to simply interchange the indices referring to

subsystem B.

Definition 3.5 (Partial transposition). If ρij;kl is on the Hilbert space HA ⊗HB, and

the indices i, k represent system A and j, l system B, then the operation

ρPij;kl = ρil;kj (3.43)

is called partial transposition with respect to system B.

The affix P expresses that this is partial transposition, and we shall choose P to

symbolize partial transposition as defined above, i.e. with respect to system B. This

can also formally be expressed as ρP = ρTB. It is obvious that (ρP )P = ρ, and also that

the eigenvalues of ρP will not necessarily be positive, so that we may have ρP /∈ D. It

is also useful to observe that since tr(XPY P ) = tr(XY ), partial transposition is also

an orthogonal transformation.

The partial transposition operation, or rather a good approximation of it, has in

fact been realized experimentally [31].

3.5.2 PPT states and the Peres set

In general ρP will have different eigenvalues than ρ, but for some states they remain

positive, so that ρ ∈ D ⇔ ρP ∈ D. The states with this property are called positive

partial transpose states, or PPT states.

Definition 3.6 (PPT states and the Peres set). Any density matrix ρ such that ρP is

a density matrix, we call a PPT state, and the set of PPT states P ⊂ D is called the

Peres set.

The Peres set and PPT states was first introduced by Peres [32]. The PPT property

is independent of whether we define partial transposition with respect to subsystem

A or B. Since (ρTA)TB = ρT ≥ 0 always holds, it follows that ρTA ≥ 0 if and only if

ρTB ≥ 0. If ρ ∈ P with rank(ρ) = m and rank(ρP ) = n, we usually say that ρ is a PPT
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state of rank (m,n). It is quite easy to realize that any separable state ρ will always

be a PPT state since

(I⊗T)ρ = ρP = (I⊗T)

(∑
k

pk(μk ⊗ τk)

)
=
∑
k

pk
(
μk ⊗T(τk)

)
(3.44)

and since T(τk) is a density matrix, so will ρP. In fact ρP ∈ S.
Theorem 3.1 (Peres-Horodecki criterion). Let ρ ∈ D and ρP be the partially transposed

matrix of ρ. Then if ρP �≥ 0, the state ρ is entangled.

For the 2×2 and 2×3 systems the PPT property is exclusive to separable states, but

for systems of dimension N = NANB ≥ 8 there exist PPT states that are entangled [33].

Thus for systems with N ≥ 8 the PPT property can only be used in a contrapositive

way: i.e., if a state is NPT we know for any N that it is not separable. The first example

of an entangled PPT state was given by Michal and Pawel Horodecki [34]. The general

problem of distinguishing separable states from entangled states is a fundamental and

unsolved problem in quantum information theory. For bipartite systems the problem

is solved for the 2× 2 and 2× 3 systems, since checking the PPT property of a density

matrix is a quick task numerically.

Since a PPT state is defined to be a state ρ for which the partial transpose ρP is a

density matrix, we can also define the set of PPT states as

P = {ρ | ρ ∈ D ∩ DP} (3.45)

where DP is the set of transposed density matrices. An attempt to visualize this is

made in Figure 3.1

D DPP

Figure 3.1: We see a visualization of the Peres set P as the intersection of the sets D and DP

The Werner states for the 2 × 2 system, initially published by Werner [21], which

are a convex combination of the maximally entangled state |β+〉 and the maximally

mixed state I/4, provide a magnificent example

ρ(x) = x |β+〉〈β+|+ (1− x)
I

4
x ∈ [0, 1] (3.46)

This gives the density matrix and its partial transpose as
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ρ(x) =
1

4

⎛⎜⎜⎜⎝
1 + x 0 0 2x

0 1− x 0 0

0 0 1− x 0

2x 0 0 1 + x

⎞⎟⎟⎟⎠ (3.47)

ρP(x) =
1

4

⎛⎜⎜⎜⎝
1 + x 0 0 0

0 1− x 2x 0

0 2x 1− x 0

0 0 0 1 + x

⎞⎟⎟⎟⎠ (3.48)

The partial transpose of ρ with respect to system B is found by transposing each

2 × 2 submatrix of ρ. It is easy to verify that all the eigenvalues of ρ are positive for

x ∈ [0, 1]. The eigenvalues of ρP are λ1 = (1 − 3x)/4 and the remaining three are

degenerate and equal to λ2,3,4 = (1 + x)/4. This means that ρP(x) for the 2× 2 system

is positive definite for x ≤ 1/3. So ρ(x) is in fact entangled for x > 1/3 and separable

for x ≤ 1/3. It seems reasonable to think that the amount of entanglement in ρ(x) will

gradually approach zero as x→ (1/3)+.

3.5.3 Bound and free entanglement

Entanglement distillation is the transformation of N copies of an arbitrary entangled

state ρ into some number n < N of approximately pure Bell pairs, using only LOCC

operations. The main motivation behind these operations is decoherence, or loss of

entanglement. Let us assume that we have an entanglement measure E which is scaled

in such a way that E(ρsep) = 0 and E(ρBell) = 1. Let us further assume that we have

a system of N = 100 identical states ρ0 for which we have E(ρ0) = 1/10, so that the

total amount of entanglement E0 =
∑100

N=1 E(ρ0) = 10. Assume that during a process

each of these 100 states evolved such that ρ1 = Uρ0U
† where E(ρ1) = 1/100 ⇒ E1 =∑100

N=1 E(ρ1) = 1. If one could transform all the ρ1 states by LOCC operations into

one Bell state without significant loss of entanglement, then the entanglement in the

system would be considerably more concentrated. If the state ρ1 allows such a scheme,

the entanglement it contains is said to be free entanglement, in the opposite case it is

called bound entanglement. The first attempt at describing this idea was by Bennett

et al. [35]. Since this first work, many others have published on this matter, providing

several different protocols for distilling entangled states.

There is a link between the PPT property of a state ρ and the type of entanglement

it contains. It is known that any entangled PPT state has bound entanglement, and

in the 3 × 3 system they form a small subset of D [36]. The entangled states with

the PPT property have some characteristics that would appear to make them more

“separable” than the NPT (non-PPT) entangled states. A legitimate question would

then be whether an NPT state always contains free entanglement. This question has

not been finally answered yet, but there is some evidence which suggests that NPT

states with bound entanglement do exist [37, 38].
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Figure 3.2: The set D with the subset S in light green, the set of entangled PPT states in dark

green and the set of NPT states is in light blue. The left half are the separable states and the right

half the entangled states. The small white circle represents the hypothetical NPT states with bound

entanglement.

In Figure 3.2 the subset S is in light green, the set of entangled PPT states in dark

green and the set of NPT states in light blue. The left half are the separable states and

the right half the entangled states. The small white circle represents the hypothetical

NPT states with bound entanglement.

3.6 Product vectors in subspaces

Img ρ, or the range of ρ, is defined as the set R(ρ) = {ψ ∈ C
N | ∃ γ ∈ C

N: ργ = ψ},
while Ker ρ, or the null space of ρ, is the set N(ρ) = {ψ ∈ C

N | ρψ = 0}.
An important characteristic in the classification of the properties of a density matrix

ρ is the number of product vectors in the range Img ρ and in the kernel Ker ρ. Let the

number of product vectors in Img ρ be nimg and likewise for Ker ρ be nker. For purposes

of studying PPT states we are also interested in the number of product vectors in

Img ρP which we put ñimg. From the identity

(a⊗ b)†ρ(c⊗ d) = (a⊗ d∗)†ρP (c⊗ b∗) (3.49)

we can, by taking ψ = φ⊗ χ and ψ̃ = φ⊗ χ∗, infer the general relation
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ψ†ρψ = ψ̃†ρP ψ̃ (3.50)

Now, since ρ and by assumption ρP are positive matrices, we know that ψ†ρψ ≥ 0 ⇔
ρψ ≥ 0. That ψ ∈ Ker ρ is then equivalent to the condition that ψ̃ ∈ Ker ρP. So in effect,

we always have that nker = ñker. In summary {nimg, ñimg;nker} is a characterization of

a state ρ with regards to the number of product vectors in both the range and kernel

of ρ and ρP.

3.6.1 Generic cases

We have seen earlier that a vector |ψ〉 =∑ij cij |ij〉 ∈ C
NA ⊗ C

NB can be written as a

NANB × 1 matrix ψ with components ψI = ψij, where

I = 1, 2, . . . , NB, NB + 1, NB + 2, . . . , N

�
ij = 11, 12, . . . , 1NB, 21, 22, . . . , NANB

(3.51)

A product vector ψ = φ⊗ χ has components ψij = φiχj, with φi, χj being the compo-

nents of the vectors φ and χ. We observe that ψ is a product vector if and only if its

components satisfy the quadratic equations

ψijψkl = ψilψkj (3.52)

These equations are not all independent, and the number of independent complex equa-

tions is

m = (NA − 1)(NB − 1) = N −NA −NB + 1 (3.53)

For example, if ψ1 �= 0 we get a complete set of independent equations by taking

i = j = 1, k = 2, . . . , NA and l = 2, . . . , NB.

Since the equations are homogeneous, any solution ψ �= 0 gives rise to a one pa-

rameter family of solutions cψ where c ∈ C. A vector ψ in a subspace of dimension

n has n independent complex components. Since the most general non-zero solution

must contain at least one free complex parameter, we conclude that a generic subspace

of dimension n will contain product vectors if and only if

n ≥ m+ 1 . (3.54)

The limiting dimension

n = m+ 1 = N −NA −NB + 2 (3.55)

is particularly interesting. In this special case, a non-zero solution will contain exactly

one free parameter, which has to be a complex normalization constant. Thus up to

proportionality there will exist a finite set of product vectors in a generic subspace of
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this dimension, in fact it was shown by Hartshorne [39] that the number of product

vectors is

p =

(
NA +NB − 2

NA − 1

)
=

(NA +NB − 2)!

(NA − 1)!(NB − 1)!
(3.56)

A generic subspace of lower dimension will contain no product vector, whereas any

subspace of higher dimension will contain a continuous infinity of different product

vectors (different in the sense that they are not proportional).

It is important to emphasize that these results hold only for generic subspaces. It

is trivially clear that there exist non-generic subspaces with dimension n < m+ 1 that

contain product vectors.

3.6.2 Entangled subspaces

If the number of product vectors p in a given subspace U ⊂ C
N = C

NA ⊗ C
NB is

such that 0 ≤ p < |U|, it is called an entangled subspace. If p = 0 it is called a

completely entangled subspace. A theorem proved by Parthasarathy [40], that holds

generally (and not only for generic subspaces), says that the maximal dimension of

a completely entangled subspace for a bipartite system of dimensions N = NANB, is

given by (3.53). So it is possible to construct a subspace V ⊂ C
N = C

NA ⊗ C
NB with

|V| ≤ m = N − NA − NB + 1 that contains no product vectors, but if |V| ≥ m + 1 it

would have to contain at least one product vector.

3.6.3 Product vectors in orthogonal subspaces

If we want product vectors ψ = φ⊗χ in two orthogonal subspaces, for instance in both

the range and the kernel of some state ρ, then they must satisfy a set of orthogonality

conditions. We put the product vectors in the range as

wi = ui ⊗ vi i = 1, . . . , nimg (3.57)

And likewise for Ker ρ:

zj = xj ⊗ yj j = 1, . . . , nker (3.58)

Since the two subspaces are orthogonal, it is necessary that w†
i zj = 0 for all i, j, hence

for every pair i, j we must have either u†
ixj = 0 or v†i yj = 0, or both.

3.6.4 The range criterion

An important result connected to product vectors and partial transposition is the range

criterion developed by Horodecki [34]. It states

Theorem 3.2 (Range criterion). A density matrix ρ is separable only if there is a

set of product vectors wi = ui ⊗ vi that span the range of ρ, and the product vectors

w̃i = ui ⊗ v∗i obtained by partial conjugation of the wi, span the range of ρP.
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In order to convince ourselves of the validity of the range criterion we start with the

density operator

ρ =
∑
k

pk(ψkψ
†
k) (3.59)

and then study the vectors ξ ∈ Ker ρ. These satisfy ρξ = 0 ⇔ ξ†ρξ = 0, and from

(3.6) we have ξ†ρξ =
∑

k pk|ψ†
kξ|2, from which we deduce that ψkξ = 0 for all k. Since

ξ ∈ Ker ρ by assumption, it follows that ψk ⊥ ξ ⇒ ψk ∈ Img ρ for all k. Since from

(3.59) we have that k must be at least equal to rank(ρ), the set ψk span Img ρ. We now

assume that ρ is a separable state, so we may choose all ψk = φk ⊗ χk, and further put

ψ̃k = φk ⊗ χ∗
k. We make use of the identity

{(a⊗ b∗)(a⊗ b∗)†}P = (a⊗ b)(a⊗ b)† (3.60)

from which it emerges that (ψ̃kψ̃
†
k)

P = ψkψ
†
k. We then have

ρP =
∑
k

pk(ψkψ
†
k)

P =
∑
k

pk(ψ̃kψ̃
†
k) (3.61)

and using the same argument as for ρ, we find that the ψ̃k span Img ρP.

Since there are entangled states that satisfy the range criterion, this can only be

used in a contrapositive way to prove that the state ρ is not separable. Please note that

the range criterion demands that there should exist such a set of product vectors, not

that all product vectors in the range should satisfy this. This is for instance relevant

in the cases where there are an infinite number of product vectors in the range of ρ.

On the same note we define the term edge state. These are states that break the range

criterion in a strong way. That is to say that there exist no product vectors satisfying

wi ∈ Img ρ ⇔ w̃i ∈ Img ρP. Obviously, by the range criterion, all edge states must be

entangled.

In addition to the PPT criterion and the range criterion there exist several alterna-

tive separability criteria. The reduction criterion [41, 42] and majorization criterion [43]

both use the partial traces trA(ρ) and trB(ρ) to establish criteria for separability. We

can also mention the entropy criterion [44] and the realignment criterion [45]. All these

criteria are, like the PPT criterion, not conclusive in the sense that they can decide

with certainty whether a state is separable. Most of them work only in a contrapositive

way. There exist criteria based on positive maps, and thereof so-called entanglement

witnesses, that work with complete certainty. We shall return to positive maps and

entanglement witnesses in Chapter 7.

3.7 Product transformations

Using the properties of linear transformations and their actions on state vectors and

density matrices greatly simplifies the efforts to characterize these quantum systems.

Focusing on properties that are invariant under certain transformations can make the
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study of these systems much easier. This is a desirable property because we can regard

the two states as indistinguishable, or equivalent, up to a certain type of transforma-

tions. These transformations make an immediate appeal to the notion of equivalence

classes.

Definition 3.7 (Equivalence under transformations). The state ρ′ is said to be equiv-

alent to the state ρ under the matrix transformation U if

ρ′ = UρU † (3.62)

for some matrix U .

To ensure the symmetric property of this equivalence, an inverse U−1 must exist, so

we insist that all transformations U have full rank. Several properties of our states will

be invariant under U if the transformation carries a product structure, i.e. we insist

that U = UA⊗UB, where UA is on HA and UB is on HB. If we want to ensure complete

LOCC equivalence the operators UA and UB must be unitary, so that UA ∈ U(NA) and

UB ∈ U(NB).

3.7.1 SLOCC

We may however extend the equivalence classes by allowing transformations that suc-

ceed with a non-zero probability. These are called stochastic LOCC transformations,

or SLOCC. A linear product transformation, or SLOCC transformation has the form

ρ �→ ρ′ = a VρV † V = VA ⊗ VB (3.63)

where a > 0 is a normalization factor and VA ∈ SL(NA,C), VB ∈ SL(NB,C). In total,

we no longer require that the local operations are unitary, only that they are members

of the groups of non-singular linear operators. There is some abuse of language here,

as we refer to transformations such as (3.63) as SL× SL-transformations. Even though

det(VA) = det(VB) = 1, the total transformation ρ �→ ρ′ in fact belongs to the more

general group GL(NA,C) ⊗ GL(NB,C). Also, we call states that can be transformed

into each other by transformations like (3.63), by the shorter term SL-equivalent, so the

product structure of the transformations is often assumed. The SL×SL-transformation

V = VA ⊗ VB will also transform Hilbert space vectors as

ψ �→ ψ′ = c Vψ (3.64)

where c ∈ C is a normalization constant. The study of equivalence under deterministic

transformations (LOCC) between pure states, was initiated by Lo and Popescu [46],

and the extension towards SLOCC equivalence was proposed by Dür et al. [47].

Due to the linearity of SLOCC transformations the convexity of structures are pre-

served. Other important invariants for a state ρ under SL × SL-transformations are

rank and positivity of both ρ and ρP. If we insist on using only local (or product)

operations, we also conserve separability and in addition also the number of product
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vectors in the range and kernel of ρ and ρP. The rank and nullity are always preserved

as long as we use invertible transformations. To see that SL× SL-transformations pre-

serve separability, observe that if we transform a product vector ψ = φ ⊗ χ we get

ψ �→ ψ′ = c V ψ = c (VA ⊗ VB)(φ ⊗ χ) = c (VAφ ⊗ VBχ) = c (φ′ ⊗ χ′) which is also a

product vector. To show that positivity is preserved we accept that ρ can be expanded

in a suitable ensemble ψk

ρ =
∑
k

pk (ψkψ
†
k) (3.65)

and then take the expectation value of ρ′ in any vector ψ

ψ†ρ′ψ = ψ†(a VρV †)ψ

= a
∑
k

pk(ψ
†V ψk)(ψ

†
kV ψ)

= a
∑
k

pk
∣∣ψ†V ψk

∣∣2 ≥ 0

(3.66)

because both a, pk > 0. It is possible to show that

ρ′ = a VρV † ⇒ ρ′P = a ṼρP Ṽ † (3.67)

if V = VA⊗VB and Ṽ = VA⊗V ∗
B. Since we showed above that SL×SL-transformations

preserve positivity, it follows from (3.67) that if ρ is a PPT state, then so is ρ′. The

range and kernel of ρ and ρP transform in the following ways

Img ρ′ = V Img ρ Ker ρ′ = (V †)−1 Ker ρ

Img ρ′P = Ṽ Img ρP Ker ρ′P = (Ṽ †)−1 Ker ρP
(3.68)

with V = VA⊗VB and Ṽ = VA⊗V ∗
B. All these transformations are of product form, and

together with the fact that a product vector ψ = φ⊗χ is transformed by V = VA⊗ VB

into a product vector ψ′ = c (φ′ ⊗ χ′) with c ∈ C, we see that the number of product

vectors in a given subspace will remain the same.

Since SL-transformations of product type V = VA ⊗ VB preserve the number of

product vectors in a subspace, we see that in the case that there exists a product

transformation ρ �→ ρP = a VρV †, this transformation must transform the set of nimg

product vectors in the range of ρ to the set of ñimg = nimg product vectors in the range

of ρP. If the product vectors in Img ρ is wi = ui ⊗ vi with i = 1, . . . , nimg and if in

Img ρP we have w̃i = ũi ⊗ ṽi with i = 1, . . . , ñimg, then VA ui = ũi and VB vi = ṽi
Note that we need SL-transformations VA and VB on each subsystem that transform

all vectors ui and vi respectively. Since the understanding of the relation between w

and w̃ is quite limited for entangled states, it is difficult to say much in general about

what makes some states SL-symmetric and others not. But it is clear that the vectors

wi = ui ⊗ vi which are fixed for a given range of ρ, and the vectors w̃i = ũi ⊗ ṽi which

depend on the specific state ρ (or ρP ) must have a structure that allows the existence

of VA and VB to satisfy VA ui = ũi and VB vi = ṽi. For a generic state ρ there will exist

no such VA and VB.
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3.7.2 SL-symmetric states

We can now introduce two further, and stronger, conditions on the SL-equivalence

relations related to a state ρ.

Definition 3.8 (SL-symmetry). If a state ρ is SL-equivalent with ρP, i.e. there exists

a product transformation V = VA ⊗ VB such that

ρ �→ ρ′ = a VρV † = ρP (3.69)

we say that the state ρ is SL-symmetric.

In these special cases ρ and ρP belong to the same equivalence class with respect to

SL × SL-transformations. We also introduce an even more stringent property, namely

genuine SL-equivalence:

Definition 3.9 (Genuine SL-symmetry). A state ρ is genuinely SL-symmetric if there

exists a transformation such that

ρ �→ ρ′ = UρU † ρ′ = ρ′P (3.70)

with U = UA ⊗ UB.

The transformation of ρ implies that

ρ′P = a ŨρP Ũ † (3.71)

when we define Ũ = UA ⊗ U∗
B. Then assuming genuine SL-symmetry we get that

ŨρP Ũ † = UρU † (3.72)

and hence

ρP = VρV † with V = Ũ−1U = I ⊗ VB (3.73)

and with VB = (U∗
B)

−1UB. This shows that genuine SL-symmetry implies SL-symmetry.

Note that the relation VB = (U∗
B)

−1UB implies that V ∗
B = V −1

B , so that VB is unitary

if and only if it is symmetric. Since in general Tr ρP = Tr ρ, by (3.73) we require that

V preserves the trace of ρ,

Tr (VρV †) = Tr (ρV †V ) = Tr ρ (3.74)

A sufficient, but perhaps not necessary condition is that VB is unitary.

We conclude that for the state ρ to be genuinely SL-symmetric it must be SL-

symmetric with a transformation of the form given in (3.73). For the 3 × 3 system V

would have the form

V =

⎛⎝VB 0 0

0 VB 0

0 0 VB

⎞⎠ (3.75)
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with VB ∈ SL(3,C) and V ∗
B = V −1

B .

Since the transformation has the form V = I ⊗ VB in the case of genuine SL-

symmetry, the product vectors in Img ρ and Img ρP will be related by the transforma-

tions ũi = ui and ṽi = VBvi. This is a necessary condition for genuine SL-symmetry

which may be tested as soon as we know the product vectors in Img ρ and Img ρP.

Assume that for a given PPT state ρ we find that ρ and ρP are related by a trans-

formation of the form given in (3.73). Then a further problem to be solved is to find

a transformation U = UA ⊗ UB that demonstrates explicitly the genuine SL-symmetry

of ρ. Thus we have to solve the equation VB = (U∗
B)

−1UB for UB. Assume that λ is an

eigenvalue of UB, then μ = λ/λ∗ is an eigenvalue of VB. Hence |μ| = 1, and we may

assume that λ = eiα where α is real. Then λ must be a solution of the equation μ = λ2,

suggesting that we may try to take UB as the matrix square root of VB. We find in

practice that it is possible to choose simply

U = I ⊗
√
VB (3.76)



Chapter 4

Convex sets

Since the set of density matrices D, and the subsets S and P , are convex sets, it

is important to develop the tools for describing such sets. Especially the geometric

features of convex sets is important to us, such as extremal points, dual sets and faces.

4.1 Convex combinations

From a geometrical viewpoint a mixture of two points ρ1 and ρ2 in a convex set X, is

a point on the line segment between the points. For the set to be convex we insist that

all points on all line segments also belong to the set. We often describe a convex set

as an affine space, which means that there is no choice of origin, or absolute reference

point.

Definition 4.1 (Convex combination). The straight line through the points ρ1 and ρ2
defined by

ρ = x1ρ1 + x2ρ2 x1 + x2 = 1 x1, x2 ≥ 0 (4.1)

is a convex combination of ρ1 and ρ2.

The case (4.1) extends recursively to convex combinations of more than two points,

so more generally we may write a point ρ in X as a

ρ =
k∑

i=1

xiρi (4.2)

where ρi are points in X. If we relax the demand that xi ≥ 0, the real numbers xi

in (4.2) are called barycentric coordinates. The demands xi ≥ 0 and
∑

xi = 1 are

strongly related to the fact that we use convexity to describe probability distributions.

The expectation value of a random variable Y relates to convexity. If we assume that Y

is a discrete variable taking values in some finite set of real numbers yi, with probabilities

pi of the event Y = yi, the expectation value of Y is EY =
∑

i piyi. So EY is a convex

combination of the set yi. In Figure 4.1 we see the difference between a convex and a

non-convex (or concave) set. Intuitively a convex set is a set such that one can always

see the entire set from any inside vantage point.

53
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Convex Concave

Figure 4.1: For a set X to be convex, we insist that all points on any line segment between points in

X, also belong to the set.

Compact convex sets

A set X with a norm |x| is bounded if there is a number c ∈ R such that |ρ1 − ρ2| < c

for any two points ρ1 and ρ2. Another important property is closure. In a topological

space, a closed set can be defined as a set which contains all its limit points. But one

may also use a norm again, and first define a boundary point of X as a point b where

the set {y | |b − y| < ε} always contains an y /∈ X for all ε > 0. The boundary of X is

then the set of all such points b, and a closed set X will always contain its boundary,

which is sometimes denoted by ∂X. All these notions demand that there is a space

of similar objects outside the convex set, this space is sometimes referred to as the

container space of the compact set X. For almost all our purposes this container space

will be the space of Hermitian matrices, which is unbounded.

4.2 Extremal points

Any given set of points S can define a convex set. The convex hull of a set S is the set of

all convex combinations of points in S. Thus if S = {ρ1, ρ2}, then the convex hull of S

is the line segment (4.1). The convex hull of any set S is therefore always a convex set.

Another, but equivalent way, is to define the convex hull of S as the smallest convex

set that contains S. The convex set of a finite set of points is called a polytope. A very

important concept here is extremal points :

Definition 4.2 (Extremal point). An extremal point of a convex set X is a point ρ

that cannot be written as a convex combination of any other two points in the set.

The hypercube Cν = {x ∈ R
ν | |xi| ≤ 1} has 2 ν extremal points, namely the “cor-

ners” (±1,±1, . . . ,±1). The hyperball Bν = {x ∈ R
ν | |x| ≤ 1} has the entire spherical

shell |x| = 1 as extremal points, which is an infinite set. We define the convex rank

of a point ρ in a convex set as the minimal number of extremal points required in the

convex combination (4.2). An extremal point of a convex set X thus always has convex

rank one. The rank of a matrix, should not immediately be confused with the convex



4.2. EXTREMAL POINTS 55

rank in a set X. We shall see that in the set of density matrices D, the convex rank is

always equal to the matrix rank, but we shall also encounter matrices of higher matrix

rank than one, which are extremal on the convex set P .
A very essential and practical feature of convex sets is that any point in the set can

be written as a convex combination of a number of extremal points. This is known as

Carathéodorys theorem [48]. It can be formulated as

Theorem 4.1 (Carathéodory). If X is a convex set of dimension n, then any point

ρ ∈ X can be expressed as a convex combination of at most n+1 extremal points in X.

The original theorem by Carathéodory do not use extremal points explicitly, but

because of a theorem by Minkowski which states that any convex body is the convex

hull of its extremal points, Theorem 4.1 can be formulated as above. Therefore, if we

can identify the extremal points of a convex set, we essentially know the entire set.

Further, a convex sum of k points all of convex rank one, can of course be made into a

sum of points of higher rank, containing a smaller number of terms. The fact that we

generally need n + 1 extremal points for an n-dimensional set, is a consequence of our

reluctance to define an origin. It should be noted that the extremal points of a convex

set do not in any way form a convex basis, in the sense that the same set of n+1 points

can be used to generate any point ρ.

There is an alternative way of defining convex sets rather than using extremal points.

This is by using inequalities to define the interior points of the set, with equality on

the boundary. This is especially useful for polytopes. For instance, it turns out to be

rather easy to define both extremal points and inequalities for the full set of density

matrices D, while for the set of separable states S the extremal points are well known,

while inequalities are difficult to obtain.

ρ1

ρ2

ρ3
ρ4

ρ5

ρ6μ1

μ2

μ3

A

Figure 4.2: A convex set X, where extremal points are represented in red. All three blue points on the

boundary ∂X and the green inner point have rank two. All points on the curved boundary segment

A between ρ2 and ρ4 are extremal. The only points of rank three are those in the shaded areas, with

the exception of those on the line from ρ1 to ρ5.

In Figure 4.2 we see a convex set, where the points in red are extremal points. In fact
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all points along the curved boundary segment A, are extremal points. All the extremal

points have convex rank one. Obviously all extremal points of a convex set X lies on

the boundary ∂X, but not all points on ∂X are extremal points. All the blue points

represent points that are convex combinations of two extremal points. If we observe

the green point, it clearly can be constructed in several ways, by points of different

ranks. We see, by the dashed lines, that it can be constructed by two extremal points

(ρ2, ρ5), or three (ρ3, μ3) and four (μ1, μ2). But since we define the convex rank of a

point ρ as the minimal number of extremal points required in the convex combination,

the green point actually also has rank two, the same as the blue points. We observe that

another possibility is (ρ4, ρ6), which also are two extremal points, showing that even if

we restrict ourselves to the minimum number of extremal points, there are ambiguities

in the construction of points.

It is clear that points in the (elliptic) arc like region defined by A and ρ6 can be

written as a convex combination of ρ6 and any point on A. The same applies for the

arc regions defined by A and ρ1, and by A and ρ5. Another such area is the one defined

by A and the line segment from ρ2 to ρ4, where any point may be constructed from two

points on A. On closer inspection, we see that the points in the grey triangles, with

the exception of the ones on the line from ρ1 to ρ5, are the only ones of rank three.

The main point of this, is that we realize that even for a simple two-dimensional fig-

ure, the convex geometrical structure can be somewhat involved. For systems of higher

dimensions, the complexity of the convex geometrical structures increases rapidly.

4.3 Convex and dual cones

If the demand
∑

i xi = 1 that the convex coefficients xi in (4.2) be summed to one is

relaxed, we are able to define another construction, namely that of a convex cone.

Definition 4.3 (Convex cone). A set C is called a convex cone if x1ρ1 + x2ρ2 ∈ C

whenever ρ1, ρ2 ∈ C and x1, x2 ≥ 0.

The zero point O is also contained in this set since x1 = x2 = 0 is a possibility.

In addition to convex combinations, a convex cone is closed under multiplication by a

non-negative real scalar, i.e. if ρ ∈ C and α ∈ R+, then αρ ∈ C, and the set αρ is

called a ray in the convex cone C, and is merely the real and positive multiples of the

state ρ. We may denote the slice, or segment, of the cone corresponding to
∑k

i=1 xi = α

as Cα. Since α is arbitrarily high, the convex cone is unbounded upwards, but limited

downwards by the zero point that corresponds to C0. We find the entire structure in

the convex set for which
∑k

i=1 xi = α0 repeated for other values of α, so to study the

structures of a convex set it is usually ample to restrict to the C1 case.

The study of convex cones is nevertheless very useful, since many operations that

do not preserve the norm take us into other areas of the cone, where α �= 1. Another

important reason why we extend to the convex cone structure, is the very useful concept

of dual cones. The concept of duality is equally valid for other sets, but it is easier to

visualize if we define it for cones.
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Definition 4.4 (Dual cone). The dual cone to the convex cone X is

X◦ = {y | 〈x, y〉 ≥ 0 ∀ x ∈ X} (4.3)

We observe that (X◦)◦ = X, and that θ = π/2 ⇔ X = X◦. If X = X◦ the convex

cone is self dual. Since the inner product 〈x, y〉 can be given a geometrical interpretation

by 〈x, y〉 = cos θ, this can be visualized as in Figure 4.3.

β

α

X

X◦

Figure 4.3: The cone angle for X is α, and

likewise for X◦ is β. The angle represents the

width or size of the convex cones.

X

X◦

Figure 4.4: The cones from Figure 4.3 seen

from above through a cut or section. It ap-

pears quite clear that X ⊂ X◦.

It must be remembered that the cones representing the density matrices of actual

quantum systems are hypercones with a large number of dimensions, and a very complex

structure. For instance, the set of density matrices D for the 3 × 3 system is an 80-

dimensional space, and any two-dimensional cut or segment through this set will in

general be different from the two concentric circles in Figure 4.4.

4.4 Faces of convex sets

We will here introduce a very important concept in connection with convex sets, namely

that of a face. Further on, we will look at a special class of faces, known as exposed

faces.

Definition 4.5 (Face). A face of a convex set X is a subset F ⊆ X such that if

ρ = x1ρ1 + x2ρ2 x1 + x2 = 1 x1, x2 ≥ 0 (4.4)

then ρ ∈ F if and only if ρ1, ρ2 ∈ F .

One might say that a face F is a convex subset of X which is convexly closed, or

stable under convex mixing and purification. Since the set X is also formally a face on

X, we say that any face F that is strictly smaller than X is a proper face. In Figure
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4.5 we see this visualized. The convex set X consists of the points inside and on the

square and the semicircle S. Since the only way of constructing points on the edges

ρ1ρ2, ρ1ρ4 and ρ2ρ3 can be done by using points on these edges, they are faces of X.

But the line ρ1ρ3 is not a face on X, because any point on ρ1ρ3 can also be written

by using the two points μ1 and μ2, which are not on ρ1ρ3. The dotted line ρ3ρ4 is also

obviously not a face on X, for the same reason as ρ1ρ3, but it is a face if S is omitted,

i.e. of the square. If |X| = n then any face of dimension n− 1 is called a facet, while a

one-dimensional face is an edge. All the points along the semicircle S in Figure 4.5 are

faces of dimension zero, or 0-faces, and this is also the case for all the points ρi. In fact

an extremal point for a convex set is by definition a face of dimension zero.

ρ2 ρ3

ρ1 ρ4

μ2

μ1

S

Figure 4.5: The convex set X consists of the points inside the square and the red semicircle S. The

extremal points or 0-faces of X are the ρi and all points on S, and the additional faces are the edges

ρ1ρ2, ρ1ρ4 and ρ2ρ3.

The hypercube Cν has 3
ν−1 faces, namely 2 ν extremal points, ν2 ν−1 edges,

(
2
ν

)
2 ν−2

facial planes, all the way to 2
(
ν−1
ν

)
facets of dimension ν − 1. The only faces on the

hyperball Bν are its extremal points.

A face F of a convex set X always lies on the topological boundary of X, and also

any point on this boundary will always lie in at least one face F ⊂ X. Also, if we

assume that a face F ⊂ X, and let another set Y ⊂ F , then Y is a face of F if and

only if it is a face of X. In this way we realize that the faces of a convex set X form

hierarchies, in the sense that if Fn−1 is a face on Fn, and Fn−2 is a face on Fn−1, then

Fn−2 is a face on Fn. Since a face F is a convex set in its own right, it will have extremal

points. The extremal points in a hierarchy of faces are hereditary, so that the extremal

points of a face F are extremal points in all subfaces of F . Since the largest face on

any convex set is the set itself, we understand that the extremal points on any proper

face F ⊂ X are extremal points on X. So for any convex set we are able to descend a

sequence of faces
X ⊃ Fn ⊃ Fn−1 ⊃ . . . ⊃ F1 ⊃ F0 (4.5)

where |F0| = 0, so we end up in an extremal point of X. Theorem 4.1 by Carathéodory

can be justified and understood by appealing to the structure of faces (4.5).
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Exposed faces

Consider the sphere B3 = {x ∈ R
3 | |x| ≤ 1}. Through a boundary point of B3, i.e.

a point with |x| = 1, we can place a tangent plane H. It consists of the points x

satisfying 〈a, x〉 = 1, where a is the boundary point. We say that H supports B3 at

x = a, meaning that all of B3 lie on the same side of the plane, as all points in the

sphere satisfy 〈a, x〉 ≤ 1.

It is sometimes easier to use the Euclidean vector space R
n rather than an affine

description. We here utilize this to define supporting hyperplanes. We define the

set H = {x ∈ R
n | 〈a, x〉 = c}, where a ∈ R

n and c ∈ R, to be a hyperplane in

R
n of dimension n − 1. We get parallel hyperplanes for various values of c. Each

hyperplane divides the space into two halfspaces H+ = {x ∈ R
n | 〈a, x〉 ≥ c} and

H− = {x ∈ R
n | 〈a, x〉 ≤ c}. If now X ⊂ R

n is a convex set and is completely contained

in one of the two half-spaces, and in addition H ∩ X is non-empty, we say that H is

a supporting hyperplane of X, and that it supports X at x ∈ H ∩X. So a supporting

hyperplane of X intersects the set only at the boundary ∂X. One can prove that there

is a supporting hyperplane passing through every point on the boundary of a convex

set, and that only convex sets has this property. So in fact supporting hyperplanes can

be used to define convex sets.

We now use hyperplanes to introduce another distinction, that of an exposed face

of a convex set. This is related to the notion of hierarchies of faces.

Definition 4.6 (Exposed face). Let H be a supporting hyperplane of the convex set X,

then any intersection H ∩X is an exposed face of X.

Another way of formulating this is to say that a face F is an exposed face if there

exists a supporting hyperplane H such that F ∩ H = F . So the hyperplane cannot

contain any points in X that is not in the face F .
In Figure 4.6 the convex set X has essentially the same structure as in Figure 4.5,

but with the addition of an alternative dotted elliptic boundary segment E.

ρ2 ρ3

ρ1 ρ4
H1

H2

H3

S

E

Figure 4.6: Three hyperplanes supporting three exposed faces: The edge ρ2ρ3, the extremal point

ρ1 and another extremal point on S. The points ρ3 and ρ4 are extremal points, i.e. 0-faces. If the

curved part of the boundary of X is defined by S, they are not exposed faces. If however E defines

the boundary, then ρ3 and ρ4 become exposed faces.
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We see three hyperplanes H1, H2 and H3 supporting three faces. In all three cases

the faces are exposed, since the hyperplanes only intersect points in X that is contained

in the faces. The point ρ3 is an extremal point, i.e. a 0-face, but with S defining the

boundary of X it is not an exposed face, because any supporting hyperplane in ρ3 will

also contain points in the edge face ρ2ρ3 or interior points of X. With E defining ∂X,

the boundary is non-smooth in ρ3, so that a supporting hyperplane which contains only

ρ3 can be constructed, i.e. ρ3 is an exposed face of X.

It appears that unexposed faces are related to transitions, in one of several possible

directions, where a line segment (of zero curvature) passes into and a curved segment,

and where this transition is smooth.

4.5 Simplexes

A simplex Δn can be defined as the convex hull of a set of n + 1 affinely independent

points (or vectors) in R
n. By Theorem 4.1 Δn will then be an n-dimensional set, and

a polytope. More formally, suppose that we have n + 1 affinely independent points

ρi ∈ R
n where i = 1, . . . , n+ 1. Then the simplex defined by them is the set of points

Δn =

{
n+1∑
i=1

xiρi

∣∣∣ xi ≥ 0,
n+1∑
i=1

xi = 1

}
(4.6)

In this way a 0-simplex is a point ρ1, a 1-simplex is the line segment between two points

ρ1 and ρ2, and a 2-simplex is the triangle of convex combinations of three points ρ1, ρ2
and ρ3. The coefficients xi are then convex coordinates defining a point in the simplex.

Geometrically a simplex Δn is the generalization of the triangle from two dimensions

to n. In Figure 4.7 we see a 3-simplex with four affinely independent points. The 3-

simplex Δ3 has four facets (faces of dimension two) which are triangles, six edges (faces

of dimension one) and four extremal points (faces of dimension zero).

ρ1

ρ3
ρ2

ρ4

Figure 4.7: A 3-simplex Δ3 with four facets, six edges and four extremal points. The 3-simplex is an

extension of the triangle (or 2-simplex) by one dimension.

The triangle Δ2 is a convex set which has no surplus extremal points, by way of

affine independence. Since it is two-dimensional it can have maximally three affinely

independent extremal points. All simplexes Δn have this property. Two examples of
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convex sets that do not exhibit this property is the square and the circle, with four

and infinitely many extremal points, but both two-dimensional. Another remarkable

property of a simplex is that the lattice of faces is self dual, meaning that the set of

(n− k− 1)-dimensional faces is in one-to-one correspondence with set of k-dimensional

faces. Specifically the extremal points k = 0 correspond to the set of facets, or (n− 1)-

dimensional faces.
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Chapter 5

Geometry of density matrices

Building on Chapters 3 and 4, we now discuss the geometric properties of the set of

density matrices D, and some of the subsets, primarily S and P . We illustrate the

geometric properties and relations between these sets by constructing two-dimensional

cross sections. A method for investigating the geometrical structure of P is to make

restricted perturbations within the set. These perturbations can be used to construct

an extremality test for P , and to investigate substructures in P . We also discuss the

faces of the sets D, P and S, and to some extent the properties of the dual sets

5.1 Density matrices as simplexes

A density matrix acting on a Hilbert spaceH of dimension N , is characterized by N2−1
free parameters. Since all Hermitian matrices are unitary diagonalizable, a general state

ρ can be described by an N × N diagonal matrix D and a unitary transformation of

determinant one. The maximum number of free parameters in a normalized form ofD is

N−1, and the dimension of SU(N) is N2−1, but the dimension of the subset in SU(N)

that commutes with diagonal matrices, and therefore do not change the diagonal form

of D, is N − 1. Using the eigenvectors ek and eigenvalues λk of a density matrix ρ we

can, according to Theorem 3.3, write

ρ = D =
r∑

k=1

λk (eke
†
k) (5.1)

where r = |Img ρ| is the rank of ρ. The ek that correspond to eigenvalues λk > 0

span the range of ρ, and the ek for which λk = 0 span the kernel of ρ. We have

H = Img ρ⊕Ker ρ, Img ρ ⊥ Ker ρ and thereby N = r + |Ker ρ|.
Any density matrix ρ which is diagonal in ek can be written as (5.1), but of course

with different λk for different ρ. We clearly see that since all λk ≥ 0 and
∑

k λk = 1, the

set eke
†
k are vertices in a simplex, and the λk are convex coefficients that define density

matrices lying in the simplex. All matrices defined as in (5.1), i.e. with the same set

ek, will then have the same range Img ρ and kernel Ker ρ. The simplex defined above is

the eigenensemble or the eigenvalue simplex of ρ, which also means that the set ek will

be an orthogonal set.

63
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Any state ρ with rank r will then be found within an eigenensemble (r−1)-simplex,

which is a special (r − 1)-dimensional subset of D. There are also simplexes with r

non-orthogonal, but linearly independent vertices that can build the same state, but

the projections will then mix the different dimensions contained in the range, so the

values λk in the convex sum will not be the eigenvalues of ρ.

Such a simplex is a collection of many states built from the vertices. For example

a rank five state will be found in the interior of a four-dimensional simplex Δ4. States

on the different faces of Δ4 will then be states of lesser ranks. The vertices, which are

the extremal points of the simplex will have rank one, the edges will contain rank two

states and the facets will be made up of rank four states.

In Section 4.2 we defined the rank of a point in a convex set as the minimum number

of extremal points needed in the convex combination (3.5). We observe that a Hermitian

matrix of matrix rank r can be written as a convex sum of no less than r orthogonal

projections onto the basis of H, with the r ≤ N projections being onto Img ρ. Hence

the convex rank r of a density matrix in the convex set D, is equal to the matrix rank

of ρ ∈ HN . The maximal convex rank of a mixed state in DN is thus N , which is much

less than the upper bound N2 from Carathéodorys theorem. This is due to the fact

that any density matrix ρ can be reached by unitary transformations from a diagonal

density matrix D.

It is possible to construct the entire set of density matrices DN by using (N − 1)-

simplexes. For example any density matrix ρ ∈ D9 can be obtained by special unitary

transformations

ρ′ �→ ρ = Uρ′U † (5.2)

where U ∈ SU(9) and ρ′ ∈ Δ8. Since the dimensions taken by Δ8 is eight, there still

remains 72 dimensions that we can perform unitary rotations in. So, any density matrix

ρ of any rank will be found in at least one unitarily rotated simplex with extremal points

U(eke
†
k)U

†, with ek as a linearly independent ensemble in H.

5.2 The convex sets D, S and P
The set of density matrices D, the set of separable density matrices S and the Peres set

P of density matrices with positive partial transpose, all manifest a convex structure.

This is of fundamental importance to the study of the geometric properties of these

sets.

The set of density matrices D
That the set of density matrices D is a convex set follows more or less from Definition

3.1, as well as from (5.1). With ψk ∈ H we repeat (3.5)

ρ =
∑
k

pk (ψkψ
†
k) pk > 0

∑
k

pk = 1 (5.3)



5.2. THE CONVEX SETS D, S AND P 65

Since the sum above always can be constructed as a convex sum over pure states, it also

follows that the extreme points of D are the pure states ψψ†. These pure states include
both the product states ψ = φ ⊗ χ and the non-product states ψ �= φ ⊗ χ. The pure

states are the only ones for which tr(ρ) = tr(ρ2), and these states have the maximum

distance within D, from the maximally mixed state I/N . Using the Hilbert-Schmidt

metric (3.8) we get |ψψ† − I/N | =√N − 1/N .

We should expect that the dimension N2 − 1 of the full set D is larger than the

dimension of the pure states. A pure state is a one-dimensional projection onto a

normalized vector ψk ∈ C
N with N complex components, which again gives 2N free

real parameters. The normalization demand ψ†
kψk = 1 removes one real factor, and the

fact that we can multiply ψ with a phase factor ψ �→ eiαkψk such that ψ†
kψk remains

unchanged, removes another. So in total the dimension of the pure states is 2N − 2 <

N2− 1 for all N > 1. The boundary ∂DN is always by definition (N2− 2)-dimensional.

This means that for N = 2 the dimension of the boundary is equal to the dimension

of the pure states, so the entire boundary is then pure states. To illustrate this, we

observe that a density matrix in D2 has the form

ρ =
1

2

(
1 + z x− iy

x+ iy 1− z

)
(5.4)

with x, y, z ∈ R and x2+ y2+ z2 ≤ 1. Thus D2 is a three-dimensional sphere, the Block

sphere. The boundary states, with x2+ y2+ z2 = 1, are the pure states. For N > 2 the

boundary of D is no longer a sphere, but has a more complex structure. For instance

for N = 3 we have |D3| = 8, and its boundary ∂D3 consists of a seven-dimensional set

of rank two matrices and a four-dimensional set of pure states. Every state of rank two

in D3 then lies in the interior of some Bloch sphere, which again has a boundary of

pure states. This Bloch sphere is a three-dimensional face on D3, where the boundary

points, or pure states, are extremal points for both this Bloch sphere and D3.

The traditional way of determining the boundary of DN is by appealing to inequali-

ties for the eigenvalues. For a density matrix ρ ∈ DN we have effectively N inequalities

λk ≥ 0 for the eigenvalues λk of ρ. The boundary of DN can then be defined as all

the states ρ that satisfy all the N inequalities λk ≥ 0, but for which at least one is

satisfied with equality. So in effect, all the states ρ ∈ ∂D have det(ρ) = 0, and for all

the interior points we have det(ρ) > 0. The description of ∂D by the set of inequalities

λk ≥ 0 relies on obtaining solutions of a complex Nth degree polynomial, but this can

generally be done in a fast and effective way numerically.

The set of separable states S
Just as for the set of density matrices D we can see from (3.28) that the set of separable

states S is a convex set, where the pure extremal states are replaced by a subset, namely

the pure product states. Thus the only extremal states for the set of separable states

are the pure product states, i.e. one-dimensional projections onto a normalized product

vector ψ = φ⊗ χ ∈ C
N = C

NA ⊗ C
NB.

For a general product vector ψ = φ ⊗ χ, the vector φ has 2NA real elements, and
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likewise 2NB for χ, in total 2(NA + NB). If we take both the vectors φ and χ to be

normalized and in addition remove a phase from each, we are left with 2NA + 2NB − 4

free parameters. It is a fact that 2N − 2 = 2NANB − 2 > 2(NA + NB) − 4 for all

choices of NA, NB ≥ 2. This indicates that the set of pure product states have a smaller

dimension than the total set of pure states, which is compatible with the fact that a

general Hilbert space vector ψ ∈ C
N = C

NA ⊗ C
NB will not be a product vector, and

thus the pure state ρ = ψψ† will not be a pure product state. In order for ψ to be a

product vector its components must satisfy (3.52), and generically this is not the case.

It is however a fact that the dimension of the set of separable states S is the same as

the set of density matrices D. The easiest way to understand this is by looking at the

ball of separable states around the maximally mixed state I/N , as defined by Gurvits

and Barnum [49]. It is known that in the space of density matrices DN there exists a

hyperball BN2−1 centered in I/N , such that all states within a certain distance rmax,

i.e. states that satisfies |ρ− I/N | ≤ rmax, are separable. In the Hilbert-Schmidt metric

we have rmax = 1/
√
N(N − 1). Since the dimension of the ball is N2− 1, which equals

the dimension of D, we see that |S| = |D|.
In our attempts to investigate the separable states, and thereby also the entangled

states, we are almost entirely dependent on the extremal points of S, i.e. the pure

product states. The main reason is that it is not possible, or at least extremely difficult,

to characterize the separable states according to the eigenvalues of the states.

It should be noted that even though the set of separable states is a convex set, this

is not the case for the set of entangled states. A convex combination of two (or more)

separable states always returns another separable state, since the product structure

is preserved in the convex sum. But convex combinations of entangled states do not

necessarily produce an entangled state. This is illustrated for the 2 × 2 system in

(3.39), where two Bell states are mixed to produce a separable state, as an example of

decoherence.

The Peres set P
The set of partially transposed matrices DP is obtained by taking the partial transpose

of every point in D. Since the partial transpose operator is a linear map, and by using

(5.3), we see that the partial transpose of a state ρ =
∑

k pkρk =
∑

k pk (ψkψ
†
k) ∈ D is

a convex combination of partially transposed pure states

ρP =
r∑

k=1

pk ρ
P
k =

r∑
k=1

pk (ψkψ
†
k)

P (5.5)

where r = rank(ρ). The pure states ρk are extremal in D, but in general ρPk /∈ D. The
state ρPk will in any case lie in the set DP, and since any convex combination of these

ρPk also lie in DP, we see that the set DP of partially transposed density matrices is a

convex set. For pure product states ρk = φkφ
†
k ⊗ χkχ

†
k we have ρPk = φkφ

†
k ⊗ (χkχ

†
k)

T,

which is again a pure product state, and thus extremal in S and D.
We have seen in Section 3.5.2 that the Peres set, or the set of density matrices

that remain positive under partial transposition, can be understood as the intersection
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P = D ∩DP. Since the intersection of two convex sets is always again a convex set, we

realize that the Peres set P is also a convex set.

We know the extremal points of the set D to be the set of pure states ψψ†, and
the extremal points of S to be the set of pure product states ψψ† with ψ = φ ⊗ χ.

Since S ⊆ P with equality for the 2 × 2 and 2 × 3 systems, all the extremal points

of S must also be extremal points of P . But we also know that for higher dimensions

N ≥ 8 entangled PPT states exist, so in order to construct convex combinations that

represent these entangled PPT states, there must be a further set of extremal points

for P . Since convex combinations of product states only return separable states, these

additional extremal points of P must be entangled.

5.3 The positive convex cone

The concept of convex cones is given in Definition 4.3 in Section 4.3. The set of

normalized N×N Hermitian matrices HN has the same dimension as the set of density

matrices D, namely N2 − 1. The difference is that the set D is a compact set, as

defined in Section 4.1. The compactness is entirely due to the demands that ρ ≥ 0

and tr(ρ) = 1. If the latter demand is cancelled, we get a convex cone of rays zρ,

where ρ ∈ D. The set of all true density matrices with tr(ρ) = 1 is the intersection

in the container space of Hermitian matrices HN , of the positive convex cone with a

hyperplane parallel to the subspace of traceless Hermitian operators. We see this in

Figure 5.1.

D

ρ > 0

tr(ρ) = 1

tr(ρ) = 0

ρ

z I
N

σ

zρ

Figure 5.1: The set of all true density matrices with tr(ρ) = 1 is the intersection in the space of

Hermitian matrices HN , of the positive convex cone with a hyperplane parallel to the subspace of

traceless Hermitian operators. The cone consists of rays zρ where ρ ∈ D. Any density matrix ρ can be

projected onto the plane of traceless Hermitian operators, and uniquely represented by a Hermitian

matrix σ with tr(σ) = 0.
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The inside of the cone consists of all Hermitian matrices with det(ρ) > 0 and all

eigenvalues λk > 0, while the edge of the cone is all Hermitian matrices with det(ρ) = 0

and all eigenvalues λk ≥ 0. In the center of the cone lies multipla of the identity

(z/N)I, with the maximally mixed state I/N as the center point in the set of true

density matrices D.
The set of normalized separable states S and normalized PPT states P also define

convex cones, which are then nested inside the full convex cone of density matrices D.
It is also possible to define the dual cones of the sets D, S and P , along the lines in

Definition 4.4 and presented in Figures 4.3 and 4.4. This will be treated in some detail

in Chapter 7.

5.4 Two-dimensional cross sections

Because of the rapid increase in the dimension N2−1 of DN , as the dimension |H| = N

of the underlying Hilbert space grows, the set of density matrices is in general difficult

to visualize. For any set of points, once we have three points in the set, we can define

a two-dimensional cut through the set. If we choose three density matrices ρ0, ρ1 and

ρ2, where usually ρ0 = I/N , then the convex sum

ρ =
I

N
+ p1ρ1 + p2ρ2 (5.6)

is not a density matrix, since unless p1 = −p2 we have tr(ρ) > 1. A way of mastering

this is to write density matrices as convex combinations of I/N and a set of traceless

Hermitian matrices. This set of traceless Hermitian matrices is the hyperplane depicted

in Figure 5.1 as the grey plane (floor) in the convex cone. Since the set of Hermitian

matrices has dimension N2 we can write an arbitrary matrix C ∈ HN as

C =
N2∑
k=1

ckMk (5.7)

where ck ∈ R, and the matrices Mk ∈ HN are linearly independent. We can think of

ck as elements of an N2-dimensional real vector in R
N2
, so the Hermitian matrices of

dimension N×N define a real N2-dimensional vector space. We then perform additions,

multiplications and inner products of the Hermitian matrices A and B by performing

operations on their real representations in R
N2
. Using this strategy, we now represent

a density matrix ρ by

ρ =
I

N
+

N2−1∑
k=1

dkDk ≡ I

N
+ σ(x) (5.8)

where the Dk are a basis for the set of traceless Hermitian matrices, and the real

coefficients dk are chosen so that ρ ≥ 0. This set of traceless N × N matrices form a

real vector space of dimension N2−1, i.e. it is closed under addition and multiplication.

Since all information sits in the matrix σ, this procedure entirely defines the set DN .
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We usually choose ρ0 = I/N to be the origin, and let the two states ρ1 and ρ2 define

two directions in the two-dimensional section by the traceless matrices

σ1 = a(ρ1 − ρ0) σ2 = b(ρ2 − ρ0) (5.9)

where a, b ∈ R are scaling parameters. A matrix

ρ = ρ0 + xσ1 + yσ2 (5.10)

where x, y ∈ R, will then lie in the two-dimensional section of HN that contains ρ0, ρ1
and ρ2. A compact subset of this xy-plane will then give ρ ≥ 0, so to make ρ ∈ D. The
boundary of D is defined to be the points where at least one of the eigenvalues of ρ is

zero, and the rest are positive. The distance r =
√

x2 + y2 from the origin to ∂D will

then depend on the direction θ, and can be calculated. This is seen in Figure 5.2.

−0.8 −0.4 0 0.4 0.8
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∂D

ρ

+

r

Figure 5.2: A two-dimensional section through the set of density matrices D. The curve represents

the boundary ∂D which contains the states of less than full rank. For each θ the distance r can be

calculated. The state represented by “ + ” is the origin ρ0, usually chosen as I/N , and the state ρ is

here a state on the boundary ∂D.

In general tr(σ1σ2) �= 0, so for these directions σ1 �⊥ σ2. To avoid skew coordinate

axes we must rotate one of them, for instance σ2 so that σ2 �→ σ2 − tr(σ1σ2)σ1, which

ensures that σ1 ⊥ σ2. This is a matter of convenience, since σ1 and the new σ2 still

define the same plane. Since we use the Hilbert-Schmidt metric, we have to make

sure that the axes σ1 and σ2 are scaled accordingly, so that distances and angles are

correctly represented. The constants a and b in (5.9) must then be chosen such that

tr(σ2
1) = tr(σ2

2) = 1. We now call these two traceless, normalized and orthogonal

directions σx and σy, and write any density matrix ρ in the cross section as
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ρ =
I

N
+ r [(cos θ)σx + (sin θ)σy] (5.11)

Now, the partial transpose of the plane through D defined by ρ0, ρ1 and ρ2 is

ρP = ρP0 + xσP
1 + yσP

2 =
I

N
+ xσP

1 + yσP
2 (5.12)

The points I/N , σP
1 and σP

2 now define a new two-dimensional section in the space of

Hermitian matrices HN , passing through DP. We can calculate the border ∂DP for this

section in the same way we found the border of D for the plane defined by I/N , σ1

and σ2. The border of ∂DP is then found by appealing to the inequality ρP ≥ 0, and

consists of states for which det(ρP ) = 0. Since P consists of the states for which ρ ≥ 0

and ρP ≥ 0, the boundary of P can be found in the cross section between D and DP.

The borders of D and DP can be visualized in different plots, but it is more infor-

mative to gather them in the same figure. We here choose the two-dimensional section

defined by I/N , σP
1 and σP

2 . Again, to ensure orthogonality we must rotate σP
2 �→ σy,

and to make the system consistent we must also rotate the original σ2 �→ σP
y , so as to

ensure that it is indeed the partial transpose of σy.
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Figure 5.3: The blue curve is ∂D4 defined by a two-dimensional section that contains the two Bell

states ρ1 = |α+〉〈α+| and ρ2 = |β+〉〈β+|, and the maximally mixed state I/4, which is marked with

a “ + ”. The red curve is the boundary of the partial transposes of states in the blue triangle. The

points inside the blue/red parallelogram for which ρ ≥ 0 and ρP ≥ 0, make up the set S = P. The Bell
states lie outside P = S, and since they are maximally entangled they both have maximum distance

from I/4. Also observe that the sets D and S = P are convex, while the set of entangled states is not.
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In Figure 5.3 the blue curve is the boundary of D defined by the plane that consists

of I/4 and the Bell states ρ1 = |α+〉〈α+| and ρ2 = |β+〉〈β+|. The red triangle is the

boundary of the partial transposes of states in the blue triangle, or more compactly

∂DP. The points inside the blue and red parallelogram in the middle, are states for

which ρ ≥ 0 and ρP ≥ 0, or in other words the set of PPT states. Since we are looking

at the 2× 2 system all these states are separable, since we have S = P . The Bell states
ρ1 and ρ2 are both entangled pure states, so they lie outside ∂P , and since they are

maximally entangled they both represent states with the maximum distance from I/4.

We also observe that since the Bell states commute, the curves that define ∂D are

straight lines. For any convex combination ρ = I/N + xσx + yσy, the σ-matrices can

then be diagonalized simultaneously, and so det (ρ) can be factored into a product of

linear terms, which results in linear boundaries for D. For non-commuting σ-matrices

det (ρ) will in general be a polynomial of degree equal to the rank of the matrix.

In addition it is easy to see that the set of density matrices D and the set of separable

states S = P are convex sets, while the set of entangled states is clearly not.

In Figures 5.4 and 5.5 we see the same as in Figure 5.3, but with sections defined

by I/4, the Bell state ρ1 = |β+〉〈β+ | and where ρ2 is a random pure product state.

In Figure 5.4 the pure product state ρ2 is chosen so that it commutes with the Bell

state ρ1. The boundary of D are then straight lines, but since [ρP1 , ρ
P
2 ] �= 0, parts of the

boundary of DP will be curved. In Figure 5.5 we choose ρ2 so that it does not commute

with the Bell state ρ1, and so neither D nor DP will be entirely straight lines. In both

cases we observe that the pure product state ρ2 is extremal in both D and P = S.
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Figure 5.4: Sections are defined by I/4, the

Bell state ρ1 = |β+〉〈β+| and a random pure

product state ρ2, such that [ρ1, ρ2] = 0. Ob-

serve that the pure product state ρ2 is the only

state to be extremal in both D and P = S.
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Figure 5.5: Sections are defined by I/4, the

Bell state ρ1 = |β+〉〈β+| and a pure product

state ρ2, such that [ρ1, ρ2] �= 0. Observe that

the pure product state ρ2 is extremal in both

D and the drop shaped set P = S.

In Figures 5.6 and 5.7 we are looking at states in 3× 3 system. First in Figure 5.6

we have used a two-dimensional section consisting of I/9 and two extremal PPT states
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of rank (5, 5). Since there exists entangled PPT states for these dimensions, we can no

longer easily identify the set of separable states. All that can be said with certainty is

that the set S is constrained to the points that lie inside both ∂D and ∂DP, i.e. the

Peres set. The entangled NPT states are exclusively the points that are outside ∂DP

but inside ∂D, which on Figure 5.6 are areas that are relatively small compared to the

corresponding area covered by the same class of states for the 2×2 system in Figure 5.3.

In Figure 5.7 we use a two-dimensional section consisting of I/9 and two random NPT

states of rank (9, 9). Both partial transposes have only one relatively small negative

eigenvalue, so both states are only marginally NPT. The area of the entangled NPT

states is considerably larger than for the case of the extremal rank (5, 5) PPT states.

We can clearly see the convex shape of the sets D and P , while at least the entangled

NPT states have a concave (non-convex) shape.
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Figure 5.6: Section defined by I/9 and two ex-

tremal PPT states of rank (5, 5). The entan-

gled NPT states are the points outside ∂DP

but inside ∂D, which are rather small areas.

The Peres set is now the entangled PPT states

in addition to S.
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Figure 5.7: Section defined by I/9 and two en-

tangled NPT states of rank (9, 9). The entan-

gled NPT states are the points that are out-

side ∂DP but inside ∂D, which is a larger area

than in Figure 5.6. The Peres set is now the

entangled PPT states in addition to S.

5.5 Perturbations in D and P
Because it is Hermitian, a density matrix ρ has a spectral representation (3.3) in terms

of a complete set of orthonormal eigenvectors ek ∈ C
N with real eigenvalues λk. We

now define the Hermitian matrices

P =
∑

k,λk �=0

eke
†
k Q = I − P =

∑
k,λk=0

eke
†
k (5.13)

which project orthogonally onto the two complementary and orthogonal subspaces

Img ρ ⊆ C
N and Ker ρ ⊂ C

N respectively. These matrices commute with any den-
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sity matrix [P, ρ] = [Q, ρ] = 0, which also means that PρP = ρ and QρQ = 0. In the

following we consider a perturbation of the density matrix ρ

ρ �→ ρ′ = ρ+ εσ (5.14)

where σ �= 0 is a traceless Hermitian matrix. The parameter ε ∈ R may be finite or

infinitesimal.

5.5.1 Finite perturbations

We observe that if Imgσ ⊂ Img ρ, which is equivalent to PσP = σ, then there will be

a finite range of values Δε = {ε | ε1 < ε < ε2} with ε1 < 0 < ε2, such that ρ′ ∈ D and

Img ρ′ = Img ρ. This is so because for the entire Δε, the eigenvectors ek of ρ for which

λk = 0, will remain eigenvectors e′k of ρ′ with λ′
k = 0, and the positive eigenvalues of

ρ will change continuously with ε into positive eigenvalues of ρ′. We know that the

extremal points on the set D are the pure states, but it is useful to formulate conditions

for extremality in the form of perturbations as well. The above shows that ρ is extremal

in D if and only if there exists no traceless Hermitian matrix σ such that PσP = σ,

where P and Q are defined by Img ρ and Ker ρ as in (5.13). This is equivalent to

the condition that the equation PσP = σ has only the trivial solution σ = ρ, up to

proportionality. Another formulation is that ρ is extremal in D if and only if no state

ρ′ �= ρ has the same range as ρ. An attempt to visualize this is made in Figure 5.8

ρ

ρ′1 = ρ− |ε1|σ

ρ′2 = ρ + |ε2|σ
D

Figure 5.8: Finite perturbations of the density matrix ρ using the Hermitian traceless matrix σ. All

states along the line are convex combinations of ρ′1 = ρ − |ε1|σ and ρ′2 = ρ + |ε2|σ for every ε in the

interval ε1 < ε < ε2, where ε1 < 0 < ε2. The range Img ρ′ is independent of ε in the interval, which

means that Imgσ ⊂ Img ρ or PσP = σ.

5.5.2 Infinitesimal perturbations

We now assume more generally that Img σ �⊆ Img ρ in the perturbation (5.14). The

zero eigenvalues of ρ are then perturbed into eigenvalues of QσQ. Similarly the positive

eigenvalues of ρ are perturbed into positive eigenvalues of ρ′ determined by PσP . Since
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the eigenvalues are given by the characteristic polynomial of the matrix, these will carry

an ε-dependency that includes higher powers. If we restrict to first order in ε we get

rank(ρ′) = rank(ρ) + rank(QσQ) (5.15)

So to ensure that rank(ρ) = rank(ρ′) and that ρ′ ≥ 0 for ε-perturbations in both

directions, we thus put QσQ = 0. It is then evident that if we want to increase the

rank of ρ by one, we choose σ such that

QσQ = a(zz†) (5.16)

where z ∈ Ker ρ. Since QσQ is Hermitian we must have a ∈ R.

5.6 Projection operators on HN

Using the projections P and Q defined in (5.13) we can define projection operators P,

Q and R on HN , the real Hilbert space of Hermitian N ×N matrices, as follows,

PX = PXP

QX = QXQ (5.17)

RX = (I−P−Q)X

Here I is the identity operator on HN . It is straightforward to verify that these are

complementary projections, i.e. [P,Q] = 0, with P2 = P, Q2 = Q.

It is possible to see the effects of these operators in a very nice and clear way by

using a representation that results in a block form for the matrices. Relative to an

orthonormal basis for CN with the first basis vectors in Img ρ and the last basis vectors

in Ker ρ, an Hermitian matrix X ∈ HN with rank m and nullity N −m takes the block

form

X =

(
Am C

C† BN−m

)
(5.18)

where Am = A†
m is an m×m matrix, BN−m = B†

N−m is an (N −m)× (N −m) matrix

and the matrix C has dimensions m× (N −m). In this basis we also have

P =

(
Im 0

0 0

)
Q =

(
0 0

0 IN−m

)
(5.19)

with Im and IN−m as the m×m and (N −m)× (N −m) identity matrices respectively.

The operations PX, QX and RX then becomes

PX =

(
Am 0

0 0

)
QX =

(
0 0

0 BN−m

)
RX =

(
0 C

C† 0

)
(5.20)
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In order to make investigations into the set of PPT states we would like to conduct

perturbations that change the ranks of ρ and ρP in a controlled manner. In a way which

is completely similar to the case for Img ρ and Ker ρ in (5.17), we introduce projection

operators P̃, Q̃ and R̃ onto Img ρP and Ker ρP. We first define the matrices P̃ and

Q̃ = I − P̃ as orthogonal projections onto Img ρP and Ker ρP similar to (5.13), and

then define

P̃X = (P̃XP P̃ )P

Q̃X = (Q̃XP Q̃)P (5.21)

R̃X = (I− P̃− Q̃)X

5.7 Restricted perturbations in P
We have seen that for the perturbation ρ′ = ρ + εσ the condition PσP = σ ensures

that Img ρ = Img ρ′ for a finite range of values for ε. Also to very good approximation

the weaker condition that QσQ = 0 will ensure that the the rank is unchanged for

infinitesimal perturbations. We may now use the projection operators (5.17) and (5.21)

to impose various restrictions on the perturbation matrix σ.

5.7.1 Extremality in P
The extremality condition for P is derived in a similar way as the extremality condition

for D. We see that ρ is extremal in P if and only if there exists no ρ′ ∈ P , other than
ρ itself, with both Img ρ = Img ρ′ and Img ρP = Img ρ′P. A more useful formulation is

again to say that ρ is extremal in P if and only if the only solution of the equations

PσP = σ and P̃ σP P̃ = σP or equivalently Pσ = σ and P̃σ = σ, is the trivial solution

σ = ρ. These two equations are equivalent to the single eigenvalue equation

(P+ P̃)σ = 2σ (5.22)
or alternatively

PP̃Pσ = σ P̃PP̃σ = σ (5.23)

Even though (5.22) does not immediately appear to be a genuine eigenvalue equation, it

can be solved by representing σ as a vector in R
N2
, and P and P̃ by N2×N2 matrices.

This is outlined in more detail in Section 8.1. The operator P+ P̃ will always have an

eigenvector σ = ρ with λ = 2 as eigenvalue. If it is the only solution of (5.22) then ρ is

an extremal state of P .
We recall from Section 3.6.4 that for ρ to be an edge state there cannot exist any

product vector w = u ⊗ v ∈ Img ρ such that w̃ = u ⊗ v∗ ∈ Img ρP. All entangled

extremal PPT states are edge states, although the opposite is not necessarily true. To

see this, we observe that an extremality criterion for the state ρ on the set of PPT

states P is that there can exist no product vector ψ = φ⊗ χ, such that

ρ′ = ρ− ε(ψψ†) (5.24)
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is a PPT state for all ε in an interval ε1 < ε < ε2 where ε1 < 0 < ε2. If we take ρ to be

a non-edge state, then there exists a w = u⊗ v ∈ Img ρ such that w̃ = u⊗ v∗ ∈ Img ρP,

and an arbitrarily small ε-fraction of ww† may then be subtracted from ρ, so that

ρ′ = ρ− ε(ww†) ∈ D. For the partially transposed state we then have from (3.60)

ρ′P = ρP − ε(ww†)P = ρP − ε(w̃w̃†) (5.25)

Since, by assumption w̃ = u ⊗ v∗ ∈ Img ρP, we have that ρ′P ∈ D for the mentioned

ε-interval. The state ρ′ in (5.24) is then a PPT state, and we deduce that ρ cannot

be extremal on P . So the non-edge property implies non-extremality, and in effect

extremality entails the edge property.

5.7.2 Perturbations preserving PPT property and ranks

The rank and positivity of ρ is preserved by the perturbation (5.14) to first order in ε

in both directions, if and only if QσQ = Qσ = 0. Similarly, the rank and positivity of

ρP is preserved if and only if (Q̃σP Q̃)P = Q̃σ = 0. These two equations together can

be written as

(Q+ Q̃)σ = 0 (5.26)

So the perturbations that preserve the PPT property and the ranks of both ρ and ρP

to first order in ε, are the non-trivial solutions of (5.26). We may want to perturb

in different ways, for example such that Img ρ = Img ρ′, but not necessarily Img ρP =

Img ρ′P, i.e. we only require rank(ρP ) = rank(ρ′P ). The conditions on σ are then

Pσ = σ Q̃σ = 0 ⇒ (I−P+ Q̃)σ = 0 (5.27)

5.7.3 Surfaces of PPT states with specified ranks

It is reasonable to assume that the surfaces of density matrices with specific rank (m,n),

are curved in the embedding space. What we do is study the tangent space of a surface

at given points. This will in particular allow us to calculate the local dimension of the

surface. If the point on the surface is sufficiently generic, the local dimension should

correspond with the dimension of the whole surface.

We have seen that perturbation matrices σ that preserve the rank of both ρ and

ρP, are the non-trivial solutions of (5.26). This means that in the block representation

(5.18) the matrix σ can expressed on the form

X =

(
Am C

C† 0

)
(5.28)

The number of independent columns in this matrix is the same as for ρ, which means

that the rank of ρ and ρ′ are equal for small perturbations. If s is the number of linearly

independent solutions of (Q+ Q̃)σ = 0, then the dimension of the local tangent space

at ρ, i.e. the dimension of the surface of density matrices with rank (m,n) at ρ is s−1.
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By themselves Qσ = 0 and Q̃σ = 0 define the tangent space to the surface of rank m

density matrices at ρ and rank n density matrices at ρP respectively. The solutions of

(Q + Q̃)σ = 0 represent the local intersection of these two spaces at ρ, which is the

tangent space to the surface of PPT states with rank (m,n) at ρ.

To compute a lower bound on the dimension of this surface we assume that con-

straints on σ from Qσ = 0 and Q̃σ = 0 are independent. Since Q is the orthogonal

projection onto the (N −m)-dimensional subspace Ker ρ, the equation Qσ = 0 repre-

sents (N −m)2 real constraints. Likewise since |Ker ρP | = N −n, the equation Q̃σ = 0

represents (N − n)2 real constraints. The lower bound is then

d ≥ N2 − (N −m)2 − (N − n)2 − 1 (5.29)

5.8 Faces and dual sets of D, P and S
We can understand extremality and several other geometrical properties of the sets D,
P and S by looking at the faces of these sets, and of the dual sets D◦, P◦ and S◦.

Faces of D
Given any density matrix ρ, we define a face FD(ρ) on D as the set of density matrices

with a range contained in Img ρ. The face FD(ρ) will in particular contain ρ as an

interior point. Note that the boundary of D consists of both flat and curved segments,

where curved entails that the segments are entirely made up of zero-dimensional faces,

i.e. extremal points, and flat means that the interior of the faces are not extremal

points. The projection operator P in (5.17) thus projects states onto the face FD(ρ).
If for any perturbation ρ′ = ρ + εσ the traceless Hermitean matrix σ is chosen such

that Img ρ = Img ρ′, or equivalently so that Pσ = σ, we have ρ, ρ′ ∈ FD(ρ). If ρ has

rank m, then the rank of the projection operator P is m2 and the equation Pσ = σ

has m2 linearly independent solutions σk. The face FD(ρ) together with the positivity

conditions on density matrices, form a vector space which is spanned by these σk.

The boundary of the face FD(ρ) is found by using the block representation (5.18)

for a state ρ ∈ FD(ρ)

ρ =

(
Am C

C† BN−m

)
(5.30)

Since the matrix Am defines the m-dimensional range of ρ, the boundary of FD(ρ) is

defined by det(Am) = 0. These states will then have lesser rank than the states in

the interior of FD(ρ). A normalized density matrix on ∂D with rank m defines a face

of dimension m2 − 1. So for most N , the largest faces on DN , will have a dimension

considerably smaller than N2 − 2, which would be the dimension of a facet and of the

boundary of a (N2 − 1)-dimensional convex set. In fact, any face of D with interior

states of rank m will be a complete representation of the set Dm of density matrices on

an m-dimensional Hilbert space.

We can perform unitary U(N)-transformations on all the density matrices in the

face to rotate the face in the full space HN . However, the subgroups of rotations
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U(m) that act purely on the image, and U(N −m) that act purely on the kernel, do

not change the orientation of the face, but merely rotate it locally. So the remaining

elements of the group U(N) that transform the faces in the full space, are the elements

of U(N)/U(m)× U(N −m), which has dimension

N2 −m2 − (N −m)2 = 2Nm− 2m2 (5.31)

Combining the dimension of the face with the number of such unitary transformations

that change the orientation of the face, we get in total

(m2 − 1) + (2Nm− 2m2) = 2Nm−m2 − 1 (5.32)

which is then the dimension of the surface of density matrices of rank m, or equivalently

to the dimension of the surface of density matrices of rank N−m. If we put m = N−1

into (5.32), we obtain the dimension of the set of faces with rank N − 1, i.e. of rank

one less than the interior states

2N(N − 1)− (N − 1)2 − 1 = N2 − 2 (5.33)

which is exactly the dimension of ∂D. We also notice that for m = 1, which are the

pure states, we get a surface of dimension 2N − 2, which is in agreement with results

in Section 5.2.

Self duality of D
An essential characteristic of D is that it is self dual, or D◦ = D. By Definition 4.4,

the dual set of D will contain all Hermitian matrices A such that tr(Aρ) ≥ 0 for all

ρ ∈ D. Now, if ρ ∈ HN is a density matrix we will have ψ†ρψ ≥ 0 for all ψ ∈ H. This

is equivalent to tr[(ψψ†)ρ] ≥ 0 for all ψ ∈ H. The set of states ψψ† is the set of pure

states in D, and since these states constitute the set of extremal points for D, we see

that the only set dual to D, is D itself.

Another important feature is that any face FD, is an exposed face. This is related

to the fact that any face FD is defined by an m-dimensional subspace U = Img ρ of a

state ρ ∈ int(FD). Let us choose a density matrix τ

τ =
N−m∑
i=1

λi (ψiψ
†
i ) (5.34)

where all ψi ∈ U⊥. The face FD can then be defined as

FD(U) = {ρ ∈ DN | tr(τρ) = 0} (5.35)

Since tr(τρ) =
∑N−m

i=1 λi (ψ
†
i ρψi) we see that ψ†

i ρψi = 0. Since ρ is a positive matrix,

this means that ρψi = 0 for all ρ ∈ FD(U), and only those ρ. So the hyperplane
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tr(τρ) = 0 that defines the face FD(U), intersects ∂D only in FD(U), i.e. the face is

exposed.

We know that any point x in a convex set X may be written as a convex combina-

tion of the extremal points of the set. To establish the minimum number of extremal

points which is sufficient, the facial structure of the set is relevant. Theorem 4.1 by

Carathéodory, gives the sufficient number of extremal points as n + 1, where n is the

dimension of the set. However, the set D is an example where we can do better. The

dimension of the normalized set is n = N2− 1, where N is the dimension of the Hilbert

space. But as can be seen in (3.3), the spectral representation of a density matrix

in terms of its eigenvalues and eigenvectors is a decomposition using only N extremal

points.

Any point x in a compact convex set X is either extremal or an interior point of a

unique face F1, which might be the whole set X. If x is not extremal it may be written

as a convex combination

x = (1− p1)s1 + p1t1 (5.36)

where s1 is an extremal point of F1 and t1 is another boundary point of F1. If t1
is also extremal on F1 we simply define s2 = t1, and we have x as a convex sum

x = (1− p1)s1 + p1s2 of points si which are extremal on X. Otherwise t1 is an interior

point of another proper face F2 of F1, and we write

t1 = (1− p2)s2 + p2t2 (5.37)

where s2 is an extremal point of F2 and t2 is a boundary point of F2. Continuing

this process we obtain a decomposition of x as a convex combination of extremal points

s1, s2, . . . , sk ∈ X, and a sequence F1 ⊃ F2 ⊃ . . . ⊃ Fk of faces of decreasing dimensions

n ≥ n1 > n2 > . . . > nk = 0. The length of the sequence is k, and the obvious inequality

k ≤ n + 1 is Carathéodory’s theorem. For the set of normalized density matrices the

longest possible sequence of face dimensions has length N , it is

N2 − 1 > (N − 1)2 − 1 > . . . > (N − j)2 − 1 > . . . > 8 > 3 > 0 (5.38)

So in conclusion, we will always be able to decompose an arbitrary density matrix ρ

of rank r as a convex combination of r pure states. These may be built from the

eigenvectors of ρ, i.e. the spectral decomposition. But as we have seen, there is a

considerable ambiguity in the construction of density matrices, so generally there are

other possibilities.

