
ISBN 978-82-326-1812-5 (printed ver.)
ISBN 978-82-326-1813-2 (electronic ver.)

ISSN 1503-8181

Doctoral theses at NTNU, 2016:237

Gerhard Henning Olsen

Ferroelectric 
Tungsten Bronzes

D
oc

to
ra

l t
he

si
s

D
oct oral theses at N

TN
U

, 2016:237
G

erhard H
enning O

lsen

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f

Sc
ie

nc
e 

an
d 

Te
ch

no
lo

gy
Th

es
is

 fo
r 

th
e 

D
eg

re
e 

of
P

hi
lo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lt
y 

of
 N

at
ur

al
 S

ci
en

ce
s 

an
d 

Te
ch

no
lo

gy
 

D
ep

ar
tm

en
t o

f M
at

er
ia

ls
 

Sc
ie

nc
e 

an
d 

En
gi

ne
er

in
g



Thesis for the Degree of Philosophiae Doctor

Trondheim, September 2016

Norwegian University of Science and Technology 
Faculty of Natural Sciences and Technology 
Department of Materials Science and Engineering

Gerhard Henning Olsen

Ferroelectric 
Tungsten Bronzes



NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Natural Sciences and Technology
Department of Materials Science and Engineering

© Gerhard Henning Olsen

ISBN 978-82-326-1812-5 (printed ver.)
ISBN 978-82-326-1813-2 (electronic ver.)
ISSN 1503-8181

IMT-report 2016:231

Doctoral theses at NTNU, 2016:237

Printed by NTNU Grafisk senter



Preface

This thesis has been submitted to NTNU, Norwegian University of Science and Tech-
nology, in partial fulfilment of the requirements for the academic degree Philosophiae
Doctor.

The work described herein has been performed at NTNU between August 2012
and July 2016, including a four months stay with the Materials Theory group at ETH
Zurich from January to April 2015. The work has been supervised by Professor Tor
Grande (main advisor) and Associate Professor Sverre Magnus Selbach (co-advisor)
at the Department of Materials Science and Engineering, and by Professor Henrik
Koch (co-advisor) at the Department of Chemistry (all at NTNU).

The project has been funded jointly by the Faculty of Natural Sciences and Tech-
nology at NTNU, and the Research Council of Norway (NFR) as part of the strategic
project “From molecules to process applications” (NFR project no. 209337). Com-
putational resources have been provided by the Norwegian metacenter for High
Performance Computing (Notur) through the project NN9264K.

All experimental work has been performed by the author, with the exception of
the neutron diffraction experiments which were performed by Dr. Magnus Helgerud
Sørby at Institute for Energy Technology, Kjeller, Norway. All computational work
has been performed by the author. Calculations have been done on the Abel Cluster
at the University of Oslo, and on the Euler Cluster at ETH Zurich.

Parts of this thesis have been published, and the scientific papers are included in
Appendix A. The author of this thesis has been the main contributor to all papers,
but all co-authors have been involved in the writing of the manuscripts.

Trondheim, August 26, 2016
Gerhard Henning Olsen
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Summary

Ferroelectric materials are everywhere in the modern society, from consumer elec-
tronics to car engines. Applications cover a whole range of devices such as sensors,
actuators and transducers due to their dielectric or piezoelectric properties. Almost all
technologically important ferroelectrics have the perovskite crystal structure, and the
dominating material is lead zirconate titanate (PZT). In recent years, there has been
an increasing desire to develop lead-free alternatives to PZT, although no definite
replacement has yet emerged. Exploration of materials with other crystal struc-
tures is an attractive route towards finding lead-free alternatives. Ferroelectrics with
tetragonal tungsten bronze (TTB) structure have been known for more than 60 years,
including lead metaniobate, which is commercially available for high temperature
piezoelectric sensor applications. In this work, ferroelectric tungsten bronzes were
investigated by combining experiments with first-principles density functional theory
(DFT) calculations. The principal goal was to obtain a fundamental understanding of
the origin of polarization in this class of materials, which is expected to receive more
attention in the years to come.

A major part of the thesis is focused on the materials strontium barium niobate
(SBN) and lead metaniobate (PN). While they both have the TTB structure, they are dif-
ferent in terms of space group symmetry and orientation of polarization with respect
to the structural framework. Moreover, the dielectric behaviour of SBN changes with
the Sr/Ba ratio, with Ba-rich compositions being classical ferroelectrics and Sr-rich
compositions relaxors. Despite the fact that this has been known for decades, the ori-
gin of this fundamental difference has so far not been investigated in depth. Both SBN
and PN are “unfilled” TTBs, meaning that the structure contains a mixed occupancy of
cations and vacancies. This creates a possibility for cation order–disorder phenomena.
The energetics of cation ordering in SBN, approximated by the end components, SN
and BN, and PN were investigated by first principles calculations, initially with focus
on the paraelectric structures. A supercell approach was used to sample ten different
possible cation configurations, as an approximation to the true, possibly disordered
structure. A thermodynamic model was developed for cation interchange in tungsten
bronzes, and this model predicts that cation ordering in the three compositions SN,
BN and PN behave qualitatively different as a function of temperature. Importantly,
it was concluded that Ba-rich, ferroelectric SBN compositions will probably be more
strongly affected by the thermal history than Sr-rich relaxor compositions.

The next step in the investigation was the underlying mechanism behind the
ferroelectric transition in SBN and PN. First-principles phonon calculations revealed
an unstable polar mode in all the ten configurations of both SN and BN. The mode is
similar to the soft mode causing spontaneous polarization in perovskite ferroelectrics
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x SUMMARY

such as BaTiO3 and KNbO3. Some of the configurations were also found to have
a second instability, a mode consisting of octahedral tilting in the xy plane of the
TTB structure. In contrast to many ferroelectrics, this was not found to reduce the
polarization, even for severely distorted structures. The possibilities for octahedral
tilting are limited in the rigid TTB structure, and the structural framework cannot
completely adapt to the different size of the Sr2+ and Ba2+ cations. This leaves Sr2+

with enough space so that it can displace under the application of an electric field,
which is suggested to contribute to the diffuse dielectric response of Sr-rich SBN.
In the case of PN, X-ray and neutron diffraction experiments were performed in
order to provide reliable data on the ferroelectric crystal structure. Refinement of the
cation distribution made it possible to concentrate further first principles calculation
on only four relevant cation configurations, for which energies and spontaneous
polarization were calculated. The polarization was found to be large and surprisingly
robust against cation disorder. Nudged elastic band calculations were performed for
the ferroelastic switching in PN, and high transition barriers were found. This is a
likely reason why the observed spontaneous polarization in PN is lower than the
calculated value.

SBN and PN are “unfilled” TTBswith cation–vacancy disorder. A number of “filled”
TTBs were also examined computationally, both to isolate the order–disorder effects
from other phenomena, and to extend the project to more general TTB materials. The
series K4R2Nb10O30 with R = La, . . . ,Gd,Bi was studied by first-principles phonon
calculations, and it was found that while all are subject to the same polar instability
as unfilled SBN, the size of the R3+ cation has a profound effect on an in-plane polar
instability similar to the one found in PN. When R = Bi, this instability dominates
and results in a net in-plane polarization. Comparison with materials where K is
replaced by Tl revealed that the in-plane polarization is closely connected to the
presence of lone pair cations on the perovskite-like A1 sites in the TTB structure. It is
suggested that this is the mechanism behind the morphotropic phase boundary in the
lead barium niobate system, for which very high piezoelectric response is achieved.

TTBs with partially reduced Nb are electrically conducting and have recently
been shown to be promising for thermoelectric applications. (Sr, Ba)6Nb10O30, the
filled counterpart to the ferroelectric SBN system, has an interesting metal–insulator
transition as the composition changes from the Ba to the Sr end component. As
metallic systems are more challenging for DFT calculations than insulators, atten-
tion was given to the choice of functional used for (Sr, Ba)6Nb10O30. The DFT+U
approach was used, after calibration against computationally much more expensive
hybrid functional calculations. Structural optimizations and phonon calculations
were then performed, along with an analysis of the electronic structure. Consistent
with experiments, filled Ba6Nb10O30 was found to be dynamically stable in the tetrag-
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onal aristotype symmetry, while filled Sr6Nb10O30 has multiple instabilities which
lead to an orthorhombic ground state with octahedral tilting and a larger unit cell.
The electronic structure calculations were however inconclusive with respect to the
metal–insulator transition associated with this structural distortion.

The final part of the thesis deals with the rhombohedral polymorph of PN, r-
PN. At room temperature, PN is only metastable in the TTB structure, with r-PN
being the thermodynamically stable structure. This polymorph has previously been
thought to have less interesting properties, with little or no piezoelectric response.
The previously reported space group symmetry, R3m, is polar, and initial calculations
of the spontaneous polarization based on structural data from literature demonstrated
a fairly high polarization. A polar–nonpolar phase transition, which could possibly
be ferroelectric, was also observed by high-temperature X-ray diffraction, so it was
decided to investigate further whether r-PN could have attractive functional properties.
X-ray and neutron diffraction experiments were conducted in order to provide a better
description of the crystal structure of r-PN at room temperature. This led to a complete
re-investigation of the crystal structure, and it was concluded based on experimental
and computational investigations that the space group symmetry of r-PN is R3, and
not R3m as previously reported. At the same time, the improved description of
the crystal structure led to significantly less exciting predictions of spontaneous
polarization, and additional dielectric characterization demonstrated that while the
material indeed shows a polar–nonpolar phase transition at a high temperature of
780 ◦C, the structural transition has no impact on the dielectric permittivity and the
material is not ferroelectric.

Finally, this work is a significant contribution to a platform for computational
investigation of ferroelectric tungsten bronzes. It has been established that the
ferroelectric polarization in the well known SBN system is driven by an unstable
phonon similar to what is found in ferroelectric perovskites, and is suggested to be
a general feature for most Nb-based TTBs. Only in certain cases, such as when the
A1 site is occupied by a lone pair cation, the out of plane polarization mechanism is
suppressed by a different driving force, leading to in-plane polarization.
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1Background

It is not an overstatement to claim that ferroelectricity is one of the cornerstones of
today’s technology-infested society. The fundamental property of a ferroelectric is
the existence of a microscopic electric dipole moment, Figure 1.1(a), which can be
reoriented by an applied electric field. Macroscopically, this gives rise to a switchable
electric polarization which can be measured experimentally as a current, Figure 1.1(b).
The effect was first discovered in 1921 in Rochelle salt, an organic salt which at the
time was already known to be piezo- and pyroelectric.
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+ + + +
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Figure 1.1 — (a) Atomic arrangement for a typical ferroelectric with perovskite
structure. The non-centrosymmetric arrangement of cations (+) and anions (–) gives
rise to a microscopic dipole moment (PS). (b) Typical characteristic of a ferroelectric
material: Application of an electric field (E) produces a macroscopic polarization (P )
that can be switched by reversing the orientation of the field. This gives rise to a
hysteresis loop as shown.

One of the major milestones in ferroelectric history1,2 was the invention of the
barium titanate ceramic capacitor in the 1940s, whose very high dielectric constantwas
soon attributed to ferroelectricity. Other ferroelectric ceramics were soon discovered,
such as lead metaniobate and alkali niobates which were both reported as ferroelectric
for the first time in the 1950s. The attractiveness of ferroelectric ceramics is due to
the fact that ceramics can be processed conveniently from principal oxide powders,
which is beneficial for large-scale manufacturing. At the same time, the switchable
polarization in a ferroelectric makes it possible to pole the ceramic by application
of an electric field. This makes the polycrystalline ceramic macroscopically polar
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2 CHAPTER 1. BACKGROUND

and piezoelectric even though individual grains are randomly oriented. In many
applications, it is therefore not actually the ferroelectric effect that is used directly,
but ferroelectricity is necessary to bring about piezoelectricity in a polycrystalline
material.

Ferroelectrics today are utilized in a wide range of applications.2,3 One of the
biggest applications on a per-weight basis is in sonar arrays for ships and submarines,
where piezoelectric ceramics are used as transducers that both generate and detect
ultrasonic waves. The same principle is used in ultrasonic imaging equipment used
for physical health monitoring. In other cases, piezoelectric ceramics are utilized
either as actuators (motors) or as sensors. Inkjet printers and fuel injection systems
in internal combustion engines are examples of actuator applications where only the
converse piezoelectric effect is used, while pressure sensors are a typical example of
an application which utilizes the direct piezoelectric effect. Pressure sensors are used
in a variety of situations, such as in the engines and tires of cars, or in connection
with exploration of oil, gas and mineral resources. These environments frequently
involve high temperatures, which limits the number of materials that can be used.
Ferroelectric polarization disappears above the temperature known as the Curie point,
TC, which is therefore a theoretical upper limit for application of the piezoelectric
ceramic. There are not too many ferroelectric materials suitable for high-temperature
applications, and this is an obvious motivation for research on new high-temperature
piezoelectrics.4

One of the most attractive materials for high-temperature piezoelectric applica-
tions today is lead metaniobate, Pb5Nb10O30 (PN). PN was first discovered in 19535

and belongs to a class of materials with the tetragonal tungsten-bronze (TTB) crystal
structure. These materials, many of which are ferroelectric, are remarkably flexible
both structurally and chemically, and are considered the second most important class
of ferroelectrics after perovskites.3 Despite their popularity, however, a fundamental
understanding of the mechanism behind their ferroelectric properties has not pre-
viously been presented. There are several reasons for this: First, lead metaniobate
itself is not a thermodynamically stable material, as it is metastable at room temper-
ature with respect to a rhombohedral polymorph.6,7 Other TTB materials, that are
apparently stable, are more complicated in terms of composition, as most are solid
solutions with various degrees of disorder.3,8 Second, the structural and chemical
complexity of most TTBs has for a long time made computational investigations
practically unfeasible. Fundamental studies of the much simpler perovskite structure
has been guided by first-principles calculations for several decades, but only recently
has this become possible for TTB.

The foundation for the present project was laid in 2008–2009 when Norwegian
basic chemistry research was evaluated by a comittee appointed by the Research
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Council of Norway.9 In the report, the field of inorganic and materials chemistry
was characterized as one of the strongest and best developed subfields of Norwegian
chemistry research at the time of writing. On the other hand, the evaluation committee
also recommended that the research groups involved in this field should seek to
include more basic research in their profiles, and pointed out that applications of
computational chemistry methods was under-represented in Norway. Especially
for nanotechnology-related research, increased cross-disciplinary work involving
computational methods was suggested as a promising way to go. At the Department
of Materials Science and Engineering (DMSE) at NTNU, the activity related to ferroic
materials was specifically mentioned as one of the most forward-looking research
programs. In the follow-up report by representatives from the chemistry research
institutions in Norway,10 one of the recommendations was to establish strategic
projects at each institution, in order to meet challenges pointed out in the evaluation.
The strategic project “From Molecules to Process Applications” was subsequently
created at NTNU, with the intention of including cross-disciplinary projects within
ferroics and catalysis in collaborative subprojects between DMSE and the Departments
of Chemistry and Chemical Engineering.

For the present subproject on ferroelectrics, the starting point was lead meta-
niobate (PN), a well-known TTB ferroelectric and one of the best high-temperature
piezoelectric ceramics currently available. Its thermodynamic stability had recently
been investigated,7 sparking new interest in fundamental understanding of the mate-
rial and the possibilities it offers. As a lead-free analogue to PN, strontium barium
niobate, (SrxBa1–x )5Nb10O30 (SBN), was included in the study. Despite having the
same basic TTB crystal structure, PN and SBN are different in terms of spontaneous
polarization, which lies in different directions with respect to the highly anisotropic
crystal structure.11 In addition to being a lead-free ferroelectric,12,13 SBN has attractive
electro-optical properties such as high second harmonic yield and good pyroelectric
performance,14 and also shows an interesting crossover from classic to relaxor-type
ferroelectricity as the Sr/Ba ratio increases.8 Since both materials fall within the group
of “unfilled” TTBs,15 cation–vacancy ordering is also a possibility, and likely to influ-
ence the mechanism for ferroelectricity in both. The origin of ferroelectricity in TTB
oxides, and the influence of order–disorder phenomena, had not been investigated
before. No computational work on TTBs was known at the time, which also motivated
our interest in approaching PN and SBN by first-principles methods.



4 CHAPTER 1. BACKGROUND

Aim of the work

The overall aim of this work was to gain a fundamental understanding of ferroelec-
tricity in oxides with tetragonal tungsten-bronze (TTB) structure, focusing on lead
metaniobate (PN) and strontium barium niobate (SBN). In particular, the study aimed
to explain the difference in ferroelectric behaviour between PN and SBN, and why
SBN changes from classical to relaxor ferroelectric upon changing the composition.
Another important goal was to gain insight into the effect of cation order–disorder
phenomena on the ferroelectric properties of TTB materials. Moreover, due to the
structural complexity of TTBs, it was important to develop a practical computational
strategy for these materials. Throughout the course of the project, lattice dynamics
emerged as a particularly useful method, making possible the exploration of unstable
phonon modes that lead to distorted, polar crystal structures.

The unfilled TTBs PN and SBN were investigated by first-principles density
functional theory (DFT) calculations. Disordered systems pose certain challenges for
DFT, so the true, disordered systemwas approximated by sampling the cation–vacancy
configurations possible in a 1×1×2 supercell. This led to a comprehensive study of the
energetics of cation ordering, at first without addressing the polarization mechanism
and thereby considering only the paraelectric state of PN and SBN. Based on the
calculated energies associated with the cation configurations, a thermodynamic model
was developed for cation interchange in TTBs. The energetics of cation ordering in
PN and SBN and the thermodynamic model for TTBs is described in Chapter 4.

The polarization mechanism was investigated for BN and SN with TTB structure,
the end members of the “unfilled” SBN system. Lattice dynamical calculations were
performed for all configurations possible in the 1 × 1 × 2 supercell, and unstable
phonon modes were followed in order to identify the true zero-kelvin ground states.
Chapter 5 gives an account of this ground state search, the resulting spontaneous
polarization and the mechanism stabilizing it. For PN with TTB structure, phonon
calculations proved less successful, so a slightly different strategy was chosen (Chapter
6). Diffraction data was applied to reinvestigate the crystal structure of ferroelectric
PN. Based on the new insight in the structure, the most relevant cation configurations
for PN were identified and spontaneous polarization was calculated along with the
energy barrier for switching of ferroelectric and -elastic domains in PN. Based on
these studies, the microscopic origins of the ferroelectric polarization in SBN and PN
were identified.

In order to learn about the mechanism for ferroelectricity in PN as compared to
SBN, a computational study was performed for a series of “filled” TTBs which do not
suffer from the additional complexity of cation configurations. This made it possible
to isolate the effects of lone pair cations (Tl+, Pb2+, Bi3+) on different sites in the TTB
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structure, thereby providing information on the role of the lone pairs in stabilizing
an in-plane polarization in PN as compared to the out-of-plane polarization in SBN
(Chapter 7). Closely related to this is a project concerning TTB niobates that are
electric conductors due to a non-zero occupation of the d band when Nb is partially
reduced from+5 to+4. This is exemplified by the system (SrxBa1–x )6Nb10O30, which is
the filled counterpart to the ferroelectric SBN system mentioned above. Starting from
structural data provided by experimental collaborators, a lattice dynamics approach
was used to investigate distortions possibly leading to a metal–insulator transition
that has been found experimentally in this system. The investigation of filled SBN is
described in Chapter 8.

The final part of the thesis, Chapter 9, concerns the less known rhombohedral
polymorph of PN (r-PN), which was investigated in the early stages of the project.
The motivation for studing r-PN, rather than the TTB polymorph (TTB-PN) which
inspired the project, was to initiate first-principles calculations without the added
complexity of cation–vacancy ordering, which is fundamental to the unfilled TTBs.
Chapter 9 describes the investigation of structure and symmetry in r-PN at ambient
conditions by a combined experimental and computational approach. In addition, the
high-temperature properties of the r-PN polymorph are explored by structural and
thermal characterization methods.





2Introduction

2.1 Ferroelectricity

Characteristics and history

A ferroelectric material, as mentioned in Chapter 1, has a microscopic electric dipole
moment which can be reoriented by application of an electric field (Figure 1.1).
The switching of polarization is the defining property, and this imposes several
requirements for the existence of ferroelectricity. First, thematerial must be a dielectric,
or electric insulator, otherwise the applied electric field would just produce an ohmic
current through the material. A subset of dielectrics are the piezoelectric materials, in
which the crystal contains a unique polar axis. “Piezo” comes from the Greek word
for pressure, and refers to the fact that an electric polarization builds up in these
materials when pressure (mechanical stress) is applied. The piezoelectric effect also
works the other way around: Application of an electric field produces mechanical
strain (converse piezoelectric effect). In some piezoelectrics, an electric polarization
spontaneously arises along this polar axis below a certain critical temperature, the
Curie temperature, TC. These materials are known as pyroelectrics because of the
temperature-dependence of electric polarization. Ferroelectrics are a further subset
of the pyroelectrics, and this hierarchy is shown in Figure 2.1. While piezo- and
pyroelectricity can be predicted from the a material’s crystal structure, ferroelectricity
must be experimentally verified by testing for the existence of a hysteresis loop as in
Figure 1.1b, which is the macroscopic signature of switching.