Faces of P and S
A given state ρ in D defines a face FD(ρ), but if ρ is a PPT state then its partial

transpose ρP also defines (a different) face FD(ρP ) on the set of density matrices. An

attempt to illustrate this is done in Figure 5.9.
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D
FD(ρP )

FD(ρ)

ρP

ρ

Figure 5.9: Faces FD(ρ) and FD(ρP ) on D containing the PPT state ρ and its partial transpose ρP.

The faces are defined by the set of density matrices with a range completely contained in Img ρ and

Img ρP respectively.

The set obtained by taking the partial transpose of all the points in the face FD(ρP )
is itself a face FDP (ρ) on the set DP. We know that ρP ∈ int[FD(ρP )], and then it

follows that ρ ∈ int[FDP (ρ)]. We then realize that FD(ρ) and FDP (ρ) must share at

least one point, namely ρ. The intersection of the two faces defines a new face on P

FP(ρ) = FD(ρ) ∩ FDP (ρ) (5.39)

containing ρ. An attempt to illustrate this is made in Figure 5.10.

D DPP

FDP (ρ)FD(ρ)

FD(ρP ) FDP (ρP )

ρP

ρ

Figure 5.10: A PPT state ρ and its partial transpose ρP define faces FD(ρ) and FD(ρP ) on D. Taking
the partial transpose of all points in FD(ρP ), we get a face FDP (ρ) on DP that intersects FD(ρ). The
intersection defines a face FP(ρ) = FD(ρ) ∩ FDP (ρ) on P, that contains ρ. Likewise, the intersection

of FD(ρP ) and FDP (ρP ) define a face on P containing ρP.

The dimension of the face FP(ρ) can then be found by counting the number d of

linearly independent solutions of
(P+ P̃)σ = 2σ (5.40)
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Obviously, if and only if d = 1 which corresponds to the trivial solution σ = ρ itself,

we have an extremal point, or a zero-dimensional face. These linearly independent

solutions then represent possible directions that preserve both the range of ρ and ρP in

the perturbation ρ′ = ρ+ εσ.

It is perhaps not easy to see directly that all the faces FP of P are exposed, as is

the case with D. But it follows immediately from the hyperplane construction (5.39),

and formal proofs have been given, for instance by Ha and Kye [50]. As for the case

of the separable states S, it is not yet known if every face FS is exposed. This is

perhaps surprising since the extremal states of S, and therefore of any face on FS , is
well known by definition. Several works have however been published on the matter

including [51, 52], but a clear understanding of the structure of faces on S has yet to

be reached. This has consequences to which we shall return briefly in Section 7.5.4.

A nested sequence of convex sets

We have already observed in Section 3.5.2, that for the set of density matrices D, the
set of PPT states P and the set of separable states S we have the inclusions

S ⊆ P ⊂ D (5.41)

with equality S = P for the 2× 2 and 2× 3 systems only. To illustrate this, let us for

a convex body X ⊂ R
N define the dual X◦ by

X◦ = {y ∈ R
N | 1 + 〈x, y〉 ≥ 0 ∀ x ∈ X} (5.42)

which differs slightly from Definition 4.4 since we are no longer using convex coordinates.

If we take the convex body to be a three-dimensional sphere

Br = {x ∈ R
3 | |x| ≤ r} (5.43)

we can use the above description to define B◦
r . We quickly realize that the dual is

also a sphere B◦
r = B1/r = {x ∈ R

3 | |x| ≤ 1/r}. Clearly the sphere B1 is self dual,

while for r > 1 the dual is a smaller sphere and for r < 1 it is a larger sphere. It is

a general feature that if we enlarge a convex body the conditions on the dual becomes

more stringent, and hence the dual shrinks. Clearly for the spheres B1/4, B1/2 and B1

we will have

B1/4 ⊂ B1/2 ⊂ B1 = B◦
1 ⊂ B◦

1/2 ⊂ B◦
1/4 (5.44)

We now use this understanding, along with the self dual property of D and (5.41) to

claim that for a system of dimensions NA ×NB with N = NANB ≥ 8 we have

S ⊂ P ⊂ D = D◦ ⊂ P◦ ⊂ S◦ (5.45)

The two sets P◦ and S◦ are well defined and important convex sets, with which we will

make a closer acquaintance later.
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Chapter 6

PPT states in the 3× 3 system

Presented here is a review of low rank PPT states in the 3× 3 system. As first pointed

out by Horodecki et al. [53], the entangled PPT states of lowest rank in the NA × NB

system are states of rank NA+NB−2. The only PPT states of lower rank are the pure

product states, which are not entangled. For the 3× 3 system an entangled state must

have a minimum rank of four in order to be extremal on P . While the entangled PPT

states of rank (4, 4) can be completely described in a relatively simple way by making

use of the UPB construction, this is not the case for the entangled PPT states of rank

(5, 5), which show a considerably more complicated structure. We describe PPT states

of rank (4, 4) and rank (5, 5), both extremal and separable, and use the results from

Chapter 5 to describe methods for tracing surfaces of PPT states of rank (5, 5) in P .
We finally make enquiries into certain classes of non-generic PPT states of rank (5, 5).

6.1 PPT states of rank (4, 4)

A very important feature in the understanding and construction of the entangled PPT

states of rank (4, 4), initially developed by Bennett et al. [54], is that of an unextendable

product basis (UPB). We first make a formal definition of an UPB for the NA × NB

system, and then specialize to the 3× 3 system.

Definition 6.1 (UPB). An unextendible product basis in the NA×NB system is a set of

r orthogonal product vectors wi = ui⊗vi ∈ C
NA⊗CNB with the property that there exists

no product vector in C
N = C

NANB orthogonal to all of them, and such that any number

NA of the vectors ui and any number NB of the vectors vi are linearly independent.

The r orthogonal product vectors wi = ui⊗ vi then span an r-dimensional subspace

U ⊂ C
N, and the orthogonal supplement V = U⊥ will then contain no product vectors.

There may be more product vectors in U , but they will be linear combinations of

wi = ui ⊗ vi. It is thus clear that for any density matrix ρ where we can construct an

UPB in the kernel of ρ, it follows from the range criterion in Section 3.6.4 that the state

ρ will be entangled.

For the 3 × 3 system we know that the entangled states of lowest rank that are

extremal on P , have rank (4, 4), and for such states |Ker ρ| = 5. According to (3.55)
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this is exactly the dimension at which a generic subspace in C
9 will contain a finite

number of product vectors. Assuming that w ∈ C
9 is a product vector

w = f ⊗ g =

⎛⎝f1
f2
f3

⎞⎠⊗
⎛⎝g1
g2
g3

⎞⎠ (6.1)

where we have f, g ∈ C
3. We observe that the factors fi and gj appear in several of the

components of w, and then express the following requirements on these components so

that w is a product vector, essentially a restatement of (3.52) for dimension 3× 3

w1w5 = w2w4 w1w9 = w3w7 w4w8 = w5w7

w1w6 = w3w4 w2w6 = w3w5 w4w9 = w6w7

w1w8 = w2w7 w2w9 = w3w8 w5w9 = w6w8

(6.2)

The factors wk appear in a non-linear and mixed way in this set of equations, which

makes it difficult to analyze in general detail. For the 4× 4 system the limit dimension

from (3.55) is ten, so here it will be possible to construct an UPB in the kernel of a

generic (6, 6) PPT state.

Although a generic five-dimensional subspace for the 3 × 3 system will contain six

product vectors, it is not a generic property that five of them are orthogonal. For the

case of the 3 × 3 system we have r = 5 and the orthogonality relations for the ui and

vi can be visualized as in Figure 6.1.

u1

u2

u3u4

u5

v1

v2

v3v4

v5

u1 ⊥ u2 ⊥ u3 ⊥ u4 ⊥ u5 ⊥ u1 v1 ⊥ v3 ⊥ v5 ⊥ v2 ⊥ v4 ⊥ v1

Figure 6.1: UPB construction for a five-dimensional subspace in the 3× 3 system. In order to ensure

the orthogonality relations w†
iwi = 0 for the five product vectors wi = ui ⊗ vi, the orthogonality

relations above must be satisfied.

The five-dimensional subspace spanned by the product vectors wi = ui ⊗ vi in a

UPB is the kernel of the density matrix

ρ =
1

4

(
I −

5∑
i=1

wiw
†
i

)
(6.3)
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which is proportional to a projection operator. The partial transpose of ρ is

ρP =
1

4

(
I −

5∑
i=1

w̃iw̃
†
i

)
(6.4)

with w̃i = ui⊗ v∗i . Thus both ρ, ρP ≥ 0 by construction. We also see that if the vectors

vi are real we have ρ = ρP. We can transform the above orthogonal UPB by a product

transformation V = VA ⊗ VB into the unnormalized standard form

u =

⎛⎝ 1 0 a b 0

0 1 0 1 a

0 0 b −a 1

⎞⎠ v =

⎛⎝ 1 d 0 0 c

0 1 1 c 0

0 −c 0 1 d

⎞⎠ (6.5)

with a, b, c, d as positive real parameters [55]. Since the UPB vectors wi in any state of

the form (6.3) can be transformed by SL × SL-transformations into the real standard

form (6.5), we realize that all such states are SL-symmetric. The parameters a, b, c, d

are determined by the quantities

s1 = −det(u1u2u4) det(u1u3u5)

det(u1u2u5) det(u1u3u4)
= a2

s2 = −det(u1u2u3) det(u2u4u5)

det(u1u2u4) det(u2u3u5)
=

b2

a2

(6.6)

and

s3 =
det(v1v2v3) det(v1v4v5)

det(v1v2v5) det(v1v3v4)
= c2

s4 =
det(v1v3v5) det(v2v3v4)

det(v1v2v3) det(v3v4v5)
=

d2

c2

(6.7)

These ratios of determinants are invariant under SL × SL-transformations of the form

(3.63). There exist both numerical [55] and analytical evidence [56], that every entan-

gled PPT state of rank (4, 4) is SL-equivalent to a state of the form (6.3), with product

vectors given by (6.5). The parameters a, b, c, d then define the equivalence classes.

Since the set of SL(3,C) × SL(3,C)-transformations has 16 + 16 = 32 degrees of

freedom, and the four real invariants a, b, c, d add another four, we deduce that the

surface of entangled PPT states of rank (4, 4) has dimension 36. In (5.31) we obtained

the dimension of the elements of the group U(N) that perform effective rotations of

faces (or subspaces) in the full space HN . The same argument applies of course to

general subspaces of dimension r and s such that N = r+ s. The real dimension of the

set of r-dimensional subspaces of an N -dimensional Hilbert space is then

d = N2 − r2 − s2 = 2rs (6.8)

Thus the set of four-dimensional subspaces of C9 has dimension 40, and since the surface

of entangled PPT states of rank (4, 4) has dimension 36, there cannot exist PPT states
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of rank (4, 4) in every four-dimensional subspace. The four additional constraints can

be seen as the conditions that the parameters a, b, c, d are real and positive.

Separable PPT states of rank (4, 4)

A separable state of rank (4, 4) has the form

ρ =
4∑

i=1

λi (wiw
†
i ) (6.9)

with λi > 0,
∑4

i=1 λi = 1, w†
iwi = 1 and wi = ui ⊗ vi. In general any three vectors ui

and any three vectors vi are linearly independent, and we may perform an SL × SL-

transformation and obtain the standard form

u =

⎛⎝1 0 0 1

0 1 0 1

0 0 1 1

⎞⎠ v =

⎛⎝1 0 0 1

0 1 0 1

0 0 1 1

⎞⎠ (6.10)

In this standard form the vi are real, so ρ = ρP. The kernel of a state ρ with this

range are all the vectors zi = xi ⊗ yi that are orthogonal to all four product vectors wi

in (6.9). Since Ker ρ will contain six product vectors, there will be subsets among the

xi and yi of three linearly dependent vectors. So a generic five-dimensional subspace

will not be Ker ρ for a separable state ρ of rank (4, 4). The dimension of the group

SL(3,C) × SL(3,C) is 32, and with three independent coefficients λi we see that the

surface of separable states of rank (4, 4) has dimension 35, one less than the set of

entangled PPT states of rank (4, 4). So a typical PPT state of rank (4, 4) will be

entangled (and extremal).

6.2 PPT states of rank (5, 5)

We have seen that the entangled PPT states of rank (4, 4) have a range which is non-

generic on the set of four-dimensional subspaces in C
9, and that all such states are

SL-equivalent to the standard form (6.3). For the case of the entangled PPT states

of rank (5, 5), any generic five-dimensional subspace of C9 will be the range of such a

state, but in addition to the generic cases there also exist a whole range of non-generic

cases, which also includes non-extremal states. An attempt to describe how some of

these non-generic cases may be understood, is made in Section 6.5.

To describe the generic cases we observe that any given set of five product vectors

wi = ui ⊗ vi in a generic five-dimensional space may be transformed by an SL × SL

transformation to the standard unnormalized form [57],

u =

⎛⎝1 0 0 1 1

0 1 0 1 p

0 0 1 1 q

⎞⎠ v =

⎛⎝1 0 0 1 1

0 1 0 1 r

0 0 1 1 s

⎞⎠ (6.11)
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with p, q, r, s generically as complex parameters. By generic we here mean that any

three vectors ui and vi are linearly independent. There will also be a sixth product

vector which is a linear combination of the above five. The parameters p, q, r, s are

again determined by ratios of determinants (6.6) and (6.7)

s1 = − p

q
s2 = q − 1 s3 =

r − s

s
s4 =

r

1− r
(6.12)

All the parameters si, and therefore also p, q, r, s are invariants in the sense that they

cannot be changed by SL× SL transformations.

Separable rank (5, 5) states

In a generic five dimensional subspace of C9 containing six normalized product vectors

wi = ui ⊗ vi, we may construct a five dimensional set of separable states as convex

combinations

ρ =
6∑

i=1

ci (wiw
†
i ) (6.13)

with ci ≥ 0 and
∑

i ci = 1. Hence all the separable states in the subspace are contained

in a simplex with the six pure product states as vertices. The partial transpose of ρ is

ρP =
6∑

i=1

ci (w̃iw̃
†
i ) (6.14)

where w̃i = ui⊗ v∗i is the partial conjugate of wi. The six partially conjugated product

vectors will be linearly independent in the generic case, hence the separable states in

the interior of the simplex will have rank (5, 6).

On the facets of the simplex where one coefficient ci vanishes, ρ will be a rank (5, 5)

PPT state. In this case five of the product vectors in Img ρ and in Img ρP are partial

conjugates of each other, whereas the sixth product vectors in the two spaces are related

in a more complicated way, unless all the vectors vi are real.

6.3 The surface of generic PPT states of rank (5, 5)

A generic five-dimensional subspace of C9 contains exactly six product vectors wi =

ui ⊗ vi, which can be transformed by SL× SL-transformations into the standard form

(6.11). Thus each such subspace belongs to an equivalence class under SL × SL-

transformations, and each equivalence class corresponds to unique values of the complex

invariants p, q, r, s. In total eight real parameters.

We choose two generic five-dimensional subspaces U , Ũ ⊂ C
9 and then we choose

U = Img ρ and Ũ = Img ρP. Then from (5.13) this defines the Hermitian matrices P

and P̃ , and further the operators P and P̃ from (5.17) and (5.21). If we then finally

seek solutions for σ of

(P+ P̃)σ = 2σ (6.15)
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where σ is the traceless representation of ρ, then there is typically no solution. Solutions

for ρ with Img ρ = U and Img ρP = Ũ exist only for special pairs of subspaces U and Ũ .
If these subspaces admit solutions of (6.15) for ρ then it will generically be one unique

(trivial) solution, i.e. ρ will be extremal on P . We may instead fix U = Img ρ and let

only |Ũ | = rank(ρP ) be fixed. There is then always a set of solutions for ρ described

by eight real degrees of freedom. The likely role of these eight parameters is to specify

the SL-equivalence class to which the five-dimensional subspace Ũ = Img ρP belongs.

The six product vectors in U are discrete, so they cannot be continuously transformed

within this subspace, while it remains fixed. So the only way to vary the subspace

Ũ = Img ρP without changing U = Img ρ is inevitably to vary the equivalence class of

the subspace Ũ = Img ρP.

We may want to fix both rank(ρ) = |U| and rank(ρP ) = |Ũ | to five, but let the

subspaces themselves vary. The relevant equation is then (5.26)

(Q+ Q̃)σ = 0 (6.16)

In this case the number of linearly independent solutions for σ is 48, and this is then the

dimension of the surface of all generic PPT states of rank (5, 5). There are 8 + 8 = 16

real parameters for SL-equivalence classes of the subspaces Img ρ and Img ρP, and in

addition 32 parameters for the SL(3,C)× SL(3,C) transformations that determine the

specific subspace in each equivalence class.

By (6.8) the set of five-dimensional subspaces has dimension 40, hence one would

expect to find an eight-dimensional surface of PPT states of rank (5, 5) in every generic

five-dimensional subspace, and this is what we find numerically [57].

In a generic five-dimensional subspace a set of separable states of rank (5, 5) can be

constructed. This is a simplex Δ6 of convex combinations of pure product states wiw
†
i

made up by the six product vectors. The dimension of the surface of PPT states of

rank (5, 5) with a fixed range, has however dimension eight. This discrepancy is due to

the existence of entangled PPT states of rank (5, 5).

6.4 Tracing the surface

There are several ways of producing walks or tracks on the surface of generic PPT states

of rank (5, 5). One possibility is to start at an entangled PPT state ρ of rank (4, 4),

produced by using the UPB construction outlined in Section 6.1, and then choose proper

directions σ in the perturbation ρ′ = ρ + εσ, so that ρ′ becomes a PPT state of rank

(5, 5). Another possibility is to formulate a perturbation ρ′ = ρ + εσ as an expansion

ρ(t+ε) = ρ(t)+εσ for ρ = ρ(t), and solve the differential equation numerically applying

conditions for σ. The starting point ρ(0) is usually chosen as a PPT state of rank (5, 5).

A third method is to calculate the eight dimensional tangent space of the surface at

ρ, and then make a perturbation ρ′ = ρ + εσ, where σ is in that tangent space. Then

Img ρ = Img ρ′, but since in general Img ρP �= Img ρ′P we have to project ρ′ back onto

the surface to regain a new PPT state of rank (5, 5).
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6.4.1 Perturbing from a rank (4, 4) to a rank (5, 5) state

We consider the perturbation ρ′ = ρ + εσ, with ρ as an entangled PPT state of rank

(4, 4). To perturb these rank (4, 4) states is interesting since these states are on the

boundary of the surface of PPT states with rank (5, 5). If we use the standard form

(6.3) with the real product vectors (6.5) we have ρ = ρP. We again use the projections

P and Q defined in (5.13), and the corresponding projections P̃ and Q̃ from (5.21). For

the special case ρ = ρP we have P = P̃ and Q = Q̃. From (5.16) the condition for ρ′

and ρ′P to have rank five is

QσQ = α(zz†) Q̃σPQ̃ = β(z̃z̃†) (6.17)

where α, β �= 0 are real numbers and

z =
5∑

i=1

ciwi z̃ =
5∑

i=1

diwi ci, di ∈ C (6.18)

with wi ∈ Ker ρ such that z†z =
∑5

i=1 |ci|2 = 1 and z̃ †z̃ =
∑5

i=1 |di|2 = 1. Note that if

either α or β is allowed to be zero, then ρ′ may have rank (4, 5) or rank (5, 4).

Generically there is one extra sixth product vector w6 =
∑5

i=1 aiwi ∈ Ker ρ, where

ai ∈ R. Since the product vectors wi = ui ⊗ vi with ui, vi ∈ R
3 for all i = 1, . . . , 6, we

have for any Hermitian σ that w†
iσwi = w†

iσ
Pwi. Using this and (6.17) we get

α|ci|2 = β|di|2 (6.19)

for i = 1, . . . , 5, and for the sixth equation

α

∣∣∣∣∣
5∑

i=1

aici

∣∣∣∣∣
2

= β

∣∣∣∣∣
5∑

i=1

aidi

∣∣∣∣∣
2

(6.20)

From (6.19) and (6.20) it follows that

α =
5∑

i=1

α|ci|2 =
5∑

i=1

β|di|2 = β (6.21)

so in total we have α = β and |ci| = |di| for i = 1, . . . , 5. So the coefficients ci and di can

differ only by a phase factor for each i = 1, . . . , 5. In total we will have four independent

phase factors, since from (6.20) it now follows that
∣∣∑5

i=1 aici
∣∣ = ∣∣∑5

i=1 aidi
∣∣.

The vector z which determines the direction zz† is an arbitrary vector in the five-

dimensional subspace Ker ρ, hence after normalization it contains four complex param-

eters, or eight real parameters. Once z is fixed we can choose from a four parameter

family of vectors z̃, determined by the relative phases between ci and di. Together this

gives 8+4 = 12 degrees of freedom. We know that the dimension of the surface of PPT

states of rank (4, 4) is 36, and this would mean that the subspace of directions that



90 PPT STATES IN THE 3× 3 SYSTEM

leads from this surface onto the 48-dimensional surface of PPT states of rank (5, 5),

indeed has dimension 12.

For infinitesimal values of ε, both ρ′ and ρ′P will have four eigenvalues infinitesimally

close to 1/4 and one eigenvalue εα = εβ very close to zero. With α > 0 this means

that ρ′, ρ′P ≥ 0 for ε > 0, but not for ε < 0. So in this way we never get a PPT state of

rank (4, 5) or rank (5, 4), but always rank (5, 5), or for 36 directions a new PPT state

of rank (4, 4). This is in complete harmony with numerical investigations [57]. For the

more general PPT state of rank (4, 4) obtained by SL × SL-transformations from the

standard form (6.3), the smallest positive eigenvalues of ρ′ and ρ′P are no longer equal,

but still tied together so that they approach zero simultaneously.

As described in Section 5.7 we may also restrict the class of perturbations, so that

we fix the five-dimensional subspace Img ρ′ to be the direct sum of the four-dimensional

subspace Img ρ and the one-dimensional subspace of the vector z. Apart from the trivial

solution σ = ρ, we then find five linearly independent possibilities, out of which four

give ρ′ as a rank (4, 4) PPT state. The fifth is then a unique solution giving ρ′ as a

rank (5, 5) PPT state. So the dimension of the surface of (4, 4) PPT states with range

within the fixed five-dimensional subspace Img ρ, is four. When we fix Img ρ′ and look

for PPT states of rank (4, 4) with range within this space, we eliminate all degrees of

freedom corresponding to SL× SL-transformations. But we still allow variations of the

four real invariant parameters a, b, c, d needed to define a rank (4, 4) PPT state.

It is still intriguing that the rank (5, 5) PPT states with a fixed range Img ρ, which

is an eight-dimensional set, has a set of boundary states that is four-dimensional.

6.4.2 Curves on the surface by integration

We will here look at a method for tracing curves on a surface of PPT states of fixed

rank (m,n). The idea is to formulate the perturbation ρ′ = ρ + εσ as an expansion

ρ(t + ε) = ρ(t) + εσ for ρ = ρ(t), and solve the differential equation that follows from

this. The perturbation expansion ρ(t + ε) = ρ(t) + εσ for ρ = ρ(t) is equivalent to the

differential equation
dρ

dt
= ρ̇ = σ (6.22)

Since a matrix ρ =
∑

i,λi �=0 λi (ψiψ
†
i ) of less than full rank has no well defined inverse

ρ−1 it is useful to introduce the pseudoinverse of ρ as

ρ+ =
∑
i,λi �=0

λ−1
i ψiψ

†
i (6.23)

If ρ is of full rank then ρ+ = ρ−1. The projection P onto Img ρ is P = ρ+ρ = ρρ+. There

are similar relations for the projection P̃ onto Img ρP and the pseudoinverse of ρP.

If we have X ∈ HN with ImgX ⊂ Img ρ then X = PX = XP and QX = XQ = 0.

We assume that this holds for all t so that

Ẋ = ṖX + PẊ = ẊP +XṖ (6.24)
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or more useful

QẊ = ṖX ẊQ = XṖ (6.25)

which gives

Ẋ = (P +Q)Ẋ(P +Q) = PẊP +XṖ + ṖX (6.26)

Now settingX = ρ in (6.25) and multiplying from right and left by the pseudoinverse

gives Qσρ+ = ṖP and ρ+σQ = PṖ . Since differentiation of P = P 2 gives Ṗ = ṖP+PṖ

we get
Ṗ = Qσρ+ + ρ+σQ (6.27)

and likewise we use differentiation of ρ+ = ρ+ρρ+ to get

ρ̇+ = ρ̇+P + ρ+σρ+ + P ρ̇+ (6.28)

which when multiplied with P on both sides gives P ρ̇+P = −ρ+σρ+. If we use X = ρ+

in (6.26) together with (6.27) we get

ρ̇+ = Qσ(ρ+)2 + (ρ+)2σQ− ρ+σρ+ (6.29)

The differential equation ρ̇ = σ may be integrated together with (6.27) and (6.29) as

long as we accompany this with proper specifications for how to calculate the direction

σ for each ρ. For the partial transpose ρP there are completely similar equations relating

the projections P̃ and Q̃ with ρP and (ρP )+ that must be satisfied.

We can now generate a curve ρ(t) on the 48-dimensional surface of PPT states of

rank (5, 5). Since this essentially is a differential equation we will find a curve containing

the state ρ(0) as a starting point. The constraints are then again (5.26)

(Q+ Q̃)σ = 0 (6.30)

We may also want to generate a curve that lies on the eight-dimensional surface of PPT

states of rank (5, 5), but with Img ρ fixed, while Img ρP is allowed to change. We then

have the condition
(I−P+ Q̃)σ = 0 (6.31)

again. In this case P is constant, but Q̃ = Q̃(t) would then change.

We have done numerical integrations to generate such curves. The eigenvalues of

ρ and ρP stay remarkably similar along the curve, yet they are not identical. The

condition that at least one eigenvalue of ρ (and ρP ) goes to zero, defines the boundary

of the surface. When ρ (and ρP ) get one dominant eigenvalue, we interpret this as an

indication that ρ (and ρP ) approach a pure product state.

6.4.3 Tracing the surface by repeated projections

If we choose any generic rank (5, 5) PPT state ρ, which then fixes the subspace Img ρ, we

can calculate the eight linearly independent directions for the perturbation ρ′ = ρ+ εσ

that solve (6.31). Equation (6.31) guarantees that Img ρ′ = Img ρ for small finite values



92 PPT STATES IN THE 3× 3 SYSTEM

of ε, and that rank(ρ′P ) = rank(ρP ) for infinitesimal ε. Thus the eight solutions of

(6.31) define (at ρ) a tangent plane to the eight-dimensional surface of PPT states we

want to track. We choose σ to lie in this plane, and then a finite value of ε and compute

ρ′ = ρ+εσ. Then ρ′ will have the same range as ρ, but ρ′P will only have approximately

the same rank as ρP, in fact ρ′P will in general have full rank.

To project ρ′ back onto the surface of rank (5, 5) PPT states, whilst keeping the

range of ρ, we use an iterative procedure. When we compute the nine eigenvalues

λ1, . . . , λ9 of ρ′P we use the eigenvectors e1, . . . , e5 corresponding to the five dominant

eigenvalues λ1, . . . , λ5 to construct a projection operator onto the subspace spanned by

these en

P̃5 =
5∑

n=1

ene
†
n (6.32)

For sufficiently small steps ε the corresponding change Δλn(ε) in the eigenvalues will

also be small, so that the eigenvectors en in (6.32) are still the dominant eigenvalues.

The projection P is onto Img ρ throughout the whole procedure, thus ensuring that

the ranges of ρ, ρ′ and the new state ρ′′ are the same. Projecting ρ′P onto the range

defined by its five dominant eigenvalues with the operator P̃5 insures that rank(ρ′P )
becomes five again. Unfortunately these operations do not work at the same time since

adjusting ρ′P changes ρ′ and vice versa. Repeating the procedure

ρ′n+1 = γP
[
ρ′n + {P̃5ρ

′P
n P̃5}P

]
P (6.33)

a sufficient number of times, projects the state ρ′ with good precision to a new state ρ′′

on the surface of rank (5, 5) PPT states. The projection P is thus kept throughout the

iterative procedure, but P̃5 is updated for every iteration. What effectively happens is

that since {P̃5ρ
′P
n P̃5}P �= ρ′n, an average of these two states is projected by P so that

Img ρ′n = Img ρ′n+1 for each iteration. The factor γ is a normalization factor, since the

projections generally do not preserve the norm. This method to track the surface is in

some ways preferable to ordinary perturbation methods, where the step size in general

is much smaller, and progress therefore much slower.

For many generic five-dimensional subspaces, we have numerically constructed a

large number of extremal PPT states ρ1, . . . , ρk of all ranks ≤ 5 in the same subspace.

We have then utilized the above scheme to walk from a state ρ1 to all the other states

ρ2, . . . , ρk. It is reasonable to assume that this tracking between states is transitive, i.e.

if ρ1 is connected to ρ2 and ρ2 connected to ρ3, then ρ1 is connected to ρ3. Based on

this we conclude that for generic cases all the states in the same subspace lie on one

connected surface.

We have also used this method to track the curvature of the eight-dimensional

surface of rank (5, 5) PPT states with a fixed range. As seen in Figure 6.2, each step

generated along the curve by our tracking scheme is inherently two-dimensional.

For each step we know the state ρ, ρ′ and ρ′′, so the distance between each state can

be calculated using the Hilbert-Schmidt metric

|ρi − ρj|2 = tr
[
(ρi − ρj)

2
]

(6.34)



6.4. TRACING THE SURFACE 93

The curvature is given by κ = |dθ/ds|. Since all sides of the triangle are known we can

calculate the angle dθ for each step, and if the curvature is sufficiently small we can

assume to a very good approximation that ds ∼= |ρ− ρ′′|.

ρ ρ′′

ρ′

ε
ds

dθ

|ρ− ρ′′|
Figure 6.2: The eight-dimensional surface of rank (5, 5) PPT states with a fixed range, as a two-

dimensional projection. A finite perturbation ρ �→ ρ′ is made along the tangent plane to the surface at

ρ. The projection scheme (6.33) is then made so that ρ′′ is a rank (5, 5) PPT state with the same range

as ρ. The changes dθ and ds are then used to calculate the local curvature. The curvature portrayed

here is extensively exaggerated.

In general, for sufficiently small steps ε we have |ρ−ρ′| � |ρ−ρ′′| � |ρ′−ρ′′|, so the

triangle is to very good approximation a skinny triangle. This method will not return

good values when the curvature becomes to large because then ds �� |ρ− ρ′′|, or when
the steps become too small because then the calculation of the angle dθ is compromised.

We can use this method to calculate the curvature along a curve between a pure

product state and an extremal rank (5, 5) PPT state on the surface, and this is pictured

in Figure 6.3.
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Figure 6.3: We see the curvature κ = |dθ/ds| for the curve generated by tracking the surface of rank

(5, 5) PPT states within a fixed range. The tracking is between one of the six pure product states in

the subspace and an extremal rank (5, 5) PPT state on the interior of the surface. Also plotted are

the maximum eigenvalues of ρ and ρP.
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We note that the curvature is quite small along the entire length, and this appears

to be a general feature for these cases. The estimates of the curvature very close to the

pure product state are very uncertain, and it is quite possible that the derivative dθ/ds

has a discontinuity at the product state.

We can also walk from an extremal rank (5, 5) PPT state towards an extremal rank

(4, 4) PPT state on the boundary of the eight-dimensional surface. This is seen in

Figure 6.4. In this case, the curvature of the surface increases towards the boundary.
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Figure 6.4: The curvature κ = |dθ/ds| for the curve generated by tracking the surface of rank (5, 5)

PPT states within a fixed range space is shown. The tracking connects an extremal rank (5, 5) PPT

state on the interior of the surface, and an extremal rank (4, 4) PPT state on the boundary of the

surface. Also plotted are the minimal positive eigenvalues of ρ and ρP.

6.5 Non-generic PPT states of rank (5, 5)

A very important characteristic of PPT states is the number of product vectors in

the range and the kernel of the state. We have seen that the dimension of the set of

separable states of rank (5, 5) is smaller than the dimension of PPT states of same rank,

so a generic PPT state of rank (5, 5) will be entangled. It is also a fact that the range

of such states contains six product vectors, while the kernel contains none.

6.5.1 Non-generic orthogonal subspaces

From Section 3.6 we recollect the use of the notation {nimg, ñimg;nker} for a density

matrix ρ. Here nimg is the number of product vectors in Img ρ, ñimg is the number

of product vectors in Img ρP and nker is number of product vectors in Ker ρ. Like in

Section 3.6.3, for a density matrix ρ we let the product vectors in Img ρ be



6.5. NON-GENERIC PPT STATES OF RANK (5, 5) 95

wi = ui ⊗ vi i = 1, . . . , nimg (6.35)

and likewise for Ker ρ:

zj = xj ⊗ yj j = 1, . . . , nker (6.36)

We know that zi = xi⊗yi ∈ Ker ρ if and only if z̃i = xi⊗y∗i ∈ Ker ρP, so the number

of product vectors in Ker ρ is always equal to the number in Ker ρP, or more formally

nker = ñker.

By definition, for a generic set of vectors in C
3 any subset of three vectors will be

linearly independent. A non-zero vector x ∈ C
3 can at most be orthogonal to two

vectors ui, and a non-zero vector y ∈ C
3 can at most be orthogonal to two vi, hence the

product vector z = x⊗ y can at most be orthogonal to four wi. Since Ker ρ = (Img ρ)⊥

and since the range of a generic rank (5, 5) PPT state ρ contains six product vectors

wi = ui ⊗ vi, it is clear that it is not possible to have a product vector in Ker ρ in this

case. Thus generic states must have nker = 0.

In order to construct pairs of orthogonal subspaces U ⊂ C
9 and V = U⊥ ⊂ C

9 with

|U| = 5 and |V| = 4, such that V contains one or more product vectors, we must alter

the generic linear dependencies of the vectors ui and vi. Instead of the generic condition

that any subset with three vectors ui ∈ C
3 and vi ∈ C

3 must be linearly independent, we

introduce the conditions that any subset with four vectors must be linearly independent.

Only by appealing to these non-generic characteristics is it possible to construct the

necessary orthogonality relations, as described in Section 3.6.3.

In the above sense it is to a certain degree the subspaces U and V that are relevant

here, and to a lesser degree the states themselves. A general characterization of two

orthogonal subspaces U and V with regard to the number of product vectors they

contain, can be written as {nu;nv}.
Since zj = xj ⊗ yj ∈ Ker ρ if and only if z̃j = xj ⊗ y∗j ∈ Ker ρP it is clear that the

kernels of ρ and ρP are related when they contain product vectors. In particular, if yj
is real then zj = z̃j. As long as nker ≤ 4 we can always choose a standard form where

all the vectors xj and yj are real.

By making use of the non-generic structures discussed here, it is possible to define

standard forms for several combinations of orthogonal non-generic subspaces U and V ,
i.e. with various {nu;nv}. In Paper 4 we have constructed a number of such standard

forms, and then produced PPT states of rank (5, 5) with Img ρ = U and Ker ρ = V for

0 < nker ≤ 4.

6.5.2 The case nker = 4

As one example, we take the case for nker = 4. Given a PPT state ρ and four product

vectors zj = xj ⊗ yj in the kernel of ρ, in some definite but arbitrary order. We assume

that any three vectors xj ∈ C
3 and any three vectors yj ∈ C

3 are linearly independent.

Then we may perform a product transformation, and subsequent normalizations, so

that the vectors take the form
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x = y =

⎛⎝ 1 0 0 1

0 1 0 1

0 0 1 1

⎞⎠ (6.37)

and for the product vectors zj

z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 1 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.38)

The transformation is unique. In the space spanned by the zj there exist no other

product vectors. The real form of the zj ∈ Ker ρ implies that zj ∈ Ker ρP.

It is equally easy to see that there exist exactly six product vectors wi = ui ⊗ vi in

the orthogonal subspace. In fact, in order to have (ui⊗vi) ⊥ (xj⊗yj) for all i = 1, . . . , 6

and j = 1, . . . , 4, we must have for each pair i, j that either ui ⊥ xj or vi ⊥ yj. Since

any three vectors xj and any three vectors yj are linearly independent, a vector ui can

be orthogonal to at most two vectors xj, and a vector vi can be orthogonal to at most

two vectors yj. This gives the six possibilities for orthogonality listed in the table.

ui ⊗ vi ui ⊥ xk, xl vi ⊥ ym, yn
i k, l m, n

1 2, 3 1, 4

2 1, 3 2, 4

3 1, 2 3, 4

4 1, 4 2, 3

5 2, 4 1, 3

6 3, 4 1, 2

Table 6.1: Possibilities for a product vector ui⊗vi to be orthogonal to all four product vectors xj⊗yj .

The unique solution is the following list of vectors,

u =

⎛⎝ 1 0 0 0 1 1

0 1 0 1 0 −1
0 0 1 −1 −1 0

⎞⎠ v =

⎛⎝ 0 1 1 1 0 0

1 0 −1 0 1 0

−1 −1 0 0 0 1

⎞⎠ (6.39)
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and for the product vectors wi

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

1 0 0 0 1 0

−1 0 0 0 0 1

0 1 0 1 0 0

0 0 0 0 0 0

0 −1 0 0 0 −1
0 0 1 −1 0 0

0 0 −1 0 −1 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.40)

The five-dimensional subspace Img ρ spanned by the wi given by (6.40) defines a face

F ⊂ D of dimension 52 − 1 = 24. Recall that

ρzj = ρPzj = 0 j = 1, . . . , 4 (6.41)

In terms of the face F, the above means that ρ ∈ F and ρP ∈ F, or equivalently, that
ρ ∈ F ∩ FP. Effectively (6.41) restricts ρ to have the form (6.43), with ci ∈ R.

Note that ρ = ρP. Since F is a face on D, we understand that FP is a face on DP,

and the intersection G = F ∩FP is a face on P = D ∩DP. Equation (6.43) shows that

the face G has dimension five.

The state ρ defined in (6.43) is a linear combination, but not necessarily a convex

combination, of the six pure product states,

ρ =
1

2

6∑
i=1

ci (wiw
†
i ) (6.42)

ρ =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0

0 c1 + c5 −c1 0 0 0 0 −c5 0

0 −c1 c1 + c4 0 0 −c4 0 0 0

0 0 0 c2 + c6 0 −c2 −c6 0 0

0 0 0 0 0 0 0 0 0

0 0 −c4 −c2 0 c2 + c4 0 0 0

0 0 0 −c6 0 0 c3 + c6 −c3 0

0 −c5 0 0 0 0 −c3 c3 + c5 0

0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.43)

From (6.43) we observe that the normalization condition for ρ becomes

Tr ρ =
6∑

i=1

ci = 1 (6.44)

Since the matrices wiw
†
i are linearly independent, and there are no other pure product

states in Img ρ, the state ρ is separable if and only if all the ci are non-negative. However,
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we will now see that it is possible for ρ to be an entangled PPT state even if one of the

coefficients is negative, and this observation will lead us to a scheme for constructing the

extremal PPT states of rank (4, 4), a scheme which does not rely on the UPB method

discussed briefly in Section 6.1.

An eigenvalue of ρ, and of ρP = ρ, is a root of the characteristic polynomial

det(ρ− λI) = −λ4 f(λ) (6.45)

with

f(λ) = (λ5 − d4λ
4 + d3λ

3 − d2λ
2 + d1λ− d0) (6.46)

The constant term in f(λ) is

d0 =
3

16

6∑
i=1

∏
j �=i

cj =
3

16

( 6∏
j=1

cj

) 6∑
i=1

1

ci
(6.47)

If we start with ci > 0 for i = 1, . . . , 6, then ρ is a rank (5, 5) separable state. If we then

change the coefficients continuously, ρ will continue to have five positive eigenvalues

until we get d0 = 0. Hence d0 = 0 defines the boundary of the set of density matrices,

and also of the set of PPT states since ρ = ρP.

We know that the boundary is not reached before at least one coefficient becomes

zero or negative. If two coefficients become zero simultaneously, then d0 = 0 and we

have reached a boundary state which is separable. To get negative coefficients while ρ

is a rank (5, 5) PPT state we have to make one coefficient negative before the others.

Let us say, for example, that c1 < 0, and that we want to make also c2 negative,

while ci > 0 for i = 3, . . . , 6. Then we first have to make c2 = 0, in which case

d0 = 3 c1c3c4c5c6/16 < 0 and we have already crossed the boundary d0 = 0.

In conclusion, the entangled boundary states have ci �= 0 for i = 1, . . . , 6, and they

have one negative and five positive coefficients ci satisfying

6∑
i=1

1

ci
= 0 (6.48)

Thus the boundary d0 = 0 consists of two types of states.

1. Separable states that are convex combinations of up to four of the pure product

states wiw
†
i .

2. Rank (4, 4) entangled PPT states that are linear combinations of all the six pure

product states wiw
†
i with one negative coefficient.

Figure 6.5 shows a two dimensional section through the five dimensional face of P
defined by (6.42) and (6.44).
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Figure 6.5: A two dimensional cut through the five dimensional face on P of states given by (6.43).

The outer curve is the common boundary of D and P, which consists of rank (4, 4) PPT states. The

cut through the simplex in S is the hexagon with corners A to F . The region between the two curves

consists of non-extremal entangled PPT states of rank (5, 5). The coordinates x, y are dimensionless.

The section through the separable states S, is seen as the hexagon with corners A to

F . On the boundary of the hexagon (dashed), exactly one of the coefficients ci is zero.

The region between the two curves consists of non-extremal entangled PPT states of

rank (5, 5) with exactly one coefficient negative. The hexagon is reflection symmetric

about two axes. In Table 6.2 are listed the coefficients ci that define the states A to F

by (6.42), multiplied by 12.

i A B C D E F

1 0 0 3 6 6 3

2 1 0 0 1 2 2

3 6 3 0 0 3 6

4 2 2 1 0 0 1

5 3 6 6 3 0 0

6 0 1 2 2 1 0

Table 6.2: The coefficients ci, multiplied by 12, for the states A to F in Figure 6.5.

The most general rank (4, 4) entangled PPT states

Consider a general rank (4, 4) entangled PPT state ρ in 3× 3 dimensions. It is known

that any such state is extremal, and has exactly six product vectors in its kernel. We
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can now see that it is SL-equivalent, in no less than 360 different ways, to such states

on the boundary of the five dimensional face of P that we have described here. The

360 transformations are found in the following way.

Pick any four of the six product vectors in Ker ρ, this can be done in 15 different

ways. Order them next in one of the 24 possible ways. Altogether there are 24·15 = 360

possibilities. There is then a unique product transformation that transforms the four

product vectors to the form given in (6.37). We know that it must transform the state

ρ into one of the rank (4, 4) states described by Equations (6.42), (6.44), and (6.48),

since these are the only rank (4, 4) entangled PPT states of this form.

In conclusion, the scheme derived in this section represents an alternative method

for producing the extremal PPT states of rank (4, 4). It is alternative in the sense that

it does not rely on the UPB construction.

6.5.3 Other values of nker

While we have seen that PPT states constructed from (6.37) and (6.39) are exclusively

non-extremal, there are standard forms that generically produces extremal states.

We can for example construct a standard form for which nker = 1. This standard

form also has nimg = 6, and generically produces extremal {6, 6; 1} PPT states. For

z1 = x1 ⊗ y1 ∈ Ker ρ and wi = ui ⊗ vi ∈ Img ρ with i = 1, . . . , 6, we now have a more

limited set of orthogonality relations

x1 ⊥ ui i = 1, 2, 3 (6.49)

y1 ⊥ vi i = 4, 5, 6 (6.50)

Now z1 = x1 ⊗ y1 is the only product vector allowed in Ker ρ. It is also possible to

produce standard forms which allow an infinite number of product vectors in the range.

This is possible if there for a subset of the wi ∈ Img ρ exist linear combinations
∑

i ciwi

which are again product vectors, and where these linear combinations represent an

underdetermined set of equations. In Paper 4 we have constructed two standard forms

with nker = 2, which generically produce {6, 6; 2} and {∞,∞; 2} states. The former are

exclusively extremal states, while the latter states are both extremal and non-extremal.

Also, the form presented in Paper 4 which has nker = 3 produces only non-extremal

states.

There is however no reason to limit the possible values of nimg to six or infinity. In

our random searches for SL-symmetric PPT states of rank (5, 5) we have found, by com-

plete accident, several non-extremal {2, 2; 1}-states. It is unclear why this combination

has appeared several times. Using the subspaces from these states we have produced

extremal states with the same range, and these are {2, 6; 1}-states.
It appears that for any five dimensional subspace of C9 to contain less than six

product vectors, the set of equations (3.52) must have degenerate solutions. In this

sense the only possibilities are 1 < nimg ≤ 6 and nimg =∞. An analysis regarding these

matters is given in [56].



Chapter 7

Positive maps and entanglement

witnesses

We start by defining entanglement witnesses, some of their properties and why they

are useful and important. We then move on to a different type of mathematical ob-

jects, namely maps and more specifically positive maps. The one-to-one correspondence

between witnesses and positive maps, the Choi-Jamiolkowski isomorphism, is then de-

scribed. Completely positive maps is defined, and the important distinction between

decomposable and non-decomposable maps, or equivalently decomposable and non-

decomposable witnesses, is made. The zeros of a witness W are defined as the product

vectors φ⊗χ satisfying (φ⊗χ)†W (φ⊗χ) = 0. These zeros are used to define boundary

witnesses and extremality for witnesses. An important characteristic here is whether a

zero is quadratic or quartic. A method to search for generic extremal witnesses with

quadratic zeros is outlined, and some of the results are discussed. Positive maps with

the unital and trace preserving property is discussed, and a method for transforming a

positive map to this form is constructed. Visualizations of how extremal positive maps

act on various two-dimensional cross sections in D3, are performed and discussed. The

facial structure of the set of separable states S is closely related to the facial structure of

the set of entanglement witnesses S◦. This relation is used to develop an understanding

of the faces of both these sets. Optimal entanglement witnesses is then defined and

discussed, and an attempt to understand the link between extremality and optimality

for entanglement witnesses is then made. Finally, a description of the so-called SPA

separability conjecture is included.

7.1 Entanglement witnesses

We know that a density matrix ρ ∈ HN = HNA
⊗ HNB

on a Hilbert space HAB =

HA ⊗HB is separable if and only if it is of the form

ρ =
∑
k

pk (μk ⊗ τk) (7.1)

where μk ∈ DNA
, τk ∈ DNB

with pk > 0 and
∑

k pk = 1. The partial transpose

101
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ρP =
∑
k

pk (μk ⊗ τTk ) (7.2)

is then always positive, i.e. S ⊆ P . This gives rise to the Peres-Hordecki separability

criterion discussed in Section 3.5.2. Since for N ≥ 8 there exist entangled PPT states,

an alternative criterion involving entanglement witnesses is more useful.

We start by defining the dual set of the separable states S

S◦ = {W ∈ HN | tr(Wρ) ≥ 0 ∀ ρ ∈ S} (7.3)

The dual of S◦ is S, or S◦◦ = S, and thus a state ρ ∈ D is separable if and only if

tr(Wρ) ≥ 0 for all W ∈ S◦. Thus, if any W ∈ S◦ exists such that tr(Wρ) < 0, we

can deduce that the state ρ must be entangled. The Hermitian operator W is then

an entanglement witness for ρ. We state the Horodecki criterion, originally given by

Michal, Pawel and Ryszard Horodecki [33], in the form

Theorem 7.1 (Horodecki criterion). For any entangled state ρ ∈ HN on the Hilbert

space HAB = HA ⊗HB there exists an Hermitian operator W such that

tr(Wρ) < 0 and tr(Wτ) ≥ 0 (7.4)

for all states τ ∈ S.
This two-way implication makes entanglement witnesses powerful tools for detecting

entanglement experimentally, and such schemes have been performed [58, 59]. Note

that this testimony of an entanglement witness is of a statistical nature, in that it is

the expectation value tr(Wρ) which is used. It should also be emphasized that there is

no universal entanglement witness. Each entangled state is revealed by its own subset

of S◦, and this fact leads to the notion of optimal entanglement witnesses, to which we

shall return briefly in Section 7.6.

Note that since the set of entanglement witnesses S◦ is here defined as the dual

cone of S, this implies that it is a closed and convex set. It is therefore completely

characterized by its extremal points, and the objective must be to understand the

structure of these extremal points.

The extremal points of S are known to be the pure product states ρ = ψψ† =

φφ† ⊗ χχ† with φ†φ = χ†χ = 1 for normalization. A matrix M ∈ HN can then be an

entanglement witness W ∈ S◦ if and only if its expectation value in every such pure

product state

tr(Wρ) = ψ†Wψ = (φ⊗ χ)†W (φ⊗ χ) =
∑
ij;kl

φ∗
iχ

∗
j Wij;kl φkχl (7.5)

is non-negative. Here φn, χn are the components of φ ∈ HA and χ ∈ HB respectively.

Thus the condition that W ∈ S◦ is that the biquadratic form (7.5) is non-negative for

all φ ∈ HA and χ ∈ HB

fW (φ, χ) =
∑
ij;kl

φ∗
iχ

∗
j Wij;kl φkχl ≥ 0 (7.6)
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It should be added that since fWP (φ, χ) = fW (φ, χ∗) we have that W P ∈ S◦ if and only

if W ∈ S◦.

Non-negative polynomials

The problem (7.6) is related to a set of larger fundamental problems in mathematics.

On Hilbert’s list of 23 unsolved problems published in 1900 [60], the 17th problem is

whether every non-negative real polynomial f(x1, . . . , xn) is a sum of squares of rational

functions
f(x1, . . . , xn) =

∑
k

[gk(x1, . . . , xn)]
2 (7.7)

In 1888 Hilbert had himself disproved a weaker version of the 17th problem, namely

that there are non-negative polynomials that are not sums of squares of polynomials.

Artin finally proved in 1927 that the answer to the 17th problem is yes [61], but it took

another 39 years before Motzkin [62] gave the first explicit example of such a polynomial

in 1966
M(x1, x2, x3) = x6

3 + x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2x

2
3 (7.8)

Such a function as a biquadratic form was discussed by Choi in 1975 [63], and an

example of such a function as a biquadratic form, i.e. of the type (7.6), was given in

1977 by Choi and Lam [64]

f(x, y) = (x2
1 + x2

2 + x2
3)(y

2
1 + y22 + y23)− x2

1y
2
3 − x2

2y
2
1 − x2

3y
2
2

− 2(x1x2y1y2 + x2x3y2y3 + x3x1y3y1)
(7.9)

which we shall encounter in some detail later.

7.2 Positive maps

It is possible to regard a Hermitian matrix M ∈ HN = HNA
⊗ HNB

as a linear trans-

formation LM from HNA
to HNB

. We define the real linear map LM : HNA
�→ HNB

written as Y = LMX with

Yjl =
∑
i,k

Mij;klXki (7.10)

where X ∈ HNA
and Y ∈ HNB

. The correspondence M ↔ LM is a vector space

isomorphism between the set of Hermitian matricesHN and the space of real linear maps

L : HNA
�→ HNB

. A slightly different version of this isomorphism is the Jamiolkowski

isomorphism M ↔ JM by which JMX = LM(XT ) [65]. The correspondences M ↔ LM

and M ↔ JM can be linked by using the Hermitean matrix M̂ ∈ HN to define the

alternative map LM̂ : HNA
�→ HNB

Yjl =
∑
i,k

M̂jl;ikXik (7.11)

The relation Mij;kl = M̂jl;ki then defines the link between these two equivalent descrip-

tions, which means that Y = LM̂X = LM(XT ), so that effectively LM̂ = JM .
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The transposed real linear map LT
M : HNB

�→ HNA
is defined such that X = LT

MY

when
Xik =

∑
j,l

Mij;klYlj (7.12)

The transpose of LM is with respect to the natural scalar product (3.8) with 〈X, Y 〉 =
tr(XY ) for Hermitian matrices. In fact, for any X ∈ HNA

and Y ∈ HNB
, we have

〈LMX, Y 〉 = tr(LMX, Y ) =
∑
ij;kl

Mij;klXkiYlj = tr[X(LT
MY )] = 〈X,LT

MY 〉 (7.13)

We now define the essential type of linear maps connected to the description of

entanglement, namely the positive maps

Definition 7.1 (Positive map). A linear map LM : HNA
�→ HNB

is a positive map if it

maps any positive matrix μ ∈ HNA
into a positive matrix τ ∈ HNB

.

A short way of writing that LM is a positive map is LM > 0. It is also evidently

clear from the convex cone structure of positive operators described in Figure 5.1, that

positive here means positive semidefinite. We see from

LM(X†) = [LM(X)]† (7.14)

that positivity and Hermitian preserving are equivalent characteristics of linear maps.

7.2.1 Choi-Jamiolkowski isomorphism

The maps LM and LT
M act on rank one projection operators φφ† ∈ HNA

and χχ† ∈ HNB

according to
LM(φφ†) = (φ⊗ I)†M(φ⊗ I)

LT
M(χχ†) = (I ⊗ χ)†M(I ⊗ χ)

(7.15)

This means that φ⊗ I is an N ×NB matrix such that (φ⊗ I)χ = φ⊗ χ, and likewise

I ⊗ χ is an N ×NA matrix such that (I ⊗ χ)φ = φ⊗ χ. It then follows that

χ†[LM(φφ†)]χ = φ†[LT
M(χχ†)]φ = (φ⊗ χ)†M(φ⊗ χ) (7.16)

The condition fM(φ, χ) = (φ ⊗ χ)†M(φ ⊗ χ) ≥ 0 for all φ ∈ C
NA and χ ∈ C

NB means

that LM(φφ†) is a positive matrix for every φ ∈ C
NA. So, if M is an entanglement

witness W then (7.16) implies that LM is a positive linear map LM : HNA
�→ HNB

,

mapping positive semidefinite matrices
∑

i pi(φiφ
†
i ) ∈ HNA

to positive semidefinite ma-

trices
∑

i piLM(φiφ
†
i ) ∈ HNB

. In a completely similar way LT
M must be a positive linear

map LT
M : HNB

�→ HNA
.

So the condition defining M to belong to the subclass of Hermitian operators known

as entanglement witnesses or M ∈ S◦ ⊂ HN , is precisely the condition defining LM

and LT
M as positive maps. The correspondence W ↔ LW is a vector space isomorphism

between the set of entanglement witnesses and the set of positive maps. The slightly
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alternative correspondence W ↔ JW is the celebrated Choi-Jamiolkowski isomorphism.

Sometimes the Hermitian matrix W related to the positive map JW is called the Choi-

matrix CJ of JW . These considerations relate the theory of entanglement to the theory

of positive maps, developed originally to a large part by Størmer [66].

7.2.2 Completely positive maps

An obvious condition for a map to be a physical map LM : HNA
�→ HNB

transforming

physical states into physical states, is that it should be positive. A less obvious condition

is that it should be completely positive

Definition 7.2 (Completely positive). A positive map LM : HNA
�→ HNB

is completely

positive if the extended map Ik ⊗ LM : Hk ⊗ HNA
�→ Hk ⊗ HNB

is positive, where the

auxiliary map Ik : Hk �→ Hk with any k > 0, is the identity map.

The reason why complete positivity is important with regards to quantum opera-

tions, is that a physical (positive) map that transforms any local part of a quantum

state into a new quantum state should also keep the total state physical (positive),

regardless of how these other parts look, and what their dimension k is.

The most general form of a quantum operation, or completely positive map is

LMX =
∑
r

VrXV †
r (7.17)

where Vr are NB ×NA matrices known as Kraus operators. With our definition (7.10)

of the Hermitian matrix M corresponding to the map LM we write the elements Mij;kl

corresponding to a completely positive map as

Mij;kl = (MP )il;kj =
∑
r

(Vr)jk(Vr)
∗
li (7.18)

So, we see that with our version of the Choi-Jamiolkowski isomorphism the positive

map LM is completely positive if and only if the partial transpose MP is a positive

matrix. The more commonly used map JM is completely positive if and only if M is a

positive matrix.

Any separable state ρ, as defined in (3.28), remains positive under the application

of positive maps to any of its local parts. Thus any positive map LM : HNA
�→ HNB

is

completely positive on the separable states

(LM ⊗ I)ρ = (LM ⊗ I)

[∑
r

pr (μr ⊗ τr)

]
=
∑
r

pr (LMμr ⊗ τr) (7.19)

which is clearly a separable state if LM is a positive map. Only separable states have the

property that they stay positive under all local quantum operations. This means that

if ρ is entangled there always exist a positive map LM which when applied to a local

part of the system, transforms ρ into a non-state. This is essentially just a restatement

of the Horodecki-criterion.
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The partial transposition map

The transposition map T : Xij �→ Xji is a positive map, but this is not the case for the

partial transposition map I⊗T, where T : HNB
�→ HNB

. This is clear by the existence

of NPT states. So the transposition map is an example of a map which is positive, but

not completely positive.

The positivity condition that comes from applying a tensor product of positive maps

to different local parts of a quantum state, is expressed as positivity conditions on the

eigenvalues of the resulting matrix. In general this will be a characteristic polynomial

of order at least equal to the rank of the state, and this is highly non-linear in ρ,

and therefore much more difficult to analyze. An entanglement witness W however,

effectively defines a hyperplane tr(Wρ) = 0 in HN , naturally dividing DN into two

regions, i.e. in a linear sense. In total, this means that a single positive map can in

principle reveal the entanglement of many different states for which we would need

many different entanglement witnesses. The Peres (or PPT) condition associated with

the transposition map is a striking example, since it can reveal entanglement in all NPT

states, something that no single entanglement witness can do.

From a physical point of view an entanglement witness W is more directly useful

than a positive map, because it is an observable, and its expectation value tr(Wρ) in a

state ρ can be measured.

7.2.3 Decomposable maps

A certain subclass of linear maps are the decomposable maps. The common way of

defining a decomposable map is taken from Størmer [67]

Definition 7.3 (Decomposable map). A decomposable map LD : HNA
�→ HNB

is a

map that can be written

LD = C1 +C2TA (7.20)

where C1 and C2 are completely positive, and TA is transposition on system A.

Any map is either a decomposable map or a non-decomposable map. We have seen

that the map LM : HNA
�→ HNB

corresponding to M ∈ HN as defined in (7.10), is

completely positive if and only if the matrix MP is positive. Hence LMTA = LMP

is completely positive if and only if M is a positive matrix. Further from (7.20), any

linear map LM is decomposable if M = μ+ τP, with μ and τ as positive matrices. We

thus define any entanglement witness of the form

D = μ+ τP μ, τ ≥ 0 (7.21)

to be a decomposable witness. The expectation value of the operator D in a PPT state

ρ is
tr(Dρ) = tr(μρ) + tr(τPρ) = tr(μρ) + tr(τρP ) ≥ 0 (7.22)

It is thus evident that any witness with the canonical form (7.21) has non-negative

expectation value tr(Dρ) in any PPT state, and therefore cannot be used to reveal any
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entangled PPT state. We observe that since tr(Dρ) ≥ 0 for any PPT state, this also

ensures that D is indeed an entanglement witness, since S ⊆ P .
We have seen that the total set of entanglement witnesses S◦ is the dual of the set

of separable states S. From (7.22) and Definition 4.4 of dual cones, we realize that

in much the same way, the set of PPT states P are dual to the set of decomposable

witnesses P◦. In fact from P = D ∩ DP and (7.21), we can deduce that the set P◦ is

the convex hull of D and DP. The term convex hull of a set of points X is defined and

outlined in Section 4.2 to be the smallest convex set that contains X. We realize that

an extremal point of P◦ is an extremal point of either D or DP. That is, it must be

either a pure state ρ1 = ψψ† or a partially transposed pure state ρ2 = (ηη†)P.
We can visualize this in a geometric manner, and this is done in Figure 7.1 with D

as a decomposable witness and W as a non-decomposable witness.

D

D

W

DP

μ τP

Figure 7.1: We see the set of density matrices D and partially transposed density matrices DP. The

convex hull of these sets constitutes the set of decomposable witnesses P◦. It is obviously possible to

express the witness D in the form (7.21), but not the witness W, which is then a non-decomposable

witness.

The two types of extremal states ρ1 and ρ2 of P◦, can be associated with the bi-

quadratic forms

fρ1(φ, χ) =
∣∣∣ψ†(φ⊗ χ)

∣∣∣2 = ∣∣∣∣∑
k,l

ψ∗
kl φkχl

∣∣∣∣2 ≥ 0

fρ2(φ, χ) =
∣∣∣η†(φ⊗ χ∗)

∣∣∣2 = ∣∣∣∣∑
k,l

η∗kl φkχ
∗
l

∣∣∣∣2 ≥ 0

(7.23)

where ψkl, ηkl, φk and χl are components of ψ, η ∈ HAB, φ ∈ HA and χ ∈ HB respec-

tively. This proves that ρ1 = ψψ† and ρ2 = (ηη†)P are indeed entanglement witnesses.
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It was shown by [66, 68, 69] that all witnesses of the form ρ1 = ψψ† and ρ2 = (ηη†)P

are extremal on S◦, and that the corresponding positive maps are extremal on the total

set of positive maps. Since P◦ is a convex subset of S◦, we deduce that all witnesses of

type ρ1 and ρ2 are extremal on P◦, and as we have argued, they are the only extremal

points.

It was shown by Woronowicz [70] that all positive maps L : HNA
�→ HNB

with N =

NANB < 8 are decomposable. We know that for every entangled state ρ there exists at

least one entanglement witness W [33], i.e. at least one W such that tr(Wρ) < 0, and

that if the state ρ is an entangled PPT state this witness W must be non-decomposable.

It is thus easy to see that for the dimensions N = NANB < 8 entangled PPT states

cannot exist, and the Peres criterion is both necessary and sufficient for separability.

It is the same logic that enforces the existence of entangled PPT states for dimensions

N = NANB ≥ 8.

It is thus evident that in higher dimensions the development of practical and use-

ful separability criteria is a problem closely related to the understanding of the non-

decomposable positive maps and entanglement witnesses.

7.3 Zeros of entanglement witnesses

We here investigate the zero points of entanglement witnesses. The zero points on the

set of product vectors φ ⊗ χ is of fundamental importance to the understanding of

entanglement witnesses, especially the geometrical aspects.

7.3.1 Primary constraints

We have seen that, with fW (φ, χ) defined as in (7.6), an entanglement witness W

satisfies the infinite set of inequalities

fW (φ, χ) ≥ 0 φ ∈ HA, χ ∈ HB (7.24)

These constraints, which are linear in W, are in (7.6) represented through a biquadratic

form. Observe that the normalization conditions φ†φ = χ†χ = 1 are independent of the

constraints (7.24). If W is situated on the boundary ∂S◦ it means that at least one of

these inequalities is an equality. We call the pair (φ0, χ0) a zero of the witness W if

fW (φ0, χ0) = 0, where the point (aφ0, bχ0) is counted as the same zero for all a, b ∈ C.

For a witness W we formally label the set of zeros as

ΠW = {(φ, χ), φ ∈ HA, χ ∈ HB | fW (φ, χ) = 0} (7.25)

7.3.2 Secondary constraints

From the primary constraints (7.24) one can deduce more stringent constraints on W

when (φ, χ) is close to a zero (φ0, χ0). These secondary constraints are both equalities

and inequalities, and like the primary constraints they are linear in W.
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The secondary constraints on fW (φ, χ) near a zero (φ0, χ0) are along the lines of

those for a real polynomial f(t) of degree four, which satisfies f(t) ≥ 0 for all t. If we

choose a zero point f(t0) = 0 we also require that f ′(t0) = 0 and that f ′′(t0) ≥ 0. In

the case that f ′′(t0) = 0 we also get f (3)(t0) = 0. These requirements must hold for all

zero points t0, . . . , tn. Since the set of zeros of a witness W are roots of a polynomial

equation in several variables, we deduce that the set of zeros ΠW of a witness W consists

of at most a finite number of components, where each component is either an isolated

point or a continuous connected surface.

To investigate the behaviour of fW (φ, χ) around the zero (φ0, χ0) we first introduce

two directions J0 ∈ HA and K0 ∈ HB such that φ†
0J0 = χ†

0K0 = 0. We also introduce

two variables x ∈ R
2NA−2 and y ∈ R

2NB−2. The vectors ξ = J0x and ζ = K0y are then

well defined since the orthogonality conditions remove two real degrees of freedom from

J0 and K0. Our biquadratic form around the fixed zero point (φ0, χ0) is then a real

inhomogeneous polynomial which is quadratic in both x and y

f(x, y) = {(φ0 + ξ)⊗ (χ0 + ζ)}†W{(φ0 + ξ)⊗ (χ0 + ζ)} (7.26)

The linear term of the polynomial is

f1(x, y) = 2Re{(ξ ⊗ χ0)
†W (φ0 ⊗ χ0) + (φ0 ⊗ ζ)†W (φ0 ⊗ χ0)}

= xTDxf(0, 0) + yTDyf(0, 0)
(7.27)

in terms of the gradient

Dxf(0, 0) = 2Re{(J0 ⊗ χ0)
†W (φ0 ⊗ χ0)}

Dyf(0, 0) = 2Re{(φ0 ⊗K0)
†W (φ0 ⊗ χ0)}

(7.28)

The quadratic term of (7.26) is

f2(x, y) = (ξ ⊗ χ0)
†W (ξ ⊗ χ0) + (φ0 ⊗ ζ)†W (φ0 ⊗ ζ)

+ 2Re{(φ0 ⊗ ζ)†W (ξ ⊗ χ0) + (φ0 ⊗ χ0)
†W (ξ ⊗ ζ)}

= zTGW z

(7.29)

where zT = (xT, yT ) and 2GW = D2f(0, 0) is the second derivative, or Hessian matrix,

which is always real and symmetric

GW = Re

[
gxx gTyx
gyx gyy

]
(7.30)

with the coefficients

gxx = (J0 ⊗ χ0)
†W (J0 ⊗ χ0)

gxy = (φ0 ⊗K0)
†W (J0 ⊗ χ0) + (φ0 ⊗K∗

0)
†W P (J0 ⊗ χ∗

0)

gyy = (φ0 ⊗K0)
†W (φ0 ⊗K0)

(7.31)
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The cubic term is like the linear term but with φ0 ↔ ξ and χ0 ↔ ζ

f3(x, y) = 2Re{(φ0 ⊗ ζ)†W (ξ ⊗ ζ) + (ξ ⊗ χ0)
†W (ξ ⊗ ζ)} (7.32)

and the quartic term is

f4(x, y) = fW (ξ, ζ) = (ξ ⊗ ζ)†W (ξ ⊗ ζ) (7.33)

Constraint operators Tk

From the fact that (φ0, χ0) is a zero point for the witness W, we need f(0, 0) = 0 or in

the form of a constraint operator T0 : HN �→ R

T0W = (φ0 ⊗ χ0)
†W (φ0 ⊗ χ0) = 0 (7.34)

which is one linear constraint on W. Because (x, y) = (0, 0) is a minimum of the

polynomial, the linear term must also vanish, and we introduce another operator T1 :

HN �→ R
2(NA+NB−2) which gives another linear system of constraints

T1W =

[
Dxf(0, 0)

Dyf(0, 0)

]
= 0 (7.35)

It should be noted that the constraints T0 and T1 are the same for any witness W with

a zero at (φ0, χ0). All of these constraints are linearly independent. We note that the

vanishing of the constant and linear terms of f(x, y) is equivalent to the conditions

(φ⊗ χ0)
†W (φ0 ⊗ χ0) = 0 ∀φ ∈ HA

(φ0 ⊗ χ)†W (φ0 ⊗ χ0) = 0 ∀χ ∈ HB

(7.36)

which in dimensions N = NANB produce 2(NA+NB)−3 real constraints. So, the total

number of constraints given by T0 and T1 is

c01(φ0, χ0) = 2(NA +NB)− 3 (7.37)

Quadratic zeros

The quadratic term (7.29) of the polynomial fW (x, y) has to be non-negative. The

inequalities

zTGW z ≥ 0 ∀ z ∈ R
2(NA+NB−2) (7.38)

are secondary inequality constraints. They are linear in W, and equivalent to the non-

linear constraints that all eigenvalues of the Hessian matrix GW must be non-negative.

We then face two different alternatives

Definition 7.4 (Quadratic zeros). In the case that the inequalities zTGW z > 0 holds

for all z �= 0, or equivalently all eigenvalues of GW are positive, the zero (φ0, χ0) is a

quadratic zero of the entanglement witness W.
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In the case of a quadratic zero, T0 and T1 are the only equality constraints placed

on W by the existence of the zero (φ0, χ0). We then state the following theorem

Theorem 7.2 (Isolated zeros). A quadratic zero is always isolated. Hence, an entan-

glement witness can only have a finite number of quadratic zeros.

Since the constraints from T0 and T1 for the constant and linear term in fW (x, y),

and their relations to quadratic zeros are relatively well understood, we will move on

to the constraints from T2 and T3.

Quartic zeros

Let us assume that the Hessian matrix GW has K ≥ 1 eigenvalues equal to zero. Then

GWzi = 0 for i = 1, . . . , K, and the directions zi are quartic directions, or Hessian zeros

at (φ0, χ0). Any quartic direction z is a real linear combination

z =
K∑
i=1

dizi (7.39)

of basis vectors zi ∈ KerGW. The K linearly independent eigenvectors zi define a

system of linear constraints on W, which with T2 : HN �→ R
2K(NA+NB−2) is

(T2W )i = GWzi = 0 i = 1, . . . , K (7.40)

These constraints ensure that GWz = 0 and hence f2(x, y) = zTGW z = 0. If we are to

make the qubic term (7.32) vanish, this leads to a linear system T3W = 0 containing(
K+2
3

)
equations [71]. So the total number of constraints from T2 and T3 is therefore

c23 = 2K(NA +NB − 2) +

(
K + 2

3

)
(7.41)

Note that the constraints from T0 and T1 address other terms in the polynomial than

those of T2 and T3, so the two sets of constraints should be independent. Furthermore

for the case of only one quartic direction K = 1, all c23 equations in the total system

given by T2 and T3 should be linearly independent. The case for K > 1 is far less

clear, but it is likely that the constraints are not independent.

7.3.3 Summary of constraints from zeros

Each zero in ΠW associated with an entanglement witness W defines zeroth and first

order equality constraints from T0 and T1. If we define the set of quartic zeros of

W as Π̃W ⊆ ΠW , then each zero in Π̃W introduces additional second and third order

constraints from T2 and T3. For each zero (φ0, χ0), the constraint operator T2 defines

the following important distinction

T2W > 0︸ ︷︷ ︸
Quadratic zero

T2W = 0︸ ︷︷ ︸
Quartic zero

(7.42)
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Let us define Ui to be the direct sum of constraints from Ti over all the zeros in ΠW.

We then write the combinations of constraints as

U01 = U0 ⊕U1 U23 = U2 ⊕U3 (7.43)

The total system of constraints is then

UW = U01 ⊕U23 (7.44)

We observe that the constraints U01 are completely determined by the zeros ΠW ,

whereas U23 depends only on Π̃W and the kernel of the Hessian at each quartic zero.

We here define any witness with at least one zero (φ0, χ0), i.e. a boundary witness,

to be a quadratic entanglement witness if all the zeros ΠW are quadratic zeros. Simi-

larly, a boundary witness with at least one quartic zero, will be a quartic entanglement

witness. Note that if W is a quadratic witness, then Π̃W is empty, so UW = U01. This

classification of boundary witnesses is fundamentally important, since the two classes

have very different properties.

7.4 Extremal entanglement witnesses

We will here describe two conditions for W to be an extremal witness. The first is

based on the set of zeros ΠW of the witness W, which define faces on S◦. The other is

related to constraints on W. The two conditions are closely related. These extremality

conditions, and their relation to the facial structure of S◦ can be used to develop a

method to search for extremal witnesses. We then outline some results about quadratic

extremal witnesses, and briefly describe extremal quartic witnesses, which appear to be

more difficult to understand.

7.4.1 Extremaliy from zeros

If a witness W ∈ S◦ is not an extremal witness then it can be written as a genuine

convex combination of two other witnesses Λ,Σ ∈ S◦ and

W = (1− p)Λ + pΣ 0 < p < 1 (7.45)

We can then also write the biquadrtic form as a convex combination

fW (φ, χ) = (1− p)fΛ(φ, χ) + pfΣ(φ, χ) (7.46)

and also the Hessian matrix defined at a zero (φ0, χ0) of W as

GW = (1− p)GΛ + pGΣ (7.47)

Since Λ and Σ are witnesses we know that fΛ, fΣ ≥ 0 for all (φ, χ), and likewise that

GΛ, GΣ ≥ 0 for all (φ, χ). This means that (φ0, χ0) is a zero of the witness W in (7.45),

if and only if it is also a zero of both witnesses Λ and Σ. Please note that it is possible
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for Λ to have a zero which is not a zero of W, as long as the zero is not shared by Σ.

Because of (7.47) we also understand that z is a Hessian zero of W at (φ0, χ0) if and

only if it is a Hessian zero at (φ0, χ0) of both Λ and Σ. We can see that all witnesses

W in the line segment (7.45) have exactly the same zeros and Hessian zeros.

If the witnesses Λ and Σ described above are the extremal points of a line segment

in S◦, then the line segment cannot be prolonged within S◦ in either direction. Now,

both Λ and Σ must have at least one additional zero, or alternatively one additional

Hessian zero in addition to the zeros and Hessian zeros of witnesses in the interior of

the line segment [71]. We can summarize the above in an important theorem regarding

extremal entanglement witnesses

Theorem 7.3 (Extremality condition I). A witness W is extremal on S◦ if and only

if no witness Θ �= W has a set of zeros ΠΘ and Hessian zeros which includes the zeros

ΠW and Hessian zeros of W.

An equivalent condition in terms of the constraints operator UW = ⊕4
i=1Ui for

the zeros and Hessian zeros, is that there can be no witness Θ �= W that satisfies the

constraints UWΘ = 0. From this we can deduce that if none of the witnesses on the line

segment (7.45) are quartic witnesses, then the witnesses Λ and Σ which are extremal

to the line segment, will have at least one additional zero (φ0, χ0) not shared by other

witnesses in the segment.

7.4.2 Faces of S◦
If we extend the above discussion from one-dimensional line segments to faces of larger

dimensions, we can see that every face F ∈ S◦ is uniquely characterized by a set of

zeros and Hessian zeros that is the complete set of zeros and Hessian zeros of every

witness in int(F). Every witness on ∂F is a witness having the zeros and Hessian

zeros characteristic of witnesses in int(F), plus at least one more zero or Hessian zero.

Roundly formulated we can say that the boundary of S◦ is a hierarchy of faces, and

that the number of zeros and Hessian zeros that define the faces, increase for each step

we descend through the dimensions of these faces.

Once the zeros ΠW and accompanying Hessian zeros of a witness W are known, it

is possible to find a finite perturbation of W within the unique face of S◦ to which W

is an interior point. The most general direction for such a perturbation is a traceless

matrix Γ ∈ KerUW. Note that as the number of zeros and Hessian zeros increase,

so does the number of constraints, so KerUW and thereby the possible choices for Γ

decreases. Computationally, if we have a general Γ′ ∈ KerUW, it can be made traceless

by the transformation Γ = Γ′− tr(Γ′)W. A result which supports the description of the

hierarchy of faces Fi on the set S◦ is [71]

Theorem 7.4 (Facial structure of S◦). Let W be a witness, and let Γ �= 0 be a traceless

Hermitian operator. Then
Θ = W + tΓ (7.48)

is a witness for t in some interval [t1, t2], with t1 < 0 < t2, if and only if Γ ∈ KerUW.
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The maximal value of t2 is the value of t where Θ acquires a new zero or Hessian zero,

and the minimal value t1 is determined in the same way. So the directions Γ ∈ KerUW

are the only directions which allow us to descend through the hierarchy of faces Fi in

this way. A generic direction Γ /∈ KerUW either leads out of ∂S◦ into S◦, or in the

opposite direction, out of S◦. Only a Γ ∈ KerUW ensures that we stay on the face

defined by KerUW. A geometrical way of understanding Theorem 7.4 is to look at the

face
FW = (KerUW ) ∩ S◦ (7.49)

Evidently, as KerUW decreases with the addition of new zeros and Hessian zeros, the

face FW also shrinks in dimension. If the face FW becomes a single point W, or a zero-

dimensional face, then W is an extremal point on the set of entanglement witnesses S◦.
Thus an algorithm which produces a decreasing sequence of faces F1 ⊃ F2 ⊃ . . . ⊃ Fn

of S◦, where every face Fj is a face of every Fi with i < j, will eventually converge to

an extremal point of all these faces. All this can also be formulated into a another quite

useful extremality condition

Theorem 7.5 (Extremality condition II). Let UW be the constraint operator as de-

fined in (7.44). An entanglement witness W is extremal if and only if KerUW is

one-dimensional, i.e. spanned by W.

Thus once the zeros and Hessian zeros of the witness W are known, we can test

for extremality by computing the dimension of KerUW. This allows for a numerical

implementation of the extremality criterion.
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Figure 7.2: Model for how a new local min-

imum of ft(u) appears as t varies, turning

into a zero and then a negative minimum as

the witness leaves S◦. The model function is

ft(u) = u2[(u− 1)2 + 1− t].
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Figure 7.3: A quadratic zero turns into a

quartic zero. And then new negative min-

ima, which indicates that Θ(t) no longer is in

the set S◦, appears. The model function is

ft(u) = u2(u2 + 1− t).

We see depicted in Figure 7.2 a model of how a new isolated quadratic zero of the

witness Θ(t) appears. Each curve is for different values of t in the perturbation (7.48),



7.4. EXTREMAL ENTANGLEMENT WITNESSES 115

and represents the function

ft(u) = fW+tΓ(φ+ uφ′, χ+ uχ′) (7.50)

for different witnesses Θ(t). An initial zero point exists at u = 0, and the perturbation

progresses until a new witness with a zero at u = 1 is reached. It is quite clear that for

the lowest curve, Θ(t) is no longer an entanglement witness. Likewise in Figure 7.3 we

see how an existing quadratic zero turns into a quartic zero.

This discussion can be formulated into an algorithm that can be used to search

numerically for extremal entanglement witnesses. A somewhat more formal description

of this algorithm is outlined in Section 8.6.

7.4.3 Quadratic extremal witnesses

It is interesting to try and understand the minimum number of zeros nc a witness must

have in order to be extremal on S◦. The case for quadratic witnesses is far clearer than
for the quartic witnesses, largely because the number of constraints for a quadratic zero

is easier to handle. We remember that if (φ0, χ0) is a zero of the witness W, then the

partially conjugated zero (φ0, χ
∗
0) is a zero of W P. We now make the useful definition

Definition 7.5 (Spanning property). If the collection of zeros ΠW of an entanglement

witness W ∈ HN span the Hilbert space C
N, then W has spanning property. In the case

that also the partially conjugated zeros Π∗
W span C

N, the witness W has double spanning

property.

A result that effectively determines the minimum number of zeros nc = |ΠW | for a
quadratic extremal witness is the following theorem

Theorem 7.6 (Double spanning). A quadratic extremal witness W has the double

spanning property.

This is easy to see by appealing to a projection P = ψψ†. If the set of zeros of

W do not span the Hilbert space, then such a projection exists, with ψ ⊥ ΠW. The

projection P will then be witness with a set of zeros including ΠW, and hence W cannot

be extremal.

We return briefly to the case of decomposable witnesses, and observe that the bi-

quadratic form for the decomposable witness D = μ+ τP, with μ, τ ∈ D is

fD(φ, χ) = fμ(φ, χ) + fτ (φ, χ
∗) (7.51)

If (φ0, χ0) is zero of D then (7.51) shows that (φ0, χ0) must be a zero of μ and (φ0, χ
∗
0)

must be a zero of τ . Since both μ, τ ∈ D we can deduce that the zeros of D = μ + τP

span the Hilbert space only if μ = 0, and the partially conjugated zeros of D span the

Hilbert space only if τ = 0. We then easily see from Theorem 7.6 that a quadratic

extremal witness is always non-decomposable.
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Minimum number of zeros from constraints

If we count the number of constraints c01 from one quadratic zero, we collect from (7.37)

that c01 = 2 (NA +NB)− 3. With n quadratic zeros we will have nc01 constraints, and

since |S◦| = N2 − 1 these will for the generic case be linearly independent as long as

nc01 ≤ N2 − 1. A lower bound on the number of zeros of quadratic witness is then

nc =

⌈
(NANB)

2 − 1

2(NA +NB)− 3

⌉
(7.52)

Please note that for NA = 2 we get nc = N − 1 which is weaker than the lower

bound given by Theorem 7.6. For all NA, NB ≥ 3 we get nc ≥ N , which is consistent

with Theorem 7.6. In Table 7.1 we see the different relevant numbers for a selection

of dimensions NA × NB. The number mind is the numerically calculated number of

linearly independent constraints arising from nc randomly chosen (generic) pairs (φ, χ).

For each of these pairs the constraint operator U01 is built, and mind is then calculated.

NA ×NB N2 c01 nc mind

2× 2 16 5 3 14

2× 3 36 7 5 34

2× 4 64 9 7 62

2× 5 100 11 9 98

3× 3 81 9 9 81

3× 4 144 11 13 143

3× 5 225 13 18 225

4× 4 256 13 20 256

4× 5 400 15 27 400

5× 5 625 17 37 625

Table 7.1: Numbers related to a generic quadratic witness W in dimension NA × NB . c01 is the

number of linearly independent constraints from each zero, nc is the estimated minimum number of

zeros required for W to be extremal and mind is the actual number of independent constraints from

nc random product vectors in C
N = C

NA ⊗ C
NB.

In Theorem 7.6 we established that a quadratic extremal witness W always has

the double spanning property. But is the converse true? From Table 7.1 we see that

in dimensions higher than 2 × NB and 3 × 3, the minimum number nc of zeros of a

quadratic extremal witness must be larger than the Hilbert space dimension N . Hence

non-extremal witnesses with the double spanning property must be very common. So

we conclude that the converse of Theorem 7.6 is true generically only for the 2×NB and

3× 3 systems. These observations give a picture of increasingly complicated geometry

of the quadratic witnesses as dimensions increase. In dimensions 2 × 2 and 2 × 3 all

witnesses are decomposable, while for the 2 × NB and 3 × 3 systems all quadratic

witnesses have the double spanning property, and for larger dimensions there exist an
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abundance of non-extremal quadratic witnesses with the double spanning property. We

make further observations from Table 7.1 regarding quadratic witnesses:

� In order to produce an extremal witness we need to use all constraints contained

in the zeros, and because of the extremality condition in Theorem 7.5 the number

of these must be N2 − 1, which is equal to the dimension of the real vector

space HN of Hermitian matrices, minus one. The demand that |KerUW | = 1

for the final step, takes care of the normalization of the witness W. For many of

the dimensions NA ×NB we observe that the number of independent constraints

from a random set of product vectors mind is equal to the dimension of the real

vector space HN of Hermitian matrices. In these cases there does not exist an

entanglement witness with these product vectors as zeros. So we conclude that

the zeros of extremal witnesses in these systems must satisfy some relations that

reduce the number of independent constraints mind by one.

� In the case NA = 2 we see that nc = N − 1, so if nc is the correct minimum

number of zeros, then Theorem 7.6 appears to fail. It looks however like there

is an intrinsic degeneracy that reduces the number of constraints by one. For

example in the 2×4 system the actual number of constraints from nc = 7 random

product vectors is 62, instead of ncc01 = 63. This degeneracy implies that one

extra zero is needed. With N − 1 zeros there exists a vector ψ orthogonal to all

the zeros, and another vector η orthogonal to all the partially conjugated zeros.

And since both ψψ† and (ηη†)P lie in KerUW, we must have |KerUW | ≥ 2.

� The 3 × 4 system is special in that the number of constraints from a generic

random set of nc = 13 product vectors, add up to exactly the number needed to

define a unique Λ ∈ HN with UΛΛ = 0. This does not however imply that Λ

defined in this way from a random set of product vectors will be a witness, since

we generally will not have (φ⊗χ)†Λ(φ⊗χ) ≥ 0 for all the product vectors φ⊗χ.

Continuing in the vein of the last point above, we may ask a very interesting and

important question: How do we choose a set of product vectors φi ⊗ χi such that they

serve as the zeros of an extremal witness W? It appears that the sets of product vectors

φi⊗χi ∈ S that act as the zeros ΠW for a witness W, are quite special and non-generic

sets of product vectors. We shall return to these matters later in Section 7.5.3.

Generic quadratic extremal witnesses in the 3× 3 system

We have implemented Algorithm 1, and used it to locate numerical examples of ex-

tremal witnesses in the 2 × 4, 3 × 3 and 3 × 4 systems. In the process we produce

extremal and non-extremal witnesses situated on a hierarchy of successively lower di-

mensional faces of S◦. We define a class of extremal witnesses to be generic if such

witnesses can be found with non-zero probability when the search direction Γ in (7.48)

is chosen at random within KerUW, in every iteration. An overwhelming majority of

the extremal witnesses found in the numerical random searches are quadratic. We have
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also investigated quadratic witnesses with a number of zeros exceeding the minimum

number nc given in Table 7.1, and these appear to be non-generic.

� Generally, a single new quadratic zero appears in every iteration k when the

boundary of the current face is reached. As long as the number of zeros k in

the chain of iterations is small, there is no redundancy between constraints from

existing zeros and the new zero. A redundancy appears typically with the seventh

zero in 2×4, with the ninth in 3×3 and never in 3×4. Assuming non-redundancy,

this gives a hierarchy of faces of S◦ of dimension N2 − 1 − kc01 where c01 =

2(NA +NB)− 3.

� The extremal witnesses have the expected number of zeros as listed in Table 7.1.

The zeros (φ0, χ0) and the partially conjugated zeros (φ0, χ
∗
0), span the Hilbert

space, in accordance with Theorem 7.6.

� Every witness W and its partial transpose W P have full rank, and a generic

quadratic extremal witness W and its partial transpose W P has at least one

negative eigenvalue.

In Figure 7.4 we see some data for the eigenvalues of 171 quadratic extremal wit-

nesses in the 3× 3 system, found in numerical searches using Algorithm 1.
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Figure 7.4: Classification of generic quadratic extremal witnesses in the 3×3 system found numerically

by using the algorithm based on Theorems 7.4 and 7.5, along with (7.49), which is found in Section

8.6. A witness W of type (p, q) has p negative eigenvalues and its partial transpose WP has q negative

eigenvalues.

Since it is the negative part of the eigenvalue spectrum which makes an entanglement

witness W useful, it seems obvious that the number of negative eigenvalues p and their
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magnitude |λk| is important. It could be argued that p, and the magnitude of these

negative eigenvalues, is related to the size of the set {ρ ∈ D | tr(Wρ) < 0} which W

reveals.

Non-generic quadratic extremal witnesses in the 3× 3 system

In order to demonstrate that a quadratic witness may have more than the minimum

number of zeros, we have constructed quadratic extremal witnesses in the 3× 3 system

with ten zeros rather than the generic nine zeros. In order to produce a witness with a

larger number of zeros than the minimum nc required for extremality, we first produce

a set of k < nc zeros using less than the generic number of constraints. This means that

the set of k product vectors must have a degree of linear dependence. In this way, when

the generic number of zeros nc is reached, there are still enough degrees of freedom to

create one extra zero, and make W extremal.

For the 3 × 3 system it appears that if we choose k = 8 and k = 9, the con-

straints leave only the decomposable witnesses [71], none of which are quadratic and

extremal. For k = 7 however, there is room for additional zeros so that we can create

a non-decomposable quadratic extremal witness. Denote U
(k)
01 as the linear system of

constraints for k zeros. We choose seven zeros (φi, χi) such that |KerU
(7)
01 | = 22, which

is non-generic. A decomposable witness with all these seven (φi, χi) as zeros has the

form D7 = μ+ τP where μ, τ ≥ 0 has rank three. Hence the set of such decomposable

witnesses is 18-dimensional, so that there are four dimensions in KerU
(7)
01 orthogonal

to the face of decomposable witnesses. Defining Γ7 to lie in these four dimensions, one

can walk towards the boundary of the face

F7 = KerU
(7)
01 ∩ S◦ (7.53)

and find Θ8 = D7+tcΓ7 with eight zeros. Θ8 is now guaranteed to be non-decomposable.

Let now U
(8)
01 be the constraint operator defined by these eight zeros, and define the

face
F8 = KerU

(8)
01 ∩ S◦ (7.54)

We find that |KerU
(7)
01 | − |KerU

(8)
01 | = 9. Defining Γ8 ∈ KerU

(8)
01, we locate a Θ9 ∈ F9

on the boundary of F8, with nine zeros. The essential thing is that we now have

|KerU
(9)
01 | = 4, hence there is still freedom to move along F9. Doing so produces a

quadratic extremal witness in the 3× 3 system, with ten zeros.

The above method involved the construction of non-generic structures in order

to produce non-generic properties of extremal quadratic witnesses. We can also find

generic faces on S◦ in the 2×4 and 3×3 systems, that contain extremal quadratic wit-

nesses with nine and ten zeros respectively. The next-to-extremal faces of S◦ in these

systems reveal a special geometry, which is related to the presence of decomposable

witnesses on the boundary of these faces.

What we typically find in the kth iteration when using Algorithm 1, is a face Fk of

S◦ with interior points that are quadratic witnesses with k zeros. In the 3× 3 system,

F8 is the last, i.e. next-to-extremal, face found before a generic extremal quadratic
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witness is reached. These particular faces have a special geometry, because the number

of zeros is one less than the dimension of the Hilbert space, and as a result of this, a

part of the boundary is a line segment of decomposable witnesses

M = (1− p)ψψ† + p(ηη†)P 0 ≤ p ≤ 1 (7.55)

where ψ is orthogonal to the N − 1 product vectors φi ⊗ χi which are zeros of all the

witnesses in the interior of FN−1, and η to all φi ⊗ χ∗
i . The line segment (7.55) of de-

composable witnesses must be on the boundary of FN−1 because the interior consists of

quadratic witnesses with a fixed set of N−1 quadratic zeros, whereas the decomposable

witnesses have additional zeros, in fact an infinity of quartic zeros.
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Figure 7.5: A special two-dimensional section of an eight-dimensional face F8 ⊂ S◦ obtained by using

Algorithm 1 for the 3×3 system. The solid lines represent the boundary ∂F8. The red line is a segment

of decomposable witnesses, with the upper endpoint being a pure state ψψ† and the lower end point a

partial transpose of a pure state (ηη†)P. The “+” represents a witness in the interior of the face, with

eight zeros. This is the starting point for perturbations of the type (7.48) along the face, with two

orthogonal traceless directions Γ1,Γ2 as axes. The perturbations identify different boundaries: The

curved solid boundary in blue, which consists of extremal witnesses with nine zeros, except at the kink

where the witness has ten zeros. The dashed blue line is where at least one zero becomes quartic, and

lies outside the set of entanglement witnesses, except at the two endpoints ψψ† and (ηη†)P.

For the face F8 in the 3× 3 system, the remaining boundary, with the line segment

(7.55) taken away, will consist of quadratic extremal witnesses with nine or ten zeros.

Since the face F8 is eight-dimensional, this curved boundary will be seven-dimensional.

Any two-dimensional section passing through F8 that includes the line segment (7.55)

is shaped like a D. In Figure 7.5 we see such a D-shaped cross section, constructed by
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using Algorithm 1, and then making a large number of paths Γ on F8, locating the

boundary ∂F8.

All along the blue curve consisting of quadratic witnesses with nine zeros, eight of

those zeros are shared by all witnesses on the face, they in fact define the face F8. But

the ninth zero changes continuously along the curve, and since these two continuous

curves meet in one point, this point is a witness with two quadratic zeros in addition

to the eight zeros defining the face.

Even though these so-called D-faces are found in completely generic searches, please

observe that there is no guarantee that any choice of eight random product vectors

define such a D-shaped face. In other, and generally higher dimensions NA ×NB, line

segments of the type (7.55) constructed from N − 1 zeros, also define D-shaped faces,

but the curved part of these faces will in general not consist of extremal witnesses.

This is related to the fact that for most of these systems the minimum number of zeros

for extremailty nc, as given by (7.52), is larger than the dimension N = NANB of the

Hilbert space. As we have seen in Table 7.1 this happens for systems with dimensions

3× 4 and larger.

7.4.4 Quartic extremal witnesses

In each iteration of Algorithm 1 the critical parameter tc is reached when either a new

quadratic zero appears, or a new zero eigenvalue of the Hessian matrix appears at one

of the existing zeros. This is depicted in Figures 7.2 and 7.3. Our experience is that

a random search most often produces a quadratic extremal witness, and only rarely a

quartic extremal witness.

In order to quantify this somewhat, we have made random searches for quartic

witnesses in dimension 3 × 3 in the following manner: We took 58 hierarchies of faces

F (k)
i of quadratic witnesses which we generated by Algorithm 1, and generated 100

random perturbations Γ away from the quadratic witness W ∈ int(Fk) found on each

face k. Since we have k = 1, . . . , 8 faces and i = 1, . . . , 58 extremal witnesses we get

totally 8·58·100 = 46400 trials. For each trial we computed t′c as the smallest t resulting

in a zero eigenvalue of the Hessian at a zero. The value t′c can then be considered an

upper bound for tc. At t = t′c we test whether W + t′cΓ is still an entanglement witness,

in which case it is a quartic witness. If it is not, this will mean that there has appeared

a new quadratic zero for some t < t′c. We found with a tolerance of ±10−14 that only

approximately 0.2% of the trials returned a quartic witness. We conclude that the

fraction of quartic extremal witnesses among the generic extremal witnesses is small

but non-zero.

We have seen that the pure states ρ1 = ψψ† and partially transposed pure states

ρ2 = (ηη†)P are witnesses that are extremal on both the set of decomposable witnesses

P◦ and the total set of witnesses S◦. An easy way to see that the pure state ρ1 = ψψ† is
a quartic witness, is to invoke the Schmidt decomposition scheme (3.21) on ψ. The zeros

of ρ1 are the product vectors φ⊗χ orthogonal to ψ. In a Schmidt decomposition of ψ we

obtain the singular values ci > 0 and orthonormal bases ui ∈ HA and vi ∈ HB such that

ψ =
∑r

i=1 ci(ui⊗vi), with r as the Schmidt rank of ψ and where 1 ≤ r ≤ min(NA, NB).
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A general product vector in the bases ui and vi is then

φ⊗ χ =

NANB∑
i,j

aibj(ui ⊗ vj) (7.56)

and the condition for ψ ⊥ φ⊗ χ is then
∑r

i=1 ciaibi = 0, which for all NA, NB ≥ 0 and

any r gives a connected and continuous set of zeros. Since all quadratic witnesses have

isolated zeros, the witness ρ1 = ψψ† is a quartic witness. An identical argument can be

used for witnesses of the form ρ2 = (ηη†)P.
Indeed the pure state P = ψψ† is an example where the zeros ΠP do not span

the Hilbert space, but where the witness P is extremal nonetheless. The partially

conjugated zeros Π∗
P may however span the Hilbert space. The witness P exemplifies

that Theorem 7.6 cannot be extended to quartic witnesses, but as we shall see below

there are more illustrious examples of this. Again this is a consequence of the fact that

a quartic zero usually carry more constraints than a quadratic.

The Choi-Lam witness

Define, like Ha and Kye [72]

Ω(a, b, c; θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a . . . −eiθ . . . −e−iθ

. c . . . . . . .

. . b . . . . . .

. . . b . . . . .

−e−iθ . . . a . . . −eiθ
. . . . . c . . .

. . . . . . c . .

. . . . . . . b .

−eiθ . . . −e−iθ . . . a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.57)

We write dots instead of zeros to make it more readable. The special case WC =

Ω(1, 0, 1; 0) is the Choi-Lam witness, one of the first examples of a non-decomposable

witness, developed by Choi and Lam [64]. The set of zeros of WC consists of three

isolated quartic zeros

e13 = e1 ⊗ e3 e21 = e2 ⊗ e1 e32 = e3 ⊗ e2 (7.58)

where e1, e2, e3 are the natural basis vectors in C
3, in addition to a continuum of zeros

φ⊗ χ where
φ = e1 + eiαe2 + eiβe3 χ = φ∗ (7.59)

with the coefficients α, β ∈ R. The product vectors defined in (7.59) span a seven-

dimensional subspace V consisting of all vectors ψ ∈ C
9 with components ψ1 = ψ5 = ψ9.

The three product vectors defined in (7.58) have ψ1 = ψ5 = ψ9 = 0 and lie in the same

subspace V . The Choi-Lam witness provides a good example of a witness which is
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extremal but does not have spanning property, and thus underlines the restriction of

Theorem 7.6 to quadratic witnesses. It should also be emphasized that there do exist

quartic witnesses with a set of zeros that span the Hilbert space. So the spanning

property is in no way exclusive to the quadratic witnesses, but only guaranteed for this

type by Theorem 7.6.

It can be proven numerically that the Choi-Lam witness is extremal on S◦. Using

all the quadratic and quartic constraints UW from all the three isolated zeros e1, e2, e3
and any single zero φ(α, β) from the continuum, one can show that |KerUWC

| = 1, and

this uniquely defines the Choi-Lam witness. The extended class of Choi-type witnesses

(7.57), has many different properties for varying values of the parameters a, b, c, θ. For

example, it is known that the Choi-Lam witness WC = Ω(1, 0, 1; 0) is extremal but not

exposed, but the extended witness given in (7.57) is also exposed for some combinations

of a, b, c, θ.

7.5 Faces of S and S◦
As we have seen, an understanding of the geometry of the set of entanglement witnesses

S◦ can be made by studying the faces of this set, and their related zeros. These zeros

are pure product vectors ψ = φ ⊗ χ ∈ C
N = C

NA ⊗ C
NB which correspond to states

ψψ† ∈ S. So our understanding of S◦ is then related to an understanding of the faces

FS of the separable states S. Some studies have been made into the structure of FS .
Alfsen and Shultz [51] describe two special types of faces in S, as either a special class

of simplexes or direct convex sums of faces isomorphic to matrix algebras. It is our

understanding that these two categories correspond to certain types of quadratic and

quartic witnesses respectively, where our understanding of the quadratic witnesses is

good. It is known that the set of entanglement witnesses S◦ has unexposed faces, but

it is unknown as to whether this is the case for S, though several works have been

published on the matter, notably by Chruściński and Sarbicki [76, 77].

7.5.1 Duality of exposed faces of S and S◦
It is possible to define the dual of a subset X ⊂ S by

X ◦ = {W ∈ S◦ | tr(Wρ) = 0 ∀ ρ ∈ X} (7.60)

and similarly from any subset Y ⊂ S◦, the dual

Y◦ = {ρ ∈ S | tr(Wρ) = 0 ∀W ∈ Y} (7.61)

Since no witnesses in the interior of S◦ have zeros, we must assume that X ⊂ ∂S and

Y ⊂ ∂S◦, and then follows that X ◦ ⊂ ∂S◦ and Y◦ ⊂ ∂S.
It is clear that in any system of finite dimension, we would need a finite number k of

separable states ρ1, . . . , ρk ∈ X to define X ◦ = {W ∈ S◦ | tr(Wρi) = 0 for i = 1, . . . , k}.
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If we then construct for instance the evenly weighted separable state ρ0 =
1
k

∑k
i=1 ρi ∈ X

we see that the set X ◦ can be defined as

X ◦ = {ρ0}◦ = {W ∈ S◦ | tr(Wρ0) = 0} (7.62)

This is possible because tr(Wρi) ≥ 0 for i = 1, . . . , k, which means that tr(Wρ0) = 0⇒
tr(Wρi) = 0 for i = 1, . . . , k. By the same argument we can show that it is always

possible to find a witness W0 such that

Y◦ = {W0}◦ = {ρ ∈ S | tr(W0ρ) = 0} (7.63)

We now assume that the witness W ∈ X ◦ can be written as

W = (1− p)W1 + pW2 0 ≤ p ≤ 1 (7.64)

where W1,W2 ∈ S◦. Since W1 and W2 are witnesses we must have tr(W1ρ) ≥ 0 and

tr(W2ρ) ≥ 0 for all ρ ∈ S. From (7.64) we get that

tr(Wρ) = (1− p) tr(W1ρ) + p tr(W2ρ) = 0 (7.65)

which again means that tr(W1ρ) = tr(W2ρ) = 0. So W1 and W2 must lie in X ◦, which
means that X ◦ is a face. Since we see from (7.62) that X ◦ is dual to one ρ0 ∈ X ⊂ S,
the equation tr(Λρ0) = 0 with Λ ∈ HN defines a hyperplane of dimension N2− 2 in the

(N2 − 1)-dimensional space of Hermitean N ×N matrices of unit trace. The Λ ∈ HN

which are also witnesses, then lie exclusively in the face X ◦, which is then an exposed

face of S◦. By similar argument we also conclude that Y◦ is an exposed face of the set

of separable states S.
We have seen that the two sets X ◦ and Y◦ are exposed faces on S◦ and S. We have

also observed that X ◦ is the dual of a separable state ρ0 and that Y◦ is the dual of a

witness W0. We can now summarize this into a result that expresses a duality between

exposed faces of S and S◦

Theorem 7.7 (Duality of exposed faces in S and S◦). There is an isomorphic relation

between exposed faces of S and exposed faces of S◦. The faces in each pair are orthogonal

to each other.

We know that in any nested hierarchy of faces F1 ⊃ F2 . . . ⊃ Fk, extremal points

are inherited. It thus follows that the extremal points of the face Y◦ ⊂ S are the zeros

which are common to all the witnesses in Y ⊂ S◦. So an important result is that

Theorem 7.8 (Zeros of W and exposed faces of S). A set of product vectors ψi =

φi ⊗ χi ∈ C
N = C

NA ⊗C
NB is the complete set of zeros of some witness W if and only

if all ρi = ψiψ
†
i are the extremal points of an exposed face of S.

It is unknown whether unexposed faces of S exist. We know that for any compact

convex set, an unexposed face must be contained in an exposed face, so any hypothetical

unexposed face of S must lie in a larger exposed face.
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7.5.2 Unexposed faces of S◦
A version of the Choi-Lam witness in (7.57) can be writtenWC = Ω(1, 0, 1; 0). This wit-

ness is extremal, and represents a zero-dimensional face FS◦(WC) which is unexposed.

The three isolated product vectors from (7.58) define the states e1e
†
1, e2e

†
2, e3e

†
3, and the

continuum of product vectors defined in (7.59) define the states φ(α, β)φ†(α, β). The

dual face W ◦
C ⊂ S then has the states e1e

†
1, e2e

†
2, e3e

†
3 and φ(α, β)φ†(α, β) as extremal

points. The face W ◦
C has dimension 21, and the separable states in the interior of this

face have rank seven, since the zeros span a seven-dimensional subspace.

Numerically we find that the constraints U0 and U1 associated with the zeros of

WC define a four-dimensional face of S◦. The rest of the constraints comes from U2 and

U3 which are associated with the quartic nature of the zeros. This is an example of

how faces of S◦ can be unexposed. In general, a witness W having one or more isolated

quartic zeros, will be an interior point of an unexposed face on S◦. This unexposed face

is then a face of a larger exposed face consisting of witnesses having the same zeros as

W, but such that for these witnesses all these isolated zeros are quadratic.

7.5.3 Simplex faces and other faces of S
We here distinguish between two different types of faces on S, namely the faces which

take the form of a simplex, and the faces that do not. The simplex type of faces

are closely related to quadratic witnesses, while other types are connected to quartic

witnesses.

Simplex faces of S
From Theorem 7.7 we find the relation between zeros of witnesses and exposed faces

on S. The exposed faces of S defined by extremal quadratic witnesses are simplexes.

We discussed simplexes as convex sets more thoroughly in Section 4.5, and we defined

an n-simplex Δn to be a simplex with n+ 1 vertices and an interior with dimension n.

Given the product vectors ψi = φi ⊗ χi for i = 1, . . . , k so that n = k − 1, as zeros of a

generic extremal quadratic witness W, the corresponding product states ρi = ψiψ
†
i are

the vertices of an n-simplex, which is the exposed face W ◦ on S dual to W.

Let ρ be an interior point of this face

ρ =
k∑

i=1

piρi
∑
i

pi = 1 pi > 0 (7.66)

From Theorem 7.6 we understand that ρ constructed from all the zeros ψi = φi ⊗ χi

and ρP constructed from all the zeros ψi = φi ⊗ χ∗
i , have full rank N = NANB. Thus

for these states we will have ρ ∈ int(P) ⊂ int(D). These full rank states make up

the interior of the simplex ΔN−1. For instance for the 3 × 3 system, these states will

have rank nine, and the entire simplex Δ8 will be a face of S, i.e. lying on ∂S. But

apart from the extremal states ρi = ψiψ
†
i the simplex Δ8 will lie in the interior of P .

The boundary of Δ8 will consist of other faces of S defined by less than nine zeros,
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accordingly these faces are located inside faces of D, i.e. on ∂D. In dimensions that are

large enough (Table 7.1), such a witness has more than N = NANB zeros, and define a

simplex face of S for which also the boundary points may lie in the interior of D. In this

way the geometry of S in relation to D, appear to become more and more complicated

as the dimensions increase.

One question that could be raised is whether any generic simplex ΔN−1 ∈ DN , with

nc vertices ψiψ
†
i with ψi = φi ⊗ χi, define an exposed simplex face of S. If nc > N ,

which is the case when NA, NB > 3, then the simplex is overdetermined by the fact that

the largest possible rank of the set ψi is N . If the answer is in the affirmative, then any

such generic collection of vertices ψi will be zeros of an extremal quadratic witness.

We have made investigations in the 3×3 system, into the geometrical orientation of

8-simplexes Δ8 ∈ D9 relative to the maximally mixed state ρ0 = I/9. On such a simplex

there always exists a (usually unique) state ρmin closest to ρ0. The minimum distance

is given by the Hilbert-Schmidt norm dmin = |ρmin − ρ0|. In dimension N = NANB the

distance from any pure state to the maximally mixed state ρ0 is
√

(N − 1)/N , and in

our case this upper limit is dmin ≤
√
8/3 ≈ 0.94.
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Figure 7.6: The rank of ρmin and its distance dmin = |ρmin − ρ0| from the maximally mixed state ρ0,

for a large number of 8-simplexes Δ8 in dimension 3× 3. The distance dmin is in the Hilbert-Schmidt

metric. The 8-simplexes are faces on S, i.e., they are constructed from the zeros of a large number

of extremal quadratic witnesses found in random searches using Algorithm 1. A similar scheme for

randomly generated 8-simplexes return approximately 90% states of rank nine.

For the 3×3 system we find numerically, if we generate a large number of 8-simplexes

defined by a random set of nine pure product states, that for approximately 90% of

the cases, the state ρmin will have full rank, i.e it will lie in the interior of Δ8 and

D9. For the remaining cases we find that ρmin mostly has rank eight, and very rarely

rank seven. Figure 7.6 shows the results for the sample of 171 extremal quadratic
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witnesses we have generated using Algorithm 1. For the cases in Figure 7.6 it happens

in only about 2% of the cases that ρmin has full rank. In the remaining cases ρmin lies

in ∂Δ8 and ∂D9. We see a tendency that the minimum distance dmin is smaller when

rank(ρmin) is higher. This is because the most regular simplex faces are positioned most

symmetrically relative to the maximally mixed state.

Thus Figure 7.6 clearly verifies numerically that the orientations of randomly gen-

erated simplexes relative to ρ0 = I/9, has a distribution which is different than for the

simplexes which are constructed from zeros of extremal quadratic witnesses. So it is

likely that any random simplex Δ8 will in general not define zeros of an entanglement

witness, and that the simplex will then not be a face of S.

Other types of faces of S
Since any entanglement witness W ∈ ∂S◦ lies on an exposed face of S◦, it follows effec-
tively from Theorem 7.7 that to every entanglement witnessW ∈ ∂S◦ there corresponds
an exposed face on S. The large variety of entanglement witnesses implies a similar

variety of faces of S. The class of simplex faces have only a finite number of extremal

points, while other faces may have only continuous sets of extremal points, and further

we may have faces with both discrete and continuous subsets of extremal points.

We have seen that quadratic witnesses can be related to simplex faces of S. Another
well known example of an extremal witness is the Choi-Lam witness WC , which is

quartic and extremal. It has three discrete zeros and one continuous set of zeros, and

these zeros define extremal points of a face of S which is quite different from the simplex

faces.

If we consider a pure state W = ψψ† which is quartic and extremal on the set

of decomposable witnesses P◦. The zeros of W are the product vectors which are

orthogonal to ψ. Using the standard basis ei for C
3 we can look at two very simple

examples. We write a general product vector as

φ⊗ χ =

⎛⎝f1
f2
f3

⎞⎠⊗
⎛⎝g1
g2
g3

⎞⎠ (7.67)

with fi, gi ∈ C

� If we take ψ = e1 ⊗ e1, then all components ψi are zero, except ψ1 = 1. So for

W = ψψ† we get

(φ⊗ χ)†W (φ⊗ χ) = 0 ⇒ f1g1 = 0 (7.68)

with either f1 = 0 or g1 = 0. The product vectors φ⊗ χ satisfying this, produce

product states belonging to a full matrix algebra in dimension 2 × 3 or 3 × 2,

depending on whether f1 = 0 or g1 = 0. They are extremal points on a face of the

type discussed by Alfsen and Shultz [51], which they call a convex combination

of matrix algebras.
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� We can choose the Bell type entangled state ψ =
√

1
3
(|11〉+ |22〉+ |33〉). Keeping

in mind that we write ei = |i〉, we get for W = ψψ†

(φ⊗ χ)†W (φ⊗ χ) = 0 ⇒ f1g1 + f2g2 + f3g3 = 0 (7.69)

This means that for every vector φ, the vector χ defines a two-dimensional sub-

space of vectors satisfying the orthogonality condition, and vice versa. These

pure product states are then the extremal points of a face on S which is neither

a simplex nor a convex combination of matrix algebras.

So it is pretty clear that there is a great variety of faces on S, and the structure of

these faces is far from understood. As we shall immediately see, this has consequences

for the convex decomposition of separable states, where we naturally want to be able

to find a decomposition into the minimum number of pure product states.

7.5.4 Minimal convex decomposition of separable states

In Section 5.8 we constructed a procedure for decomposing an arbitrary state ρ ∈ D of

rank r, as a convex combination of r pure states ψψ†

ρ =
r∑

i=1

pi (ψiψ
†
i ) pi > 0

∑
i

pi = 1 (7.70)

The essential characteristic of D that ensures the possibility of such a procedure, is the

structure of faces FD on D. By the Werner definition [21], a state ρ on C
N is separable

if it can be expressed as

ρ =
s∑

i=1

pi (μi ⊗ τi) =
s∑

i=1

pi (φiφ
†
i ⊗ χiχ

†
i ) (7.71)

It is obvious that if we pick a set of n ≤ N linearly independent product vectors φi⊗χi

we can invariably form a separable state of the form (7.71), with rank n = s. But if we

approach from the other end, given a separable state ρ, what is the minimum number

smin necessary to write ρ on the form (7.71). This question is closely related to the

structure of faces of S. If we use the procedure in Section 5.8 in order to decompose

ρ ∈ S on form (7.71), it might happen, that the face F2 is the dual of a quadratic

witness. It will then contain only a finite number of pure product states, much smaller

than the dimension N2−1 of the set of normalized separable states. Recall that the pure

product states in such a face are the zeros of this quadratic witness, and the number of

zeros is largest when the witness is extremal. In the generic case the number of zeros

of a quadratic extremal witness is nc, as given by (7.52).

It therefore seems likely that also in the decomposition of separable states one could

do much better than theN2 pure product states guaranteed by Carathéodory’s theorem.
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7.6 Optimal witnesses

The fact that there does not exist a universal entanglement witness, gives rise to the

notion of optimal witnesses. There are many, and equivalent, ways of defining optimality

for witnesses, but one possible way is

Definition 7.6 (Optimal witness). Let the set of entangled states revealed by an en-

tanglement witness W ∈ S◦ be

ΞW = {ρ ∈ DN | tr(Wρ) < 0} (7.72)

Then a witness W1 ∈ S◦ is an optimal witness if and only if there does not exist a

witness W2 ∈ S◦ such that ΞW1 ⊂ ΞW2.

Given a witness W, the expression tr(Wρ) linearly defines a hyperplane in the set

of Hermitean matrices HN . This hyperplane will split DN into two regions. One

region with tr(Wρ) > 0, which for W to be a witness must include the complete set

of separable states S, and another where tr(Wρ) < 0 which is identical to ΞW . An

attempt to visualize this geometrically is made in Figure 7.7.

S

D

tr(W2ρ)
tr(W1ρ)

tr(W3ρ)

ρ2

ρ1

Figure 7.7: We see the sets S and D, and the red lines identify the three different hyperplanes tr(Wkρ)

defined by three witnesses W1,W2 and W3. Since tr(Wkρ1) < 0 for all Wk, it is revealed by all three

witnesses, and since tr(Wkρ2) > 0 for all Wk, it is not revealed by any of the three witnesses.

We see red lines that identify the different hyperplanes defined by the three witnesses

W1,W2 and W3. We observe that the hyperplane tr(W2ρ) is not tangent to S, which
in fact means that W2 cannot be optimal. This is because there is always a witness

W1 with a hyperplane tr(W1ρ) parallel to tr(W2ρ) which is tangent to S, and thus

ΞW2 ⊂ ΞW1 . Generally, the hyperplane tr(Wρ) defined by any witness W, cannot
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intersect the interior of S, because then we would have tr(Wρ) < 0 for some separable

state ρ. So a necessary condition for W to be optimal is that tr(Wρ) must be tangent to

S, and thus W must have at least one zero, i.e. W ∈ ∂S◦. It is important to emphasize

that this is a necessary, but not sufficient condition. We see that the entangled state

ρ1 is revealed by all three witnesses, while ρ2 is revealed by none of them.

There are also more constructive, but equivalent, ways of defining optimality of

witnesses, and this was done originally by Lewenstein et al. [78, 79]. They introduced

two different concepts of optimality, and gave two necessary and sufficient conditions

for optimality, rather similar to the condition for extremality. These definitions are

made by looking at ways in which a witness W cannot be expressed. Assume that for

a witness W the genuine convex combination W = (1− p)M1 + pM2 with M1,M2 in a

specified subset of the Hermitian matrices, is not possible, i.e.

W �= (1− p)M1 + pM2 0 < p < 1 (7.73)

Based on (7.73) the following definitions are made

M1,M2 ∈ S◦ ⇒ W is extremal

M1 ∈ S◦, M2 ∈ D ⇒ W is optimal

M1 ∈ S◦, M2 ∈ P◦ ⇒ W is non-decomposable optimal

(7.74)

The first, being the well known definition of extremality. Obviously, a witness which is

extremal is optimal by both optimality criteria. Note that the criterion for optimality is

not invariant under partial transposition, hence a witness W may be optimal while its

partial transpose W P is not optimal. The criterion for non-decomposable optimality, on

the other hand, is invariant under partial transposition. The condition of being extremal

is stricter than those of being optimal or non-decomposable optimal. Accordingly there

should, in general, exist plenty of non-extremal witnesses that are either optimal or

non-decomposable optimal. Keeping in mind Definition 7.5, the following sufficient

optimality conditions were proved by Lewenstein et al. [78]

Theorem 7.9 (Optimality condition). A witness W is optimal if it has spanning prop-

erty, and it is non-decomposable optimal if it has double spanning property.

The opposite is not necessarily true. In the 3 × 3 system we have the Choi-Lam

witness WC = Ω(1, 0, 1; 0) from (7.57), which is extremal, and therefore optimal, but

ΠWC
only spans a seven-dimensional subspace of C9. For a quadratic witness however

these conditions are not only sufficient, but also necessary [71]

Theorem 7.10 (Optimality for quadratic witnesses). Let W be a quadratic witness.

Then W is optimal if and only if it has spanning property, and it is non-decomposable

optimal if and only if it has double spanning property.

It is known that the equivalence between optimality and the spanning property

holds also in the case of decomposable witnesses in 2×NB dimensions [80], but that for
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NA, NB ≥ 3 there exist optimal decomposable witnesses without the spanning property

[81]. By Theorem 7.10 a test for optimality of a witness W involves finding the complete

set of zeros ΠW. If this set spans the Hilbert space, then W is optimal, if it does not

then W is either non-optimal quadratic or quartic. We must then calculate KerGW

and thus verify whether W is quadratic or not. If it is, then then the test ends, with

the result that W is non-optimal. If it turns out that the witness is quartic, we need

further analysis.

The definition of optimality given in (7.74), can be slightly reformulated to read:

If W is a witness, and there exists a real λ > 0 and positive matrix P ≥ 0 such that

W ′ = W − λP ∈ S◦, then W is not optimal. Using this formulation, an optimality

test for quartic witnesses has been constructed [78]. Since we do not have a complete

understanding of constraints from quartic zeros, the relation between non-decomposable

optimality and extremality of quartic witnesses still remains an open problem for future

research.

In dimensions 3× 3 and 2×NB, a witness with doubly spanning zeros is generically

extremal by Theorem 7.6, and hence both optimal and non-decomposable optimal.

Repeating our discussion in Section 7.4.3, we remember that in higher dimensions the

number of zeros nc of a quadratic extremal witness must be larger than the Hilbert

space dimension N = NANB. Hence non-extremal witnesses with doubly spanning

zeros must be very common, so that non-decomposable optimality is a significantly

weaker property than extremality. In particular, when we search for generic quadratic

extremal witnesses and reach the stage where the witnesses have N or more zeros,

then every face of S◦ we encounter will consist entirely of non-decomposable optimal

witnesses, most of which are not extremal.

So, to conclude some of our discussion here: For the 2× 2 and 2× 3 systems, every

witness is decomposable [33, 66]. In dimensions 2×NB with NB > 3 and 3×3, a generic
quadratic witness is either non-decomposable optimal and extremal, or it is neither. In

higher dimensions there exist an abundance of non-decomposable optimal non-extremal

witnesses.

The SPA conjecture

We have seen that even though they are very useful as an operation for detecting

entanglement, maps which are positive but not completely positive, are non-physical.

Horodecki and Ekert introduced the concept of a “structural physical approximation”

(SPA) of a non-physical positive map [82]. The SPA is a physical map and may be

implemented in an experimental setup. The transposition map for instance, is non-

physical, since it is not completely positive.

The SPA of the corresponding witness W is defined by using the so-called depolar-

izing channel

Σ(p) = (1− p)W +
p

N
I (7.75)

where p ∈ X = [0, 1]. The SPA of the witness W is defined to be the positive matrix
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Σ(p) of the form (7.75) which is closest to W. Put

p0 = {min(X) |Σ(p) ∈ S}
p1 = {min(X) |Σ(p) ∈ D}
p2 = {min(X) | [Σ(p)]P ∈ D}

(7.76)

The SPA of W is then defined as WSPA = Σ(p1). Clearly p0 ≥ p1 and p0 ≥ p2, but we

may have either p1 < p2, p1 = p2 or p1 > p2. The SPA of W is a PPT state if and only

if p1 ≥ p2. It follows directly from the definitions that the SPA of the witness W P is

[Σ(p2)]
P, and this is a PPT state if and only if p2 ≥ p1.

The so called SPA separability conjecture states that the SPA of an optimal entan-

glement witness is always a separable density matrix [83]. Thus for optimal witnesses

we should have p0 = p1 ≥ p2. One reason for the interest in this conjecture is that

separability simplifies the physical implementation of the corresponding map.

Counterexamples in the form of the generalized Choi-Lam witness (7.57), have been

given by Ha and Kye, and by Størmer [73, 85]. With the parameter values considered

by Størmer we find that the witnesses are not extremal, and their SPAs are entangled

because they are not PPT states. More interesting are the parameter values considered

by Ha and Kye, because they give extremal witnesses with SPAs that are entangled

PPT states.

The above counterexamples are non-decomposable witnesses, but the case for de-

composable witnesses has also been closed by Chruściński and Sarbicki [84]. They

show that the SPA of an optimal but non-extremal decomposable witness, of the form

W = σP with σ ≥ 0 of rank three, may be entangled, although it is automatically a

PPT state.

The SPA conjecture applies directly to extremal entanglement witnesses, since they

are optimal. If W is an extremal witness, then so is the partial transpose W P. However,

if the SPA of W is a PPT state, then the SPA of W P is usually not. This means

that the original SPA conjecture cannot be true both for W and W P, simply because

separable states are PPT states. Ha and Kye gave essentially this argument in [85].

The extremal witnesses that we have produced in a random search by Algorithm 1,

support this argument, in that about half of the witnesses we find, have an SPA which

is a PPT state.

An obvious modification of the conjecture would be to redefine the SPA as the near-

est PPT matrix instead of the nearest positive matrix. In the case of a pair of extremal

witnesses W and W P, the modified conjecture holds either for both or for none. How-

ever, the counterexamples cited above disprove also this modified separability conjecture

in its full generality. It is nevertheless the case that these known counterexamples are

rather non-generic.

If we regard separability as an essential property of the SPA, it seems that the

natural solution would be to define the SPA by the parameter value p = p0, where

Σ(p) first becomes separable, rather than by the value p = p1, where Σ(p) first becomes

positive, or by p = max(p1, p2), where Σ(p) first becomes a PPT state.
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7.7 Unital and trace preserving positive maps

We now pick up the discussion of positive maps from Section 7.2. For a map LM :

HNA
�→ HNB

we will now define two very useful properties

Definition 7.7 (Unital and trace preserving). The map LM : HNA
�→ HNB

is unital

if it maps the identity IA ∈ HNA
to the identity IB ∈ HNB

, and trace preserving if

tr(LMX) = tr(X) for all X ∈ HNA

The trace preserving property is quite useful since a physical map should preserve

probability, and the unital property naturally defines a fixed point for the map. Using

(7.11) we must have ∑
i,k

M̂jl;ikδik =
∑
i

M̂jl;ii = δjl (7.77)

and for the trace preserving property∑
j,i,k

M̂jj;ikXik =
∑
i

Xii ⇒
∑
j

M̂jj;ik = δik (7.78)

Thus the map LM̂ is trace preserving if and only if the map LT
M̂

is unital.

In terms of the corresponding Hermitian matrix M = Mij;kl defined by (7.10) we

can write the condition that LM be unital as

LMIA = trA(M) = IB (7.79)

and to be trace preserving

LT
MIB = trB(M) = IA (7.80)

Equation (7.79) implies that tr(M) = tr(IB) = NB, whereas (7.80) implies that tr(M) =

tr(IA) = NA. So it appears that the map may be both unital and trace preserving only

if NA = NB. If NA �= NB the proper condition can be adjusted to

LME0 = F0 LT
MF0 = E0 (7.81)

where E0 = IA/
√
NA and F0 = IB/

√
NB. We can then call the map unital and trace

preserving if (7.81) holds, even if NA �= NB.

7.7.1 Transforming positive maps

We can argue, very much along the lines of Størmer [73], that every positive map

LW may be transformed into a unital and trace preserving form through a product

transformation on the corresponding witness W ∈ S◦

W �→ W̃ = (U ⊗ V )W (U ⊗ V )† (7.82)

where U ∈ GL(NA,C) and V ∈ GL(NB,C). A product transformation of this kind

preserves all the essential characteristics of W. For instance, if W is extremal in S◦ and
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non-decomposable, then so is W̃, and a zero φ⊗ χ of W corresponds to a zero φ̃⊗ χ̃ of

W̃, where

φ̃ = (U †)
−1
φ χ̃ = (V †)

−1
χ (7.83)

It has been proved by Leinaas et al. [74] that such a transformation is always possible

for a more limited set of matrices, namely the set of witnesses having no zeros, i.e.

witnesses not on the boundary of S◦. As we have seen however, it is the set of witnesses

on the boundary ∂S◦ which are the most interesting.

In terms of the transformed map L̃W = L
˜W , the conditions to be fulfilled are that

L̃W IA = IB and L̃T
W IB = IA. We will assume here that NA = NB, otherwise proper

adjustments are easily made according to (7.81). In index notation (7.82) reads as

follows

W̃ij;kl =
∑
a,b,c,d

UiaVjb Wab;cd U
∗
kcV

∗
ld (7.84)

It is possible to show that the maps LW : HNA
�→ HNB

and LT
W : HNB

�→ HNA
act on

X ∈ HNA
and Y ∈ HNB

respectively as

LWX = trA[W (X ⊗ I)] LT
WY = trB[W (I ⊗ Y )] (7.85)

and using this, we may write the transformation Y = L̃WX as

Yjl =
∑
i,k

W̃ij;kl Xki =
∑

i,k,a,b,c,d

Vjb[Wab;cd(U
∗
kcXki Uia)]V

∗
ld (7.86)

or more compactly as

Y = L̃WX = V [LW (U †XU)]V † (7.87)

By similar argument for the transformation X = L̃T
WY we get

X = L̃T
WY = U [LT

W (V †Y V )]U † (7.88)

So the conditions for L̃W to be unital and trace preserving is that

L̃W IA = V [LW (U †U)]V † = IB

L̃T
W IB = U [LT

W (V †V )]U † = IA
(7.89)

So, in total, the problem to be solved is to find operators U and V such that

LW (U †U) = (V †V )−1 LT
W (V †V ) = (U †U)−1 (7.90)

We have used an iteration scheme, presented in Section 8.7, to solve (7.90) for a large

number of numerically produced extremal entanglement witnesses [71, 75], and also on

many non-extremal witnesses. Numerically our attempts, which are in the thousands,

always converge to a unique W̃ for each W.
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7.7.2 Extremal positive maps

We have seen in Section 7.4 how entanglement witnesses, and in particular extremal

witnesses, are understood in terms of their zeros, and we have to understand what the

zeros of the witness W imply for the corresponding map LW.

If we let (φ0, χ0) be an isolated zero of W, and if we further define Y = LW (φ0φ
†
0)

and X = LT
W (χ0χ

†
0), we can put

χ†
0Y χ0 = φ†

0Xφ0 = (φ0 ⊗ χ0)
†W (φ0 ⊗ χ0) = 0 (7.91)

Since X, Y ≥ 0 it follows that

Xφ0 = 0 Y χ0 = 0 (7.92)

Since the zero (φ0, χ0) is an isolated zero, we also know that X and Y have no other

zeros in C
NA and C

NB respectively. Hence X has rank NA− 1 and Y has rank NB − 1.

When W is an extremal entanglement witness, the corresponding maps LW and LT
W

are extremal positive maps. An isolated zero (φ0, χ0) of W defines a rank one state

φ0φ
†
0 ∈ DNA

mapped by LW into a rank NB − 1 state in DNB
. It also defines a rank

one state χ0χ
†
0 ∈ DNB

mapped by LT
W into a rank NA − 1 state in DNA

. So the zero

(φ0, χ0) of W defines a point on ∂DNA
which is mapped by LW to a point on ∂DNB

,

and likewise a point on ∂DNB
which is mapped by LT

W to a point on ∂DNA
. We can

conclude that the map LW is extremal precisely because the image LWDNA
inside DNB

touches ∂DNB
in as many points as possible.

The extremal maps LW : HNA
�→ HNB

that correspond to generic quadratic extremal

witnesses, thus map only a finite number of points on ∂DNA
to ∂DNB

, and they map

all other points to the interior of DNB
. So an extremal map of this type is contractive,

which means that it maps the set of density matrices onto a subset of itself, which again

entails that it reduces volumes.

A very different type of extremal positive maps are those that carry positive rank one

operators to positive rank one operators, and these are called rank one preservers. Two

simple examples of such maps are the identity map I : X �→ X and the transposition

map T : X �→ XT. But more generally any map U : X �→ UXU † will be a rank one

preserver, and then obviously also UT. These positive maps are extremal because they

map ∂DNA
completely onto ∂DNB

.

7.7.3 Visualizations of extremal positive maps

Here we consider the qutrit case NA = NB = 3. The set of normalized density matrices

D3 has dimension 32−1 = 8, and as we have seen in Section 7.7.1, in this case a positive

linear map can always be transformed into a unital and trace preserving form. Given

an unital and trace preserving positive map LW : H3 �→ H3 it will map D3 into D3, and

the maximally mixed state I/3 to itself. It is possible to plot two-dimensional planar

sections of the density matrices in order to see what LWD3 looks like inside D3 for

various choices of sections. We have seen earlier, in Section 5.4, how to perform such

plots by choosing an origin ρ0 and two traceless and orthogonal directions σ1 and σ2.
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These together define the plane Z ∈ H3 containing the states ρ0, ρ1 and ρ2, with the

two latter being the density matrices corresponding to σ1 and σ2. See expression (5.9)

and Figure 5.1. A matrix in Z is then specified by a coordinate pair (x, y)

X = ρ0 + xσ1 + yσ2 (7.93)

Once the plane Z is known, the procedure described in Section 5.4 and illustrated in

Figure 5.2, can be used to calculate the border of D3 ⊂ Z.
In order to visualize maps in this way, we let the positive map LW be extremal,

corresponding to an extremal witness W, and then use LW to map D3 into D3 for

different types of sections Z.
The positive map LW maps the plane Z defined by the states ρi ∈ D3 with i = 0, 1, 2

into the plane Z ′ = LWZ defined by the states ρ′i = LWρi ∈ D3, in such a way that X

as given by (7.93) is mapped into

X ′ = LWX = ρ′0 + xσ′
1 + yσ′

2 (7.94)

Since LW is unital and trace preserving, tr(σ′
1) = tr(σ′

2) = 0, but we must also require

that tr(σ′
1
2) = tr(σ′

2
2) = 1 and tr(σ′

1σ
′
2) = 0. This is to ensure that the plots reproduce

the distances in the image plane Z ′ of the map LW faithfully. It is in general not

possible to make both tr(σ1σ2) = 0 and tr(σ′
1σ

′
2) = 0, so the plot will give a distorted

representation of the plane Z. Note that in order to make tr(σ′
1σ

′
2) = 0 we have

consistently rotated the σ′
2 or y-axis, so that ρ′1 always has coordinates (x > 0, y = 0)

whereas ρ′2 always has y > 0, but in general x �= 0. We plot ∂D3 in Z ′ in blue, and the

image of ∂D3 in Z by a red curve. The “+” represents the orthogonal projection of the

maximally mixed state I/3 on the image plane Z ′ = LWZ. If ρ0 = I/3, then the “+”

has coordinates (0, 0), otherwise it will be shifted from the origin by LW .

Generic quadratic extremal witness

The witness W is drawn from a sample of extremal witnesses produced numerically

using Algorithm 1 [71, 75]. The iteration procedure described in Section 8.7 is used to

convert the map LW into unital and trace preserving form. Figure 7.8 shows a section

with the maximally mixed state at the origin, that is ρ0 = ρ′0 = I/3. We have chosen

the plane Z to also go through the pure states ρ1 = φ1φ
†
1 and ρ2 = φ2φ

†
2 corresponding

to two arbitrarily chosen zeros φ1 ⊗ χ1 and φ2 ⊗ χ2 of the extremal witness W. In the

section Z∩D3 enclosed by the red curve, the two pure states ρ1 and ρ2 which are joined

in the plot by a straight line, are both mapped into rank two states on ∂D3. States

on the line segment, originally rank two states, are mapped into rank three states, but

they remain convex combinations of the two states ρ′1 and ρ′2. The section Z ′ ∩ D3,

enclosed by the blue curve, are all states of full rank, while the blue boundary are rank

two states.

In Figure 7.9 we have also chosen ρ1 = φ1φ
†
1, ρ2 = φ2φ

†
2, but ρ0 is now an even

mix of the three pure states ρ1 = φ1φ
†
1, ρ2 = φ2φ

†
2, and ρ3 = φ3φ

†
3. We also observe

that the projection of the maximally mixed state I/3 is off center. The triangle is a

two-dimensional face of an eight-dimensional simplex defined by all nine zeros of the
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witness W. The three vertices ρ1, ρ2 and ρ3 have been mapped into rank two states,

and the original lines of rank two states have been mapped into the interior of D3, i.e.

into rank three states.
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Figure 7.8: ρ1 = φ1φ
†
1 and ρ2 = φ2φ

†
2, and the

origin ρ0 is the maximally mixed state I/3.

The origin is therefore unchanged under the

map LW .
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Figure 7.9: ρ1 = φ1φ
†
1 and ρ2 = φ2φ

†
2. The

origin ρ0 is an even mix of the pure states ρ1,

ρ2, and ρ3 = φ3φ
†
3, and is therefore shifted off

center.

In Figure 7.10, the state ρ′1 = LWρ1 has rank two and lies on the boundary ∂D3,

whereas ρ′2 = LWρ2 has full rank and lies in the interior of D3. In Figure 7.11 both

states ρ1 and ρ2 are random states of rank three. Since this means that also ρ′1 and ρ′2
are states of rank three, both the blue and red curves portray generic boundaries of D3.
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Figure 7.10: ρ1 = φ4φ
†
4, ρ2 is a random pure

state and ρ0 = I/3. ρ′1 = LW ρ1 has rank

two and lies on ∂D3, whereas ρ
′
2 = LW ρ2 has

full rank and lies in the interior of the set of

density matrices D3.
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Figure 7.11: Both ρ1 and ρ2 are random states

of rank three, and ρ0 = I/3. Both curves rep-

resent generic boundaries of D3. We observe

that the image of Z ∩ D3 is completely con-

tracted inside Z ′ ∩ D3.



138 POSITIVE MAPS AND ENTANGLEMENT WITNESSES

The Choi-Lam map

The unital and trace preserving map

LC : X �→ Y =
1

2

⎛⎝X11 +X33 −X12 −X13

−X21 X11 +X22 −X23

−X31 −X32 X22 +X33

⎞⎠ (7.95)

was introduced by Choi and Lam in 1977 as the first example of an extremal non-

decomposable positive map [63, 64]. It has been generalized to a one parameter family

of extremal positive maps, but it is still one of the very few known analytical examples

of such maps. As mentioned in Section 7.4.4 the corresponding witness W has three

isolated zeros

e13 = e1 ⊗ e3 e21 = e2 ⊗ e1 e32 = e3 ⊗ e2 (7.96)

where e1, e2, e3 are the natural basis vectors in C
3, in addition to a continuum of zeros

φ⊗ χ where
φ = e1 + eiαe2 + eiβe3 χ = φ∗ (7.97)

and α, β ∈ R. The states defined by the three isolated zeros of the Choi-Lam witness

is then

ρ1 = e1e
†
1 =

⎛⎝1 0 0

0 0 0

0 0 0

⎞⎠ ρ2 = e2e
†
2 =

⎛⎝0 0 0

0 1 0

0 0 0

⎞⎠ ρ3 = e3e
†
3 =

⎛⎝0 0 0

0 0 0

0 0 1

⎞⎠ (7.98)
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Figure 7.12: The map LC in the plane of di-

agonal matrices. We use ρ0 = I/3, ρ1 = e1e
†
1

and ρ2 = e2e
†
2. The image of Z ∩ D3, shown

by the red curve, is rotated 60◦ and contracted

by a factor one half.
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Figure 7.13: Here we see another section with

ρ1 = e1e
†
1 and ρ2 = e2e

†
2. Here, the origin ρ0

is however chosen as a random state of rank

three, so the sector Z ∩ D3 contains neither

e3e
†
3 nor I/3.
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If we take Z to be the plane containing the states ρ1, ρ2 and ρ3, this gives a very

special section through D3, namely a section containing the diagonal matrices. This

section is mapped into itself by LC

ρ′1 =
ρ1 + ρ2

2
ρ′2 =

ρ2 + ρ3
2

ρ′3 =
ρ3 + ρ1

2
(7.99)

We observe from (7.99) that the map LC for the diagonal matrices represents a

rotation of 60◦, followed by a contraction by one half. This is seen in Figure 7.12. Since

it is diagonal, the maximally mixed state is contained in the region Z. In Figure 7.13

we see another section defined by ρ1 = e1e
†
1 and ρ2 = e2e

†
2. In this case however, the

origin is chosen as a random state of rank three, so the sector Z ∩ D3 contains neither

e3e
†
3 nor I/3.

If we now try somehow to involve the quartic zeros (7.97), we can start by con-

structing the state

ρ(α, β) =
1

3
φ(α, β)φ†(α, β) = ρ0 + σ(α, β) (7.100)

These states define a two-dimensional curved surface of pure states in S, which will be

mapped by LC to the boundary ∂D3. The matrix σ(α, β) is a completely off-diagonal

matrix. We can see directly from (7.95) that with ρ0 = I/3, the state ρ(α, β) is mapped

into

LCρ(α, β) = ρ0 − 1

2
σ(α, β) =

1

2
[3ρ0 − ρ(α, β)] (7.101)

If we choose e.g. the α-direction on this surface, we can define the derivative of φ(α, β)

in this direction by

ξ(α) =
∂

∂α
φ(α, β) = ieiαe2 (7.102)

Then the matrix

D(α, β) =
∂

∂α
ρ(α, β) =

1

3

[
ξ(α)φ†(α, β) + φ(α, β)ξ †(α)

]
(7.103)

is a tangent to the surface such that

ρ(α, β) + εD(α, β) = ρ(α + ε, β) +O(ε2) (7.104)

Now we can choose a two-dimensional section Z defined by the maximally mixed state

ρ0 = I/3 and the two matrices

ρ1 = ρ(0, 0) =
1

3
(e1 + e2 + e3)(e1 + e2 + e3)

†

ρ2 = ρ1 +D(0, 0) = ρ1 +
i

3

[
e2(e1 + e3)

† − (e1 + e3)e
†
2

] (7.105)
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We know that ρ1 = ρ(0, 0) is a state on the surface at α = β = 0, and that D(0, 0)

is a tangent to the surface at the same point. This means that in general ρ2 /∈ D, which
is not important since we are interested in the plane Z defined by ρ0, ρ1 and ρ2, and

the intersection Z ∩ D will be non-empty. This region is mapped in Figure 7.14 using

the Choi-Lam map LC . We see that in the point ρ(0, 0), the tangent to the red curve

is identical to the tangent of the blue curve. Also, in Figure 7.15 we use ρ0 = I/3, but

here we have chosen two states ρ1 = φ1φ
†
1 and ρ2 = φ2φ

†
2 corresponding to two random

product vectors φ1 ⊗ φ∗
1 and φ2 ⊗ φ∗

2 from the continuum of quartic zeros.
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Figure 7.14: Here ρ0 = I/3, ρ1 = ρ(0, 0) and

ρ2 = ρ1 + D(0, 0), as defined in (7.105). The

Choi-Lam map LC maps a curved surface into

a curved surface, and the only state to be

mapped onto the boundary is ρ1 = ρ(0, 0).
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Figure 7.15: Here ρ0 = I/3, and both ρ1 =

φ1φ
†
1 and ρ2 = φ2φ

†
2 are two pure states cor-

responding to two randomly chosen product

vectors φ1 ⊗ φ∗
1 and φ2 ⊗ φ∗

2 from the contin-

uum of quartic zeros.



Chapter 8

Numerical methods

For many of the problems in which we have made numerical investigations, we have

used various strategies to obtain solutions. Some of the essential background for the

numerical methods are here summarized.

8.1 Real representations

There is a simple isomorphic relation between the set of N×N Hermitian matrices HN ,

and the Euclidean real vector space R
N2
. This simplifies our calculations considerably,

and we have utilized this extensively throughout our numerical investigations. We can

describe the N2-dimensional set of Hermitian matrices HN by the vector space R
N2
,

so that any Hermitian matrix ρ ∈ HN is written as a real N2 × 1 vector x, and any

operator U on this space of Hermitian matrices is then represented by a real N2 ×N2

matrix M ∈ R
N4
. So effectively the operation Uρ = UρU † = ρ′ is replaced by Mx = y,

where y ∈ R
N2

represents the state ρ′.
Likewise, any linear operator L : HNA

�→ HNB
that maps the state ρ ∈ DNA

into

the state τ ∈ DNB
, can be represented by a real N2

B × N2
A matrix L. The map then

works by simple matrix multiplication with the vector x ∈ R
N2

A corresponding to ρ. So

we have Lx = y, where y ∈ R
N2

B then represents τ ∈ DNB
.

The matrix L corresponding to the map L can be calculated by transforming for

example the fundamental matrix basis Ei ∈ HNA
with 1 ≤ i ≤ N2

A, with L. With

corresponding bases Fi for system B, we get

LEi =
∑
j

LjiFj (8.1)

With the basis vectors orthonormal we get for the real matrix Lji

Lji = 〈Fj,LEi〉 (8.2)

Then the transposed map LT : HNB
�→ HNA

may be defined by the condition

〈LTY,X〉 = 〈Y,LX〉 ∀X ∈ HNA
, Y ∈ HNB

(8.3)

141
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The matrix representing the transposed map has matrix elements Lij = LT
ji, so trans-

position of the map L corresponds to transposition of the real matrix Lji.

The above presents a practical and flexible way of conducting the action of the

operator L. This scheme is done in such a way that the inner product is preserved.

For instance if Lρ = τ and Lx = y then 〈ρ, τ〉 = 〈x, y〉 where 〈ρ, τ〉 = tr(ρτ) is the

Hilbert-Schmidt inner product and 〈x, y〉 is the standard Euclidean dot product.

8.2 General optimization

In a general optimization problem we try to formulate the problem in such a way that

we are given a function f : G �→ R
+ from some set G onto the positive real numbers,

and seek an element x0 in G such that f(x0) < f(x) for all other x ∈ G. Typically, and

also in our cases the set G is represented as a subset of RN, often further specified by

a set of constraints, equalities or inequalities on elements of G. The domain G of f is

the search space and the elements of G are candidate solutions.

For most of our optimization problems we have used two alternative random search

algorithms. The first is a completely local random method and the other is a more com-

plex global optimization scheme, based on simulated annealing, which is an adaption

of the Metropolis algorithm.

Random search

The local random method is rather simple, but surprisingly effective for a lot of prob-

lems, especially if the search space is convex. From a point x it chooses a random, but

within the constraints allowed, direction A in the search space, and checks the point

x′ = x + εA, where ε is a step length, to see whether f(x′) < f(x). If this is the case,

it chooses the new point x′ as the starting point for the next iteration. If this is not

the case, it will try a given (but large) number of times to choose another random,

but within the constraints allowed, direction to achieve f(x′) < f(x). This procedure

continues through a chain of iterations x0, x1, . . . xn, until the process stops because no

further direction such that f(x′) < f(x) can be found within the numerical accuracy.

As the value of f(xi) drops, the step length must be adjusted accordingly. The method

is rather fast, since no gradients are calculated at any point.

Simulated annealing

For some cases the above method does not work very efficiently. This is especially the

case when the function f has many local minima. Instead we have implemented a sim-

ulated annealing routine. The simulated annealing method is a Metropolis algorithm,

and this means that it has a certain probability to take a step in a direction where the

objective function f increases, so it is less likely to converge at a local minimum. In

addition to the function f and state variable x ∈ R
N, it requires a control parameter T.

An annealing procedure that controls the reduction of T, and some schedule for how to

make the random changes in the configuration, are also made.
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We have used an approach suggested in [86]. We replace the state variable x by

a simplex of N + 1 points. The possible changes to the configuration are reflections,

expansions and contractions of the simplex. We add a positive random variable, pro-

portional to T, to the function value associated with each vertex, and subtract a similar

random variable from the function value of every proposed replacement point. Thus

the procedure will always accept a downhill move, but may sometimes accept uphill

moves. At a temperature T the simplex will expand to cover the region reachable at

that temperature. It then randomly samples points inside the region. As the tem-

perature decreases, so will the simplex, which is likely to contain the lowest minimum

encountered so far.

8.3 Finding product vectors in a subspace

Product vectors are completely essential to the study of entanglement, both in con-

nection with PPT states and entanglement witnesses. The problem of finding product

vectors in any generic subspace is in general a difficult one, so to be able to do this we

resort to numerical procedures. We describe here two different approaches which both

rely on solving an optimization problem.

Finding product vectors as a minimum double eigenvalue problem

One effective way of obtaining the product vectors in a given subspace U of CN, is to

construct a positive matrix M ∈ HN that projects onto the orthogonal complement

V = U⊥, i.e. ImgM = V . The matrix M could for instance, but not necessarily, be a

genuine projection operator onto V . We then find the product vectors ψ = φ⊗χ ∈ C
N

which have zero expectation value on M . They will then necessarily lie in U . So, for a
positive matrix M ∈ HN we want to have ψ = φ⊗ χ ∈ C

N such that

ψ†Mψ = 0 (8.4)

and we want ψ, and therefore φ and χ, normalized to one. We introduce the Lagrange

multipliers λ and μ, and define the function f = f(φ, χ) as

f =
∑
ij;kl

φ∗
iχ

∗
jMij;klφkχl − λ

(∑
k

φ∗
kφk − 1

)
− μ

(∑
k

χ∗
kχk − 1

)
(8.5)

We now want to find the local minima of the first term in f under the two constraints

given by the Lagrange multipliers. Taking the derivative with respect to the components

of φ and χ, and setting these equal to zero will ensure that we are dealing with a

minimum. Since φi, χj ∈ C we would normally have to take the derivative of both φk

and φ∗
k, but since f is a real valued function we have ∂f/∂φk = (∂f/∂φ∗

k)
∗, so when one

of them is zero, so is the other. The two equations that must be satisfied in order to

optimize f are then
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∂f

∂φ∗
i

=
∑
jkl

χ∗
jMij;klχlφk − λφi = 0

∂f

∂χ∗
j

=
∑
ikl

φ∗
iMij;klφkχl − μχj = 0

(8.6)

From the first equation in (8.6) we see that if we multiply from the left by φ∗
i and sum

over i, we get∑
i

φ∗
i

∂f

∂φ∗
i

=
∑
ij;kl

φ∗
iχ

∗
jMij;klφkχl − λ

∑
i

φ∗
iφi = ψ†Mψ − λφ†φ (8.7)

When we assume that φ and χ are normalized to one, and perform similar operations on

the second equation in (8.6) with χ∗
j , we find that the values of λ and μ at an extremum

are
λ = ψ†Mψ = μ (8.8)

We can introduce the matrices

Bik =
∑
jl

χ∗
jMij;klχl Cjl =

∑
ik

φ∗
iMij;klφk (8.9)

and write (8.6) simpler as

Bφ− λφ = 0

Cχ− μχ = 0
(8.10)

The gradients of φ and χ are given by

gφ ≡ Bφ− λφ

gχ ≡ Cχ− λχ
(8.11)

with λ given by (8.8) and using the starting vector for ψ = φ⊗ χ. Then we define new

vectors φ′ and χ′ as
φ′ = φ+ εgφ

χ′ = χ+ εgχ
(8.12)

To find the optimal step length ε we observe that to first order in ε we have

ψ′ = φ′ ⊗ χ′ ≈ ψ + εw ≡ s(ε) (8.13)

with w = φ⊗ gχ + gφ ⊗ χ. The step length ε with which we move along the gradients

can be found by minimizing

h(ε) =
s†Ms

s†s
(8.14)
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Taking the derivative of h with respect to ε and demanding that it is zero, we get

a second order equation ε2 + bε+ c = 0, where the factors b and c depend on ψ, w and

M . Since this equation may have two solutions we calculate both, and choose the one

which is the minimum. The product vector is then updated according to (8.12), and

the procedure is repeated (iterated) until a solution is found, i.e. ψ satisfies (8.4).

If the number of product vectors present in the subspace is finite, the procedure will

generally find the same product vectors repeatedly, so the procedure must usually be

done a large number of times with a sufficient spread in the starting points, in order to

find the whole set of product vectors.

We can now take M to be the projection operator P onto the range of the density

matrix ρ. The procedure will then find the product vectors in Ker ρ. Equivalently

M = Q, where Q is a projection operator onto the kernel, will return the product

vectors in Img ρ. We can use the same scheme to find product vectors in the range and

kernel of ρP using the projection operators P̃ and Q̃, as defined in (5.21).

Finding product vectors by general optimization

It is also possible to search for product vectors in a given subspace by more general

optimization methods. Empirically we experience that using the minimum double eigen-

value method outlined above, works quite well for most cases, but we have seen some

cases where it is unable to find all the product vectors, and where more conventional

optimization methods succeeds better.

We let the vectors zj ∈ C
N with j = 1, . . . ,m define an m-dimensional subspace

U of C
N = C

NA ⊗ C
NB. If the vectors zj is an orthogonal set we can construct a

projection operator onto the space they span, as a matrix P which is idempotent and

has m eigenvalues all equal to one. We can also likewise construct a projection operator

Q onto the (N −m)-dimensional orthogonal complement V = U⊥ in C
N. Usually, but

not necessarily, these are taken to be the range and kernel respectively, of some density

matrix ρ. If zj is not an orthogonal set then it can be made so by the Gram-Schmidt

process. If we want to find product vectors in the subspace defined by P , the function

f which must be minimized can be defined in two ways, and this gives rise to two

optimization strategies.

� For the first case we choose G = R
2(NA+NB) and create a random starting point

x ∈ G. From x we then construct two real NA × 1 vectors xA1 and xA2 , and two

real NB × 1 vectors xB1 and xB2 . The vector

w = (xA1 + ixA2)⊗ (xB1 + ixB2) (8.15)

will then be a product vector in C
N, but we will in general not have wQw† = 0,

which it must be in order for w ∈ U . So the function f used for the optimization is

f(x) = wQw† with w of the form (8.15) and Q as a fixed projection operator. So

we seek to keep w on product form while at the same time minimize the projection

onto U⊥.
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� For the second strategy we choose G = R
2N and we create a random starting point

x ∈ G which then defines

w = w(x) =

⎛⎜⎝x1

...

xN

⎞⎟⎠+ i

⎛⎜⎝xN+1

...

x2N

⎞⎟⎠ (8.16)

which in general will not be a product vector. The first step in the next phase

is to project the vector w onto the subspace U by using the projection operator

P . The projected vector w′ = Pw will then be in U , but it will still in general

not be a product vector. The expression (3.52) gives a set of equations that the

components of wi must satisfy in order for w to be a product vector. So in this

case we seek to satisfy this set of equations, whilst keeping w ∈ U . So the function
f becomes

f(x) =
∑
ij;kl

|wiwj − wkwl| (8.17)

where the indices i, j, k, l are summed over the appropriate combinations. For the

3× 3 system the set of equations that defines f is given by (6.2).

8.4 SL-equivalence of density matrices

Two generic states ρ1 and ρ2 will not, according to Definition 3.7, be SL-equivalent. To

establish whether two states are SL-equivalent, is in general a very difficult problem.

PPT states of rank (5, 5) in the 3× 3 system

We have in Chapter 6 seen that any generic five-dimensional subspace of C9, which

always contains six product vectors, can be transformed to the standard form (6.11).

This means that all such subspaces with identical invariants p, q, r, s are SL-equivalent

subspaces. For two density matrices ρ1 and ρ2 to be SL-equivalent according to Defini-

tion 3.7, their ranges Img ρ1 and Img ρ2 must be SL-equivalent. However, this condition

is necessary but not sufficient, as density matrices with the same range are generally

not SL-equivalent. So this scheme can only be used in a contrapositive way.

Note that though only u1, . . . , u5 and v1, . . . , v5 occur in (6.12), there will for generic

subspaces always be a sixth product vector. Since the numbering is completely coinci-

dental, all six product vectors must be taken into consideration when calculating the

invariants. Different permutations of the six product vectors will in general give differ-

ent si, so the invariants corresponding to all 6! = 720 permutations must be calculated.

In order to check if two states ρ1 and ρ2 can be SL-equivalent we must therefore find

the product vectors in Img ρ1 and Img ρ2, then transform these to the standard form

(6.11) and calculate the invariants si for all 720 permutations of the six product vec-

tors. If the invariants si so calculated are identical for any permutation, then Img ρ1
and Img ρ2 can clearly be transformed by SL× SL-transformations to the form (6.11),

with identical invariants.



8.5. OBTAINING PPT STATES WITH SPECIFIED RANK 147

General method

An option which might be used to establish whether two states are SL-equivalent in a

positive way, is to actually try and find the transformations. Given two density matrices

ρ1 and ρ2 which remain fixed, we can try to find a transformation V = VA ⊗ VB such

that
ρ1 = Vρ2V

† (8.18)

A linear transformation in GL(NA,C) has 2N
2
A free parameters, a product transforma-

tion in GL(NA,C) × GL(NB,C) will then have 2(N2
A + N2

B) parameters. So for this

optimization we use G = R
2(N2

A+N2
B) as search space. A total of 2N2

A and 2N2
B real

parameters then define VA and VB respectively, and we calculate V = VA⊗ VB for each

step of the optimization scheme to ensure that V is a product transformation. The

function f to be minimized is then

f(x) = tr
[
(ρ1 − Vρ2V

†)2
]

(8.19)

which is the Hilbert-Schmidt norm of the distance between ρ1 and ρ2, apart from a

square root which we avoid in order to ensure maximum numerical accuracy. We have

utilized this method to check for product transformations between various states, with

relatively good results. Since this optimization procedure gives the product transfor-

mations explicitly, presuming they exist, it is a good method for determining whether

a state is genuinely SL-symmetric or not, because the transformations then must have

to be trace preserving and have the special form (3.75), with V ∗
B = V −1

B .

8.5 Obtaining PPT states with specified rank

Producing PPT states with specified rank (m,n) for both ρ and ρP is an essential part

of our work on PPT states. The search for such states can be done quite generally, that

is without any constraints, or one may for instance fix the range of the states. Another

possibility is to search specifically for PPT states that are SL-symmetric.

General method

There are different ways of doing this, but the most obvious ways are based on min-

imizing a specified number of eigenvalues for ρ and ρP, or more precisely obtaining

values for these eigenvalues equal to zero. A normalized density matrix ρ on C
N can

be represented by a vector x ∈ R
N2−1 = G. The eigenvalues of ρ are then functions

of this vector, i.e. λk = λk(x). Since the partial transpose ρP is uniquely defined by

ρ, its eigenvalues λ̃k = λ̃k(x) will also depend on the same vector x. Assume that we

want to construct a rank (m,n) state. Then m0 = N − m of the eigenvalues λk of ρ

and n0 = N − n of the eigenvalues λ̃k of ρP must be equal to zero. We may introduce

an ordering where the index k sorts the eigenvalues λk and λ̃k according to increasing

values, λ1 < . . . < λN and λ̃1 < . . . < λ̃N . The fact that ρ(x) ∈ HN assures that the

eigenvalues λk and λ̃k are real, though some of them may be negative.
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We then want the first m0− 1 eigenvalues of ρ and the first n0− 1 eigenvalues of ρP

to be zero

λk = 0 k = 1, . . . ,m0

λ̃k = 0 k = 1, . . . , n0

(8.20)

We are also free to put conditions on the non-zero eigenvalues of ρ and ρP. We can for

instance specify their values

λk = ηk k = m0 + 1, . . . , N

λ̃k = η̃k k = n0 + 1, . . . , N
(8.21)

If we in particular chose ηk = 1/m for all the non-zero eigenvalues of ρ, we obtain

a density matrix proportional to a rank m projection operator. The minimization

function f is now

f(x) =

m0∑
k=1

|λk|2 +
n0∑
k=1

|λ̃k|2 (8.22)

Note that in theory we could end up with a density matrix with smaller ranks than

intended, because we usually do not specifically demand that the eigenvalues λk and

λ̃k of (8.21) should be non-zero. In fact in many searches where there are constraints

which cannot be met, or are very difficult to satisfy, there is a tendency that many of

the eigenvalues λk and λ̃k of (8.21) approach zero. Alternative methods for obtaining

PPT states with specified ranks, that are based on calculation of gradients, have been

constructed [55]. We have used the techniques described above to produce a large

number of PPT states of various ranks.