Dielectrics

Ferroelectrics
Pyro-
electrics

Piezo-
electrics

Figure 2.1 — Hierarchy of functional properties.
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8 CHAPTER 2. INTRODUCTION

The discovery of ferroelectricity, interpreted as the first publication of an electric
hysteresis loop, was made by Valasek in 1921 in the material Rochelle salt (sodium
potassium tartrate, NaKC4H4O6 · 4H2O).16 Rochelle salt, being water soluble, is not
well suited for applications of ferroelectricity. The same is also true for the second
ferroelectric to be discovered, potassium dihydrogen phosphate (KH2PO4 or KDP),17

which has a Curie temperature of −150 ◦C.1 The first truly useful ferroelectrics were
developed from the 1940s, when ferroelectricity was first discovered in a ceramic
material, barium titanate (BaTiO3), and found to be the source of its very high dielec-
tric constant.18 It is hard to overstate the technological importance of this discovery.
Ceramic materials can be conveniently processed from simple oxide powders such as
BaCO3 and TiO2 in the case of BaTiO3, which is key to feasible large-scale manufac-
turing. The individual grains of a ceramic body are more or less randomly oriented, so
a pyroelectric (but not ferroelectric) material would lose its macroscopic polar prop-
erties if it were processed as a ceramic. The microscopically switchable polarization
of a ferroelectric material, however, makes it possible to reorient the polarization in
each grain by applying an electric field over the ceramic sample. This results in a net
macroscopic polarization, and both piezo-, pyro- and ferroelectric properties in the
ceramic. During the 1940s and early 50s, ceramic transducers based on BaTiO3 were
developed simultaneously in several labs around the world. Much of the development
was for a long time kept secret because of World War II and the military applications
of transducers, e.g., in sonars.1

The technologically most important ferroelectric material today is lead zirconate
titanate, PbZr1–xTixO3 PZT,19–22 a solid solution system first investigated in Japan
in the 1950s.23,24 PZT is usually made with a composition close to x = 0.48, where
properties such as dielectric permittivity and piezoelectric coefficients are particu-
larly high. This phenomenon has been attributed to a composition-dependent phase
boundary, amorphotropic phase boundary (MPB), as shown in the PZT phase diagram,
Figure 2.2(a).19,25 The practically vertical phase boundary means that the ferro- and
piezoelectric properties are stable over a wide temperature range. The drawback with
PZT is the high content of lead, over 60 % by weight at the MPB composition, which
is an environmental challenge since processing of lead-containing ceramics releases
Pb to the environment, mainly in the form of the volatile oxide PbO.22 In 2003, the
European Parliament passed two directives that lay restrictions on the use and waste
handling of electrical and electronic (EE) equipment within the European Union.26,27

Specifically, the EU member states are from 2006 required to ensure that no new EE
equipment on the market contains lead, mercury, cadmium, hexavalent chromium
or certain types of aromatic organic compounds. However, exemptions are made
for materials “if their elimination or substitution (. . . ) is technically or scientifically
impracticable”,26 but the intention is to continue the elimination as soon as there are
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good alternatives. PZT components fall within this category, as there were at the time,
and still are, no lead-free replacements that can match the piezoelectric properties
of PZT. The EU directives have therefore sparked a huge research activity related to
lead-free piezoelectrics over the last decade. A major catalyst for this research activity
was a paper from researchers at Toyota laboratories in 2004, reporting bulk ceramics
based on K1–xNaxNbO3 (KNN) with piezoelectric properties close to those of PZT.28

This was achieved through chemical modifications which were originally thought
to produce an MPB similar to that in PZT. Later investigations have indicated that
the enhanced properties were more likely because of a polymorphic (temperature-
dependent) phase transition that was shifted towards room temperature.22 Still, the
MPB concept is commonly used as a guideline in the search for new lead-free piezo-
electric materials, which is still a major research topic where we only recently have
started seeing the large-scale implementation of new technologies, Figure 2.2(b).29
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Figure 2.2 — (a) Phase diagram of the PZT system.20 The nearly vertical morphotropic
phase boundary (MPB) leads to good piezoelectric properties that are stable with
temperature. (b) Research and development activity on lead-free piezoceramics up to
2014, demonstrating the time offset between research activity in terms of scientific
publications (black curve) and transfer into application (blue). Adapted from Rödel et
al.29
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Ferroelectric phase transitions

Barium titanate has the perovskite structure, which was used as an example to
illustrate the microscopic origin of the ferroelectric polarization in Figure 1.1(a).
Many other early and important ferroelectrics, such as KNbO3 and PbTiO3, also have
this structure, and almost all technologically important ferroelectric ceramics up until
today are perovskites (one notable exception is the TTB-type oxide lead metaniobate,
Pb5Nb10O30, which is utilized as a high-temperature piezoceramic). The technological
importance of perovskites has to a large extent also influenced our fundamental
understanding of ferroelectricity. During the 1950s and 60s, fundamental research
became directed towards understanding the origin of ferroelectricity in perovskites.
Helen Megaw was the first to solve the crystal structure of BaTiO3, and described
how it transforms from a paraelectric cubic structure to a tetragonal structure with
polarization along [001] upon cooling through the ferroelectric Curie temperature,
TC. Further cooling leads to subsequent transitions to orthorhombic (polarization
along [110]) and rhombohedral ([111] polarization) structures.30 Megaw realized at
an early stage that the polarization arises mainly due to displacement of Ti4+ relative
to the other ions in the direction of the spontaneous polarization, and that partial
covalent bonding is important for stabilizing these microscopic dipoles.31

The picture of a ferroelectric phase transition in which an atom, such as Ti4+ in
BaTiO3, displaces away from a symmetric position to create a dipole, is known as the
displacive limit.32 Originally, all perovskite ferroelectrics were thought to be of this
kind. The other limiting case is known as the order–disorder limit, where the atom is
never in a centrosymmetric position, but the displacement can be randomly directed
or preferentially in one direction. This is exemplified by KDP, in which spontaneous
polarization arises from alignment of dipoles that exist also in the paraelectric state. A
cartoon of the displacive and order–disorder cases in shown in Figure 2.3. Usually, a
phase transition will show some signature of both types. Thermodynamic properties
is one way to distinguish them experimentally: In a displacive phase transition, the
entropy change will be due to the different vibrational (phonon) properties of the
two phases, whereas the entropy change for an order–disorder transition is mainly
configurational in origin.32

The displacive picture is the foundation for one of the most influential micro-
scopic descriptions of ferroelectric phase transitions, namely the soft mode theory
introduced by Cochran in 1959.33,34 Soft mode theory treats the ferroelectric transi-
tion as a temperature-dependent vibrational mode or phonon. The mode is a stable
lattice vibration in the paraelectric state, but when approaching TC from above, the
phonon frequency goes to zero, a phenomenon known as mode softening. Below
TC, the mode no longer corresponds to a dynamic lattice vibration, but instead to a
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(a)

(b) (c)

Figure 2.3 — (a) Model system for illustrating the ferroelectric phase transition. The
balls represent cations that create dipoles when displaced from their centrosym-
metric positions, such as Ti4+ in BaTiO3. The springs represent ionic interactions
with neighbouring cations, which favour a cooperative distortion. The double-well
potentials represent covalent interactions with neighbouring anions, favouring lo-
cal off-centering of the cations. (b) Displacive limit: Long-range ionic interactions
dominate over local covalency. Above TC, all atoms are vibrating around the central
position, and below TC they cooperatively displace towards the same side of the
double-well. (c) Order–disorder limit: Local covalent interactions dominate over
long-range ionic forces. At all temperatures, atoms are displaced towards one side
of the double-well. Above TC, the distribution is random. Below TC, one side of the
double-well is preferentially occupied over the other. Adapted from Dove.32

permanent distortion with the same atomic displacement pattern as the soft mode
in the paraelectric phase.35 Softening of an optical zone centre phonon gives rise
to a polar and possibly ferroelectric transition such as in BaTiO3, while a soft zone
boundary mode results in an antiferrodistortive transition as seen in SrTiO3.36

While the displacive picture originally seemed like a good description for BaTiO3,37

later studies revealed that the transition in fact is mainly of order–disorder nature.38–41

Evidence suggests that even in the paraelectric state of BaTiO3, the centrosymmet-
ric cubic structure is just an average, and that Ti4+ is always displaced along one
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of the body diagonals of the unit cell. In the paraelectric state, all the eight 〈111〉
displacements are equally and randomly occupied. In the tetragonal state, only the
four displacements with a positive z component ([111], [11̄1], [1̄11] and [1̄1̄1]) are
occupied, yielding an average [001] displacement and a macroscopic polarization in
the same direction. In the orthorhombic phase, two of eight directions are occupied
(e.g., [111] and [111̄] for an average [110] displacement), and only in the rhombo-
hedral phase is the crystal completely ordered, with all displacements along [111].
This behaviour is predicted by the vibronic theory of ferroelectricity, first introduced
by Bersuker in 1966.42 Within this theory, distortions from high symmetry (such as
local off-centering of the B cation in perovskites) is explained by the second-order
Jahn–Teller (SOJT) or pseudo-Jahn–Teller (PJT) effect, essentially an energy-lowering
contribution from additional covalent bonding.43 The different phase transitions are
governed by the correlation between the individual displacements. The theory cor-
rectly predicts the observed phases in BaTiO3, and it has even been suggested that
vibronic theory casts doubt on the very existence of displacive phase transitions.44

Even in PbTiO3, which for a long time was thought to be purely displacive, a signifi-
cant order–disorder component is found.45 Still, even strongly order–disorder-type
ferroelectrics show a certain temperature variation in the atomic positions, and in
general a ferroelectric transition should be thought of as intermediate between the
displacive and order–disorder limits.

In the context of theoretical frameworks for description of ferroelectrics, Landau
theory is also worth mentioning.46 This phenomenological theory, which is also
known as Landau–Devonshire theory after Devonshire who popularized its use on
ferroelectrics,47–49 is a general framework for describing the equilibrium behaviour of
a system with a phase transition, making it possible to predict a range of macroscopic
properties from a relatively small set of measured values. In the case of a ferroelectric,
the state of the material is characterized by the polarization, P , which is a macroscopic
order parameter (OP) for the ferroelectric transition. It is also possible to employ
a microscopically defined OP, such as the distortion mode amplitude for a polar
distortion.50 Regardless of which OP is chosen, it describes a symmetry change
associated with the phase transition, and is defined so that it is zero in the paraelectric
state and non-zero in the ferroelectric state. The fundamental postulate of Landau
theory is that the free energy of a system close to the phase transition can be described
by a polynomial expansion in the OP:46

F = 1

2
aP2 +

1

4
bP4 +

1

6
cP6 + . . . − EP ,

where a,b, c, . . . are fitting parameters, E the electric field, and odd-numbered terms
in the series have been dropped according to symmetry requirements (“up” and
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“down” polarization states, represented by +P and −P , must have the same energy).
The goal is to simplify this expansion as much as possible, while still describing
essential properties of the system. The coefficient a is taken to be linearly dependent
on temperature, a = a0 (T −T0) with T0 the phase transition temperature, while the
other coefficients are taken as positive and independent of T . Truncating the series
after the 4th order term, the Curie–Weiss law for dielectric susceptibility (reciprocal
permittivity) in the paraelectric phase follows:

1

ε
=

1

P/E
=

1

a0 (T −T0) ,

implying a divergence in susceptibility as T0 is approached. By minimizing F , it
follows that P = 0 in the paraelectric phase and that P =

√
(a0/b) (T0 −T ) in the ferro-

electric phase. Such a phase transition, where the order parameter goes continuously
to zero upon approaching the transition temperature, is termed a second-order phase
transition. If also a 6th order term is included in the Landau expansion and b is allowed
to be negative, a first-order phase transition is predicted. In this case, P drops suddenly
to zero instead of vanishing continuously, and a temperature hysteresis is predicted,
precisely as observed in the prototype ferroelectric BaTiO3. The essential physics of
ferroelectrics can thus be described by a small number of parameters. A natural next
step in the analysis would be to include coupling between polarization and strain,51,52

which makes it possible to predict for example how clamping of a ferroelectric (if
the material is grown as a thin film on a substrate) can shift the phase transition
temperature or even change the order of the transition.46 The parameters (a,b, c, . . .)
can be found by fitting the expressions derived from F to experimental values, and
have been tabulated for many common ferroelectrics.53 In recent years, first-principles
methods have enabled the direct calculation of energies, thereby providing data from
“computer experiments” for fitting the Landau coefficients. Curiously, while the for-
malism of Landau theory is based on a series expansion and thus expected to be
valid only in the close vicinity of T0, experience has shown that it can provide a
good description of phase transitions (especially displacive) over a wide temperature
range.32,54

In recent years, computational methods have considerably enhanced the under-
standing of ferroelectric materials. One of the milestones was Cohen’s 1992 report
on the origin of ferroelectricity in perovskite oxides,55 which compared the mecha-
nisms stabilizing ferroelectric polarization in BaTiO3 and PbTiO3 by first-principles
calculations. By calculating the potential energy surfaces for tetragonal and rhombo-
hedral distortions at difference lattice parameters, it was shown that rhombohedral
displacement of Ti4+ lowers the energy for both materials in the absence of lattice
strain. For increasing tetragonal strains, the tetragonal distortions become gradu-
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ally more favoured over the rhombohedral. In PbTiO3, the experimental tetragonal
strain is large enough (c/a = 1.06, as compared to c/a = 1.01 in BaTiO3) that the
tetragonally distorted structure becomes the stable ground state. The large strain in
PbTiO3 can in turn be traced back to covalent interactions between Pb 6s and O 2p
orbitals. In BaTiO3, the corresponding interactions between Ba 5d and O 2p are almost
purely ionic, and the lattice strain is smaller. Cohen’s work thus gave solid support
to the order–disorder model for BaTiO3, while at the same time addressing the role
of lone pair cations such as Pb2+ in stabilizing ferroelectric distortions. This type of
“A-site driven ferroelectricity” is especially interesting in the context of multiferroics,
materials in which electric, magnetic and/or elastic order coexists (most commonly
ferroelectricity and antiferromagnetism).56 In analogy to the role of Pb2+ in PbTiO3,
the 6s2 lone pair on Bi3+ has been shown to play a central role in the ferroelectric
distortion in the multiferroic perovskites BiMnO3 and BiFeO3.57,58 For this reason,
replacement of Pb with Bi is frequently one of the guidelines employed for exploration
of new lead-free ferroelectric materials.22

Relaxor ferroelectrics

Relaxor ferroelectrics, or simply relaxors, are a subgroup of ferroelectric materials
which encompasses many of the ferroelectric TTBs.15 The first studies on relaxors
were conducted in the Soviet Union by Smolenskii and co-workers,59–61 and these
materials, characterized among other things by a diffuse phase transition, later came
to be known as dirty displacive ferroelectrics.62,63 The term “relaxor ferroelectrics” was
popularized by L. Eric Cross and co-workers at Penn State University,8,64,65 and comes
from the observation that the properties of relaxors are governed by the time scale of
dielectric relaxation in the materials.13,66 ∗ The interest in relaxors escalated in the late
1990s after the discovery of ultrahigh electromechanical response in relaxor-based
single crystals, with piezoelectric coefficients an order of magnitude higher than in
conventional PZT-based piezoceramics.68

The distinction between relaxors and classic ferroelectrics is traditionally made
from the viewpoint of dielectric response: While a classic ferroelectric has a sharp
and clear peak in dielectric permittivity at the ferroelectric phase transition, a relaxor
is characterized by a diffuse phase transition. The dielectric response of a relaxor is
also dependent on measurement frequency, as shown in Figure 2.4 for a range of solid
solutions between the ferroelectric BaTiO3 and the relaxor LaMg1/2Ti1/2O3 (BT–LMT).
The phase transition becomes increasingly diffuse when LMT is introduced to BT.

∗Some authors reserve the term “relaxor ferroelectric” for solid solutions between relaxors and
ferroelectrics,67 but such a distinction is not made in the present work.
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Because of the frequency dispersion in dielectric response, the Curie temperature is
not well defined for a relaxor, and the peak permittivity temperature Tm is instead
reported. Tm for a relaxor typically follows the phenomenological Vogel–Fulcher (VF)
relation:69,70

f = f0 exp

[
− Ea
kB (Tm −Tf )

]
,

where Ea is an activation energy, f0 is an attempt frequency, and Tf is referred to as
the freezing temperature (interpreted as Tm at zero frequency). The VF relation was
initially applied to magnetic spin glasses,71 and its successful application to relaxors
has led to the term “dipole glass” as a relaxor analogue to the magnetic counterpart.72

VF behaviour, together with a criterion for the profile of the ε (T ) curve, has even
been suggested as a definition of relaxor ferroelectricity.73

(a) (b)

Figure 2.4 — (a) Temperature dependence of dielectric permittivity for measurement
frequencies of 1 × 102 to 1 × 106 Hz (top to bottom curve for each composition). The
numbers denote x in the solid solution (1 − x )BT–xLMT, so a higher x means more
pronounced relaxor behaviour. (b) Temperature dependence of reciprocal dielectric
permittivity for measurements at 1 × 105 Hz and the same compositions as in panel a.
Solid lines show fits to the Curie–Weiss law, which does not describe the dielectric
response well for relaxors. Adapted from Salak et al.74

In classic ferroelectrics, the divergence in dielectric permittivity upon cooling
through TC is associated with a structural phase transition from a non-polar para-
electric to a polar ferroelectric phase of lower symmetry. For example, the ferro-
electric transition in BaTiO3 is a structural transition between phases with aver-
age space group symmetries Pm3̄m (cubic) and P4mm (tetragonal), and is a typical
first-order transition that involves both atomic displacements and lattice strain. In
contrast, the average structure of the prototype perovskite relaxor lead magnoniobate,
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PbMg1/3Nb2/3O3 or PMN, is well described by space group Pm3̄m at all temperatures,
with Mg and Nb randomly distributed and no long-range symmetry break on cool-
ing through Tm.75 On a local scale, however, a symmetry break occurs at the Burns
temperature, Td, the temperature at which polar nano-sized regions (PNRs) start to
form. Inside each PNR, the symmetry is lowered and the material is polar, but there
is no long-range correlation beyond a few unit cells, and the material appears on
average non-polar (perovskite relaxors are for this reason sometimes referred to as
“pseudo-cubic”). This is manifested in macroscopic properties that depend on P2 � 0
(when averaged over a suitable volume and time), such as the refractive index and
linear thermal expansion. Td typically lies far above Tf , for PMN they are around
−50 ◦C and 350 ◦C, respectively.66,76,77 Between Td and Tf , the PNRs are dynamic and
reorientable, while below Tf they are static and frozen in a glass-like phase.72,76

(a) (b)

Figure 2.5 — (a) Paraelectric state of an order–disorder ferroelectric, for example
BaTiO3. Individual unit cells may have polar displacements, but there is no correlation
and the average structure is non-polar. A similar disorder has been reported for the
paraelectric state of the prototype relaxor PMN.75 (b) Relaxor belowTd, showing polar
nano-regions (PNRs) where polarization is correlated over a few unit cells, but not on
a length scale of micrometers as in ferroelectric domains. Each PNR is polar (long
blue arrows), but when averaged over a sufficiently large volume the net polarization
is zero. Illustrations from Bokov and Ye.73

The concept of order and disorder is central to relaxors. A clear demonstration
of this was provided in 1980 by Nava Setter and L. Eric Cross, who studied the
effect of B-site cation order on the diffuseness of the ferroelectric phase transition
in PbSc1/2Ta1/2O3 (PST).64,78 PST is particularly suitable for the study of B-site order–
disorder phenomena. First, the 1:1 ratio between Sc and Ta facilitates simple rock salt
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ordering of the cations, which can be conveniently observed by X-ray diffraction due
to the significant difference in atomic number between Sc and Ta. At the same time,
the ionic charges of +3 and +5 are not so different that electrostatic forces induce
a strong tendency for ordering (which is the case for PbMg1/2W2/3O3, with charges
of +2 and +6). The radius difference between the cations is of importance, since too
different radii will favour ordering through elastic interactions, while too similar radii
might lead to disorder no matter how long the material is annealed (this is the case for
BaFe1/2Nb1/2O3). The A-site cation size also plays a role, since a smaller A-site cation
will make the size difference between the B-site cations more important. All things
considered, it turns out that PST is “just right”,79 and that the degree of order can be
tuned by thermal treatment: Quenching a sample from high temperature will freeze
in a disordered B-site cation distribution, while annealing at elevated temperature
for several hours induces ordering of Sc3+ and Ta5+ in a chequerboard pattern. The
transition from B-site cation disorder to order is evident from the X-ray diffractograms
shown in Figure 2.6(a), and is reflected in a change in dielectric response from relaxor
to classic ferroelectric, as shown in Figure 2.6(b).

(a) (b)

Figure 2.6 — (a) X-ray diffraction patterns of PST powders with various degrees of
B-site cation order. The order parameter S , calculated from intensity ratios of X-ray
diffraction lines, is 0 for perfect disorder and 1 for perfect order. After Setter and
Cross.78 (b) Dielectric permittivity and loss for ordered (S = 0.80) and disordered
(S = 0.35) PST single crystals, measured at frequencies from 1 × 103 Hz to 1 × 106 Hz
[(a)–(d) in the figure]. After Setter and Cross.64
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Relaxors continue to attract attention, mainly due to the ultrahigh piezoelectric
response found in single crystals of PMN–PT, a solid solution of PMN and PbTiO3.68

In line with the previously mentioned interest in more environmentally friendly
piezoelectrics, also lead-free relaxors have attracted some attention.12,13,80 In partic-
ular, there has been a huge interest in developing solid solution systems similar to
PMN–PT, but featuring lead-free relaxors and ferroelectrics.81 One of the promising
candidates in this respect is the Bi1/2Na1/2TiO3–BaTiO3 (BNT–BT) system, of which
single crystals with high piezoelectric coefficients have been made.82,83 Lead-free
relaxors are of interest also for other purposes, such as thermoelectricity. For exam-
ple, the partially reduced SBN system, (Sr, Ba)5Nb10O30−δ , has shown an enhanced
Seebeck coefficient for compositions in the relaxor regime.84 Despite their many
promising and useful properties, however, relaxors are still far from being fully under-
stood. Being intimately linked to disorder on different length scales, the phenomenon
of relaxor ferroelectricity is inherently complex. This is especially a challenge for
computational investigations, where true disorder is hard or impossible to implement
properly. Often, one must resort to replacing disordered systems by much simpler
model systems for the calculations to be feasible.85 Cation ordering has been studied
in lead-free perovskite relaxors such as BNT and related compositions,86,87 while
molecular dynamics calculations have been used with some success to correlate the
polar and chemical order in the prototype relaxors PMN and PSN.88–90 More compli-
cated structures and chemical compositions, as is the case for many relaxors, represent
a big challenge for computational studies.

2.2 Tetragonal tungsten-bronze-type ferroelectrics

Crystal structure and subtypes

Tungsten bronzes sensu stricto are non-stoichiometric oxides with the general formula
AxWO3, where A is a metal cation and x < 1. They are metallic oxides with a bronze-
like lustre as shown in Figure 2.7(a), hence their name. Tungsten bronzes exist in
three basic structure types, all of which are based on corner-sharing WO6 octahedra.
The structure type which is the main focus of this work is the tetragonal tungsten
bronze (TTB) structure, shown in Figure 2.7(b). The other possible structures are the
perovskite tungsten bronze [PTB; Figure 2.8(a)], essentially an A-deficient perovskite;
and the hexagonal tungsten bronze [HTB; Figure 2.8(b)]. Which structure type is the
most stable depends both on the size of the metal cation and on x . Tungsten bronzes
in the broad sense, sensu lato, is used for a large group of oxides, mainly niobates and
tantalates, that crystallize with structures similar to the actual tungsten oxides. Most
of them are not metallic, but rather insulators due to the d0 electron configuration
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of Nb5+ and Ta5+, and for this reason they are more conveniently referred to as
tungsten-bronze-type oxides or bronzoı̈ds.91

While both the TTB and perovskite structures are based on corner-sharing BO6

octahedra, the connectivity is more complex in TTB, resulting in several different
sites that can accomodate cations. The aristotype unit cell with space group symmetry
P4/mbm is shown in Figure 2.7(b), where sites corresponding to the general formula
(A1)2(A2)4C4(B1)2(B2)8O30 are marked. The A1 sites, with a coordination number
of 12, are similar to the A sites in perovskites and form square-shaped channels
along the tetragonal c direction. The A2 sites form pentagonal channels, formally
15-coordinated, while the C sites form triangular channels.94 The A1 and A2 sites can
be occupied by a variety of metal cations, such as alkali and alkali earth elements,
p-block elements such as Pb and Bi, or rare earth elements. The C sites are narrow and
can only accommodate small cations such as Li+ or Nb5+, thus making possible a Nb:O

(a)

A1
B1 B2

C

b

a

A2

(b)

Figure 2.7 — (a) Crystals of sodium tungsten bronze (NaxWO3), showing their bronze-
like colour and lustre. The longest crystal edge is approximately 5mm. Local colour
variations are due to different Na concentration in different parts of the crystals.a

(b) Projection along c of the TTB crystal structure in the aristotype space group
symmetry P4/mbm, with the unit cell marked by a dashed line. The general formula
is (A1)2(A2)4C4(B1)2(B2)8O30; cation sites are marked in the figure (A1, A2 and C at
z = 0, B1 and B2 at z = 1/2).

aImage source: Wikimedia Commons, user Brammers (public domain).
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(a) (b)

Figure 2.8 — (a) Perovskite tungsten bronze (PTB) structure, exemplified by
Na0.10WO3 with space group symmetry P4/nmm.92 (b) Hexagonal tungsten bronze
(HTB) structure, exemplified by Rb0.27WO3 with space group symmetry P63/mcm.93

Both are projections along c , and in both panels the relevant unit cell is marked with
a dashed black line. Partially coloured spheres show the average occupancy of the
alkali metal cation.

ratio higher than 1:3.95–97 The tetragonal tungsten-bronze structure can be derived
from the perovskite structure by rotation of blocks of octahedra, as shown in Figure
2.9. This illustration shows that unlike the perovskite structure, the TTB structure can
not be constructed from regular, undistorted octahedra. The TTB unit cell marked in
Figure 2.9(b) contains 10 octahedra from the original perovskite structure, so the unit
cell parameter is at =

√
10a0 where a0 is the corner-to-corner length of an undistorted

octahedron (the unit cell parameter of a cubic perovskite).

A plethora of chemical compositions can be accommodated in the TTB framework.
Starting from the general formula (A1)2(A2)4C4(B1)2(B2)8O30 and assuming first that
all B1 and B2 cations are Nb5+ or Ta5+, it can be seen that the cations on the A1 and
A2 sites (and C, if present) must have a total ionic charge of +10 in order to meet the
requirement of electroneutrality. As a first step, three main classes of TTBs can be
distinguished based on cation occupancy:15 Filled TTBs where all six A1 and A2 sites
are occupied, as in Ba4Na2Nb10O30 (BNN); stuffed TTBs where also the four C sites
are occupied, K6Li4Nb10O30 (KLN) being the best known example; and unfilled TTBs,
where some of the A1 and A2 sites are vacant, as in Pb5Nb10O30 (PN) with five out of
six sites occupied. Most of the filled TTBs have A1/A2 cations with different charges,
such as Ba2+ and Na+ in BNN. A deviation from the ideal 4:2 stoichiometry will be
compensated for by cation vacancies, so for Ba-rich BNN, Ba4+xNa2–2xNb10O30, there
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(a) (b)

Figure 2.9 — Relation between the perovskite and TTB structures. (a) Perovskite
structure consisting of corner-sharing BO6 octahedra. The TTB structure is obtained
by a 45° rotation of the blocks in green colour (rotation marked by dashed circle).
(b) TTB structure (projection along the tetragonal c direction) after rotation of the
perovskite blocks, with a dashed black line marking the TTB unit cell. Adapted from
Ngai.98

are 6 − x cations and x vacancies distributed between the 6 sites.99 There are many
other mechanisms enabling the chemical flexibility of TTB compounds, several of
which can occur simultaneously, and a non-exhaustive overview is given in Table 2.1.

A consequence of the chemical flexibility is that TTBs are relatively easy to syn-
thesise as phase pure materials. At the same time, this also gives them a tendency
to show up as undesired secondary phases in systems with lower tolerance for non-
stoichiometry. A well-known example of this is the K1–xNaxNbO3 (KNN) system,
where secondary phases with TTB structure have a tendency to show up during sinter-
ing. The TTB secondary phase in KNN has the general formula K10–5xNb10+xO30, with
specific compositions of K5.83Nb10.83O30,104,105 K5.75Nb10.85O30

96 and K5.45Nb10.91O30
97

having been reported. If one assumes that there must be between 4 and 6 K+ cations
in the TTB unit cell, so that at least the four A2 sites are fully occupied by K, the
solid solution range is limited to 0.8 < x < 1.2. Haugen et al.106 suggested that this
TTB phase forms as a consequence of potassium volatility during sintering of KNN.
Using the general formula for the TTB phase, the formation reaction (simplified with
KNbO3 in place of KNN) is:

(10 + x )KNbO3 −−−⇀↽−−− K10−5xNb10+xO30 + 3xK2O (g)

This reaction explains both the formation of the TTB phase and the differing composi-
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Table 2.1 — Examples of the chemical flexibility of TTB compounds with general
formula (A1)2(A2)4C4(B1)2(B2)8O30. One or two simple examples, generally regarded
as prototypes, are given for each of the unfilled, filled and stuffed TTB families. The
non-stoichiometric TTBs listed below can be related to one of the prototypes by a
chemical mechanism such as cation substitution (s.). The solid solution ranges are
0 < x < 1 unless otherwise specified, and vacancies are explicitly included in the
formulae as �.

Type of non-stoichiometry Example compound/system Ref.

Simple (prototype) TTBs:
Unfilled Pb5�Nb10O30 [5]
Filled Ba4Na2Nb10O30 [99]
Stuffed K6Li4Nb10O30 [95]

Non-stoichiometric TTBs:
Heterovalent s. of A1/A2 (Pb1−xBax )5�Nb10O30 [11]
Heterovalent s. of Nb Pb5�(Nb1−xTax )10O30 [100]
Aliovalent s. of A1/A2 Ba4+xNa2−2x�xNb10O30 [99]
Aliovalent s. of Nb Ba5+x�1−xNb10−2xTi2xO30 [101]
Reduction of Nb Ba5+x�1−xNbV10−2xNbIV2xO30 [102]
Substitution of O Ba4–xNa2+xNb10O30–xFx (0 < x < 2) [103]
O vacancies Ba4La2Nb6−2xTi4+2xO30−x�x [15]
Nb on C K10–5xNb10+xO30 (0.8 < x < 1.2) [96]

tions reported by various authors. The phase diagram of the pseudobinaryNb2O5–K2O
system shows the TTB phase K5.75Nb10.85O30 as a line compound,107 although in light
of the above it seems clear that it is actually a solid solution range.96,105

A both intriguing and comprehensively studied aspect of the TTB structure is
the existence of incommensurately modulated superstructures.15,108,109 A modulated
structure is characterised by being based on an underlying periodic lattice, or sub-
structure, while the actual atomic positions are displaced periodically with respect to
this substructure, thereby forming a modulated structure or superstructure. In one
dimension, the position of atom n in the superstructure can be expressed as

xn = an + u

[
1 − cos

(
2π

an

λm

)]
,

where a is the lattice parameter of the underlying structure, u is the amplitude and
λm the wavelength of the modulation. If λm = ca with c a rational number (simple
fraction), the modulation is said to be commensurate and the atomic positions in the
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superstructure will periodically coincide with the underlying substructure. If, on the
other hand, c is an irrational number, there is no true periodicity in the structure,
and any supercell description will only be an approximation. This is known as an
incommensurate modulation of the underlying structure. In diffraction experiments,
this gives rise to additional reflections, known as superstructure or satellite reflections.
Diffraction from ordinary crystalline materials occurs under fulfilment of the Laue
condition, which in one dimension can be written Q = ha∗ where Q is the wave
vector transfer, a∗ = 2π/a is the reciprocal lattice parameter and h is an integer. The
diffraction pattern of a modulated structure is described by a condition of the form

Q = ha∗ ± q ± 2q ± 3q ± . . . ,

where q = 2π/λm is the modulation vector that describes the position in reciprocal
space of the satellite reflections relative to the ordinary Bragg reflections (an equivalent
definition of incommensurateness is to say that q = c ′a∗, with c ′ irrational).110,111
Incommensurately modulated superstructures have been observed in many TTBs,
and their existence has also been empirically correlated with ferroelectricity.15

Prototype TTB ferroelectrics

The early history of bronzoı̈ds, or tungsten-bronze-type oxides, begins in 1953 with
the discovery by Goodman of the General Electric Company of ferroelectricity in
lead metaniobate, Pb5Nb10O30 (PN).5 This tungsten-bronze-type polymorph of PN
will be referred to as TTB-PN in what follows. The crystal structure of ferroelectric
PN was not determined at the time of its discovery, but based on X-ray diffraction
data, the author reported a highly anisometric orthorhombic unit cell containing 40
formula units of Pb(NbO3)2, corresponding to a 2 × 2 × 2 supercell of the aristotype
cell). The discovery of TTB-PN was the first report of a ferroelectric ceramic with a
general formula other than ABO3, although not the first non-perovskite, as LiNbO3

and LiTaO3 were known. In 1956, M. H. Francombe (also General Electric) reported
that PN can exist in another polymorph of rhombohedral symmetry (in the following
referred to as r-PN),6 also without knowing the structure in detail. This polymorphwas
obtained by firing the ceramics at temperatures around 1200 ◦C, while temperatures
in excess of 1250 ◦C were necessary to achieve the ferroelectric polymorph reported
by Goodman.5 At the same time, Francombe redetermined the lattice parameters
of TTB-PN to correspond to a

√
2 × √2 × 2 supercell of the aristotype. In 1957,

the first unit cell data on the paraelectric structure were reported by Roth,112 who
identified the tetragonal unit cell which is now referred to as the aristotype, and
suggested that the space group in the paraelectric state was probably P4/mbm. For
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the ferroelectric state, Roth reported a
√
2 × √2 × 1 supercell, claiming no evidence

for a doubled c parameter as found by Goodman and Francombe. In light of today’s
knowledge about the polymorphism and metastability of PN,7 it is interesting to note
that from the very beginning, lead metaniobate was doped in order to stabilize the
ferroelectric polymorph. Goodman5 had added up to 2.5 % of TiO2, ZrO2 or a mixture
of the two, reportedly as a means to avoid water absorption by the PN ceramics,
although it probably had the added effect of stabilizing the ferroelectric polymorph
as well. Roth112 stated that while a pure PN sample had transformed completely to
the rhombohedral polymorph at 700 ◦C, a sample doped with 2 % ZrTiO4 retained the
“high-temperature” (TTB) structure.

In 1958, Francombe and Lewis113 published the first high-temperature X-ray and
dielectric study on PN. This seminal work established that the structure of TTB-PN
in the paraelectric state is similar to the structure of the tetragonal alkali tungsten
bronzes, with the ferroelectric transition in PN at 560 ◦C consisting of a distortion in
the tetragonal [110] direction accompanied by a doubling of c . The topic of partial
occupancy for Pb2+ was discussed, although no conclusion could be drawn regarding
possible cation site preference. The polarization was determined to be confined to
the xy plane [Figure 2.10(a)], introducing the then-new concept of “two-dimensional
ferroelectricity”. The discontinuous change in lattice parameters [Figure 2.10(b)]
pointed to a first-order phase transition, and to a ferroelectric mechanism involving
a change in Pb–O covalency in the A1 sites, although the lack of data on atomic
positions and site occupancies made further conclusions difficult.

Francombe again followed up on this work in 1960 with a study on the TTB
solid solution systems (Pb, Ba)5Nb10O30 (PBN) and (Ba, Sr)5Nb10O30 (SBN).11 A peak
in ferroelectric properties was found in the PBN system for 40 % Ba, which coincides
with a minimum in TC [Figure 2.11(a)] and a change from orthorhombic to tetragonal
symmetry in the ferroelectric state [Figure 2.11(b)], effectively identifying what is
now commonly known as a morphotropic phase boundary.19 The author suggested
that the pure TTB-PN has too large ferroelectric strain to be easily switched by
normal electric fields at room temperature, but this is gradually relieved when Ba is
substituted for Pb, leading to the improved properties of solid solutions over pure PN.
This work contains the first claim that also SBN has the same TTB-type structure
as PN, and it is suggested that SBN is polar along c as it is tetragonal both above
and below TC for all compositions. The author states that SBN and PBN have very
similar properties, although the ferroelectricity is weaker in SBN. A similarity to the
perovskites BaTiO3 and PbTiO3 is pointed out, and it is suggested that Pb might be
the origin of the difference also between the TTBs.

In 1968–71, a series of three papers on lead-free TTB ferroelectrics94,95,99 was pub-
lished by researchers at Bell Telephone Laboratories. The papers considered composi-
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(a) (b)

Figure 2.10 — High-temperature data on PN: (a) Dielectric permittivity, (b) lattice
parameters.113

tions from the three solid solution systems Sr5xBa5–5xNb10O30 (SBN),94 Ba4+xNa2−2x -
Nb10O30 (BNN)99 and K6–x–5yLi4+xNb10+yO30 (KLN).95 The paper on SBN represents
the first proper solution of the SBN crystal structure, with data on atomic positions
and occupancies indicating that only Sr occupies the square A1 sites [Figure 2.12(a)].
The space group symmetry was determined as P4bm in the ferroelectric state and
P 4̄b2 in the paraelectric state. This result was commented upon as somewhat supris-
ing since the two space groups do not have a group–subgroup relation, which is
usually the case for ferroelectric transitions,114 and strictly required if the transition
is second-order. It was also deemed necessary to introduce split positions for the
apical oxygens [oxygens above and below Nb along z, Figure 2.12(a)] in order to get
a good fit of thermal displacement parameters, pointing to some kind of disordered
structure. BNN and KLN were by and large described as similar to SBN in having a
polar [001] axis and being tetragonal both above and below TC. The KLN paper in
addition represents the first report of a TTB with occupied C sites.

After Francombe’s thorough work in 1960, only a few contributions have been
made to the understanding of structure and polarization mechanism in TTB-PN. A
French group published extensive single crystal X-ray data on atomic positions in the
1970s,115,116 confirming that lead preferentially occupies the A2 sites, where they are
significantly distorted towards the sides of the channels. Two supercells are suggested:
An “average” cell of space group symmetryCm2m and dimensions

√
2×√2×1 referred
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(a) (b)

Figure 2.11 —Data on the PBN solid solution system. The variation with composition
of (a) Curie temperature and (b) lattice parameters point to a morphotropic phase
boundary at 37.5 to 47.5 % Ba content.11

to the aristotype, and a “true” cell of Bb21m symmetry and dimension 2
√
2 × √2 × 2.

The two cells are related through ordering of Pb in the A2 channels, with the average
cell expressed with split positions for Pb at A2 [Figure 2.12(b)].115 The structures were
analysed in terms of the displacement of Pb and Nb from their reference positions,
chosen as the middle of the A1 and A2 sites. A comparison between TTB-PN and the
lead-free TTBs SBN and BNN revealed that in all three compounds, Nb is displaced
inside the NbO6 octahedra in the direction of spontaneous polarization, while only
in TTB-PN are the A2 cations displaced in the same direction (Figure 2.13).116 The
study did, however, not comment on the displacement of Pb in the A1 sites, which
was suggested by Francombe as a key factor in the mechanism for ferroelectricity in
TTB-PN,11 and did also not comment on the extent to which the A2 displacements
are actually involved in the ferroelectric transition.

The r-PN polymorph has received little attention through the years since its
discovery, presumably due to it showing “no evidence of ferroelectric behaviour”.6 In
1966–67, Mahé published data on the lattice parameters, space group symmetry and
atomic positions of r-PN.117,118 This was the first solution of the crystal structure of
r-PN, revealing that the structure is fundamentally different from TTB, containing
“dimers” of two and two NbO6 octahedra sharing an edge [Figure 2.14(a)]. The space
group symmetry was determined as R3m, a polar space group, but the consequences
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(a) (b)

Figure 2.12 — (a) Crystal structure of SBN with x = 0.75 as reported by Jamieson
et al.,94 projection along the tetragonal axis of the P4bm unit cell (dashed line). Split
positions are used for the apical oxygens, which are shown explicitly as red and white
spheres. Sr and Ba is represented by grey and black, respectively. (b) “Average” crystal
structure of TTB-PN as reported by Labbé et al.115 Projection along the tetragonal
axis of the paraelectric structure, dashed line shows the Cm2m unit cell. Grey and
white spheres denote positions halfway occupied by Pb, which occurs both on the A1
sites and the split A2 sites used for the simplified description of Pb ordering.

of this for possible functional properties of r-PN were not investigated further. In 1985,
a Soviet work investigated solid solutions based on r-PN,119 claiming evidence for
piezoelectric activity in poled r-PN and of hysteretic behaviour in the solid solutions.
Moreover, the temperature dependence of lattice parameters and dielectric response
[Figure 2.14(b)] showed evidence for a polar–nonpolar phase transition from R3m to
R3̄m at 815 ◦C, pointing to a possible ferroelectric transition. Again, in light of today’s
knowledge about PN, it is more likely that the solid solutions of r-PN contained a
certain amount of the TTB-PN polymorph stabilized by doping, and that this is what
gave rise to the hysteretic behaviour reported.