PPT states with specified range

An m-dimensional subspace of CN can be described by m linearly independent vectors

zi ∈ C
N with components expressed in the N × m matrix Z. The dimension of the

set of complex rank m matrices is 2m2, so in order to find rank (m,n) PPT states we

choose to use the search space G = R
2m2

. We then construct a complex m×m matrix

X out of the search vector x ∈ R
2m2

, and define the N×m matrix M = ZX which then

contains general linear combinations of the five vectors zj, with coefficients defined by

X. The matrix
ρ = MM † = Z(XX†)Z† (8.23)

will then be a positive and Hermitian matrix with a range spanned by zj. It will in

general not be normalized so we must ensure that tr(ρ) = 1 for each iteration. Thus

the constraints we need on ρ are always ensured. In general ρP will not be positive, so

we seek to minimize the n0 = N − n smallest eigenvalues of ρP to zero

f(x) =

n0∑
k=1

|λ̃k|2 (8.24)
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SL-symmetric PPT states

PPT states with the property that they are SL-symmetric are in general difficult to

obtain. A way of finding such states by random optimization is to combine the search

spaces G1 = R
N2

AN2
B−1 and G2 = R

2(N2
A+N2

B). We then seek to minimize the function

(8.19), with ρ1 = ρ and ρ2 = ρP governed by G1, and V governed by G2. Within the

same procedure we must also minimize (8.22), in order to ensure that ρ is a PPT state

of rank (m,n). A solution x = x0 ∈ R
N2

AN2
B+2(N2

A+N2
B)−1 will then define a rank (m,n)

PPT state ρ and an SL× SL-transformation that transforms ρ into ρP.

8.6 Finding extremal entanglement witnesses

The discussion in Section 7.4.2, along with Theorems 7.4 and 7.5, motivate a search

algorithm for finding extremal entanglement witnesses. Starting from an initial witness

W = W0 ∈ int(S◦), which might be the maximally mixed state I/N , we proceed down

through a hierarchy of faces on S◦ of decreasing dimensions. The search is in principle

guaranteed to converge to an extremal witness in a finite number of iterations.

Algorithm 1: Finding an extremal entanglement witness

Precondition: Choose an initial witness W = W0 ∈ int(S◦) and construct UW

1. while dimKer(UW ) > 1

2. choose a Γ ∈ Ker(UW )

3. if tr(Γ) �= 0

4. redefine Γ← Γ− tr(Γ)W

5. endif

6. find tc as the maximal t such that W + tΓ ∈ S◦

7. redefine W ← W + tcΓ

8. locate all new zeros of W and construct an updated UW

9. endwhile

return W

The number of possible search directions Γ is reduced in each iteration as Ker(UW ) is

reduced. The main work in the algorithm is point number six, i.e. to find the boundary

of the face defined by UW. Given the chosen direction Γ on the face, this is essentially

finding the point tc which minimizes (φ ⊗ χ)†W (t)(φ ⊗ χ) for W (t) = W0 + tcΓ. This

expectation value should turn to zero at the boundary of the face, in order to become

negative once W (t) /∈ S◦.

8.7 Unital and trace preserving positive maps

In Section 7.7.1 we assumed that in order to transform a positive map LW to a unital

and trace preserving form L̃W, we can transform the corresponding witness such that

W �→ W̃ = (U ⊗ V )W (U ⊗ V )† (8.25)
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Further, we derived a set of equations which the two operators U and V must satisfy

LW (U †U) = (V †V )−1 LT
W (V †V ) = (U †U)−1 (8.26)

In order to solve (8.26) we first find positive Hermitian matricesX = U †U and Y = V †V
solving the equations

LWX = Y −1 LT
WY = X−1 (8.27)

Then we solve the equations

U †U = X V †V = Y (8.28)

for U and V, and thus the transformation matrix U ⊗ V. The general solutions will be

U = U1U2 V = V1V2 (8.29)

where U1 and V1 are arbitrary unitary matrices, and U2 =
√
X, V2 =

√
Y are the

uniquely defined positive Hermitian square roots. Equation (8.27) makes sense because

the matrices X = U †U and Y = V †V are strictly positive as long as U and V are non-

singular, and the maps LW and LT
W as well as the inversions X �→ X−1 and Y �→ Y −1,

transform strictly positive matrices into strictly positive matrices.

The method suggesting itself for solving Equation (8.27) is to iterate the equations.

Given an approximate solution Xk for X we try to compute a better approximation

Xk+1 by a series of four transformations,

Xk �→ Sk = LWXk �→ Yk = S−1
k �→ Tk = LT

WYk �→ Xk+1 = T−1
k (8.30)

We start the iterations for example with X0 = IA, where IA is the identity matrix in

system A. The first two steps then calculate Y0, and eventually X1 as the first improved

solution of X. A sufficient condition for the convergence of Xk and Yk to unique limits

X and Y is that the transformation Xk �→ Xk+1 is contractive. A small perturbation

ΔXk of Xk transforms linearly as

ΔXk+1 = D(ΔXk) (8.31)

where the linear map D is the derivative of the non-linear transformation Xk �→ Xk+1.

The transformation is contractive if all eigenvalues ofD are smaller than one in absolute

value. Now D is a composition of four linear maps,

D = D4L
T
WD2LW (8.32)

where D2 and D4 are linearizations of the matrix inversions

D2(ΔSk) = −S−1
k (ΔSk)S

−1
k

D4(ΔTk) = −T−1
k (ΔTk)T

−1
k

(8.33)

The examples of extremal positive maps LW and LT
W that we have studied numerically

are strongly contractive, and we find in practice that this is enough to ensure that D



8.7. UNITAL AND TRACE PRESERVING POSITIVE MAPS 151

is contractive, with eigenvalues typically no larger than about 0.5, even though D2 and

D4 are not contractive.

We have used this iteration scheme on a large number of numerically produced

extremal entanglement witnesses [71], and also on many non-extremal witnesses con-

structed as convex combinations of the extremal ones. Numerically our attempts, which

are in the thousands, always converge, and it also appears that for a given witness W

the solution X is unique, independent of the initial guess X0.
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Summary and outlook

Presented here is a summary of the four papers that make up the main body of this

thesis. The summary consists of some background material, but the main emphasis is

on the results, and mathematical details is avoided as much as possible. Also, some of

the loose threads and still unresolved issues, are discussed.

Paper I

In this paper the focus is on the entangled PPT states in 3× 3 dimensions, and mainly

those of rank four and five.

We first review the UPB construction, based on orthogonal product vectors in the

kernel, before we describe a different approach, in which the product vectors need not

be orthogonal. This approach also throws some new light on a set of conditions that

limit the selection of product vectors to be used for constructing entangled PPT states

of rank (4, 4).

The study of the entangled PPT states of rank (5, 5) is then a natural progression,

and the knowledge gained from the rank (4, 4) states can be used as a starting point.

We show how to construct entangled PPT states of rank (5, 5) from the rank (4, 4)

states. We accomplish this by use of perturbation theory. In this way, we obtain rank

(5, 5) PPT states infinitesimally close to the boundary of the surface of such states.

This construction also explains why states of rank (5, 4) cannot be found in the generic

case.

We discuss how to determine numerically the dimensions of surfaces of PPT states

of fixed rank and range. For the surface of PPT states with rank (5, 5), we find that the

dimensions are consistent with a counting of the independent constraints involved in

the above perturbation scheme. Though we find an eight-dimensional surface of rank

(5, 5) PPT states in every generic five-dimensional subspace, we have not found any

general construction scheme for such states.

In order to construct generic PPT states of rank (5, 5) which are not infinitesimally

close to the rank (4, 4) boundary states, we present a method for doing numerical

integration of equations of motion for curves on the surface of rank (5, 5) PPT states.

In this way one may study for example the curvature of this surface, or how a curve on

the surface approaches the boundary.

An interesting result is that for a generic PPT state defined by the UPB construc-

tion, the number of product vectors in the kernel needed to specify the state, is in

general smaller than the dimension of the kernel. For instance, generic PPT states of

153



154 SUMMARY AND OUTLOOK

rank (6, 6) in the 4×4 system have 20 different product vectors in their ten-dimensional

kernel, but the number of product vectors needed to specify the state is seven. This

does not however apply to PPT states with no product vectors in the kernel, like the

generic rank (5, 5) PPT states. This result raises new interesting questions to be an-

swered by future research, for example, how to identify finite sets of product vectors

that define PPT states with these product vectors in their kernel.

As mentioned, it is still an unresolved problem how to construct general rank five

PPT states that are not close to the rank four states. We are even farther from a full

understanding of higher rank PPT states in 3× 3 dimensions.

The extremal PPT states of rank four are all generic, in the sense that there exists

a standard form for these states, and their form is derived relatively straight from the

UPB construction. For the extremal PPT states of rank five however, there also in

addition to the generic cases, exist a whole plethora of non-generic types. To some

extent our understanding of many of these non-generic forms is better than for the

generic type. This is the main theme of Paper 4.

Paper II

In this paper we mainly study extremal entanglement witnesses in bipartite systems

of dimensions N = NANB. We define the cone of entanglement witnesses as the dual

of the cone of the unnormalized separable density matrices, this means that tr(Wρ) =

(φ⊗ χ)†W (φ⊗ χ) ≥ 0 whenever W is a witness and ρ is a pure product state ρ = ψψ†

with ψ = φ ⊗ χ. A very essential feature is that the expectation value tr(Wρ) as a

function of the vectors φ ∈ C
NA and χ ∈ C

NB is a positive semidefinite biquadratic form

f(φ, χ). Every zero of a positive biquadratic form, i.e. (φ0, χ0) for which f(φ0, χ0) = 0,

imposes strong real and linear constraints on the form. In every direction at the zero

the first derivative must vanish and the second derivative must be non-negative. If the

second derivative vanishes, the third derivative must vanish and the fourth derivative

must be non-negative. The real and symmetric Hessian matrix (which contains the

second derivatives) at the zero, must be positive semidefinite. The eigenvectors of

the Hessian with zero eigenvalue, if such exist, we call Hessian zeros. A zero of the

biquadratic form f(φ, χ) is called quadratic if it has no Hessian zeros, otherwise it is

called quartic. We call a witness quadratic if it has only quadratic zeros, and quartic

if it has at least one quartic zero. An important result we prove is that a witness is

extremal if and only if no other witness has the same set, or a larger set, of zeros and

Hessian zeros.

We use the complete set of constraints above, defined by the zeros and Hessian zeros

of a witness, in order to test for extremality. If the witness is not extremal, the test

gives all the directions in the space of Hermitian matrices in which we may search for

witnesses that have more zeros or Hessian zeros, and hence are more nearly extremal.

We have exploited this fact to construct an algorithm to find extremal witnesses. A

finite number of iterated searches in random directions will then lead to an extremal

witness. We find that the distinction between quadratic and quartic zeros is completely

essential when we classify extremal witnesses. Nearly all extremal witnesses found in our
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random searches by using Algorithm 1 from Section 8.6, are quadratic. We derive the

minimum number of zeros a quadratic witness must have in order to be extremal, and

nearly all of the quadratic extremal witnesses have this minimum number of zeros. To

our knowledge, extremal witnesses of generic type have never been constructed before,

even though they are by their very nature, far the most common. We have also used

Algorithm 1 to find some extremal witnesses with more than the minimum number of

zeros, and we regard these as non-generic.

The facial structure of the convex set of separable states and the convex set of

witnesses are closely related, and this is clearly exposed in the algorithm we have

constructed. The zeros of a witness, whether quadratic or quartic, always define an

exposed face of the set of separable states. The other way around, an exposed face of

the set of separable states is defined by a set of pure product states that are the zeros

of some witness, in fact, they are the common zeros of all the witnesses in a face of

the set of witnesses. The existence of witnesses with quartic zeros is the root of the

existence of non-exposed faces of the set of witnesses. It is unknown whether the set of

separable states has unexposed faces.

Related to the structure of faces on S are many important unsolved problems.

We know that any state ρ ∈ D can be decomposed into a convex sum of maximally

r = rank(ρ) states of rank one. This is a considerable progress from the maximum given

by Carathéodorys theorem which is N2, with N = NANB equal to the dimension of the

Hilbert space. This fact is entirely due to the facial structure of D. The maximum

number of pure product states needed to write a separable state in the same manner

is unknown, and this is due to the unknown structure of the faces of S. Because the

set of separable states S and the set of entanglement witnesses S◦ are dual sets, the

faces of these convex sets are related, and so a way of understanding the faces of S is

to study the faces of S◦. Another unsolved problem is the following: We have found a

procedure for constructing an extremal witness from its zeros and Hessian zeros, but an

arbitrarily chosen set of zeros and Hessian zeros does not in general define an extremal

entanglement witness, i.e. they do not define an exposed face on S. This is seen by

studying the simplex faces that zeros of entanglement witnesses define, compared to

the simplexes defined by random sets of zeros. The key question is how to choose a set

of zeros and Hessian zeros, such that they are zeros of an entanglement witness.

We discuss some properties of optimal witnesses, and try to relate these to extremal

witnesses. The minimum number of zeros of a quadratic extremal witness increases

faster than the Hilbert space dimension. Since a witness is optimal if its zeros span the

Hilbert space C
N, this implies that in all but the lowest dimensions witnesses may be

optimal and yet be very far from extremal. We also briefly discuss the so-called SPA

separability conjecture in lieu of the results of our numerical investigations.

By studying the extremal entanglement witnesses we have made some progress to-

wards understanding the convex sets of witnesses and separable mixed states. But this

has also made the complexity of the problem even more clear than it was before. The

main complication is the fact that zeros of extremal witnesses may be quartic, and since

this opens up an almost unlimited range of variability among the quartic witnesses, it

is a difficult problem. Nevertheless we believe that it is useful to pursue the study of



156 SUMMARY AND OUTLOOK

extremal witnesses in order to learn more about the geometry of the set of separable

states, and it is rather clear that a combination of analytical and numerical methods

will be needed also in future work.

Paper III

In this paper we are to some degree more occupied with positive maps rather than

entanglement witnesses. There is a one-to-one correspondence between positive maps

and entanglement witnesses, often called the Choi-Jamiolkowski isomorphism, which

identifies a unique positive map LW to each entanglement witness W.

A very useful property of maps is unitality, which means that a map always carries

the identity into the identity, i.e. LI = I. This is useful since it provides a fixed point

for the map. A map may also be trace preserving, which means that for any state ρ we

have tr(ρ) = tr(Lρ). Since a mixed state ρ intrinsically carries a probability distribution

it is important that the mapped state Lρ also does. We first argue that every positive

map LW may be transformed into a form which is both unital and trace preserving

through a product transformation of the corresponding entanglement witness W. If the

witness lies in the interior of S◦, which means that it has no zeros, the existence of

such a product transformation has already been proved in the literature. It is however

witnesses lying on the boundary ∂S◦which clearly represent the most interesting cases.

We present an iteration scheme for computing the transformation numerically, and we

find in practice for the 3 × 3 system, that the scheme works well even for extremal

witnesses and other witnesses lying on ∂S◦. We find numerically that the unital and

trace preserving form of a positive map is unique up to unitary product transformations,

and that they are all contractive.

In paper II, we studied extremal entanglement witnesses in dimension 3 × 3 by

constructing numerical examples of generic extremal non-negative biquadratic forms.

These are very complicated, and we do not know how to handle them other than

by numerical methods. However, the corresponding extremal positive maps can be

presented graphically, as we have done in this paper. We first present plots related

to two different extremal entanglement witnesses in 3 × 3 dimensions. We produce

the corresponding positive map L : H3 → H3, and then plot various two-dimensional

sections in order to illustrate how the image LD3 lies inside D3. The first example is

a randomly chosen generic extremal entanglement witness with quadratic zeros, found

in numerical searches done in paper II. We then repeat this scheme for a version of

the Choi-Lam map with entanglement witness WC = Ω(1, 0, 1; 0), where Ω(a, b, c; θ) is

the generalized Choi-Lam witness. This witness is extremal but highly non-generic,

having only quartic zeros. It has three isolated quartic zeros, and one continuous two-

dimensional set of zeros which are necessarily quartic. The most important feature of

the plots is related to the zeros of the two witnesses. A zero (φ0, χ0) of W naturally

defines a pure state φ0φ
†
0 in D3, which is mapped by the corresponding map LW to the

boundary of D3. In particular, a generic extremal witness in 3× 3 dimensions, like the

one presented here, has nine zeros (φi, χi), defining a simplex in D3 with nine vertices

φiφ
†
i which are mapped to a simplex in D3 with nine vertices LW (φiφ

†
i ) touching the
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boundary of D3 from the inside.

One third example is based on the study of optimal witnesses by Lewenstein et

al. [78]. They describe a method for constructing optimal witnesses in the 2×4 system.

We have utilized this method to create such a witness, and then from this derived a

structure of extremal quartic witnesses. From one of these extremal quartic witnesses

we have constructed the corresponding positive map L : H2 �→ H4, and then proceeded

to perform various plots. It should be noted that while both maps in the 3× 3 system

are unital and trace preserving, this is not the case for this map in the 2× 4 system.

We should emphasize that we have studied here only 3×3 and 2×4 dimensions, which

are the simplest non-trivial cases. In higher dimensions, the symmetric dimensions

NA×NB with NA = NB > 3 are clearly the most interesting. The complexity increases

fast with the dimension, because the simplex of pure states in D3 corresponding to the

quadratic zeros of extremal witnesses, becomes a non-simplex polytope, i.e. with a

number of vertices larger than N2
A.

We believe that the geometrical way of thinking illustrated here, may be a fruitful

approach when one wants to construct examples of extremal maps and entanglement

witnesses. It may be that the increase in complexity with increasing dimension, which

is a well known phenomenon, is easier to handle geometrically than by other methods.

Paper IV

We continue our studies of PPT states of rank (5, 5) in the 3× 3 system. Though the

classification of the extremal PPT states of rank four in these dimensions is believed to

be complete and rather simple, the structure of the extremal PPT states of rank five

appears much more complex, especially since there in this case exists a whole range of

non-generic states.

The equivalence between PPT states under SL × SL-transformations is a very im-

portant concept. The special cases where ρ and its partial transpose ρP have this SL-

equivalence are SL-symmetric states. We define a state ρ to be genuinely SL-symmetric

if it is SL-equivalent to a state τ = τP. We then show that genuine SL-symmetry

implies SL-symmetry, and that in the case of genuine SL-symmetry at least one SL-

transformation from ρ to ρP must have a special diagonal block form and in addition

be trace preserving. We argue that SL-symmetric states can be found numerically, but

only by conducting specific searches.

We have randomly produced 50 SL-symmetric PPT states of rank (5, 5), which apart

from being SL-symmetric, are generic states. These searches are rather special in the

sense that we look for product transformations that are trace preserving. This choice is

motivated by the fact that we might in this way expect to find states that are genuinely

SL-symmetric, and indeed about half of these 50 states turned out to be that.

Generic extremal PPT states of rank (5, 5) have no product vectors in their kernel.

How to construct PPT states that have a non-zero number nker of product vectors in

the kernel is discussed in Paper 1 [57]. We here develop these matters further. These

investigations is essentially a study of pairs of orthogonal subspaces of C9, rather than

the states themselves. We construct non-generic orthogonal subspaces U and V with
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|U| = 5 and |V| = 4, that allow product vectors which are orthogonal to U , i.e. they

lie in V . We then construct PPT states of rank (5, 5) with Img ρ = U and Ker ρ = V
with nker ranging from one to four. For a PPT state we always have that the number

of product vectors in Ker ρ and Ker ρP are equal, and if the number of product vectors

in Img ρP is ñimg, we can characterize a PPT state by {nimg, ñimg;nker}.
The {6, 6, nker} states we have constructed in this way are always extremal if nker =

1, 2, while the cases nker = 3, 4 always return non-extremal states. For the case nker = 2

it is also possible to have nimg = ñimg =∞, because this construction allows an infinite

set of linear combinations of product vectors, that are again product vectors. These

cases return both extremal and non-extremal states.

For the case nker = 4 we find an interesting new analytical construction of all rank

four extremal PPT states, up to SL-equivalence, where they appear as boundary states

on one single five dimensional face on the set of normalized PPT states. The interior

of the face consists of rank five states, a simplex of separable states surrounded by

entangled PPT states. All these states are real matrices, symmetric under partial

transposition.

Also, a very special subspace is collected from a small number of {2, 2; 1} states

found in random searches for SL-symmetric states. We describe analytically a set of

states found by transformation to a standard form of one particular rank (5, 5) non-

extremal PPT state in this subspace. After transformation to this standard form the

rank (5, 5) state lies inside a circle bounded by extremal rank (4, 4) PPT states. The

interior of the circle consists entirely of rank (5, 5) PPT states, each of which has exactly

one product vector in its kernel, and this product vector is common to all the rank (4, 4)

and rank (5, 5) states. Each of the rank (4, 4) states has five additional product vectors

in its kernel, these are different for the different states. The rank (4, 4) states have no

product vectors in their ranges, whereas all the rank (5, 5) states have one common

range containing exactly two product vectors. All the rank (4, 4) and rank (5, 5) states

are symmetric under partial transposition. We have also produced several extremal

{2, 6; 1} PPT states of rank (5, 5) in this subspace.

It is known that a subspace of C9 of dimension five cannot be an entangled subspace,

i.e. it must contain at least one product vector [40]. As mentioned, the generic number

nimg of product vectors in such a five-dimensional subspace is six. All our standard forms

have either nimg = 6 or nimg = ∞. In order to gain a more complete understanding of

the non-generic PPT states in the 3 × 3 system, it is important that the structure of

orthogonal subspaces U and V of C9 is further analyzed, especially with regards to the

number of product vectors that these subspaces contain.

For any five-dimensional subspace of C9 to contain less than six product vectors,

the set of equations (3.52) must have degenerate solutions. An analysis regarding these

matters is given in [56].
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[76] D.Chruściński and G. Sarbicki

“Exposed positive maps: A sufficient condition”

J. Phys. A:Math. Theor. 45, 115304 (2012)
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Deciding whether a mixed quantum state is separable or entangled is a difficult problem in general. Separable
states are positive under partial transposition [they are positive-partial-transpose (PPT) states], but this simple
test does not exclude all entangled states. In order to understand the entangled PPT states, having so-called bound
entanglement, we want to study the extremal PPT states. An extremal PPT state is either a pure product state,
then it is separable, or it is entangled, in which case the state and its partial transpose must still be rather low-rank
density matrices, although it is known that the rank must be at least 4. In a previous paper we presented a complete
classification of the rank-4 entangled PPT states in dimension 3× 3, generalizing the construction by Bennett
et al. from unextendible sets of orthogonal product vectors. In the present paper we continue our investigations of
the low-rank entangled PPT states, mostly in dimension 3× 3, using a combination of analytical and numerical
methods. We use perturbation theory in order to construct rank-5 entangled PPT states close to the known rank-4
states, and in order to compute dimensions and study the geometry of surfaces of low-rank PPT states. We exploit
the close connection between low-rank PPT states and product vectors. In particular, we show how to reconstruct
a low-rank PPT state from a sufficient number of product vectors in its kernel. It may seem surprising that the
number of product vectors needed may be smaller than the dimension of the kernel.
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I. INTRODUCTION

Quantum entanglement between subsystems of a composite
physical system, independent of spatial separation, is a
phenomenon which clearly distinguishes quantum physics
from classical physics [1]. Entangled quantum states show
correlations between local measurements on the subsystems
which cannot be modeled within classical physics with local
interactions, since they violate Bell inequalities [2,3], or even
equalities such as the Greenberger-Horne-Zeilinger (GHZ)
equalities in a three-particle system [4,5].
A pure classical state of a composite system has no

correlations, since classical measurements are deterministic
and disturb the system minimally. A statistical ensemble of
pure classical states, what we may call a mixed classical state,
can have correlations, but these correlations cannot violate
Bell inequalities, by definition.
The only pure quantum states that are not entangled are the

pure product states, which resemble pure classical states in that
they have no correlations at all. By definition, amixed quantum
state is a statistical ensemble of pure quantum states, and it is
said to be separable if it can be mixed entirely from pure
product states. The separable mixed states are not entangled,
since they cannot violate Bell inequalities, and the entangled
mixed states are precisely those that are nonseparable.
The separability problem, how to characterize the set S

of separable mixed states and decide whether a given mixed
state is separable or entangled, is known to be a difficult
mathematical problem [6]. It motivates our work presented
here and in previous papers [7–10], although we have studied
not so much the separable states directly as the larger class of
mixed states called positive-partial-transpose (PPT) states.
The separable mixed states have the property that they

remain positive after partial transposition; they are PPT states,
for short. This is known as the Peres separability criterion
[11]. It is a powerful separability test, which can be used,

for example, to prove that any pure quantum state is either
entangled or a pure product state. The set P of PPT states is
in general larger than the set S of separable states, but the
difference between the two sets is surprisingly small in low
dimensions, and in the very lowest dimensions, 2× 2, 2× 3,
and 3× 2, there is no difference [12,13].
Entanglement is regarded as a physical resource which can

be used for special tasks that cannot be performed otherwise,
such as quantum teleportation and dense coding, quantum
cryptography, or quantum computing. For such purposes one
may want pure entangled states, and then it is useful to have
methods for distilling out a number of entangled pure states
from a larger number of entangled mixed states [14]. A special
property of the entangled PPT states is that their entanglement
is bound—it cannot be distilled into the entanglement of pure
states [15,16].
Several groups are now studying experimentally the bound

entanglement in entangled PPT states [17–20]. This is another
motivation for our theoretical studies of the PPT states and the
nature of their entanglement.
The set of PPT states is convex, and since all members

of a convex set are convex combinations of the extremal
points of the set, it is a natural idea to study the extremal
PPT states. Our approach is to construct numerical examples
and try to understand them by analytical means. The extremal
PPT states are easily accessible for numerical study, since it
is straightforward to test for both the PPT property and the
extremality. The extremality condition for a PPT state implies
that both the density matrix and its partial transpose must have
rather low rank, and this motivates us to study more generally
low-rank PPT states.
We know something about the extremal PPT states already

from the fact that S ⊂ P ⊂ D, where S is the set of separable
states, P the set of PPT states, and D the full set of density
matrices, and from the fact that all three sets are convex.
By definition, the extremal points of S are the pure product
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states, and since these are also extremal points of D, they
must be extremal points of P . All other extremal PPT states
are entangled, because a separable extremal PPT state must be
extremal inS and hence a pure product state. Thus the extremal
PPT states that are not pure product states are immediately
interesting as examples of entangled PPT states.

A. The relation between PPT states and product vectors

There is a very close connection between PPT states
and product vectors, which has previously been used, for
example, to prove the separability of sufficiently low-rank
PPT states [21]. In the present work we have exploited this
connection further.
Bennett et al. [22,23] introduced a method for constructing

low-rank mixed states that are obviously entangled PPT states,
using what they called unextendible product bases (UPBs).
From a UPB, defined as a maximal set of orthogonal product
vectors which is not a complete basis of the Hilbert space, one
constructs an orthogonal projectionQ and the complementary
projection P = 1 − Q. Then ρ = P/(TrP ) is an entangled
PPT state.
The UPB construction is most successful in the special

case of rank-4 PPT states in 3× 3 dimensions. In Ref. [10]
we argued, based on evidence from numerical studies, that
an extended version of the UPB construction, including
nonunitary but nonsingular product transformations on the
states, is general enough to produce all rank-4 entangled PPT
states in 3× 3 dimensions. This conjecture has since been
proved independently by Skowronek [24] and by Chen and
Djokovic [25].
Unfortunately, attempts to apply theUPBmethod directly in

higher dimensions fail, even when the kernel contains product
vectors, because there cannot exist a sufficient number of or-
thogonal product vectors. The orthogonality is essential in the
construction by Bennett et al. of the PPT state as a projection
operator. We would like to generalize the construction in such
a way that it works without the orthogonality condition.
One possible generalization is to construct projection

operators as more general convex combinations, or even as
nonconvex linear combinations, of pure product states. This
idea is explored in a separate paper [26].
In the present paper we discuss in general the constraints

imposed on a PPT state ρ by the existence of product vectors
in its kernel, and we show that these constraints are so strong
that they actually determine the state uniquely. A surprising
discovery is that in cases where the kernel contains a finite
overcomplete set of product vectors, the state ρ can be
reconstructed from only a subset of the product vectors, and
the number of product vectors needed may even be smaller
than the dimension of the kernel.
From this point of view, the important question is exactly

what conditions the product vectors must satisfy in order for
the constraint equations to have a solution forρ.We can answer
this question in the familiar special case of rank-4 PPT states
in 3× 3 dimensions, but not in other cases. We consider this
an interesting problem for future research.

B. Outline of the paper

The contents of the present paper are organized as follows.
First we review some linear algebra, in particular, degenerate

perturbation theory, in Sec. II. The main purpose is to
introduce notation and collect formulas for later reference.
In Sec. III we point out the very stringent conditions that
follow from the existence of product vectors in the kernel of
the lowest rank PPT states. These conditions imply that not
just any subspace containing product vectors may serve as the
kernel of a PPT state, and the PPT state seems to be uniquely
determined by the product vectors in its kernel. In fact, the
state is determined as soon as a minimum number of product
vectors is specified, and the required number may even be
smaller than the dimension of the kernel.
In Sec. IV we discuss the rank-4 PPT states in 3× 3

dimensions. We review the UPB construction, based on
orthogonal product vectors in the kernel, before we describe
an approach which is different in that the product vectors need
not be orthogonal. The new approach also throws new light on
a set of reality conditions that limit the selection of product
vectors to be used for constructing rank-4 PPT states.
In Sec. V we discuss the rank-5 PPT states in 3× 3

dimensions. We find an eight-dimensional surface of rank-5
PPT states in every generic five-dimensional subspace, but we
have not found any general method to construct such states.
However, we show how to construct rank-5 PPT states by
perturbing rank 4-PPT states. Again, the product vectors in
the kernel of the rank-4 state play an important role in our
construction of the rank-5 states.
In Sec. VI we discuss rank-6 PPT states in 4× 4 dimen-

sions. The kernel of such a state has dimension 10 and contains
20 product vectors. The remarkable result we find is that the
state can be constructed from only seven product vectors in
the kernel. An arbitrary set of seven product vectors does not
produce a rank-6 PPT state, but we do not know how to select
sets of product vectors that can be used in such a construction.
In Sec. VII we discuss briefly how to determine numerically

the dimensions of surfaces of PPT states of fixed rank. We
find that the dimensions are given by a simple counting of
independent constraints, except for the very lowest rank states,
for which the constraints are not independent.
Finally, we discuss in Sec. VIII how to study a surface of

PPT states by numerical integration of equations of motion for
curves on the surface. In this way one may study, for example,
the curvature of the surface, or how a curve on the surface
approaches the boundary of the surface.

II. SOME BASIC LINEAR ALGEBRA

In this section we review some linear algebra, mainly in
order to introduce notation and collect formulas for later use.
In particular, degenerate perturbation theory is a central theme
in the present paper. We define projection operators acting on
the space of Hermitian matrices which we use in our numerical
calculations.

A. Density matrices

Let HN be the set of Hermitian N × N matrices. It has a
natural structure as a real Hilbert space of dimension N2 with
the scalar product

(X,Y ) = Tr(XY ). (1)
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In order to do numerical calculations we may choose an
orthonormal basis ofHN and represent the Hermitian matrices
as real vectors.
A mixed state, or density matrix, is a positive Hermitian

matrix of unit trace. We define

D = DN = {ρ ∈ HN | ρ � 0 , Tr ρ = 1}. (2)

For a given ρ ∈ D we define P and Q = 1 − P as the
orthogonal projections onto Img ρ, the image of ρ, and
Ker ρ, the kernel of ρ, respectively. The relations Pρ = ρP =
PρP = ρ and Qρ = ρQ = QρQ = 0 will be used in the
following.
Thatρ is positive, or positive semidefinite, written asρ � 0,

means that all the eigenvalues of ρ are non-negative. An
equivalent condition is that ψ†ρψ � 0 for all ψ ∈ CN . It
follows from the last inequality and the spectral representation

ρ =
N∑

i=1
λi ψiψi

†, (3)

in terms of eigenvalues λi and orthonormal eigenvectors ψi of
ρ, that ψ†ρψ = 0 if and only if ρψ = 0.
The definition of positive Hermitian matrices by inequali-

ties of the formψ†ρψ � 0 implies thatD is a convex set. That
is, if ρ is a convex combination of ρ1,ρ2 ∈ D,

ρ = λρ1 + (1− λ)ρ2 with 0 < λ < 1, (4)

then ρ ∈ D. Furthermore, since Ker ρ = {ψ | ψ†ρψ = 0}
when ρ � 0, it follows that

Ker ρ = Ker ρ1 ∩ Ker ρ2, (5)

independent of λ, when ρ is a convex combination as above.
Since Ker ρ is independent of λ, so is Im ρ = (Ker ρ)⊥.
A convex set is defined by its extremal points: those points

that are not convex combinations of other points. The extremal
points of D are the pure states of the form ρ = ψψ†.

1. Finite perturbations

In the following, let ρ ∈ D, and define projections P onto
Im ρ andQ = 1 − P onto Ker ρ. Consider a perturbation

ρ ′ = ρ + εA (6)

where A �= 0 is Hermitian, and TrA = 0 so that Tr ρ ′ = Tr ρ
[replace A by A − (TrA) ρ if TrA �= 0]. The real parameter
ε may be finite or infinitesimal, so we first consider the case
when ε is finite.
We observe that if ImA ⊂ Im ρ, or equivalently, if

PAP = A, (7)

then there will be a finite range of values of ε, say ε1 � ε � ε2
with ε1 < 0 < ε2, such that ρ ′ ∈ D and Im ρ ′ = Im ρ. This
is so because the eigenvectors of ρ with zero eigenvalue will
remain eigenvectors of ρ ′ with zero eigenvalue, and all the
positive eigenvalues of ρ will change continuously with ε into
eigenvalues of ρ ′.
The other way around, if ρ ′ ∈ D for ε1 � ε � ε2 with ε1 <

0 < ε2, then ρ ′ is a convex combination of ρ + ε1A and ρ +
ε2A for every ε in the open interval ε1 < ε < ε2. Hence Im ρ ′

is independent of ε in this interval, implying that ImA ⊂ Im ρ

and PAP = A.
This shows that ρ is extremal in D if and only if there

exists no A �= 0 with TrA = 0 and PAP = A. Another
formulation of the condition is that there exists no ρ ′ ∈ D
with ρ ′ �= ρ and Im ρ ′ = Im ρ. A third equivalent formulation
of the extremality condition is that the equation PAP = A

without the condition TrA = 0 has A = ρ as its only solution
(up to proportionality).

2. Infinitesimal perturbations

Assume now that ImA �⊂ Im ρ. The question is how an
infinitesimal perturbation affects the zero eigenvalues of ρ.
When ρ is of low rank we need degenerate perturbation
theory, which is well known from any textbook on quantum
mechanics.
To first order in ε, the zero eigenvalues of ρ are perturbed

into eigenvalues of ρ ′ that are ε times the eigenvalues ofQAQ

on the subspace Ker ρ. Similarly, to first order in ε, the positive
eigenvalues of ρ are perturbed into positive eigenvalues of ρ ′
in a way which is determined by how ρ and PAP act on Im ρ.
It is clear from this that to first order in ε, the condition

QAQ = 0 (8)

is necessary and sufficient to ensure that the rank of ρ ′ equals
the rank of ρ, and that ρ ′ � 0 both for ε > 0 and for ε < 0.
More generally, to first order in ε, the rank of ρ ′ equals the

rank of ρ plus the rank of QAQ. For example, if we want to
perturb ρ in such a way that the rank increases by one, then
we have to choose A such that

QAQ = α φφ†, (9)

where φ ∈ Ker ρ is a normalized eigenvector of QAQ with
α �= 0 as an eigenvalue. Since QAQ is Hermitian, α must be
real. If α > 0, then ρ ′ � 0 for ε > 0 but not for ε < 0.

3. Projection operators on HN

Using the projections P and Q defined above, we define
projection operators onHN , the real Hilbert space ofHermitian
N × N matrices, as follows:

PX = PXP,

QX = QXQ = X − PX − XP + PXP, (10)

RX = (I − P − Q)X = PX + XP − 2PXP.

Here I is the identity onHN . It is straightforward to verify that
these are complementary projections, with P2 = P, Q2 = Q,
PQ = QP = 0, and so on. They are symmetric with respect to
the natural scalar product on HN , for example,

(X,PY ) = Tr(XPYP ) = Tr(PXPY ) = (PX,Y ). (11)

Hence they project orthogonally, and relative to an orthonor-
mal basis of HN they are represented by symmetric matrices.
Relative to an orthonormal basis of CN with the first basis

vectors in Im ρ and the last basis vectors in Ker ρ, a Hermitian
matrix X takes the block form

X =
(

U V

V † W

)
, (12)
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with U † = U andW † = W . In this basis we have

P =
(

I 0
0 0

)
, Q =

(
0 0
0 I

)
, (13)

and hence

PX=
(

U 0
0 0

)
, QX=

(
0 0
0 W

)
, RX=

(
0 V

V † 0

)
.

(14)

B. Composite systems

1. Product vectors

IfN = NANB then the tensor product spacesCN = CNA ⊗
CNB (a complex tensor product) andHN = HNA

⊗ HNB
(a real

tensor product) may describe a composite quantum system
with two subsystemsA and B of Hilbert space dimensionsNA

and NB .
A vector ψ ∈ CN then has components ψI = ψij , where

I = 1,2, . . . ,N ↔ ij = 11,12, . . . ,1NB,21,22, . . . ,NANB.

(15)

A product vectorψ = φ ⊗ χ has componentsψij = φiχj . We
see that ψ is a product vector if and only if its components
satisfy the quadratic equations,

ψijψkl − ψilψkj = 0. (16)

These equations are not all independent; the number of
independent complex equations is

K = (NA − 1)(NB − 1) = N − NA − NB + 1. (17)

For example, if ψ11 �= 0 we get a complete set of independent
equations by taking i = j = 1 and k = 2,3, . . . ,NA, l =
2,3, . . . ,NB .
Since the equations are homogeneous, any solution ψ �= 0

gives rise to a one-parameter family of solutions cψ with c ∈
C. A vectorψ in a subspace of dimension n has n independent
complex components. Since the most general nonzero solution
must contain at least one free complex parameter, we conclude
that a generic subspace of dimension n will contain nonzero
product vectors if and only if

n � K + 1 = N − NA − NB + 2. (18)

The limiting dimension

n = N − NA − NB + 2 (19)

is particularly interesting. In this special case a nonzero
solution will contain exactly one free parameter, which has
to be a complex normalization constant.
Thus, up to proportionality, there will exist a finite set of

product vectors in a generic subspace of dimension n = N −
NA − NB + 2. The number of product vectors is [9]

p =
(

NA + NB − 2
NA − 1

)
= (NA + NB − 2)!
(NA − 1)! (NB − 1)! . (20)

Ageneric subspace of lower dimensionwill contain no nonzero
product vector, whereas any subspace of higher dimension
will contain a continuous infinity of different product vectors
(different in the sense that they are not proportional).

2. Partial transposition

The following relation between matrix elements,

(XP )ij ;kl = Xil;kj , (21)

defines XP , the partial transpose of the Hermitian matrix X

with respect to the second subsystem. Partial transposition is
an orthogonal linear transformation: it preserves the scalar
product defined in Eq. (1).
A density matrix is called separable if it is a convex

combination of the form

ρ =
∑

k

pk σk ⊗ τk, (22)

with σk ∈ DNA
, τk ∈ DNB

, pk > 0,
∑

k pk = 1. We denote by
S the set of separable density matrices. Partial transposition
obviously preserves the positivity of a separable density
matrix. This is an easily testable condition for separability,
known as the Peres criterion. The set of all PPT (positive
partial transpose) matrices,

P = { ρ ∈ D | ρP � 0 } = D ∩ DP , (23)

may be called the Peres set. A well-known result is thatP = S
for N = NANB � 6, whereas P is strictly larger than S in
higher dimensions [12].
We will classify low-rank PPT states by the ranks (m,n)

of ρ and ρP , respectively. Note that ranks (m,n) and (n,m)
are equivalent for the purpose of classification because of the
symmetric roles of ρ and ρP .

3. Product transformations

A product transformation of the form

ρ 
→ ρ ′ = aVρV † with V = VA ⊗ VB, (24)

where a is a normalization factor and VA ∈ SL(NA,C), VB ∈
SL(NB,C), preserves positivity, rank, separability, and other
interesting properties that the density matrix ρ may have.
For example, it preserves positivity of the partial transpose,
because

(ρ ′)P = aṼ ρP Ṽ † with Ṽ = VA ⊗ V ∗
B . (25)

The image and kernel of ρ and ρP transform in the following
ways:

Im ρ ′ = V Im ρ, Ker ρ ′ = (V †)−1 Ker ρ, (26)

and

Im (ρ ′)P = Ṽ Im ρP , Ker (ρ ′)P = (Ṽ †)−1 Ker ρP . (27)

All these transformations are of product form and hence
preserve the number of product vectors in a subspace.
We say that two density matrices ρ and ρ ′ related in this

way are SL⊗ SL equivalent, or simply Special linear (SL)
equivalent. The concept of SL equivalence is important to us
here because it simplifies very much our efforts to classify the
low-rank PPT states.

C. Restricted perturbations

We have seen that Eq. (7) ensures that the perturbation
ρ ′ = ρ + εA preserves the image of ρ, so that Im ρ ′ = Im ρ
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and ρ ′ � 0 for a finite range of values of the perturbation
parameter ε. The weaker condition in Eq. (8) ensures only that
rank ρ ′ = rank ρ and ρ ′ � 0 for infinitesimal values of ε.
We will now discuss how to use perturbations with similar

restrictions in order to study the convex set P . In particular,
we are interested in perturbations that either preserve the ranks
(m,n) of ρ, or else change these ranks in controlled ways. We
also state the conditions that identify the extremal points of P .
In a similar way as we did for ρ, we define P̃ and Q̃ =

1 − P̃ as the orthogonal projections onto Im ρP and Ker ρP .
Then we define

P̃X= (P̃XP P̃ )P ,

Q̃X= (Q̃XP Q̃)P = X − (P̃XP )P − (XP P̃ )P + (P̃XP P̃ )P ,

R̃X= (I − P̃ − Q̃)X = (P̃XP )P + (XP P̃ )P − 2(P̃XP P̃ )P .

(28)

These are again projections on the real Hilbert space HN , like
P,Q, andR, again symmetric with respect to the natural scalar
product onHN .Wemay use these projections onHN to impose
various restrictions on the perturbation matrix A.

1. Testing for extremality in P
The extremality condition for P is derived in a similar way

as the extremality condition for D based on Eq. (7). Clearly ρ

is extremal in P if and only if there exists no ρ ′ ∈ P , ρ ′ �= ρ,
with both Im ρ ′ = Im ρ and Im(ρ ′)P = Im ρP . Another way
to formulate this condition is that A = ρ is the only solution
of the two equations PA = A and P̃A = A.
Since P and P̃ are projections, the equations PA = A

and P̃A = A together are equivalent to the single eigenvalue
equation

(P + P̃)A = 2A. (29)

They are also equivalent to either one of the eigenvalue
equations

PP̃PA = A, P̃PP̃A = A. (30)

Note that the operators P + P̃, PP̃P, and P̃PP̃ are all real
symmetric and therefore have complete sets of real eigenvalues
and orthonormal eigenvectors. In fact, the eigenvalues are all
non-negative, because the operators are positive.
When we diagonalize P + P̃ we will always find A = ρ

as an eigenvector with eigenvalue 2. If it is the only such
eigenvector, this proves that ρ is extremal in P . If A is
a solution not proportional to ρ, then we may impose the
condition TrA = 0 [replace A by A − (TrA)ρ if necessary],
and we know that there exists a finite range of both positive
and negative values of ε such that ρ ′ = ρ + εA ∈ P; hence ρ

is not extremal.
It should be noted that in our numerical calculationswemay

find eigenvalues of P + P̃ that differ from 2 by less than 1%
. However, since eigenvalues are calculated with a precision
close to the internal precision of the computer, which is of
order 10−16, there is never any ambiguity as to whether an
eigenvalue is equal to 2 or strictly smaller than 2.

2. Perturbations preserving the PPT property and ranks

The rank and positivity of ρ are preserved by the pertur-
bation, to first order in ε, both for ε > 0 and ε < 0, if and
only if QA = 0. Similarly, the rank and positivity of ρP are
preserved if and only if Q̃A = 0. These two equations together
are equivalent to the single-eigenvalue equation

(Q + Q̃)A = 0. (31)

Again,Q + Q̃ is real symmetric and has a complete set of real
eigenvalues and eigenvectors.
In conclusion, the perturbations that preserve the PPT

property, as well as the ranks (m,n) of ρ and ρP , to first
order in ε, are the solutions of Eq. (31).
If we want to perturb in different ways, for example, such

that Im ρ ′ = Im ρ, but not necessarily Im(ρ ′)P = Im ρP , we
only require (ρ ′)P and ρP to have the same rank. Then the
conditions onA are thatPA = A and Q̃A = 0, or equivalently,

(I − P + Q̃)A = 0. (32)

III. PRODUCT VECTORS IN THE KERNEL

Our purpose in this section is to state explicitly the very
close connection between the lowest rank PPT states and
product vectors. If the dimension of Ker ρ is equal to or
larger than the limiting dimension n given by Eq. (19), or
equivalently, if

rank ρ � N − n = NA + NB − 2, (33)

then Ker ρ will always contain product vectors, and from these
product vectors we obtain a set of linear equations for ρ. In
numerical examples we find that these equations determine ρ

uniquely.
Assume now that ρ ∈ P . Recall that because ρ � 0 and

ρP � 0, the equationsw†ρw = 0 and ρw = 0 forw ∈ CN are
equivalent, and so are the equationsw†ρP w = 0 andρP w = 0.
Taken together with the identity

(x ⊗ y)†ρ (u ⊗ v) = (x ⊗ v∗)†ρP (u ⊗ y∗), (34)

this puts strong restrictions on ρ when we know a number of
product vectors in Ker ρ.
Assume from now on thatw is a product vector,w = u ⊗ v.

Defining w̃ = u ⊗ v∗ we have the general relation

w†ρw = w̃ †ρP w̃, (35)

which implies that the relations w ∈ Ker ρ and w̃ ∈ Ker ρP

are equivalent. Assume that w ∈ Ker ρ. For any z ∈ CN we
have the condition on ρ that z†ρw = 0. In particular, when
z is an arbitrary product vector, z = x ⊗ y, we have the two
conditions on ρ that

(x ⊗ y)†ρ (u ⊗ v) = 0,
(36)

(x ⊗ v)†ρ (u ⊗ y) = (x ⊗ y∗)†ρP (u ⊗ v∗) = 0.

Assume that wi = ui ⊗ vi ∈ Ker ρ for i = 1,2, . . . ,p.
Then for arbitrary values of the indices i,j,k we have the
following constraints on ρ:

(ui ⊗ vj )
†ρ (uk ⊗ vk) = (ui ⊗ vk)

†ρ (uk ⊗ vj ) = 0. (37)
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Let us introduce matrices

Aklij = (uk ⊗ vl)(ui ⊗ vj )
† (38)

and Hermitian matrices

Bklij = Aklij + (Aklij )
†, Cklij = i (Aklij − (Aklij )

†), (39)

then the constraints on ρ are of the form

Tr(ρBkkij ) = Tr(ρCkkij ) = Tr(ρBkjik) = Tr(ρCkjik) = 0.

(40)

Each equation Tr(ρB) = 0 with B �= 0 or Tr(ρC) = 0 with
C �= 0 is one real valued constraint, but the counting of
independent constraints is a little bit involved. We will use
these constraints in the following.

IV. RANK-(4,4) EXTREMAL PPT STATES
IN 3 × 3 DIMENSIONS

In this section we first review the important method for
constructing entangled PPT states introduced by Bennett et al.
in Ref. [22]. We have previously shown in Ref. [10] how this
method may be used to parametrize rank (4,4) entangled PPT
states in 3× 3 dimensions. We argued there, from numerical
evidence, that this parametrization is a complete classification
of all rank-4 entangled PPT states. This conjecture has since
been proved [24,25].
It is possible to reconstruct a rank-(4,4) entangled PPT state

uniquely from five of the six product vectors in its kernel. If
these product vectors are orthogonal, then the construction of
Bennett et al. is directly applicable. If the product vectors are
not orthogonal, then one may transform them to orthogonal
form in the way described in Ref. [10], before using the
Bennett construction. It is a nontrivial empirical fact that the
transformation to orthogonal form always works for a set of
five product vectors in the kernel of a rank-(4,4) entangled
PPT state.
We describe here a more direct way to reconstruct a rank-4

entangled PPT state from the product vectors in its kernel,
where we do not transform the product vectors to orthogonal
form but use Eq. (40) instead. We give a parametrization
of product vectors based on a standard form where they are
not orthogonal. This standard form contains four parameters,
which are complex in the case of a generic set of product
vectors, but we give both numerical and analytical arguments
which prove that the parameters have to be real when the
product vectors lie in the kernel of a rank-4 entangled PPT
state.
When we carry out the construction numerically, we find

that with real parameters the generic case is that the constraint
equations summarized in Eq. (40) have one solution for ρ,
unique up to a proportionality constant. However, this unique
ρ is often not a PPT state, because at least one of the conditions
ρ � 0 and ρP � 0 is violated. These conditions impose further
restrictions on the parameters, corresponding exactly to the
condition that the product vectors may be transformed to
orthogonal form. We describe in detail the subset of real
parameter values producing PPT states.

We remark briefly on how a separable state of rank-(4,4)
differs from an entangled PPT state of the same rank with
respect to product vectors in its kernel.

A. The UPB construction of entangled PPT states

We now review briefly the construction of a rank-(4,4)
entangled and extremal PPT state ρ in 3× 3 dimensions
from an unextendible orthonormal product basis (a UPB) of
Ker ρ [22]. The UPB consists of five orthonormal product
vectors wi = Niui ⊗ vi with the property that there exists
no product vector orthogonal to all of them. We include real
normalization factors Ni here because we want to normalize
such that w

†
i wj = δij without necessarily normalizing the

vectors ui and vi .
The orthogonality of the product vectors wi follows from

the cyclic orthogonality relations u1 ⊥ u2 ⊥ u3 ⊥ u4 ⊥ u5 ⊥
u1 and v1 ⊥ v3 ⊥ v5 ⊥ v2 ⊥ v4 ⊥ v1. There is the further
condition that any three vectors ui and any three vi are linearly
independent. The five-dimensional subspace spanned by these
product vectors is the kernel of the density matrix,

ρ = 1

4

(
1 −

5∑
i=1

wiw
†
i

)
, (41)

which is proportional to a projection operator. The partial
transpose of ρ is

ρP = 1

4

(
1 −

5∑
i=1

w̃iw̃
†
i

)
, (42)

with w̃i = Niui ⊗ v ∗
i . Thus we have both ρ � 0 and ρP � 0

by construction. Note that if all the vectors vi are real, v ∗
i = vi ,

then ρ is symmetric under partial transposition, ρP = ρ.
By a unitary product transformation as in Eq. (26) we may

transform the above orthogonal UPB into the standard un-
normalized form [10],

u =
⎛⎝1 0 a b 0
0 1 0 1 a

0 0 b −a 1

⎞⎠, v =
⎛⎝1 d 0 0 c

0 1 1 c 0
0 −c 0 1 d

⎞⎠,

(43)

with a,b,c,d as positive real parameters. The following
quantities determine these parameters:

s1 = −det(u1u2u4) det(u1u3u5)
det(u1u2u5) det(u1u3u4)

= a2,

(44)

s2 = −det(u1u2u3) det(u2u4u5)
det(u1u2u4) det(u2u3u5)

= b2

a2
,

and

s3 = det(v1v2v3) det(v1v4v5)

det(v1v2v5) det(v1v3v4)
= c2,

(45)

s4 = det(v1v3v5) det(v2v3v4)

det(v1v2v3) det(v3v4v5)
= d2

c2
.

These ratios of determinants are invariant under general
SL⊗ SL transformations, as well as independent of the
normalization of the vectors.
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In Ref. [10] we presented numerical evidence that every
entangled rank-(4,4) PPT state is SL⊗ SL equivalent to some
state of the form of Eq. (41) with real product vectors as given
in Eq. (43). This implies that the surface of all rank-(4,4)
entangled PPT states has dimension 36. We count 32 degrees
of freedom due to the SL(3,C)⊗ SL(3,C) transformations,
plus the four real SL⊗ SL invariant parameters a,b,c,d in
Eq. (43).
Using the method described in Sec. VII below, we have

verified numerically that a rank-(4,4) entangled PPT state as
described here lies indeed on a surface of dimension 36. This
is another indication that our classification of such states is
complete.

B. A different point of view

We present here the construction of an entangled PPT state
ρ of rank (4,4), as seen from a different point of view. When
ρ has rank 4, it means that Ker ρ has dimension 5. A generic
five-dimensional subspace in C9 = C3 ⊗ C3 has a basis of
product vectors. In fact, it contains exactly six product vectors,
any five of which are linearly independent. By Eq. (19), five
is the limiting dimension for which the number of product
vectors is nonzero and finite, and the number six is consistent
with Eq. (20).
Any generic set of six product vectors wi = ui ⊗ vi may

be transformed by an SL⊗ SL transformation to the standard
un-normalized form:

u =
⎛⎝1 0 0 1 1 1
0 1 0 1 p p′
0 0 1 1 q q ′

⎞⎠,

(46)

v =
⎛⎝1 0 0 1 1 1
0 1 0 1 r r ′
0 0 1 1 s s ′

⎞⎠,

with p,q,r,s and p′,q ′,r ′,s ′ as real or complex parameters.
Genericity implies that any three ui and any three vi are
linearly independent; this requires, for example, that p,q �=
0,1 and p �= q. With this parametrization, one may show that
the six product vectors are linearly dependent and lie in a
five-dimensional subspace if

p′ = f1(p,q,r,s) ≡ (ps − qr)(1− s)

(s − r)(q − s)
,

q ′ = f2(p,q,r,s) ≡ (ps − qr)(1− r)

(s − r)(p − r)
,

r ′ = f3(p,q,r,s) ≡ (ps − qr)(q − 1)
(p − q)(q − s)

, (47)

s ′ = f4(p,q,r,s) ≡ (ps − qr)(p − 1)
(p − q)(p − r)

.

The product vectors w5 and w6 are interchangeable; thus the
transformation given in Eq. (47) is its own inverse and is
equivalent to the transformation

p = f1(p
′,q ′,r ′,s ′),

q = f2(p
′,q ′,r ′,s ′),

r = f3(p
′,q ′,r ′,s ′), (48)

s = f4(p
′,q ′,r ′,s ′).

We may choose to ignore w6 when it is a linear combination
of w1 to w5.
The values of the above invariants s1,s2,s3,s4 as functions

of the new parameters p,q,r,s are

s1 = −p

q
, s2 = q − 1, s3 = r − s

s
, s4 = r

1− r
. (49)

The parameters p,q,r,s are actually new invariants; they
cannot be changed by SL⊗ SL transformations.
We want to construct a PPT state having the above product

vectors in its kernel, and one possibility is to make a detour
and use the UPB construction. If the values of p,q,r,s are such
that the invariants s1,s2,s3,s4 are all real and strictly positive,
then we use Eqs. (44) and (45), with u and v from Eq. (46),
to find corresponding values of a,b,c,d, and we transform, by
an SL⊗ SL transformation, from the nonorthogonal standard
form in Eq. (46) to the orthogonal standard form in Eq. (43).
These orthogonal product vectors define the rank-(4,4) PPT
state in Eq. (41), whichwe finally transform back to the desired
PPT state.
The condition for the UPB detour to work immediately

is that the invariants s1,s2,s3,s4 are all strictly positive,
and we see from Eq. (49) that this happens if and only
if p,q,r,s are all real, and p < 0, q > 1, 0 < r < 1, 0 <

s < r . These inequalities define the regions marked 1 in
the (p,q) and (r,s) planes as plotted in Fig. 1. If they do
not hold, the next step we try is to permute the product
vectors.
As discussed in Ref. [10] there are ten permutations of

the product vectors wi for i = 1,2, . . . ,5 which preserve the
positivity of the invariants. These permutations form a groupG

which is the symmetry group of a regular pentagon, generated
by the rotation, or cyclic permutation, wi 
→ w′

i with

w′
1 = w5, w′

2 = w1, w′
3 = w2, w′

4 = w3, w′
5 = w4,

(50)

and the reflection

w′
1 = w4, w′

2 = w3, w′
3 = w2, w′

4 = w1, w′
5 = w5.

(51)

For short, we write the rotation as 51234 and the reflection as
43215.
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p = 1
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q

8
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9

3
1

2

4
6

s = 1

r = 1

r

s

FIG. 1. Regions for the parameters p,q,r,s defined in Eq. (46)
such that the product vectors ui ⊗ vi for i = 1,2, . . . ,5 are in the
kernel of a rank-(4,4) extremal PPT state. The (p,q) plane is divided
into 12 regions, with 12 corresponding regions in the (r,s) plane. The
numbers 1–12 refer to the permutations of product vectors given in
Eq. (52). For example, if (p,q) is in region 7, (r,s) must also be in
region 7.
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There are altogether 5! = 120 permutations of the first five
product vectors wi , and they fall into 12 classes (left cosets
of the group G as a subgroup of the permutation group S5)

which are not transformed into each other by G. We number
the classes from 1 to 12, and pick one representative from each
class as follows:

1 : 1,2,3,4,5 2: 1,3,2,4,5 3: 2,1,3,4,5 4: 2,3,1,4,5 5: 3,1,2,4,5 6: 3,2,1,4,5
7: 1,2,4,3,5 8: 1,4,2,3,5 9: 2,1,4,3,5 10: 2,4,1,3,5 11: 1,3,4,2,5 12: 1,4,3,2,5 (52)

Each of these 12 classes defines a positivity region in each of
the two parameter planes, where all four invariants s ′

1,s
′
2,s

′
3,s

′
4

computed from the permuted product vectors are positive.
The 12 regions are disjoint and fill the planes completely, as
shown in Fig. 1. On the border lines between the regions some
genericity conditions of linear independence are violated.
To summarize, we have learned how to test whether a set of

five product vectorswi = ui ⊗ vi , which is generic in the sense
that any threeu vectors are linearly independent and any three v
vectors are also linearly independent, span the kernel of a rank-
(4,4) PPT state. We transform to the standard form defined in
Eq. (46), by a product transformation and normalization. Then
the necessary and sufficient condition is that the parameters
p,q,r,s are all real and that the parameter pairs (p,q) and (r,s)
lie in corresponding regions in the parameter planes, as shown
in Fig. 1.
It should be stressed that the parameter conditions illus-

trated in Fig. 1 are derived here by analytical means from the
results reported in Ref. [10] but that those results were based
partly on numerical evidence. Thuswe have no analytical proof
which is complete in every detail.
We discuss next a more direct method for constructing the

PPT state from the product vectors in its kernel, but first we
remark on the origin of the reality condition for the parameters
p,q,r,s.

1. Why the parameters have to be real

As pointed out in Sec. III, when ρ is a rank-(4,4) state in
dimension 3× 3 and

wi = ui ⊗ vi ∈ Ker ρ, i = 1,2, . . . ,6, (53)

then we must also have

w̃i = ui ⊗ v ∗
i ∈ Ker ρP , i = 1,2, . . . ,6. (54)

But the condition that the partial conjugation wi 
→ w̃i pre-
serves the linear dependence between the six product vectors
is far from trivial. With product vectors of the form given in
Eq. (46), linear dependence holds when the four equations in
Eq. (47) [or equivalently Eq. (48)] hold. The corresponding
equations for w̃i are the following:

p′ = f1(p,q,r∗,s∗),
q ′ = f2(p,q,r∗,s∗),

(r ′)∗ = f3(p,q,r∗,s∗), (55)

(s ′)∗ = f4(p,q,r∗,s∗).

By eliminating p′,q ′,r ′,s ′ between the equations (47) and (55)
we derive the equations

(ps − qr)(1− s)

(s − r)(q − s)
= (ps∗ − qr∗)(1− s∗)

(s∗ − r∗)(q − s∗)
,

(ps − qr)(1− r)

(s − r)(p − r)
= (ps∗ − qr∗)(1− r∗)

(s∗ − r∗)(p − r∗)
,

(ps − qr)(q − 1)
(p − q)(q − s)

= (p∗s − q∗r)(q∗ − 1)
(p∗ − q∗)(q∗ − s)

, (56)

(ps − qr)(p − 1)
(p − q)(p − r)

= (p∗s − q∗r)(p∗ − 1)
(p∗ − q∗)(p∗ − r)

.

The obvious solution is that the parameters p,q,r,s are all real.
It takes some analysis to exclude complex parameter values.
If either r or s is complex, or both, then the first two

equations in Eq. (56) give that

p=q
r(1− s)(s∗ − r∗)(q − s∗)− r∗(1− s∗)(s − r)(q − s)

s(1− s)(s∗ − r∗)(q − s∗)− s∗(1− s∗)(s − r)(q − s)
,

q =p
s(1− r)(s∗ − r∗)(p − r∗)− s∗(1− r∗)(s − r)(p − r)

r(1− r)(s∗ − r∗)(p − r∗)− r∗(1− r∗)(s − r)(p − r)
.

(57)

Multiplying these equations together and dividing out pq we
get an equation giving, for example, p as a function of q,r,s:

p = q Im(−|r|2s + rs − r)+ Im(|r|2s − |s|2r + rs∗)
q Im(rs∗ − r + s)+ Im(−|s|2r + rs − s)

.

(58)

This is one example of extra relations that must hold between
the parameter values if they are complex. We see that in the
generic case, with no special relations restricting the values
of the parameters p,q,r,s, those values have to be real when
the six product vectors given in Eq. (46) lie in the kernel of a
rank-(4,4) PPT state.

C. Matrix representation relative to a nonorthonormal basis

We proceed next to construct the PPT state directly from
nonorthogonal product vectors in its kernel. For our purpose
it is useful to represent a Hermitian matrix A in the following
way relative to a nonorthonormal basis.
Relative to an orthonormal basis {ei}, a matrixA has matrix

elements Ãij defined by the two equivalent formulas

(I) Ãij = e
†
i Aej , (II) Aej =

∑
i

Ãij ei . (59)
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If the basis is not orthonormal, then the two definitions are no
longer equivalent, and we have to choose one of them. Here we
choose definition (I), because it makes the matrix ÃHermitian
when A is Hermitian. The scalar products

gij = e
†
i ej (60)

define themetric tensor g as a positive Hermitianmatrix. In the
usual way, we write the inverse matrix g−1 with upper indices
so that ∑

j

gij gjk = δi
k. (61)

We define the dual vectors

ei =
∑

j

gjiej , (ei)† =
∑

j

gij e
†
j . (62)

They satisfy the orthogonality relations

(ei)†ej = e
†
j ei = δi

j (63)

and the completeness relations

1 =
∑
i,j

eig
ij e

†
j =

∑
j

ej e
†
j =

∑
i

ei(e
i)†. (64)

Using these completeness relations and definition (I) above,
we may write any matrix A as

A =
∑
i,j

eiÃij (e
j )†. (65)

D. Conditions on ρ from product vectors in Ker ρ

It is possible to construct the rank-(4,4) PPT state ρ directly
from five product vectors in Ker ρ using the constraints given
in Eq. (40), without transforming the product vectors to the
orthogonal form. We now describe this construction.
Given three product vectors wi = Niui ⊗ vi in Ker ρ, with

the restriction that all three ui and all three vi are linearly
independent, we have the following product basis of C9, not
necessarily orthonormal:

eij = ui ⊗ vj , ij = 11,12,13,21,22,23,31,32,33. (66)

With respect to this basis we may define matrix elements of ρ
as in Eq. (65):

ρ̃ij ;kl = e
†
ij ρ ekl . (67)

In order to count the independent constraints, it is conve-
nient to use as example the standard formof the product vectors
defined in Eq. (46). Now all the constraints fromEq. (40) imply
that

ρ̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 a1 b1 0 0 0 0 b2 0
0 b∗

1 a2 0 0 b3 0 0 0
0 0 0 a3 0 b4 b5 0 0
0 0 0 0 0 0 0 0 0
0 0 b∗

3 b∗
4 0 a4 0 0 0

0 0 0 b∗
5 0 0 a5 b6 0

0 b∗
2 0 0 0 0 b∗

6 a6 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (68)

with real diagonal elements a1,a2, . . . ,a6 and complex off-
diagonal elements b1,b2, . . . ,b6. This Hermitian 9× 9 matrix
contains 18 real parameters, which means that there are
altogether 81− 18 = 63 independent real constraints.
Including the fourth product vector from Eq. (46) gives

additional constraints ρ̃w4 = 0, or explicitly written out,

a1 + b1 + b2 = 0,

b∗
1 + a2 + b3 = 0,

a3 + b4 + b5 = 0,

b∗
3 + b∗

4 + a4 = 0, (69)

b∗
5 + a5 + b6 = 0,

b∗
2 + b∗

6 + a6 = 0.

These are complex equations, to be split into real and
imaginary parts. The real parts are six independent equations,
whereas the complex parts are only five independent equa-
tions. However, we get another independent equation as the
imaginary part of, for example, the complex equation

(u1 ⊗ v4)
† ρ (u4 ⊗ v2) = a1 + b∗

1 + b2 = 0. (70)

Altogether, we get 12 independent real constraints, six from
the real parts and six from the imaginary parts of the equations.
The end result is that all the off-diagonal matrix elements bi

have to be real, and there are six relations between the 12 real
coefficients ai and bi , for example,

a1 + a4 + a5 = a2 + a3 + a6 = −
6∑

i=1
bi. (71)

Thus including the fourth product vector in Ker ρ increases
the number of independent real constraints from 63 to 75 and
reduces the number of real parameters in ρ from 18 to 6.
The final step of including the fifth product vector from

Eq. (46) is a calculation which we have done numerically, but
not analytically.We find numerically that the generic case with
five product vectors and complex parameters p,q,r,s is that
there are 81 independent constraints, leaving only the trivial
solution ρ = 0. In order to end up with one possible solution
for ρ, we have to choose the parameters p,q,r,s to be real.
When we choose real values for p,q,r,s, we always find

(generically) exactly one solution for ρ, that is, there are 80
independent constraints. The problem is that this uniquely
determined matrix ρ, or its partial transpose, has in general
both positive and negative eigenvalues.
The condition to ensure that both ρ � 0 and ρP � 0 (with

the proper choice of sign for ρ), when the parameters p,q,r,s

are real, is that the pair (p,q) and the pair (r,s) must lie
in corresponding parameter regions, as shown in Fig. 1. We
emphasize again that these results are supported by numerical
evidence but not proved analytically.

E. Separable states of rank (4,4)

For comparison it may be of interest to consider a separable
state of rank 4. It has the form

ρ =
4∑

i=1
λi ψiψ

†
i , (72)
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with λi > 0,
∑4

i=1 λi = 1, ψ
†
i ψi = 1, and ψi = Ci φi ⊗ χi ,

with Ci as a normalization constant. In the generic case when
any three vectors φi and any three χi are linearly independent,
we may perform an SL⊗ SL transformation and obtain the
standard form

φ =
⎛⎝1 0 0 1
0 1 0 1
0 0 1 1

⎞⎠, χ =
⎛⎝1 0 0 1
0 1 0 1
0 0 1 1

⎞⎠. (73)

In this standard form the χ vectors are real, and hence ρP = ρ.
The kernel Ker ρ consists of the vectors that are orthogonal

to all four product vectors ψi , and it contains exactly six
product vectors wi = Ni ui ⊗ vi as follows:

u =
⎛⎝ 0 0 0 1 1 1
0 1 −1 0 0 −1
1 0 1 0 −1 0

⎞⎠,

(74)

v =
⎛⎝ 1 1 1 0 0 0

−1 0 0 1 1 0
0 −1 0 −1 0 1

⎞⎠.

Note that the product vectors in the kernel of a separable
rank-(4,4) PPT state are not generic, in that there are subsets
of three linearly dependent vectors both among the u vectors
and among the v vectors.
The surface of separable states of rank 4 has dimension

35 = 32+ 3, where 32 is the number of parameters of the
group SL(3,C)⊗ SL(3,C), and 3 is the number of indepen-
dent coefficients λi in Eq. (72).

V. RANK-(5,5) EXTREMAL PPT STATES
IN 3 × 3 DIMENSIONS

Since we believe that we understand completely the rank-
(4,4) entangled states in dimension 3× 3, a natural next step is
to try to understand the (5,5) states in the same dimension. The
results presented in this section are to a large extent obtained
numerically, but the numerical results lead to an analytical
understanding of how to perturb rank-(4,4) extremal PPT states
into rank-(5,5) PPT states.
Unfortunately, we do not know any explicit procedure for

constructing the most general rank-(5,5) PPT states. However,
we have searched numerically and found a large number of
such states, and the states we find are typically extremal
PPT states [9]. In the present section we show how to use
perturbation theory, first in order to study surfaces of rank-(5,5)
PPT states, and next in order to construct rank-(5,5) PPT states
close to the known rank-(4,4) PPT states. By perturbing a
rank-(4,4) PPT state we are able to produce a set of rank-(5,5)
extremal PPT states, but this method can never lead to rank
(4,5) or (5,4), as we show explicitly.
We have seen above that rank-(4,4) entangled PPT states

exist only in special four-dimensional subspaces. The rank-
(5,5) extremal and entangled PPT states, on the other hand, are
found in generic five-dimensional subspaces. The empirical
fact is that there is an eight-dimensional surface of such states
in the 24-dimensional space of normalized density matrices on
a generic five-dimensional subspace. We find that the surface
of all rank-(5,5) extremal and entangled PPT states in the
80-dimensional space of normalized density matrices in 3× 3

−0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.2

−0.1

0

0.1

0.2

0.3

FIG. 2. Two-dimensional section through D, the set of density
matrices in 3× 3 dimensions. The boundaries of S, the set of
separable states, and of P = D ∩ DP , the set of PPT states, are both
drawn as thick lines. The boundaries of D and of DP , the set of
partially transposed density matrices, cross at two points. They are
drawn as thin lines where they lie outside P . The origin, marked by
a small circle, is the maximally mixed state. The point marked by a
small square is an extremal rank-(5,5) PPT state. The boundary of D
is drawn through this point as a thin straight line. The boundary of
DP is drawn thick at this point, because it is also the boundary of P .
The lightly shaded region around the origin is S. The small and more
darkly shaded region close to the (5,5) state is the difference between
P and S. Away from this small region, the boundaries of P and S are
indistinguishable in the plot. The coordinates in the plot are defined
by the Hilbert-Schmidt metric and are unnamed and dimensionless.

dimensions has dimension 48. The dimensions 8 and 48 are
consistent, since the set of five-dimensional subspaces has
dimension 40.
When we perturb from rank (4,4) to rank (5,5), we find

that from one rank-(4,4) state there are 12 directions into the
surface of (5,5) states. Since the surface of (4,4) states has
dimension 36 and the surface of (5,5) states has dimension
48, these numbers are consistent with the hypothesis that it is
possible to reach all (5,5) states continuously from the (4,4)
states.
In order to illustrate the geometry we have plotted in Fig. 2

a two-dimensional section through the set of density matrices.
The section is defined by the maximally mixed state 1/9, by
a randomly selected rank-(5,5) entangled and extremal PPT
state ρ, and by a direction A through ρ such that the perturbed
state ρ ′ = ρ + εA is a rank-(5,5) PPT state for infinitesimal
positive and negative ε and has Im ρ ′ = Im ρ even for finite ε.
The straight line section plotted through ρ represents a finite
range of values of ε such that ρ ′ � 0, rank ρ ′ = 5, and the
partial transpose (ρ ′)P for finite ε �= 0 has rank 9 and several
negative eigenvalues. The line is the intersection of the plotted
plane with the set of density matrices on the five-dimensional
subspace Im ρ. The figure illustrates the fact that the difference
between the sets P and S is small, but it is largest close to
extremal entangled PPT states.
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A. The surface of rank-(5,5) PPT states

As discussed in the previous section, a generic five-
dimensional subspace in 3× 3 dimensions contains exactly
six product vectors which can be transformed by SL⊗ SL
transformations, as in Eqs. (26) and (27), into the standard form
given in Eqs. (46) and (47), with SL⊗ SL invariant complex
parameters p,q,r,s. Thus each such subspace belongs to an
equivalence class under SL⊗ SL transformations, and the
equivalence classes are parametrized by eight real parameters.
There is a discrete ambiguity in the parametrization, since it
depends on the ordering of the six product vectors.
In one given generic five-dimensional subspace we may

construct a five-dimensional set of rank-(5,5) separable states
as convex combinations of the six pure product states in the
subspace. However, we find numerically that the dimension of
the surface of rank-(5,5) PPT states with the given subspace
as image is not five but eight. We determine this dimension
numerically in the following way.
As a point of departure we need one rank-(5,5) PPT state

ρ0 in the given five-dimensional subspace, but such a state is
easy to find numerically. Let P be the orthogonal projection
on this subspace and take X to be a Hermitian matrix; then
ρ0 = PX2P/Tr(PX2P ) is a density matrix on the subspace.
The remaining problem is to varyX so as to minimize the sum
of squares of the four lowest eigenvalues of ρ P

0 . Then these
four lowest eigenvalues will all become zero so that ρ0 is a
rank-(5,5) PPT state, usually extremal and hence entangled.
At this’ stage the projections P andQ = 1 − P are already

defined, and we proceed to compute the projections P̃ on
Ker ρ P

0 and Q̃ on Im ρ P
0 . We then look for perturbations

ρ = ρ0 + εA, (75)

with TrA = 0, where A satisfies both equations PA =
PAP = A and Q̃A = (Q̃AP Q̃)P = 0, or equivalently
Eq. (32),

(I − P + Q̃)A = 0. (76)

The number of linearly independent solutions for A with
TrA = 0 is the dimension of the surface of rank-(5,5) PPT
states at the point ρ0. We always find the dimension to be 8.
We guess that the dimension 8 can be understood as

follows. If we try to find a PPT state ρ with fixed five-
dimensional subspaces Im ρ and Im ρP , this means that we
fix the projections P and P̃ and determine ρ as a solution of
the equation

(P + P̃)ρ = 2ρ, (77)

with Tr ρ = 1. Then there is typically no solution at all for ρ;
solutions exist only for special pairs of subspaces. If now the
two subspaces are chosen in such a way that a solution exists,
then the solution is (typically) unique, and the uniqueness
means that ρ is an extremal point of P .
We may fix instead Im ρ but not Im ρP , only the rank of

ρP . This is the case described by Eq. (76), where the set of
solutions has dimension 8. Our guess is that the role of these
eight parameters is to specify the SL⊗ SL equivalence class
to which the five-dimensional subspace Im ρP belongs.
In fact, when we fix Im ρ there is no degree of freedom left

corresponding to SL⊗ SL transformations. This is so because

the set of product vectors in Im ρ is discrete and cannot
be transformed continuously by an SL⊗ SL transformation
within the fixed subspace Im ρ. Hence the only way to vary the
subspace Im ρP without varying Im ρ is to vary the equivalence
class of Im ρP .
If we allow both Im ρ and Im ρP to vary but still require

the ranks of ρ and ρP to be five, the equation to be solved for
the perturbation A is

(Q + Q̃)A = 0. (78)

In this case the number of linearly independent solutions for
A is found numerically to be 48, and this is the dimension of
the surface of all rank-(5,5) PPT states.
We understand the dimension 48 as follows. There are 8+

8 = 16 parameters for the SL⊗ SL equivalence classes of the
subspaces Im ρ and Im ρP , and there are 32 parameters for the
SL(3,C)⊗ SL(3,C) transformations.
To summarize, an extremal and hence entangled rank-(5,5)

PPT state ρ is uniquely determined by Eq. (77), as soon as
we specify the five-dimensional subspaces Im ρ and Im ρP .
We may choose arbitrarily one of these subspaces, but not the
other one simultaneously. Each five-dimensional subspace is
determined by eight real SL⊗ SL invariant parameters and
an SL⊗ SL transformation. According to our understanding,
which is so far only a plausible hypothesis based on numerical
studies, the eight invariant parameters can be chosen indepen-
dently for Im ρ and Im ρP , but the SL⊗ SL transformations
cannot be chosen independently.
Thus, there exists an unknown relation between the sub-

spaces Im ρ and Im ρP belonging to a rank (5,5) PPT state ρ.
If we had known that relation, we would have been able to
construct such states directly.

B. Perturbing from rank (4,4) to rank (5,5)

Since we do not know how to construct the most general
rank-(5,5) PPT states, we turn next to the more restricted
problem of constructing (5,5) states that are infinitesimally
close to (4,4) states.
Consider once more an infinitesimal perturbation ρ ′ = ρ +

εA, this time with ρ as the rank-(4,4) state defined in Eq. (41),
involving the standard real product vectors defined in Eq. (43).
Themost general case is equivalent to this special case by some
SL⊗ SL transformation.
An extra bonus of this special choice of ρ is that ρP = ρ.

In the notation used above we have projections P = P̃ on
Im ρ = Im ρP andQ = Q̃ on Ker ρ = Ker ρP .