The transition from classic ferroelectric to relaxor behaviour in SBN was first
pointed out by Glass in 1969 in connection with investigation of the material’s py-
roelectric properties,14,120 although the term “relaxor” had not yet come into use.
The same phenomenon was later reported for K2–2xSr4+xNb10O30 by Burns,63 who
had introduced the term “dirty displacive ferroelectrics” for disordered ferroelectrics
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Figure 2.13 — Analysis of atomic displacements in three TTBs, after Labbé et al.116

Left panel shows the displacements of Nb in the NbO6 octahedra, right panel shows
the displacements of the A2-site cations away from the center of the channel. Each
panel shows the displacements of metal cations in SBN, BNN and PN (left to right), in
the x , y and z directions (bottom to top).

with diffuse phase transition behaviour.62 A different aspect of disorder in TTBs was
brought to attention in 1981, when Schneck and co-workers reported on incommen-
surately modulated structures first in BNN121 and soon after in SBN.108 According
to the authors, the first structural model of SBN reported by Jamieson et al.94 corre-
sponds to the average crystalline structure, while the true structure consists of an
incommensurate modulation which is reflected in the average structure by the split
oxygen positions [Figure 2.12(a)]. They suggested that incommensurate modulations
are intrinsic to the TTB oxide family, an idea which seems to have some merit. A
review from 2015 by Zhu and co-workers showed an empirical correlation between
the existence of modulated structures (both commensurate and incommensurate) and
classic ferroelectric behaviour15 (Figure 2.15).
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(a) (b)

Figure 2.14 — (a) Crystal structure of r-PN as reported by Mahé in 1967,118 showing
“dimers” built from two heavily distorted edge-sharing NbO6 octahedra. Projection
of one octahedral layer along the trigonal axis (hexagonal [001] direction), dashed
line showing the base of the hexagonal unit cell. The crystal structure is built up
by stacking the [001] layers in an ABCABC. . . pattern. (b) Temperature-dependent
lattice parameters and dielectric response of r-PN as reported by Lopatin et al.,119

pointing to a polar–nonpolar phase transition at 815 ◦C.

Filled TTBs

Filled TTBs, in which all A1 and A2 sites are occupied, are of particular interest in
the context of computational studies, as these do not suffer from the complication
of order–disorder phenomena such as in for example unfilled SBN. The prototypical
filled TTB compound is BNN, which has attracted much attention also because of its
incommensurately modulated crystal structure.99,108,121,122 The fact that many TTBs
have incommensurately modulated structures causes challenges for computational
investigations based on periodic boundary conditions. A family of filled, insulating
TTBs which has not been reported to show this behaviour, is the series K4R2Nb10O30

(KRN in what follows) with R = La, . . . ,Gd,Bi, a group of TTBs which has attracted
comparatively little attention.123,124 Figure 2.16 shows phase transition temperatures
reported for the KRN system, with some ambiguity regarding which transitions are
actually taking place. Scott et al. only reported a single dielectric “anomaly” [Figure
2.16(a)],123 while Neurgaonkar and co-workers reported that the KRN compounds go
through a sequence of two transitions, where the upper is a ferroelectric transition
similar to that found in SBN and other TTBs with polarization along z, and the lower
is a ferroelastic transition to an orthorhombic space group.124 As evident from Figure
2.16, the transition temperatures depend strongly on the size of R3+. A deviation from
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Figure 2.15 — Empirical map by Zhu et al.,15 showing how different mechanisms
promote ferroelectricity in TTBs. A large average A-site cation size increases the
polarizability of the B-site cation by stretching the B–O bonds, which increases
ferroelectric distortions (and also favours incommensurately modulated structures).
A low A1-site tolerance factor (tA1), which correlates with the average A-site cation
size, also promotes ferroelectricity since it leads to commensurate modulations which
are associated with long-range order. In between, relaxor behaviour dominates.

this trend is found for the compound with R = Bi (KBiN; not included in Figure 2.16),
for which TC has been reported in the range 360 to 420 ◦C,125–127 despite Bi3+ having
a very similar ionic radius to La3+ (rVI = 1.03Å and 1.032Å, respectively128). The
crystal structure of KBiN is also debated: Sugai and Wada125 reported a tetragonal
room-temperature crystal structure with a doubled c parameter, while Shimazu and
co-workers indicated a weakly orthorhombic distortion (a ≈ b).126 Neurgaonkar and
co-workers state in their review of TTB single crystal growth that KBiN has only
one phase transition, at 420 ◦C, from 4/mmm tomm2 point group symmetry.127 The
transition is first order and has no ferroelastic contribution, but the material shows
strong longitudinal and transverse ferroelectric effects. These partially contradictory
reports leave a less than clear picture of both the structure and properties of the KRN
series, with particularly high uncertainty for KBiN.

Another family of filled TTBs which has attracted attention recently, is the system
SrxBa6–xNb10O30 with 0 < x < 6, the filled counterpart to unfilled ferroelectric SBN.
In this system, a metal–insulator transition has been shown to follow a change of
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(a) (b)

Figure 2.16 — (a) Dielectric anomaly temperatures for KRN (R = La,Nd, Sm, . . . ,Dy)
and Rb4La2Nb10O30 (RLN), plotted versus the c0 spacing of the tetragonal unit cell.
Original data from Scott et al.,123 redrawn by Zhu et al.15 (b) Phase transition temper-
atures in the KRN system plotted versus the ionic radius of R (linearly dependent on
c0 down to R = Gd). The upper transition (TC2) is the paraelectric–ferroelectric transi-
tion, while the lower transition (TC1) is a ferroelectric–ferroelastic phase transition.
After Neurgaonkar et al.124

the Sr/Ba ratio, which is also accompanied by a change in crystal structure.102 Since
there are six divalent cations occupying the A1 and A2 sites, two of the ten Nb5+

cations are reduced to Nb4+ to maintain electric neutrality. Because of the partially
occupied d band, the compounds are electrically conducting. Filled BN is metallic in
the sense that the resistivity decreases with decreasing temperature, while for x � 4 it
diverges at low temperature, pointing to an insulating ground state. Kolodiaznyi and
colleagues102 found that the filled SBN compositions with x = 0, . . . , 5 crystallize in
the aristotype space group P4/mbm, while for the Sr end member, the orthorhombic
space group Amam was assigned to a

√
2 × 2

√
2 × 2 supercell. Filled SN shows

signatures of structural phase transitions at 720 K and 1072 K, which are suggested to
be linked to the metal–insulator transition in the filled SBN system. No computational
investigations have been made to support the experimental findings.

As mentioned previously, the search for lead-free ferroelectrics is one of the
main motivations for investigation of TTBs,13,80 but in recent years materials with
TTB structure have been investigated also with respect to other more or less exotic
properties. Multiferroic materials have experienced something of a renaissance in the
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last decade,129–131 and TTBs have to some extent been explored as a playground for
multiferroicity.132,133 One example is K6–xFe10F30 with x ≈ 0.1, a TTB fluoride which
shows partial FeII/FeIII ordering.134 Among TTB oxides, SBN-based materials with
partially reduced Nb have been suggested as n-type semiconductors for thermoelec-
tric applications.84,135–137 The TTB oxide Ba2Bi2Nb10O30 has been investigated as a
potential oxide ion conductor,138 and even superconductivity has been reported in the
partially reduced Ba6Nb10O30.102 It seems that TTBs are an “up and coming” class of
functional materials, and that more and more interesting properties will be discovered
in TTBs in the near future. A common feature for the investigations done on TTBs up
until now, is a lack of computational work. With the steadily increasing capabilities
of modern computational materials science, this situation is likely to change.

2.3 Density functional theory

The fundamentals and applications of density functional theory are well documented in
numerous textbooks and review papers,139–144 and the same goes for its historic develop-
ment and future prospects.145–148 The remainder of this chapter is in no way intended as
a complete overview of the wondrous world of density functional theory, but rather as a
low-level introduction to a few concepts important for this project.

Fundamentals

The fundamental behaviour of atoms, molecules and solids is described by quantum
mechanics (QM). At the heart of QM is the notion that a system, be it a single atom
or a piece of chalk, is completely described by its wave function. The wave function is
a complex function of the coordinates of all the particles in the system, meaning that
a system with N particles (counting all atomic nuclei and electrons) is described by a
3N -dimensional wave function. From this function, all possible information about
the system can be extracted. The (stationary) wave function, Ψ, is obtained by solving
the Schrödinger equation (SE) for the system:

ĤΨ(r1, r2, . . . , rN ) = EΨ(r1, r2, . . . , rN )

Here, Ĥ is the Hamilton operator, which specifies all possible interactions in the
system, and E is the energy. This is an eigenvalue problem: The energy is an eigen-
value of the Hamiltonian, with the wave function as the corresponding eigenstate.
Solving this 3N -dimensional non-linear eigenvalue problem is hard to say the least,
and approximations must be made in all non-trivial cases. The first level of approxi-
mation is usually the Born–Oppenheimer approximation:149 Since the electrons are
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much lighter and faster than the atomic nuclei, it suffices to solve the electronic SE for
the system, in which the nuclei are regarded as stationary and the wave function only
depends on the electronic coordinates. The nuclear coordinates enters the Hamilto-
nian as parameters, giving a separate Hamiltonian for each nuclear configuration.
Even within this approximation, the mathematical problem is formidable, since the
interactions between electrons turn the electronic SE into a many-body problem.
Only for single-electron systems (such as the hydrogen atom or the H2

+ molecular
ion) is it possible to solve the equation analytically, while for all systems containing
two or more electrons, approximate solutions must be found by numeric methods.

Even though the roots of density functional theory (DFT) can be traced back to the
late 1920s,150,151 DFT as we know it today originated in 1964, when Hohenberg and
Kohn published a ground-breaking paper stating what has been come to known as the
Hohenberg–Kohn theorems.152 Briefly stated, they say that (i) There is a one-to-one
mapping between the Hamiltonian Ĥ and the ground state electron density ρ (r); (ii)
There exists a universal functional of the electron density which has the ground state
energy of the system as its minimum. This result is not trivial. The electron density
is the square modulus of the wave function, ρ = |Ψ|2 = 〈Ψ|Ψ〉, so ρ is obviously
determined by Ĥ , in which the nuclear coordinates enter. The insight of Hohenberg
and Kohn was that the converse statement also holds, meaning that the 3-dimensional
electron density is just as complete a description of the system as the 3N -dimensional
wave function. The second part of the theorem states that it is possible to obtain the
ground state electron density by minimizing a universal functional of the electron
density. An energy functional F is a mathematical expression which takes in the
electron density ρ (r) and produces the single number E = F [ρ (r)]. The drawback is of
course that we do not know the formulation of F , and even if we did, the minimization
procedure would most likely lead to a mathematical problem just as heavy as solving
the full SE.

The first practical procedure for tackling the DFT problemwas formulated by Kohn
and Sham in 1965,153 one year after the Hohenberg–Kohn theorem. The Kohn–Sham
formalism, on which all modern DFT calculations are based, tackles the many-body
problem by a mean-field approach: Instead of considering interactions between all
the electrons, each electron interacts with the average of all the others. This makes
it possible to separate the electronic SE for a system of N electrons into N smaller
equations, each of which gives a single-particle wave function, or orbital, ϕ:

ĤKSϕi (r) = εiϕi (r)

The Kohn–Sham orbitals ϕi are eigenstates of the Kohn–Sham Hamiltonian ĤKS,
each with a Kohn–Sham energy εi as its corresponding eigenvalue. The Kohn–Sham
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orbitals are wave functions for an artificial set of non-interacting electrons. In this
sense, neither the orbitals nor their energies are physically meaningful on their own,†

and the orbitals in principle only serve to calculate the total electron density:

ρ (r) = 2
∑
i

|ϕi (r) |2

The Kohn–Sham Hamiltonian consists of several contributions to the total energy:

ĤKS = Tkin +Vext +VH +VXC,

The terms on the right represent the kinetic energy of the electrons, the external
potential from the atomic nuclei, the interaction with the average of all the electrons
(known as the Hartree potential), and the exchange–correlation (XC) potential. The
Hartree potential includes an unphysical self-interaction, since the average potential
an electron “sees” also includes a contribution from the electron itself. A correction
for this,155 and miscellaneous other QM effects such as the eponymous exchange
and correlation, is grouped into the XC potential, the functional derivative of the
exchange–correlation energy functional:

VXC =
δEXC[ρ (r)]

δρ (r)

The EXC term is in principle the only unknown term in Kohn–Sham DFT, which
would therefore be an exact theory if the exact XC functional were known. It is not,
and even if it were, it would most likely lead to infeasibly heavy calculations, so
in practice, simpler expressions for EXC are used. The simplest is the local density
approximation (LDA), a family of XC functionals which depend only on the density at
each point in space, ELDAXC = F [ρ (r)]. A more sophisticated approach is to also include
a dependency on the density gradient at each point, which leads to the generalized
gradient approximation (GGA) family of functionals, EGGAXC = F [ρ (r),∇ρ (r)]. Once an
appropriate XC functional is chosen, the total energy of the system is obtained from
the electron density:

Etot = Eknown[ρ (r)] + EXC[ρ (r)],

where “known” terms correspond to the kinetic energy, external potential and Hartree
terms in the KS Hamiltonian. The XC part includes everything else, The KS equations
must be solved iteratively or self-consistently: An initial charge density determines

†This distinction is most of all philosophical — the Kohn–Sham orbitals frequently resemble “real”
orbitals as obtained by wave function-based methods such as Hartree–Fock.154
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the initial KS Hamiltonian, which gives an initial set of KS orbitals. These are used
to calculated a new charge density, and the total energy is calculated. The process
is then repeated starting from the new charge density, and this continues until the
difference in EKS is sufficiently small between successive iterations.

The LDA and GGA functionals constitute the lowest two levels in the hierarchy of
XC functionals,156,157 as shown in Figure 2.17. The hyper-GGA family, also known as

Figure 2.17 — The ladder of density functional approximations to the XC energy,
as visualized by Perdew et al.157 Symbols and abbreviations: LSD, local spin density
(n); GGA, generalized gradient approximation; τ , kinetic energy density; εx , exact
exchange; RPA, random phase approximation. Each rung of the ladder includes the
components of the lower ones, plus additional complexity which potentially increases
the accuracy, but also the computational cost.

hybrid functionals, are worthy of special mention. They result from replacing a part
of the exchange energy in a density functional with exact exchange resulting from
a Hartree–Fock (HF) calculation. By adjusting the amount of exact exchange, and
possibly also combining LDA and GGA functionals for the DFT part of the exchange
and/or correlation energies, a wide variety of hybrid XC functionals can be created.158

A popular parametrisation of the mixing is

EXC = ELDAX +A(EHFX − ELDAX ) + (1 −A)B (EGGAX − ELDAX )

+ ELDAC +C (EGGAC − ELDAC ),
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where the XC functional is decomposed into exchange (X) and correlation (C) con-
tributions, and A, B and C are mixing parameters introduced by density functional
constructor Axel Becke.159 One of the most popular density functionals in molecular
chemistry is a hybrid functional known as B3LYP,160,161 in which Becke’s exchange
functional (B88)162 is combined with the correlation functional of Lee, Yang and Parr
(LYP)163 according to the mixing parameters A = 0.20, B = 0.90 and C = 0.81 as
determined by fitting to empirical data such as atomization energies and ionization
potentials for a wide range of atoms and small molecules.159 The most popular GGA
functional for solids is the Perdew–Burke–Ernzerhof (PBE) functional,164 and by
combining this with 25 % exact exchange (A = 1/4, B = C = 1), the result is a hy-
brid functional known as PBE0.165,166 This latter type of hybrid, with no empirically
determined parameters except those already present in the GGA (A = 1/4 is fixed a

priori165), is appealing, as some have considered the “hyperparametric disorder” of
functionals such as B3LYP to be unfortunate and counter to the spirit of the original,
pure density functional theory.167

Range-separated hybrid functionals are a more recent innovation which intends
to improve on the computational efficiency of hybrid functionals by splitting the
exchange part of VXC, which has the form of a Coulomb potential, 1/r , into a long-
range and a short-range part (the latter known as a screened Coulomb potential). There
is no unique mathematical recipe for this separation, but a popular choice is the
following:

VX (r ) ∼ 1

r
=

erf (μr ) + erfc(μr )

r
= V LR

X (x ; μ ) +V SR
X (x ; u),

where erf (x ) and erfc(x ) denote the error function and complementary error function,
respectively, which by definition sum to one.‡ It turns out that accurate results can
be achieved by replacing only the short-range part of VX by exact exchange, while
the long-range part, which would otherwise lead to very expensive HF calculations,
can be evaluated in the usual way (LDA or GGA). The “short-rangedness” of V SR

X
is characterised by the range-separation parameter μ, which has the dimension of
reciprocal length. The effect of μ on the screened Coulomb potential is shown in
Figure 2.18. The original range-separated hybrid functional was devised by Heyd,

‡

erf (x ) =
2√
π

∫
x

0
e−t 2 dt

erfc(x ) =
2√
π

∫ ∞
x

e−t 2 dt = 1 − erf (x )
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Figure 2.18 — Separation of the Coulomb interaction, 1/r , into a long-range (a) and a
short-range (b) part. The separation is characterized by a range-separation parameter,
μ, with the dimension of reciprocal length. Graphs with the same μ (same colour) in
a and b sum up to 1/r , as shown by the dashed line.

Scuseria and Ernzerhof (HSE).168 The first version is known as HSE03, and uses the PBE
functional with 25 % HF exchange and a range separation parameter of μ = 0.283Å

−1
.

A later revision, HSE06,169 recommends μ = 0.207Å
−1
. The limiting cases of μ = 0

and μ = ∞ correspond to PBE0 and PBE, respectively, and HSE with finite values of μ
can be regarded as an interpolation between these two.169

The main advantage of hybrid functionals is that they often provide an improved
description of the electronic band gap for solids. For almost all materials, DFT
calculations severely underestimate the band gap, in certain semiconductors by as
much as half of the experimental value.143 The hybrid functionals do, however, lead
to significantly more costly calculations, even for range-separated hybrids. A popular
and inexpensive solution to the band gap problem in DFT is the so-called DFT+U
approach (also known as LDA+U, PBEsol+U and so on, depending on which functional
is used), where an on-site Coulomb repulsion, U , is added to the Hamiltonian for
electrons occupying narrow bands, such as the d band in transition metal oxides. This
corrects for the previously mentioned self-interaction error inherent to mean-field
approaches such as DFT. The Coulomb interactionU can in principle be calculated
self-consistently,170,171 but in practice it often enters as an empirical parameter which
is determined by fitting to experimental data, for example on band gaps, magnetic
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moments or lattice parameters. Alternatively, a hybrid functional calculation can
be performed initially, and the results can be used to determine U for use in further
calculations which would be infeasible with hybrid functionals.172

The long list of available functionals, as well as the possibility to combine both
LDA and GGA functionals with various degrees of exact exchange at different range-
separations, means that there are in principle infinitely many functionals to choose
from. A recent example is the HSEsol functional,173 created by replacing PBE in
HSE06 with PBEsol, with the intention to improve on HSE06 for lattice parameters
and bond lengths of solids in the same way as PBEsol improves on PBE, while also
giving good electronic properties. There have even been attempts at combining hybrid
functionals with DFT+U, with the motivation that these methods should be seen as
complementary rather than mutually exclusive options.174 Despite all these efforts, a
functional that works equally well for both structural and electronic properties for a
large number of solids remains elusive. Purpose-specific tailoring of functionals is a
pragmatic solution,158 even though the large number of adjustable parameters brings
about certain challenges in itself.

DFT in modern materials science

“The calculation of a wavefunction took about two afternoons, and five wavefunctions
were calculated on the whole, giving the ten points of the figure.”175

The preceding quote, from a 1933 publication by Wigner and Seitz, refers to a
calculation of the energy of sodium metal as a function of the lattice constant. Today,
this type of calculation is a routine exercise which can be performed on a modern
smartphone.§ A lot has happened in the last two to three decades, which is reflected
in a rapidly growing number of DFT publications, as shown in Figure 2.19. The use of
DFT in solid-state chemistry and materials science has taken off at a later time than
molecular chemistry, but is quickly catching up. A further perspective on the historical
development of DFT for solids is provided by Figure 2.20, which shows the lattice
parameter of silicon calculated by different DFT codes and implementations of the
PBE exchange–correlation functional. This simultaneously illustrates the concepts of
precision and accuracy in computer experiments: Precision refers to the comparability
of results obtained by different calculations and/or software packages, while accuracy
refers to how close computational results come to experimental values. The former
can be thought of as the reproducibility of the computer experiments, in analogy
to laboratory experiments, and has improved significantly over the 20 years since

§The open-source electronic structure software suite Quantum ESPRESSO,176 for example, has been
successfully implemented on both cellphones and videogame consoles.177,178
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Figure 2.19 — Annual number of DFT publications, resolved into molecular (“chem-
istry”) and solid-state (“materials”) systems based on the citation of the B3LYP160,161

and PBE164 functionals, respectively (unit: kilopapers). Gold medal represents the
1998 Nobel prize to Walter Kohn and John Pople.179,180 From [145].

the release of PBE in 1996. The accuracy has not improved in the same way, since it
depends on the details of the functional, which are common to all the calculations.
The PBE functional is known to overestimate the lattice parameter for most solids by
1 to 2 %, with the error increasing for heavier elements.173,182 This should not be seen
as a problem for the use of PBE, since comparison between different solids may still
give realistic trends in properties.

Density functional calculations have been of immense importance for the funda-
mental understanding of ferroelectric materials.183 As mentioned previously, one of
the major milestones in understanding the origins of ferroelectricity was made with
Cohen’s electronic structure calculations for the perovskites PbTiO3 and BaTiO3

in the early 1990s,55,184 which coincides in time with the onset of DFT publica-
tions shown in Figure 2.19. As is also the case for experimental studies, most of
the computational work on ferroelectrics has focused on perovskites, although
first-principles studies have been conducted also for materials such as for exam-
ple the LiNbO3

185,186 and YMnO3 structural families,187,188 Aurivillius,189–191 Dion–
Jacobson192,193 and Ruddlesden–Popper phases,194–196 and other types of layered
perovskites.197 In several cases, these fundamental studies have led to increased
understanding also of more general phenomena than ferroelectricity: YMnO3, for
example, is a typical improper ferroelectric,198,199 in which the polar distortion mode
is not the energy-lowering mode that actually drives the transition (or, from a more



40 CHAPTER 2. INTRODUCTION

Th
is

 P
hD

 th
es

is
 (2

01
6)

PB
E 

(1
99

6)

Figure 2.20 — Precision and accuracy of DFT calculations, here exemplified by
the lattice parameter of silicon as calculated by different DFT codes using the PBE
exchange–correlation functional. The precision has improved significantly over the
20 years since PBE was released (vertical dashed lines), meaning that the computer
experiments are becoming increasingly reproducible. The accuracy is determined by
the details of the functional (in this case, PBE overestimates the lattice parameter of
Si). Adapted from [181].

macroscopic viewpoint, the spontaneous polarization is not the primary order param-
eter of the transition). In YMnO3, the spontaneous breaking of symmetry occurs via a
non-polar zone boundary mode, and polarization arises as a secondary effect.187 Even
more sophisticated is the concept of hybrid improper ferroelectricity, exemplified by
Ca3Mn2O7 with Ruddlesden–Popper structure.194 In this case, ferroelectricity arises
from a combination of two non-polar octahedral tilt modes, which may or may not
condense at the same temperature. The insight gained from fundamental studies on
ferroelectrics, be they perovskites or more exotic structures, plays a central role in
the ongoing search for new multiferroic materials.56–58,131,200–202

Lattice dynamics and spontaneous polarization

Two computational topics deserve special mention: Lattice dynamical characteri-
sation of ferroelectric instabilities, and calculation of spontaneous polarization in
periodic structures. Lattice dynamics is the study of vibrations in a crystalline solid.
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In a periodic lattice, each atom vibrates around its equilibrium position under the
influence of forces governed by chemical bonds to other atoms (illustrated in the
phase transition model in Figure 2.3). The possible vibrations of the crystal lattice can
be decomposed into periodic “displacement waves”, also knows as phonons. Provided
that inter-atomic forces can be accurately described within the harmonic approxima-
tion, phonons can be obtained as eigenvectors of the dynamical matrix, the matrix of
second derivatives of the energy with respect to periodic displacements of the atoms.
The calculation of phonons is therefore a linear algebra problem which can be solved
very efficiently once the energy is calculated for a given atomic displacement32,203,204

Phonon calculations represent a computational approach to the soft mode theory
of ferroelectricity developed in the 1960s: By performing phonon calculations for
the high-symmetry paraelectric phase of a ferroelectric, such as a cubic perovskite,
certain phonons will show up as unstable, which is manifested in imaginary vibration
frequencies. If the eigenvector of the phonon is “frozen in”, the energy of the system
is lowered, and the result is a distorted structure of lower symmetry. By repeating the
process until no further unstable phonons are found, the dynamically stable ground
state structure can be reached. This is a systematic way of exploring energy-lowering
distortions when starting from a high-symmetry crystal structure, such as a cubic
perovskite, and can be used to predict if a hypothetical compound would undergo a
displacive phase transition to a lower symmetry32,194,204–208

Spontaneous polarization in periodic structures represents a particular challenge
for first-principles calculations, and the formulations necessary for implementing
it in modern density functional codes were developed relatively late, in the early
1990s.209,210 Several reviews exist of the modern theory of polarization,211–214 and
only an illustration of the basic problem will be given here.

The macroscopic interpretation of polarization is the surface charge per unit area,
|P| = Q/A, as illustrated in Figure 1.1(b). Microscopically, the polarization of a system
is usually interpreted as the dipole moment per unit volume, P = d/V . For a finite
system, such as a molecule or cluster, the polarization is straightforwardly calculated
as

P =
1

V

∑
i

qiri ,

for a collection of point charges qi at positions ri . This is referred to as the ionic limit,
and for a continuous charge distribution, the above expression is generalized by an
integral. A conceptual problem arises, however, when attempting to transfer this
formulation to a periodic (infinite) system. As an example, the top panel of Figure 2.21
shows a one-dimensional chain of alternating anions and cations, spaced regularly
so as to produce a centrosymmetric structure. The polarization of this system is
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Figure 2.21 — One-dimensional chain of alternating anions and cations with lattice
parameter a. The top panel shows a centrosymmetric and non-polar structure, while
in the lower panel the cations have moved a distance d in the +x direction, producing
a polar structure. Different unit cells can be chosen (dashed lines), giving different
microscopic dipole moments, even for the centrosymmetric structure. However, the
change in polarization, ΔP = (1/a)

∑
i qiΔxi , is the same in both cases (ΔP = d/a for

q = ±1). Figure from [214].

ill defined: There is no uniquely defined unit cell for the system (the dashed lines
show two possible choices), and hence also no unique microscopic dipole moment.
However, a change in polarization is well defined, as shown in the bottom panel of
Figure 2.21. The cations have now moved a distance d , producing a net polarization
along x , and the corresponding change in polarization can be found from, again in
the ionic limit,

ΔP =
1

a

∑
i

qiΔxi ,

which yields the same result for both the unit cells shown. The key point is that
the absolute value of P is meaningless for a periodic structure, and that polarization
must always be evaluated as a change with respect to a suitable reference structure
(typically the paraelectric phase for a ferroelectric). The polarization is calculated
as a so-called geometric phase or Berry phase of the wave funtion,215,216 which can
be an independent-particle Kohn–Sham or Hartree–Fock wave function,217,218 or, in
principle, the full many-body wave function.219 The mathematics of the Berry phase
method leads to the polarization being calculated modulo an arbitrary number of
“polarization quanta”:

Pi = P0,i ± nPq,i ,
where Pq,i is the polarization quantum in direction i and n is an integer. Pq,i is
determined by the crystal structure, and is generally of the same magnitude as Ps
for a typical ferroelectric. The polarization is in other words multivalued, a concept
referred to as the polarization lattice. The practical consequence of this is that a number
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of calculations must be performed for structures that gradually transform between
the polar (ferroelectric) state and a non-polar (paraelectric) reference state, in order
to ensure that the same value of n is used for both end points when calculating ΔP .
This is illustrated in Figure 2.22, which shows the detailed calculation of spontaneous
polarization for the ferroelectric perovskite BiFeO3.

Figure 2.22 — Calculation of spontaneous polarization of BiFeO3 using the modern
theory of polarization. Polarization is calculated with respect to a gradual transfor-
mation between the ferroelectric state (±100 %) and a non-polar reference state (0 %).
The dashed lines represent different branches of the polarization lattice, separated
by the polarization quantum. The spontaneous polarization, Ps , is extracted as the
change in polarization along a single branch from 0 to 100 %. From [131].

Complementary to the direct calculation of spontaneous polarization is the calcu-
lation of Born effective charges (BECs).220,221 The BEC tensor of atom i is defined as
the derivative of the polarization in direction β with respect to displacement of the
atom in direction α :

Z ∗i,α β =
∂Pβ

∂ui,α
.

The BECs are often anomalously large (significantly larger than the nominal ionic
charges) in a structure that is dynamically unstable with respect to a lower-symmetry
phase. For example, the titanium cation in cubic BaTiO3 has a BEC of +7.25, almost
twice the nominal ionic charge of +4. Similarly, the oxygen anions, with a nominal
charge of −2, have a BEC of −5.71 for displacement in the direction of the Ti–O
bonds.221 The interpretation of this is that when cubic BaTiO3 distorts into the polar
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tetragonal phase, the additional covalent Ti–O bonding arises through electron trans-
fer from O 2p orbitals to the formally empty Ti 3d . This leads to a larger net charge
transfer than what would result from only the displacement of cations with nominal
ionic charges. Large BECs are therefore considered to be a strong indicator for the
existence of ferroelectricity. One advantage of this strategy is that calculation of BECs
for the high-symmetry paraelectric phase does not require detailed knowledge about
the ferroelectric phase. Hypothetical compounds, for example ABO3 perovskites,
can therefore be conveniently screened for large BECs in search of potentially new
ferroelectric materials.



3Methods

3.1 Computational details

General

All first-principles calculations in this work were performed with the Vienna Ab-initio
Simulation Package (vasp, versions 5.3.2–5.4.1).222–225 All calculations employ the
projector augmented wave (PAW)226,227 potentials supplied with vasp. The specific
potentials are listed in Table 3.1 with the name used in the vasp potential library, and
the corresponding valence electron configurations. The potentials used for f -block
elements (lanthanides) include the f orbitals as core states in order to speed up
convergence.

Table 3.1 — Valence electron configurations for the PAW potentials used in the
density functional calculations.

Potential Valence e− config.

O 2s22p4

Nb sv 4s24p64d35s2

K sv 3s23p64s1

Ti sv 3p63d24s2

Sr sv 4s24p65s2

Ba sv 5s25p66s2

La 5s25p65d16s2

Ce 3, . . . , Sm 3 5s25p65d16s2

Eu 3, Gd 3 5p65d16s2

Tl d 5d106s26p1

Pb d 5d106s26p2

Bi pv 5p65d106s26p3

Integrals in reciprocal space were approximated by sampling on a Monkhorst–
Pack (MP) grid,228 and wave functions were expanded in plane waves up to a certain
energy cut-off. Both the energy cut-off and the density of the MP grid were tested
for convergence in all new geometries, with respect to properties such as lattice
parameters and total energies. In general, a 2× 2× 6 MP grid was sufficient for a TTB
unit cell of 12Å × 12Å × 4Å. The energy cut-off is mainly determined by the oxygen
potential used, which requires a minimum of 400 eV. 550 eV was generally found to
give well converged results.

45
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Most calculations employ the PBEsol functional,229 which is a version of the
Perdew–Burke–Ernzerhof (PBE) functional164 optimized for solids, and typically
improves on PBE for equilibrium properties such as lattice parameters and bond
lengths. All calculations on insulating TTBs also use strictly non-spin-polarized
calculations. For the conducting TTBs with a partially occupied d band, Chapter 8,
both spin-polarized and non-spin-polarized calculations were performed with the
range-separated hybrid functional HSEsol.173 HSEsol is based on PBEsol and uses 25 %

Hartree–Fock exchange and a range separation of μ = 0.207Å
−1
. Non-spin-polarized

PBEsol+U calculations were used as a less computationally expensive alternative
to HSEsol in order to facilitate structural relaxations and phonon calculations for
conducting TTBs. The implementation of PBEsol+U follows the standard Dudarev
scheme,230 with the effective on-site Coulomb interactionUeff = U − J determined by
fitting PBEsol+U results to HSEsol results for the electronic band gap.

Crystal structures and charge densities were visualized with vesta231 unless
otherwise specified. Online tools from the Bilbao Crystallographic Server232–234 were
used throughout, and specific programs are cited as appropriate.

Structural optimization

Optimization of crystal structures was performed by relaxing atomic positions and/or
lattice parameters until the Hellmann–Feynman forces235 acting on all ions were below
a certain threshold. For energetic comparisons, a force-based convergence criterion

of 10−2 eVÅ
−1

was typically used, while a stricter criterion of 10−4 eVÅ
−1

was found
to be necessary for calculation of phonon frequencies in TTBs. Relaxations were done
either by a conjugate gradient algorithm236 or by the quasi-Newton method.237 For
relaxations involving change of the supercell volume, the procedure was repeated
until convergence occurred in a single ionic step, so as to minimize the effect of Pulay
stress.238

Energy barriers

Nudged elastic band (NEB) calculations239 were used to estimate energy barriers
for diffusion, such as the transitions between cation configurations in BN and SN
(Chapter 4), and for ferroelastic switching in PN (Chapter 6). The NEB method
considers several intermediate “images” between the start and end points of the
transition, and searches for the minimum energy path (MEP) between the end points
by simultaneously optimizing the images along the transition path. Each image is
constrained with respect to its neighbours by “spring forces” acting between the
images. In cases where the transition path was simple and more or less symmetric,
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the climbing image NEB (CINEB) method240,241 was used. This is a variation on
standard NEB in which the highest-energy image along the path (the middle image
for a simple, symmetric path with one maximum) is brought to an energy maximum,
which therefore converges to the exact saddle point and finds the correct transition
barrier. The atomic positions for each image are relaxed until the forces on the ions
are less than a certain force-based criterion242 (typical criteria used for 90-atom cells

were 0.05 eVÅ
−1

for single-atom diffusion and 0.3 eVÅ
−1

for ferroelastic switching).
Reference calculations for ferroelastic switching were also performed for the simple
perovskite PbTiO3. In this case, the climbing image variation of the generalized solid-
state NEB (SSNEB) method243 was used in addition to standard CINEB. In SSNEB,
both the atomic positions and the lattice parameters are optimized along the MEP,
while subjected to spring forces between the images as in regular CINEB.

Electronic structure

Atom-resolved densities of states (DOSes) were calculated by projecting the total DOS
onto atom-centered spherical regions with volumes equal to the Bader volumes244–246

(referred to as “Bader spheres” in what follows). Projection in Bader spheres was
done to ensure that the atom-resolved DOSes sum to the total DOS as closely as
possible, which is not necessarily the case when projecting onto the PAW spheres
or spherical regions determined by tabulated ionic radii.∗ This scheme also makes it
possible to use different radii for the same cation on the A1 and A2 sites in the TTB
structure, which have different coordination numbers and therefore different radii.
Atomic charges were determined by the actual Bader analysis, where atomic charges
are determined by integration of the charge density inside the non-spherical Bader
volumes.246 Spontaneous polarization was calculated by the Berry phase method209,210

as implemented in vasp. Finally, the Born effective charge (BEC) tensor221 was
obtained using the linear response routines in vasp,248 which is an implementation of
density functional perturbation theory.249

Lattice dynamics

Phonon calculations were performed by the finite displacement method as imple-
mented in the phonopy code,204,250 with displacements of 0.01Å used for calculation
of the force constants. Unstable modes in high-symmetry structures were manifested

∗Projection of DOSes directly onto the non-spherical, space-filling Bader regions can in principle
produce atom-resolved DOSes that sum exactly to the total DOS.247 However, this is a non-standard feature
in vasp, and introduces possible ambiguity if orbital-resolved DOSes are created by further projection onto
spherical harmonics.
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as phonons with imaginary frequency. To obtain the dynamically stable ground state
when starting from high-symmetry structures, the unstable modes were “followed” by
systematically displacing atoms along the mode eigenvector (hereafter referred to as
“freezing in” the mode), and relaxing the structure again until no further instabilities
were found.196,208,251

3.2 Experimental work

Powder synthesis and sintering of dense ceramics

Lead metaniobate with TTB structure (Chapter 6) was synthesized by dissolving
PbO (99.999 %, this and all other chemicals from Sigma-Aldrich) in nitric acid and
mixing in stoichiometric amounts of Nb2O5 (99.99 %). 2mol % CaTiO3 [in the form
of stoichiometric amounts of CaCO3 (99.95 %) and TiO2 (anatase, 99.8 %)] was added
to the slurry in order to stabilize the TTB phase with respect to the rhombohedral
phase.7 The slurry was dried under reduced pressure in a rotavapor, and the powder
heated to 400 ◦C at a rate of 25 ◦Ch−1 and held at this temperature for 2 hours in
order to decompose nitrates. The resulting oxide powder was pressed into 25mm
pellets and fired twice at 850 ◦C for 2 hours, with crushing and re-pressing between
the firings. After this, the powder was ball-milled in ethanol with 5mm ZrO2 balls
for 15 hours, and finally fired at 1250 ◦C for 1 hour to obtain phase-pure ferroelectric
lead metaniobate. The main reaction is

5 PbO + 5Nb2O5 −−−→ Pb5Nb10O30,

and the added CaTiO3 is incorporated into the structure as a solid solution:

(
1 − x

5

)
Pb5�Nb10O30 + 2xCaTiO3 −−−→ Pb5−xCa2x�1−x Nb10−2xTi2xO30,

where � explicitly denotes a vacant A1/A2 position. A doping level of 2mol %, cor-
responding to x = 0.01 in the above equation, gives a nominal stoichiometry of
Pb4.99Ca0.02Nb9.98Ti0.02O30 for the powder sample. Acceptor doping on the B1/B2 sites
is charge compensated by cation excess on the A1/A2 sites, with a total A-site cation
occupancy of 5.01 at the given doping level. It can be noted that the solubility limit
for CaTiO3 in TTB-PN is at least ten times higher than this.7

Powders of lead metaniobate with rhombohedral structure, Chapter 9, were pre-
pared by conventional solid-state synthesis. PbO (99.999 %) and Nb2O5 (99.99 %)
powders were mixed in equimolar amounts with a mortar and pestle, uniaxially
pressed into 25mm pellets and fired at 850 ◦C for 2 hours in a sealed alumina crucible.
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The pellets were crushed down, and pressing and firing was repeated twice, for a
total of three 2-hour firings at 850 ◦C. The sample was finally crushed to a powder
and annealed for 30 minutes at 550 ◦C prior to structural analysis in order to remove
possible strain from the crushing.

Dense ceramic samples of r-PN were prepared for dielectric impedance spec-
troscopy and dilatometry (Chapter 9). Fine-grained r-PN powder was first prepared
by a solid state reaction as described above, where a single calcination step at 850 ◦C
(2 hours) was performed, followed by ball milling in ethanol with 5mm ZrO2 balls for
100 hours and sieving the powder to 250 µm. A 10mm pellet was uniaxially pressed
at 30MPa and cold-isostatically pressed at 2 kbar before sintering at 1140 ◦C for one
hour in a sealed alumina crucible with sacrificial PN powder. The final density was
92 % of the theoretical value. A 5mm cylindrical pellet was prepared in the same way
for dilatometry, with similar final density.

Diffraction and structure refinement

Room temperature powder X-ray diffraction (XRD) was performed with a Siemens
D5005 diffractometer set up in Bragg–Brentano geometry with θ–2θ scan mode. Cu
Kα1 X-rays (λ = 1.5406Å) were provided from a primary graphite monochromator,
and data were collected with a Braun position sensitive detector (PSD) scanning a
2θ range of 5°–110° with a step size of 0.015°. For TTB-PN, Chapter 6, a series of 12
two-hour scans were collected, and merged using the Bruker AXS Eva software suite
prior to structural refinement. For r-PN, Chapter 9, a single scan was collected over
24 hours.

Powder neutron diffraction data were collected at room temperature with the PUS
diffractometer installed at the JEEP II reactor at Institute for Energy Technology in
Kjeller, Norway.252 Two separate experiments were performed, on TTB-PN (Chapter
6) and r-PN (Chapter 9). Neutrons were provided from a vertically focusing Ge
monochromator, with wavelengths of 1.5537Å and 1.5555Å, respectively, for the two
experiments. Data were collected in a 2θ range of 10°–130° in steps of 0.05° with two
detector banks, each with 6 horizontally stacked 3He-filled PSD tubes covering a 2θ
range of 20°.

High-temperature XRD (HTXRD) was performed with a Bruker AXS D8 Ad-
vance equipped with a high-temperature stage. The instrument was set up in Bragg–
Brentano geometry with θ–θ scan mode, using Cu Kα radiation and a Våntec-1 PSD.
The HTXRD experiments on TTB-PN (Chapter 6) were performed at temperatures
up to 700 ◦C, with heating provided from a radiant heater surrounding the alumina
sample holder. The 2θ range was 20°–75° with a step size of 0.015°. Two separate
HTXRD experiments were performed on r-PN (Chapter 9). The first used a radiant
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heater to reach temperatures up to 850 ◦C with the same parameters as above, while
the second experiment covered temperatures up to 1100 ◦C. In the latter, the powdered
sample was dispersed in ethanol and spread out on a platinum (Pt) strip which was
directly heated by an electric current. A 2θ range of 10°–90° was covered in steps of
0.015° in the Pt heater experiment.

The HTXRD temperatures were calibrated by recording diffractograms of pow-
dered α-Al2O3 (corundum) over the same temperature ranges as in the main experi-
ments, and extracting the lattice parameters for corundum by the Pawley method.
Polynomial expressions for the lattice parameters of corundum as a function of tem-
perature, given in ref. [253], were inverted in order to provide the temperature as a
function of the lattice parameters. In this way, each HTXRD scan of corundum gave
two calculated temperatures, one from each of the a and c lattice parameters, and the
average value was used as the “real” temperature. The nominal and real temperatures
were correlated through a second-order polynomial expression, which was finally
used to correct the nominal temperatures in each HTXRD experiment.