1. Conditions on the perturbation matrix A

By Eq. (9), the condition for ρ ′ to have rank 5 is that

QAQ = α ww†, (79)

where α is a real number, α �= 0, and

w =
5∑

i=1
ciwi, (80)
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with complex coefficients ci such that

w†w =
5∑

i=1
|ci |2 = 1. (81)

Similarly, the condition for (ρ ′)P to have rank 5 is that

Q̃AP Q̃ = QAP Q = β zz†, (82)

where β is real, β �= 0, and

z =
5∑

i=1
diwi with z†z =

5∑
i=1

|di |2 = 1. (83)

Note that the possibilities that ρ ′ has rank either (4,5) or (5,4)
are included if we allow either α or β to be zero.
By Eq. (20), there is one extra product vector in Ker ρ =

Ker ρP , which may be written as

w6 =
5∑

i=1
aiwi, (84)

this time with real coefficients ai . Since wi = Niui ⊗ vi

with Ni real and vi real for i = 1,2, . . . ,6, we have for any
Hermitian matrix A that

w
†
i Awi = w

†
i AP wi. (85)

By the definition of the projection Q we have that Qwi = wi

for i = 1,2, . . . ,6. It follows then from Eq. (79) that

w
†
i Awi = w

†
i QAQwi = α |w †

i w|2 (86)

and from Eq. (82) that

w
†
i AP wi = w

†
i QAP Qwi = β |w †

i z|2. (87)

Together with Eq. (85) this gives the equations

α |ci |2 = β |di |2 (88)

for i = 1,2, . . . = 5, and the sixth equation

α

∣∣∣∣∣
5∑

i=1
aici

∣∣∣∣∣
2

= β

∣∣∣∣∣
5∑

i=1
aidi

∣∣∣∣∣
2

. (89)

It follows further that

α =
5∑

i=1
α |ci |2 =

5∑
i=1

β |di |2 = β (90)

and that

|ci | = |di | for i = 1,2, . . . ,5. (91)

Thus the coefficient di can differ from ci only by a phase factor.
The total of five phase factors are reduced to four independent
phase factors by the extra equation∣∣∣∣∣

5∑
i=1

aici

∣∣∣∣∣ =
∣∣∣∣∣
5∑

i=1
aidi

∣∣∣∣∣ . (92)

For infinitesimal values of ε, bothρ ′ and (ρ ′)P will have four
eigenvalues infinitesimally close to 1/4 and one eigenvalue
close to zero, which is εα for ρ ′ and εβ for (ρ ′)P . This
eigenvalue is the same for ρ ′ and (ρ ′)P , since α = β. With

α > 0 this means that both ρ ′ � 0 and (ρ ′)P � 0 for ε > 0,
but not for ε < 0. Thus, we get automatically a PPT state
of rank (5,5). We never get rank (5,4) or (4,5), and it never
happens that ρ ′ is not a PPT state because one of the ρ ′ or
(ρ ′)P has a negative eigenvalue.
For a more general rank-(4,4) state ρ, which is obtained

by some SL⊗ SL transformation from a state of the special
type discussed here, the smallest positive eigenvalues of ρ ′
and (ρ ′)P are no longer equal. But they are still tied together in
such a way that they go to zero simultaneously when we move
along the surface of (5,5) states and approach its boundary.
The boundary must therefore consist of (4,4) states.

2. Computing the perturbation A

Define W = ww† and Z = zz† in the same notation as
above. These are both projections, W 2 = W and Z2 = Z,
with QW = WQ = W and QZ = ZQ = Z. It follows from
Eqs. (79) and (82) that

WAW = WQAQW = αW 3 = αW = QAQ,
(93)

ZAP Z = ZQAP QZ = βZ3 = βZ = QAP Q.

As in Eqs. (10) and (28), we define

PX = PXP, QX = QXQ,
(94)

P̃X = (PXP P )P , Q̃X = (QXP Q)P ,

and furthermore,

WX = WXW, Z̃X = (ZXP Z)P . (95)

We may also define S = Q − W and S̃ = Q̃ − Z̃. These are
again orthogonal projections on HN .
Equation (93) now takes the forms SA = 0 and S̃A = 0.

These are the least restrictive conditions we may impose on
A. Equivalently,

(S + S̃)A = 0. (96)

To computeA from this equation we introduce an orthonormal
basis in the real Hilbert space HN . Relative to this basis, the
operator S + S̃ is represented by a real symmetric positive
semidefinite matrix, which has a complete set of real eigen-
vectors with real eigenvalues. We choose A as an eigenvector
of S + S̃ with eigenvalue zero.
Apart from the trivial solution A = ρ, which is eliminated

when we impose the usual condition that TrA = 0, we find
37 linearly independent solutions of Eq. (96). Out of these
37 solutions, 36 are perturbations that give ρ ′ = ρ + εA as a
rank-(4,4) state both for ε > 0 and ε < 0. They do not depend
on either vectorw or z, since they satisfy the conditionsQA =
0 and Q̃A = 0. But becauseW = WQ and Z̃ = Z̃Q̃, they also
satisfy the conditions

WA = WQA = 0, Z̃A = Z̃Q̃A = 0, (97)

and hence Eq. (96). The number 36 is the dimension of
the surface of rank-(4,4) extremal PPT states, as noted in
Sec. IVA. The 37th independent solution is the one giving a
rank-(5,5) extremal PPT state.
A more restricted class of perturbations consists of those

where we fix the five-dimensional subspace Im ρ ′ to be the

022309-12



LOW-RANK POSITIVE-PARTIAL-TRANSPOSE STATES . . . PHYSICAL REVIEW A 85, 022309 (2012)

direct sum of the four-dimensional subspace Im ρ and the
one-dimensional subspace of the vector w. The projection on
Im ρ ′ is then

P5 = P + W, (98)

and the partial condition onA is that P5A = Awhen we define

P5X = P5XP5. (99)

The full condition on A, replacing Eq. (96), is that

(P5 − S̃)A = A. (100)

Again apart from the trivial solution A = ρ, we find five
linearly independent solutions of Eq. (100), of which four
give ρ ′ as a rank-(4,4) state both for ε > 0 and ε < 0. The
fifth independent solution is the one giving ρ ′ as a rank-(5,5)
extremal PPT state.
The four directions that give only new (4,4) states are

easily identified, since they do not depend on the vector z.
To find them we simply repeat the calculation with a “wrong”
z, violating the conditions (91) and (92). In this way we find no
(5,5) state, but we find the same set of perturbations into (4,4)
states. The number 4 is the dimension of the surface of (4,4)
states with image within the fixed five-dimensional subspace
projected out by the projector P5.
There is a natural explanation of why this surface has

dimension 4. In fact, when we fix P5 and look for (4,4) states
with an image within this fixed five-dimensional subspace, we
eliminate all degrees of freedom corresponding to SL⊗ SL
transformations. But we still allow variations of the four real
SL⊗ SL invariant parameters that are needed to define a
rank-(4,4) state.
We conclude that for fixed vectors w and z there is one

direction away from the surface of rank-(4,4) extremal PPT
states and into the surface of rank-(5,5) extremal PPT states.
For a fixed vector w there is a four-parameter family

of acceptable vectors z. Recall that these four parameters
determine the five relative phases between the coefficients ci

in Eq. (80) and the corresponding coefficients di in Eq. (83).
The vector w is an arbitrary vector in the five-dimensional

kernel of the unperturbed state ρ; hence it contains four
complex parameters, or eight real parameters, after we take
out an uninteresting complex normalization factor. Altogether,
there are 8+ 4 = 12 independent directions away from the
36-dimensional surface of rank-(4,4) PPT states and into the
surface of rank-(5,5) PPT states.
When we perturb an arbitrary rank-(5,5) PPT state in such

a way that we preserve the ranks of the state and its partial
transpose, we find numerically that the surface of rank-(5,5)
PPT states has dimension 48. The fact that 48 = 36+ 12 is
consistent with the hypothesis that we can reach every rank-
(5,5) PPT state if we start from a rank-(4,4) PPT state and
move continuously along the surface of rank-(5,5) PPT states.

VI. RANK-(6,6) EXTREMAL PPT STATES
IN 4 × 4 DIMENSIONS

We discuss in some detail one more example of the relation
between PPT states and product vectors. According to Eq. (19),
the rank-(6,6) PPT states in 4× 4 dimensions represent just

the limiting case with a finite number of product vectors in the
kernel. In this respect they are similar to the rank-(4,4) states
in 3× 3 dimensions.
The kernel of a rank-6 state in 16 dimensions has dimension

10, and the generic case, according to Eq. (20), is that it
contains exactly 20 product vectors, any ten of which are
linearly independent. We will see here that, by Eq. (40), the
product vectors in the kernel put such strong restrictions on
the state that the rank-(6,6) PPT state may be reconstructed
uniquely from only seven product vectors in its kernel. As
usual, we arrive at this conclusion by doing the construction
numerically.
To see how it works, take a set of product vectors in 4× 4

dimensions. Wemay take random product vectors, or else a set
of product vectors with the special property that they belong to
Ker ρ, where ρ is a rank-(6,6) PPT state. We find numerically
that the number of constraints generated by fewer than seven
product vectors is the same in both cases.We find the following
numbers.
From four product vectors assumed to lie in Ker ρ for an

unknown ρ, or actually lying in Ker ρ for a known ρ, we get
172 independent constraints on ρ of the form given in Eq. (40).
These constraints leave 84 free real parameters in ρ, before we
normalize and set Tr ρ = 1.
From five product vectors in Ker ρ we get 205 independent

constraints, leaving 51 parameters in ρ.
From six product vectors in Ker ρ we get 234 independent

constraints, and 22 parameters in ρ.
Finally, seven product vectors in Ker ρ give either 255 or

256 independent constraints, and either 1 or 0 real parameters
in ρ. If there is one parameter left, it is a proportionality
constant to be fixed by the normalization condition Tr ρ = 1.
The standard form of seven generic product vectors in 4× 4

dimensions, generalizing Eq. (46), is the following:

u =

⎛⎜⎝ 1 0 0 0 1 1 1
0 1 0 0 1 p1 p4
0 0 1 0 1 p2 p5
0 0 0 1 1 p3 p6

⎞⎟⎠,

(101)

v =

⎛⎜⎝ 1 0 0 0 1 1 1
0 1 0 0 1 p7 p10
0 0 1 0 1 p8 p11
0 0 0 1 1 p9 p12

⎞⎟⎠.

There are 12 complex parameters p1,p2, . . . ,p12, that is, 24
real parameters. These are invariant in the sense that we cannot
change them by SL(4,C)⊗ SL(4,C) transformations.
Not just any arbitrary set of seven product vectors defines

a rank-(6,6) PPT state. We arrive at this conclusion not only
becausewe find numerically that seven generic product vectors
allow only ρ = 0 as a solution of all the constraint equations,
but also because the following dimension counting shows
that we need less than 24 invariant parameters in order to
parametrize the rank-(6,6) PPT states.
Take one known rank-(6,6) PPT state ρ and perturb it into

another rank-(6,6) PPT state ρ ′ = ρ + εAwith ε infinitesimal.
Here A must be a solution of Eq. (31), with operators Q
and Q̃ defined relative to ρ as explained. The number of
linearly independent solutions for A, found numerically, is
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76, including the trivial solution A = ρ. This shows that the
surface of rank-(6,6) PPT states has 75 real dimensions.
Of these 75 dimensions, 60 dimensions result from product

transformations ρ 
→ VρV † with V = VA ⊗ VB and VA,VB ∈
SL(4,C). The remaining 15 dimensions must correspond to
15 SL⊗ SL invariant parameters of the seven product vectors.
Thus u and v in Eq. (101) contain nine parameters too many.
It is also worth noting that by the counting explained in the

next section, the set of six-dimensional subspaces of C16 has
real dimension 162 − 62 − 102 = 120, much larger than the
dimension 75 of the surface of (6,6) states. Thus, not every
six-dimensional subspace of C16 is the host of a rank-(6,6)
PPT state. This conclusion is just as one would expect from
the analogy to the case of the rank-(4,4) PPT states in C9.

VII. DIMENSION COUNTING

Wewill describe in this section how to compute numerically
the dimensions of surfaces of PPT states of given ranks. We
list some numerical results and discuss how they may be
understood in most cases by a simple counting of constraints,
assuming the constraints to be independent. It is only for the
lowest rank PPT states, with the largest number of constraints,
that the constraints start to overlap.
A useful exercise to start with is to compute the real (as

opposed to complex) dimension of the set of all r-dimensional
subspaces of an N -dimensional complex Hilbert space.
First note that the unitary groupU(k) has k2 real dimensions.

Take an orthonormal basis of the Hilbert space. The first r

basis vectors span an r-dimensional subspace and define also
its orthogonal complement spanned by the last s = N − r

basis vectors. AU(N) transformation transforms this basis into
another orthonormal basis, but the U(r) transformations within
the first r basis vectors, and theU(s) transformationswithin the
last s basis vectors, do not change either subspace. It follows
that the dimension of the set of r-dimensional subspaces, equal
to the dimension of the set of s-dimensional subspaces, is

d = N2 − r2 − s2 = 2rs. (102)

Assuming that we have found a PPT state ρ of rank (m,n),
it lies on a surface of rank (m,n) PPT states. We compute the
dimension of the surface at point ρ by counting the number of
independent solutions A of Eq. (31),

(Q + Q̃)A = 0, (103)

equivalent to the two equations

QA = QAQ = 0, Q̃A = (Q̃AP Q̃)P = 0. (104)

We have to throw away the trivial solution A = ρ, or
equivalently, impose the condition TrA = 0. We get a lower
bound for the dimension if we assume that the constraints on
A from the two equations in Eq. (104) are independent.
The equation QAQ = 0 represents (N − m)2 real con-

straints, since Q is the orthogonal projection on the N − m

dimensional subspace Ker ρ. Equation (14) illustrates this
counting of constraints. Similarly, the equation Q̃AP Q̃ = 0
represents (N − n)2 real constraints, since Q̃ is the orthog-
onal projection on the N − n dimensional subspace Ker ρP .

Because the constraints are not necessarily independent, we
get the following lower bound for the dimension:

d � N2 − (N − m)2 − (N − n)2 − 1. (105)

Take N = 3× 3 = 9 as an example. We find numerically
that Eq. (105) holds with equality for all ranks from the full
rank (m,n) = (9,9) down to (m,n) = (5,5). In particular, for
rank (5,5) the dimension of the surface is

d = 92 − 42 − 42 − 1 = 48. (106)

By Eq. (102) the set of five-dimensional subspaces has dimen-
sion 40; hence we might expect to find an eight-dimensional
surface of rank-(5,5) PPT states in every five-dimensional
subspace. And that is actually what we find.
For rank (4,4) the constraints are not all independent, and

we have the strict inequality

d = 36 > 92 − 52 − 52 − 1 = 30. (107)

The set of four-dimensional subspaces has again dimension
40; hence there cannot exist rank-(4,4) PPT states in every
four-dimensional subspace. There are 40− 36 = 4 constraints
restricting the four-dimensional subspaces supporting rank-
(4,4) PPT states, and we observe numerically that in one given
four-dimensional subspace there can exist at most one unique
such state. The four constraints are the conditions that the four
parameters a,b,c,d in Eq. (43), or p,q,r,s in Eq. (46), have to
be real.
If we want to compute the dimension of the surface of

rank-(m,n) PPT states with fixed image space, we have to
count the independent solutions of Eq. (32),

(I − P + Q̃)A = 0, (108)

equivalent to the two equations

PA = PAP = A, Q̃A = (Q̃AP Q̃)P = 0. (109)

The equation PA = A leaves m2 real parameters in A and
represents N2 − m2 real constraints, as is visualized in
Eq. (14). The lower bound on the dimension is therefore

d � m2 − (N − n)2 − 1. (110)

In the above example with N = 9 and (m,n) = (5,5) we
find numerically d = 8, as already mentioned, so that the
inequality in Eq. (110) holds as an equality. With (m,n) =
(4,4), on the other hand, we get

d = 0 > 42 − 52 − 1 = −10. (111)

VIII. NUMERICAL INTEGRATION

In this section we describe a numerical method for tracing
curves on a surface of PPT states of fixed ranks (m,n). This is a
tool for studying the geometry of the surface, for example, by
tracing geodesics to see how they curve, or studying how the
surface approaches a boundary consisting of states of lower
ranks.
We use the example of rank-(5,5) PPT states in dimension

3× 3 to illustrate how these methods may be applied. The
numerical results verify some of our conclusions obtained by
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othermethods. They also indicate that the geometry of surfaces
of extremal PPT states may be rather complicated.

A. Equations of motion

Let ρ = ρ(t) be a curve described by a continuous “time”
parameter t and denote the time derivative by ρ̇ = dρ/dt . The
perturbation expansion ρ(t + ε) = ρ(t)+ εA is equivalent to
the differential equation

ρ̇ = A. (112)

This becomes a well-defined equation of motion as soon as we
define the right-hand side as a function of ρ and t ,A = A(ρ,t).
The most general case considered here is a curve lying on

a surface of PPT states of fixed ranks (m,n). Then Eq. (31) is
the necessary and sufficient condition that A has to satisfy:

(Q + Q̃)A = 0. (113)

The projection operators Q and Q̃ on HN are defined relative
to ρ in exactly the same way as before. They will obviously
become t dependent when ρ becomes t dependent.
We consider also the more restricted case when not only

the ranks of ρ and ρP are fixed, but Im ρ is fixed as well.
The stronger necessary and sufficient condition on A is then
Eq. (32):

(I − P + Q̃)A = 0. (114)

In this equation I and P are t independent, and only Q̃ is t

dependent.
The conditions (113) and (114) are both of the form

TA = 0, (115)

with either T = Q + Q̃ or T = I − P + Q̃. In either case, T is
a positive real symmetric operator with respect to the natural
scalar product onHN . The effect of Eq. (115) is only to restrict
the curve to lie on the given surface, and this still leaves many
degrees of freedom available formoving around on the surface.
Let us mention three examples of how to generate a curve.
One possibility is a random walk on the surface. Then at

each point on the curve we choose the directionAmore or less
randomly within the kernel of the operator T at that point.
A second possibility is to trace out a geodesic curve on the

surface. Remember that our surface of PPT states is embedded
in the Euclidean space HN . By definition, a geodesic on an
embedded surface (a simple example is a great circle on the
two-dimensional surface of a three-dimensional sphere) is a
curve which does not change its length and direction on the
surface. Hence it changes direction in the embedding space
only as much as it has to in order to stay on the surface. In
order to generate a geodesic we choose a starting point ρ0 and
a starting direction A0 at ρ0, and as we move along the curve
we keep the length of the tangent vector A constant, while
changing its direction in the embedding space minimally.
A third possibility is to take a differentiable real function

f = f (ρ) and choose A at the point ρ as the (positive or
negative) gradient of f at ρ. In this way we trace out flow
lines of that function on the surface and find local maxima or
minima of f . If we know that the maximum or minimum is on
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FIG. 3. A projection of a geodesic curve on the eight-dimensional
surface of rank-(5,5) PPT states with a fixed image space. We have
made a principal component analysis and plotted the two largest
principal components c1 and c2. The curve starts middle right and
ends lower left.

the boundary of our surface, we may use this as a method for
locating the boundary.

B. Numerical examples

We have implemented numerically the two methods for
generating geodesics and for generating flow lines, using a
classical fourth-order Runge-Kutta integration method. With
ρ and A of order one and time steps of order 10−4, this gives
a precision of order 10−16, which is the machine precision.
Figure 3 shows a two-dimensional projection of a geodesic

curve ρ = ρ(t) on the eight-dimensional curved surface of
rank-(5,5) PPT states with Im ρ constant. The Hilbert space
dimension is 3× 3. The two dimensions plotted are the
two most important ones as given by a principal component
analysis of the full curve. The apparent kinks in the curve are
only effects of the projection and do not reflect sharp bends of
the surface. The most important conclusion to be drawn from
this figure is that the geometry of the surface is not a simple
one.
Figure 4 shows the five nonzero eigenvalues of ρ and ρP

along the path of Fig. 3. The condition that one eigenvalue of
either ρ or ρP goes to zero defines the boundary of the surface.
We see that the curve approaches the boundary twice but turns
around each time and continues in the interior. The eigenvalue
spectra of ρ and ρP are remarkably similar, yet they are
not identical. The fact that the smallest eigenvalues approach
zero collectively may be understood from the conclusions
of Sec. VB. When both ρ and ρP simultaneously get one
dominant eigenvalue, we interpret it as an indication that ρ

approaches a pure product state.
It is quite natural that a geodesic chosen at random will

not hit the boundary, since the boundary consists of rank-(4,4)
PPT states and has dimension 4, while the surface itself has
dimension 8. On the other hand, the geometry of these surfaces
certainly stretches our imagination. We imagine that the two-
dimensional surface of a rain drop may be a fair analogy—
it has a zero-dimensional boundary, a tip which is a single
point, and there is zero probability of hitting the tip if one
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FIG. 4. Variation along the curve in Fig. 3 of the five nonzero
eigenvalues of the density matrix (fully drawn lines) and its partial
transpose (broken lines). The abscissa is the arc length along the
curve.

moves along a geodesic starting at a random point in a random
direction.
If we want to hit the boundary we cannot follow a geodesic.

We have to integrate the equation ρ̇ = A and choose the
direction A in such a way that the smallest positive eigenvalue
of either ρ or ρP goes to zero. Thus we define a function
f = f (ρ) as the smallest one of the ten nonzero eigenvalues
of ρ and ρP . This function is differentiable almost everywhere.
Defining A as the projection of the negative gradient of f

onto the kernel ofT, we trace paths from random (5,5) states to
the boundary of the surface of (5,5) states. In accordance with
the results of Sec. VB, we observe that the smallest nonzero
eigenvalue of ρ and ρP approach zero collectively, so that we
only find (4,4) states as boundary points and never (4,5) or
(5,4) states. With adaptive step lengths in the Runge-Kutta
method we obtain machine precision of eigenvalues and are
therefore confident that we find true (4,4) states.

IX. SUMMARY AND OUTLOOK

The work presented here is part of an ongoing program
to study quantum entanglement in mixed states. We have
studied low-rank entangled PPT states, especially extremal
PPT states, using a combination of analytical and numerical
techniques. In particular, we have used perturbation theory and
exploited the close connection between low-rank PPT states
and product vectors. The concept of SL⊗ SL equivalence,
or SL equivalence for short, is central in the classification of
PPT states. One use for perturbation theory is in the numerical
calculation of the dimensions of various surfaces of PPT states.
Another use is in more detailed studies of the geometry of such
a surface by the tracing of curves on the surface.
We have revisited the rank-(4,4) extremal PPT states in

3× 3 dimensions. A state of this kind has six product vectors
in its kernel, and as we have previously discussed it is
always related by SL⊗ SL equivalence to the special class of
rank-(4,4) extremal PPT states constructed by Bennett et al.

from unextendible sets of orthogonal product vectors.We have
demonstrated here a more direct way of constructing the state
from the product vectors in its kernel without transforming
them to orthogonal form. The transformation to orthogonal
form works only for the rank-(4,4) states in 3× 3 dimensions,
whereas our direct method works just as well for similar cases
in higher dimensions.
We find numerically that the surface of rank-(4,4) extremal

PPT states in dimension 3× 3 has dimension 36. Since
the group SL(3,C)⊗ SL(3,C) has 32 real parameters, this
confirms the known result that four real parameters are needed
to specify an equivalence class of such states under SL⊗ SL
equivalence.
To a rank-(4,4) stateρ in 3× 3 dimensions correspond four-

dimensional subspaces Im ρ and Im ρP and five-dimensional
subspaces Ker ρ = (Im ρ)⊥ and Ker ρP = (Im ρP )⊥. The
product vectors in Ker ρ are related to those in Ker ρP by a
complex conjugation of the second factor in the direct product;
we may call this operation a partial conjugation. This direct
relation between Ker ρ and Ker ρP , not involving ρ explicitly,
means that all the four subspaces Im ρ, Im ρP , Ker ρ, and
Ker ρP are uniquely given as soon as one of them is given.
The set of four-dimensional subspaces and the set of five-

dimensional subspaces both have dimension 40. Thus, a four-
dimensional subspace has to satisfy 40− 36 = 4 constraints in
order to support a rank-(4,4) extremal PPT state. There is never
more than one unique rank (4,4) extremal PPT state on any
given four-dimensional subspace. The four constraints may
be understood as certain reality conditions on the six product
vectors in Ker ρ, or equivalently in Ker ρP . They arise because
the partial conjugation of product vectors, relating Ker ρ and
Ker ρP , must preserve the linear dependence between six
vectors in a five-dimensional subspace.
We have not been able to understand and classify the rank-

(5,5) extremal PPT states in 3× 3 dimensions as completely as
the rank-(4,4) states. However, we have counted the number
of real parameters needed to describe the rank-(5,5) states.
We find numerically a smooth 48-dimensional surface of
such states on the full nine-dimensional Hilbert space. On
every generic five-dimensional subspace we find an eight-
dimensional surface of such states. The dimension 8 is easily
understood, keeping in mind that the set of five-dimensional
subspaces has dimension 40.
The 48-parameter set of rank-(5,5) extremal PPT states

splits into SL⊗ SL equivalence classes described by 48−
32 = 16 parameters. Similarly, the 40-parameter set of five-
dimensional subspaces splits into equivalence classes de-
scribed by 40− 32 = 8 parameters. It is a natural guess that
the 16 parameters needed to describe the SL⊗ SL equivalence
class of a rank-(5,5) PPT state ρ are precisely the eight
parameters describing the equivalence class of Im ρ plus the
eight parameters describing the equivalence class of Im ρP . In
other words, we guess that the equivalence class of Im ρ and
that of Im ρP may vary independently.
Failing in our attempt to solve the general prob-

lem of constructing rank-(5,5) extremal PPT states in
3× 3 dimensions, we have solved the more restricted
problem of constructing such states that are infinites-
imally close to the known rank-(4,4) extremal PPT
states.
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The set of six product vectors in the kernel of a rank-(4,4)
state ρ plays an important role in imposing constraints on a
perturbationA to ensure that ρ ′ = ρ + εA is a rank-(5,5) PPT
state for ε infinitesimal and positive. The constraints admit
solutions for A such that ρ ′ has rank (4,4), independent of the
sign of ε, then A is a tangent to the 36-dimensional surface of
(4,4) states. In addition, there is a 12-parameter nonlinear set of
solutions for A such that ρ ′ has rank (5,5) and such that A is a
direction orthogonal to the surface of (4,4) states. The general
solution for A is a linear combination of a direction along the
surface of rank-(4,4) states and a direction orthogonal to this
surface pointing into the surface of (5,5) states.
Thus our construction by perturbation accounts completely

for the dimension 48 = 36+ 12 of the surface of (5,5) states.
It is rather remarkable that the construction is guaranteed to
produce PPT states of ranks (5,5), because when the perturbed
state ρ ′ gets an infinitesimal strictly positive eigenvalue, there
is a corresponding infinitesimal eigenvalue of (ρ ′)P which is
also strictly positive, never zero or negative.
In dimension 3× 3, the rank-(4,4) PPT states are set apart

by the special property that the kernel of a state is always
spanned by product vectors and contains a finite number of
product vectors. This property is shared more generally by
PPT states of rank (n,n) in dimension NA × NB with n =
NA + NB − 2.
As another example from this interesting general class

of PPT states we have considered the rank-(6,6) extremal
PPT states in dimension 4× 4. In this case the kernel of a
state has dimension 10 and contains 20 product vectors. Our
method for reconstructing a PPT state from the product vectors

in its kernel works very well here again. In our numerical
examples we find that the state can be reconstructed uniquely
from an arbitrary subset of only seven product vectors in its
kernel.
One remarkable feature of this result is that seven product

vectors uniquely determine a ten-dimensional subspace. It is
clear that a six-dimensional subspace in dimension 4× 4 has
to satisfy some set of very strict conditions in order to support
a rank-(6,6) extremal PPT state. An obvious nontrivial set
of conditions is that the partial conjugation of the 20 product
vectors in its ten-dimensional orthogonal complement must lie
in a ten-dimensional subspace. How to handle these constraints
is one of the many open problems left for future research.
In conclusion, we have made some small progress in our

efforts to understand the low-rank entangled PPT states, but
much remains to be done. How to construct general rank-
(5,5) PPT states that are not close to rank-(4,4) states is still
an unsolved problem, and we are even further from a full
understanding of higher rank extremal PPT states in 3× 3
dimensions, or in higher dimensions.
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We present a study of extremal entanglement witnesses on a bipartite composite quantum system.

We define the cone of witnesses as the dual of the set of separable density matrices, thus TrΩρ ≥ 0

when Ω is a witness and ρ is a pure product state, ρ = ψψ† with ψ = φ⊗χ. The set of witnesses

of unit trace is a compact convex set, uniquely defined by its extremal points. The expectation

value f(φ, χ) = TrΩρ as a function of vectors φ and χ is a positive semidefinite biquadratic form.

Every zero of f(φ, χ) imposes strong real-linear constraints on f and Ω. The real and symmetric

Hessian matrix at the zero must be positive semidefinite. Its eigenvectors with zero eigenvalue,

if such exist, we call Hessian zeros. A zero of f(φ, χ) is quadratic if it has no Hessian zeros,

otherwise it is quartic. We call a witness quadratic if it has only quadratic zeros, and quartic if it

has at least one quartic zero. A main result we prove is that a witness is extremal if and only if

no other witness has the same, or a larger, set of zeros and Hessian zeros. A quadratic extremal

witness has a minimum number of isolated zeros depending on dimensions. If a witness is not

extremal, then the constraints defined by its zeros and Hessian zeros determine all directions in

which we may search for witnesses having more zeros or Hessian zeros. A finite number of iterated

searches in random directions, by numerical methods, lead to an extremal witness which is nearly

always quadratic and has the minimum number of zeros. We discuss briefly some topics related

to extremal witnesses, in particular the relation between the facial structures of the dual sets

of witnesses and separable states. We discuss the relation between extremality and optimality

of witnesses, and a conjecture of separability of the so called structural physical approximation

(SPA) of an optimal witness. Finally, we discuss how to treat the entanglement witnesses on a

complex Hilbert space as a subset of the witnesses on a real Hilbert space.

Keywords: Entanglement witnesses; positive maps; convex sets.

1. Introduction

Entanglement is the quintessence of non-classicality in composite quantum systems. As a
physical resource it finds many applications especially in quantum information theory, see

†Deceased 31 May 2015
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Refs. 1, 2 and references therein. Entangled states are exactly those states that can not
be modelled within the classical paradigm of locality and realism.3-6 Contrary to states of
classical composite systems, they allow better knowledge of the system as a whole than
of each component of the system.7,8 The notion of entanglement is therefore of interest
within areas of both application and interpretation of quantum mechanics.

The problem of distinguishing entangled states from non-entangled (separable) states
is a fundamental issue. Pure separable states of a bipartite system are exactly the pure
product states, they are easily recognized by singular value decomposition, also known
as Schmidt decomposition.2 The situation is much more complicated for mixed states. A
separable mixed state is a state mixed from pure product states.5

The separability problem of distinguishing mixed separable states from mixed entangled
states has received attention along two lines. On the one hand, operational or computa-
tional tests for separability are constructed.9 On the other hand, the geometry of the
problem is studied, with the aim of clarifying the structures defining separability. 10-18

Two results, one from each approach, deserve special attention. An operationally simple
necessary condition for separability was given by Peres.9 He pointed out that the partial
transpose of a separable state is again a separable state, therefore we know that a state is
entangled if its partial transpose is not positive semidefinite. States with positive partial
transpose, so called PPT states, are interesting in their own right.19 A significant geomet-
rical result is that of Życzkowski et al. that the volume of separable states is non-zero.12

They prove the existence of a ball of separable states surrounding the maximally mixed
state. The maximal radius of this ball was provided by Gurvits and Barnum.13

The well known necessary and sufficient separability condition in terms of positive linear
maps or entanglement witnesses connects these two lines of thought.11,20 There exists a set
of linear maps on states, or equivalently a set of observables called entanglement witnesses,
that may detect, or witness, entanglement of a state. This result is the point of departure
for almost all research into the problem, be it computational, operational or geometrical.
The major obstacle in the application of positive linear maps and entanglement witnesses
is that they are difficult to identify, in principle as difficult as are the entangled states
themselves.

Our contribution falls in the line of geometrical studies of entanglement. The ultimate
goal is to classify the extremal points of the convex set of entanglement witnesses, the
building blocks of the set, in a manner useful for purposes in quantum mechanics. Positive
linear maps, and the extremal positive maps, were studied already in 1963 by Størmer in
the context of partially ordered vector spaces and C∗ algebras.14,15 Since then the extremal
positive maps and extremal witnesses have only received scattered attention.21-28

Here we combine and apply basic notions from convex geometry and optimization
theory in order to study the extremal entanglement witnesses. We obtain computationally
useful necessary and sufficient conditions for extremality. We use these ideas to analyse
previously known examples and construct new numerical examples of extremal witnesses.
The extremal witnesses found in random searches are generic, by definition. It turns out
that the previously known examples of extremal witnesses are very far from being generic,
and the generic extremal witness is of a type not yet published in the literature.

We discuss what we learn about the geometry of the set of witnesses, and also the set
of separable states, by studying extremal witnesses. Other topics we comment on are the
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relation between extremal and optimal witnesses,26,29 and the so called structural physical
approximation (SPA) of witnesses relating them to physical maps of states.30-33

Numerical methods play a central role in our work. An important reason is that the
entanglement witnesses we want to study are so complicated that there is little hope of
treating them analytically. Numerical work is useful for illustrating the theory, examining
questions of interest and guiding our thoughts in questions we cannot answer rigorously.

The methods we use for studying extremal witnesses are essentially the same as we
have used previously for studying extremal states with positive partial transpose, i.e.
PPT states.18,34-37 The work presented here is also based in part on the master’s thesis
of one of us.38

Outline of the article

This article consists of three main parts. Section 2 is the first part, where we review mate-
rial necessary for the appreciation of later sections. The basic concepts of convex geometry
are indispensable. We review the geometry of entanglement witnesses, and formulate the
study of extremal witnesses as an optimization problem where we represent the witness
as a positive semidefinite biquadratic form and study its zeros.

The second part consists of Sec. 3 and Sec. 4, where we develop a necessary and
sufficient condition for the extremality of a witness. The basic idea is that every zero of
a positive biquadratic form representing a witness imposes strong linear constraints on
the form. The extremality condition in terms of the zeros of a witness and the associated
constraints is our most important result, not only because it gives theoretical insight, but
because it is directly useful for numerical computations.

In the third, last, and most voluminous part, the Secs. 5 to 11, we apply the extremality
condition from Sec. 4. As a first application we study decomposable witnesses in Sec. 5.
These are well understood and not very useful as witnesses, since they can only detect the
entanglement of a state in the trivial case when its partial transpose is not positive. But
they serve to illustrate the concepts, and we find them useful as stepping stones towards
non-decomposable witnesses.

In Sec. 6 we study examples of extremal non-decomposable witnesses. First we study
two examples known from the literature, and confirm their extremality by our numerical
method. Then we construct numerically random examples of extremal witnesses in order
to learn about their properties. We find that the generic extremal witnesses constructed
numerically belong almost without exception to a completely new class, not previously
noticed in the literature. They have a fixed number of isolated quadratic zeros, whereas
the previously published extremal witnesses have continuous sets of zeros. The number of
zeros depends on the dimensions of the Hilbert spaces of the two subsystems.

In Sec. 7 we show examples of a special D-shaped type of faces of the set of witnesses
in the lowest non-trivial dimensions, 2× 4 and 3× 3. These faces are “next to extremal”,
bordered by extremal witnesses plus a straight section of decomposable witnesses.

In Sec. 8 we study faces of the set of separable states, using the duality between
separable states and witnesses. We classify two different families of faces, generalizing
results of Alfsen and Shultz,16 and present some statistics on randomly generated maximal
simplex faces. We point out that the facial structure is relevant for the question of how
many pure product states are needed in the convex decomposition of an arbitrary separable
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state, and suggest that it may be possible to improve substantially the trivial bound given
by the dimension of the set.39,40

In Sec. 9 we compare the notions of optimal and extremal witnesses.26,29 In low dimen-
sions we find that almost every non-decomposable optimal witness is extremal, whereas
an abundance of non-decomposable and non-extremal optimal witnesses exist in higher
dimensions.

In Sec. 10 we comment on a separability conjecture regarding structural physical ap-
proximations (SPAs) of optimal witnesses.31,32 This conjecture has since been refuted.33,41

We have tried to test numerically a modified separability conjecture. It holds within the
numerical precision of our separability test, but this test with the available precision is
clearly not a definitive proof.

In Sec. 11 we point out that it is possible, and maybe even natural from a certain
point of view, to treat the entanglement witnesses on a complex tensor product space as
a subset of the witnesses on a real tensor product space.

In Sec. 12 we summarize our work and suggest some possible directions for future
efforts. Some details regarding numerical methods are found in the Appendix.

2. Background material

In this section we review material necessary as background for the following sections.
Convex geometry is the mathematical basis of the theory of mixed quantum states, and is
equally basic in the entanglement theory for mixed states. We introduce the concepts of
dual convex cones, entanglement witnesses, positive maps, and biquadratic forms. See e.g.
introductory sections of Refs. 10, 42 for further details on convexity. Concepts from opti-
mization theory are useful in the numerical treatment of a special minimization problem,
see Refs. 42, 43.

2.1. Convexity

The basic concepts of convex geometry are useful or even essential for describing mixed
quantum states as probabilistic mixtures of pure quantum states. A convex subset of a
real affine space is defined by the property that any convex combination

x = (1− p)x1 + px2 with 0 ≤ p ≤ 1 (1)

of members x1, x2 is a member. If x1 �= x2 and 0 < p < 1 we say that x is a proper convex
combination of x1, x2, and x is an interior point of the line segment between x1 and x2.
The dimension of a convex set is the dimension of the smallest affine space containing it.
We will be dealing here only with finite dimensional sets. Closed and bounded subsets of
finite dimensional Euclidean spaces are compact, according to the Heine–Borel theorem.
A compact convex set has extremal points that are not convex combinations of other
points. It is completely described by its extremal points, since any point in the set can be
decomposed as a convex combination involving no more than n+1 extremal points, where
n is the dimension of the set.40 It is called a polytope if it has a finite number of extremal
points, and a simplex if the number of extremal points is one more than the dimension.

Definition 1. A bidirection at x in the convex set K is a direction vector v �= 0 such that
x+ tv ∈ K for t in some interval [t1, t2] with t1 < 0 < t2.
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A face F of K is a convex subset of K with the property that if x ∈ F then every
bidirection in K at x is a bidirection in F at x. An equivalent condition defining F as a
face is that if x ∈ F is a proper convex combination of x1, x2 ∈ K, then x1, x2 ∈ F .

Intuitively, one might say that a set F is a face of K if it is ”self reliant” up to convex
combinations.

The empty set and K itself are faces of K, by definition. All other faces are called proper
faces. The extremal points of K are the zero dimensional faces of K. A face of dimension
n− 1 where n is the dimension of K is called a facet.

A point x in a convex set K is an interior point of K if every direction at x (in the
minimal affine space containing K) is a bidirection, otherwise x is a boundary point of K.
Every point x ∈ K is either an extremal point of K or an interior point of a unique face
Fx of dimension one or higher. This face is the intersection of K with the affine space

Ax = {x+ tv | t ∈ R , v ∈ Bx } (2)

where Bx is the set of all bidirections in K at x. Thus, every face F of K is an intersection
F = A ∩ K of K with some affine space A. We take A to be a subspace of the minimal
affine space containing K. The minimum dimension of A is the dimension of F , but it may
also be possible to choose A as an affine space of higher dimension than F . A proper face
F = A ∩ K is said to be exposed if A has dimension n− 1 where n is the dimension of K.
Note that an exposed face may have dimension less than n− 1, thus it is not necessarily
a facet, and it may be just a point. Every exposed point is extremal, since it is a zero
dimensional face, but a convex set may have extremal points that are not exposed.

A proper face of K is part of the boundary of K. The faces of a face F of K are the
faces of K contained in F . In particular, the following result is useful for understanding
the face structure of a convex set when its extremal points are known.

Theorem 1. Let F be a face of the convex set K. Then a point in F is an extremal point
of F if and only if it is an extremal point of K.

We state here another useful result which follows directly from the definitions.

Theorem 2. An intersection K = K1∩K2 of two convex sets K1 and K2 is again a convex
set, and every face F of K is an intersection F = F1 ∩F2 of faces F1 of K1 and F2 of K2.

The facial structure of K = K1 ∩K2 follows from Def. 1 because the bidirections at any
point x ∈ K are the common bidirections at x in K1 and K2.

A cone C in a real vector space is a set such that if x ∈ C, x �= 0, then tx ∈ C but
−tx �∈ C for every t > 0. The concept of dual convex cones, to be defined below, has found
a central place in the theory of quantum entanglement.

2.2. Quantum states

We are concerned here with a bipartite quantum system with Hilbert space H = Ha ⊗Hb

of finite dimension N = NaNb. The real vector space H of observables on H has dimension
N2, a natural Euclidean inner product 〈A,B〉 = TrAB and the corresponding Hilbert–
Schmidt norm ‖A‖ =

√
TrA2. We take Ha = CNa, Hb = CNb, so H is the set of Hermitian

matrices in the matrix algebra MN (C). We write the components of a vector ψ ∈ CN as
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ψI = ψij with I = 1, 2, . . . , N or ij = 11, 12, . . . , NaNb. For any A ∈ H we define AP as the
partial transpose of A with respect to the second subsystem, that is,

(AP )ij;kl = Ail;kj . (3)

The set of positive semidefinite matrices in H is a closed convex cone which we denote
by D. The state space of the quantum system is the intersection D1 between D and the
hyperplane defined by TrA = 1. The matrices in D1 are called density matrices, or mixed
quantum states. A vector ψ ∈ H with ψ†ψ = 1 defines a pure state ψψ† ∈ D1. D1 is a
compact convex set of dimension N2 − 1. The pure states are the extremal points of D1,
in fact this is an alternative definition of D1.

A pure state ψψ† is separable if ψ is a product vector, ψ = φ⊗χ, thus a separable pure
state is a tensor product of pure states,

ψψ† = (φ⊗ χ)(φ⊗ χ)† = (φφ†)⊗ (χχ†). (4)

The set of separable states S1 is the smallest convex subset of D1 containing all the
separable pure states. Since the separable pure states are extremal points of D1 containing
S1, they are also extremal points of S1, and they are all the extremal points of S1. S1 is
compact and defines a convex cone S ⊂ D. The dimension of S1 is N2− 1, the same as the
dimension of D1, hence every separable state may be written as a convex combination of
N2 or fewer pure product states.39,40

The fact that S and D have the same dimension N2 is not quite as trivial as one might
be tempted to think. It is a consequence of the fundamental fact that we use complex
Hilbert spaces in quantum mechanics, as the following argument shows. In a quantum
mechanics based on real Hilbert spaces every separable state would have to be symmetric
under partial transposition, and the dimension of S would be much smaller than the
dimension of D. With complex Hilbert spaces, a generic real symmetric matrix which
is a separable state is not symmetric under partial transposition, and the remarkable
conclusion is that its representation as a convex combination of pure product states must
necessarily involve complex product vectors. The basic reason that S and D have the same
dimension is the relation H = Ha ⊗ Hb between the real vector spaces H, Ha and Hb of
observables on H, Ha and Hb. We construct S explicitly as a subset of Ha ⊗Hb, in such a
way that the dimension of S is the full dimension of Ha ⊗Hb.

We define the set of positive partial transpose states (PPT states) as P1 = D1 ∩ DP
1 .

Partial transposition is an invertible linear operation preserving the convex structure
of D1, hence P1 is also a compact convex set defining a convex cone P. We have that
S1 ⊆ P1 ⊂ D1. The fact that every separable state has a positive partial transpose is
obvious, and provides a simple and powerful test for separability, known as the Peres
criterion. 9 In dimensions 2×2 and 2×3 the converse statement is also true, that every PPT
state is separable.11 The entanglement of PPT states is not distillable into entanglement
of pure states, and it is believed that the entangled PPT states alone possess this special
“bound” type of entanglement.19

2.3. Dual cones, entanglement witnesses

The existence of entangled PPT states motivates the introduction of entanglement wit-
nesses that may reveal their entanglement. We define the dual cone of S as
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S◦ = {Ω ∈ H | TrΩρ ≥ 0 ∀ ρ ∈ S}. (5)

The members of S◦ will here be called entanglement witnesses. The usual convention is
that a witness is required to have at least one negative eigenvalue, but since our focus is
on the geometry of S◦ this restriction is not important to us here.

The definition of S◦ as a dual cone implies that it is closed and convex. Since S is a
closed convex cone the dual of S◦ is S itself 11,42 (the fact that S◦◦ = S is given as an exercise
in Ref. 42). Thus, a witness having a negative expectation value in a state proves the state
to be entangled, and given any entangled state there exists a witness having a negative
expectation value in that state. This two-way implication makes entanglement witnesses
powerful tools for detecting entanglement, both theoretically and experimentally.20,26,44-49

From the experimental point of view the testimony of an entanglement witness is of
a statistical nature. A positive or negative result of one single measurement of a witness
gives little information about whether the state in question is separable or entangled. A
positive or negative average over many measurements will give a more reliable answer,
but some statistical uncertainty must always remain.

Since the extremal points of S1 are the pure product states, a matrix Ω ∈ H is a
witness if and only if its expectation value is non-negative in every pure product state.
Furthermore, since the dimension of S is the full dimension of H, every witness Ω �= 0

has strictly positive expectation values in some pure product states. Since every product
vector is a member of some basis of orthogonal product vectors, we conclude that every
witness Ω �= 0 has TrΩ > 0.12 Accordingly the set S◦

1 of normalized (unit trace) witnesses
completely describes all of S◦.

Theorem 3. S◦
1 is a bounded set.

Proof. The maximally mixed state ρ0 = I/N is in S1. Define for θ > 0 and Γ ∈ H with
TrΓ = 0, TrΓ2 = 1,

f(θ,Γ) = min
ρ∈S1

Tr ρ (ρ0 + θΓ) =
1

N
+ θmin

ρ∈S1

Tr ρΓ. (6)

Since S1 is compact, f is well defined. Since TrΓ = 0, we have Γ /∈ S◦ and the minimum of
Tr ρΓ is strictly negative. Therefore, given any Γ we can always find the θ(Γ) which makes
f(θ,Γ) = 0. Since Γ lies in a compact set there exists a Γ∗ with θ∗ = θ(Γ∗) = maxΓ θ(Γ).
This θ∗ defines an N2 − 1 dimensional Euclidean ball B1 centered at ρ0 containing S◦

1 .

Note that the dual set B◦
1 is an N2 − 1 dimensional ball contained in S1, also cen-

tered at ρ0.12 From now on, when we talk about entanglement witnesses we will usually
assume that they are normalized and lie in S◦

1 . Since S◦
1 is a compact convex set it is

completely described by its extremal points. The ultimate objective of the present work
is to characterize these extremal witnesses.

The concept of dual cones applies of course also to the cone D of positive semidefinite
matrices and the cone P of PPT matrices. The cone D is self-dual, D◦ = D. Since P =

D ∩ DP, the dual cone P◦ is the convex hull of D ∪ DP . Hence, the extremal points of P◦
1

are the pure states ψψ† and the partially transposed pure states (ψψ†)P. These are also
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extremal in S◦
1 .

14,15,24,25 A witness Ω ∈ P◦ is called decomposable, because it has the form

Ω = ρ+ σP with ρ, σ ∈ D. (7)

This terminology comes from the mathematical theory of positive maps.14 Decomposable
witnesses are in a sense trivial, and not very useful as witnesses, since they can not be
used for detecting entangled PPT states.

Altogether, we have the following sequence of compact convex sets,

S1 ⊂ P1 ⊂ D1 = D◦
1 ⊂ P◦

1 ⊆ S◦
1 . (8)

All these sets, with the exception of D1, are invariant under partial transposition. The
sets S1, D1, and P◦

1 are very simply described in terms of their extremal points. The
extremal points of P1 are not fully understood, though some progress has been made in
this direction.18,34-37 The extremal points of S◦

1 are what we investigate here, they include
the extremal points of S1, D1, and P◦

1 .
A face of D1 is a complete set of density matrices on some subspace of H.10 Faces of

S1 have recently been studied by Alfsen and Shultz.16,50 We also comment on faces of S1

in Sec. 8. As we develop our results regarding extremal witnesses we will simultaneously
obtain a classification of faces of S◦

1 .

2.4. Positive maps

The study of the set of separable states through the dual set of entanglement witnesses
was started by Micha�l, Pawe�l, and Ryszard Horodecki.11 They pointed out the relation
between witnesses and positive maps, and used known results from the mathematical
theory of positive maps to throw light on the separability problem.14 In particular, the
fundamental result that there exist entangled PPT states is equivalent to the existence of
non-decomposable positive maps.

We describe here briefly how entanglement witnesses are related to positive maps, but
do not aim at developing the perspectives of positive maps in great detail. In Sec. 10 we
return briefly to the use of positive maps for detecting entanglement.

We use a matrix A ∈ H to define a real linear map LA : Ha → Hb such that Y = LAX

when

Yjl =
∑
i,k

Aij;klXki. (9)

The correspondence A ↔ LA is a vector space isomorphism between H and the space of
real linear maps Ha → Hb. A slightly different version of this isomorphism is more common
in the literature, this is the Jamio�lkowski isomorphism A ↔ JA by which JAX = LA(X

T ).51

The transposed real linear map LT
A : Hb → Ha is defined such that X = LT

AY when

Xik =
∑
j,l

Aij;klYlj . (10)

It is the transpose of LA with respect to the natural scalar products 〈U, V 〉 = TrUV in Ha
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and Hb. In fact, for any X ∈ Ha, Y ∈ Hb we have

〈LAX,Y 〉 = Tr ((LAX)Y ) =
∑
i,j,k,l

Aij;klXkiYlj = Tr (X(LT
AY )), (11)

and therefore

〈LAX,Y 〉 = 〈X,LT
AY 〉. (12)

The maps LA and LT
A act on one dimensional projection operators φφ† ∈ Ha and

χχ† ∈ Hb according to
LA(φφ

†) = (φ⊗ Ib)
†A(φ⊗ Ib),

LT
A(χχ

†) = (Ia ⊗ χ)†A(Ia ⊗ χ).
(13)

Note that φ ⊗ Ib is an N × Nb matrix such that (φ ⊗ Ib)χ = φ ⊗ χ, whereas Ia ⊗ χ is an
N ×Na matrix such that (Ia ⊗ χ)φ = φ⊗ χ. It follows that

χ† (LA(φφ
†))χ = φ† (LT

A(χχ
†))φ = (φ⊗ χ)†A(φ⊗ χ). (14)

If Ω is an entanglement witness then Eq. (14) implies that LΩ is a positive linear map
Ha → Hb, mapping positive semidefinite matrices in Ha to positive semidefinite matrices
in Hb. Similarly, LT

Ω is a positive linear map Hb → Ha. The correspondence Ω ↔ LΩ is
a vector space isomorphism between the set of entanglement witnesses and the set of
positive maps.

A positive map M is said to be completely positive if every map I⊗M, where I is the
identity map in an arbitrary dimension, is positive. It is easily shown that JA is completely
positive if and only if A is a positive matrix. Thus LA is completely positive if and only
if AP is a positive matrix.

2.5. Biquadratic forms and optimization

The expectation value of an observable A ∈ H in a pure product state ψψ† with ψ = φ⊗χ

is a biquadratic form

fA(φ, χ) = (φ⊗ χ)†A(φ⊗ χ). (15)

The condition for Ω ∈ H to be an entanglement witness is that the corresponding bi-
quadratic form fΩ is positive semidefinite, i.e. that Ω has non-negative expectation value
in the set of pure product vectors ψ = φ ⊗ χ. Our approach here is to study witnesses
through the associated biquadratic forms.

In the present work we study especially boundary witnesses, corresponding to bi-
quadratic forms that are marginally positive. This leads naturally to an alternative defi-
nition of entanglement witnesses in terms of an optimization problem.

Definition 2. A matrix A ∈ H is an entanglement witness if and only if the minimum
value p∗ of the problem

minimize: fA(φ, χ) = (φ⊗ χ)†A(φ⊗ χ), φ ∈ Ha, χ ∈ Hb,

subject to: ‖φ‖ = ‖χ‖ = 1,
(16)

is non-negative.
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The normalization demand on φ and χ ensures that p∗ > −∞ when A /∈ S◦, and that
p∗ > 0 for every A in the interior of S◦. It is natural to use here the Hilbert–Schmidt norm
‖A‖ =

√
TrA2, which was introduced above, but in principle any norm would serve the

same purpose.
The boundary ∂S◦ of S◦ consists of those Ω ∈ S◦ for which there exists a separable

state ρ orthogonal to Ω, i.e. with TrΩρ = 0. In terms of problem (16), A ∈ ∂S◦ if and
only if p∗ = 0. Since we know that S◦◦ = S we can similarly understand the boundary ∂S
of the set of separable states S, as the subset of S which are orthogonal to some witness.
We will return to this duality between the boundaries of S and S◦ in much more detail
in Sec. 8.

2.6. Equivalence under SL⊗ SL transformations

It is very useful to observe that all the main concepts discussed in the present article are
invariant under what we call SL⊗SL transformations, in which a matrix A is transformed
into V AV † with an invertible product matrix V = Va ⊗ Vb.

For example, since such a transformation is linear in A, it preserves convex combi-
nations, extremal points, and in general all the convexity properties of different sets. It
preserves the positivity of matrices, the tensor product structure of vectors and matrices,
the number of zeros of witnesses, and in general all properties related to entanglement,
except that it may increase or decrease entanglement as measured quantitatively if either
Va or Vb is not unitary.

Thus, for our purposes it is useful to consider two density matrices or two entanglement
witnesses to be equivalent if they are related by an SL⊗ SL transformation. This sorting
into equivalence classes helps to reduce the problem of understanding and classifying
entangled states and entanglement witnesses.

3. Secondary constraints at zeros of witnesses

By definition, a witness Ω satisfies the following infinite set of inequalities, all linear in Ω,

fΩ(φ, χ) ≥ 0 with φ ∈ Ha, χ ∈ Hb, ‖φ‖ = ‖χ‖ = 1. (17)

These constraints on Ω, represented here as a biquadratic form fΩ, are the primary con-
straints defining the set S◦

1 , apart from the trivial linear constraint TrΩ = 1.
If Ω is situated on the boundary of S◦

1 it means that at least one of these primary
inequalities is an equality. We will call the pair (φ0, χ0) a zero of Ω if fΩ(φ0, χ0) = 0. We
count (aφ0, bχ0) with a, b ∈ C as the same zero. The primary constraints (17) with (φ, χ)

close to the zero (φ0, χ0) lead to rather stringent constraints on Ω, which we introduce as
secondary constraints to be imposed at the zero. These secondary constraints are both
equalities and inequalities, and they are linear in Ω, like the primary constraints from
which they are derived. They are summarized in explicit form in Appendix A. In the
next section we apply all the secondary constraints to the problem of constructing and
classifying extremal witnesses.

The analysis of secondary constraints that we have presented here in this section is
essentially the same as the one carried out by Lewenstein et al. in their study of optimal
witnesses.26
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3.1. Positivity constraints on polynomials

A model example may illustrate how we treat constraints. Let f(t) be a real polynomial
in one real variable t, of degree four and with a strictly positive quartic term, satisfying
the primary constraints f(t) ≥ 0 for all t. These are constraints on the coefficients of the
polynomial. The equation f(t) = 0 can have zero, one or two real roots for t. Assume that
f(t0) = 0. Because this is a minimum, we must have f ′(t0) = 0 and f ′′(t0) ≥ 0. In the
limiting case f ′′(t0) = 0 we must have also f (3)(t0) = 0.

Thus, if f(t0) = 0 we get secondary constraints f ′(t0) = 0, and either f ′′(t0) > 0 or
f ′′(t0) = 0, f (3)(t0) = 0. If there is a second zero t1, similar secondary constraints must
hold there. It should be clear that we may replace the infinite set of primary constraints
f(t) ≥ 0 for every t by the finite set of secondary constraints at the zeros t0 and t1.

Because the zeros of a witness Ω are roots of a polynomial equation in several variables,
they have the following property.

Theorem 4. The set of zeros of a witness consists of at most a finite number of compo-
nents, where each component is either an isolated point or a continuous connected surface.

Proof. Choose (φ2, χ2) such that fΩ(φ2, χ2) > 0, and define f(t) = fΩ(φ1 + tφ2, χ1 + tχ2).
For given (φ1, χ1) and (φ2, χ2) this is a non-negative polynomial in the real variable t of
degree four, hence it has zero, one or two real roots for t. By varying (φ1, χ1) we reach
all the zeros of Ω. The zeros of f(t) will move continuously when we vary (φ1, χ1), except
that they may appear or disappear. This construction should result in a set of zeros as
described in the theorem.

Now let (φ0, χ0) be a zero of Ω, with ‖φ0‖ = ‖χ0‖ = 1. Since the constraints (17) on the
polynomial fΩ at (φ, χ) = (φ0 + ξ, χ0 + ζ) are actually independent of the normalization
conditions ‖φ‖ = ‖χ‖ = 1, we choose to abandon these non-linear normalization conditions
(non-linear in the Hilbert–Schmidt norm) and replace them by the linear constraints
φ†
0ξ = 0, χ†

0ζ = 0. Strictly speaking, even these orthogonality conditions are not essential,
the important point is that we vary φ and χ in directions away from φ0 and χ0.

We find that some of the secondary constraints on fΩ are intrinsically real equations
rather than complex equations, therefore we introduce real variables x ∈ R2Na−2, y ∈ R2Nb−2

and write ξ = J0x, ζ = K0y with φ†
0J0 = 0, χ†

0K0 = 0. Our biquadratic form is then a real
inhomogeneous polynomial quadratic in x and quadratic in y,

f(x, y) = fΩ(φ, χ) = ((φ0 + ξ)⊗ (χ0 + ζ))†Ω ((φ0 + ξ)⊗ (χ0 + ζ)). (18)

The linear term of the polynomial is

f1(x, y) = 2Re ((ξ ⊗ χ0)
†Ω(φ0 ⊗ χ0) + (φ0 ⊗ ζ)†Ω(φ0 ⊗ χ0))

= xTDxf(0, 0) + yTDyf(0, 0), (19)

in terms of the gradients

Dxf(0, 0) = 2Re (J0 ⊗ χ0)
†Ω(φ0 ⊗ χ0),

Dyf(0, 0) = 2Re (φ0 ⊗K0)
†Ω(φ0 ⊗ χ0).

(20)
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The quadratic term is

f2(x, y) = (ξ ⊗ χ0)
†Ω (ξ ⊗ χ0) + (φ0 ⊗ ζ)†Ω (φ0 ⊗ ζ)

+ 2Re ((φ0 ⊗ ζ)†Ω (ξ ⊗ χ0) + (φ0 ⊗ χ0)
†Ω (ξ ⊗ ζ))

= zTGΩ z

(21)

where zT = (xT , yT ), and 2GΩ = D2f(0, 0) is the second derivative, or so called Hessian
matrix, which is a always real and symmetric matrix,

GΩ = Re

[
gxx gTyx
gyx gyy

]
, (22)

where the elements are
gxx = (J0 ⊗ χ0)

†Ω(J0 ⊗ χ0),

gyx = (φ0 ⊗K0)
†Ω(J0 ⊗ χ0) + (φ0 ⊗K∗

0 )
†ΩP (J0 ⊗ χ∗

0),

gyy = (φ0 ⊗K0)
†Ω(φ0 ⊗K0).

(23)

The cubic term is like the linear term but with φ0 ↔ ξ and χ0 ↔ ζ,

f3(x, y) = 2Re ((φ0 ⊗ ζ)†Ω(ξ ⊗ ζ) + (ξ ⊗ χ0)
†Ω(ξ ⊗ ζ)). (24)

The quartic term is simply

f4(x, y) = fΩ(ξ, ζ) = (ξ ⊗ ζ)†Ω(ξ ⊗ ζ). (25)

The fact that the constant term of the polynomial vanishes, f(0, 0) = 0, is one real
linear constraint on Ω,

T0 : H → R , T0Ω = (φ0 ⊗ χ0)
†Ω(φ0 ⊗ χ0) = 0. (26)

Because (x, y) = (0, 0) is a minimum of the polynomial the linear term must also vanish
identically, and this results in another linear system of constraints,

T1 : H → R
2(Na+Nb−2), T1Ω =

[
Dxf(0, 0)

Dyf(0, 0)

]
= 0. (27)

Note that the equality constraints T0 and T1 are the same for every witness with the zero
(φ0, χ0), they are uniquely defined by the zero alone. The total number of constraints in
T0 and T1 is

M2 = 2(Na +Nb)− 3. (28)

All of these M2 constraints are linearly independent. They are given an explicitly real
representation in Appendix A.

It is worth noting that the vanishing of the constant and linear terms of the polynomial
f(x, y) is equivalent to the conditions that

(φ⊗ χ0)
†Ω(φ0 ⊗ χ0) = 0 ∀ φ ∈ Ha,

(φ0 ⊗ χ)†Ω(φ0 ⊗ χ0) = 0 ∀ χ ∈ Hb.
(29)
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Hence the 2(Na + Na) − 3 real constraints T0Ω = 0 and T1Ω = 0 may be expressed more
simply as the following set of Na +Nb complex constraints, equivalent to 2(Na +Nb) real
constraints that are then not completely independent,

LT
Ω(χ0χ

†
0)φ0 = (Ia ⊗ χ0)

†Ω(φ0 ⊗ χ0) = 0,

LΩ(φ0φ
†
0)χ0 = (φ0 ⊗ Ib)

†Ω(φ0 ⊗ χ0) = 0.
(30)

The quadratic term of the polynomial has to be non-negative, again because (x, y) =

(0, 0) is a minimum. The inequalities

zTGΩ z ≥ 0 ∀ z ∈ R
2(Na+Nb−2) (31)

are secondary inequality constraints, linear in Ω, equivalent to the non-linear constraints
that all the eigenvalues of the Hessian matrix GΩ must be non-negative.

There are now two alternatives. If the inequalities (31) hold with strict inequality for
all z �= 0, in other words, if all the eigenvalues of the Hessian are strictly positive, then
we call (φ0, χ0) a quadratic zero. In this case T0 and T1 are the only equality constraints
placed on Ω by the existence of the zero (φ0, χ0). We can immediately state the following
important result.

Theorem 5. A quadratic zero is isolated: there is a finite distance to the next zero. Hence,
a witness can have at most a finite number of quadratic zeros.

3.2. Hessian zeros

The second alternative is that the Hessian has K zero eigenvalues with K ≥ 1. We will call
z �= 0 a Hessian zero at the zero (φ0, χ0) if GΩz = 0. It is then a real linear combination

z =

K∑
i=1

aizi (32)

of basis vectors zi ∈ KerGΩ. The K linearly independent eigenvectors zi define the follow-
ing system of linear constraints on Ω,

T2 : H → R
2K(Na+Nb−2), (T2Ω)i = GΩzi = 0 , i = 1, . . . ,K. (33)

These constraints ensure that GΩz = 0 and hence f2(x, y) = zTGΩz = 0. The vanishing of
the quadratic term of the polynomial implies that the cubic term must vanish as well. We
therefore call (φ0, χ0) a quartic zero, and the direction z at (φ0, χ0) a quartic direction.
The vanishing cubic term is

f3(x, y) = 2
∑
l,m,n

alamanRe ((φ0 ⊗ ζl)
†Ω(ξm ⊗ ζn) + (ξl ⊗ χ0)

†Ω(ξm ⊗ ζn)) = 0, (34)

where ξi = J0xi and ζi = K0yi. Since the product alaman is completely symmetric in the
indices l,m, n we should symmetrize the expression it multiplies. All the different properly
symmetrized expressions must vanish. In this way we obtain a linear system

(T3Ω)lmn = 0 with 1 ≤ l ≤ m ≤ n ≤ K. (35)
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The number of equations is the binomial coefficient
(
K+2
3

)
, but it is likely that these

constraints on Ω will in general not be independent.
The total number of constraints in T2 and T3 is therefore

M4(K) = 2K(Na +Nb − 2) +

(
K + 2

3

)
. (36)

Note that M4(1) = M2 = 2(Na +Nb)− 3. Since the constraints in T2 and T3 address other
terms in the polynomial than those in T0 and T1, the two sets of constraints should be
independent from each other. Furthermore, in the case K = 1, all M4(1) equations in
the total system T2,T3 should be linearly independent. In the case of K > 1 we expect
overlapping constraints.

3.3. Summary of constraints

Let Ω be a witness, and let Z be the complete set of zeros of Ω, with Z ′ ⊆ Z as the subset
of quartic zeros. Each zero in Z defines zeroth and first order equality constraints T0 and
T1. The combination of a set of constraints is the direct sum. Thus we define U0 as the
direct sum of the constraints T0 over all the zeros in Z, and similarly U1 as the direct sum
of the constraints T1. We define U01 = U0 ⊕ U1. Each zero in Z ′ introduces additional
second and third order constraints T2 and T3. We denote the direct sums of these by
U2 and U3, respectively, and we define U23 = U2 ⊕U3. Denote by UΩ the full system of
constraints on Ω, UΩ = U01 ⊕U23.

It is an important observation that all the constraints are completely determined by
the zeros and Hessian zeros of Ω. Thus they depend only indirectly on Ω. In particular,
U01 depends only on Z, whereas U23 depends on Z ′ and on the kernel of the Hessian at
each quartic zero.

A boundary witness with only quadratic zeros will be called here a quadratic boundary
witness, or simply a quadratic witness, since we are talking most of the time about bound-
ary witnesses. A boundary witness with at least one quartic zero will be called a quartic
witness. Note that if Ω is quadratic then Z ′ is empty so UΩ = U01. This classification of
boundary witnesses as quadratic and quartic is fundamental, since the two classes have
rather different properties. The quadratic witnesses turn up in much greater numbers in
random searches, and are also simpler to understand theoretically.

4. Extremal witnesses

In this section we apply the constraints developed in the previous section to study extremal
witnesses. We approach the problem through the basic definition that a non-extremal
witness is one which can be written as a convex combination of other witnesses. In the
language of convex sets it is an interior point of a face of S◦

1 of dimension one or higher.
In Sec. 4.1 we characterize the extremal witnesses in terms of their zeros. In Secs. 4.2

and 4.3 we characterize them in terms of the constraints related to their zeros. and present
a search algorithm for finding them numerically. The geometrical interpretation of this
algorithm is that we start from a given witness, reconstruct the unique face of S◦

1 of which
it is an interior point, go to the boundary of this face, and repeat the process. In Sec. 4.4
we discuss the expected number of zeros of extremal witnesses.
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Theorems 8 and 10 give necessary and sufficient conditions for a witness to be extremal,
and they are main results of our work.

4.1. Zeros of witnesses, convexity and extremality

Let Ω be a convex combination of two different witnesses Λ and Σ,

Ω = (1− p) Λ + pΣ, (37)

with 0 < p < 1. Then the corresponding biquadratic form is a convex combination

fΩ(φ, χ) = (1− p) fΛ(φ, χ) + p fΣ(φ, χ), (38)

and the Hessian matrix at any zero (φ0, χ0) of Ω is also a convex combination

GΩ = (1− p)GΛ + pGΣ. (39)

The facts that the biquadratic form of an entanglement witness is positive semidefinite,
and that the Hessian matrix at any zero of a witness is also positive semidefinite, imply
the following result.

Theorem 6. If Ω is a convex combination of two witnesses Λ and Σ, as above, then
(φ0, χ0) is a zero of Ω if and only if it is a zero of both Λ and Σ.

Similarly, z is a Hessian zero of Ω at the zero (φ0, χ0) if and only if it is a Hessian zero
at (φ0, χ0) of both Λ and Σ.

Thus, all witnesses in the interior of the line segment between Λ and Σ have exactly
the same zeros and Hessian zeros.

Assume further that Λ and Σ are extremal points of the intersection of the straight
line with S◦

1 , so that Ω /∈ S◦
1 when p < 0 and when p > 1. To be specific, consider the case

p > 1. We want to show that Σ has at least one zero or Hessian zero in addition to the
zeros and Hessian zeros of the witnesses in the interior of the line segment.

By assumption, the set of negative points

X−(p) = {(φ, χ) | fΩ(φ, χ) < 0} (40)

is non-empty for p > 1. Clearly X−(p) ⊂ X−(q) for 1 < p < q, since X−(p) is empty for
0 ≤ p ≤ 1, and fΩ(φ, χ) is a linear function of p for fixed (φ, χ) as given by Eq. (38). The
closure X−(p) is a compact set when we normalize so that ‖φ‖ = ‖χ‖ = 1. It follows that
the limit of X−(p) as p → 1+ is a non-empty set X0 of zeros of the witness Σ,

X0 =
⋂
p>1

X−(p). (41)

Every zero (φ0, χ0) ∈ X0 is of the kind we are looking for. If it is not a zero of Ω for
p < 1, then it is a new zero of Σ as compared to the zeros of the witnesses in the interior
of the line segment. If it is a zero of Ω for p < 1, then Σ has at least one Hessian zero at
(φ0, χ0) which is not a Hessian zero at (φ0, χ0) of the witnesses in the interior of the line
segment.
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To prove the last statement, assume that (φ0, χ0) ∈ X0 is a zero of Ω for 0 < p < 1.
Then it is a zero of Ω for any p, again because fΩ(φ, χ) is a linear function of p. Similarly,
if z is a Hessian zero of Ω at (φ0, χ0) for 0 < p < 1, it is a Hessian zero of Ω at (φ0, χ0) for
any p.

From the assumption that (φ0, χ0) ∈ X0 follows that fΩ(φ, χ) for any p > 1 takes negative
values for some (φ, χ) arbitrarily close to (φ0, χ0). The only way this may happen is that
for p > 1 the second derivative zTGΩz is negative in some direction z, meaning that GΩ

for p > 1 has one or more negative eigenvalues λi(p), with eigenvectors zi(p) that are
orthogonal to each other and orthogonal to the p independent part of KerGΩ.

In the limit p → 1+ the negative eigenvalues λi(p) of GΩ go to zero, and the corre-
sponding eigenvectors zi(p) go to eigenvectors zi(1) of GΣ with zero eigenvalues. These
eigenvectors are then Hessian zeros of Σ at (φ0, χ0) that are not Hessian zeros of Ω for p

values in the range 0 < p < 1.
We summarize the present discussion as follows.

Theorem 7. If a line segment in S◦
1 with end points Λ and Σ can not be prolonged within

S◦
1 in either direction, then Σ has the same zeros and Hessian zeros as the interior points

of the line segment, and at least one additional zero or Hessian zero.
The same holds for Λ, with additional zeros and Hessian zeros that are different from

those of Σ.

These theorems lead to the following extremality criterion for witnesses.

Theorem 8. A witness Ω is extremal if and only if no witness Λ �= Ω has a set of zeros
and Hessian zeros including the zeros and Hessian zeros of Ω.

An equivalent condition is that there can exist no witness Λ �= Ω satisfying the con-
straints UΩΛ = 0.

Proof. The “if” part follows directly from Thm. 6.
To prove the “only if” part, assume that the set of zeros and Hessian zeros of some

witness Λ �= Ω include the zeros and Hessian zeros of Ω. Then by Thm. 6 the interior
points of the line segment with Λ and Ω as end points have exactly the same zeros and
Hessian zeros as Ω. By Thm. 7 this line segment can be prolonged within S◦

1 so that it
gets Ω as an interior point. Hence Ω is not extremal.

4.2. How to search for extremal witnesses

Once the zeros and Hessian zeros of a witness Ω are known, it is a simple computational
task to find a finite perturbation of Ω within the unique face of S◦

1 where Ω is an interior
point. The most general direction for such a perturbation is a traceless Γ ∈ KerUΩ. Note
that we only need to find some Γ′ ∈ KerUΩ not proportional to Ω, then Γ = Γ′ − (TrΓ′) Ω
is non-zero and traceless and lies in KerUΩ.

Theorem 9. Let Ω be a witness, and let Γ ∈ H, Γ �= 0, TrΓ = 0. Then Λ = Ω + tΓ is a
witness for all t in some interval [t1, t2], with t1 < 0 < t2, if and only if Γ ∈ KerUΩ.

The maximal value of t2 is the value of t where Λ acquires a new zero or Hessian zero.
The minimal value of t1 is determined in the same way.

Proof. To prove the “only if” part, assume that Λ = Ω + tΓ is a witness for t1 ≤ t ≤ t2.
Then by Thm. 6, Λ has the same zeros and Hessian zeros as Ω for t1 < t < t2. Since



Extremal entanglement witnesses 17

the constraints UΩ depend only on the zeros and Hessian zeros of Ω, we conclude that
UΩΛ = 0 for t1 < t < t2, and hence UΩΓ = 0.

To prove the “if” part, assume that UΩΓ = 0. Since UΩΩ = 0, it follows that UΩΛ = 0

for any value of t. Consider the set of negative points,

X−(t) = {(φ, χ) | fΛ(φ, χ) < 0}. (42)

We want to argue that X−(t)must be empty for t in some interval [t1, t2] with t1 < 0 < t2.
In fact, since S◦

1 is a compact set, there must exist some t2 ≥ 0 such that X−(t) is empty
for 0 ≤ t ≤ t2 and non-empty for t > t2. Then the limit of X−(t) as t → t2+ is a non-empty
set X0 of zeros of Λ2 = Ω + t2Γ. A similar reasoning as the one leading to Thm. 7 now
leads us to the conclusion that Λ2 must have at least one zero or Hessian zero which is
not a zero or Hessian zero of Ω. This proves that Λ2 �= Ω and t2 > 0.

By a similar argument we deduce the existence of a lower limit t1 < 0.

Figure 1 shows a model for how a new isolated quadratic zero of Λ appears, or how
an existing quadratic zero turns into a quartic zero, as the parameter t increases in the
function

ft(u) = fΩ+tΓ(φ+ uφ′, χ+ uχ′). (43)
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Fig. 1. Models for how the positivity limit is reached. Left: a new local minimum appears, turning

into a zero and then a negative minimum. The model function plotted for five different values of t

is ft(u) = u2((u − 1)2 + 1 − t), depending on a parameter t with the critical value tc = 1. Right: a

quadratic zero turns into a quartic zero, and then new negative minima branch off. The model function

is ft(u) = u2(u2 + 1− t), again with the critical parameter value tc = 1.

The next theorem is an immediate corollary. It is a slightly stronger version of Thm. 8.
It is interesting for the theoretical understanding, and together with Thm. 9 it is directly
useful for numerical calculations.

Theorem 10. An entanglement witness Ω is extremal if and only if KerUΩ is one di-
mensional (spanned by Ω).
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Thus, once the zeros and Hessian zeros of the witness Ω are known we test for extremal-
ity by computing the dimension of KerUΩ, for example by a singular value decomposition
of UΩ. This allows for a simple numerical implementation of the extremality criterion.

These theorems motivate Alg. 1, a search algorithm for finding extremal witnesses.
Obviously, any extremal witness might be reached by this algorithm already in the first
iteration, starting for example from the maximally mixed state. The search is guaranteed
to converge to an extremal witness in a finite number of iterations, since the number of
possible search directions is reduced in each iteration. We here summarize this in Alg. 1.
Starting from an initial witness Ω = Ω0 ∈ int(S◦), we proceed down through a hierarchy
of faces on S◦ of decreasing dimensions. The number of possible search directions Γ on
each face, is reduced in each iteration as KerUΩ is reduced.

Algorithm 1: Finding an extremal entanglement witness

Precondition: Choose an initial witness Ω = Ω0 ∈ int(S◦) and construct UΩ

1. while dimKer (UΩ) > 1

2. choose a Γ ∈ Ker (UΩ)

3. if Tr(Γ) �= 0

4. redefine Γ ← Γ−Tr(Γ)Ω
5. endif
6. find tc as the maximal t such that Ω+ tΓ is still a witness
7. redefine Ω ← Ω+ tcΓ

8. locate all zeros of Ω and construct an updated UΩ

9. endwhile

return Ω

4.3. Faces of the set S◦
1 of normalized witnesses

Theorem 9 has the following geometrical meaning. Define

FΩ = (KerUΩ) ∩ S◦
1 . (44)

Equivalently, define FΩ as the set of all witnesses of the form Ω+ tΓ with Γ ∈ KerUΩ and
TrΓ = 0. If Ω is extremal in S◦

1 then FΩ consists of the single point Ω. Otherwise, FΩ is
the unique face of S◦

1 having Ω as an interior point.
Thus, Alg. 1 produces a decreasing sequence of faces of S◦

1 , F1 ⊃ F2 ⊃ . . . ⊃ Fn, where
every face Fj is a face of every Fi with i < j, and the extremal point found is an extremal
point of all these faces.

The theorems in Sec. 4.1 imply that every face F of S◦
1 is uniquely characterized by a

set of zeros and Hessian zeros that is the complete set of zeros and Hessian zeros of every
witness in the interior of F . Every boundary point of F is a witness having the zeros and
Hessian zeros characteristic of the interior points, plus at least one more zero or Hessian
zero. In general, the boundary of S◦

1 is a hierarchy of faces, faces of faces, faces of faces of
faces, and so on. The number of zeros and Hessian zeros increases each time we step from
one face onto a face of the face, and the descent through the hierarchy from one face to
the next always ends in an extremal witness.
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4.4. Zeros of extremal witnesses

A natural question regards the number of zeros a witness must have in order to be ex-
tremal. We provide two lower bounds for quadratic witnesses, one obtained by comparison
with a pure state as a witness and the other by counting constraints. Similar bounds for
quartic witnesses are not easy to obtain.

The first of these bounds reveals a “double spanning” property of zeros of quadratic
extremal witnesses. We define the partial conjugate of (φ, χ) as (φ, χ∗).

Theorem 11. The zeros of a quadratic extremal witness Ω span the Hilbert space. The
partially conjugated zeros also span the Hilbert space.

Proof. Assume that the zeros span less than the whole Hilbert space, so that there exists
a vector ψ orthogonal to all the zeros. Then the projection P = ψψ† is a witness with a
set of zeros including all the zeros of Ω. But P has a continuum of zeros, all quartic, see
Thm. 14. Hence P �= Ω and Ω is not extremal, by Thm. 8.

The partial conjugates of the zeros of Ω span the Hilbert space because they are the
zeros of the quadratic extremal witness ΩP .

This proof does not hold when Ω is a quartic witness, because Ω may then have Hessian
zeros that are not Hessian zeros of P . A pure state ψψ† as a quartic extremal witness is
a counterexample, where the zeros do not span the Hilbert space, although the partially
conjugated zeros may span the Hilbert space. The partial transpose (ψψ†)P is a counterex-
ample of the opposite kind, where the zeros may span the Hilbert space but the partially
conjugated zeros do not. Furthermore, even if neither the zeros nor the partially conju-
gated zeros span the Hilbert space, it is still possible for a quartic witness to be extremal,
because a quartic zero leads to more constraints than a quadratic zero. In Sec. 6.3.2 we
describe the numerical construction of an extremal quartic witness in dimension 3×3 with
only eight zeros, and with one Hessian zero at one of the zeros.

Counting constraints from quadratic zeros gives a different lower bound for the number
of zeros of a quadratic extremal witness. There are M2 = 2(Na + Nb) − 3 constraints per
quadratic zero. With n quadratic zeros there are a total of nM2 constraints, which in the
generic case are linearly independent until nM2 approaches N2 − 1, the dimension of S◦

1 .
A lower bound on the number of zeros of a quadratic extremal witness is then given by

nc = ceil
(NaNb)

2 − 1

2(Na +Nb)− 3
, (45)

where ceil rounds upwards to the nearest integer.
In the special case Na = 2 this formula gives the lower bound nc = N − 1, which is

weaker than the lower bound N given by Thm. 11. When Na ≥ 3 and Nb ≥ 3 the formula
gives a lower bound nc ≥ N , consistent with Thm. 11.

Table 1 lists the numerically computed number of linearly independent constraints
mind arising from nc randomly chosen pairs (φ, χ). nc is the estimated minimum number of
zeros required for a quadratic witness to be extremal, assuming maximal independence of
constraints. M2 is the number of linearly independent constraints from each zero. In order
to compute mind we interpret each (φ, χ) as a quadratic zero, build U01 and do a singular
value decomposition. The table shows that in many cases the number of independent
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constraints from a random set of product vectors is equal to the dimension of the real
vector space H of Hermitian matrices. In such a case there exists no biquadratic form
which is positive semidefinite and has these zeros. We conclude that the zeros of a positive
semidefinite biquadratic form have to satisfy some relations that reduce the number of
independent constraints.

Table 1. Numbers related to

quadratic zeros of witnesses in

dimension N = NaNb.

Na,Nb N2 M2 nc mind

2,2 16 5 3 14

2,3 36 7 5 34

2,4 64 9 7 62

2,5 100 11 9 98

3,3 81 9 9 81

3,4 144 11 13 143

3,5 225 13 18 225

4,4 256 13 20 256

4,5 400 15 27 400

5,5 625 17 37 625

Note that for Na = 2 there is an intrinsic degeneracy causing the number of constraints
from nc zeros to be ncM2 − 1, so the actual minimum number of zeros is nc + 1 = N . So
the number of constraints is reduced by one. For example, in the 2× 4 system the actual
number of constraints from nc = 7 random product vectors is 62 instead of 63 = ncM2.
This degeneracy implies that one extra zero is needed, thus saving Thm. 11. The proof of
Thm. 11 indicates the origin of the degeneracy. With N − 1 zeros there exists a vector ψ

orthogonal to all the zeros and a vector η orthogonal to all the partially conjugated zeros,
and because ψψ† and (ηη†)P both lie in KerU01 we must have dimKerU01 ≥ 2. For other
dimensions there is no similar degeneracy.

The 3 × 4 system is special in that the number of constraints from a generic set of
nc = 13 product vectors add up to exactly the number needed to define a unique A ∈ H

with U01A = 0. This does not however imply that A defined in this way from a random
set of product vectors will be an extremal witness, in fact it will usually not be a witness,
because it will have both positive and negative expectation values in product states.

A central question in general, well worth further attention, is how to choose a set of
product vectors such that they may serve as the zeros of an extremal witness. According
to Thm. 18, the zeros of a witness must define pure states lying on a face of the set S
of separable states. However, this statement leaves open the practical question of how to
test numerically whether a set of pure product states lies on a face of S.

In 2 × Nb and 3 × 3 systems, the minimum number of zeros of a quadratic extremal
witness is exactly equal to the dimension N = NaNb of the composite Hilbert space H.
This implies the following result, which we state as a theorem.

Theorem 12. In dimensions 2 × Nb and 3 × 3 a generic witness with doubly spanning
zeros will be extremal.
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We do not know whether this is a general theorem in these dimensions, valid for all
witnesses and not only for the generic witnesses. It may be that some construction like
the one described in Sec. 6.3.3 will lead to non-generic counterexamples.

In higher dimensions the minimum number of zeros to define a quadratic extremal
witness is strictly larger than the dimension of H. This difference between 2 × Nb and
3 × 3 systems on the one hand, and higher dimensional systems on the other hand, has
important consequences discussed in Secs. 8 and 9.

5. Decomposable witnesses

A decomposable witness is called so because it corresponds to a decomposable positive
map, and because it has the form Ω = ρ + σP with ρ, σ ∈ D, possibly ρ = 0 or σ = 0.
Although the decomposable witnesses are useless for detecting entangled PPT states,
they are useful in other ways, for example as stepping stones in some of our numerical
methods for constructing extremal non-decomposable witnesses.

In this section we will summarize some basic properties of decomposable witnesses.
This is a natural place to start when we want to understand entanglement witnesses in
general. In particular, we are interested in the relation between a witness and its zeros.

Since the set P◦
1 of decomposable witnesses is the convex hull of D1 and DP

1 , an extremal
point of P◦

1 must be an extremal point of either D1 or DP
1 . That is, it must be either a pure

state ψψ† or a partially conjugated pure state (ψψ†)P, or both if ψ is a product vector. In
the present section we verify the results in Refs. 14, 24, 25, that witnesses of the forms
ψψ† and (ψψ†)P are extremal in S◦

1 . Since they are extremal in S◦
1 , they are also extremal

in the subset P◦
1 ⊆ S◦

1 . Thus they are precisely the extremal points of P◦
1 .

5.1. Zeros of a decomposable witness

The biquadratic form corresponding to the decomposable witness Ω = ρ+ σP is

fΩ(φ, χ) = fρ(φ, χ) + fσ(φ, χ
∗). (46)

It is positive semidefinite because fρ and fσ are positive semidefinite.
Assume now that (φ0, χ0) is a zero of Ω. The above decomposition of fΩ shows that

(φ0, χ0) must be a zero of ρ, and the partial conjugate (φ0, χ
∗
0) must be a zero of σ. But

because ρ, σ ∈ D it follows that

ρ(φ0 ⊗ χ0) = 0 , σ(φ0 ⊗ χ∗
0) = 0. (47)

This proves the following theorem.

Theorem 13. The zeros of a decomposable witness Ω = ρ + σP span the Hilbert space
only if ρ = 0. The partially conjugated zeros span the Hilbert space only if σ = 0. Hence,
by Thm. 11, a quadratic extremal witness is non-decomposable.

Note that if (φ0, χ0) is a zero of Ω and φ⊗ χ is any product vector, then

(φ⊗ χ0)σ
P(φ0 ⊗ χ) = (φ⊗ χ∗)σ(φ0 ⊗ χ∗

0) = 0, (48)

and hence

(φ⊗ χ0)Ω(φ0 ⊗ χ) = (φ⊗ χ0)ρ(φ0 ⊗ χ). (49)
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Similarly,
(φ⊗ χ∗

0)ρ
P(φ0 ⊗ χ∗) = (φ⊗ χ)ρ(φ0 ⊗ χ0) = 0, (50)

and hence
(φ⊗ χ∗

0)Ω
P(φ0 ⊗ χ∗) = (φ⊗ χ∗

0)σ(φ0 ⊗ χ∗). (51)

These equations may be useful for computing ρ and σ if Ω is known but its decomposition
Ω = ρ+ σP is unknown. We will return to this problem in Sec. 5.3.

5.2. Pure states and partially transposed pure states

Let P be a pure state, P = ψψ†, and let Q be the partial transpose of a pure state,
Q = (ηη†)P, with ψ, η ∈ H. The corresponding positive maps LP and LQ are rank one
preservers: they map matrices of rank one to matrices of rank one or zero, because

LP (φφ
†) = (φ⊗ Ib)

†P (φ⊗ Ib) = ζζ†

LQ(φφ
†) = (φ⊗ Ib)

†Q(φ⊗ Ib) = θθ†
(52)

with ζ = (φ⊗ Ib)
†ψ and θ = (φ∗⊗ Ib)

†η∗. The corresponding biquadratic forms are positive
semidefinite because they are absolute squares,

fP (φ, χ) = (φ⊗ χ)†P (φ⊗ χ) = |ψ†(φ⊗ χ)|2,
fQ(φ, χ) = (φ⊗ χ)†Q(φ⊗ χ) = (φ⊗ χ∗)†QP (φ⊗ χ∗) = |η†(φ⊗ χ∗)|2. (53)

The zeros of P are the product vectors orthogonal to ψ. A singular value decomposition
(Schmidt decomposition) gives orthonormal bases {ui} in Ha and {vj} in Hb such that

ψ =

m∑
i=1

ci ui ⊗ vi with ci > 0. (54)

Here m is the Schmidt number of ψ, 1 ≤ m ≤ min(Na, Nb). The condition for a product
vector

φ⊗ χ =

Na∑
i=1

Nb∑
j=1

aibj ui ⊗ vj (55)

to be orthogonal to ψ is that
m∑
i=1

ciaibi = 0. (56)

For any dimensions Na ≥ 2, Nb ≥ 2 and any Schmidt number m the set of zeros is
continuous and connected. All the zeros are quartic, since quadratic zeros are isolated. The
zeros do not span the whole Hilbert space, only the subspace orthogonal to ψ. However,
the partially conjugated zeros span the Hilbert space, except when m = 1 so that ψ is a
product vector.52 This almost completes the proof of the following theorem, what remains
is to prove the extremality.

Theorem 14. A pure state as a witness has only quartic zeros, all in one continuous
connected set, and it is extremal in S◦

1 . The same is true for the partial transpose of a
pure state.
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Proof. We want to prove that P is extremal, the proof for Q is similar. We show that
the only witness Ω satisfying the constraints UPΩ = 0 is Ω = P , from this we conclude
that P is extremal, using Thm. 8.

Even though the zeros of P are all quartic, they are so many that we need not use the
secondary constraints coming from the quartic nature of the zeros. According to Eq. (30),
the constraints UPΩ = 0 include the constraints LΩ(φφ

†)χ = 0 for every zero (φ, χ) of P .
The zeros of P are the solutions of the equation ψ†(φ ⊗ χ) = 0. For every φ ∈ Ha this is
one linear equation for χ ∈ Ha, the solutions of which form a subspace of Ha of dimension
either Nb − 1 or Nb. But this means that LΩ(φφ

†) has rank either one or zero, so that the
positive map LΩ is a rank one preserver. Hence, either Ω = ωω† or Ω = (ω̃ω̃†)P for some
ω, ω̃ ∈ H.24

In the first case, Ω = ωω†, we must have ω†(φ ⊗ χ) = 0 for every (φ, χ) such that
ψ†(φ⊗ χ) = 0. But then ω must be proportional to ψ, and Ω = P .

In the second case, Ω = (ω̃ω̃†)P, we must have ω̃†(φ⊗ χ∗) = 0 for every (φ, χ) such that
ψ†(φ⊗χ) = 0. This is possible, but only if ψ and ω̃ are product vectors, with ω̃ the partial
conjugate of ψ. Then we again have Ω = P .

The fact that every zero (φ0, χ0) of P is quartic can also be seen directly from Eq. (21).
With Ω = P = ψψ† and ψ†(φ0 ⊗ χ0) = 0 this equation takes the form

zTGΩ z = f2(x, y) = |ψ†(ξ ⊗ χ0 + φ0 ⊗ ζ)|2. (57)

Thus, zTGΩ z = 0 unless the vector (ξ ⊗ χ0 + φ0 ⊗ ζ) ∈ H has a component along ψ. This
means that the Hessian matrix GΩ at the zero (φ0, χ0) has rank at most two.

5.3. Decomposing a decomposable witness

If we want to prove that a given witness Ω is decomposable, the definitive solution is of
course to decompose it as Ω = ρ+ σP with ρ, σ ∈ D. We want to discuss here methods for
doing this, based on a knowledge of zeros of Ω. Unfortunately, the present discussion does
not lead to a complete solution of the problem.

Assume that we know a finite set of k zeros of Ω, Z = {φi⊗χi}, with partial conjugates
Z̃ = {φi ⊗ χ∗

i }. Z may be the complete set of zeros of Ω, or only a subset. The orthogonal
complement Z⊥ is a d1 dimensional subspace of H, and Z̃⊥ is a d2 dimensional subspace,
with d1 ≥ N − k and d2 ≥ N − k. Let P and P̃ be the orthogonal projections onto Z⊥ and
Z̃⊥, respectively.

Define orthogonal projections P and P̃ on the real Hilbert space H such that PX =

PXP and P̃X = (P̃XPP̃ )P for X ∈ H. Define the overlap of these two projections as the
orthogonal projection O onto the subspace (PH) ∩ (P̃H). Since OX = X if and only if
PX = X and P̃X = X, we may compute O numerically by picking out the eigenvectors
of P+ P̃ with eigenvalue two. It follows that

O = PO = OP = P̃O = OP̃, (58)

and that P′ = P−O and P̃′ = P̃−O are orthogonal projections.
If Ω = ρ+ σP with ρ, σ ∈ D, then we must have Z ⊂ Ker ρ and Z̃ ⊂ Kerσ, hence Pρ = ρ

and P̃σP = (P̃ σP̃ )P = σP. Defining ρ1 = P′ρ, ρ2 = Oρ, σP
1 = P̃′σP, σP

2 = OσP we have that
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Ω = ρ1 + ρ2 + σP
2 + σP

1 (59)

with ρ1 ∈ P′H, σP
1 ∈ P̃′H, and ρ2 + σP

2 ∈ OH. It follows that

ρ1 + σP
1 = Ω−OΩ, ρ2 + σP

2 = OΩ. (60)

The decomposition of Ω−OΩ into ρ1 and σP
1 is unique and easily computed.

If the overlap O is zero, then ρ2 = 0, σ2 = 0, and this is the end of the story, except
that we should check that both ρ1 and σ1 are positive semidefinite. Otherwise it remains
to decompose OΩ into ρ2 and σP

2 in such a way that ρ = ρ1 + ρ2 and σ = σ1 + σ2 are
both positive semidefinite. This is the difficult part of the problem, and the solution, if it
exists, need not be unique.

We have not pursued the problem further. To do so one should use Eqs. (49) and (51),
which put strong and presumably useful restrictions on ρ and σ. For any product vector
φ⊗ χ and any φi ⊗ χi ∈ Z it is required that

(φ⊗ χi)ρ(φi ⊗ χ) = (φ⊗ χi)Ω(φi ⊗ χ),

(φ⊗ χ∗
i )σ(φi ⊗ χ∗) = (φ⊗ χ∗

i )Ω
P (φi ⊗ χ∗).

(61)

5.4. Decomposable witnesses with prescribed zeros

One use of decomposable witnesses is that they provide examples of witnesses with pre-
scribed zeros. We will describe now how this works, and we use the same notation as in
the previous subsection.

Let Ω = ρ + σP be a decomposable witness, as before. The necessary and sufficient
conditions for Ω to have Z as a predefined set of zeros is that ρ = UU † and σ = V V † with
X,Y ∈ H, U = PX, V = P̃ Y . We choose ρ and σ to have the maximal ranks

rank ρ = d1, rankσ = d2, (62)

where d1 ≥ N − k and d2 ≥ N − k are the dimensions of Z⊥ and Z̃⊥ respectively. In
the generic case, when k < N there will be no linear dependencies between the zeros, or
between their partial conjugates, so that we will have d1 = d2 = N − k.

The set of unnormalized decomposable witnesses of this form has dimension

dD = rankP′ + rank P̃′ + rankO

= rankP+ rank P̃− rankO

= d 2
1 + d 2

2 − rankO.

(63)

The corresponding set of normalized witnesses is a convex subset FD ⊂ FΩ of dimension
dD − 1, consisting of witnesses of the form Ω+ tΓ with

Γ = A+BP, PA = A, P̃(BP ) = BP, TrA = TrB = 0. (64)

These conditions ensure that ρ + tA and σ + tB will remain positive for small enough
positive or negative finite values of the real parameter t.
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The witness Ω is an interior point of a unique face of S◦
1 , which we call FΩ, as defined

in Eq. (44). The dimension of this face is dΩ − 1 when we define

dΩ = dimKerUΩ. (65)

For a quadratic witness Ω a lower limit is

dΩ ≥ N2 − kM2 with M2 = 2(Na +Nb)− 3. (66)

This inequality will usually be an equality, especially when k is small.
Since FD ⊂ FΩ we must have dD ≤ dΩ, implying a lower bound for the overlap O,

rankO ≥ d 2
1 + d 2

2 − dΩ ≥ 2(N − k)2 − dΩ. (67)

In particular, when the inequality in Eq. (66) is an equality we have the non-trivial
lower bound

rankO ≥ N2 − k(4N − 2k −M2). (68)

The generic case when k is small is that dD = dΩ, which means that rankO has the minimal
value allowed by this inequality. See Table 2 where we have tabulated some values for dD
and dΩ found numerically.

When we prescribe k zeros of the decomposable witness Ω, there is a possibility that
the actual number of zeros k′, is larger than k. A simple counting exercise indicates how
many zeros to expect. A product vector φ ⊗ χ is a zero if and only if ρ(φ ⊗ χ) = 0 and
σ(φ ⊗ χ∗) = 0. These are 2(N − k) complex equations for φ ⊗ χ. There are Na + Nb − 2

complex degrees of freedom in a product vector, up to normalization of each factor. The
critical value k = kc is the number of zeros for which the number of equations equals the
number of variables, i.e.,

kc = N + 1− Na +Nb

2
. (69)

We expect to find
k′ = k if k < kc,

k′ ≥ k if k = kc,

k′ = ∞ if k > kc.

(70)

Whether Ω will be quadratic or quartic can be estimated as follows. The Hessian GΩ

at a zero of Ω is a real square matrix of dimension 2(Na + Nb − 2). If rank ρ = d1 and
rankσ = d2, then we may write Ω = ρ + σP as a convex combination of d1 + d2 or fewer
extremal decomposable witnesses. Each extremal decomposable witness contributes at
most two non-zero eigenvalues to GΩ. Thus, if we define dH as the minimal dimension of
the kernel of GΩ at any zero, we have a lower bound

dH ≥ 2(Na +Nb − d1 − d2 − 2). (71)

In Table 2 we list some numbers related to decomposable witnesses, for different dimen-
sions Na ×Nb. The numbers presented were obtained numerically as follows. We choose k

random product vectors. When k < N there will exist decomposable witnesses with these
as zeros, and dD is the computed dimension of the set of such witnesses. k′ is the actual
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number of zeros they have. The listed value of dΩ, the dimension of the kernel of UΩ when
Ω is a quadratic witness with these zeros, is the lower bound given in Eq. (66). The listed
value of the dimension dH of the kernel of the Hessian is the lower bound from Eq. (71).

Table 2. Numbers related to decomposable

witnesses. k and k′ is the prescribed and ac-

tual number of zeros respectively, and kc is

the critical number of prescribed zeros. The

parameters dD, dΩ and dH are the dimen-

sions of sets, as explained in the text.

Na ×Nb k k′ dD dΩ dH

2× 4 1 1 55 55 0

kc = 6 2 2 46 46 0

3 3 37 37 0

4 4 28 28 0

5 5 18 19 2

6 8 8 10 4

7 ∞ 2 2 6

3× 3 1 1 72 72 0

kc = 7 2 2 63 63 0

3 3 54 54 0

4 4 44 45 0

5 5 32 36 0

6 6 18 27 2

7 10,14 8 18 4

8 ∞ 2 9 6

3× 4 1 1 133 133 0

kc = 9.5 2 2 122 122 0

3 3 111 111 0

4 4 100 100 0

5 5 88 89 0

6 6 72 78 0

7 7 50 67 2

8 8 32 56 4

9 9 18 45 6

10 ∞ 8 34 8

11 ∞ 2 23 10

12 − 0 12 −

We see from the table that with only a few zeros, the set of decomposable witnesses
in the face has the same dimension as the face itself. But FΩ can not consist entirely of
decomposable witnesses, because in that case our numerical searches for extremal wit-
nesses, where we search for witnesses with increasing numbers of zeros, would only give
decomposable witnesses, exactly the opposite of what happens. Hence we conclude that
FD is a closed subset of FΩ, of the same dimension as FΩ but strictly smaller than FΩ.

On a face defined by a higher number of zeros the set of decomposable witnesses has
a lower dimension. In some cases the decomposable witnesses will lie on the boundary of
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the face in question. This will either be because they have more than k zeros, or because
some of the k zeros are quartic. In other cases the decomposable witnesses make up a low
dimensional part of the interior of the quadratic face. This is the case e.g for faces F4

in 3 × 3 systems, where the set of decomposable witnesses is 44 dimensional, the face is
45 dimensional, and the decomposable witnesses have four quadratic zeros and hence are
situated in the interior of the face.

6. Examples of extremal witnesses

In this section we apply Thm. 10 and Alg. 1 to study examples of extremal witnesses. We
study first examples known from the literature, in particular the Choi–Lam witness21,22

and the Robertson witness.23 In Secs. 6.3.1, and 6.3.2 we construct numerical examples
of generic witnesses, study these and report some observations. Finally, in Sec. 6.3.3 we
present an example of a non-generic extremal witness, numerically constructed, having
more than the minimum number of zeros.

6.1. The Choi–Lam witness

Define, like in Ref. 27,

ΩK(a, b, c; θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a . . . −eiθ . . . −e−iθ

. c . . . . . . .

. . b . . . . . .

. . . b . . . . .

−e−iθ . . . a . . . −eiθ

. . . . . c . . .

. . . . . . c . .

. . . . . . . b .

−eiθ . . . −e−iθ . . . a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (72)

We write dots instead of zeros in the matrix to make it more readable. The special
case ΩC = ΩK(1, 0, 1; 0) is the Choi–Lam witness, one of the first examples of a non-
decomposable witness.21,22 The set of zeros of the entanglement witness ΩC consists of
three isolated quartic zeros

e13 = e1 ⊗ e3, e21 = e2 ⊗ e1, e32 = e3 ⊗ e2, (73)

where e1, e2, e3 are the natural basis vectors in C3, and a continuum of zeros φ⊗ χ where
α, β ∈ R and

φ = e1 + eiα e2 + eiβ e3, χ = φ∗. (74)

The product vectors defined in Eq. (74) span a seven dimensional subspace consisting of
all vectors ψ ∈ C9 with components ψ1 = ψ5 = ψ9. The three product vectors defined in
Eq. (73) have ψ1 = ψ5 = ψ9 = 0 and lie in the same subspace.

The Hessian has a doubly degenerate kernel at each of these zeros. Hence a single zero
of Ω = ΩC contributes 29 equations in UΩ: nine from T0 and T1, 2 · 8 = 16 from T2, and
four from T3. However, by a singular value decomposition of T = T0 ⊕ T1 ⊕ T2 ⊕ T3 at
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one zero at a time we find numerically that the number of independent equations is 24

for each of the isolated zeros and 28 for any randomly chosen non-isolated zero. We again
see that redundant equations appear when the kernel of the Hessian is more than one
dimensional. We also observe that the redundancies depend on the nature of the zero.

Choosing increasingly many non-isolated zeros, only 67 linearly independent equations
are obtained, out of the 80 needed for proving extremality. These 67 equations are obtained
with the quadratic and quartic constraints from three zeros, or with only the quadratic
constraints from nine zeros. With all three isolated zeros and any single zero from the
continuum, KerUΩ is one dimensional and uniquely defines the Choi–Lam witness. This
verifies numerically that it is extremal. We need the quartic constraints from the three
isolated zeros in order to prove extremality, because the quadratic constraints from all the
zeros provide only 76 independent equations, leaving a four dimensional face of witnesses
having the same set of zeros as the Choi–Lam witness ΩC . This proves that ΩC is not
exposed, but is an extremal point of a four dimensional exposed face of S◦

1 .
Equation (72) with θ = 0 and the restrictions 0 ≤ a ≤ 1, a + b + c = 2, bc = (1 − a)2,

defines more generally a one parameter family of extremal witnesses considered by Ha
and Kye.53,54 They prove that ΩK(a, b, c; 0) is both extremal and exposed for 0 < a < 1.
The original Choi–Lam witness ΩC is extremal but not exposed, it is the limiting case
a = c = 1, b = 0. We will return in Sec. 8 to a more detailed discussion of the facial
structure of the set of separable states and the set of witnesses.

We have verified by our numerical methods, for several values of a with 0 < a < 1, that
ΩK(a, b, c; 0) is indeed extremal. As explained in Ref. 54 there are four classes of zeros.
The zeros in one of these classes have Hessians with two dimensional kernels, while the
Hessians of the zeros in the other three classes have one dimensional kernels. It turns
out that a set of four zeros, one from each class, uniquely defines ΩK(a, b, c; 0) as the only
solution to the constraints imposed by the zeros when utilizing both quadratic and quartic
constraints. This shows numerically that the witness is extremal.

The more general case with θ �= 0 has been treated as an example of optimal, and in
fact extremal, witnesses with structural physical approximations that are entangled PPT
states.33 We will return to these concepts in Sec. 10.

6.2. The Robertson witness

Another example we have studied is the extremal positive map in dimension 4× 4 intro-
duced by Robertson,23

X →

⎛⎜⎜⎜⎝
X33 +X44 0 X13 +X42 X14 −X32

0 X33 +X44 X23 −X41 X24 +X31

X31 +X24 X32 −X14 X11 +X22 0

X41 −X23 X42 +X13 0 X11 +X22

⎞⎟⎟⎟⎠. (75)

The corresponding entanglement witness ΩR, has the biquadratic form

fR(φ, χ) = (|φ1|2 + |φ2|2)(|χ3|2 + |χ4|2) + (|φ3|2 + |φ4|2)(|χ1|2 + |χ2|2)
+ 2Re [(φ∗

1φ3 + φ∗
4φ2)(χ

∗
3χ1 + χ∗

2χ4) + (φ∗
2φ3 − φ∗

4φ1)(χ
∗
3χ2 − χ∗

1χ4)].
(76)

Every product vector φ⊗ χ with φ1 = φ2 = χ1 = χ2 = 0 or φ3 = φ4 = χ3 = χ4 = 0 is a zero.
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More generally, φ⊗ χ is a zero if

(|φ1|2 + |φ2|2)(|χ3|2 + |χ4|2) = (|φ3|2 + |φ4|2)(|χ1|2 + |χ2|2) (77)

and
φ∗
1φ3 + φ∗

4φ2 = −χ∗
1χ3 − χ∗

4χ2,

φ∗
2φ3 − φ∗

4φ1 = −χ∗
2χ3 + χ∗

4χ1.
(78)

For any given φ we obtain a continuum of zeros in the following way. Define

a = φ∗
1φ3 + φ∗

4φ2, b = φ∗
2φ3 − φ∗

4φ1. (79)

Then choose χ1, χ2 at random and define

χ3 =
−aχ1 − bχ2

|χ1|2 + |χ2|2 , χ4 =
b∗χ1 − a∗χ2

|χ1|2 + |χ2|2 . (80)

This solves Eq. (78). In order to solve also Eq. (77), rescale χi → cχi for i = 1, 2 and
χi → χi/c for i = 3, 4 with a suitably chosen constant c > 0.

The entanglement witness ΩR itself is a 16 × 16 Hermitian matrix, and by Eq. (9) it
corresponds to the witness

ΩR =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . .

. . . . . . . . . . . 1 . . −1 .

. . 1 . . . . . 1 . . . . . . .

. . . 1 . . . . . . . . 1 . . .

. . . . . . . . . . . −1 . . 1 .

. . . . . . . . . . . . . . . .

. . . . . . 1 . . 1 . . . . . .

. . . . . . . 1 . . . . . 1 . .

. . 1 . . . . . 1 . . . . . . .

. . . . . . 1 . . 1 . . . . . .

. . . . . . . . . . . . . . . .

. 1 . . −1 . . . . . . . . . . .

. . . 1 . . . . . . . . 1 . . .

. . . . . . . 1 . . . . . 1 . .

. −1 . . 1 . . . . . . . . . . .

. . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (81)

We have verified numerically that ΩR is extremal. Four zeros determine the witness
uniquely through the quadratic and quartic constraints, e.g. the zeros

eij = ei ⊗ ej , ij = 11, 12, 33, 34. (82)

It appears that all zeros have Hessians with eight dimensional kernels. The witness has a
continuum of zeros, and 20 randomly chosen of these turn out to also uniquely determine
the witness through only quadratic constraints. The fact that the quadratic constraints
are sufficient to determine the witness uniquely proves that it is exposed. See Sec. 8 for a
discussion of exposed faces.
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As a related example we have looked at a witness ΩZ belonging to a new class of
witnesses in dimension N × (2K) introduced by Zwolak and Chruściński.28,55,56 We take
N = 2, K = 1, and |z12| = 1 in their notation. Structurally similar to ΩR, ΩZ also has
the zeros defined in Eq. (82), and again the quadratic and quartic constraints from these
four zeros determine ΩZ uniquely. This verifies numerically that ΩZ is extremal, and
exemplifies the fact that the same set of zeros with different Hessian zeros can uniquely
specify two different witnesses. This witness, like ΩR, has a continuous set of zeros and can
be determined uniquely through only the quadratic constraints from a randomly chosen
set of 20 of these zeros. Hence it is exposed.

6.3. Numerical examples, generic and non-generic

We have successfully implemented Alg. 1 and used it to locate numerical examples of
extremal witnesses in 2 × 4, 3 × 3 and 3 × 4 dimensions. In the process of searching for
an extremal witness we produce witnesses situated on a hierarchy of successively lower
dimensional faces of S◦

1 .
We define extremal witnesses to be generic if such witnesses can be found with non-zero

probability by means of Alg. 1 for random search directions Γ in every iteration. A vast
majority of the extremal witnesses found in numerical random searches are quadratic,
but a small number of quartic witnesses are found. There may be numerical problems in
locating a zero which is quartic or close to quartic. In such cases our implementation of
the algorithm stops prematurely. We discuss the quartic witnesses in Sec. 6.3.2.

Line 5 of Alg. 1 regards locating the boundary of a face. Appendix B describes how
this can be formulated as a problem of locating a simple root of a special function, and
also mentions other possible approaches.

6.3.1. Quadratic extremal witnesses

We make the following comments concerning the quadratic extremal witnesses found.

• We have experienced premature stops due to numerical problems with zeros that
are close to quartic. See further comments in Sec. 6.3.2.

• When no existing zero becomes close to quartic, a single new quadratic zero appears
in every iteration of Alg. 1 when the boundary of the current face is reached. For
a small number of zeros, there is no redundancy between constraints from the
existing zeros and constraints from the new zero. A redundancy appears typically
with the seventh zero in 2× 4, with the ninth zero in 3× 3, and never in 3× 4. This
gives a hierarchy of faces of S◦

1 of dimension N2 − 1− kM2, where k is the number
of zeros of a witness in the interior of the face, and M2 = 2(Na +Nb)− 3.

• The extremal witnesses have the expected number of zeros as listed in Table 1.
The zeros and the partially conjugated zeros span H, as required by Thm. 11.

• A quadratic extremal witness has at least one negative eigenvalue, and the same
is true for its partial transpose. We do not find extremal witnesses with more than
three negative eigenvalues in 3× 3 or more than four negative eigenvalues in 3× 4.
See Fig. 2 for the details.

• Every witness and its partial transpose have full rank.
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Fig. 2. Classification of generic quadratic extremal witnesses found numerically by Alg. 1 in dimensions

3× 3 and 3× 4. A witness Ω of type (p, q) has p negative eigenvalues, and its partial transpose ΩP has q

negative eigenvalues.

6.3.2. Quartic extremal witnesses

In each iteration of Alg. 1 the critical parameter value tc is reached when either a new
quadratic zero appears, or a new zero eigenvalue of the Hessian matrix appears at one of
the existing zeros. If the second alternative occurs at least once during a search, then the
extremal witness found will be quartic, otherwise it will be quadratic. Our experience is
that a random search most often produces a quadratic extremal witness and only rarely
a quartic extremal witness.

In order to make this observation more quantitative we have made random searches
for quartic witnesses in dimension 3 × 3 as follows. We take 58 hierarchies of faces of
quadratic witnesses generated by Alg. 1, and generate 100 random perturbations Γ away
from the quadratic witness found on each face. Since there are eight faces in each of the
58 hierarchies, this is a total of 46400 tests. For each test we compute t′c as the smallest t
resulting in a zero eigenvalue of the Hessian at a zero. t′c is thus an upper bound for tc. At
t = t′c we test whether Ω+ tΓ is still a witness, in which case it has got a quartic zero, or
if it is no longer a witness, which will mean that there has appeared a new quadratic zero
for some t < t′c. Three runs failed, probably due to some bug in the algorithm. With a
tolerance of ±10−14 on function values we found that only 91 out of 46397 successful tests
resulted in quartic witnesses. Thus, in this quantitative test the probability for finding a
quartic witness was ∼ 0.2%. We conclude that the fraction of quartic extremal witnesses
among the generic extremal witnesses is small but non-zero.

We constructed an explicit example of a quartic extremal witness in 3 × 3 with eight
zeros in the following way. Starting at a quadratic witness on a face F4 generated by
Alg. 1 we found a quartic witness on the boundary of F4 by choosing one quadratic
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zero to become quartic and perturbing the quadratic witness accordingly (this may not
succeed, in which case we choose a different zero). Continuing Alg. 1 from this quartic
witness resulted in an extremal witness with eight zeros, of which one is a quartic zero with
a one dimensional kernel of the Hessian. Running Alg. 1 succeeded since we knew a priori
which zero was quartic, so problems with the numerical precision could be overcome. We
observe that as M2 = 9 constraints from each of the six first quadratic zeros are added to
U01, and further as from (28) and (36) the M2 +M4(1) = 18 constraints from the quartic
zero are added to form UΩ, all of these are linearly independent. Hence UΩ has rank 72
as expected, and a single new quadratic zero is located in the final step, adding eight new
linearly independent constraints so as to make dimKerUΩ = 1.

6.3.3. non-generic quadratic extremal witnesses

In order to demonstrate that a quadratic extremal witness may have more than the
minimum number of zeros, we have constructed quadratic extremal witnesses in 3 × 3

dimensions with ten rather than the expected number of nine zeros.
One method for finding such witnesses is illustrated in Fig. 4, where the kink in the

curve to the right represents a witness with ten zeros. All witnesses on the face have eight
zeros in common, whereas the curved lines on both sides of the kink consist of quadratic
extremal witnesses with nine zeros. We will return to this example in the next section.

An entirely different method is described here. The basic idea is to use Thm. 11 and
try to construct nine product vectors ψi = φi ⊗ χi that are linearly dependent, and for
good measure such that also the partially conjugated product vectors ψ̃i = φi ⊗ χ∗

i are
linearly dependent. Then a quadratic witness with these nine zeros, and no more, can not
be extremal, but it might lead to a quadratic extremal witness with ten zeros.

A first attempt is to choose the nine product vectors directly, by minimizing the sum
of the smallest singular value of the 9 × 9 matrix ψ = [ψ1, ψ2, . . . , ψ9] and the smallest
singular value of the corresponding 9× 9 matrix ψ̃. Since singular values are non-negative
by definition, minimization will make both these singular values zero. The minimization
problem is solved e.g. by the Nelder–Mead algorithm, or by a random search.

Let Z be a set of nine product vectors generated in this way, then any witness Ω with
these as zeros has to satisfy the constraints U01Ω = 0. The generic result we find is that
dimKerU01 = 2. Hence Ω has to be a decomposable witness,

Ω = p ηη† + (1− p) (η̃η̃†)P with 0 ≤ p ≤ 1, (83)

and η, η̃ ∈ H, η†ψi = η̃†ψ̃i = 0 for i = 1, . . . , 9. This decomposable Ω is not what we
are looking for, in fact it has a continuum of quartic zeros. The extremal decomposable
witnesses ηη† and (η̃η̃†)P each contribute two non-zero eigenvalues to the 8 × 8 Hessian
matrix GΩ at every zero, hence dimKerGΩ = 4 at every zero, unless p = 0 or p = 1 in
which case dimKerGΩ = 6.

A second attempt is to choose eight product vectors ψi that are linearly dependent and
have linearly dependent partial conjugates ψ̃i. This almost works, but not quite. We may
construct a decomposable witness Ω with these zeros from two pure states orthogonal to all
ψi and two partially transposed pure states orthogonal to all ψ̃i. As a convex combination
of four extremal decomposable witnesses, each contributing two non-zero eigenvalues to
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each 8× 8 Hessian matrix, Ω will be quadratic. Ω is determined by eight real parameters,
including a normalization constant, since Ω = ρ+ σP where ρ and σ are positive matrices
of rank two, with ρψi = σψ̃i = 0. The maximum number of independent constraints from
eight quadratic zeros is 72, giving dimKerU01 = 9, one more than the dimension of the
set of decomposable witnesses having these zeros. However, we find that Ω generically has
more than the eight prescribed zeros, increasing the number of independent constraints
to 73. Hence, again the constraints leave only the decomposable witnesses, none of which
are quadratic and extremal.

The third and successful attempt is to choose seven product vectors with similar linear
dependencies. Denote by U

(7)
01 the corresponding linear system of constraints. The kernel

of U
(7)
01 is found, in two different cases, to have dimension 21 or 22. A decomposable

witness with the given product vectors as zeros has the form Ω7 = ρ+ σP where ρ and σ

are positive matrices of rank three. Hence, the set of such decomposable witnesses is 18

dimensional, so that there are three or four dimensions in KerU(7)
01 orthogonal to the face

of decomposable witnesses. Defining Γ7 to lie in these three or four dimensions one can
walk towards the boundary of the face F7 = (KerU(7)

01 ) ∩ S◦
1 , finding Ω8 = Ω7 + tcΓ7 with

eight zeros. Ω8 is now guaranteed to be non-decomposable. Let U(8)
01 be the system defined

by these eight zeros, defining the face F8 = (KerU(8)
01 ) ∩ S◦

1 . We find that KerU(8)
01 has

dimension nine less than KerU(7)
01 . Defining Γ8 ∈ KerU(8)

01 , we locate an Ω9 ∈ F9, on the
boundary of F8, with nine zeros. The kernel of U(9)

01 has dimension nine less than KerU(8)
01 ,

i.e. three or four, hence there is still freedom to move along F9. Doing so produces a
quadratic extremal witness in 3× 3 with ten zeros rather than nine.

7. D-shaped faces of the set of witnesses in low dimensions

In this section we reveal a special geometry of next-to-extremal faces of S◦
1 in 2 × 4 and

3× 3 systems, related to the presence of decomposable witnesses.
Let Fk denote a face of S◦

1 with interior points that are quadratic witnesses with k

zeros. This is typically what we find in the k-th iteration of Alg. 1. A face F7 in dimension
2× 4, or F8 in dimension 3× 3, is the last face found before an extremal quadratic witness
is reached. These particular faces have a special geometry, because the number of zeros is
one less than the dimension of the Hilbert space, and as a result part of the boundary is
a line segment of decomposable witnesses.

A decomposable witness on such a face has the form

Ω = (1− p)ψψ† + p (ηη†)P with 0 ≤ p ≤ 1, (84)

where ψ is orthogonal to the N − 1 product vectors φi ⊗ χi that are the zeros of all the
witnesses in the interior of the face, and η is orthogonal to the partially conjugated product
vectors φi ⊗ χ∗

i . We take ψ and η to be normalized vectors, ψ†ψ = η†η = 1.
When we apply Alg. 1 in 2× 4 dimensions and find a quadratic extremal witness, the

generic case is that the face F7 is two dimensional. An example is shown in Fig. 3. The
line segment of decomposable witnesses must be part of the boundary of the face F7,
because the interior of the face consists of quadratic witnesses with a fixed set of seven
quadratic zeros, whereas the decomposable witnesses have additional zeros and Hessian
zeros, in fact infinitely many quartic zeros. The rest of the boundary of the face is curved,
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Fig. 3. A two dimensional face F7 ⊂ S◦
1 obtained by applying Alg. 1 in dimension 2× 4. Distances are

defined by the Hilbert–Schmidt metric. The straight line segment (dashed, in red) consists of decom-

posable witnesses, its upper end point is a pure state, marked by a diamond, and its lower end point is

the partial transpose of a pure state, marked by a circle. Starting from a quadratic witness with seven

zeros, marked by the black dot, the curved boundary of the face (in blue) was located by perturbing

in all directions. Every point on this curve represents an extremal witness with eight quadratic zeros,

except at the kink in the middle of the curved boundary where the witness has nine quadratic zeros.

These extremal witnesses are very nearly quartic. We show this by drawing another curved line (dashed,

in blue) where the first Hessian zero appears, that is, where one zero becomes quartic. This dashed curve

is only visible in the enlarged part of the figure.

and consists of quadratic extremal witnesses with eight zeros. There is one exception,
however, seen in the figure as a kink in the curved part of the boundary, and this is a
quadratic extremal witness with nine zeros.

The interesting explanation is as follows. As we go along the curve consisting of
quadratic witnesses with eight zeros, seven zeros are fixed, they are the zeros defining
the face. But the eighth zero has to change along the curve, because any two points on
this part of the boundary can be joined by a line segment passing through the interior
of the face, hence these two boundary points can have only the seven zeros in common.
Starting from the two extremal decomposable witnesses ψψ† and (ηη†)P we get two curved
sections of the boundary where the eighth zero changes continuously. These two sections
meet in one point which is then a witness with two quadratic zeros in addition to the
seven zeros defining the face.

Accordingly, this next-to-extremal face F7 is two dimensional and has the shape of a
“D”, where the straight edge is the line segment of decomposable witnesses and the round
part consists of quadratic extremal witnesses. Figure 3 is a numerically produced example
of such a face. Similarly we expect that next-to-extremal faces in any 2×Nb systems will
be either D-shaped, or if we by accident hit the straight edge of the D, line segments.

In the case of F8 in 3 × 3 we can also construct the line segment of decomposable
witnesses on the boundary of F8. The remaining boundary will again consist of quadratic
extremal witnesses, this time with nine or ten zeros. This part of the boundary is a curved
seven dimensional surface, since the face itself is eight dimensional. Any two dimensional
section of F8 passing through the line segment of decomposable witnesses is shaped as a
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D. See Fig. 4 for a numerically computed example.

−0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 4. A special two dimensional section of an eight dimensional face F8 ⊂ S◦
1 obtained from output of

Alg. 1 in dimension 3× 3. This section passes through a straight line segment of decomposable witnesses

(dashed, in red) which is part of the boundary of the face. The upper end point of the line segment is

a pure state, marked by a diamond, and the lower end point is the partial transpose of a pure state,

marked by a circle. Starting from a quadratic witness with eight zeros, marked by the black dot, the

curved boundary of the face (in blue) was located by perturbing in all directions in the plane. Every

point on this curve represents an extremal witness with nine quadratic zeros, except at the kink where

the witness has ten zeros. The curved dashed line (in blue) is where one zero becomes quartic.

Note that we can not guarantee that any choice of eight random product vectors gives
rise to such a D. Many choices may give rise to only the line segment of decomposable
witnesses, since there are inequality constraints that are not automatically satisfied, even
if we are able to satisfy the equality constraints that we have discussed here.

In other dimensions line segments of decomposable witnesses constructed from N − 1

zeros also define D-shaped faces, but the round part of the “D” will in those cases consist
not of extremal witnesses but of lower dimensional faces.

8. Faces of the set of separable states

Our understanding of witnesses as exposed in Sec. 4 translates into an understanding of
faces of S1, the set of separable states. A face of a compact convex set is defined by the
extremal points it contains, and in the case of S1 the extremal points are the pure product
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states. Alfsen and Shultz16 describe faces of S1 in two categories, either simplexes defined
by at most max(Na, Nb) pure product states, or direct convex sums of faces isomorphic
to matrix algebras. According to our understanding these two categories correspond to
quadratic and certain quartic witnesses respectively. It has been known for some time that
the set of entanglement witnesses has unexposed faces. These questions have been studied
by Chruściński and collaborators.28,57 In our understanding the unexposed faces of S◦

1 are
those containing quartic witnesses as interior points. The facial structure of various sets
related to quantum entanglement has been studied especially by Kye and collaborators.58

In this section we describe faces of S1 defined by different types of witnesses. We state
some basic results which may be well known and which are actually quite generally valid
for any pair of dual convex cones. The distinction between exposed and unexposed faces
is central, and it would be interesting to know whether all the faces of the set of separable
states are exposed. We believe that this is true, although we have no proof. Some support
for our conjecture may be drawn from the known facts that both the set of density matrices
and the set of PPT states have only exposed faces.

To finish this section we point out how the facial structure of the set of separable states
is related to a question which is of practical importance when we want to test whether
a given state is separable. The question is how many pure product states we need, if the
state is separable, in order to write it as a convex combination of pure product states.

8.1. Duality of faces

Given any subset X ⊂ S1 we define its dual in S◦
1 as

X ◦ = {Ω ∈ S◦
1 | TrΩρ = 0 ∀ρ ∈ X }. (85)

Similarly, given any subset Y ⊂ S◦
1 we define its dual in S1 as

Y◦ = { ρ ∈ S1 | TrΩρ = 0 ∀Ω ∈ Y }. (86)

We will assume here that X ◦ and Y◦ are non-empty, a minimum requirement is that
X ⊂ ∂S1 and Y ⊂ ∂S◦

1 . Then also X ◦ ⊂ ∂S◦
1 and Y◦ ⊂ ∂S1.

There always exists one single ρ0 ∈ ∂S1 such that

X ◦ = {ρ0}◦ = {Ω ∈ S◦
1 | TrΩρ0 = 0 }. (87)

In fact, every ρ ∈ X gives one linear constraint TrΩρ = 0 as part of the definition of X ◦. In
finite dimension at most a finite number of linear constraints can be independent, hence

X ◦ = {Ω ∈ S◦
1 | TrΩρi = 0 for i = 1, 2, . . . , k } (88)

for some states ρ1, ρ2, . . . , ρk ∈ X . Define for example

ρ0 =
1

k

k∑
i=1

ρi. (89)

If X is not convex, it may happen that ρ0 /∈ X . Because TrΩρi ≥ 0 for i = 1, 2, . . . , k the
equation TrΩρ0 = 0 implies that TrΩρi = 0 for i = 1, 2, . . . , k and hence Ω ∈ X ◦.
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Taking three times the dual we get that X ◦ = F◦ where F = X ◦◦ is the double dual of
X . Clearly F contains X , and by our next theorem F is an exposed face of S1.

Reasoning in the same way we conclude that it is always possible to find one single
witness Ω0 such that

Y◦ = {Ω0}◦ = { ρ ∈ S1 | TrΩ0ρ = 0 }, (90)

and an exposed face G of S◦
1 containing Y, in fact G = Y◦◦, such that Y◦ = G◦.

Theorem 15. X ◦ is an exposed face of S◦
1 , and Y◦ is an exposed face of S1.

Proof. Assume that Ω ∈ X ◦ is a proper convex combination of Ω1,Ω2 ∈ S◦
1 ,

Ω = (1− p) Ω1 + pΩ2 with 0 < p < 1. (91)

We have to prove that Ω1,Ω2 ∈ X ◦. The assumption that Ω1,Ω2 ∈ S◦
1 means that TrΩ1ρ ≥ 0

and TrΩ2ρ ≥ 0 for every ρ ∈ S1. For every ρ ∈ X we have in addition that

0 = TrΩρ = (1− p)TrΩ1ρ+ pTrΩ2ρ, (92)

and from this we conclude that TrΩ1ρ = TrΩ2ρ = 0. This proves that Ω1,Ω2 ∈ X ◦, so that
X ◦ is a face.

It is exposed because it is dual to one single ρ0 ∈ S1. In fact, the equation TrΛρ0 = 0

for Λ defines a hyperplane of dimension N2 − 2 in the N2 − 1 dimensional affine space of
Hermitian N ×N matrices of unit trace.

The proof that Y◦ is an exposed face is entirely similar.

This theorem has the following converse.

Theorem 16. An exposed face of S◦
1 is the dual of a separable state, and an exposed face

of S1 is the dual of a witness.

Proof. We prove the second half of the theorem, the first half is proved in a similar way.
An exposed face F of S1 is the intersection of S1 with a hyperplane given by an equation

for ρ ∈ H of the form TrΛρ = 0 where Λ ∈ H is fixed. The maximally mixed state ρ0 = I/N

is an interior point of S1, hence TrΛ = NTrΛρ0 �= 0 and we may impose the normalization
condition TrΛ = 1. We have to prove that Λ ∈ S◦

1 , which means that TrΛρ ≥ 0 for all
ρ ∈ S1.

Assume that there exists some ρ1 ∈ S1 with TrΛρ1 < 0. Choose any ρ2 ∈ S1 with
TrΛρ2 > 0, for example ρ2 = ρ0. Then ρ1, ρ2 �∈ F , since F is defined as the set of all ρ ∈ S1

having TrΛρ = 0. But there exists a proper convex combination ρ = (1 − p)ρ1 + pρ2 with
0 < p < 1 such that TrΛρ = 0, and hence ρ ∈ F , contradicting the assumption that F is a
face of S1.

We summarize Thms. 15 and 16 as follows.

Theorem 17. There is a one to one correspondence between exposed faces of S1 and
exposed faces of S◦

1 . The faces in each pair are dual (orthogonal) to each other.

Since the extremal points of S1 are the pure product states, by Thm. 1 the extremal
points of a face F ∈ S1 are the pure product states contained in F . It follows that the



38 L.O.Hansen, A.Hauge, J.Myrheim and P.Ø. Sollid

extremal points of the face Y◦ are the common zeros of all the witnesses in Y. We have
actually proved the following result.

Theorem 18. A set of product vectors in H is the complete set of zeros of some witness
if and only if they are the extremal points of an exposed face of S1 when regarded as states
in S1.

The remaining question, to which we do not know the answer, is whether S1 has
unexposed faces. We state the following theorem, which actually holds not only for S1 but
for any compact convex set.

Theorem 19. Every proper face of S1 is contained in an exposed face of S1.

Proof. Given a face F of S1, we have to prove that there exists a witness Ω such that F
is contained in the dual face Ω◦.

Choose ρ ∈ F , in the interior of F if F contains more than one point. Choose also
a separable state σ /∈ F , and define τ = (1 + t)ρ − tσ. Since F is a face, and τ ∈ S1 for
−1 ≤ t ≤ 0, we know that τ �∈ S1 for every t > 0, and the set

Y(t) = {Λ ∈ S◦
1 | TrΛτ ≤ 0 } (93)

is non-empty for every t > 0. Every Y(t) is a compact set, and Y(t1) ⊂ Y(t2) for 0 < t1 < t2.
Hence, the intersection of all sets Y(t) for t > 0 is non-empty and contains at least one
witness Ω such that TrΩτ ≤ 0 for every t > 0. Clearly we must then have TrΩρ = 0. Since
TrΩρ = 0 for one point ρ in the interior of the face F , it follows that TrΩρ = 0 for every
ρ ∈ F .

Unfortunately, this does not amount to a proof that F is exposed, because it might
happen that TrΩσ = 0 even though σ /∈ F .

8.2. Faces of D1 and P1

When discussing faces of S1, the set of separable states, it may be illuminating to consider
the simpler examples of faces of D1, the set of density matrices, and faces of P1, the set
of PPT states. Recall that D1 is selfdual, D◦

1 = D1. The fact that all faces of D1 and P1

are exposed may indicate that the same is true for all faces of S1.
A face F of D1 is a complete set of density matrices on a subspace U ⊂ H, thus there

is a one to one correspondence between faces of D1 and subspaces of H. A density matrix
ρ belongs to the face F when Img ρ ⊂ U , and it is an interior point of F when Img ρ = U .

It is straightforward to show that when ρ, σ ∈ D1 we have Tr ρσ = 0 if and only if
Img ρ ⊥ Imgσ. Hence, the dual, or opposite, face F◦ is the set of density matrices on the
subspace U⊥, the orthogonal complement of U . The double dual of F is F itself, F◦◦ = F ,
since (U⊥)⊥ = U . Every proper face F of D1 is exposed, since it is the dual of an arbitrarily
chosen interior point σ ∈ F◦.

The definition P1 = D1∩DP
1 implies, by Thm. 2, that every face G of P1 is an intersection

G = E∩FP, where E and F are faces of D1. This is the geometrical meaning of the procedure
for finding extremal PPT states introduced in Ref. 34.

It follows that every face of P1 is exposed. In fact, the face G is dual to a decomposable
witness ρ+ σP where ρ, σ ∈ D, such that E is dual to ρ and F is dual to σ.
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8.3. Unexposed faces of S◦
1

The Choi–Lam witness ΩC , as given in Eq. (72) with θ = 0, a = c = 1, b = 0, is an
example of an extremal witness, a zero dimensional face of S◦

1 , which is not exposed. The
three isolated product vectors defined in Eq. (73) and the continuum of product vectors
defined in Eq. (74), interpreted as states in S1, are the extremal points of the dual face
FC = {ΩC}◦ ⊂ S1. One may check both numerically and analytically that the face FC has
dimension 21. The separable states in the interior of FC have rank seven, since they are
constructed from product vectors in a seven dimensional subspace.

We find numerically that the constraints U0 and U1 associated with the zeros of ΩC

define a four dimensional face of S◦
1 . This is then the dual face F◦

C , the double dual of ΩC .
The last four constraints needed to prove that ΩC is extremal come from the constraints
U2 and U3 expressing the quartic nature of the zeros.

This is one example showing the mechanism for how faces of S◦
1 may avoid being

exposed. In general, a witness Ω having one or more isolated quartic zeros will be an
interior point of an unexposed face. This unexposed face is then a face of a larger exposed
face consisting of witnesses having the same zeros as Ω, but such that all the isolated
zeros are quadratic.

8.4. Simplex faces of S1

Theorem 18 expresses the relation between zeros of entanglement witnesses and exposed
faces of S1, the set of separable states. We do not know whether S1 has unexposed faces.
We consider first faces that are simplexes, having only a finite number of extremal points.

8.4.1. Faces of S1 dual to quadratic extremal witnesses

The exposed faces of S1 defined by extremal witnesses with only quadratic zeros are
simplexes, and as such are particularly simple to study. Given the product vectors ψi =

φi ⊗ χi for i = 1, 2, . . . , k, with k = n + 1, as the zeros of a quadratic extremal witness Ω.
The corresponding product states ρi = ψiψ

†
i are the vertices of an n-simplex, which is the

exposed face Ω◦ dual to Ω.
Let ρ be an interior point of this face,

ρ =

k∑
i=1

pi ρi,

k∑
i=0

pi = 1, pi > 0. (94)

According to Thm. 11, both ρ, constructed from the zeros φi⊗χi, and its partial transpose
ρP, constructed in the same way from the partially conjugated zeros φi⊗χ∗

i , have full rank
N = NaNb. Thus, ρ lies not only in the interior of D1, the set of density matrices, but also
in the interior of P1, the set of PPT states.

This geometric fact has the following interesting consequence. Let λ denote the smallest
one among the eigenvalues of ρ and ρP, we know that 0 < λ < 1/N . Then we may construct
entangled PPT states from the separable state ρ and the maximally mixed state ρ0 as

σ = pρ+ (1− p)ρ0, 1 < p ≤ 1

1−Nλ
. (95)
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The number of zeros of generic quadratic extremal witnesses presented in Table 1 has
consequences also for the geometry of S1. In dimensions 2 × 4 and 3 × 3 such a witness
will have N zeros and define a face of S1 in the interior of P1 ⊂ D1. The boundary of this
face will consist of other faces of S1 defined by less than N zeros, accordingly these faces
are located inside faces of D1 on the boundary of D1. In higher dimensions such a witness
has more than N zeros, and defines a face of S1 also in the interior of D1, but such that
its boundary contains faces still in the interior of D1. In this way the geometry of S1 in
relation to D1 becomes more and more complicated as the dimensions increase.

8.4.2. Some numerical results

In an attempt to learn more about the geometry of simplex faces we have studied numeri-
cally in dimension 3×3 the faces of S1 dual to generic quadratic extremal witnesses. They
are 8-simplexes, each defined by nine linearly independent pure product states that are
the zeros of the witness. Our sample consisted of 171 extremal witnesses found in random
numerical searches.

Volumes

Define the edge length factors fij = d2ij = ‖ρi− ρj‖2 in the Hilbert–Schmidt norm, and the
symmetric (n+ 2)× (n+ 2) Cayley–Menger matrix

D =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 1 · · · 1

1 0 f12 · · · f1k
1 f21 0 · · · f2k
...

...
...

. . . · · ·
1 fk1 fk2 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠. (96)

The volume of this n-simplex is then given by

V =

√| det(D)|
2n n!

. (97)

The volume of the regular n-simplex with edge length s is

Vreg =
sn

n!

√
n+ 1

2n
. (98)

The maximal distance between two pure states is
√
2, when the states are orthogonal. For

n = 8 and s =
√
2 we have Vreg = 3/8! ≈ 7.440× 10−5.

Due to the highly irregular shapes we find volumes of the faces varying over five orders
of magnitude. Since we regard density matrices related by SL ⊗ SL transformations as
equivalent, a natural question is how regular these simplexes can be made by such trans-
formations, in other words, what is the maximum volume V ∗ we may obtain. Figure 5
shows our data for the ratio V ∗/Vreg. There is some variation left in this ratio, indicating
that the 8-simplexes are genuinely irregular.
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Fig. 5. Ratio of volumes V ∗ and Vreg of 8-simplex faces of S1 in 3 × 3. V ∗ is the simplex volume

maximized under SL ⊗ SL transformations, and Vreg is the volume of the regular simplex of orthogonal

pure product states.

Positions relative to the maximally mixed state

The second geometric property we have studied is the distance from the maximally mixed
state to the center of each simplex face, defined as the average of the vertices,

ρc =
1

k

k∑
i=1

ρi. (99)

We compare this distance to the radius of the maximal ball of separable states centered
around the maximally mixed state,13

Rm =
1√

N(N − 1)
. (100)

For N = 3×3 we have Rm = 1/
√
72 ≈ 0.1179. The distance dc = ‖ρc−ρ0‖ can be minimized

by SL ⊗ SL transformations on ρc, resulting in a unique minimal distance d∗c for each
equivalence class of faces. Figure 6 shows our data for the ratio d∗c/Rm. We see that d∗c
does not saturate the lower bound Rm, and this is another indication of the intrinsic
irregularity of the 8-simplexes.

The third property studied is the orientation of each simplex relative to the maximally
mixed state ρ0. On a given face there exists a unique state ρmin closest to ρ0, the minimum
distance is dmin = ‖ρmin−ρ0‖. In dimension N = NaNb the distance from any pure state to
the maximally mixed state ρ0 is

√
(N − 1)/N , and in our case this gives an upper limit

dmin <

√
8

9
≈ 0.9428. (101)
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Fig. 6. Ratio of distances d∗c and Rm for 8-simplex faces of S1 in dimension 3×3. d∗c is the distance from

the center of the face minimized under SL ⊗ SL transformations, and Rm is the radius of the maximal

ball of separable states. The points are plotted in the same order as in Fig. 5.

With our sample of 171 faces it happens in only four cases, or ∼ 2%, that ρmin lies in
the interior of the face and has the full rank nine. In the remaining ∼ 98% of the cases,
ρmin lies on the boundary of the face and has lower rank.

Figure 7 shows the rank and distance for the state ρmin in each face in our sample. We
see a tendency that the minimum distance dmin is smaller when the rank of ρmin is higher.
This confirms our expectation that the most regular simplex faces are positioned most
symmetrically relative to the maximally mixed state, and also come closest to this state.

We find numerically that if we generate an 8-simplex by generating a random set of
nine pure product states, then ρmin will lie in the interior of the simplex and have full
rank in about 90% of the cases. Also we observe no ranks smaller than six. Thus, Fig. 7
proves that a simplex face generated by a random search for an extremal witness looks
very different from a randomly generated simplex. A random set of product vectors that
define an 8-simplex will in general not be the zeros of an entanglement witness, and the
simplex will not be a face of S1.

8.5. Other types of faces of S1

To every entanglement witness there corresponds an exposed face of S1, and the great
variety of entanglement witnesses implies a similar variety of faces of S1. The class of
simplex faces, having only a finite number of extremal points, is rather special, other faces
may have only continuous sets of extremal points, or both discrete and continuous subsets
of extremal points. Some special examples in dimension 3× 3 may serve as illustrations.

The Choi–Lam witness is a good example. It has three discrete zeros and one continuous
set of zeros, and these zeros in their role as pure product states are the extremal points
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Fig. 7. The rank of ρmin and its distance dmin from the maximally mixed state for 8-simplex faces in

dimension 3× 3. The faces are derived from our set of quadratic extremal entanglement witnesses found

in random searches using Alg. 1.

of a face of S1.
An extremal decomposable witness, i.e. a pure state or the partial transpose of a pure

state, defines a face of S1 with one single continuous set of extremal points. To be more
specific, consider a pure state Ω = ψψ†, then the zeros of Ω are the product vectors
orthogonal to ψ. We consider two typical cases.

One example is the product vector ψ = e1⊗ e1. Then the zeros are the product vectors

φ⊗ χ = (a1e1 + a2e2 + a3e3)⊗ (b1e1 + b2e2 + b3e3) (102)

with either a1 = 0 or b1 = 0. These product vectors produce pure product states belonging
to a full matrix algebra in dimension 2 × 3 if a1 = 0, and in dimension 3 × 2 if b1 = 0.
They are the extremal points of a face of the type called in Ref. 16 a convex combination
of matrix algebras.

Another example is the Bell type entangled pure state

ψ =
1√
3
(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3). (103)

The zeros in this case are the product vectors as in Eq. (102) with

a1b1 + a2b2 + a3b3 = 0. (104)

For every vector φ = a1e1 + a2e2 + a3e3 there is a two dimensional subspace of vectors
χ = b1e1 + b2e2 + b3e3 satisfying this orthogonality condition. And vice versa, for every
vector χ there is a two dimensional subspace of vectors φ. These pure product states are
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the extremal points of a face which is neither a simplex nor a convex combination of
matrix algebras.

8.6. Minimal convex decomposition

We know that any point in a compact convex set may be written as a convex combination
of extremal points, but if we want to do the decomposition in practice an important
question is how many extremal points we need. We would like to know a minimal number
of extremal points that is sufficient for all points. The facial structure of the set is then
relevant.

The theorem of Carathéodory gives a sufficient number of extremal points as n+1 where
n is the dimension of the set.40 However, the set D1 of normalized density matrices is an
example where one can do much better. The dimension of the set is n = N2 − 1, where N

is the dimension of the Hilbert space, but the spectral representation of a density matrix
in terms of its eigenvalues and eigenvectors is a decomposition using only N extremal
points. In order to see how this number N is related to the facial structure of D1, consider
the following proof of Carathéodory’s theorem.

Any point x in a compact convex set C is either extremal or an interior point of a
unique face F1, which might be the whole set C. If x is not extremal it may be written as
a convex combination

x = (1− p1)x1 + p1y1, (105)

where x1 is an arbitrary extremal point of F1 and y1 is another boundary point of F1. If
y1 is extremal we define x2 = y1, otherwise y1 is an interior point of a proper face F2 of
F1, and we write

y1 = (1− p2)x2 + p2y2, (106)

where x2 is an extremal point of F2 and y2 is a boundary point of F2. Continuing this
process we obtain a decomposition of x as a convex combination of extremal points
x1, x2, . . . , xk ∈ C, and a sequence F1 ⊃ F2 ⊃ . . . ⊃ Fk of faces of decreasing dimensions

n ≥ n1 > n2 > . . . > nk = 0. (107)

The length of the sequence is k, and the obvious inequality k ≤ n + 1 is Carathéodory’s
theorem.

For the set D1 of normalized density matrices the longest possible sequence of face
dimensions has length N , it is

N2 − 1 > (N − 1)2 − 1 > . . . > (N − j)2 − 1 > . . . > 8 > 3 > 0. (108)

In general, we decompose an arbitrary density matrix ρ of rank r as a convex combination
of r pure states that may be eigenvectors of ρ, but need not be.

We may apply this procedure to the decomposition of an arbitrary separable state as
a convex combination of pure product states. As we see, the number of pure product
states we have to use depends very much on the facial structure of the set of separable
states. It might happen, for example, that the face F2 is the dual of a quadratic witness,
and then it contains only a finite number of pure product states, much smaller than the
dimension N2−1 of the set S1 of normalized separable states. Recall that the pure product
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states in such a face are the zeros of the witness, and the number of zeros is largest when
the witness is extremal. In the generic case the number of zeros of a quadratic extremal
witness is nc, as given by Eq. (45) and tabulated in Table 1.

It seems likely therefore that also in the decomposition of separable states one could
do much better than the N2 pure product states guaranteed by Carathéodory’s theorem.
We consider this an interesting open problem for further study.

9. Optimal and extremal witnesses

The notion of optimal entanglement witnesses was developed by Lewenstein et al.26,29 In
this section we comment briefly on the relation between optimal and extremal witnesses.
In systems of dimension 2×Nb and 3× 3 the two concepts are, at least generically, closely
related. This has significant geometric consequences.

Recall the definition that a witness Ω is extremal if and only if there does not exist two
other witnesses Ω0 and Ω1 such that

Ω = (1− p) Ω0 + pΩ1 with 0 < p < 1. (109)

Lewenstein et al. introduce two different concepts of optimality and give two necessary
and sufficient conditions for optimality, similar to the condition for extremality.26 By
their Thm. 1, a witness Ω is optimal if and only if it is not a convex combination of the
form (109), where Ω1 is a positive semidefinite matrix. By their Thm. 1(b), Ω is non-
decomposable optimal if and only if it is not a convex combination of this form where Ω1

is a decomposable witness. Obviously, extremal witnesses are optimal by both optimality
criteria.

Ha and Kye give examples to show that an optimal witness which is non-decomposable
need not be non-decomposable optimal according to the definition of Lewenstein et al.,
hence they propose to replace the ambiguous term “non-decomposable optimal witness”
by “optimal PPTES witness”, where PPTES refers to entangled states with positive
partial transpose.59 Here we will use the original terminology.

Note that the criterion for optimality is not invariant under partial transposition, hence
a witness Ω may be optimal while its partial transpose ΩP is not optimal, and vice versa.
The criterion for non-decomposable optimality, on the other hand, is invariant under
partial transposition, so that Ω is non-decomposable optimal if and only if ΩP is non-
decomposable optimal.

Apparently the condition of being extremal is stricter than those of being optimal
or non-decomposable optimal. Accordingly there should, in general, exist plenty of non-
extremal witnesses that are either optimal or non-decomposable optimal. We now inves-
tigate this question further in the spirit of Thm. 11. The following sufficient optimality
conditions were proved by Lewenstein et al.26

Theorem 20. A witness Ω is optimal if its zeros span the Hilbert space.
Ω is non-decomposable optimal if its zeros span the Hilbert space, and at the same time

its partially conjugated zeros span the Hilbert space.

Proof. Equation (109) implies that the zeros and Hessian zeros of Ω are also zeros and
Hessian zeros of Ω0 and Ω1. But if Ω1 is positive semidefinite and its zeros span the Hilbert
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space, then Ω1 = 0. Similarly, if Ω1 is decomposable and its zeros and partially conjugated
zeros both span the Hilbert space, then Ω1 = 0.

For a quadratic witness these conditions are not only sufficient but also necessary.

Theorem 21. Let Ω be a quadratic witness. Then the zeros of Ω span the Hilbert space,
and Ω is non-decomposable optimal if and only if its zeros span the Hilbert space and its
partially conjugated zeros also span the Hilbert space.

Proof. We have to prove the “only if” part, and we reason like in the proofs of Thms. 8
and 11. If the zeros do not span the Hilbert space, there exists a vector ψ orthogonal to
all zeros, and we define Ω1 = ψψ†. Then the zeros of Ω1 include the zeros of Ω, and we
know that Ω1 �= Ω because Ω is quadratic and Ω1 is quartic. The line segment from Ω1 to
Ω consists of witnesses having exactly the same zeros and Hessian zeros as Ω (Ω has no
Hessian zeros since it is quadratic). By Thm. 7 this line segment can be prolonged within
S◦
1 so that it gets Ω as an interior point. Hence Ω is neither optimal nor non-decomposable

optimal. If the partially conjugated zeros do not span the Hilbert space, then there exists
a vector η orthogonal to all the partially conjugated zeros. Now we define Ω1 = (ηη†)P,
and use it in the same way as a counterexample to prove that Ω is not non-decomposable
optimal.

Following Thms. 13 and 21, we see that if Ω is a quadratic witness which is non-
decomposable optimal, then it is non-decomposable.

It is known that the equivalence between optimality and the spanning property holds
also in the case of decomposable witnesses in 2 × Nb dimensions. Augusiak, Tura and
Lewenstein proved the following result 60

Theorem 22. Let Ω be a decomposable witness in 2×Nb dimensions, then the following
conditions are equivalent:

(1) Ω is optimal;
(2) The zeros of Ω span the Hilbert space;
(3) Ω = σP, where σ > 0 and Img σ contains no product vectors.

A subspace containing no product vectors is often called a completely entangled sub-
space. Obviously, Ω is not extremal unless σ is a pure state. It is also known that for
dimensions 3 × 3 and higher, there exist optimal decomposable witnesses without the
spanning property. 61

Lewenstein et al. also give an optimality test for quartic witnesses without the spanning
property. Since we do not have a complete understanding of constraints from quartic zeros,
we leave the relation between non-decomposable optimality and extremality of quartic
witnesses as an open problem.

In dimensions 3 × 3 and 2 ×Nb, a witness with doubly spanning zeros will generically
be extremal, by Thm. 12, and hence both optimal and non-decomposable optimal. From
Table 1 we see that in higher dimensions the number of zeros of a quadratic extremal
witness must be larger than the Hilbert space dimension N = NaNb. Hence non-extremal
witnesses with doubly spanning zeros must be very common, so that non-decomposable
optimality is a significantly weaker property than extremality. In particular, when we
search for generic quadratic extremal witnesses and reach the stage where the witnesses
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have N or more zeros, then every face of S◦
1 we encounter will consist entirely of non-

decomposable optimal witnesses, most of which are not extremal.
The observations made above give a picture of increasingly complicated geometry as

dimensions increase. In dimensions 2×2 and 2×3 every witness is decomposable.11,14 In 2×
Nb and 3×3 a generic quadratic witness is either non-decomposable optimal and extremal,
or it is neither. In higher dimensions there exist an abundance of non-decomposable
optimal non-extremal witnesses.

10. The SPA separability conjecture

Horodecki and Ekert introduced the concept of a “structural physical approximation”
(SPA) of a non-physical map that can be used as a mathematical operation for detecting
entanglement.30,31 The SPA is a physical map and may be implemented in an experimental
setup. An example is partial transposition, where the transposition map is applied to one
subsystem. The transposition map is unphysical, since it is not completely positive, hence
the need for an SPA.

The Jamio�lkowski isomorphism relates positive maps and entanglement witnesses, and
the SPA of a witness Ω is usually defined as the nearest positive matrix that is a convex
combination of Ω and the maximally mixed state I/N . The witness itself corresponds to
a map which is positive but not completely positive, whereas its SPA corresponds to a
completely positive map. Define

Σ(p) = (1− p)Ω +
p

N
I, (110)

and let

• p0 be the smallest value of p such that Σ(p) is a separable density matrix;
• p1 be the smallest value of p such that Σ(p) is a density matrix;
• p2 be the smallest value of p such that (Σ(p))P is a density matrix.

If λ1 ≤ 0 and λ2 ≤ 0 are the lowest eigenvalues of Ω and ΩP respectively, then

p1 = − Nλ1

1−Nλ1
, p2 = − Nλ2

1−Nλ2
. (111)

The SPA of Ω is defined in Ref. 32 as Ω̃ = Σ(p1).
Clearly p0 ≥ p1 and p0 ≥ p2, but we may have either p1 < p2, p1 = p2, or p1 > p2. The

SPA of Ω is a PPT state if and only if p1 ≥ p2. It follows directly from the definitions that
the SPA of the witness ΩP is (Σ(p2))

P, and this is a PPT state if and only if p2 ≥ p1.
The so called SPA separability conjecture was put forward by Korbicz et al., and

states that the SPA of an optimal entanglement witness is always a separable state.32

Thus for optimal witnesses we should have p0 = p1 ≥ p2. One reason for the interest in this
conjecture is that separability simplifies the physical implementation of the corresponding
map.

The conjecture was supported by several explicit constructions.52,56,62,63 In particular,
it is true for extremal decomposable witnesses, that is, for witnesses of the form Ω =

(ψψ†)P where ψ is an entangled vector.32,52 Note that in this case ΩP = ψψ† is not an
entanglement witness, according to the standard definition that a witness must have at
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least one negative eigenvalue. According to our definition a witness is not required to have
negative eigenvalues, thus we define ψψ† to be an extremal decomposable witness.

Counterexamples to the SPA conjecture are known. It was shown recently by
Chruściński and Sarbicki that the SPA of an optimal but non-extremal decomposable
witness, of the form Ω = σP with σ ≥ 0 of rank three, may be entangled, although it is
automatically a PPT state.64 This counterexample leaves open the possibility that the
conjecture may hold for all such witnesses in dimensions 2×Nb with Nb ≥ 4.

Counterexamples of the form of the generalized Choi witness, Eq. (72), have been given
by Ha and Kye and by Størmer.33,41 With the parameter values considered by Størmer
we find that the witnesses are not extremal, and their SPAs are entangled because they
are not PPT states. More interesting are the parameter values considered by Ha and
Kye, because they give extremal witnesses with SPAs that are entangled PPT states. We
describe these witnesses in some more detail below.

The SPA conjecture applies directly to extremal entanglement witnesses, since they are
optimal. If Ω is an extremal witness, then so is the partial transpose ΩP. However, if the
SPA of Ω is a PPT state, then the SPA of ΩP is usually not, and vice versa. This means that
the original SPA conjecture can not be true both for Ω and ΩP, simply because separable
states are PPT states. Ha and Kye gave essentially this argument in Ref. 33. What saves
the SPA conjecture in the case of an extremal decomposable witness Ω = (ψψ†)P and its
partial transpose ΩP = ψψ† is that the latter is excluded by the standard definition.

An obvious modification of the conjecture would be to redefine the SPA as the nearest
PPT matrix instead of the nearest positive matrix. In the case of a pair of extremal
witnesses Ω and ΩP the modified conjecture holds either for both or for none. Since
the original SPA conjecture holds for extremal decomposable witnesses Ω = (ψψ†)P, the
modified SPA conjecture holds for ΩP = ψψ†, which is an extremal decomposable witness
according to our definition.

The counterexamples cited above disprove also this modified separability conjecture in
its full generality, including some extremal non-decomposable witnesses. However, we want
to point out that the known counterexamples are rather non-generic. Therefore we have
made a small numerical investigation of how the modified conjecture works for generic
quadratic extremal witnesses. We are unable to draw a definitive conclusion because of
the limited numerical precision of our separability test.

The counterexample of Ha and Kye

The generalized Choi witness, Eq. (72), contains four parameters a, b, c, θ. It is required
here that 2/3 ≤ a < 1. Each value of a gives twelve different witnesses, depending on two
arbitrary signs and one arbitrary angle θ1 = 0,±2π/3. We define

a1 =

√
1− (1− a)2

2
, a2 =

√
1− 9(1− a)2

2
,

b =
a1 ± a2

2
, c = a1 − b,

θ0 = arccos

(
a+ a1

2

)
, θ = ±θ0 + θ1.

(112)
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The unnormalized SPA of this witness Ω is ρ = Ω+ a1I, of rank eight, and the SPA of ΩP

is ρP, of rank six. Thus ρ is a PPT state. The kernel of ρ is spanned by the vector ψ(0),
and the kernel of ρP is spanned by ψ(1), ψ(2), ψ(3) where

(ψ(0), ψ(1), ψ(2), ψ(3)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 eiθ 0 0

0 0 c+ a1 0

0 c+ a1 0 0

e−iθ1 0 0 0

0 0 0 eiθ

0 0 eiθ 0

0 0 0 c+ a1
eiθ1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (113)

A separable state σ satisfies the range criterion that Imgσ is spanned by product vectors
such that the partially conjugated product vectors span ImgσP. The present PPT state
ρ is entangled, in fact it is a so called edge state, violating the range criterion maximally.
It is straightforward to verify that there exists no product vector ϕ⊗χ orthogonal to ψ(0)

such that ϕ⊗ χ∗ is orthogonal to all of ψ(1), ψ(2), ψ(3).

Generic quadratic extremal witnesses

When we find an extremal witness Ω in a random numerical search by Alg. 1, presumably
the probabilities of finding Ω and ΩP are equal. Hence we expect to have about fifty per
cent probability of finding an extremal witness with an SPA which is a PPT state. This
is also what we see in practice.