Rietveld refinements were done with the Bruker AXS Topas 4.2 and Topas 5
software packages. The background intensity was fitted to a Chebychev polynomial
of minimal degreee, and peak shapes were fitted to Pearson type VII (X-ray data) or
Thompson–Cox–Hastings pseudo-Voigt profiles (neutron data). Lattice parameters
and atomic positions were refined according to the atomic degrees of freedom dictated
by the space group symmetry. Thermal displacement factors were refined isotropically.
Structural data used as starting point for the refinements were taken from literature,
and are given in Appendix B. For the HTXRD experiments on TTB-PN and r-PN,
lattice parameters were obtained by Pawley fitting, without doing a full Rietveld
refinement of the crystal structure.

Dielectric characterisation

The dense r-PN ceramic pellet was grinded with #1200 SiC paper down to a thickness
of 0.92mm, while ensuring that the top and bottom surfaces were parallel. The sample
was cleaned in an ultrasonic bath with ethanol for 15 minutes, and electroded with
platinum ink (Metalor Technologies UK Ltd, United Kingdom) which was dried at
120 ◦C. The dielectric characterisation was performed with a Novocontrol Alpha-A
impedance analyser (Novocontrol Technologies GmbH, Germany). The sample was
mounted in a Probostat sample cell (Norecs AS, Norway) configured in 2-electrode
4-wire setup and connected to the analyzer mainframe via a Novocontrol ZG4 test
interface. The sample cell was heated to 1000 ◦C in a vertical tubular furnace at a rate
of 2 ◦Cmin−1, with a small flow of synthetic air through the cell during measurements.
The dielectric response was measured at an AC field amplitude of 1 V.
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Thermal analysis

Thermal expansion of a sintered r-PN ceramic was measured up to 900 ◦C with a
Netzsch DIL 402C dilatometer (Netzsch-Gerätebau GmbH, Germany) with heating
and cooling rates of 5 ◦Cmin−1 and a small flow of synthetic air during measurements.
An alumina standard (Netzsch) was used for calibration. Differential thermal analysis
(DTA) of an r-PN powder sample was performed with a Netzsch STA 449 C Jupiter
thermal analyzer using the same temperature program as the dilatometric study.





4Energetics of cation ordering in unfilled TTBs

The content of this chapter is based on ref. [254].

4.1 Results

Configurational energy landscape

An analysis is made of the different orderings possible in ANb2O6-type tungsten-
bronzes. Starting with a single unit cell containing 45 atoms (5 formula units of
ANb2O6), there are 6 sites among which to distribute 5 cations (or, equivalently and
more convenient, six sites among which to distribute 1 vacancy). The four pentagonal
(P) sites are equivalent, as are also the two square (S) sites, see Figure 4.1(a), so for a
single unit cell, there are only two unique configurations.

(a) (b)

Figure 4.1 — (a) Projection along the c axis of the tetragonal tungsten-bronze unit
cell in the P4/mbm aristotype. The A1 and A2 sites are represented by grey and
black spheres, respectively, while the B1 and B2 sites are shown as grey and white
octahedra. (b) Supercell with a doubled c axis, showing only the A1 and A2 sites with
the same colors as in (a).

A more realistic approach is to look at the possible configurations in a 1 × 1 × 2
supercell, by doubling the unit cell along c . In such a cell, there are a total of 12 A-sites
(pentagonal and square), as shown in Figure 4.1(b). Among these 12 sites, there are
10 atoms and 2 vacancies to be distributed. Focusing on the distribution of vacancies,
the possible configurations can be counted and named according to the following
scheme:

53
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• The two vacancies can be distributed between square and pentagonal sites in
three ways: Both pentagonal (PP), both square (SS), or one of each (SP).

• If the first vacancy is located on a square site, there are three possible ways to
place the second vacancy on another square site: On the other square site in
the same layer; diagonally in the layer above; or directly above the first. Hence,
there are three SS configurations.

• If the first vacancy is located on a pentagonal site, there are five possible ways
to place the second vacancy on another pentagonal site: Two in the same layer
(next to the first or diagonally opposite from it); the same two positions in the
layer above; or directly above the first. Hence, there are five PP configurations.

• If the first vacancy is located on a square site and the second on a pentagonal,
they can either be in the same layer, or in different layers. Hence, there are two
SP configurations.

• A triplet [hkl] is used to describe the (approximate) vector between the two
vacancies. For example, two pentagonal vacancies within the same layer can
be designated as PP[100] or PP[110] configurations, depending on whether the
vacancies are “nearest neighbours” within the unit cell, or diagonally opposite
from each other, respectively.

This scheme leads to a total of 10 unique configurations for each composition. These
are summarized in Table 4.1, which gives the systematic name for each configuration,
and the local space group symmetry arising from the cation ordering.255 As the table
shows, the five PP configurations lead to local orthorhombic space group symmetries,
the three SS configurations preserve the tetragonal symmetry (with SS[110] even
preserving the aristotype space group P4/mbm), and the two SP configurations lead to
local monoclinic symmetry. The 10 configurations for a 1×1×2 supercell also include
the two configurations possible for a single unit cell: PP[001] is identical to a single
unit cell with the vacancy on a pentagonal site, while SS[001] is identical to a single
unit cell with the vacancy on a square site. The scheme can in principle be extended
to even larger supercells, such as 1× 1× 3 or 1× 1× 4. The 1× 1× 2 cell employed here
leads to a manageable number of configurations and good computational efficiency.

The total energy of BN, SN and PN in all 10 configurations considered above
is shown in Figure 4.2. Both the energy of the initial structures, and the energy
after optimisation of atomic positions and lattice parameters, are shown. The two
configurations that correspond to a single unit cell, PP[001] and SS[001], are the least
energetically favourable among the initial structures, and for all three compounds, it
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Table 4.1 —The 10 cation configurations possible for the 1×1×2 supercell considered
in this chapter, showing the systematic name, local space group symmetry, and a
sketch of the configuration (cations represented by grey spheres, vacant sites white).

PP[100] PP[110] PP[101] PP[111] PP[001]
Pmc21 Cmmm Pmn21 Cmcm Amm2

SS[110] SS[111] SS[001] SP[110] SP[111]
P4/mbm P4/mnc P4/m Pm Pm

is one of these two configurations that has the highest energy initially. The relative
energies of the configurations change, however, when ionic relaxation is taken into
account. Especially for BN, the initial configurations of highest energy are the ones
that gain most by relaxation, giving an overall energy landscape which is quite flat.
Subsequent relaxation of the unit cell volume and change of lattice parameters does
not contribute as much, as the main energy gain lies in the relaxation of the atomic
positions.

For SN and PN, the energy landscape is not quite as flat as for BN, although for
both compounds there are several configurations that are very close in energy. The
effect of volume relaxation is even lower for SN and PN than for BN, contributing
very little to the total energy gain upon optimization of the structure. The effect of
ionic relaxation is significant, making the total energy gain larger, at the most around
3.8 eV. The energy for the fully relaxed structures is summarized in Figure 4.3(a),
where dashed lines mark the range of energies for each composition. In general, there
is no single configuration, or a few configurations, that stand out as significantly
more plausible than the others for any of the three compounds.

The change in the unit cell volume following the relaxation of lattice parameters
is shown in Figure 4.3(b). The volume change is positive in almost all cases, and
as large as up to 2 % with respect to the initial volumes. Some trends are evident:
For BN, the expansion is largest for the PP configurations, where Ba2+ completely
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Figure 4.2 — Relative energy per unit cell (A5B10O30) of the different configurations
for (a) BN, (b) SN and (c) PN. The blue bars labeled “Aristotype” show the energies of
the intial structures, with space group symmetry as described in Table 4.1. The red
and yellow bars show the additional energy contribution from relaxation of atomic
positions and unit cell volume, respectively. The zero level is set at the highest initial
energy for each composition (configurations PP[001] or SS[001]).
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corresponding to the total energy shown in Figure 4.2. The lowest-energy structure is
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for PN). Dashed lines mark the highest-energy configuration for each composition. (b)
Volume change corresponding to the relaxed structures in (a), showing the difference
in unit cell expansion associated with different cation configurations.
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occupies the narrow square channels, and smaller and slightly negative for the SS
configurations. This is as expected, as the large Ba2+ cations preferentially occupy
pentagonal sites, and will expand the lattice if forced into the smaller square sites.
A closer inspection of the lattice parameters shows that the volume change for BN
comes from an expansion of the a and b parameters, and a contraction of c with
respect to the initial values. Also for SN and PN, the a and b parameters mostly
expand (the sole exception being PP[110] for PN, where they slightly contract), while
the c parameter either expands or contracts.

Thermodynamic model

To gain further insight into the possibility of cation ordering, a thermodynamic
model is developed. The model is an extension of the thermodynamic model devised
by O’Neill and Navrotsky for the cation distribution in spinels.256 The fundamental
assumption, introduced by Schmalzried257 and elaborated by Navrotsky and Kleppa,258

is that the interchange of cations between two distinct sublattices can be viewed as a
chemical equilibrium:

[Av](A4)Nb10O30 −−−⇀↽−−− [A1+xv1−x ](A4−xvx )Nb10O30, (4.1)

where [A] denotes a cation A on an A1 or square site, and (A) denotes a cation A
on an A2 or pentagonal site. A cation vacancy is denoted by v .∗ This introduces an
interchange parameter, x , which ranges from 0 (all vacancies on square sites, i.e., SS
configurations) to 1 (all vacancies on pentagonal sites, i.e., PP configurations). It is
then assumed that the free energy of the cation interchange reaction (4.1) can be
expressed as

ΔGint (x ) = αx + βx2 + RT
∑
s

bs
∑
i

yi,s lnyi,s , (4.2)

where the last term on the right side is recognized as the entropy of mixing for an
ideal solution, with yi,s being the fractional occupancy of species i on site s , and bs
the multiplicity of site s . This is a purely configurational entropy contribution, i.e.,
it is assumed that all other entropy changes following reaction (4.1) are negligible.
The enthalpy consists of two terms, one linear and one quadratic in the interchange
parameter x , as was proposed by O’Neill and Navrotsky256 as an extension of the
original model by Navrotsky and Kleppa.258 Effects of volume and non-configurational

∗The use of lowercase v and i for vacancies and interstitials, respectively, is recommended in Norby’s
Kröger–Vink-compatible defect chemistry notation259 in order to avoid ambiguous and/or hilarious sit-
uations when describing the defect chemistry of vanadium or iodine compounds such as VI3. The same
convention is used here.
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entropy are neglected, and all configurations with same value of x are — for now —
assumed to be degenerate. Differentiation of the entropy part shows that maximal
configurational entropy is obtained for x = 2/3, in analogy to AB2O4 spinels, which
also have a maximal configurational entropy for x = 2/3 when x is the fraction of B
cations on tetrahedral sites (this is referred to as a random spinel). Continuing from
(4.2), the entropy part can be written out as follows:

ΔSint (x ) = −R
∑
s

bs
∑
i

yi,s lnyi,s

= −R
{
2
[ 1 + x

2
ln

1 + x

2
+
1 − x
2

ln
1 − x
2

]
+ 4

[ 4 − x
4

ln
4 − x
4
+
x

4
ln

x

4

]}
(4.3)

Differentiation of (4.3) gives

∂ΔSint
∂x

= −R ln
(1 + x )x

(1 − x ) (4 − x ) . (4.4)

For equilibrium conditions,
∂ΔGint

∂x
= 0, (4.5)

which, using the above result for the entropy part, evaluates to

α + 2βx + RT ln
(1 + x )x

(1 − x ) (4 − x ) = 0, (4.6)

or, when rearranged:

lnK = ln
x (1 + x )

(1 − x ) (4 − x ) = −
α + 2βx

RT
. (4.7)

K in (4.7) can be recognized as the equilibrium constant for the simplified cation
exchange reaction [v] + (A) −−−⇀↽−−− (v) + [A], using the same notation as in (4.1).
Equation (4.7) gives the relation between temperature and degree of inversion once
the enthalpy coefficients α and β are determined. This can be done experimentally
by determining x from refinement of diffraction data at different T , given that it is
possible to obtain data of sufficiently high quality at temperatures where the cation
mobility is appreciable. Alternatively, as is done here, the parameters α and β can be
determined by calculating the enthalpy term in (4.2) from first principles for cation
configurations with different x .

As stated above, the thermodynamic model does not directly take into considera-
tion the energy differences between configurations with the same value of the cation
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interchange parameter x . In an attempt to meet this problem, the enthalpic part of
Equation (4.2) was fitted to Boltzmann averages of the energies for each x :

〈E〉(T ) =
∑

n Ene
−En/kBT∑

n e−En/kBT
, (4.8)

where En is the energy of configuration n, and the sums are over configurations with
the same value of x (i.e., the PP, SS and SP configurations are averaged separately).
In this way, at zero kelvin the energies are identical to the single lowest energy
for each x , while at finite temperatures there is also a contribution to the energy
from population of configurations with higher energy. Fitting the energies of the
fully relaxed structures to Equation (4.2) as described above leads to the plot shown
in Figure 4.4(a). As is evident from this plot, the energies for each x spread out
significantly, especially for the PP cases (x = 1.0), as was also seen in Figure 4.3a. Fits
to Equation (4.2) for T = 0 K and T = 1800 K are both shown in Figure 4.4(a), in order
to get an impression of how much the higher-energy configurations contribute for
each x at finite temperatures. In general, this contribution is small, and α and β show
very little variation with temperature.

The entropic part of (4.2) is purely configurational, and is shown in Figure 4.4(b).
For comparison, the configurational entropy of a simple spinel is also given, and both
are normalized with respect to the number of sites in the structure. It is noteworthy
that both the spinel and the tungsten-bronze-type structure show a maximal configu-
rational entropy for x = 2/3 with the definitions of x used here, which is therefore
predicted to be the high-temperature limit of x in both structure types. However, the
difference between maximum and minimum configurational entropy is almost three
times larger for spinel than for the TTB structure. This is justified by the fact that a
normal spinel (x = 0) can be defined as having zero configurational entropy, as both
sublattices are fully occupied by only one cation. For the TTB structure, on the other
hand, there is always a mixed occupancy between cations and vacancies on at least
one of the sublattices, and so the configurational entropy is never zero. This means
that there is less driving force for disordering in the TTB structure than in spinels, and
that enthalpic effects can be expected to dominate the tungsten-bronze-type oxides
also at higher temperatures.

Using α and β obtained above, the degree of cation interchange, x in (4.1), can
be calculated as a function of temperature. The result is plotted in Figure 4.5, which
also gives the temperature dependence of α and β (inset panel). For BN, both α and β
are very small, which means that entropy is the main factor that governs the degree
of cation inversion. BN therefore has a prominent temperature dependency, while
both PN and SN, which have much more distinct minima in enthalpy [Figure 4.4(a)],
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Figure 4.4 — (a) Total energies (points) plotted against the interchange parameter x
as defined in reaction (4.1). x = 0 corresponds to the three SS configurations, x = 0.5
to the two SP, and x = 1 to the five PP configurations. Energy given in eV per unit cell,
corresponding to reaction (4.1), with the lowest energy configuration at x = 0 used as
reference. Lines show fits to the enthalpic part of Equation (4.2), where dashed lines
represent zero temperature (only the lowest energy for each x is used) and dashed
lines representT = 1800 K through a Boltzmann average of the energies for each x . (b)
Configurational entropy as a function of the degree of inversion for the TTB structure
considered in this work, compared to the configurational entropy of a simple spinel.
Values are normalized per site (three for spinel and six for TTB), to make it possible
to compare the entropy between two structures with different stoichiometry. In both
structures, maximal configurational entropy occurs at x = 2/3.
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show only a weak dependency of x on temperature (Figure 4.5). As is also the case for
spinels,256 α and β are of similar magnitude, but with opposite sign (inset of Figure
4.5).
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Transition barriers

Due to the similarity in energetic stability between the different configurations, the
energy barriers for transitions between some of these configurations were calculated
in order to get an impression of how the configurations compare also kinetically. Two
cases were considered, namely diffusion of A2+ cations in the two different types of
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channels in the structure. To visualize these cases, the unit cell is shown again in Figure
4.6(a) (left panel) together with an alternative view emphasizing the pentagonal and
square channels (right panel). Figure 4.6(b) shows a perspective view of the channel
shapes, with grey and black arrows showing the diffusion paths through the square
and pentagonal channels, respectively. Figure 4.6(c) shows the minimum energy path
(MEP) for these two diffusion processes, where the end configurations are the PP[100]
and PP[101] configurations for the pentagonal channel case, and SS[110] and SS[111]
for the square channel case. As expected, the energy maximum midway along the
path is higher for the square channel than for the pentagonal channel, as the square
channels are narrower. In Figure 4.6(d), the height of the energy barriers are compared
for the two cases in all three compositions, and the larger size of Ba2+ relative to Sr2+

and Pb2+ is again manifested in the increased transition barrier. The height of the
barriers is significant, and dominates over the energy differences between the start
and end points, as demonstrated in Figure 4.6(a).

4.2 Discussion

Possibility of cation ordering in TTBs

As Figure 4.3(a) shows, the energy differences between different cation configura-
tions are quite small, with a maximal difference of 1.32 eV per unit cell (0.263 eV or
25.4 kJmol−1 per formula unit) for fully relaxed SN, and less for the other compo-
sitions. This is somewhat unexpected, as Ba2+ is significantly larger than Sr2+ and
Pb2+, so especially the PP configurations, with more cations in the narrow square
channels, would be expected to lie high in energy for BN.This is the case for the initial
structures [blue bars in Figures 4.2(a) to (c)], where two of the SS configurations have
a much lower energy than the others, as expected from atomic size considerations.
After relaxation of the structure is taken into account, the energy landscape is rela-
tively flat, with energy differences smaller for BN than for both SN and PN. The main
contribution to this energy landscape flattening comes from the ionic movements
[red bars in Figures 4.2(a) to (c)], and only to a lesser extent from volume change
(yellow bars). Although the energetic contribution from volume change is larger for
BN than for SN and PN, the volume change itself is not systematically larger for BN,
as seen in Figure 4.3(b).

The flatness of the energy landscape, particularly for BN, is striking, see Figure
4.2. This difference in behaviour of BN relative to SN and PN can be rationalized
from the relative size of the cations and the coordination environment inside the
channels. The square channels are formally 12-coordinated and similar to the A-sites
in ABO3 perovskites. The pentagonal channels are formally 15-coordinated, although
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in practice both the square and pentagonal coordination polyhedra are to some degree
distorted and the effective coordination number is therefore less than the formal value.
This distortion of A-site coordination polyhedra happens to a larger degree for Sr2+

and less for Ba2+, since Sr2+ is significantly smaller than Ba2+ (ionic radii of 1.58Å
and 1.74Å, respectively, when extrapolating Shannon values128 to CN = 15). Sr2+

therefore has higher ability to shift towards an off-centered position in the channel,
thus obtaining a smaller effective coordination number than Ba2+. This enhanced
ability to off-center and distort the structure enables the SN configurations to relax
further towards their local energy minima than BN, where full relaxation is partially
restricted by the large Ba2+ ions. In the case of Pb2+, additional contributions may
result from covalent bonding between Pb and O.

Although the energy differences shown in Figure 4.3(a) are small, the transition
barriers between configurations are large, on the order of 1.0 to 2.5 eV. This is far
above the thermal energy at synthesis conditions, which is on the order of 0.1 to
0.2 eV. In this work, only transitions corresponding to diffusion within the square
or pentagonal channels have been considered, i.e., transitions that do not change
the value of x . It is expected that since the channel cross-sections are larger than
the openings between the channels, transitions that change x will have even higher
barriers than those investigated at present.

Although these zero-kelvin DFT calculations indicate that the structure is not
able to explore its entire configurational space, the situation might be very different
at higher temperatures. During cooling from synthesis temperatures of typically
1300 to 1400 ◦C, it is possible that certain configurations are “frozen in” and persist
to lower temperatures, where the different local space group symmetries (some of
which are polar, cf. Table 4.1) can aid in the nucleation of the ferroelectric phase. This
is similar to the scheme suggested for the lead-free perovskite relaxors studied by
Gröting et al.,86 where it was concluded that the small energy differences between
different A-site configurations are not sufficient to create long-range order, but that
short-range ordering may still be possible. Locally ordered regions that freeze in at
high temperature in the paraelectric state, will most likely influence the nature of the
ferroelectric ground state. For example, the relatively flat energy landscape predicted
for BN might allow more of a long-range cooperativity in the ferroelectric phase,
while the larger energetic differences between configurations of SN could lead to less
long-range ordering in the ferroelectric state. This could in turn be an explanation for
the tendency for SBN materials to become more relaxor-like for Sr-rich compositions.
For PN, although more similar to SN in terms of energetics and cation radius, it is
expected that the stereochemically active 6s2 lone pair on Pb2+ plays a significant role
in the ferroelectric transition, and this might trump the contribution from energetics
which would otherwise have made the material more similar to SN.
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The volume change shown in Figure 4.3(b) is, in effect, the ΔV associated with reac-
tion (4.1). Volume change for order–disorder processes has been addressed previously
in the case of spinels.260 In general, the order–disorder volume ΔV = Vdisorder −Vorder
for spinels can be positive or negative, but more often positive, and largest (up to
5 %) when the disordering process involves changes in coordination numbers of the
cations. Largely normal spinels such as MgAl2O4 tend to become more inverse with
increasing pressure, and it has been observed that this compound disorders more with
temperature under high-pressure conditions.260,261 However, at ambient temperature,
high pressure alone has only a negligible effect on the cation distribution,262 which is
also one of the assumptions in the thermodynamic model employed in this work.