For each extremal witness Ω found in dimensions 3×3 and 3×4 we have computed the
SPA of Ω and of ΩP. As expected, in each case one SPA is a PPT state and the other one is
not. The number of PPT states in our numerical searches originating from the quadratic
witnesses Ω and ΩP are 81 and 90 respectively for the 3× 3 system, and 41 and 24 for the
3× 4 system.

Since the original separability conjecture of Korbicz et al. fails both in the generic case
and by non-generic counterexamples, a natural question is whether the SPA is always
separable when it is a PPT state. As mentioned there are counterexamples in Refs. 33,
41. On the other hand, these counterexamples are rather special, and there remains a
possibility that the SPA of a generic extremal witness with only quadratic zeros could be
separable if it is a PPT state.

For this reason, in our numerical examples we have tried to check the separability of the
SPA whenever it is a PPT state. We find that it is always very close to being separable,
in no case are we able to conclude that it is certainly not separable. Unfortunately, our
numerical separability test is not sufficiently precise that we may state with any conviction
the opposite conclusion that the state is separable.

In view of the known examples and counterexamples the status of the modified SPA
separability conjecture, which defines the SPA as a PPT state, is not completely clear. It
would be interesting to know some simple criterion for exactly when it is true. This may
also be regarded as one aspect of the more general question of which border states of the
set of separable states are also border states of the set of PPT states.
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On the other hand, if we regard separability as an essential property of the SPA,
it seems that the natural solution would be to define the SPA by the parameter value
p = p0, where Σ(p) first becomes separable, rather than by the value p = p1, where Σ(p)

first becomes positive, or by p = max(p1, p2), where Σ(p) first becomes a PPT state.

11. A real problem in a complex cloak

We want to outline here a different approach to the problem of describing the convex
cone S◦ of entanglement witnesses, where we regard it as a real rather than a complex
problem. This means that we treat S◦

1 as a subset of a higher dimensional compact convex
set. We are motivated by the observation that the problem is intrinsically real, since H is
a real vector space, fΩ is a real valued function, and some of the constraints discussed in
Sec. 3 are explicitly real. In particular, the second derivative matrix, the Hessian, defining
constraints at a quartic zero of a witness is a real and not a complex matrix.

Another motivation is the possibility of expressing the extremal points of S◦
1 as convex

combinations of extremal points of the larger set. We show how a pure state as a witness
is a convex combination of real witnesses that are not of the complex form.

In order to arrive at an explicitly real formulation of the problem we proceed as follows.
Define J : R2Na → CNa and K : R2Nb → CNb as

J = (Ia, iIa), K = (Ib, iIb), (114)

and define

Z = (J ⊗K)†Ω(J ⊗K). (115)

Then if φ = Jx and χ = Ky we have that

gZ(x, y) = (x⊗ y)TZ(x⊗ y) = (φ⊗ χ)†Ω(φ⊗ χ) = fΩ(φ, χ). (116)

Since Z is a Hermitian matrix, its real part is symmetric and its imaginary part anti-
symmetric. The expectation value gZ(x, y) is real because only the symmetric part of Z
contributes. Furthermore, only the part of Z that is symmetric under partial transposition
contributes. Hence gZ(x, y) = gW (x, y) when we define

W =
1

2
Re (Z + ZP ). (117)

Since J ⊗K = (Ia ⊗K, iIa ⊗K) is an N × (4N) matrix, Z is a (4N)× (4N) matrix,

Z =

(
X iX

−iX X

)
, (118)

where X is a (2N)× (2N) matrix,

X = (Ia ⊗K)†Ω(Ia ⊗K). (119)

The partial transposition of Z transposes submatrices of size (2Nb)× (2Nb).
We may now replace the complex biquadratic form fΩ by the real form gW , and repeat

the analysis in Sec. 3 almost unchanged. We therefore see that complex witnesses in
dimension N = Na ×Nb correspond naturally to real witnesses in (2Na)× (2Nb) = 4N .
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Write the matrix elements of Ω as

(Ωik)jl = Ωij;kl. (120)

In this notation, Ωik is an Nb ×Nb submatrix of the N ×N matrix Ω. Then we have that

Xik = K†ΩikK =

(
Ωik iΩik

−iΩik Ωik

)
. (121)

The complex matrix Ωik may always be decomposed as

Ωik = Aik +Bik + i (Cik +Dik), (122)

where Aik, Bik, Cik, Dik are real matrices, and Aik, Cik are symmetric, Bik, Dik are antisym-
metric. The Hermiticity of Ω means that

Ωik = (Ωki)
† = Aki −Bki − i (Cki −Dki), (123)

or equivalently,

Aki = Aik, Bki = −Bik, Cki = −Cik, Dki = Dik. (124)

In particular,

Bii = Cii = 0. (125)

We finally arrive at the following explicit relation between the complex witness Ω and the
real witness W ,

W =

(
U −V

V U

)
, (126)

with

Uik =
1

2
Re (Xik +XT

ik) =

(
Aik −Dik

Dik Aik

)
,

Vik =
1

2
Im (Xik +XT

ik) =

(
Cik Bik

−Bik Cik

)
.

(127)

Note that the (2Nb) × (2Nb) matrices Uik and Vik are symmetric by construction, Uik =

(Uik)
T and Vik = (Vik)

T. This means that W is symmetric under partial transposition,
WP = W .

It also follows from Eqs. (124) and (127) that Uki = Uik and Vki = −Vik. This means
that the (2N)× (2N) matrix U is symmetric, UT = U because

(UT )ik = (Uki)
T = Uki = Uik, (128)

whereas V is antisymmetric, V T = −V because

(V T )ik = (Vki)
T = Vki = −Vik. (129)

This means that W is symmetric, W T = W .
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11.1. A pure state as a witness

If Ω is a pure state, Ω = ψψ† with ψ†ψ = 1, then

fΩ(φ, χ) = (φ⊗ χ)†Ω(φ⊗ χ) = |z|2 = (Re z)2 + (Im z)2, (130)

with

z = (φ⊗ χ)†ψ = (x⊗ y)T (J ⊗K)†ψ. (131)

We have seen that Ω is extremal in S◦
1 , but we see now that it is not extremal in the larger

set of real witnesses that are not of the complex form given in Eq. (126). Write ψ = a+ ib

with a, b real, and

p = (J ⊗K)†ψ =

(
q

−iq

)
, (132)

with

q = (Ia ⊗K)†ψ. (133)

Here q is a (2N)× 1 matrix, and if we write qi with i = 1, 2, . . . , Na for the submatrices of
size (2Nb)× 1, we have that

qi = K†ψi =

(
ψi

−iψi

)
=

(
ai + ibi
bi − iai

)
= ri + isi, (134)

with

ri =

(
ai
bi

)
, si =

(
bi
−ai

)
. (135)

We now have that

(Re z)2 = (x⊗ y)TZr(x⊗ y), (Im z)2 = (x⊗ y)TZi(x⊗ y), (136)

with

Zr = (Re p)(Re p)T =

(
rrT rsT

srT ssT

)
,

Zi = (Im p)(Im p)T =

(
ssT −srT

−rsT rrT

)
.

(137)

These two matrices are symmetric, ZT
r = Zr and ZT

i = Zi, but we should also make them
symmetric under partial transposition. Therefore we replace them by the matrices

Wr =
1

2
(Zr + ZP

r ) =

(
A B

C D

)
,

Wi =
1

2
(Zi + ZP

i ) =

(
D −C

−B A

)
,

(138)



Extremal entanglement witnesses 53

where

Aik =
1

2
(rir

T
k + rkr

T
i ) =

1

2

(
aia

T
k + aka

T
i aib

T
k + akb

T
i

bia
T
k + bka

T
i bib

T
k + bkb

T
i

)
,

Bik =
1

2
(ris

T
k + skr

T
i ) =

1

2

(
aib

T
k + bka

T
i −aia

T
k + bkb

T
i

bib
T
k − aka

T
i −bia

T
k − akb

T
i

)
,

Cik =
1

2
(sir

T
k + rks

T
i ) =

1

2

(
bia

T
k + akb

T
i bib

T
k − aka

T
i

−aia
T
k + bkb

T
i −aib

T
k − bka

T
i

)
,

Dik =
1

2
(sis

T
k + sks

T
i ) =

1

2

(
bib

T
k + bkb

T
i −bia

T
k − bka

T
i

−aib
T
k − akb

T
i aia

T
k + aka

T
i

)
.

(139)

12. Summary and outlook

In this article we have approached the problem of distinguishing entangled quantum states
from separable states through the related problem of classifying and understanding en-
tanglement witnesses. We have studied in particular the extremal entanglement witnesses
from which all other witnesses may be constructed. We give necessary and sufficient con-
ditions for a witness to be extremal, in terms of the zeros and Hessian zeros of the witness,
and in terms of linear constraints on the witness imposed by the existence of zeros. The
extremality conditions lead to systematic methods for constructing numerical examples
of extremal witnesses.

We find that the distinction between quadratic and quartic zeros is all important when
we classify extremal witnesses. Nearly all extremal witnesses found in random searches are
quadratic, having only quadratic zeros. There is a minimum number of zeros a quadratic
witness must have in order to be extremal, and most of the quadratic extremal witnesses
have this minimum number of zeros. To our knowledge, extremal witnesses of this type
have never been observed before, even though they are by far the most common.

The number of zeros of a quadratic extremal witness increases faster than the Hilbert
space dimension. Since a witness is optimal if its zeros span the Hilbert space, this implies
that in all but the lowest dimensions witnesses may be optimal and yet be very far from
extremal.

The facial structures of the convex set of separable states and the convex set of witnesses
are closely related. The zeros of a witness, whether quadratic or quartic, always define
an exposed face of the set of separable states. The other way around, an exposed face of
the set of separable states is defined by a set of pure product states that are the zeros of
some witness, in fact, they are the common zeros of all the witnesses in a face of the set
of witnesses. The existence of witnesses with quartic zeros is the root of the existence of
non-exposed faces of the set of witnesses. It is unknown to us whether the set of separable
states has unexposed faces.

One possible way to test whether or not a given state is separable is to try to decompose
it as a convex combination of pure product states. In such a test it is of great practical
importance to know the number of pure product states that is needed in the worst case.
The general theorem of Carathéodory provides a limit of n+ 1 where n is the dimension
of the set, but this is a rather large number, and an interesting unsolved problem is to
improve this limit, if possible. We point out that this is a question closely related to
the facial structure of the set of separable states, which in turn is related to the set of
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entanglement witnesses.
Another unsolved problem we may mention here again is the following. We have found

a procedure for constructing an extremal witness from its zeros and Hessian zeros, but an
arbitrarily chosen set of zeros and Hessian zeros does not in general define an extremal
entanglement witness. How do we construct an extremal witness by choosing a set of zeros
and Hessian zeros we want it to have? Clearly this is a much more complicated problem
than the trivial problem of constructing a polynomial in one variable from its zeros.

In conclusion, by studying the extremal entanglement witnesses we have made some
small progress towards understanding the convex sets of witnesses and separable mixed
states. But this has also made the complexity of the problem even more clear than it was
before. The main complication is the fact that zeros of extremal witnesses may be quartic,
since this opens up an almost unlimited range of variability among the quartic witnesses.
A full understanding of this variability seems a very distant goal. Nevertheless we believe
that it is useful to pursue the study of extremal witnesses in order to learn more about
the geometry of the set of separable states, and it is rather clear that a combination of
analytical and numerical methods will be needed also in future work.
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Appendix A. Explicit expressions for positivity constraints

We show here explicit expressions for the constraints developed in Sec. 3.1.
Given a zero (φ0, χ0), let jm for m = 1, . . . , 2(Na − 1) be the column vectors of the

matrix J0. We construct them for example from an orthonormal basis φ0, φ1, . . . , φNa−1 of
Ha, taking j2l−1 = φl, j2l = iφl for l = 1, . . . , Na − 1. Similarly, let kn for n = 1, . . . , 2(Nb − 1)

be the column vectors of K0. Then the equations T0Ω = 0, T1Ω = 0 may be written as

Tr (E(0)Ω) = 0, Tr (E(1)
m Ω) = 0, Tr (E(2)

n Ω) = 0, (A.1)

with
E(0) = φ0φ

†
0 ⊗ χ0χ

†
0,

E(1)
m = (jmφ†

0 + φ0j
†
m)⊗ χ0χ

†
0,

E(2)
n = φ0φ

†
0 ⊗ (knχ

†
0 + χ0k

†
n).

(A.2)

With zi ∈ KerGΩ, zTi = (xTi , y
T
i ) and ξi = J0xi, ζi = K0yi, for i = 1, . . . ,K, the constraints

(T2Ω)i = 0 given in Eq. (33) may be written explicitly as follows,

Tr (F (1)
im Ω) = 0, Tr (F (2)

in Ω) = 0, (A.3)

with

F
(1)
im = (ξij

†
m + jmξ†i )⊗ χ0χ

†
0 + (φ0j

†
m + jmφ†

0)⊗ (ζiχ
†
0 + χ0ζ

†
i ),

F
(2)
in = φ0φ

†
0 ⊗ (ζik

†
n + knζ

†
i ) + (ξiφ

†
0 + φ0ξ

†
i )⊗ (χ0k

†
n + knχ

†
0).

(A.4)
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System T3 can be written as follows. For any linear combinations

ξ =

K∑
i=1

aiξi, ζ =

K∑
i=1

aiζi, (A.5)

with real coefficients ai and ξi, ζi as above, we have

TrGΩ = 0, G = (ξφ†
0 + φ0ξ

†)⊗ ζζ† + ξξ† ⊗ (ζχ†
0 + χ0ζ

†). (A.6)

This is one single constraint for each set of coefficients ai. The minimum number of
different linear combinations that we have to use is given by the binomial coefficient(

K + 2

3

)
=

K(K + 1)(K + 2)

6
. (A.7)

Appendix B. Numerical implementation of Algorithm 1

In this appendix we first describe possibilities for solving the optimization problem (16)
and then, assuming that this problem can be solved, we describe how to localize the
boundary of a face of quadratic witnesses in S◦

1 .

Solving the optimization problem

We first describe some possibilities for solving the optimization problem (16). This ques-
tion has received little attention in the physics community, and in the optimization liter-
ature focus shifted towards a rigorous rather than towards an “applied” approach. Two
comments are in place. In Refs. 35, 65 simple algorithms were presented which in our
experience work fine in most situations. However, when applied to Alg. 1 we repeatedly
observe poor convergence, presumably due to degeneracies of eigenvalues. In Ref. 66 it is
stated that a straight forward parameterization of problem (16) can not be solved in an
efficient manner. Instead they present a formalism which again, in our view, is unneces-
sarily complicated for low dimensions. The conceptually simplest approach is to perform
repeated local minimization from random starting points, thus heuristically (though suf-
ficiently safe) obtaining all global optimal points. Below we describe different possible
approaches for local minimization, either applying available optimization algorithms or
implementing simple ones ourselves.

In the case that only the optimal value p∗ and not the optimal solution (φ∗, χ∗) is
sought for, a positive maps approach is fruitful. Given an operator A ∈ H one can define
the linear map LA such that

(φ⊗ χ)†A(φ⊗ χ) = χ†LA(φφ
†)χ. (B.1)

Problem (16) is then equivalent to minimizing the smallest eigenvalue of LA(φφ
†) as a

function of normalized φ, and hence to the unconstrained minimization of

f̃Ω(φ) = min

[
spectrum

LA(φφ
†)

φ†φ

]
. (B.2)
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With a real parametrization φ = Jx as in Eq.(114) this function is readily minimized by
the Nelder–Mead downhill simplex algorithm, listed e.g. in Ref. 67 and implemented e.g.
in MATLAB’s “fminsearch” function68 or Mathematica’s “NMinimize”.69

In the case that also the optimal point (φ∗, χ∗) is wanted, several possibilities exist.
An approximate solution is easily found by feeding the real problem given by (117) to a
SQP-algorithm,43,70 e.g. the one provided in MATLAB’s “fmincon” function.68 Another
possibility is to apply the infinity norm in (16) and perform box-constrained minimization
in each face of the∞-ball. Since the Hessian of the function is readily available trust-region
algorithms are suitable (also provided in MATLAB’s “fmincon”). If A is known to be an
entanglement witness, even the box-constraints on each face of the ∞-ball can be removed,
since in that case the objective function is bounded below. The problem has then been
reduced to unconstrained minimization in a series of affine spaces, one for each face of the
∞-ball.

With this latter formulation, we have had success with a quasi-Newton approach43

performing exact line search, see Ref. 38 for details. Further, we have had promising results
with a complex conjugate gradient algorithm also performing exact line search,70 though
further development is necessary.

Finding the boundary of a face

Here we describe how to localize the boundary of a face of quadratic witnesses in S◦
1 . We

assume we have some routine for solving problem (16).
Given a quadratic witness Ω situated in the interior of a face defined by k product

vectors, and a perturbation Γ, we define a family of functions as follows. Consider problem
(16) with A(t) = Ω + tΓ. Given all local minima, sort these in ascending order according
to function value. Then the function κ0(t) is the value of local minimum number k + 1 if
this exists and 0 otherwise. Function κi(t), i = 1, . . . , k is the smallest positive eigenvalue
of D2(fΩ+ tfΓ) evaluated at zero number i. Now each κi(t), i = 0, . . . , k is a function with a
single simple root in t ∈ [0,∞) which can be easily located using any standard rootfinding
technique.

Another possible approach to finding the boundary of the face is as follows. Rather
than locating all local minima of problem (16), aim only at locating the global minimum
value. This global minimum value as a function of Ω will be called the face function. The
face function is zero on a face, positive in the interior of S◦ and negative outside of S◦.
Finding some initial θ > θc then allows for one-sided extrapolation towards θc.

If we employ the 2-norm for the constraints in (16) the face function is concave as a
function of θ > θ0. To see this, note that the optimal value of problem (16) is equal to the
optimal value of

f̃(φ, χ) =
(φ⊗ χ)†Ω(φ⊗ χ)

(φ†φ)(χ†χ)
. (B.3)

Let p∗(Ω) denote the optimal value. Since p∗(Ω) is defined as a point-wise minimum p∗(Ω)
is a concave function of Ω.42 Projection of Ω on some face is an affine operation, an
operation preserving concavity. Accordingly the face function is a concave function once
the new local minimum exists. This fact makes either approach for locating the boundary
of a face simpler, since the qualitative form of the function whose root to find is known.
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We define an entanglement witness in a composite quantum system as an observable having a nonnegative
expectation value in every separable state. Then a state is entangled if and only if it has a negative expectation
value of some entanglement witness. Equivalent representations of entanglement witnesses are nonnegative
biquadratic forms or positive linear maps of Hermitian matrices. As reported elsewhere, we have studied extremal
entanglement witnesses in dimension 3× 3 by constructing numerical examples of generic extremal nonnegative
forms. These are so complicated that we do not know how to handle them other than by numerical methods.
However, the corresponding extremal positive maps can be presented graphically, as we attempt to do in the
present paper. We understand that a positive map is extremal when the image of D, the set of density matrices,
fills out D maximally, in a certain sense. For the graphical presentation of a map we transform it to a standard
form where it is unital and trace preserving. We present an iterative algorithm for the transformation, which
converges rapidly in all our numerical examples and presumably works for any positive map. This standard form
of an entanglement witness is unique up to unitary product transformations.
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I. INTRODUCTION

The phenomenon of quantum entanglement [1,2] is central
to the development and understanding of quantum information
theory and computation [3]. For a general bipartite mixed
quantum state it is not known how to determine in an
efficient way whether the state is entangled or separable. An
experimental setup usually involvesmixed quantum states, and
the need to control, manipulate, and quantify entanglement
in such states is therefore of fundamental importance. The
characterization of entangled states of a quantum system
composed of two subsystems thus remains one of the key
unsolved problems in the theory of quantum information. We
will consider here only the finite-dimensional case.
Entanglement of a quantum state may be revealed ex-

perimentally through negative expectation values of certain
observables, called entanglement witnesses, that have positive
expectation values in all separable states [4,5]. The Choi-
Jamiołkowski isomorphism relates the entanglementwitnesses
to positive maps on matrix algebras [6,7]. In this way the study
of entanglement witnesses is closely related to the study of
positive maps. This study was pioneered by Størmer [8], who
has recently given an extensive review [9].
In order to investigate the separability problem using

positive maps we need to understand the structure of the set of
positive maps. Unfortunately, this is a problem which seems
just as difficult as the original separability problem. Since the
set of positive maps is a compact convex set, a classification of
the extremal positive maps would entail a classification of all
positive maps. This is our motivation for studying the extremal
positive maps.

Outline of this paper

The contents of the paper are organized in the following
manner. In Sec. II we review some basic theory regarding
positive maps and entanglement witnesses. We define the link
between entanglement witnesses and positive maps, known
as the Choi-Jamiołkowski isomorphism. An important class

of positive maps, the completely positive maps, is defined.
These maps are quantum operations since they map quantum
states into quantum states. The important distinction between
decomposable and nondecomposable maps is made, and the
relation to the Peres separability criterion [10] is shown.
Furthermore, the unital and trace-preserving properties of
positive maps are defined, and the relation between these
two properties is established. These two concepts are further
discussed in Sec. III. Finally, the expectation values of
entanglement witnesses in pure product states are introduced.
These are positive semidefinite biquadratic forms, the zeros of
which play an important role. The importance of the zeros for
the understanding of the extremal entanglement witnesses and
the corresponding extremal positive maps is outlined.
In Sec. III we argue that any entanglement witness may be

transformed into a unital and trace-preserving form through
a product transformation. We use the fact that a map is trace
preserving if and only if the transposed map is unital to define
conditions on this product transformation. We then suggest
an iteration scheme to solve the resulting equations, and we
define and investigate the conditions under which this iteration
scheme will converge.
Finally, in Sec. IV we use the unital and trace-preserving

form of a generic extremal entanglement witness in the 3×3
system that we have produced numerically [11] to create
various plots showing how the corresponding positive map
acts. We present similar plots illustrating the action of the
Choi-Lam extremal positive map. We also discuss briefly an
example of extremal witnesses in dimension 2× 4.

II. PRELIMINARY THEORY

In this section we introduce our notation and review
some mathematical background. We write Hk for the set of
Hermitian k × k matrices, which is a real Hilbert space with
the natural scalar product

〈X,Y 〉 = Tr (XY ) . (1)

1050-2947/2015/92(4)/042306(15) 042306-1 ©2015 American Physical Society
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The mathematical description of a finite-dimensional com-
posite quantum system involves the complex tensor product
CN = Cm ⊗ Cn and the real tensor product HN = Hm ⊗ Hn

with N = mn. We write the components of ψ ∈ CN as
ψI = ψij , where

I = 1,2, . . . ,N ↔ ij = 11,12, . . . ,1n,21, . . . ,mn . (2)

The matrix elements of an N × N matrix A are AIK = Aij ;kl ,
with I ↔ ij and K ↔ kl. A product vector ψ = φ ⊗ χ has
componentsψij = φiχj , and a product matrixA = B ⊗ C has
components Aij ;kl = BikCjl . We define the partial transpose
AP as the transpose with respect to the second factor in the
tensor product,

(AP )ij ;kl = Ail;kj . (3)

We use density matrices, positive matrices of unit trace, to
represent physical states of the most general kind, so-called
mixed states. The set of all N × N density matrices we call
DN , orD if we need not specify the dimension. It is a compact
convex set of dimension N2 − 1, completely determined by
its extremal points, which are the pure states ρ = ψψ† with
ψ ∈ CN .
It is a remarkable fact that the partial transpose ρP of a

density matrix ρ need not be positive definite. A density matrix
with a positive partial transpose is called a PPT state; thus we
define the set of PPT states as P = D ∩ DP .

A. The geometry of density matrices

A density matrix ρ ∈ DN lies on the boundary ∂DN if it has
rank k < N . Then it lies in the interior of a face Dk(U ), which
is the set of density matrices on a k-dimensional subspace
U ⊂ CN . Every face of DN is of the type Dk(U ). Thus ∂DN

consists of faces arranged in the same hierarchical structure as
the lattice of subspaces of CN .
A 2× 2 density matrix has the form

ρ = 1

2

(
1+ z x − iy

x + iy 1− z

)
, (4)

with x,y,z being real and x2 + y2 + z2 � 1. Thus D2 is a
three-dimensional sphere, the Bloch sphere. The boundary
states, with x2 + y2 + z2 = 1, are the pure states.
The set D3 of 3× 3 density matrices has dimension eight.

Its boundary ∂D3 consists of a seven-dimensional set of rank-
two matrices and a four-dimensional set of rank-one matrices,
the pure states. Every rank-two state in D3 lies in the interior
of a Bloch sphere D2(U ).

B. Entanglement and entanglement witnesses

A density matrix ρ ∈ DN is separable if it is of the form

ρ =
∑

a

pa σa ⊗ τa, (5)

where σa ∈ Dm, τa ∈ Dn, and pa > 0,
∑

a pa = 1. Its partial
transpose is then positive. This fact, thatS ⊂ P , whereS is the
set of separable states, provides an easy test for separability,
known as the Peres criterion [10].A densitymatrix is entangled
if it is not separable. The separability problem, how to decide
whether a given density matrix is separable or entangled, is

difficult because it is difficult to recognize the entangled PPT
states.
We define the dual set

S◦ = {A ∈ HN |Tr(Aρ) � 0 ∀ ρ ∈ S }. (6)

The dual of S◦ is S; thus ρ is separable if and only if Tr(Aρ) �
0 for every A ∈ S◦. For this reason we call a matrix A ∈ S◦
an entanglement witness. Note that we do not impose here the
usual condition on an entanglement witness A that it should
have at least one negative eigenvalue, so that Tr(Aρ) < 0 for
some ρ ∈ DN .
The convex set S is completely determined by its extremal

points, which are the pure product states ρ = ψψ† = (φφ†)⊗
(χχ †), with ψ = φ ⊗ χ and φ†φ = χ †χ = 1, for which

Tr(Aρ) = ψ†Aψ = (φ ⊗ χ )†A(φ ⊗ χ )

=
∑
i,j,k,l

φ∗
i χ

∗
j Aij ;klφkχl. (7)

Thus A ∈ S◦ if and only if the biquadratic form

fA(φ,χ ) = (φ ⊗ χ )†A(φ ⊗ χ ) (8)

is nonnegative definite. Since

(φ ⊗ χ )†AP (φ ⊗ χ ) = (φ ⊗ χ∗)†A(φ ⊗ χ∗), (9)

we see that AP ∈ S◦ if and only if A ∈ S◦.

C. Maps

A map, in the terminology used here, is a linear transfor-
mationM : Hm 
→ Hn such that Y = MX when

Yjl =
∑
i,k

Mjl;ikXik. (10)

The complex matrix elements Mjl;ik defining the map satisfy
the relations Mjl;ik = (Mlj ;ki)∗, so that the map preserves
Hermiticity. The relation

Aij ;kl = Mjl;ki (11)

defines a one-to-one correspondence between a Hermitian
matrix A ∈ HN and a map M = MA. As we define the
correspondence here, it differs slightly from the well-known
Choi-Jamiołkowski isomorphism, which associates the matrix
A with the map X 
→ MA(XT ) .
It is useful to introducematricesEa ∈ Hm andFb ∈ Hn that

are basis vectors in the two Hilbert spaces. Then the mapM is
given by real matrix elementsMba such that

MEa =
∑

b

MbaFb. (12)

We will choose the basis vectors to be orthonormal; then the
matrix elements are

Mba = 〈Fb,MEa〉. (13)

Furthermore, we will choose the unit matrices as basis vectors,
E0 = Im/

√
m, F0 = In/

√
n. Then the matrices Ea for a =

1,2, . . . ,m2 − 1 and Fb for b = 1,2, . . . ,n2 − 1 are traceless.
The transposed map N = MT : Hn 
→ Hm may be defined

in a basis-independent way by the condition that

〈MT Y,X〉 = 〈Y,MX〉 for all X ∈ Hm, Y ∈ Hn. (14)

042306-2
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It has matrix elements Nab = Mba , or Nik;j l = Mlj ;ki =
(Mjl;ik)∗. Thus transposition of the map M corresponds to
transposition of the realmatrixMab andHermitian conjugation
of the complex matrixMjl;ik .
As defined here, maps MA and M T

A act on X ∈ Hm and
Y ∈ Hn as follows:

MAX = Tr1[A(X ⊗ In)], M T
A Y = Tr2[A(Im ⊗ Y )], (15)

where Tr1 and Tr2 denote the partial traces. The matrix Amay
be expanded in terms of the basis vectors Ea ⊗ Fb ∈ HN as

A =
∑
a,b

Mba Ea ⊗ Fb. (16)

D. Entanglement witnesses and positive maps

By definition, a positive map M : Hm 
→ Hn transforms
positive matrices into positive matrices; that is, if ρ � 0, then
Mρ � 0.
In terms of the mapMA the biquadratic form introduced in

Eq. (8) may be written as

fA(φ,χ ) = χ † MA(φφ†)χ = φ† M T
A (χχ †)φ. (17)

The condition that fA(φ,χ ) � 0 for allφ ∈ Cm,χ ∈ Cnmeans
thatMA(φφ†) is a positive matrix for every φ ∈ Cm. Since the
pure statesφφ† are all the extremal points ofDm, this is another
way of saying thatMA is a positive map.
We conclude that A is an entanglement witness if and only

if MA is a positive map. An equivalent condition is that M T
A

is a positive map. This correspondence between entanglement
witnesses and positive maps places the positive maps in a
central position in the theory of quantum entanglement.

E. Completely positive maps

An obvious condition on a physical map M : Hm 
→ Hn ,
transforming physical states into physical states, is that it
should be positive. A less obvious condition is that it should
be completely positive, so that every map of the form I ⊗ M :
Hk ⊗ Hm 
→ Hk ⊗ Hn is positive, where I : Hk 
→ Hk is the
identity map.
The most general form of a completely positive map is

MAX =
∑

a

VaXV †
a , (18)

with n × mmatrices Va . This form gives the following matrix
elements of A:

Aij ;kl = (AP )il;kj =
∑

a

(Va)jk(Va)
∗
li . (19)

We see that themapMA is completely positive if and only ifAP

is positive. It is well known that AP may be positive without
A being positive because the transposition map TX = XT on
Hn is positive but not completely positive.
A separable state ρ, as defined in Eq. (5), remains positive

under the application of positive maps to its local parts; thus

(M ⊗ N)ρ =
∑

a

pa (Mσa)⊗ (Nτa) (20)

is a positive matrix when M : Hm 
→ Hk and N : Hn 
→ Hl

are positive maps. In this way positive maps give necessary
conditions for separability.
Positive maps can also give sufficient conditions for sepa-

rability [4]. This follows from the correspondence described
above between entanglement witnesses and positive maps. For
ρ ∈ HN = Hmn let us define σ ∈ Hm2 as

σ = (
T ⊗ M T

A

)
ρ, (21)

whereA is an entanglement witness andMA is the correspond-
ing positive map. In index notation we have that

σka;ib =
∑
j,l

Aal;bj ρij ;kl . (22)

Clearly, σ is positive if ρ is separable. Conversely, if σ is
positive for every entanglement witness A, we have that

Tr(Aρ) =
∑
i,j,k,l

Akl;ij ρij ;kl =
∑

k,a,i,b

δkaσka;ibδib � 0 (23)

for every A, implying that ρ is separable.
Note that this proof of sufficiency does not use the full

condition that σ should be positive; it uses only the condition
that σ should have a nonnegative expectation value in the
maximally entangled pure state (Bell state) δik ∈ Cm2

. If we
use the full positivity condition, one single positivemap can, in
principle, reveal the entanglement of many different states for
which we would need many different entanglement witnesses.
The PPT condition associated with the transposition map is a
striking example; it is equivalent to all the conditions provided
by a much larger set of entanglement witnesses.
The basic reason for the efficiency of maps in revealing

entanglement is nonlinearity: the separability condition that a
productM ⊗ N of positive maps should map ρ into a positive
matrix is highly nonlinear in ρ. An entanglement witness A,
on the other hand, gives an inequality Tr(Aρ) � 0 linear in ρ.

F. Decomposable maps

A positive map M : Hm 
→ Hn is said to be decomposable
if it can be written as

M = M1 + M2Tm, (24)

where M1 and M2 are completely positive and Tm is the
transposition on Hm [8,12].
Since MATm = MAP , it follows that MA is decomposable

if and only if A = B + C, where B and CP are both positive
matrices. This decomposition ofA implies for every PPT state
ρ that

Tr(Aρ) = Tr(Bρ)+ Tr(Cρ) = Tr(Bρ)+ Tr(CPρP ) � 0.

(25)

In particular, A is an entanglement witness, and we call it
a decomposable witness. It is not very useful as a witness,
however, since it cannot reveal the entanglement of an
entangled PPT state.
It was shown by Woronowicz that all positive maps M :

Hm 
→ Hn withN = mn � 6 are decomposable [13]. In these
dimensions entangled PPT states therefore do not exist, and the
Peres criterion is both necessary and sufficient for separability.
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By virtue of the Peres criterion, the development of practically
useful separability criteria in dimensions N � 8 is a problem
closely related to the understanding of the nondecomposable
positive maps.

G. Unital and trace-preserving maps

A mapM : Hm 
→ Hn is unital if it maps the identity Im ∈
Hm to the identity In ∈ Hn, that is, if∑

i,k

Mjl;ik δik =
∑

i

Mjl;ii = δjl . (26)

It is trace preserving if Tr(MX) = TrX for all X ∈ Hm, that
is, if ∑

j,i,k

Mjj ;ikXik =
∑

i

Xii , (27)

which means that ∑
j

Mjj ;ik = δik. (28)

Thus the mapM is trace preserving if and only ifMT is unital.
A physical map should conserve probability, which means that
it should be trace preserving.
In terms of the corresponding matrixA ∈ HN the condition

forMA to be unital is that

MAIm = Tr1A = In, (29)

and the condition forMA to be trace preserving is that

M T
A In = Tr2A = Im. (30)

Equation (29) implies that TrA = Tr In = n, whereas Eq. (30)
implies that TrA = Tr Im = m. Thus the map may be both
unital and trace preserving only ifm = n. Ifm �= n, the proper
condition is rather that

MAE0 = F0, M T
A F0 = E0, (31)

where E0 = Im/
√

m and F0 = In/
√

n . Since we regard
normalization constants as unimportant, we will abuse the
language and call the map unital and trace preserving if
Eq. (31) holds, even when m �= n.
In terms of the matrix elements Mba = 〈Fb,MAEa〉 the

condition for unitality is thatMb0 = δb0, and the condition for
trace preservation is that M0a = δ0a . This means that a unital
and trace-preserving mapMA is generated by an entanglement
witness of the form

A = IN√
N

+
m2−1∑
a=1

n2−1∑
b=1

Mba Ea ⊗ Fb. (32)

H. Zeros of entanglement witnesses

Since the conditions defining A ∈ HN as an entanglement
witness are the infinite set of inequalities

fA(φ,χ ) � 0 for all φ ∈ Cm, χ ∈ Cn, (33)

it is clear thatA is a boundary point of S◦ if and only if at least
one of these inequalities is an equality.We call the pure product

state ψ0ψ
†
0 , with ψ0 = φ0 ⊗ χ0 and φ

†
0φ0 = χ

†
0χ0 = 1, a zero

of A if

fA(φ0,χ0) = 0. (34)

Since a zero is a minimum of the nonnegative function fA, it
follows that the first derivative in every direction at the zero
must also vanish. These conditions amount to a set of equalities

(φ0 ⊗ χ0)
†A(φ ⊗ χ0) = (φ0 ⊗ χ0)

†A(φ0 ⊗ χ ) = 0 for all

φ ∈ Cm, χ ∈ Cn. (35)

These equations may be regarded as linear constraints on
the matrix A. It should be remembered that each equation
is complex and is equivalent to two real equations, except that
Eq. (34) is real. A careful counting shows that one zero implies
2(m + n)− 3 real-valued constraints on A.
If the second derivative in every direction is strictly positive,

then the zero (φ0,χ0) is a quadratic minimum, and there are no
more constraints on A from this zero. If the second derivative
in some direction vanishes, then the third derivative in this
direction must also vanish, and the zero is a quartic minimum.
This imposes further constraints on A, which we do not detail
here.
The distinction between quadratic and quartic zeros is

important. Obviously, the quadratic zeros are isolated points.
A quartic zero may be an isolated point, but it may also belong
to a continuous set of zeros.
An entanglement witness A is extremal if and only if it has

somany zeros that all the constraints from all the zeros together
determine A uniquely up to a proportionality constant.

I. Extremal positive maps

An extremal entanglement witnessA is understood in terms
of its zeros. It corresponds to an extremal positive map MA,
and we have to understand what the zeros of the witness imply
for the corresponding map.
Let (φ0,χ0) be an isolated zero of A, and define Y =

MA(φ0φ
†
0) , X = M T

A (χ0χ
†
0 ) . We use the identities

χ
†
0Yχ0 = φ

†
0Xφ0 = (φ0 ⊗ χ0)

†A (φ0 ⊗ χ0) = 0. (36)

Since Y and X are both positive matrices, it follows that

Yχ0 = 0, Xφ0 = 0. (37)

We also know that Y and X have no other zero vectors;
otherwise, the zero vectorswould span subspaces of dimension
two or higher, and the zero (φ0,χ0) would not be isolated.
Hence Y has rank n − 1 and X has rank m − 1.
To summarize, when A is an extremal entanglement

witness, the corresponding maps MA and M T
A are extremal

positivemaps. An isolated zero (φ0,χ0) ofA defines a rank-one
state φ0φ

†
0 ∈ Dm mapped by MA to a rank-(n − 1) state in

Dn and a rank-one state χ0χ
†
0 ∈ Dn mapped by M T

A to a
rank-(m − 1) state in Dm.
Thus the zero of A defines a point on the boundary of Dm

which is mapped to a point on the boundary of Dn and a point
on the boundary ofDn which is mapped by the transposed map
to a point on the boundary ofDm. We understand that the map
MA is extremal precisely because the imageMADm insideDn

touches the boundary of Dn in as many points as possible.
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J. Rank-one-preserving maps

The identity map I : X 
→ X and the transposition map
T : X 
→ XT = X∗ are two examples of extremal positive
maps. They have the special property that they are rank
one preservers, mapping pure states to pure states. They are
extremal precisely because they map the boundary of D onto
itself. They both preserve volume. In fact, the eigenvalues of
T are ±1 because T is its own inverse, T2 = I.
More generally, let U be a unitary matrix and define U :

X 
→ UXU †. Then U and UT are both rank one preservers,
and they are extremal because they map the boundary of D
onto itself. They also preserve volumes.
These maps and the corresponding entanglement witnesses

are fundamentally different from the generic extremal wit-
nesses we find numerically, which have only quadratic zeros,
so that the corresponding maps map only a finite number of
points from the boundary of D to the boundary and map all
other boundary points to the interior. An extremal map of this
generic kind is contractive; it reduces volumes since it maps
D to a subset of itself.

III. TRANSFORMING POSITIVE MAPS TO UNITAL AND
TRACE-PRESERVING FORM

We argue now that every positive map M = MA, where A

is an entanglement witness, may be transformed into a unital
and trace-preserving form through a product transformation of
the form [9]

A 
→ Ã = (U ⊗ V )A(U ⊗ V )†, (38)

where U ∈ GL(m,C) and V ∈ GL(n,C). Furthermore, we
present here an efficient iteration procedure for doing the
transformation numerically.
A product transformation of this kind preserves all the

essential characteristics of A. For instance, if A is extremal
in S◦ and nondecomposable, then so is Ã, and a zero φ ⊗ χ

of A corresponds to a zero φ̃ ⊗ χ̃ of Ã, where

φ̃ = (U †)
−1

φ, χ̃ = (V †)
−1

χ. (39)

As we saw in Sec. II G the result to be proved is that every
entanglement witnessAmay be transformed to a form as given
in Eq. (32). In [14] it was proved that every strictly positive
density matrix may be transformed to such a form. But the
theorem is actually valid more generally than it is stated there
since the proof is valid for every entanglement witness having
no zeros, in other words, every witness lying in the interior
of S◦. Here we want to apply this type of transformation to
extremal witnesses, which lie on the boundary ∂S◦ and have a
maximal number of zeros. What could, in principle, go wrong
in the limit when the boundary is approached from the inside
of S◦ is that the transformation could become singular, but we
find in practice that no such problems arise.
In terms of the transformed map M̃ = MÃ the conditions to

be fulfilled are that M̃Im = In and M̃T In = Im.Wewill assume
here that m = n; otherwise, the proper conditions would be
that M̃(Im/

√
m) = In/

√
n and M̃T (In/

√
n) = Im/

√
m.

In index notation Eq. (38) reads as follows:

Ãij ;kl =
∑

a,b,c,d

UiaVjb Aab;cd U ∗
kcV

∗
ld . (40)

According to Eq. (15), the transformation Y = M̃X then reads
as follows:

Yjl =
∑
i,k

Ãij ;kl Xki =
∑

i,k,a,b,c,d

Vjb(Aab;cd (U
∗
kc Xki Uia))V ∗

ld ,

(41)
or in the index-free notation,

Y = M̃X = V (M(U †XU ))V †. (42)

Similarly, the transformation X = M̃
T
Y reads

Xik =
∑
j,l

Ãij ;klYlj =
∑

j,l,a,b,c,d

Uia(Aab;cd (V
∗
ldYljVjb))U ∗

kc,

(43)
or

X = M̃
T
Y = U (MT (V †YV ))U †. (44)

The conditions for M̃ to be unital and trace preserving are that

M̃Im = V (M(U †U ))V † = In,
(45)

M̃
T
In = U (MT(V †V ))U † = Im.

Thus the problem to be solved is to find U and V such that

M(U †U ) = (V †V )−1, MT(V †V ) = (U †U )−1. (46)

Solution by iteration

This problem can be solved in two steps. First, we find
positive Hermitian matrices X = U †U and Y = V †V solving
the equations

MX = Y−1, MT Y = X−1. (47)

Then we solve the equations

U †U = X, V †V = Y (48)

for U and V . The general solutions are

U = U1U2, V = V1V2, (49)

where U1 and V1 are arbitrary unitary matrices and U2 = √
X,

V2 = √
Y are the uniquely defined positive Hermitian square

roots, which we compute, for example, by diagonalizing X

and Y and taking the square roots of the eigenvalues.
Equation (47) makes sense because the matricesX = U †U

and Y = V †V are strictly positive as long as U and V are
nonsingular, and the mapsM andMT , as well as the inversions
X 
→ X−1 and Y 
→ Y−1, transform strictly positive matrices
into strictly positive matrices.
The method suggesting itself for solving Eq. (47) is simply

to iterate the equations. Given an approximate solution Xk for
X, we try to compute a better approximation Xk+1 by a series
of four transformations,

Xk 
→ Sk = MXk 
→ Yk = S−1
k 
→ Tk

= MT Yk 
→ Xk+1 = T −1
k . (50)

We start the iterations, for example, with X0 = I .
A sufficient condition for the convergence ofXk to a unique

limit X is that each transformation Xk 
→ Xk+1 is contractive
(except in the direction along X). A small perturbation �Xk
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of Xk transforms linearly as

�Xk+1 = D(�Xk), (51)

where the linear map D is the derivative of the nonlinear
transformationXk 
→ Xk+1. The transformation is contractive
if all eigenvalues of D (except the special eigenvalue which
must be close to 1) are smaller than 1 in absolute value. Now
D is a composition of four linear maps,

D = D4MT D2M, (52)

where D2 and D4 are linearizations of the matrix inversions,

D2(�Sk) = −S−1
k (�Sk)S

−1
k ,

D4(�Tk) = −T −1
k (�Tk)T

−1
k . (53)

The examples of extremal positive maps M and MT that
we have studied numerically are strongly contractive, and
we find in practice that this is enough to ensure that D is
contractive, with eigenvalues typically no larger than about
0.5, even though D2 and D4 are not contractive.
We have used this iteration scheme on a large number of

numerically produced extremal entanglement witnesses [11]
and also onmany nonextremalwitnesses constructed as convex
combinations of the extremal ones. Numerically, our attempts,
which are in the thousands, always converge, and it also
appears that for a given witness A the solution X is unique,
independent of the initial guess X0.

IV. VISUALIZATION OF POSITIVE MAPS

We now specialize to the case m = n = 3,N = mn = 9.
The setD = D3 of normalized density matrices has dimension
32 − 1 = 8. When m = n, a linear positive map from Hm to
Hn may be transformed to a form in which it is unital and trace
preserving.
Given a unital and trace-preserving positive map, M :

H3 
→ H3. It maps D into D and the maximally mixed state
I/3 to itself. We plot two-dimensional planar sections in order
to illustrate how the image MD lies inside D.
We present such plots here for two different examples

of extremal positive maps. The first example corresponds
to a randomly chosen generic extremal witness found in
a numerical search. Such witnesses have only quadratic
zeros. The second example is the Choi-Lam map, which is
qualitatively different since the correspondingwitness has only
quartic zeros.

A. Two-dimensional sections through the set of density matrices

In most of our plots we use three density matrices,
ρ0,ρ1,ρ2 ∈ D, to define a plane Z ⊂ H3. We use ρ0 as the
origin in the plane and define coordinate axes

B = a(ρ1 − ρ0), C = b(ρ2 − ρ0)+ c(ρ1 − ρ0), (54)

with real constants a,b,c chosen in some way to be specified
later on. We will always choose a > 0 and b > 0. A matrix
X ∈ Z is then specified by a coordinate pair (x,y) as

X = ρ0 + xB + yC. (55)

Note that TrB = TrC = 0 because Tr ρi = 1 for i = 0,1,2;
hence TrX = Tr ρ0 = 1.

−0.8 −0.4 0 0.4 0.8
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−0.4
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0.4

0.8
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∂D
ρ

ρ0

r

FIG. 1. A two-dimensional section through D, the set of density
matrices. The curve represents the boundary ∂D, which consists of
the states of less than full rank. For a given angle θ the distance r is
calculated numerically. The state ρ0 = I/3 is the origin, and the state
ρ on the boundary has rank two.

1. Six types of sections

Figure 1 is an example of a section through the set of density
matrices, where we have chosen the maximally mixed state as
the origin, that is, ρ0 = I/3. The density matrices ρ1 and ρ2
helping to define the section are here chosen at random. By
Eq. (54) the x axis goes in the direction from ρ0 to ρ1. For this
plot we have chosen the constants a,b,c in Eq. (54) such that
B and C are orthogonal unit vectors in H3, that is,

Tr(B2) = Tr(C2) = 1, Tr(BC) = 0. (56)

This means that distances in our plot faithfully represent
distances in H3 as defined by the Hilbert-Schmidt metric. To
locate numerically the boundary ∂D we write x = r cos θ ,
y = r sin θ , and with θ fixed, we determine the largest value
of r such that the matrix X = ρ0 + xB + yC has no negative
eigenvalues. The boundary is here a smooth curve consisting
entirely of rank-two states.
Figure 2 shows six types of sections ofD. In sections A, B,

C, and F the origin ρ0 is the maximally mixed state I/3;
it is marked by a cross. In sections D and E the cross is
the orthogonal projection of the maximally mixed state. All
sections, except section E, cut through the interior of D, so
that the interior points in the sections are states of the full rank
three.
Section A is of the same type as Fig. 1; here ρ1 and ρ2 are

chosen as random states of rank two, and the boundary is a
smooth curve of rank-two states.
In section B we choose ρ1 to be a pure state, while ρ2 is

a random state of full rank. The pure state is seen in the plot
as the single point on the boundary curve where the tangent
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FIG. 2. Six types of two-dimensional sections through D, as explained in the text.

direction is discontinuous. All other boundary points are states
of rank two.
In section C both ρ1 and ρ2 are pure states; they are joined

in the plot by a straight line of rank-two states. The curved part
of the boundary also consists of rank-two states.
Section D is a simplex in which the three corners are pure

statesρk = φkφ
†
k for k = 1,2,3 defined by linearly independent

vectors φk ∈ C3. The straight lines joining the pure states
consist of rank-two states. The origin is chosen as an even
mix of the three pure states.
Section E is a two-dimensional section through a three-

dimensional Bloch sphere contained in the boundary ∂D. Like
section D, it is defined by three pure states, but in this case
the three vectors in C3 are linearly dependent. In this section
the interior points have rank two, and the boundary curve is a
circle of pure states.
In section F we choose again a pure state ρ1 = φ1φ

†
1 but a

section in which the boundary curve is smooth at this point.
The three matrices defining the section are ρ0 = I/3, ρ1, and
ρ2 = ρ1 + D, where the matrixD is chosen in such a way that
ρ1 + εD for real ε is a pure state to first order in ε, that is,

(φ1 + εξ )(φ1 + εξ )† = ρ1 + εD + O(ε2) (57)

for some ξ ∈ C3. We see that the proper choice is

D = φ1ξ
† + ξφ

†
1. (58)

It is of no importance that ρ2 �∈ D. We choose ξ to be
orthogonal to φ1 in order to have TrD = 0. The boundary
points in this section, apart from ρ1, are rank-two states.

2. Visualizing maps

The positive mapMmaps the planeZ defined by the states
ρi ∈ D with i = 0,1,2 into the plane Z̃ = MZ defined by the
states ρ̃i = Mρi ∈ D in such a way thatX as given in Eq. (55)
is mapped into

X̃ = MX = ρ̃0 + xB̃ + yC̃, (59)

with

B̃ = a(ρ̃1 − ρ̃0), C̃ = b(ρ̃2 − ρ̃0)+ c(ρ̃1 − ρ̃0). (60)

It is an important point that Tr(B̃) = Tr(C̃) = 0. This follows
because we require the mapM to be trace preserving.
The constants a,b,c are the same here as in Eq. (54).

We choose them now to have such values that B̃ and C̃ are
orthogonal unit vectors, that is,

Tr(B̃2) = Tr(C̃2) = 1, Tr(B̃C̃) = 0. (61)

The motivation for this choice is that we want our plots
of the coordinates (x,y) to represent faithfully the distances in
the image plane Z̃ of the map M. These values for a,b,c will
obviously not, as a rule, be the same values that make B and C

orthogonal unit vectors. Thus our (x,y) plot will be a distorted
representation of the plane Z . The distortion is of course due
to the mapM between the two planes.
To summarize, in one and the same plot the coordinate pair

(x,y) represents both the matrix X ∈ Z , given by Eq. (55),
and the matrix X̃ = MX ∈ Z̃ , given by Eq. (59). Note that
our definition of the axes B,C and B̃,C̃ is such that ρ̃1 always
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FIG. 3. ρ1 = φ5φ
†
5 and ρ2 = φ6φ

†
6. The origin ρ0 is themaximally

mixed state I/3.

has coordinates y = 0 and x > 0 in the plots, whereas ρ̃2 has
y > 0 but, in general, x �= 0.
We plot the boundary of D in Z̃ by a solid curve and

the boundary of D in Z by a dashed curve. We calculate
these boundaries by the method already described. That is,
we write x = r cos θ , y = r sin θ . For a fixed value of θ we
determine r1 as the largest value of r such that X has no
negative eigenvalue; this defines a point (x1,y1) on the
boundary of D in Z , or, equivalently, on the boundary of
MD in Z̃ . And we determine r2 as the largest value of r such
that X̃ has no negative eigenvalue; this defines a point (x2,y2)
on the boundary of D in Z̃ .

B. One example: A generic extremal nondecomposable
positive map

In dimensions m = n = 3, N = mn = 9, we have con-
structed numerically extremal entanglement witnesses by
random searches [11]. By definition, extremal witnesses found
in random searches are generic.
The generic extremal witnesses we find have only quadratic

zeros. Recall that an extremal witness is uniquely determined
by its zeros. Since the number of constraints on the witness
from one quadratic zero is 2(m + n)− 3 = 9 and the number
of independent constraints must be N2 − 1 = 80, at least nine
zeros are necessary to determine the witness uniquely. Most
of our generic extremal witnesses have exactly nine quadratic
zeros, giving a total of 81 constraints, of which 80 are then
independent.
The plots presented here show the action of one unital and

trace-preserving map M = MA, where A is the transformed
version, as described in Sec. III, of a randomly selected generic
extremal entanglement witness from the sample described in
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FIG. 4. ρ1 = φ5φ
†
5 and ρ2 = φ6φ

†
6. The origin ρ0 is an even mix

of the pure states ρ1, ρ2, and ρ3 = φ7φ
†
7. The triangle is a face of an

eight-dimensional simplex defined by the nine zeros of the witness.

[11]. The zeros of the transformedwitnessA areψi = φi ⊗ χi ,
with i = 1,2, . . . ,9.
The cross in each plot represents the orthogonal projection

of the maximally mixed state I/3 on the image plane Z̃ =
MZ . Since we use unital maps, if we choose ρ0 = I/3, then

−0.8 −0.4 0 0.4 0.8
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−0.4

0

0.4

0.8
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y

FIG. 5. ρ1 = φ1φ
†
1, ρ2 is a random pure state, and ρ0 = I/3. Here

ρ̃1 = Mρ1 has rank two and lies on the boundary ∂D, whereas ρ̃2 =
Mρ2 has full rank and lies in the interior of D. The section Z ∩ D is
of type C.
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FIG. 6. ρ1 = φ1φ
†
1, ρ2 is a random state of rank three, and ρ0 =

I/3. Again, ρ1 is mapped to ∂D, while ρ2 is mapped to the interior
of D. The section Z ∩ D is of type B.

ρ̃0 = Mρ0 = ρ0, and the cross is at the origin of the plot. The
solid curve in each plot represents the boundary ∂D in the
image plane Z̃ . The dashed curve represents the image under
M of ∂D in the plane Z .
Figure 3 shows a section with the maximally mixed state at

the origin, that is, ρ0 = ρ̃0 = I/3. We have chosen the plane
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FIG. 7. Both ρ1 and ρ2 are random states of rank three, and ρ0 =
I/3. Both sections in the plot are of type A.
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FIG. 8. Here bothρ1 andρ2 are randompure states, andρ0 = I/3.
The section Z ∩ D is of type C; it is mapped entirely to the interior
of D.

Z to go through the pure states ρ1 = φ5φ
†
5 and ρ2 = φ6φ

†
6

corresponding to arbitrarily chosen zeros 5 and 6 of the
extremal witness A. The section Z ∩ D, shown by the dashed
curve, is of type C shown in Fig. 2. The section Z̃ ∩ D, shown
by the solid curve, is of type A. The pure states ρ1 and ρ2 are
mapped to rank-two states ρ̃1 and ρ̃2 on the boundary ∂D.
In Fig. 4 a different origin is used; we have chosen ρ0 as an

even mix of the three pure states ρ1 = φ5φ
†
5, ρ2 = φ6φ

†
6, and

ρ3 = φ7φ
†
7, which correspond to zeros ofA and are mapped to

rank-two states ρ̃1, ρ̃2, and ρ̃3. We observe that the projection
of the maximally mixed state I/3 is off center. This section
Z ∩ D is of type D shown in Fig. 2, whereas the section Z̃ ∩ D
is still of type A. Figures 5–9 show various types of sections,
as explained in the figure captions.

C. A second example: The Choi-Lam map

The unital and trace-preserving map

M : X 
→ Y = 1

2

⎛⎜⎝X11 + X33 −X12 −X13

−X21 X11 + X22 −X23

−X31 −X32 X22 + X33

⎞⎟⎠
(62)

was introduced byChoi andLam in 1977 as the first example of
an extremal nondecomposable positive map [7,15]. It has been
generalized to a one-parameter family of extremal positive
maps, but it is still one of the very few known analytical
examples of such maps. It corresponds to the extremal
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FIG. 9. ρ1 = φ1φ
†
1 and ρ2 = φ2φ

†
2. The origin ρ0 is an even mix

of ρ1, ρ2, and ρ3 = ξξ †, where ξ is a linear combination of φ1 and
φ2. The section Z ∩ D is of type E; it cuts through a Bloch sphere in
∂D. Its circular shape is distorted by the map into an ellipse. The pure
states ρ1 and ρ2 are mapped to rank-two states, on ∂D, whereas all
the other pure states on the surface of the Bloch sphere are mapped to
rank-three states. The section Z̃ ∩ D is of type A; its shape is neither
circular nor elliptical.

entanglement witnessW with

WP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · −1 · · · −1
· 1 · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
−1 · · · 1 · · · −1
· · · · · 1 · · ·
· · · · · · 1 · ·
· · · · · · · · ·
−1 · · · −1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (63)

where for clarity the many zero entries are represented as dots.
The witnessW has three isolated quartic zeros,

e13 = e1 ⊗ e3, e21 = e2 ⊗ e1, e32 = e3 ⊗ e2, (64)

where e1,e2,e3 are the natural basis vectors in C3, and a
continuum of quartic zeros φ ⊗ φ, where

φ = φ(α,β) = e1 + eiα e2 + eiβ e3 (65)

and α,β ∈ R.
Equation (62) has a very simple geometrical interpretation.

In the subspace of diagonal matrices there is a rotation by
60◦ about the maximally mixed state, and in the subspace of
off-diagonal matrices there is an inversion. There is also an
overall contraction by a factor of one-half.
Figure 10 shows the special section through D containing

the diagonal matrices, including the maximally mixed state

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

ρ2

ρ3

ρ1

ρ2

ρ1

ρ3

FIG. 10. The Choi-Lam map in the plane of diagonal matrices.
ρ0 = I/3, ρ1 = e1e

†
1, and ρ2 = e2e

†
2.

ρ0 = I/3 and the three pure states,

ρ1 = e1e
†
1 =

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠, ρ2 = e2e
†
2 =

⎛⎜⎝0 0 0

0 1 0

0 0 0

⎞⎟⎠,

ρ3 = e3e
†
3 =

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠, (66)

corresponding to the three isolated zeros of the witness W .
This section is mapped into itself by the mapM = MW since

ρ̃1 = (ρ1 + ρ2)/2, ρ̃2 = (ρ2 + ρ3)/2,

ρ̃3 = (ρ3 + ρ1)/2. (67)

Figure 11 shows a section defined by the same pure states ρ1
and ρ2 as in Fig. 10, together with a random state of rank three.
This section is not mapped into itself.
The continuous set of quartic zeros of the witnessW , given

in Eq. (65), defines a two-dimensional surface of pure states

ρ(α,β) = 1
3 φ(α,β)[φ(α,β)]† = ρ0 + σ (α,β) (68)

mapped byM to the boundary ∂D. Here ρ0 = I/3, and σ (α,β)
is a completely off-diagonal matrix. We see directly from
Eq. (62) that

Mρ(α,β) = ρ0 − 1
2 σ (α,β) = 1

2 [3ρ0 − ρ(α,β)]. (69)

Thus the straight line through Mρ(α,β) and ρ0 contains the
pure state ρ(α,β) . This surface of pure states is curved, but
we may choose our plane Z in such a way that it is tangent to
the surface. Define, for example,

ξ (α) = ∂

∂α
φ(α,β) = ieiα e2. (70)
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FIG. 11. The Choi-Lam map. Another section with ρ1 = e1e
†
1

and ρ2 = e2e
†
2. The origin ρ0 is chosen here as a random state of rank

three, so the section Z ∩ D contains neither e3e†3 nor I/3.

Then the matrix

D(α,β) = ∂

∂α
ρ(α,β) = 1

3
{ξ (α)[φ(α,β)]† + φ(α,β)[ξ (α)]†}

(71)
is a tangent to the surface such that

ρ(α,β)+ εD(α,β) = ρ(α + ε,β)+ O(ε2). (72)

Figure 12 shows a section where we have chosen ρ0 = I/3
and

ρ1 = ρ(0,0) = 1
3 (e1 + e2 + e3)(e1 + e2 + e3)

† , (73)

ρ2 = ρ1 + D(0,0) = ρ1 + i

3
[e2(e1 + e3)

† − (e1 + e3)e
†
2].

(74)

It does not matter that ρ2 �∈ D. The coordinate axes as defined
in Eq. (54) are now

B = a(ρ1 − ρ0) = a

3

⎛⎝0 1 1
1 0 1
1 1 0

⎞⎠,

C = b(ρ2 − ρ1) = bD(0,0) = b

3

⎛⎝0 −i 0
i 0 i

0 −i 0

⎞⎠. (75)

According to Eq. (62), this section is mapped into itself by a
180◦ rotation and a scaling by 1/2,

B 
→ B̃ = − 1
2 B, C 
→ C̃ = − 1

2 C. (76)

Both sectionsZ ∩ D and Z̃ ∩ D shown in Fig. 12 are of type F
in our classification. The numerical factors in Eq. (75) making
B̃ and C̃ orthonormal are a = √

6 , b = 3 . Figures 13–15

−1 −0.5 0 0.5 1
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0

0.5
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y

FIG. 12. The Choi-Lam map. ρ0 = I/3, ρ1 = ρ(0,0), and ρ2 =
ρ1 + D(0,0), as defined in the text.

illustrate the Choi-Lam map by other sections, as explained in
the figure captions.

D. A third example in 2 × 4 dimensions

Our third example is based on the study of optimalwitnesses
by Lewenstein et al. [16]. As an example they describe how

−1 −0.5 0 0.5 1
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0

0.5

1

x

y

FIG. 13. The Choi-Lam map. We use here ρ0 = I/3 and two
randomly chosen pure states ρ1 = φ1φ

†
1, ρ2 = φ2φ

†
2 corresponding

to product vectors φ1 ⊗ φ∗
1 , φ2 ⊗ φ∗

2 from the continuum of quartic
zeros.
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FIG. 14. The Choi-Lam map. ρ0 = I/3, ρ1 = e1e
†
1, and ρ2 is a

random state of rank three.

to create optimal witnesses for proving the entanglement of
the PPT states in 2× 4 dimensions discovered by Horodecki
[17]. We have chosen arbitrarily the parameter value b = 0.6
and computed numerically the optimal witness as described
in [16]. It has exactly eight zeros, all quadratic. It is not
extremal but is the center of a two-dimensional circular face
of the set of normalized witnesses (normalized to have unit
trace). The boundary of this face is a circle of quartic extremal
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FIG. 15. The Choi-Lam map. ρ0 = I/3, ρ1 = e1e
†
1, and ρ2 is a

random pure state.
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FIG. 16. The two rings of zeros of the extremal witness in
dimension 2× 4 on the surface of the unit sphere. The eight zeros of
the optimal witness are marked by small circles.

witnesses, one of which defines themap described numerically
in the Appendix. Note that this map is neither unital nor trace
preserving.
This extremal witness has two separate continuous rings

of zeros, which are all necessarily quartic since they are not
discrete. To a zero φ ⊗ χ with φ†φ = χ †χ = 1 corresponds a
density matrix

φφ† = 1

2

(
1+ z x − iy

x + iy 1− z

)
(77)

with x2 + y2 + z2 = 1. This rank-one density matrix in D2
is mapped to a rank-three density matrix in D4 with χ being
an eigenvector of eigenvalue zero. Thus the image of the two
rings on the boundary ofD2 is where the image ofD2 touches
the inside of the boundary of D4.
The coordinates x,y,z defining a zero are given by one

parameter θ as follows. Let

a = 0.1807362587783353, b = 0.047422228589395,

θ0 = 1.121090508802759, (78)

s = a cos(2θ + θ0)

cos(θ − θ0)
, t = −bs ± √

1+ s2 − b2

1+ s2
, (79)

x = t cos θ, y = t sin θ, z = −b − ts. (80)

Note that t → 0 and ts → −b ± 1 as s → ±∞.
All the extremal quartic witnesses forming the circular

boundary of the face have similar sets of zeros; it is only the
parameter θ0 that varies aswe go around the boundary.Any two
of them have exactly eight zeros in common, corresponding
to the special values θ = 0 and θ = ±π/3, where x,y,z are
independent of θ0, and to θ = θ0 + π/2, where x = y = 0,
z = ±1. Every witness in the interior of the face has exactly
these eight zeros.
Figures 16 to 18 show the zeros of the witness defining the

map given in the Appendix. Figures 19 to 21 show the same
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FIG. 17. The xy projection of Fig. 16. Two of the eight special
zeros are at the origin x = y = 0; the six others are at angles nπ/3
from the x axis with n = 0,1,2,3,4,5.

zeros and in addition the zeros of two other extremal witnesses
on the boundary of the same face. The zeros of different such
extremal witnesses are found simply by changing the value
of θ0.

V. SUMMARY AND CONCLUSIONS

The purpose of the work presented here has been to gain
a more intuitive understanding of the geometry of positive
maps, which are related to entanglement witnesses in bipartite
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FIG. 18. The yz projection of Fig. 16.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

xy
z

FIG. 19. The same as Fig. 16, but including the zeros of two other
extremal witnesses with different values of θ0.

quantum systems. We try to visualize the action of an extremal
positive map by plotting various two-dimensional sections
through the set of density matrices.
For this purpose it is useful to transform the map to

some standard form. We argue that any positive map can be
transformed into a unital and trace-preserving form through
a product transformation of the corresponding entanglement
witness. If the witness lies in the interior of S◦, which
means that it has no zeros, this follows from the proof of a
similar result given in [14]. We present an iteration scheme
for computing the transformation numerically, and we find
in practice in 3× 3 dimensions that it works well even for
extremal witnesses and other witnesses lying on the boundary
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FIG. 20. The xy projection of Fig. 19.
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FIG. 21. The yz projection of Fig. 19.

of S◦. We find numerically that the unital and trace-preserving
form of a positive map is unique up to unitary product
transformations.
We present plots related to two different extremal entan-

glement witnesses in 3× 3 dimensions and one in 2× 4
dimensions. The first example is a randomly chosen generic
extremal entanglement witness with quadratic zeros found in
previous numerical searches. We produce the corresponding
positive map M : H3 → H3 and then plot two-dimensional
sections in order to illustrate how the image MD3 lies inside
D3.
We then repeat this scheme for a version of the Choi-Lam

map, or entanglement witness, which is extremal but highly
nongeneric, having only quartic zeros. It has three isolated
quartic zeros and one continuous two-dimensional set of zeros
which are necessarily quartic.
The most important feature of the plots is related to the

zeros of the two witnesses. A zero defines a pure state in D3
which is mapped to the boundary ofD3. In particular, a generic
extremal witness in 3× 3 dimensions, like the one presented
here, has nine zeros, defining a simplex inD3 with nine vertices
which ismapped to a simplex inD3 with nine vertices touching
the boundary of D3 from the inside.
We should emphasize that we have studied here only 3× 3

and 2× 4 dimensions, which are the simplest nontrivial cases.

In higher dimensions the symmetric dimensions m × n with
m = n > 3 are clearly the most interesting. The complexity
increases much with the dimension because the simplex of
pure states in D3 corresponding to the quadratic zeros of the
extremal witness considered here becomes a polytope with a
number of vertices larger than m2 when m > 3. For example,
withm = n = 4, the minimum number of zeros of a quadratic
extremal witness is 20, compared to the dimension of D4,
which is 15. With m = n = 5 the minimum number of zeros
is 37, compared to the dimension of D5, which is 24 [11].
We believe that the geometrical way of thinking illustrated

here may be a fruitful approach when one wants to construct
examples of extremal maps and entanglement witnesses.
It may be that the increase in complexity with increasing
dimension, which is a well-known phenomenon, is easier to
handle geometrically than by other methods.
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APPENDIX: AN EXTREMAL POSITIVE MAP
FROM H2 TO H4

We introduce the following 4× 4 matrices:

B0 + B3 =

⎛⎜⎜⎜⎝
a1 −ia3 ia4 a1

ia3 a2 0 ia3

−ia4 0 a2 −ia4

a1 −ia3 ia4 a1

⎞⎟⎟⎟⎠, (A1)

with

a1 = 0.0244482760740412, a2 = 0.2152770862261020,

a3 = 0.0114377547217477, a4 = 0.0500075452822933.

(A2)

B0 − B3 =

⎛⎜⎜⎜⎝
a5 ia7 ia8 −a5

−ia7 a6 0 ia7

−ia8 0 a6 ia8

−a5 −ia7 −ia8 a5

⎞⎟⎟⎟⎠, (A3)

with

a5 = 0.0644909685779951, a6 = 0.1957836691218616,

a7 = 0.0774551312933996, a8 = 0.0177155824920755. (A4)

B1 =

⎛⎜⎜⎜⎝
0 −a9 − ia10 a11 − ia12 −ia13

−a9 + ia10 0 −a14 − ia15 a11 + ia16

a11 + ia12 −a14 + ia15 0 −a9 − ia17

ia13 a11 − ia16 −a9 + ia17 0

⎞⎟⎟⎟⎠, (A5)
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with

a9 = 0.0363521121932822, a10 = 0.0276760626964089, a11 = 0.0094553411157518,

a12 = 0.0293657267910500, a13 = 0.0130745578191192, a14 = 0.1714859526438769, (A6)

a15 = 0.0675990471881839, a16 = 0.0121590711417975, a17 = 0.0384768416753617.

B2 =

⎛⎜⎜⎜⎝
0 −a11 − ia12 −a9 + ia10 ia18

−a11 + ia12 −a14 ia19 a9 − ia17

−a9 − ia10 −ia19 a14 a11 − ia16

−ia18 −a9 + ia17 a11 + ia16 0

⎞⎟⎟⎟⎠, (A7)

with

a18 = 0.0082070224528484, a19 = 0.0424325553291989. (A8)

The 2× 2 matrix

A = 1

2

(
u + z x − iy

x + iy u − z

)
(A9)

is positive when u > 0 and u2 � x2 + y2 + z2. In Sec. IVD we discuss the following extremal positive map, which we do not
transform to unital and trace-preserving form:

M : A 
→ B = uB0 + xB1 + yB2 + zB3. (A10)
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Abstract. It is known that in 3 × 3 dimensions, entangled mixed states that are positive under partial
transposition (PPT states) must have at least rank four. The classification of these rank four states is
believed to be complete, and the next unsolved problem is to understand the extremal PPT states of rank
five in 3 × 3 dimensions. We call two states SL-equivalent (more precisely SL × SL-equivalent) if they are
related by a product transformation. A generic rank five PPT state ρ and its partial transpose ρP both
have six product vectors in their ranges, and no product vectors in their kernels. Then the three numbers
{6, 6; 0} are SL-invariants that help us classify the state. We have found no analytical method for constructing
generic rank five extremal PPT states, but we have studied numerically a few types of nongeneric states, in
particular states with one or more product vectors in the kernels, both extremal and nonextremal. We call
a state ρ SL-symmetric if ρ and its partial transpose ρP are SL-equivalent, and genuinely SL-symmetric if it
is SL-equivalent to a state τ with τ = τP. Genuine SL-symmetry implies SL-symmetry. We have produced a
random sample of rank five SL-symmetric states of type {6, 6; 0}, in which all are extremal and about half
are genuinely SL-symmetric. We find an interesting new analytical construction of all rank four extremal
PPT states, up to SL-equivalence, where they appear as boundary states on one single five dimensional
face on the set of normalized PPT states. The interior of the face consists of rank five states, a simplex of
separable states surrounded by entangled PPT states. All these states are real matrices, symmetric under
partial transposition.

1. Introduction

Entanglement between subsystems of a compos-
ite quantum system is a phenomenon which has no
counterpart in classical physics. Entangled quantum
states show correlations in measurements which can-
not be completely modelled within any local theory,
including classical physics. A classical local descrip-
tion of such systems implies several types of so called
Bell inequalities [1], which experimentally are shown
to be violated [2]. So it is clear that entangled quan-
tum states exhibit a nonlocality that excludes any
local theory, though deterministic theories that in-
cludes quantum mechanics is still a possibility, but
they must be nonlocal.

Pure product states are the only pure quantum
states that are not entangled, and they resemble pure
classical states in that they have no nonlocal correla-
tions at all. By definition, a mixed quantum state is
a statistical ensemble of pure quantum states, and it
is represented mathematically by a density matrix.

One single density matrix may represent many dif-
ferent ensembles. A basic postulate is that there is no

way to distinguish experimentally between different
ensembles represented by the same density matrix.

A mixed quantum state is said to be separable if it
can be mixed entirely from pure product states. The
entangled mixed states are exactly those that are not
separable. While the separability problem for pure
states is solved entirely via Schmidt decomposition
of state vectors, the problem of how to characterize
the set S of separable mixed states, and to decide
whether a mixed state is separable or entangled is
known to be a very difficult mathematical problem,
and it has been demonstrated that operational pro-
cedures are NP-hard [3].

In recent years these problems have been given
considerable attention, mainly due to the fact that
quantum entanglement have found use in many ap-
plications. Many new developments have been made
that requires an understanding of entanglement as a
resource in quantum communication, quantum cryp-
tography, quantum computers and others. How to
prepare, manipulate and detect entangled quantum
states have become important in this respect.

1
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Sound operational methods or criteria for entan-
glement checking only exist for special cases and/or
for the low dimensional systems 2×2 and 2×3. The
separable states have the property that they remain
positive after partial transposition, they are PPT
states. The set of PPT states P is in general larger
than the set of separable states S, but the difference
between the two sets is small in low dimensions, and
in the 2 × 2 and 2 × 3 systems P = S [4]. Thus
the condition of positive partial transpose, known as
the Peres separability criterion [5], is completely ad-
equate as long as we for the dimensions of the system
have N = NANB ≤ 6.

For systems with total dimension N = NANB ≥ 8
entangled PPT states, also known as states with
bound entanglement, exist. It is exactly these states
that make up the difference between P and S, and
they are in that sense the states that violate the Peres
criterion.

Another criterion which is of considerable useful-
ness is the range criterion. This criterion states that
if a quantum state is separable, then its range (or
image space) is spanned by a set of product vectors
wi = ui ⊗ vi, and the range of the partial transpose
ρP is spanned by w̃i = ui⊗ v∗i . It was shown [6] that
this criterion is independent from the PPT criterion,
as there are PPT entangled states that violate the
range criterion and there are also NPT states satis-
fying it.

The close relation between PPT states and prod-
uct vectors has been used to prove the separability
of sufficiently low rank PPT states [7], which shows
that on an NA×NB system with NA ≤ NB, all states
of rank NB are separable.

For the 3×3 system this means that the entangled
PPT states with lowest rank has rank four. Bennet
et.al. [8, 9] introduced a method for constructing
low rank entangled PPT states by using Unextend-
able Product Bases (UPB). A UPB is defined as a
maximal set of orthogonal product vectors which is
not a complete basis of the Hilbert space. If one so
constructs an orthogonal projection Q and comple-
mentary projection P = I−Q, then P is an entangled
PPT state. The UPB construction is clearly most
successful in the case of rank four PPT states in the
3× 3 system, where this construction is able to pro-
duce all entangled PPT states of rank four [10, 11].
Since the orthogonality is essential to the construc-
tion of the PPT states as a projection operator, this
UPB strategy fails for rank five states in the 3 × 3
system.

Due to the lack of such a schedule as the UPB
method, the characterization of rank five PPT en-
tangled states in the 3× 3 system seems much more
challenging than for rank four states. All extremal
PPT states of rank four are essentially of one generic
type, while for the extremal PPT states of rank five
a whole range of nongeneric forms also exist.

Outline of the paper. The contents of the present pa-
per are organized in following manner.

In Section 2 we develop some preliminary linear
algebra, which includes density matrices and projec-
tion operators.

In Section 3 we extend the description to bipar-
tite composite systems. Product vectors and their
importance is discussed, we emphasize the impor-
tance of product transformations and discuss PPT
states which are equivalent under such transforma-
tions. We also briefly discuss PPT states with prod-
uct vectors in the kernel, and introduce a character-
ization of such states.

In Section 4 we construct a standard form for PPT
states of rank five with four product vectors in the
kernel. All these special PPT states of rank (5, 5) are
nonextremal, but this scheme leads to a new method
for constructing extremal PPT states of rank (4, 4),
and is relevant to our further study of nongeneric
PPT states of rank (5, 5), presented in Section 7.

In Section 5 we review some features regarding
generic subspaces of dimension five in the 3× 3 sys-
tem. We also discuss nongeneric subspaces in the
3 × 3 system, specifically how to construct pairs of
orthogonal subspaces U and V with |U| = 5 and
|V| = 4, such that the number of product vectors
in V is nonzero.

In Section 6 a summary of the numerical results
obtained during our investigations is presented. This
includes data for the generic states with no prod-
uct vectors in Ker ρ, and several nongeneric cases
with up to four product vectors in Ker ρ. We also
present some results from our random searches for
SL-symmetric states.

In Section 7 we present a collection of nongeneric
standard forms for orthogonal subspaces U and V,
with dimensions five and four respectively. The non-
generic feature is that the number of product vectors
in V is nonzero. For the various U and V, we have
produced PPT states of rank (5, 5) with Img ρ = U
and Ker ρ = V. The number of product vectors in
Img ρ is either six or infinite, while the number of
product vectors in Ker ρ ranges from one to four.
The latter is presented as a special case in Section 4.
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In Section 8 we present a special five-dimensional
subspace of C9 that contains only two product vec-
tors, and with one product vector in the orthogonal
complement space. We construct a set of states found
by transformation to standard form of one particular
rank (5, 5) nonextremal PPT state in this subspace.
This nonextremal PPT state was found by complete
chance in our searches for SL-symmetric states.

In Section 9 we conclude with a summary of the
main results, and also include a brief description of
some unsolved issues.

2. Basic linear algebra

We want to review some basic concepts of linear
algebra, partly in order to make the paper selfcon-
tained, and partly in order to define our notation.

2.1. Density matrices. The natural structure of
the set HN of Hermitian N × N matrices is that of
a real Hilbert space of dimension N2 with the scalar
product

(X,Y ) = Tr (XY ). (1)

The set of mixed states, or density matrices, is de-
fined as

D = DN = {ρ ∈ HN | ρ ≥ 0, Tr ρ = 1 }. (2)

A density matrix ρ has a spectral representation in
terms of a complete set of orthonormal eigenvectors
ψi ∈ C

N with eigenvalues λi ≥ 0,

ρ =
N∑
i=1

λi ψiψi
†,

N∑
i=1

ψiψi
† = I. (3)

with ψi
†ψj = δij . The spectral representation defines

one particular ensemble represented by ρ.
The rank of ρ is the number of eigenvalues λi > 0.