Analogy to spinels and adaptation of O’Neill–Navrotsky model

As stated in the introduction, it should be possible to exploit the similarities between
TTBs and spinels in the phenomenological analysis of order–disorder processes. A
central question in this respect concerns the transferability of the O’Neill–Navrotsky
model. First, it is assumed that non-configurational contributions to the entropy of
reaction (4.1) are negligible. This works well for the interchange process in spinels,
and the same assumption is made here. In addition to the configurational entropy,
there could in principle be a contribution from change in vibrational entropy. Since
the cation configurations differ with respect to local space group symmetry (Table
4.1), the number of vibrational modes will also be different, with more modes for
configurations of lower symmetry. No attempt is made here to explicitly include this
presumably small entropy contribution in the thermodynamic model.

Accepting the premise of configurational entropy only, the conceptually most
important difference between TTB’s and spinels is revealed by the entropy plot shown
in Figure 4.4(b): Since at least one of the sublattices in TTB has a mixed occupancy
for all x , the configurational entropy is never zero. In other words, there is no value
of x for which the structure must necessarily be fully ordered. This is in contrast to
spinels, where a normal spinel (x = 0) must be perfectly ordered, while an inverse
spinel (x = 1) can be either ordered or disordered, depending on how the A and B
cations distribute over the octahedral sites (the latter is not given by the value of x ).
Even a “random” spinel (x = 2/3) can have different degrees of order, even though
the configurational entropy is at a maximum for this degree of inversion. For TTB’s,
however, any degree of inversion can have varying degrees of order, so there is no a
priori reason for x = 0 to be defined as the ground state.

In light of the above considerations, it is clear that x in itself is not a measure of
the degree of disorder, but should merely be though of as a parameter describing the
distribution of cations between two sublattices. Order–disorder can take place on each
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of these sublattices. In a spinel, a transition from normal to (partially or completely)
inverse, must necessarily be accompanied by disorder, and so it is expected that the
parameter α always be positive for spinels. This is indeed found to be the case,256,263 so
the negative values obtained for α for the TTBmaterials (inset of Figure 4.5) may seem
counter-intuitive when compared to α values for spinels. However, once it is realized
that reaction (4.1) is not in itself a disordering process, a negative α is not problematic:
It merely reflects the fact that a cation interchange from the SS configurations towards
the SP (and possibly PP) configurations is energetically favoured — to a large degree
for SN; to a somewhat lesser degree for PN; and for BN, the flat energy landscape is
reflected in the very small values of α and β .

Turning to the plot of x as a function of temperature (Figure 4.5), the different
behaviour of BN, SN and PN can be understood in light of the above considerations.
For BN, x increases with temperature, since the lowest-energy configuration at zero
temperature has x = 0. The contribution from configurational entropy acts to push
the structure towards a higher degree of cation interchange at higher temperature,
similar to the behaviour of normal spinels. As the energy landscape for BN is so flat,
the effect of entropy is large, and x rapidly approaches 2/3 when the temperature
increases. For SN, however, the energy differences between the configurations are
much larger, with a pronounced enthalpy minimum at around x = 0.9, which does
not change significantly with temperature, as shown in Figure 4.4(a). The effect of
increased temperature is therefore to push x towards a slightly lower value, giving
the behaviour of decreasing x shown for SN in Figure 4.5. PN is intermediate between
BN and SN in terms of how deep the enthalpy minimum is (Figure 4.4), but as this
minimum is located at around x = 0.65, very close to the high-temperature limit of
x = 2/3, the temperature dependence of x becomes extremely weak for this compound,
resulting in the almost flat curve for PN in Figure 4.5.

The use of a thermodynamic model provides a more complete picture of the be-
haviour of BN, SN and PN at realistic temperatures, as compared to simply calculating
the zero-kelvin energy of the different configurations. It should be kept in mind that
the transition barriers between configurations are high. The development of x with
temperature (Figure 4.5) represents the true equilibrium state, while in reality the
relaxation time for cation ordering will increase exponentially upon reduction of
temperature, and a certain configuration will eventually freeze in, as has also been
shown for spinels.263 The main finding is that the preferred value of x differs signifi-
cantly for BN and SN, which is likely connected to the gradual change in dielectric
and ferroelectric properties with changing Sr/Ba-ratio in the SBN system. The strong
temperature dependence of x for Ba suggests that changes in the cation configuration
due to thermal history is most likely to occur at high Ba content.

In this study, only three different values of x have been sampled, namely 0 (the SS
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configurations), 0.5 (SP) and 1 (PP), via a total of 10 configurations. These are all the
possibilities accessible using a 1× 1× 2 supercell, while a larger supercell would make
it possible to sample more of configurational space (e.g., a 1×1×3 supercell would give
access to configurations with x = 0.33 and x = 0.67, as well as more configurations
with x = 0 and x = 1). However, already when using a 1×1×2 supercell, a substantial
variation can be seen between the energies for different configurations with the same
x , and a sampling of more x values would not necessarily improve significantly on
the model. At the same time, an advantage of larger supercells would be to remove
artifacts from the periodic boundary conditions. The supercells used here contain
two octahedral layers, and therefore have a repeat distance of nearly 8Å along the
shortest dimension (the c axis). Larger cells would be advantageous to eliminate
all artificial ordering of vacancies, although it is not known if this contribution is
significant. In any case, larger supercells would lead to many more configurations
to investigate, and also make each configuration significantly more computationally
demanding.



5Ferroelectric polarization in SBN

The content of this chapter is based on ref. [264].

5.1 Results

Energy landscape including polarization

The initial study of cation order–disorder energetics, Chapter 4 and ref. [254], con-
sidered the high-symmetry paraelectric structures of Ba5Nb10O30 (BN), Sr5Nb10O30

(SN) and Pb5Nb10O30 (PN). The investigation is now continued for BN and SN with
emphasis on the dynamically stable ground states, including structural distortions
such as ferroelectric polarization and octahedral tilting. The starting point is the
relaxed paraelectric structures for BN and SN from Chapter 4, with Figure 5.1 showing
again the aristotype TTB cell and the ten cation configurations possible in a 1 × 1 × 2
supercell.

A1

A2C

B2

B1

PP[100] PP[110] PP[101] PP[111] PP[001]
1 1Pmc2 Cmmm Pmn2 Cmcm Amm2

SS[110] SS[111] SS[001] SP[110] SP[111]
P4/mbm P4/mcn P4/m Pm Pm

(a) (b)

Figure 5.1 — (a) Aristotype TTB structure, (b) Possible cation configurations for a
1 × 1 × 2 supercell of an unfilled TTB, including local space group symmetry.

Phonon calculations for the paraelectric structures reveal imaginary frequency
phonons, corresponding to structural instabilities, for all ten configurations of both
BN and SN. The phonon with the highest imaginary frequency is in all cases a polar
mode with Γ− symmetry, corresponding to the displacement pattern illustrated in the
left inset of Figure 5.2(a). The mode consists primarily of a cooperative displacement
along the tetragonal c direction of all Nb ions relative to the surrounding oxygens in
the NbO6 octahedra. This is a polar mode, similar to the soft mode responsible for the
ferroelectric transition in perovskite ferroelectrics, and produces a polarization along

69
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c . Consistent with the imaginary frequency of the mode, the energy is lowered by
freezing in the polar mode in all cases. The energy lowering as a function of mode
amplitude265 is shown in Figure 5.2(a) for BN and SN in the SS[001] configuration. A
non-polar mode consisting of octahedral tilting around axes in the xy plane [Figure
5.2(a), right inset] is also present in all cases. This mode has a smaller imaginary
frequency than the polar mode for both compounds in all configurations. The energy
lowering associated with the tilt mode is significantly larger for SN than for BN, as
shown in Figure 5.2(a). The tilt mode also lowers the energy more than the polar
mode for SN, despite having a lower imaginary frequency. Simultaneous freezing-in
of the polar and tilt modes, Figures 5.2(b) and (c), shows that the coupling between
the modes is weak for both compounds.

In both compounds, the dynamically stable ground state for each configuration
is systematically searched for by freezing in the polar mode, which always has the
largest imaginary frequency of the unstable modes, at a mode amplitude close to the
energetic minimum. The structures are then relaxed again, allowing the volume and
cell parameters to change. After repeating the phonon calculations for the relaxed
polar structures, no further instabilities are found in 9 of the 20 cases. In the remaining
11, a second, non-polar instability persists, its eigenvector qualitatively identical to
the tilt-mode found in the paraelectric structures. After also freezing in this mode,
relaxing the structures and repeating phonon calculations, the stable ground state
structure is obtained for all configurations of both compounds. The relative energies
of all the configurations are shown in Figures 5.3(a) and (b). The energy landscape is
different for the two compounds: The SS[001] configuration has the lowest ground
state energy for BN, while for SN the lowest energy is obtained for PP[100]. No
single configuration has a substantially lower energy than the others, especially for
SN, where PP[101] and SS[111] are particularly close in energy to the lowest-energy
configuration. Consistent with the fixed-volume mapping of unstable modes shown
in Figure 5.2, the energy relaxation following the polar distortion is more pronounced
for BN, while the tilt mode has a larger impact on the ground state energy for SN.
For SN there are large energy differences between the paraelectric structures, but
the substantial contribution from tilt-mode distortions reduces these differences.
The resulting spontaneous polarizations are shown in Figure 5.3(c) and compared to
literature data. Several of the paraelectric reference structures have polar space group
symmetries [Figure 5.1(b)], but none allow a polarization along z. The polarization
reported in Figure 5.3(c) is the component along the tetragonal axis, Pz , which results
from freezing in the unstable polar phonon. For the majority of the configurations,
BN has a larger Pz compared to the same configuration for SN. 11 of the 20 ground
state structures have tilt-mode instabilities, but the polar nature remains in all cases.
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Figure 5.2 — (a) Potential energy curves for BN and SN in the SS[001] configuration,
showing energy lowering from freezing in polar and tilt-mode instabilities indepen-
dently from the paraelectric structure. Points show calculated energies, lines are
polynomial fits to ΔE = αQ2 + βQ4 where Q is the mode amplitude.265 Insets show
the structural distortions associated with the phonons. (b) and (c) Contour plots for
BN and SN, respectively, showing the weak coupling between the polarization and
tilt modes (SS[001] configuration).
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Figure 5.3 — Energy landscape for (a) BN and (b) SN, showing the stepwise energy
lowering from freezing in the unstable phonons in sequence. All configurations have
a polar instability (“Polarization”), while 11 of 20 (marked with *) have a secondary
tilt-mode instability (“Tilt”) after freezing in the polar mode. Energies are per 45-
atom unit cell, with the zero level set to the highest-energy paraelectric structure
(“Paraelectric”). (c) Spontaneous polarization for BN and SN in their fully relaxed
ground states. Pz is the polarization along the tetragonal c direction. Shaded region
marks values reported by Glass.14
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Chemical bonding

At this point, focus is shifted to understanding the chemical bonding which stabilizes
the polarization. The charge densities for the paraelectric and ground state structures
for BN and SN in the SS[001] configuration are shown in Figures 5.4(a) and (b). This
configuration is suitable for comparing the effects of polar and tilt-mode instabilities,
in addition to being the true zero-kelvin ground state for SN. At the chosen isosurface
value, a distinct “necking” can be seen between Nb and O in the direction of the
polar distortion, pointing to a covalent bonding between the atoms. As further
evidence for the role of Nb–O covalency, BECs are calculated for all configurations of
both compounds in their paraelectric states (Table 5.1). Consistent with the charge
density visualization in Figures 5.4(a) and (b), the BECs for Nb and O along c are
large, exceeding +9 for Nb and −7 for oxygen, in comparison to their respective
formal charges of +5 and −2. The values are similar to BECs reported for KNbO3 and
NaNbO3, following the trend of Z ∗ being proportional to the formal charge of the
B-site cation.221,266 The variation in BEC between BN and SN is minor, pointing to a
similar degree of Nb–O covalency in the two compounds, which is also indicated by
their similar electronic densities of states, shown in Figure 5.5. For both compounds,
the valence and conduction bands are composed of primarily O 2p and Nb 4d states,
respectively. The polar distortion increases the band gap and makes the bands more
compact, but apart from these subtle changes, the electronic structure changes little
in the ferroelectric transition. There is little or no contribution from Ba or Sr states in
the vicinity of the Fermi level, and the BECs for Ba and Sr are similar and close to the
formal charge of +2. This demonstrates that Ba and Sr do not significantly change
their covalency in the ferroelectric transition.

Table 5.1 — Diagonal components of the BEC tensor normal (Z ∗xx ) and parallel (Z ∗zz )
to the tetragonal z axis for BN and SN. Values are averaged over all ten configurations
for each compound, and the number in parenthesis gives the uncertainty in the last
digit in terms of standard deviation. Off-diagonal components of the BEC tensor are
in all cases small.

A Nb O⊥ O‖
BN Z ∗xx 2.83(3) 8.2(6) -4.0(3) -1.60(6)

Z ∗zz 2.69(3) 9.4(3) -1.75(6) -7.3(2)
SN Z ∗xx 2.64(5) 8.1(5) -3.9(2) -1.55(4)

Z ∗zz 2.52(7) 9.3(4) -1.70(6) -7.1(3)
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Figure 5.4 — (a) and (b) Charge density plots for Ba5Nb10O30 (BN) and Sr5Nb10O30

(SN) in paraelectric and ground state structures (isosurface value 0.15 eÅ
−3
). (c) and

(d) Potential energy surfaces for the A2-site cation in BN and SN in the paraelectric
SS[001] configuration (energy per 45-atom unit cell). The reference position of the
cation is in the middle of each plot, and the inset shows the location and size of the
mapped area (red square).
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Figure 5.5 — (a) and (b) Electronic density of states for paraelectric states of BN and
SN in the SS[001] configuration, normalized to one unit cell (45 atoms); (c) and (d)
corresponding for the polar states. The polar distortion is increased to 200 % for the
polar states in order to bring out possible differences. Energy is given relative to
the Fermi level, with the total number of states (integrated DOS; dashed line) on the
secondary axis.
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5.2 Discussion

Ferroelectric mechanism

The results point to a conventional ferroelectric mechanism in which polarization
arises from off-centering of d0 Nb5+ ions in the NbO6 octahedra, which is in turn
stabilized by the resulting enhanced Nb–O covalency. Partial covalency is well known
as the origin of ferroelectricity in perovskite oxides,31,42,55 and is classified as a second-
order Jahn–Teller effect.267 The charge densities obtained for BN and SN [Figures
5.4(a) and (b)] are visually similar to those found experimentally for the prototype
ferroelectrics BaTiO3 and PbTiO3,268 and the large BECs found in this work are close
to previous calculations for Nb and O in KNbO3.221 The interpretation of large BECs is
that additional covalency associated with the polar distortion occurs through electron
transfer from O 2p to the formally empty Nb 4d orbitals, thereby enhancing the charge
transfer compared to simple ionic displacement with nominal charges. The calculated
Pz [Figure 5.3(c)] show that the polarization is robust with respect to cation–vacancy
disorder, and that a significant polarization persists for all ten configurations for both
compounds. This is also evident from the charge densities [Figures 5.4(a) and (b)]
which demonstrate that the off-centering of Nb5+ is significant even for the ground
state of SN in the SS[001] configuration, where the tilt-mode amplitude is large.
Octahedral tilting in TTBs is otherwise restricted by the connectivity in the xy plane,
which prevents tilting around the z axis. Tilts around axes in the xy plane are however
possible, and often lead to a

√
2×√2×2 supercell relative to the aristotype,91,123 in line

with a recent group-theoretical analysis.269 A
√
2×√2× 2 supercell was also reported

for pure SN with TTB structure,270 although for intermediate SBN compositions,
doubling of the c parameter is not known to occur.

Relaxor behaviour

It is generally accepted that chemical or structural disorder is necessary for relaxor
properties,8 and both are possible in SBN due to Sr2+, Ba2+ and vacancies occupy-
ing the same sublattices. In disordered perovskite relaxors, the two cations occu-
pying the same sublattice are always aliovalent, examples being B-site disordered
PbMg1/3Nb2/3O3 (PMN)8,89 and A-site disordered Bi1/2Na1/2TiO3 (BNT).13,86 In PMN
and BNT the cation ratios are fixed by electroneutrality, whereas in SBN the A-site
composition can be varied continuously, and relaxor properties emerge gradually
for higher Sr content. This points to a different relaxor mechanism for SBN than
for the perovskites. The possible role of the A-site cations in SBN is investigated
by displacing Ba and Sr away from their relaxed positions in the A2 channels and
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mapping the potential energy surface (PES) as shown in Figures 5.4(c) and (d). The
PES is flatter for SN than for BN, which is explained by Sr2+ being smaller than Ba2+.
Due to the restrictions imposed by the octahedral connectivity, and the fact that
not all cation configurations in SBN produce tilted ground states, the TTB structure
cannot compensate for this by octahedral tilting. Based on this, it is suggested that
Sr2+ is able to displace inside the A2 channels under application of an electric field,
thereby producing an additional dielectric response which creates a diffuse phase
transition for Sr-rich SBN. Sr preferentially occupies the A1 sites in SBN,254,271 but
for x > 0.40, Sr must also occupy A2 sites. For x > 0.50, the amount of Sr on A2 is
high enough for this displacement effect to be appreciable, and it is proposed that
this induces relaxor behaviour.

The mechanism suggested above is different from that in perovskite relaxors,
where cation ordering determines the type of dielectric response.78 Relaxor behaviour
is often discussed in terms of polar nanoregions (PNRs), in which polar displacements
are correlated over a length scale of a few unit cells.73 The PNRs form at the Burns
temperature, and are dynamic and reorientable down to the polar freezing temper-
ature, as discussed in Chapter 2. The reorientation of dynamic PNRs contributes
to the diffuseness of the phase transition. The atomic displacements suggested to
be the origin of relaxor behaviour in this study might also very well be correlated,
although this has not been specifically investigated. It is interesting to note that an
in-plane dielectric anomaly has been observed at low temperatures (below 150K) in
several TTBs with out-of-plane polarization,272 which could be related to a cation
displacement effect as discussed above. In that case, it is natural to associate the
reported dielectric anomaly with ordering of the in-plane cation displacements, while
the different ability for Sr and Ba to displace would still explain the diffuse contribu-
tion to the ferroelectric transition. The properties discussed here should be generally
applicable to TTB oxides with [001] polarization and possibilities for mixed and/or
partial cation occupancy.





6Ferroelectric lead metaniobate

6.1 Results

Crystal structure

The ferroelectric transition in (Sr, Ba)5Nb10O30 (SBN) does not lead to a change of
the unit cell size. In contrast, the unit cell for the ferroelectric phase of Pb5Nb10O30

(TTB-PN) is a
√
2×√2×1 supercell with respect to the aristotype, a twofold increase of

the unit cell size (see Figure 6.1).∗ A lattice dynamics-based analysis similar to that of
SBN, Chapter 5, would therefore require larger supercells in the phonon calculations,
in turn increasing the computational cost significantly, so the ferroelectric phase was
instead investigated directly. Available data on the crystal structure of TTB-PN [shown
previously in Figure 2.12(b)] were not of sufficient quality, so diffraction experiments
were performed in order to provide a good starting point for the calculations.

Powder diffractograms of TTB-PN were recorded with X-ray and neutron ra-
diation, and the structure was refined from both datasets simultaneously starting
from literature data115 (Appendix B). The refinement converged (Rp = 8.29 %,Rwp =

10.70 %, χ 2 = 1.46) to the structure shown in Figure 6.1, for which the atomic positions
are given in Table 6.1. Diffractograms and refined profiles for the X-ray and neutron
data are presented in Figure 6.2. The refined structure appears less distorted than the
previously reported structure,115 as can be seen by comparing Figures 2.12(b) and
6.1. The NbO6 octahedra are less deformed, and the square and pentagonal channels
have a more regular shape. In the previous study,115 the occupancy of Pb was not
refined, but fixed at 0.5 for the square channels and the pentagonal channels with
split positions. From the data in Table 6.1 it is seen that the actual occupations deviate
only slightly from this, with Pb showing a clear preference for the pentagonal (A2)
channels, resulting in a low occupancy for the square (A1) sites. The lattice parameters
obtained in this work correspond well to those reported previously,115 although the
present values have around two orders of magnitude higher precision.