The matrices
P =

∑
i, λi>0

ψiψi
†,

Q = I − P =
∑

i, λi=0

ψiψi
†,

(4)

are Hermitian and project orthogonally onto two
complementary orthogonal subspaces of CN.

P projects onto Img ρ, the range of ρ, and Q onto
Ker ρ, the kernel (or nullspace) of ρ. Some useful
relations that follow from this are that Pρ = ρP =
PρP = ρ and Qρ = ρQ = QρQ = 0.

We say that ρ is positive (or positive semidefinite)
and write ρ ≥ 0 when all λi ≥ 0. An equivalent con-
dition is that ψ†ρψ ≥ 0 for all ψ ∈ C

N. It follows

from the last inequality and the spectral representa-
tion of ρ that ψ†ρψ = 0 if and only if ρψ = 0.

The fact that the positivity conditions ψ†ρψ ≥ 0
are linear in ρ implies that D is a convex set, so that
if ρ is a convex combination of ρ1, ρ2 ∈ D,

ρ = pρ1 + (1− p)ρ, 0 < p < 1, (5)

then ρ ∈ D. Furthermore, since Ker ρ = {ψ |ψ†ρψ =
0} when ρ ≥ 0, it follows that

Ker ρ = Ker ρ1 ∩Ker ρ2, (6)

independent of p, when ρ is as in (5). Since Ker ρ is
independent of p, so is Img ρ = (Ker ρ)⊥.

A compact (closed and bounded) convex set is de-
termined by its extremal points, those points that
are not convex combinations of other points in the
set. The extremal points of D are the pure states
of the form ρ = ψψ† with ψ ∈ C

N. Thus the spec-
tral representation is an expansion of ρ as a convex
combination of N or fewer extremal points in D.

2.2. Perturbations and extremality in D. Let
ρ be a density matrix, and define the projections P
and Q as in Equation (4). Consider a perturbation

ρ′ = ρ+ εA, (7)

where A �= 0 is Hermitian, and TrA = 0 so that
Tr ρ′ = Tr ρ. The real parameter ε may be infinitesi-
mal or finite.

We observe that if ImgA ⊂ Img ρ, or equivalently
if PAP = A, then there will be a finite range of val-
ues of ε, say ε1 ≤ ε ≤ ε2 with ε1 < 0 < ε2, such
that ρ′ ∈ D and Img ρ = Img ρ′. This is so because
the eigenvectors of ρ with zero eigenvalue will re-
main eigenvectors of ρ′ with zero eigenvalue, and all
the positive eigenvalues of ρ will change continuously
with ε into eigenvalues of ρ′. Since D is compact, we
may choose ε1 and ε2 such that ρ′ has at least one
negative eigenvalue when either ε < ε1 or ε > ε2.
The negative eigenvalue becomes zero at ε = ε1 or
ε = ε2, this makes Ker ρ′ strictly larger than Ker ρ
and Img ρ′ strictly smaller than Img ρ in both limits
ε = ε1 and ε = ε2.

The other way around, if ρ′ ∈ D for ε1 ≤ ε ≤ ε2
with ε1 < 0 < ε2, then ρ′ is a convex combination of
ρ + ε1A and ρ + ε2A for every ε in the open inter-
val ε1 < ε < ε2. Hence Img ρ′ is independent of ε in
this open interval, implying that ImgA ⊆ Img ρ and
PAP = A.
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This gives us three equivalent formulations for the
extremality condition of ρ on D. The state ρ is ex-
tremal in D if and only if

(1) There exists no A �= 0 with TrA =
0 and PAP = A.

(2) The equation PAP = A for the
Hermitean matrix A has A = ρ as
its only solution.

(3) There exists no ρ′ ∈ D with ρ′ �= ρ
and Img ρ′ = Img ρ.

We may replace PAP = A by the weaker condi-
tion QAQ = 0. By standard perturbation theory
the zero eigenvalues of ρ do not change to first or-
der in ε. So, with QAQ = 0 and ε infinitesimal, the
perturbation (7) preserves the rank of ρ.

2.3. Projection operators on HN . Using the pro-
jections P and Q defined above we can define projec-
tion operators P,Q,R on HN , the real Hilbert space
of Hermitean N ×N matrices, as follows,

PX = PXP,

QX = QXQ, (8)

RX = (I−P−Q)X.

Here I is the identity operator on HN . It is straight-
forward to verify that these are complementary pro-
jections, with P2 = P, Q2 = Q, PQ = QP = 0, and
so on. They are symmetric with respect to the natu-
ral scalar product on HN , hence they project orthog-
onally, and relative to an orthonormal basis for HN

they are represented by symmetric matrices.
In an orthonormal basis of C

N with the first m
basis vectors in Img ρ and the last n = N −m basis
vectors in Ker ρ, an matrix X ∈ HN takes the form

X =

(
U V
V † W

)
, (9)

with U ∈ Hm and W ∈ Hn. In this basis we have

P =

(
Im 0
0 0

)
, Q =

(
0 0
0 In

)
, (10)

and hence

PX =

(
U 0
0 0

)
, QX =

(
0 0
0 W

)
,

RX =

(
0 V
V † 0

)
.

(11)

3. Composite systems

In order to describe entanglement in quantum sys-
tems it is necessary to develop the basic theory of
tensor product states. We do this for a bipartite sys-
tem consisting of two subsystems A and B.

3.1. Product vectors. If N = NANB, the tensor
product spaces CN = C

NA ⊗C
NB (a complex tensor

product) and HN = HNA
⊗HNB

(a real tensor prod-
uct) describe a composite quantum system with two
subsystems A and B of Hilbert space dimensions NA

and NB.
A vector ψ ∈ C

N then has components ψI = ψij ,
where

I = 1, . . . , N

�
ij = 11, 12, . . . , 1NB, 21, 22, . . . , NANB.

(12)

A product vector ψ = φ ⊗ χ has components ψij =
φiχj . We see that ψ is a product vector if and only
if its components satisfy the quadratic equations

ψijψkl − ψilψkj = 0. (13)

These equations are not all independent, the number
of independent complex equations is

K = (NA − 1)(NB − 1)

= N −NA −NB + 1.
(14)

For example, if ψ1 �= 0 we get a complete set of
independent equations by taking i = j = 1, k =
2, . . . , NA, and l = 2, . . . , NB.

Since the Equations (13) are homogeneous, any
solution ψ �= 0 gives rise to a one parameter fam-
ily of solutions cψ where c ∈ C. A vector ψ in a
subspace of dimension n has n independent complex
components. Since the most general nonzero solution
must contain at least one free complex parameter, we
conclude that a generic subspace of dimension n will
contain nonzero product vectors if and only if

n ≥ K + 1. (15)

The limiting dimension

n = K + 1 = N −NA −NB + 2, (16)

is particularly interesting. In this special case a
nonzero solution will contain exactly one free param-
eter, which has to be a complex normalization con-
stant. Thus up to proportionality there will exist a
finite set of product vectors in a generic subspace of
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this dimension, in fact the number of product vectors
is [12]

p =

(
NA +NB − 2

NA − 1

)
=

(NA +NB − 2)!

(NA − 1)!(NB − 1)!
.

(17)

A generic subspace of lower dimension will contain
no nonzero product vector, whereas any generic sub-
space of higher dimension will contain a continuous
infinity of different product vectors. By different in
this context we mean in the sense that they are not
proportional.

These results hold however for generic subspaces.
It is trivially clear that nongeneric subspaces with
low dimensions exist that contain product vectors.
In the special case NA = NB = 3 studied here, the
limiting dimension given by Equation (16) is five,
and the number of product vectors given by Equa-
tion (17) is six. As described in Section 8 we have
found one special example of a five dimensional sub-
space with only two product vectors.

The facts that product vectors always exist in
K + 1 and higher dimensions, but not always in K
and lower dimensions, are special cases of a theorem
proved by Parthasarathy for systems composed of
any number of subsystems [13]. These results have
profound implications for the construction of unex-
tendible product bases.

3.2. Partial transposition and separability.
The following relation between matrix elements

(XP )ij;kl = Xil;kj , (18)

defines the partial transpose XP = XTB of the ma-
trix X with respect to the second subsystem B. The
partial transpose with respect to the first subsys-
tem XTA = XPT = XTBT where T denotes total
transposition, then simply amounts to complex con-
jugation. The partial transposition is simply trans-
position of the individual submatrices of dimension
NB × NB in the N × N matrix X. If X = Y ⊗ Z
then XP = Y ⊗ ZT.

A density matrix ρ is called separable if it is a
convex combination of tensor product pure states,

ρ =
∑
k

pk wkw
†
k

=
∑
k

pk (uku
†
k)⊗ (vkv

†
k ),

(19)

with wk = uk ⊗ vk ∈ C
N, pk > 0, and

∑
k pk = 1. It

follows that

ρP =
∑
k

pk (uku
†
k)⊗ (vkv

†
k )

T

=
∑
k

pk (uku
†
k)⊗ (v∗kv

T
k ).

(20)

We write the set of separable density matrices as S.
The obvious fact that ρP is positive when ρ is sep-

arable is known as the Peres criterion, it is an easily
testable necessary condition for separability. For this
reason it is of interest to study the set of PPT or Pos-
itive Partial Transpose matrices, defined as

P = { ρ ∈ D | ρP ≥ 0 } = D ∩DP. (21)

We may call it the Peres set. A well known result
is that P = S for N = NANB ≤ 6, whereas P is
strictly larger than S in higher dimensions [4].

We will classify low rank PPT states by the ranks
(m,n) of ρ and ρP respectively. Here we study the
special case NA = NB = 3, then the ranks (m,n) and
(n,m) are equivalent for the purpose of classification,
because of the symmetric roles of the subsystems A
and B, and the arbitrariness of choice of which sub-
system to partial transpose.

3.3. Product vectors in the kernel. Recall that
ψ†ρψ = 0 if and only if ρψ = 0 when ρ ≥ 0, and
similarly for ρP. The identity

(x⊗ y)†ρ(x⊗ y) = (x⊗ y∗)†ρP (x⊗ y∗) (22)

therefore implies, for a PPT state ρ, that x ⊗ y ∈
Ker ρ if and only if x⊗ y∗ ∈ Ker ρP.

Let the number of product vectors in Img ρ,
Img ρP and Ker ρ be respectively nimg, ñimg, and
nker. Then nker is also the number of product vectors
in Ker ρP, and ρ is characterized by {nimg, ñimg;nker}.
As we shall see, the generic entangled PPT states of
rank (5, 5) are in this way {6, 6; 0} states.

We write the product vectors in Img ρ as

wi = ui ⊗ vi, i = 1, . . . , nimg. (23)

And likewise for Ker ρ,

zj = xj ⊗ yj , j = 1, . . . , nker. (24)

Since the two subspaces are orthogonal, it is neces-

sary that w†
i zj = 0 for all i, j, hence for every pair

i, j we must have either u†ixj = 0 or v†i yj = 0.
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3.4. The range criterion and edge states. If ρ
is separable, as defined in Equation (19), then Img ρ
is spanned by the product vectors wk = uk⊗ vk, and
Img ρP is spanned by the partially conjugated prod-
uct vectors w̃k = uk ⊗ v∗k. No such relation between

product vectors in Img ρ and Img ρP need exist if ρ
is an entangled PPT state.

The existence of a set of product vectors spanning
the range of ρ, such that the partially conjugated
product vectors span the range of ρP, is seen to be a
necessary condition for separability, called the range
criterion [6]. Since there exist entangled states sat-
isfying the range criterion, the condition is not suffi-
cient.

Please note that the range criterion demands that
there should exist at least one such set of product
vectors, not that all product vectors in the ranges
should be related by partial conjugation. We exhibit
here, for example, separable states that are convex
combinations of five pure product states, such that
Img ρ and Img ρP contain exactly six product vectors
each, but the sixth product vector in Img ρP is not
the partial conjugate of the sixth product vector in
Img ρ.

On the same note we define an edge state as a
PPT state that breaks the range criterion maximally.
That is to say that there exists no product vector in
the range of ρ with its partial conjugate in the range
of ρP. Obviously, by the range criterion, all edge
states are entangled.

We also see that every extremal entangled PPT
state ρ is an edge state. In fact, if w = u⊗ v ∈ Img ρ
and w̃ = u⊗ v∗ ∈ Img ρP, then ρ is not extremal, be-
cause (1−ε)ρ+εww† is a PPT state for both positive
and negative ε in some finite interval.

3.5. Extremality in P. We will now describe the
extremality test in P = D ∩ DP, which follows di-
rectly from the extremality test in D. We want to
outline also how to use perturbations with various
restrictions in order to calculate the dimensions of
and trace numerically surfaces of states in P of equal
ranks. Thus we are interested in perturbations that
preserve the ranks (m,n) of ρ and ρP simultaneously.

As we did for ρ, we define P̃ and Q̃ = I− P̃ as the
orthogonal projections onto Img ρP and Ker ρP. We
then define

P̃X = (P̃XP P̃ )P,

Q̃X = (Q̃XP Q̃)P, (25)

R̃X = (I− P̃− Q̃)X.

These are again projections on the real Hilbert space
HN , and like P, Q and R they are symmetric with
respect to the natural scalar product on HN . We use
these projection operators on HN to impose various
restrictions on the perturbation matrix A in Equa-
tion (7).

Testing for extremality in P. Clearly ρ is ex-
tremal in P if and only if A = ρ is the only simul-
taneous solution of the two equations PA = A and

P̃A = A. Another way to formulate this condition
is that there exists no ρ′ ∈ P, ρ′ �= ρ, with both
Img ρ′ = Img ρ and Img (ρ′)P = Img ρP.

Since P and P̃ are projections, the equations

PA = A and P̃A = A together are equivalent to
the single eigenvalue equation

(P+ P̃)A = 2A. (26)

They are also equivalent to either one of the eigen-
value equations

PP̃PA = A, P̃PP̃A = A. (27)

Note that the operators P+ P̃, PP̃P, and P̃PP̃ are
all real symmetric and positive and therefore have
complete sets of nonnegative real eigenvalues and
eigenvectors.

When we diagonalize P + P̃ we will always find
A = ρ as an eigenvector with eigenvalue 2. If it is
the only solution of Equation (26), this proves that ρ
is extremal in P. If A is a solution not proportional
to ρ, then we may impose the condition TrA = 0
(replace A by A− (TrA)ρ if necessary), and we know
that there exists a finite range of both positive and
negative values of ε such that ρ′ = ρ+ εA ∈ P, hence
ρ is not extremal in P.
Perturbations preserving the PPT property
and ranks. The rank and positivity of ρ is preserved
by the perturbation ρ′ = ρ + εA to first order in ε,
both for ε > 0 and ε < 0, if and only if QA = 0.
Similarly, the rank and positivity of ρP is preserved

if and only if Q̃A = 0. These two equations together
are equivalent to the single eigenvalue equation

(Q+ Q̃)A = 0. (28)

AgainQ+Q̃ is real symmetric and has a complete set
of real eigenvalues and eigenvectors. The number of
linearly independent solutions for A in Equation (28)
is then the dimension of the surface of rank (m,n)
PPT states going through ρ.
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We may want to perturb in such a way that
Img ρ′ = Img ρ, but not necessarily Img (ρ′)P =
Img ρP, that is we only require Img (ρ′)P and Img ρP

to have the same rank. Then the conditions on A are
that PA = A and Q̃A = 0, or equivalently

(I−P+ Q̃)A = 0. (29)

In this case the number of linearly independent so-
lutions for A is the dimension of the surface of rank
(m,n) PPT states with fixed range Img ρ at ρ.

3.6. Product transformations. A product trans-
formation of the form

ρ �→ ρ′ = a VρV †, V = VA ⊗ VB, (30)

where a > 0 is a normalization factor and VA ∈
SL(NA,C), VB ∈ SL(NB,C), preserves positivity,
rank, separability and other interesting properties
that the density matrix ρ may have. It preserves
positivity of the partial transpose because

(ρ′)P = a ṼρP Ṽ †, Ṽ = VA ⊗ V ∗
B. (31)

A transformation of the form of Equation (30) is also
sometimes referred to as a local SL-transformation.

The range and kernel of ρ and ρP transform in the
following ways,

Img ρ′ = V Img ρ,

Ker ρ′ = (V †)−1Ker ρ,

Img (ρ′)P = Ṽ Img ρP,

Ker (ρ′)P = (Ṽ †)−1Ker ρP.

(32)

We say that two density matrices ρ and ρ′ related
in this way are SL-equivalent. The concept of SL-
equivalence is important because it simplifies very
much the classification of the low rank PPT states.
Since this SL-equivalence is transitive it generates
equivalence classes of matrices.

SL-symmetry under partial transposition. We say
that the state ρ is SL-symmetric if ρ and ρP are SL-
equivalent, that is, if

ρP = a VρV †, V = VA ⊗ VB. (33)

Since SL-transformations of product type V =
VA ⊗ VB preserve the number of product vectors in
a subspace, any transformation ρ �→ ρP = a VρV †
must transform the set of nimg product vectors in

the range of ρ to the set of ñimg product vectors in
the range of ρP, so for SL-symmetric states we always
have nimg = ñimg. If the product vectors in Img ρ is
wi = ui ⊗ vi with i = 1, . . . , nimg and for Img ρP we
have w̃i = ũi ⊗ ṽi for i = 1, . . . , nimg, then

VA ui = ũi, VB vi = ṽi. (34)

Note that we need SL-transformations VA and VB

that transform all vectors ui and vi respectively.
Since our understanding of the relation between w
and w̃ is quite limited for entangled states, it is diffi-
cult to say much in general about what makes some
states SL-symmetric and others not. But it is clear
that the vectors ui, vi which are fixed for a given
range of ρ, and the vectors ũi and ṽi which depend on
the specific state ρ (or ρP ) must have a structure that
allows the existence of VA and VB to satisfy Equa-
tion (34). This structure is very likely nongeneric, so
for a generic state ρ no such VA and VB will exist.

Genuine SL-symmetry. We say that a state ρ is gen-
uinely SL-symmetric if there exists a transformation

ρ′ = aUρU †, U = UA ⊗ UB, (35)

such that (ρ′)P = ρ′. The transformation of ρ implies
that

(ρ′)P = a ŨρP Ũ †, (36)

when we define Ũ = UA ⊗ U∗
B. Then assuming gen-

uine SL-symmetry we get that

ŨρP Ũ † = UρU † (37)

and hence

ρP = VρV †, (38)

with V = Ũ−1U = I ⊗ VB and VB = (U∗
B)

−1UB.
This shows that genuine SL-symmetry implies SL-
symmetry, and Equation (38) requires that V pre-
serves the trace of ρ, i.e. Tr ρ = Tr ρP = Tr (VρV †) =
Tr (ρ V †V ). A sufficient but not necessary condition
for this trace preservation is that VB is unitary.

The relation VB = (U∗
B)

−1UB implies that VB

has some special properties. One implication is that
V ∗
B = V −1

B , so that VB is unitary if and only if it is

symmetric, V T
B = VB.

We also infer that detVB = (detUB)/(detUB)
∗, so

that | detVB| = 1. If we multiply UB by some phase
factor eiα, then VB is multiplied by e2iα, and in this
way we may redefine VB such that detVB = 1.
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We conclude that for the state ρ to be genuinely
SL-symmetric it must be SL-symmetric with a trans-
formation of the form given in Equation (38). For the
3× 3 system V would have the form

V =

⎛⎝ VB 0 0
0 VB 0
0 0 VB

⎞⎠, (39)

with VB ∈ SL(3,C) and V ∗
B = V −1

B .
Since the transformation has the form V = I⊗VB

in the case of genuine SL-symmetry, by Equation (34)
the product vectors in Img ρ and Img ρP will be
related by the transformations ũi = ui and ṽi =
VBvi. This is a necessary condition for genuine SL-
symmetry which may be tested as soon as we know
the product vectors in Img ρ and Img ρP.

Assume that for a given PPT state ρ we find
that ρ and ρP are related by a transformation of
the form given in Equation (38). Then a further
problem to be solved is to find a transformation
U = UA ⊗ UB that demonstrates explicitly the gen-
uine SL-symmetry of ρ. Thus we have to solve the
equation VB = (U∗

B)
−1UB for UB.

We reason as follows. Assume that λ is an eigen-
value of UB, then μ = λ/λ∗ is an eigenvalue of VB.
Hence |μ| = 1, and we may assume that λ = eiα

where α is real. Then λ must be a solution of the
equation μ = λ2, suggesting that we may try to take
UB as the matrix square root of VB. We find in prac-
tice that it is possible to choose simply

U = I ⊗
√

VB. (40)

4. The rank (4, 4) extremal PPT states

revisited

Rank (4, 4) extremal PPT states in dimension 3×3
are well understood [10, 11, 14, 15]. They are all SL-
equivalent to states constructed from unextendible
product bases (UPBs). A construction method not
using UPBs was discussed in [15], and the structure
of a PPT state ρ with at least four product vectors
in Ker ρ was derived.

In the present section we will review and expand
on the discussion given in [15]. This is relevant
for our present study of nongeneric rank (5, 5) PPT
states, and it leads to a new construction of the rank
(4, 4) extremal PPT states.

Given a PPT state ρ and four product vectors
zj = xj ⊗ yj in the kernel of ρ, in some definite but

arbitrary order. We assume that any three x vec-
tors and any three y vectors are linearly independent.
Then we may perform a product transformation as
in Equation (30), and subsequent normalizations, so
that the vectors take the form

x = y =

⎛⎝ 1 0 0 1
0 1 0 1
0 0 1 1

⎞⎠, (41)

and for the product vectors zj

z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
0 1 0 1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (42)

The transformation is unique. In this four dimen-
sional subspace there exist no other product vectors.
The real form of the product vectors zj ∈ Ker ρ im-
plies that zj ∈ Ker ρP.

It is equally easy to see that there exist exactly six
product vectors wi = ui ⊗ vi in the orthogonal sub-
space. In fact, in order to have (ui ⊗ vi) ⊥ (xj ⊗ yj)
for all i = 1, . . . , 6 and j = 1, . . . , 4, we must have for
each pair i, j that either ui ⊥ xj or vi ⊥ yj . Since any
three x vectors and any three y vectors are linearly
independent, a u vector can be orthogonal to at most
two x vectors, and a v vector can be orthogonal to
at most two y vectors. This gives the six possibilities
for orthogonality listed in the table.

ui ⊗ vi ui ⊥ xk, xl vi ⊥ ym, yn
i k, l m, n
1 2, 3 1, 4
2 1, 3 2, 4
3 1, 2 3, 4
4 1, 4 2, 3
5 2, 4 1, 3
6 3, 4 1, 2

Table 1. Possibilities for a product vec-
tor ui⊗vi to be orthogonal to all four prod-
uct vectors xj ⊗ yj .
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The unique solution is the following list of vectors,

u =

⎛⎝ 1 0 0 0 1 1
0 1 0 1 0 −1
0 0 1 −1 −1 0

⎞⎠,

v =

⎛⎝ 0 1 1 1 0 0
1 0 −1 0 1 0
−1 −1 0 0 0 1

⎞⎠,

(43)

and for the product vectors wi

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 1 0
−1 0 0 0 0 1
0 1 0 1 0 0
0 0 0 0 0 0
0 −1 0 0 0 −1
0 0 1 −1 0 0
0 0 −1 0 −1 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (44)

The five dimensional subspace Img ρ = Spanw given
by (44) defines a face F ⊂ D of dimension 52−1 = 24.
Recall that

ρzj = ρPzj = 0, j = 1, . . . , 4. (45)

In terms of the face F , Equation (45) means that
ρ ∈ F and ρP ∈ F , or equivalently, that ρ ∈ F ∩FP.
Equation (45) restricts ρ to have the form (47), with
real coefficients ci.

Note that ρP = ρ. Since F is a face on D, FP is
a face on DP, and the intersection G = F ∩ FP is a
face on P = D ∩ DP. Equation (47) shows that the
face G has dimension five.

The state ρ defined in (47) is a linear combination,
but not necessarily a convex combination, of the six
pure product states,

ρ =
1

2

6∑
i=1

ciwiw
†
i . (46)

ρ =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 c1 + c5 −c1 0 0 0 0 −c5 0
0 −c1 c1 + c4 0 0 −c4 0 0 0
0 0 0 c2 + c6 0 −c2 −c6 0 0
0 0 0 0 0 0 0 0 0
0 0 −c4 −c2 0 c2 + c4 0 0 0
0 0 0 −c6 0 0 c3 + c6 −c3 0
0 −c5 0 0 0 0 −c3 c3 + c5 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (47)

From (47) we observe that the normalization con-
dition for ρ becomes

Tr ρ =
6∑

i=1

ci = 1. (48)

Since the matrices wiw
†
i are linearly independent,

and there are no other pure product states in Img ρ,
ρ is separable if and only if all the coefficients ci are
nonnegative. However, we will now see that it is pos-
sible for ρ to be an entangled PPT state even if one
of the coefficients is negative.

An eigenvalue of ρ, and of ρP = ρ, is a root of the
characteristic polynomial

det(ρ− λI) = −λ4 f(λ), (49)

where the function f(λ) is a fifth degree polynomial
of the form f(λ) = λ5−d4λ4+d3λ

3−d2λ2+d1λ−d0.

The constant term in f(λ) is

d0 =
3

16

6∑
i=1

∏
j �=i

cj =
3

16

( 6∏
j=1

cj

) 6∑
i=1

1

ci
. (50)

If we start with ci > 0 for i = 1, . . . , 6, then ρ
is a rank (5, 5) separable state. If we then change
the coefficients continuously, ρ will continue to have
five positive eigenvalues until we get d0 = 0. Hence
d0 = 0 defines the boundary of the set of density ma-
trices, and also of the set of PPT states since ρ = ρP.

We know that the boundary is not reached be-
fore at least one coefficient becomes zero or nega-
tive. If two coefficients become zero simultaneously,
then d0 = 0 and we have reached a boundary state
which is separable. To get negative coefficients while
ρ is a rank (5, 5) PPT state we have to make one
coefficient negative before the others. Let us say,



10

for example, that c1 < 0, and that we want to
make also c2 negative, while ci > 0 for i = 3, . . . , 6.
Then we first have to make c2 = 0, in which case
d0 = 3 c1c3c4c5c6/16 < 0 and we have already crossed
the boundary d0 = 0.

In conclusion, the entangled boundary states have
ci �= 0 for i = 1, . . . , 6, and they have one negative
and five positive coefficients ci satisfying

6∑
i=1

1

ci
= 0. (51)

Thus the boundary d0 = 0 consists of two types of
states.

(1) Separable states that are convex
combinations of up to four of the

pure product states wiw
†
i .

(2) Rank (4, 4) entangled PPT states
that are linear combinations of all
the six pure product states wiw

†
i

with one negative coefficient.

It is well known that rank (4, 4) entangled PPT
states are extremal.

−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

0.25

0.5

x

y

c3 = 0c2 = 0

c1 = 0

c6 = 0 c5 = 0

c4 = 0

A

B

C

D

E

F

Figure 1. A two dimensional cut through the five
dimensional face on P of states given by (47). The
outer curve is the common boundary of D and P, it
consists of rank (4, 4) PPT states. The simplex in
S is the hexagon with corners A to F . The region
between the two curves is entangled PPT states of
rank (5, 5). The coordinates x, y are dimensionless.

Figure 1 shows a two dimensional section through
the five dimensional face of P defined by Equa-
tions (46) and (48). The section through S is the
hexagon with corners A to F . On the boundary of
the hexagon (dashed), one of the coefficients ci is
zero. The region between the two curves consists of
entangled PPT states of rank (5, 5) with exactly one
coefficient negative. In Table 2 we have listed the co-
efficients ci, multiplied by 12, that define the states
A to F by Equation (46). The hexagon is reflection
symmetric about two axes.

i A B C D E F
1 0 0 3 6 6 3
2 1 0 0 1 2 2
3 6 3 0 0 3 6
4 2 2 1 0 0 1
5 3 6 6 3 0 0
6 0 1 2 2 1 0

Table 2. The coefficients ci, multiplied
by 12, for the states A to F in Figure 1.

The most general rank (4, 4) entangled PPT
states. Consider a general rank (4, 4) entangled
PPT state ρ in 3 × 3 dimensions. It is known that
any such state is extremal, and has exactly six prod-
uct vectors in its kernel. We can now see that it
is SL-equivalent, in no less than 360 different ways,
to such states on the boundary of the five dimen-
sional face of P that we have described here. The
360 transformations are found in the following way.

Pick any four of the six product vectors in Ker ρ,
this can be done in 15 different ways. Order them
next in one of the 24 possible ways. Altogether there
are 24 × 15 = 360 possibilities. There is then a
unique product transformation that transforms the
four product vectors to the form given in Equa-
tion (41). We know that it must transform the state
ρ into one of the rank (4, 4) states described by the
Equations (46), (48), and (51), since these are the
only rank (4, 4) entangled PPT states of this form.

5. Rank (5, 5) PPT states in 3× 3 dimensions

Our main purpose with the present study has been
to try to understand the rank (5, 5) entangled PPT
states in 3 × 3 dimensions. In particular, we would
like to understand better the relation between Img ρ
and Img ρP when ρ is a rank (5, 5) PPT state. A
natural question is whether ρ is SL-symmetric, as
defined in Equation (33), so that Img ρP = V Img ρ.
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The product vectors in Img ρ and Img ρP are very
useful for answering the question of SL-symmetry, es-
pecially when both these spaces have dimension five.
By Equation (14), the number of constraints to be
satisfied by a product vector isK = 4, thusK+1 = 5
is precisely the critical dimension at which every sub-
space contains one or more product vectors, and a
generic subspace contains a finite number of product
vectors, exactly six in this case.

5.1. Standard form for generic subspaces. Any
set of five product vectors wi = ui ⊗ vi in a generic
five dimensional subspace may be transformed by an
SL×SL transformation, followed by suitable normal-
izations, to the standard form [15]

u =

⎛⎝ 1 0 0 1 1
0 1 0 1 p
0 0 1 1 q

⎞⎠,

v =

⎛⎝ 1 0 0 1 1
0 1 0 1 r
0 0 1 1 s

⎞⎠,

(52)

with p, q, r, s as real or complex parameters. By
generic we here mean that any three vectors in u
and in v are linearly independent. There will also
be a sixth product vector which is a linear combina-
tion of the above five. The parameters p, q, r, s are
determined by the following ratios of determinants,

s1 =− det(u1u2u4) det(u1u3u5)

det(u1u2u5) det(u1u3u4)
= −p

q
,

s2 =− det(u1u2u3) det(u2u4u5)

det(u1u2u4) det(u2u3u5)
= q − 1,

(53)

s3 =
det(v1v2v3) det(v1v4v5)

det(v1v2v5) det(v1v3v4)
=

r − s

s
,

s4 =
det(v1v3v5) det(v2v3v4)

det(v1v2v3) det(v3v4v5)
=

r

1− r
.

(54)

All the parameters si are invariant under SL × SL
transformations. Hence for given vectors ui and vi
not on standard form these formulas may be used to
calculate the values of the parameters p, q, r, s with-
out actually performing the transformation to stan-
dard form.

Though only u1, . . . , u5 and v1, . . . , v5 occur in
Equations (53) and (54), since the numbering is ar-
bitrary all six product vectors must be taken into

consideration when calculating the invariants. Dif-
ferent permutations of the six product vectors will in
general give different values for the invariants.

The standard form in Equation (52), or equiva-
lently the invariants si defined in Equations (53) and
(54), can be used to check whether ρ and ρP are
SL-equivalent. We must find the six product vec-
tors in Img ρ and Img ρP, in some order. Then we
either transform these to the standard form in Equa-
tion (52), or calculate directly the invariants si for
both subspaces. For the comparison we must try all
the 6! = 720 permutations of the six product vectors.
If the invariants so calculated for Img ρ and Img ρP

are identical for some permutation, then these sub-
spaces can clearly be transformed by a unique SL×SL
transformation to the same standard form in Equa-
tion (52) with the same values of p, q, r, s. The trans-
formations of both spaces to a common standard
form then define a transformation V = VA⊗VB from
Img ρ to Img ρP. It is then easy to check whether
ρP = aV ρ1V

† for some a > 0.
Note that the partial transpose of ρ with respect

to subsystem A is (ρP )∗. If ρ is SL-symmetric under
this partial transposition, then it means that the in-
variants of Img ρP will be the complex conjugates of
the invariants of Img ρ.

Separable rank (5, 5) states. In a generic five dimen-
sional subspace of C9 containing six normalized prod-
uct vectors wi = ui ⊗ vi, we may construct a five
dimensional set of separable states as convex combi-
nations

ρ =
6∑

i=1

ciwiw
†
i , (55)

with ci ≥ 0 and
∑

i ci = 1. Hence all the separable
states in the subspace are contained in a simplex with
the six pure product states as vertices. The partial
transpose of ρ is

ρP =
6∑

i=1

ci w̃iw̃
†
i , (56)

where w̃i = ui ⊗ v∗i is the partial conjugate of wi.
The six partially conjugated product vectors will be
linearly independent in the generic case, hence the
separable states in the interior of the simplex will
have rank (5, 6).

On the boundary where one coefficient ci vanishes,
ρ will be a rank (5, 5) PPT state. In this case five
of the product vectors in Img ρ and in Img ρP are
partial conjugates of each other, whereas the sixth
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product vectors in the two spaces are related in a
more complicated way, unless all vectors vi are real.

The surface of generic rank (5, 5) PPT states. It
is known that a generic four dimensional subspace
is not the range of any entangled rank (4, 4) PPT
state [10]. It appears however in our numerical in-
vestigations that every generic five dimensional sub-
space is the common range of extremal and hence
entangled rank (5, 5) PPT states that together form
an eight dimensional surface [15]. It is an interest-
ing numerical observation that the dimension of the
surface of rank (5, 5) PPT states in a generic five di-
mensional subspace is higher than the dimension of
the simplex of separable states.

In order to compute this surface numerically we
consider the perturbation

ρ′ = ρ+ εA, (57)

with TrA = 0 and A satisfying Equation (29). We
find eight linearly independent solutions for A in ad-
dition to the trivial solution A = ρ, meaning that the
surface has dimension eight.

Similarily, if we want to find the dimension of the
total set of rank (5, 5) PPT states we find that Equa-
tion (28) has 48 linearly independent nontrivial solu-
tions. The dimensions 8 and 48 are consistent with
the fact that the set of five dimensional subspaces
has dimension 40 [15].

5.2. Nongeneric subspaces. By definition, for a
generic set of vectors in C

3 any subset of three vec-
tors will be linearly independent. For a generic rank
(5, 5) PPT state ρ, Img ρ contains six product vec-
tors wi = ui ⊗ vi. A nonzero vector x ∈ C

3 can
at most be orthogonal to two vectors ui, and a
nonzero y can at most be orthogonal to two vi, hence
z = x⊗y can at most be orthogonal to four wi. Since
Ker ρ = (Img ρ)⊥ it is clear that in the generic case
it is not possible to have a product vector in Ker ρ,
as described in Section 3.3. Thus generic states must
have nker = 0.

In order to construct pairs of orthogonal subspaces
U ⊂ C

9 and V = U⊥ with |U| = 5 and |V| = 4, such
that V contains one or more product vectors, we must
alter the generic linear dependencies of the ui and vi
vectors. Instead of the generic condition that any
three vectors either in u or in v must be linearly in-
dependent and span C

3, we introduce the condition
that any four vectors must span C

3. Then it is possi-
ble to have one or more product vectors zj = xj ⊗ yj

with each xj orthogonal to ua, ub, uc and yj orthogo-
nal to vd, ve, vf where a, b, . . . , f is some permutation
of 1, . . . , 6.

In the above sense it is the subspaces that are inter-
esting, and to a lesser degree the states themselves. A
general characterization of two orthogonal subspaces
U and V with regard to the number of product vec-
tors they contain, is then {nu;nv}.

Since zj = xj ⊗ yj ∈ Ker ρ if and only if z̃j =
xj ⊗ y∗j ∈ Ker ρP, it is clear that the kernels of ρ and

ρP are related when they contain product vectors. In
particular, if yj is real then zj = z̃j ∈ Ker ρP. As long
as nker ≤ 4, which is always the case in the exam-
ples we have constructed here, we can always choose
a standard form where all the vectors xj and yj are
real.

6. A summary of numerical results

We summarize here the main results of our numer-
ical investigations. For ease of reference we number
the cases from I to VII.

6.1. Generic states. Case (I). The generic rank
(5, 5) PPT state is an extremal and hence entangled
{6, 6; 0} state. By definition, a generic state is found
in a completely random search for rank (5, 5) PPT
states. The number of generic rank (5, 5) PPT entan-
gled states we have generated are in the thousands.
They are all non-SL-symmetric, and since they are
extremal they are also edge states. The partial trans-
pose ρP of a generic rank (5, 5) PPT state ρ is again
a generic rank (5, 5) PPT state.

6.2. Nongeneric states. The nongeneric states
have from one to four product vectors in the ker-
nel, as discussed in Section 5.2. We have defined
standard forms for nongeneric orthogonal subspaces
U and V with various numbers {nu;nv} of product
vectors. We take the product vectors in V, as many
as we need, to have the standard form given in Equa-
tion (41). We have then produced a large number
of PPT states ρ of rank (5, 5) with Img ρ = U and
Ker ρ = V.

In addition to the generic case (I), we have studied
the following nongeneric cases:

Case (II), nker = 1. Then Ker ρ contains z1 from
Equation (41), and Img ρ is defined by Equation (78).
The rank (5, 5) PPT states found are all extremal and
of type {6, 6; 1}.

Case (III), nker = 1. This is the special {2; 1}
subspace presented in Section 8, producing both ex-
tremal and nonextremal entangled rank (5, 5) PPT
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states. The extremal states are of type {2, 6; 1}.
Some of the nonextremal states are of type {2, 6; 1},
others are symmetric under partial transposition and
therefore of type {2, 2; 1}.

Case (IV), nker = 2. Then Ker ρ in the standard
form contains z1, z2, and Img ρ is defined by Equa-
tion (70). The rank (5, 5) PPT states found are all
extremal and of type {6, 6; 2}.

Case (V), nker = 3, where Ker ρ contains z1, z2, z3,
and Img ρ is defined by Equation (64). The rank
(5, 5) PPT states found are all nonextremal and of
type {6, 6; 3}.

Case (VI), nker = 4. This is the case discussed in
Section 4, with Img ρ defined by Equation (43). It
gives a new way of constructing the extremal rank
(4, 4) PPT states.

Case (VII), nker = 2. Ker ρ contains z1, z2 from
Equation (41), whereas Img ρ is defined by Equa-
tion (73) and contains an infinite number of product
vectors. The resulting {∞,∞; 2} states include both
extremal and nonextremal states, and also some in-
teresting rank (4, 5) PPT states. We know that the
latter do not exist in generic subspaces [15].

Tables. Using the projection operators and extremal-
ity tests outlined in Section 3.5, we can calculate the
dimensions of the surfaces defined by Equations (26)–
(29) for the various types of states. We use the ab-

breviation P+P̃ for the operation that preserves the

range of both ρ and ρP, Q + Q̃ for the preservation

of the rank of both ρ and ρP, and finally P+ Q̃ and

Q + P̃ for the two other projections. The dimen-
sion given by the trivial solution A = ρ has been
subtracted. Note that for many of the states the di-

mension defined by P+P̃ is zero, indicating that the
state is extremal and therefore known with certainty
to be entangled.

Presented in Table 3 are data for the various ran-
dom rank (5, 5) PPT states we have produced. In
addition to the dimensions defined above, we also in-
dicate whether the states are edge states and if they
satisfy the range criterion, both of which are defined
in Section 3.4.

All states are non-SL-symmetric and are produced
in large numbers, with the exception of the {2, 6; 1}
states, where a total of 15 states have been produced.

Case {nimg, ñimg;nker} Q+ Q̃ P+ Q̃ Q+ P̃ P+ P̃ Edge Range

I {6, 6; 0} 48 8 8 0 Yes No
II {6, 6; 1} 49 9 9 0 Yes No
III {2, 6; 1} 49 9 9 0 Yes No
IV {6, 6; 2} 50 10 10 0 Yes No
V {6, 6; 3} 51 11 11 3 No No
VI {6, 6; 4} 52 12 12 5 No Yes

{∞,∞; 2} 50 12 12 0 Yes No
VII {∞,∞; 2} 50 11 11 6 No No

{∞,∞; 2}a 50 15 15 9 No No

Table 3. Data for the random rank (5, 5) PPT states we have produced based on the
standard forms presented in Section 7 and the special {2; 1} subspace in Section 8. The affix
a indicates that these states are PPT states of rank (4, 5). All states are non-SL-symmetric.
For the dimensions of the various surfaces the trivial solution A = ρ has been subtracted, so

the states for which P+ P̃ = 0, are extremal.

6.3. SL-symmetric states. The complete set of
PPT states of rank (5, 5) has dimension 48, and the
set of SL(3,C)×SL(3,C) transformations has dimen-
sion 16+16 = 32, so the set of equivalence classes of
rank (5, 5) states with respect to SL×SL transforma-
tions will have dimension 16 [15]. Hence in a random

search for PPT states of rank (5, 5) we will never find
two states belonging to the same equivalence class.
We also find that a generic state ρ does not belong
to the same SL-equivalence class as its partial trans-
pose ρP. So, SL-symmetric states can be found nu-
merically only by conducting specific searches.
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We have randomly produced 50 SL-symmetric
PPT states of rank (5, 5), which apart from being
SL-symmetric, are generic {6, 6; 0} states. These
searches are rather special in the sense that we look
for transformations of the form (33), but with a = 1,
i.e. transformations that are trace preserving. This
choice is mainly motivated by the fact that due to
Equation (38) we might in this way expect to find
states that are genuinely SL-symmetric.

Out of the 50 states produced in this way, about
half are genuinely SL-symmetric, as defined by Equa-
tion (35). This conclusion is drawn from producing
the actual SL × SL transformations from ρ to ρP.
Then, by comparing to the form in Equation (39)
and constructing the transformation U from (40),
one may check for genuine SL-symmetry. We con-
sider two transformations V1 and V2 to be identical if
they differ only by a phase factor eiα, i.e. V1 = eiαV2.
For the cases of genuine SL-symmetry, the number
of SL × SL transformations from ρ to ρP is always
three, and out of these there is only one that has the
form given in Equation (39).

Given three positive matrices A = [aij ], B = [bij ]
and C = [cij ], a special class of states proposed by
Chruściński and Kossakowski [16] are states of the
form

ρ̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 · · · a12 · · · a13
· b11 · · · b12 b13 · ·
· · c11 c12 · · · c13 ·
· · c21 c22 · · · c23 ·

a21 · · · a22 · · · a23
· b21 · · · b22 b23 · ·
· b23 · · · b32 b33 · ·
· · c31 c32 · · · c33 ·

a31 · · · a32 · · · a33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (58)

As long as A,B and C are positive matrices, then
so will ρ̂. There are additional constraints on the
elements aij , bij and cij in order for ρ̂ to be a PPT
state. Interestingly, all the genuinely SL-symmetric
PPT states of rank (5, 5) which we have produced,
can be transformed by product transformations to
the form (58). If we for a genuinely SL-symmetric
PPT state ρ of rank (5, 5) take the two transforma-
tions V1 and V2 �= V1, so that

V1ρV
†
1 = ρP, V2ρV

†
2 = ρP, (59)

then the transformation S = V1
−1V2 will transform

from Img ρ to Img ρ. Assuming that V1 is of the
form (39), the transformation S = SA ⊗ SB satisfy

S3 = I. If all transformations are nonsingular then
SA and SB will have the eigenvalue decompositions

SA =
3∑

i=1

λi gig
†
i , SB =

3∑
i=1

μi hih
†
i , (60)

where the eigenvalues λi and μi are complex roots
of the form {1, ω, ω2} with ω3 = 1, and the eigen-
evectors {gi} and {hi} are orthonormal sets. The
transformations

T−1
A = T †

A = [g1, g2, g3],

T−1
B = T †

B = [h1, h2, h3],
(61)

are such that

TρT † = ρ̂ with T = TA ⊗ TB. (62)

For the SL-symmetric states that are not genuinely
SL-symmetric, there is only one SL×SL transforma-
tion from ρ to ρP, and this is never of the form given
in Equation (39).

Our searches for SL-symmetric states have also
produced a small number of states that have sev-
eral other nongeneric properties, in addition to be-
ing SL-symmetric. From the results of these searches
we have collected many nongeneric structures, and
these have been instrumental to the study of the
nongeneric standard forms given in Chapter 7. For
instance, the very special subspace discussed in Sec-
tion 8, which is a {2; 1} subspace, is collected from a
small number of {2, 2; 1} SL-symmetric states found
in these random searches.

7. Nongeneric rank (5, 5) PPT states

We present several standard forms for nongeneric
orthogonal subspaces U = Img ρ and V = Ker ρ
of dimension five and four. The set of parameters
ai, bi, ci, di, ei, fi is usually assumed to be chosen in
a generic, or completely random manner. One may
however also make investigations into certain non-
generic choices for these coefficients.

These standard forms can be used to construct
nongeneric rank (5, 5) PPT states with a range de-
fined by the given standard form, and with nker >
0. Some of these constructions give states that
generically are extremal in P and therefore entan-
gled, while some return generically only nonextremal
states.

The case nker = 3. Given three product vectors in
the kernel of ρ we can make a product transforma-
tion so that we get for these zi = xi⊗yi for i = 1, 2, 3
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from Equation (41). We choose the orthogonality re-
lations

x1 ⊥ ui i = 2, 3, 6, y3 ⊥ vi i = 1, 4, 5,

x2 ⊥ ui i = 1, 3, 5, y2 ⊥ vi i = 2, 4, 6,

x3 ⊥ ui i = 1, 2, 4, y1 ⊥ vi i = 3, 5, 6.

(63)

A standard form for the six product vectors wi =
ui ⊗ vi in the range of ρ is then

u =

⎛⎝ 1 0 0 a4 1 0
0 1 0 1 0 b6
0 0 1 0 c5 1

⎞⎠,

v =

⎛⎝ 0 d2 1 0 0 1
1 0 e3 0 1 0
f1 1 0 1 0 0

⎞⎠.

(64)

This gives the product vectors

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 1 0
f1 0 0 a4 0 0
0 d2 0 0 0 b6
0 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 0 1
0 0 e3 0 c5 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (65)

Let A be the 6×6 matrix that results from removing
the rows of zeros, i.e. the rows one, five, and nine
from w, then

detA = d2e3f1 − a4b6c5. (66)

Since we want the six product vectors wi to span
a five dimensional space we require that detA =
0. This equation determines the sixth parameter
uniquely if we choose random values for five of the
parameters a4, b6, c5, d2, e3, f1.

We impose the further restrictions that all the six
parameters a4, . . . , f1 should be nonzero, and that∣∣∣∣∣∣

a4 1 0
1 0 b6
0 c5 1

∣∣∣∣∣∣ = −1− a4b6c5 �= 0,

∣∣∣∣∣∣
0 d2 1
1 0 e3
f1 1 0

∣∣∣∣∣∣ = 1 + d2e3f1 �= 0.

(67)

Then the three vectors u2, u3, u6 are linearly depen-
dent, and so are u1, u3, u5 and u1, u2, u4, but these
are the only sets of three vectors ui that are lin-
early dependent. In the same way, the only sets
of three linearly dependent vectors vi are v1, v4, v5,

then v2, v4, v6, and v3, v5, v6. These linear dependen-
cies make it possible for the three product vectors
z1, z2, z3, and only these, to be orthogonal to all the
six product vectors wi.

One may check that with these choices of parame-
ters there are no more product vectors that are linear
combinations of the six vectors wi.

It should be noted that we have a further freedom
of doing diagonal product transformations. In this
way we may actually reduce the number of parame-
ters in our standard form from six to one, setting for
example a4 = c5 = d2 = f1 = 1. We must then set
b6 = e3 �= {0,−1} in order to satisfy all the condi-
tions.

A PPT state ρ with Img ρ spanned by the product
vectors w1, . . . , w6 and with z1, z2, z3 ∈ Ker ρ must
also have z1, z2, z3 ∈ Ker ρP. For given w and z these
restrictions on ρ reduce our search for such states to
a seven dimensional subspace of H9. Six of the seven
dimensions are spanned by the pure product states

wiw
†
i , and there is only one dimension left where

there is room for entangled PPT states.
In random numerical searches we have produced

different sets of product vectors and hundreds of rank
(5, 5) PPT states. We find that they are all entan-
gled but not extremal. The only extremal PPT states
are the six pure product states and a four dimen-
sional surface of rank (4, 4) states. The normalized

product states ρi = Niwiw
†
i with normalization fac-

tors Ni define a five dimensional simplex, which con-
tains two special equilateral triangles with corners
ρ1, ρ2, ρ3 and ρ4, ρ5, ρ6. We never find these separa-
ble states in random searches.

A rank (5, 5) entangled PPT state arises as a con-
vex combination of an arbitrary rank (4, 4) extremal
PPT state and a separable state from one of the two
special triangles. Fig. 2 shows one three dimensional
set of rank (5, 5) PPT states bounded by the triangle
ρ4, ρ5, ρ6 and a two dimensional surface of extremal
rank (4, 4) PPT states. This geometry implies that
when ρ is a rank (5, 5) PPT entangled state there are
always three product vectors wi = ui ⊗ vi ∈ Img ρ
such that w̃i = ui ⊗ v∗i ∈ Img ρP. The two possible
sets of three are i = 1, 2, 3 or i = 4, 5, 6. Since there
are less than five such product vectors, the range cri-
terion is not fulfilled.

A separable state mixed from n product states ρi
has rank (n, n) if n < 6. It has rank (5, 6) and lies
in the interior of the simplex if n = 6. Rank (5, 6)
entangled states arise in many ways, for example as
convex combinations of one rank (4, 4) extremal state
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and pure product states from both special triangles,
for example ρ1 and ρ4. Ranks higher than six are
of course impossible, since Ker ρP contains the three
product vectors z1, z2, z3. Another consequence of
the last fact is that Img ρP contains six product vec-
tors of the form in Equation (65), usually with other
values for the coefficients a4, b6, c5, d2, e3, f1.

We conclude that all of the rank (5, 5) states pro-
duced in these searches are {6, 6; 3} entangled nonex-
tremal states that are neither edge states nor satisfy
the range criterion.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

Figure 2. A three dimensional set, the interior of
which consists of nonextremal entangled rank (5, 5)
PPT states. The set is bounded by an equilateral tri-
angle at z = 0 defined by three pure product states
ρ4, ρ5, ρ6, and a two dimensional surface (z > 0)
of extremal rank (4, 4) PPT states. The curves are
equidistant contours at intervals of Δz = 0.07. The
coordinates x, y, z are dimensionless.

The case nker = 2. Given two product vectors in
Ker ρ we can always make a product transformation
so that we get zi = xi ⊗ yi for i = 1, 2 from (41).

We have the freedom of doing further product
transformations with

(V †
A )−1xi = αixi,

(V †
B )−1yi = βiyi,

(68)

for i = 1, 2 and with αi, βi ∈ C. In order to have six
product vectors wi = ui⊗vi orthogonal to z1, z2, one

possibility is to impose the following orthogonality
conditions,

x1 ⊥ ui i = 1, 2, 3, y1 ⊥ vi i = 4, 5, 6,

x2 ⊥ ui i = 3, 4, 5, y2 ⊥ vi i = 1, 2, 6.
(69)

These conditions are satisfied when the six product
vectors wi = ui ⊗ vi in the range of ρ have the stan-
dard form

u =

⎛⎝ 0 0 0 a4 a5 a6
b1 b2 0 0 0 b6
1 1 1 1 1 1

⎞⎠,

v =

⎛⎝d1 d2 d3 0 0 0
0 0 e3 e4 e5 0
1 1 1 1 1 1

⎞⎠,

(70)

with ai, bi, di, ei ∈ C. We then get

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 a4e4 a5e5 0
0 0 0 a4 a5 a6

b1d1 b2d2 0 0 0 0
0 0 0 0 0 0
b1 b2 0 0 0 b6
d1 d2 d3 0 0 0
0 0 e3 e4 e5 0
1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (71)

We may generate random values of the coefficients
ai, bi, di, ei defining any five of the six product vec-
tors wi. Then we always find a sixth product vector,
unique up to normalization, which is a linear combi-
nation of the five. The complete set of six product
vectors then has rank five and automatically takes
the form given in Equation (71). It is straightfor-
ward to check that z1, z2 are the only product vectors
orthogonal to all the wi.

We generate rank (5, 5) PPT states ρ with
w1, . . . , w6 ∈ Img ρ. With the additional restriction
that the two fixed product vectors z1 and z2 should
be in Ker ρP, the search can be restricted to an 11 di-
mensional subspace of the 81 dimensional space H9

of Hermitian matrices.
With different sets of product vectors generated

in this way we have produced numerically, by ran-
dom searches, hundreds of rank (5, 5) PPT states.
They are all extremal. Hence they are also edge
states, that is, when ui ⊗ vi ∈ Img ρ we never have
ui ⊗ v ∗

i ∈ Img ρP . The partial transpose ρP of such
a state ρ always has the same characteristics, i.e.
there are six product vectors in Img ρP of the form
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given in Equation (71), but with different values of
the coefficients ai, bi, di, ei.

In summary, all the states produced in this way
are {6, 6; 2} extremal states.

The case nker = 2 with symmetric orthogonality re-
lations. Observe that for the above standard form
given in Equation (70), the orthogonality relations
in Equation (69) overlap. This has been done inten-
tionally, and the reason will become clear when we
now try to impose the more symmetric orthogonality
relations

x1 ⊥ ui i = 1, 2, 3, y1 ⊥ vi i = 4, 5, 6,

x2 ⊥ ui i = 4, 5, 6, y2 ⊥ vi i = 1, 2, 3.
(72)

This would give six product vectors wi = ui ⊗ vi in
Img ρ on a standard form

u =

⎛⎝ 0 0 0 a4 a5 a6
b1 b2 b3 0 0 0
1 1 1 1 1 1

⎞⎠,

v =

⎛⎝d1 d2 d3 0 0 0
0 0 0 e4 e5 e6
1 1 1 1 1 1

⎞⎠,

(73)

where ai, bi, di, ei ∈ C. As compared to Equa-
tion (78) it means that we set b4 = b5 = b6 = e1 =
e2 = e3 = 0. We then get

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 a4e4 a5e5 a6e6
0 0 0 a4 a5 a6

b1d1 b2d2 b3d3 0 0 0
0 0 0 0 0 0
b1 b2 b3 0 0 0
d1 d2 d3 0 0 0
0 0 0 e4 e5 e6
1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (74)

Omitting one of the six product vectors gives
rankw = 5. However, omitting for example w6, we
can find no sixth product vector of the form w6 in
the five dimensional subspace. On the other hand,
there will be infinitely many product vectors that are
linear combinations of w1, w2, w3. In fact, u3 and v3
must be linear combinations

u3 = α1u1 + α2u2,

v3 = β1v1 + β2v2,
(75)

and then for any γ1, γ2 ∈ C the product vector
w′ = u′ ⊗ v′ with

u′ = γ1α1u1 + γ2α2u2,

v′ = γ1β1v1 + γ2β2v2,
(76)

will be a linear combination of w1, w2, w3. All these
product vectors lie in a three dimensional subspace
of a C

2 ⊗ C
2 subspace.

Our search for rank (5, 5) PPT states ρ with
w1, . . . , w5 ∈ Img ρ and z1, z2 ∈ Ker ρP can now
be restricted to a 13 dimensional subspace of H9.
Using five such randomly generated product vectors
w1, . . . , w5 to create subspaces of dimension five, we
have produced numerically by random searches hun-
dreds of rank (5, 5) PPT states. Most of the states
we find are separable, but we also find a very small
number of extremal rank (5, 5) PPT states.

We find that 11 of the 13 dimensions in H9 rep-
resent unnormalized separable states, and the entan-
gled PPT states account for the last two of the 13
dimensions. This can be understood as follows. The
product vectors w1, w2, w3 span a three dimensional
subspace containing infinitely many product vectors.
These product vectors generate a set of unnormal-
ized separable states of dimension nine, the same as
the complete set of unnormalized density matrices
on the three dimensional subspace. In addition we
get two more dimensions of separable states from the
product vectors w4 and w5.

Note that a separable state mixed from more than
three product vectors in the C

2 ⊗ C
2 subspace will

have rank (3, 4). Hence, if we mix in also one or both
of w4, w5 we will get separable states of rank (4, 5)
or (5, 6), respectively.

The partial transposes of the states we construct
numerically have the same characteristics, thus all
the states are of type {∞,∞; 2}. It is noteworthy
that it is possible for an extremal rank (5, 5) PPT
state to have infinitely many product vectors in its
range.

The case nker = 1. Given a product vector in the ker-
nel of ρ we may perform a product transformation as
in Equation (30) so that the vector after normaliza-
tion take the form z1 = x1 ⊗ y1, where again x1 is
taken from Equation (41).

This transformation is not unique, and we have
the freedom of doing further transformations with

(V †
A )−1x1 = αx1,

(V †
B )−1y1 = βy1,

(77)
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with α, β ∈ C. We assume that the six product vec-
tors wi = ui⊗ vi in the range of ρ have the standard
form

u =

⎛⎝ 0 0 0 a4 a5 a6
b1 b2 b3 b4 b5 b6
1 1 1 1 1 1

⎞⎠,

v =

⎛⎝d1 d2 d3 0 0 0
e1 e2 e3 e4 e5 e6
1 1 1 1 1 1

⎞⎠,

(78)

where ai, bi, di, ei ∈ C. They are then orthogonal to
z1 = x1 ⊗ y1 because

x1 ⊥ ui i = 1, 2, 3, y1 ⊥ vi i = 4, 5, 6. (79)

We then get

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 a4e4 a5e5 a6e6
0 0 0 a4 a5 a6

b1d1 b2d2 b3d3 0 0 0
b1e1 b2e2 b3e3 b4e4 b5e5 b6e6
b1 b2 b3 b4 b5 b6
d1 d2 d3 0 0 0
e1 e2 e3 e4 e5 e6
1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (80)

The normalization in Equation (78) presupposes that
the third component of every vector is nonzero.
There is no loss of generality in this assumption, be-
cause of the freedom we have to do product transfor-
mations. This freedom could actually be used to re-
duce the number of parameters in the standard form
given in Equation (78).

In our numerical searches we generate, for exam-
ple, random values for the coefficients ai, bi, di, ei for
i = 1, . . . , 5. This is then a generic case in which
w1, . . . , w5 span a five dimensional subspace, and
there will be a unique solution for a6, b6, e6 such that
w6 lies in this subspace. There are no other product
vectors in the subspace, in the generic case.

Furthermore, there can be no product vector z′ =
x′ ⊗ y′ orthogonal to all wi, apart from z′ = z1. In
fact, x′ can at most be orthogonal to three vectors ui,
because any four vectors ui span C

3. Similarly, y′ can
at most be orthogonal to three vectors vi. The only
set of three linearly dependent vectors ui is u1, u2, u3,
and the only set of three linearly dependent vectors
vi is v4, v5, v6. The only possibility is therefore that
x′ ⊥ ui with i = 1, 2, 3 and y′ ⊥ vi with i = 4, 5, 6,
implying that z′ = z1.

We generate rank (5, 5) PPT states with this sub-
space as range. In general, there is a 25 dimensional
real vector space of Hermitian matrices operating on
a fixed subspace of dimension five. However, when
we are searching for a PPT state ρ with ρz1 = 0, we
have the additional restriction that the partially con-
jugated product vector z̃1 = x1 ⊗ y∗1 = x1 ⊗ y1 = z1
must be in Ker ρP. This reduces the 25 dimensions
to 17, because the equation ρPz1 = 0 gives the four
extra complex equations ρjk = 0 with j = 2, 3 and
k = 4, 7. It is straightforward to find rank (5, 5) PPT
states in this 17 dimensional space of Hermitian ma-
trices.

In random searches we have produced hundreds of
such states for many different sets of product vec-
tors w. All states produced in this manner are ex-
tremal. Hence they are edge states, that is, when
u ⊗ v ∈ Img ρ we never have u ⊗ v ∗ ∈ Img ρP. We
find that the partial transpose ρP always has the
same characteristics as ρ, i.e. there are six product
vectors in Img ρP of the form in Equation (78), but
with different values for the coefficients ai, bi, di, ei.

So in our classification all these states are {6, 6; 1}
extremal states.

The case nimg < 6. All the above forms have been
constructed as to contain (at least) six product vec-
tors. There is however no reason to limit the possible
values of nimg to this. The maximum dimension of
an entangled subspace, a subspace that does not con-
tain any product vectors, is known from [13]. For the
3×3 system the limiting dimension is 4. So any sub-
space of C9 of dimension five or higher must contain
at least one product vector. We shall see in the next
section an example of a very special {2; 1} subspace
of C9.

For any five dimensional subspace of C9 to con-
tain less than generic number of six product vectors,
the set of equations in (13) must have degenerate so-
lutions. To fully describe extremal rank (5, 5) PPT
states according to the {nimg, ñimg;nker} characteris-
tic, these matters should be further developed.

8. An exceptional subspace of type {2; 1}
A generic five dimensional subspace of C

3 ⊗ C
3

contains exactly six product vectors. Obviously, a
nongeneric five dimensional subspace may well con-
tain infinitely many product vectors, if it contains a
whole product space C

1 ⊗ C
2, C2 ⊗ C

1, or C
2 ⊗ C

2.
On the other hand, it may also contain less than six
product vectors.
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In our random searches for rank (5, 5) PPT states
with the special symmetry property that the state
ρ and its partial transpose ρP are SL-equivalent, we
have found four such states with nimg = 2. A further
special property of these states is that nker = 1, i.e.
there is exactly one product vector in Ker ρ. The
states are not extremal, since three of them lie on a
line between a pure product state and a rank (4, 4)
extremal PPT state, whereas one lies inside a two di-
mensional region bounded by a closed curve of rank
(4, 4) extremal PPT states.

Further numerical random searches for rank (5, 5)
PPT states with the same range as the non-extremal
rank (5, 5) PPT states described above, but not
restricted to SL-symmetric states, reveal extremal
states of type {2, 6; 1}. It is clear that a subspace
with only two product vectors supports just one line
of separable states.

We find that the pure product state and the curve
of rank (4, 4) states are parts of the same geome-
try, which can be transformed to a standard form as
shown in Figure 3. It is an empirical fact that a rank
(4, 4) state τ44 involved in such a construction of a
rank (5, 5) state ρ can always be transformed to a
standard form where the product vectors in Ker τ44
are related to regular icosahedra. We will now de-
scribe this standard form in more detail.

8.1. Rank (5, 5) states in a region bounded by
rank (4, 4) states. We describe here analytically a
set of states found by transformation to standard
form of one particular rank (5, 5) nonextremal PPT
state found numerically in a random search. This
particular state lies inside a curve of rank (4, 4)
states, but the three other states we have found be-
long to the same geometry. It is remarkable that an-
alytically defined states possessing such very special
properties turn up in random searches. Our limited
imagination would not have enabled us to deduce
their existence.

After transformation to standard form the rank
(5, 5) state lies inside a circle bounded by extremal
rank (4, 4) PPT states. The interior of the circle con-
sists entirely of rank (5, 5) PPT states, each of which
has exactly one product vector in its kernel, this vec-
tor is common to all the rank (4, 4) and rank (5, 5)
states. Each of the rank (4, 4) states have five addi-
tional product vectors in its kernel, these are different
for the different states. The rank (4, 4) states have
no product vectors in their ranges, whereas all the
rank (5, 5) states have one common range contain-
ing exactly two product vectors. All the rank (4, 4)

and rank (5, 5) states are symmetric under partial
transposition.

Product vectors from a regular icosahedron. In the
standard form we define, all the product vectors
in the kernels of all the rank (4, 4) states are de-
fined from regular icosahedra, as follows. We define
ck = cos(2kπ/5), sk = sin(2kπ/5), thus

c1 = c4 =

√
5− 1

4
,

s1 = −s4 =
√

10 + 2
√
5

4
,

c2 = c3 = −
√
5 + 1

4
,

s2 = −s3 =
√

10− 2
√
5

4
.

(81)

Note that φ = 2c1 = 0.61803 . . . is the golden mean,
defined by the equation φ2 = 1− φ.

We define product vectors zk = xk ⊗ yk for k =
1, 2, . . . , 6 with

x =
1√
5

⎛⎝ 2 2c1 2c2 2c3 2c4 0
0 2s1 2s2 2s3 2s4 0
1 1 1 1 1

√
5

⎞⎠,

y =
1√
5

⎛⎝2c2 2 2c3 2c1 2c4 0
2s2 0 2s3 2s1 2s4 0
1 1 1 1 1

√
5

⎞⎠.

(82)

The 12 vectors ±xk are real and are all the corners of
a regular icosahedron. The vectors yk as defined here
are the same vectors in a different order. We define
x and y in such a way that x5 = y5 and x6 = y6. The
product vector z6 is going to play a special role, it
will be the one common product vector in the kernels
of any two of the rank (4, 4) states.

The six product vectors zk are linearly dependent
and define a five dimensional subspace of C9. The or-
thogonal projection on this subspace may be written
as

Q =
5

6

6∑
k=1

zkzk
†. (83)

Since Q is a projection, with Q2 = Q, and is symmet-
ric under partial transposition, QP = Q, we conclude
that the matrix

τ44 =
1

4
(I −Q) (84)

is a rank (4, 4) PPT state, entangled and extremal.
This method for constructing such states is known as
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a UPB construction, since any five of the six vectors
zk form an unextendible product basis for the sub-
space, so called because there is no product vector
orthogonal to all of them [8, 9].

Note that Q and τ44 are symmetric under partial
transposition with respect to subsystem B, in our
notation QP = Q and τ P

44 = τ44, because the vec-
tors yk defined in Equation (82) are real. They are
also symmetric under partial transposition with re-
spect to subsystem A, in our notation QPT = Q and
τ PT
44 = τ44, because the vectors xk are real.
We now define product vectors wk = uk ⊗ vk for

k = 1, 2 with

u1 =
1√
2

⎛⎝ 1
−i
0

⎞⎠ = v2 = v∗1, u2 =

⎛⎝ 0
0
1

⎞⎠, (85)

Note that u2 = x6 = y6 and

u1 =
1√
10

5∑
j=1

ωj−1 xj , (86)

with ω = e−2πi/5 = c1 − is1. We define

W = w1w2
† = (u1u2

†)⊗ (v1v2
†), (87)

and then the two Hermitian matrices

A = W +W †, B = i (W −W †). (88)

Since v1 = v ∗
2 , W is symmetric under partial trans-

position,

W = (u1u2
†)⊗ (v1v

T
1 )

= (u1u2
†)⊗ (v1v

T
1 )T = WP,

(89)

and so are A and B. Define now

ρ = τ44 + αA+ βB, (90)

with real parameters α and β. Putting d1 = 24α −
2
√
2c1 and t1 = 24β − 2

√
2s1, the eigenvalues of ρ

are four times 0, three times 1/4, and

λ± =
1

8
± 1

24

√
1 + d21 + t21. (91)

Since ρP = ρ, we get a rank (4, 4) PPT state with
λ− = 0 when(

24α− 2
√
2 c1
)2

+
(
24β − 2

√
2 s1
)2

= 8. (92)

In particular, α = β = 0 gives the state τ44 that we
started from. Equation (92) defines a circle of rank

(4, 4) states, which are in fact extremal PPT states.
All the states inside the circle are rank (5, 5) non-
extremal PPT states. The centre of the circle we
call ρ0, it has α =

√
2 c1/12 and β =

√
2 s1/12.

All the states defined by Equation (90) are sym-
metric under partial transposition with respect to
subsystem B, we have that

ρP = τ P
44 + αAP + βBP

= τ44 + αA+ βB = ρ.
(93)

However, because A and B are complex, ρ is complex
when α �= 0 or β �= 0. Then it is not symmetric un-
der partial transposition with respect to subsystem
A, we have then that

ρPT = ρT = ρ∗ �= ρ. (94)

All the rank (4, 4) states on the circle are projec-
tions. The rank (4, 4) state at an angle γ around
the circle from the state τ44 is Uτ44 U

† where U =
UA ⊗ UB is a a unitary product transformation,

UA =

⎛⎝cos(γ/10) − sin(γ/10) 0
sin(γ/10) cos(γ/10) 0

0 0 e−iγ/2

⎞⎠,

UB =

⎛⎝ cos(γ/5) sin(γ/5) 0
− sin(γ/5) cos(γ/5) 0

0 0 1

⎞⎠,

(95)

The kernel of Uτ44U
† is defined by the transformed

icosahedron vectors (U †
A)

−1x = UAx and (U †
B)

−1y =
UBy. This transformation leaves y6 invariant and x6
invariant up to a phase factor. A rotation by γ = 2π
is a cyclic permutation of the first five icosahedron
vectors,

x1 �→ −x4 �→ x2 �→ −x5 �→ x3 �→ −x1,
y1 �→ y4 �→ y2 �→ y5 �→ y3 �→ y1.

(96)

Note that the vectors u1, u2, v1, and v2 are eigenvec-
tors of the transformation matrices UA and UB, for
example,

UAu1 = eiγ/10 u1. (97)

Hence the pure states ρk = wkw
†
k are invariant under

the transformation ρ �→ UρU †.
The geometry of this construction is depicted in

Figure 3. The four traceless matrices A,B, ρ1 − ρ0,
and ρ2−ρ0 define directions in H9 that are mutually
orthogonal. The directions A and B define the plane
of the circle centered on ρ0. Thus, the two states
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ρk = wkwk
† with k = 1, 2, together with the circle of

rank (4, 4) states, define two cones that are different
three-dimensional faces of P, the set of PPT states.
All the nonextremal states on the surface of a cone
are rank (5, 5) states.

A state ρ lying inside a cone may be written as a
convex combination

ρ = pρ55 + (1− p)ρk, 0 < p < 1, (98)

with ρ55 inside the circle and k = 1, 2. This state
also has rank five, since wk ∈ Img ρ55. But its par-
tial transpose ρP will have rank six, because it is a

convex combination of ρP
55 = ρ55 and one of the two

pure product states

ρP1 = (u1 ⊗ v2)(u1 ⊗ v2)
†,

ρP2 = (u2 ⊗ v1)(u2 ⊗ v1)
†.

(99)

Since ρPT
55 = ρT55 �= ρ55, that is, ρ55 is not symmetric

under partial transposition with respect to system A,
we conclude that neither is ρ. The same conclusion,
that ρPT �= ρ, follows because ρPT must have rank
six, in fact it has the same eigenvalues as ρP.

ρ44

ρk

τ44ρ44

ρ55

ρ44
ρ55

ρ0
γ

Figure 3. A pure product state ρk = wkwk
† with k = 1 or k = 2, together with the circle

of extremal rank (4, 4) PPT states, define a three-dimensional conical face of P. States on
the surface that are nonextremal on the cone, are entangled PPT states of rank (5, 5), while
the interior of the cone contains entangled PPT states of rank (5, 6). The state ρ0 is the
centre of the circle, and the state τ44 is the special state defined in (84).

Since u2 as defined in Equation (85) is real, it fol-
lows that ρPT = ρ when we define

ρ = pτ44 + (1− p)ρ2, 0 < p < 1. (100)

Thus, a state ρ of this form is a rank (5, 5) state on
the surface of a cone, and this state is symmetric
under partial transposition with respect to system
A. Since ρP and ρPT have the same eigenvalues,

we can deduce that ρ and ρP have the same eigen-
values, although they are neither SU-equivalent nor
SL-equivalent.

If we define

ρ̃ = pρ44 + (1− p)ρ2, (101)

using a different rank (4, 4) state ρ44 in place of the
special state τ44, then we get a state ρ̃ that has no
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longer the same symmetry as ρ, but is equivalent to
ρ by a unitary product transformation U as given
in Equation (95). In this case again ρ̃, ρ̃P, and ρ̃PT

all have the same eigenvalues, in fact, they have the
same eigenvalues as ρ, ρP, and ρPT.

If we replace ρ2 by ρ1 in Equation (100), then the
state ρ we get is not SL-equivalent to any one of ρP

or ρPT. All three states ρ, ρP , and ρPT still have the
same set of eigenvalues, although the reason is not
clear.

Four similar constructions. The construction just
described is one of four different ways of extending
the four dimensional subspace Img τ44 to a five di-
mensional subspace which is orthogonal to z6 and
contains exactly two product vectors w1, w2. Define

a =

⎛⎝ 0
0
1

⎞⎠, b =
1√
2

⎛⎝ 1
i
0

⎞⎠. (102)

We find that the only possibilities are those given in
Table 4. They give rise to four different circles of
rank (4,4) extremal PPT states. The specific pos-
sibility given by Equation (85) is case 2 in Table 4.
Since a is real, it is quite obvious from Table 4 that
case 1 and case 2 are related by complex conjugation,
and so are also case 3 and case 4.

Case w1 w2

1 b⊗ b∗ a⊗ b
2 b∗⊗ b a⊗ b∗
3 b⊗ b b∗⊗ a
4 b∗⊗ b∗ b⊗ a

Table 4. The four ways to extend
Img τ44 to a five dimensional subspace or-
thogonal to z6, and containing exactly two
product vectors w1, w2.

In our numerical random searches for SL-
symmetric PPT states of rank (5, 5) we have (by pure
chance) found four examples of states that are SL-
equivalent to states lying on the surface of a cone,
as described above. In one example the state lies
inside the circle, and is of the form given in Equa-
tion (90). This is the case discussed in detail above,
corresponding to case 2 in Table 4. In the three other
examples the state lies on the side of the cone, and
is of the form given in Equation (100). These corre-
spond to the case 3 and case 4 in Table 4, where we
have ρP2 = ρ2 for the pure product state ρ2.

9. Summary and outlook

The work presented here is a continuation of previ-
ous studies of the entangled PPT states of rank (5, 5)
in the 3× 3 system, with an emphasis on nongeneric
states. We use both numerical and analytical meth-
ods, and to some extent we build on ideas from [15].
For dimensions 3 × 3 it is known that the extremal
PPT states of lowest rank, which are not pure prod-
uct states, are entangled states of rank four. The
classification of these rank four states is believed to
be complete. The structure of extremal rank five
PPT states appear however much more complex.

The equivalence between PPT states under SL ×
SL-transformations is a very important concept. The
special cases where ρ and its partial transpose ρP

have this SL-equivalence are SL-symmetric states.
We define a state ρ to be genuinely SL-symmetric if
it is SL-equivalent to a state τ = τP. We then show
that genuine SL-symmetry implies SL-symmetry,
and that in the case of genuine SL-symmetry at least
one SL-transformation from ρ to ρP must have a
special diagonal block form and in addition be trace
preserving. We argue that SL-symmetric states can
be found numerically, but only by conducting spe-
cific searches. We have randomly produced 50 SL-
symmetric PPT states of rank (5, 5), which apart
from being SL-symmetric, are generic states. These
searches are rather special in the sense that we look
for product transformations that are trace preserv-
ing. This choice is motivated by the fact that we
might in this way expect to find states that are gen-
uinely SL-symmetric. A summary of the results can
be found in Section 6.

Generic extremal PPT states of rank (5, 5) have
no product vectors in their kernel. How to construct
PPT states that have a nonzero number nker of prod-
uct vectors in the kernel is discussed in [15], and here
these matters are further developed. For the 3×3 sys-
tem this is essentially a study of orthogonal comple-
mentary subspaces U ,V ⊂ C

9 of dimension five and
four, with certain nongeneric properties as described
in Section 5.2. Using these nongeneric properties we
have constructed several standard forms for U and
V, with nker ranging from one to four, and then pro-
duced PPT states of rank (5, 5) with U = Img ρ and
V = Ker ρ. For a detailed summary of the results,
we refer to Section 6.

For the case nker = 4 we find an interesting new
analytical construction of all rank four extremal PPT
states, up to SL-equivalence, where they appear as
boundary states on one single five dimensional face
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on the set of normalized PPT states. The interior of
the face consists of rank five states, a simplex of sep-
arable states surrounded by entangled PPT states.
All these states are real matrices, symmetric under
partial transposition.

Also, a very special subspace, which is a {2; 1} sub-
space, is collected from a small number of {2, 2; 1}
states found in random searches for SL-symmetric
states. We describe analytically a set of states found
by transformation to standard form of one particu-
lar rank (5, 5) nonextremal PPT state in this sub-
space. After transformation to standard form the
rank (5, 5) state lies inside a circle bounded by ex-
tremal rank (4, 4) PPT states. The interior of the
circle consists entirely of rank (5, 5) PPT states, each
of which has exactly one product vector in its kernel,
and this product vector is common to all the rank
(4, 4) and rank (5, 5) states. Each of the rank (4, 4)
states has five additional product vectors in its ker-
nel, these are different for the different states. The
rank (4, 4) states have no product vectors in their
ranges, whereas all the rank (5, 5) states have one
common range containing exactly two product vec-
tors. All the rank (4, 4) and rank (5, 5) states are
symmetric under partial transposition.

All our nongeneric standard forms have been con-
structed as to contain (at least) six product vectors.
There is however no reason to limit the possible val-
ues of nimg to this. The maximum dimension of an
entangled subspace is known from [13]. For the 3×3
system the limiting dimension is four. So any sub-
space of C9 of dimension five or higher must contain
at least one product vector. An analysis on how to
construct subspaces of C9 with various nimg < 6 is
given in [11]. To fully describe extremal (5, 5) PPT
states according to the number of product vectors in
the range and kernel, these matters should be further
developed.

As for the case of the generic PPT states of
rank (5, 5), we still do not know how to construct
these. An underlying structure that these states
might contain, and that would make such a construc-
tion scheme possible, has yet to be found. Also, we
are even further from a full understanding of higher
rank extremal PPT states in 3× 3 dimensions, or in
higher dimensions.
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