Spontaneous polarization

Based on the refined Pb occupancy (Table 6.1), only cation configurations where
Pb is fully occupying the A2 sites were considered further for the computational
investigations. This corresponds to the “SS” configurations studied in Chapters 4 and

∗Possibly even more — a 2
√
2 × √2 × 2 unit cell has also been proposed,115 implying an eightfold

increase of the unit cell size.
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Table 6.1 — Atomic positions for PN (space group Amm2, standard setting) based on
joint refinement of X-ray and neutron diffraction data. WP, Wyckoff position; Occ.,
occupancy; Biso, isotropic thermal displacement factors (constrained to be the same for
all Nb, all O, and all Pb on A2 sites). Lattice parameters: a = (3.871 09 ± 0.000 10) Å,
b = (17.6483 ± 0.0005) Å, c = (17.9487 ± 0.0005) Å.

Atom WP x y z Occ. Biso

Pb1 4e 1/2 0.3246(2) 0.0222(5) 0.955(3) 0.44(6)
Pb2 1/2 0.0135(5) 0.1889(5) 0.478(2)
Pb3 1/2 0.4818(4) 0.3373(5) 0.478(2)
Pb4 1/2 0.2529(6) 0.2377(7) 0.590(7) 1.6(2)
Nb1 2a 0 0 0 1 0.42(3)
Nb2 0 0 0.4913(7) 1
Nb3 4d 0 0.1840(4) 0.1055(6) 1
Nb4 0 0.3172(4) 0.3869(5) 1
Nb5 0 0.3961(4) 0.1762(6) 1
Nb6 0 0.1162(4) 0.3150(6) 1
O1 2b 1/2 0 0.9714(7) 1 1.17(3)
O2 1/2 0 0.4794(10) 1
O3 4e 1/2 0.2009(5) 0.0966(7) 1
O4 1/2 0.3323(5) 0.3774(6) 1
O5 1/2 0.4019(5) 0.1657(7) 1
O6 1/2 0.1146(5) 0.2902(7) 1
O7 4d 0 0.0768(5) 0.0698(7) 1
O8 0 0.1460(5) 0.2034(7) 1
O9 0 0.2170(4) 0.9932(7) 1
O10 0 0.2897(5) 0.1275(7) 1
O11 0 0.4222(5) 0.0622(7) 1
O12 0 0.0811(6) 0.4054(7) 1
O13 0 0.2214(5) 0.3331(6) 1
O14 0 0.3561(5) 0.2731(7) 1
O15 0 0.4191(5) 0.3991(7) 1
O16 2a 0 0 0.6943(9) 1
O17 0 0 0.2708(8) 1
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c

b

Figure 6.1 — Crystal structure of TTB-PN after joint refinement of X-ray and neutron
diffraction data (space group Amm2). Grey spheres in channels: Pb (shading denotes
occupancy), grey spheres in octahedra: Nb. Split positions are used for two of the Pb
positions, as a simplified description of the “true” structure which has been reported
to show ordering of Pb along b.115

5, although the
√
2 × √2 × 1 supercell used for PN creates four possible cases with

this type of cation configuration, compared to the three SS cases considered for the
1× 1× 2 supercell in the previous chapters. The cases, numbered 1 to 4, are presented
in Table 6.2, along with the local space group symmetry introduced by the cation
ordering (one monoclinic and three orthorhombic). The table can be compared to
Table 4.1 in Chapter 4, which gives all the configurations possible for a 1 × 1 × 2
supercell. As in the previous case, the local cation configuration lowers the space
group symmetry to different symmetry classes: Configuration 1 is monoclinic (space
group Pm), while configurations 2–4 are orthorhombic (Pmc21 and Pmm2).

The atomic positions were optimized for the four structures, with the split atomic
positions used in the refinements replaced by single atoms in the mirror plane. Opti-
mization of atomic positions was performed within the symmetry constraints imposed
by the local space group symmetry as discussed above, while keeping the lattice param-
eters constant at the experimental values (Table 6.1). The resulting energy landscape
is presented in Figure 6.3(a). Configurations 1 and 2 have the lowest energy, while
the other two are significantly higher (0.5 eV per 90 atoms). The energy differences
depend in part on the atomic degrees of freedom for each configuration, as dictated
by the space group symmetry. Configuration 1 has the lowest symmetry, being mon-
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Figure 6.2 — (a) Powder X-ray and (b) powder neutron diffractograms for TTB-PN
at ambient temperature, plotted as a function of the scattering vector (Q = 2π/d).
Refinement profiles and difference curves are shown for simultaneous refinement of
both datasets.
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oclinic, although it is the orthorhombic configuration 2 that actually has the lowest
energy. In practice, the energy difference between configurations 1 and 2 is on the
order of 1meV per atom, and close to the accuracy of the computational method, so
configurations 1 and 2 should be regarded as equally favourable from an energetic
point of view.

Table 6.2 — Cation configurations possible for the
√
2 × √2 × 1 supercell consid-

ered for PN (white spheres: vacancies). Local space group symmetry of each polar
configuration is given (average symmetry Amm2).

1 2 3 4

Pm Pmc21 Pmm2 Pmm2

The TTB-PN structure has an in-plane polar distortion, which in turn leads to a
ferroelectric polarization. Berry phase calculations of the spontaneous polarization
for the relaxed structures revealed that the polarization is high, 109 µC cm−2 for all
four cases [Figure 6.3(b)].† For configurations 2–4, which have orthorhombic space
group symmetry (Table 6.2), the polarization lies strictly along c in the Amm2 cell.
Details of the calculation for the lowest-energy configuration, configuration 2, are
shown in Figure 6.4, with similar results obtained for the three other configurations.
For configuration 1, which has monoclinic symmetry, the polarization is not confined
to one of the unit cell axes, but can lie along any in-plane direction. In practice, the
polarization is oriented to a large degree along c also for configuration 1, with a small
component along b which leads to a net polarization vector that forms a 1.5° angle
with c .

The mechanism that stabilizes the in-plane polarization in TTB-PN can be un-
derstood by inspecting the charge density, which is visualized for configuration 2
in Figure 6.5(a) and (b). It is readily seen that covalent Pb–O bonding, Figure 6.5(a),
has a large influence on the structural distortion, and that Pb typically bonds more
strongly to four of the surrounding oxygens. This leads to a substantial displacement
of Pb inside both the square and pentagonal channels, while the displacement of Nb
inside the NbO6 octahedra, Figure 6.5(b), is less.

†At four significant digits, the values range from 108.5 to 109.4 µC cm−2.
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Figure 6.3 — Energy (a) and spontaneous polarization (b) of the four cation con-
figurations considered in this work (Table 6.2), after optimizing atomic positions at
constant experimental lattice parameters. Energies are given per 90-atom supercell
and relative to configuration 2 which has the lowest energy.
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Figure 6.4 — Berry phase calculation of spontaneous polarization for TTB-PN (con-
figuration 2, cf. Table 6.2). The spontaneous polarization, Ps , is 109.2 µC cm−2 and the
polarization quantum, Pq , is 23.4 µC cm−2. 0 % distortion refers to a centrosymmetric
cell obtained by a pseudosymmetry search in space group Cmmm.273
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O

Pb

(a)

O
Nb

(b)

Figure 6.5 — Charge density sections for TTB-PN in configuration 2. (a) z = 0,
showing the Pb–O interactions that lead to displacement of Pb inside the A1 and
A2 channels; (b) z = 1/2, showing the Nb–O bonds defining the octahedra. Sections

defined by isosurface values of 0.03 eÅ
−3

and 0.10 eÅ
−3
, respectively.

High-temperature lattice parameters

Finally, the high-temperature behaviour of TTB-PN was investigated by high-tempe-
rature X-ray diffraction. Selected diffractograms are presented in Figure 6.6, which
shows how diffraction lines split as a consequence of the transition from tetragonal
to orthorhombic symmetry as the temperature is lowered. The ferroelectric transi-
tion is seen to occur at TC = (595 ± 5) ◦C, compared to literature values of 534 to
570 ◦C.5,7,113 Lattice parameters were obtained by Pawley fitting with space group
symmetry P4/mbm above TC and Amm2 below, as shown in Figure 6.7. The resulting
lattice parameters are presented as a function of temperature in Figure 6.8(a). In the
paraelectric phase with tetragonal symmetry, the two in-plane lattice parameters are
identical (a = b). AtTC, the symmetry is reduced to orthorhombicAmm2, and the two
in-plane lattice parameters become different (c > b). If the in-plane lattice parameters
of the paraelectric phase are extrapolated below TC, they overlap perfectly with the
b parameter of the ferroelectric phase, as seen in Figure 6.8(a), and it is therefore
natural to define the spontaneous strain using the b parameter as reference [Figure
6.8(b)]. The strain along the polar direction, c in Amm2, is as high as 1.7 % at room
temperature (in comparison, the perovskite KNbO3 has an orthorhombic strain of
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around 1% at room temperature274).

6.2 Discussion

Refinement of the crystal structure

The combination of X-ray and neutron diffraction data provides an overall more
plausible description of the crystal structure than previously available data.115,116,275

When the new structural data, Figure 6.1, is compared to that reported by Labbé, Figure
2.12(b), it is seen that especially the oxygen octahedra appearmore regular, in the sense
less deformed and strained, in the structure reported here. This is a consequence of
the improved accuracy in oxygen positions achieved by including neutron diffraction
data in the refinement. Since X-rays are scattered by the electron density, an element’s
X-ray scattering cross-section is determined by its atomic number. In the case of
PN, oxygen contributes less to the scattered intensity compared to the much heavier
elements Nb and Pb. This means that errors in the refined oxygen positions will
have less impact on the quality of the Rietveld fit of the X-ray data, possibly leading
to refined crystal structures that give a mathematically adequate fit despite being
physically incorrect. In contrast, neutrons are scattered by the atomic nuclei, whose
neutron scattering cross-sections are a more or less random function of atomic number
(or, more precisely, isotope). The practical consequence is that also oxygen contributes
significantly to the scattered intensity, in turn making the oxygen positions more
accurate. This can be seen from the uncertainty in the oxygen positions in Table
6.1. In general, the accuracy is an order of magnitude better than oxygen positions
determined solely from X-ray diffraction, such as the structural data for PN reported
by Chakraborty and co-workers.275 The same approach has been successfully used
for the rhombohedral polymorph of PN (Chapter 9 and ref. [276]).

The starting point for the refinement was the crystal structure first reported
for TTB-PN in 1973 by Labbé115 and further elaborated in 1977.116 In the original
publications, the structural data is given in theCm2m setting of space group 38 in order
to have c as the shortest unit cell edge in analogy to the P4/mbm aristotype. Here,
the ITA standard setting Amm2 is instead used (the two are related by (a,b, c )Cm2m =

(b, c,a)Amm2). A key feature of the model is the use of split atomic positions for Pb
in the pentagonal A2 channels. According to the works cited above, this makes it
possible to describe the crystal structure by a

√
2 × √2 × 1 supercell (relative to the

aristotype P4/mbm unit cell), while the “true” cell is a four times larger 2
√
2 × √2 × 2

supercell with space group symmetry Bb21m (no. 36, Cmc21 in ITA standard setting).
The two are related by ordering of Pb in the pentagonal channels, more specifically
an alternating displacement in the in-plane direction normal to the polar axis (the
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Figure 6.6 — Diffractograms of TTB-PN at different temperatures (calibrated against
an alumina standard). 2θ scale for Cu Kα radiation given on top axis. The inset shows
a magnification of the dataset (marked with a rectangle; same units on the axes as
the main plot). The ferroelectric phase transition at TC = (595 ± 5) ◦C is manifested
through splitting of certain peaks (indexed according to P4/mbm).
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Figure 6.7 — Pawley fitting of X-ray diffractograms recorded at temperatures above
(a) and below (b) the phase transition temperature for TTB-PN. 2θ scale for CuKα
radiation given on top axis.
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Figure 6.8 — (a) Temperature evolution of the lattice parameters for TTB-PN, as
determined by the Pawley method. The ITA standard setting is used for space group
Amm2, as defined in Figure 6.1 and Table 6.1. b and c are scaled by 1/(2

√
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all lattice parameters are related to the size of an NbO6 octahedron. (b) Spontaneous
strain in TTB-PN as a function of temperature. The vertical dashed line marks
TC = 595 ◦C. Dashed lines through the data points are guides to the eye.
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shortest of the two long edges). It is assumed here that this ordering of displacement
is not crucial to the ferroelectric mechanism, which will be further discussed below.

Polarization and ferroelectric transition

Four specific cation configurations are investigated in detail, based on the structure
refinement discussed above. In particular, the refinement of occupancy for Pb in the
A1 and A2 channels makes it possible to identify the four configurations in Table
6.2 as the most relevant, as Pb strongly prefers to occupy the A2 sites, as was also
pointed out by in the original works.115,116 Interestingly, two of the configurations
(1 and 2 in Table 6.2) have significantly lower energy than the others [Figure 6.3(a)],
and are therefore, in principle, more likely to be the dominant configurations on a
local level in TTB-PN. At the same time, all configurations have a high spontaneous
polarization, which is practically the same, 109 µC cm−2, for all four. As the calculated
charge densities show, Figure 6.5, this is due to a combination of Pb–O and Nb–O
bonding, which cooperatively create a polar in-plane distortion. The local coordination
environment of Pb2+ is reminiscent of that in tetragonal PbTiO3,55,268 where Pb tends
to displace towards, and bond to, four of the 12 oxygens it is coordinated by on
the A sites. The structure and charge density in Figure 6.5 corresponds well to the
analysis performed by Labbé (ref.,116 results shown previously in Figure 2.13), which
also concluded that displacement of both Nb5+ and Pb2+ in the in-plane direction are
important contributions to the polarization in TTB-PN. This is in contrast to SBN
and BNN, where the A2-site cations do not contribute significantly to polarization in
the tetragonal c direction, even though the space group symmetry allows for it. The
contribution to in-plane polarization from both Nb5+ and Pb2+ was also pointed out
by Guo and co-workers,277 who performed a similar analysis. An analysis in terms of
Born effective charge (BEC), similar to what was done in Chapter 5, would likely have
revealed anomalously high BECs for both Nb and Pb. This was not performed, as the
present analysis focuses on the polar, ferroelectric structure, and not the paraelectric
aristotype.

The calculated spontaneous polarization is significantly higher than experimental
values, reported in the range 38 to 46 µC cm−2,277 and it is natural to ask why. It is well
known that piezoelectric properties of PN are improved by substituting Ba for Pb, with
an MPB occurring at around 40 % Ba substitution.11 This effect has been attributed to
the fact that Ba2+, being larger than Pb2+ (ionic radii of 1.61Å and 1.49Å for 12-fold
coordination, respectively128), will expand the lattice and reduce the ferroelastic strain,
in turn easing the domain switching. To test this hypothesis, nudged elastic band
(NEB) calculations were performed for ferroelastic switching in TTB-PN. Starting
from configuration 1, with monoclinic symmetry, it is possible to transform the
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structure into itself by a 90° rotation followed by a translation. This transformation
corresponds to the transition between two ferroelectric domains separated by a 90°
domain wall, which are therefore also ferroelastic domains. The transition between
180° domains, which are ferroelectric but not ferroelastic, can similarly be performed
by simply inverting the polar structure. NEB calculations were then used to estimate
the energy barrier for the two transitions, leading to the minimal energy paths (MEPs)
shown in Figure 6.9, which for comparison also includes calculations for similar
switching in the tetragonal perovskite PbTiO3 (PT). The barrier for 90° switching in
PN is calculated to be as high as 0.18 eV per atom (16 eV for the 90-atom cell), which
is around 30 times higher than the barrier for 90° switching in PT. The barrier for 180°
domain switching in PN is similar in magnitude to the one for 90° switching, and also
in this case almost an order of magnitude larger than for PT. For PT, both climbing
image NEB (with fixed volume for each image) and solid-state climbing image NEB
(with optimization of lattice parameters for each image) was performed (the latter
was not applicable to TTB-PN, as it resulted in unphysically large deformation of the
intermediate images).
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Figure 6.9 — (a) MEPs for domain switching in PN and PbTiO3 (PT), in eV per atom
for comparability between the materials. For PT, both fixed-volume NEB and solid-
state NEB (with volume relaxation of each image) is included. (b) Zoom-in on the
lower part of panel a.

The NEB calculations show a very high energy barrier for both 90° and 180°
switching of TTB-PN, meaning that ferroelastic strain alone does not fully explain
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the difficulty in switching. The calculated energy barriers should however be taken

with some caution, as a liberal force-based convergence criterion of 0.3 eVÅ
−1

was
necessary. Inspection of the relaxed intermediate images showed that the atoms do not
displace smoothly between the end points of the switching path, which is an expected
result based on the charge density, Figure 6.5(a). Pb tends to bond strongly (and
non-centrosymmetrically) to oxygen,55 which in this case prevents it from displacing
“across” the pentagonal channels (as dictated by a linear interpolation between the
start and end points), and instead keeps it in close contact with the oxygens along the
channel wall. A denser spacing of images along the transformation path might have
resulted in a smoother MEP, but probably not a significant lowering of the energy
barriers. The fact that the domain switching does not only involve ionic displacement,
but a significant breaking and re-forming of Pb–O bonds, is certain to contribute
to the high switching barrier. This is probably also a reason why substitution of Ba
for Pb relieves the switching barrier and improves the piezoelectric properties for
TTB-PN. The Pb–O covalency contributes to the high polarization of the material, but
is at the same time so strong that it significantly impedes the ferroelectric switching,
whether or not the switching is also ferroelastic.

The spontaneous strain associated with the ferroelectric transition consists of an
expansion of c while the b parameter develops linearly, Figure 6.8(a). This makes it
natural to define the spontaneous strain, Figure 6.8(b), with reference to b. c is the
polar direction, while b is the shorter of the long edges of the unit cell. In the model
used for refinement of the structure, it is assumed that the alternating displacements
of Pb along b do not take a significant part in the ferroelectric mechanism, so that
their exact positions can be approximated by the split positions used here. This
seems to be the case, since a sudden change in the Pb positions in the b direction
would be expected to affect the b lattice parameter at TC. This is not the case. The a
parameter changes slope at TC, although the effect is small compared to the change
in c . The strain plot, Figure 6.8(b), shows a lattice strain that goes continuously
to zero as TC is approached from below. The strain does not follow the

√
TC −T

dependency that would be expected from Landau theory for a purely ferroelastic
second-order phase transition, where strain is the macroscopic order parameter. The
ferroelectric transition in TTB-PN, on the other hand, is required to be first order, as
Amm2 is not a direct subgroup of P4/mbm (the complete group–subgroup sequence is
P4/mbm → Cmmm → Amm2). There is therefore no guarantee that the spontaneous
lattice strain behaves as a good macroscopic order parameter for the transition, as
the strain must be coupled to at least one other polar mode.



7Filled TTB insulators

7.1 Results

Structure and dynamical stability

The TTB structure, with general formula (A1)2(A2)4C4(B1)2(B2)8O30, is referred to as
“filled” if all A1 and A2 sites, six in total, are occupied (Figure 7.1). For the compound to
be electrically insulating, it is normally required that the B1 and B2 sites are occupied
byd0 cations such as Nb5+, Ta5+ or Ti4+. If all B1 and B2 sites (ten in total) are occupied
by Nb5+, which is the case for many TTBs, the principle of electroneutrality requires
the A1 and A2 cations to have a total charge of +10. One example of such a filled,
insulating TTB system is the series K4R2Nb10O30, hereafter referred to as KRN, with
R = La, . . . ,Gd,Bi. In this series, the cations order with K+ on the A2 sites and the
smaller R3+ on the A1 sites (for R = Tb,Dy,Ho, R3+ partially occupies the triangular
C sites, and no stable TTB phase forms for R = Er, . . . , Lu).124 The cation ordering
makes the system convenient to study, as the actual cation distribution is compliant
with the general TTB formula.

A1
B1 B2

C

b

a

A2

Figure 7.1 — Unit cell of the tetragonal tungsten bronze structure with aristotype
space group symmetry P4/mbm and general formula (A1)2(A2)4C4(B1)2(B2)8O30. In
the KRN system, K+ is on A2 while R3+ is on A1.

Due to a lack of experimental data on the KRN series, data for the unfilled,

93
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insulating SBN system was used as the starting point. Lattice parameters and atomic
positions were taken from the composition (Ba0.67Sr0.33)5Nb10O30 with space group
symmetry P4bm in the ferroelectric phase.271 A “paraelectric” structure was obtained
by searching for a pseudosymmetric structure with space group P4/mbm,273 resulting
in a unit cell with lattice parameters a = b = 12.484Å and c = 3.974Å which was
used as the starting point for all subsequent calculations on KRN.

Lattice parameters and atomic positions were optimized for KRN with R =
La, . . . ,Gd,Bi,∗ under the symmetry constraints imposed by space group P4/mbm.
Lattice parameters for the relaxed structures are shown in Figure 7.2. The lattice
parameters and cell volume are plotted as a function of ionic radius of R3+ with
coordination number (CN) 8, the largest CN for which ionic radii are tabulated for all
R. The lattice parameters and cell volume generally follow the ionic radius, although
the volume contracts slightly for Bi, which is mainly due to a contraction of the
in-plane lattice parameter.
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Figure 7.2 — Lattice parameters and volume for the KRN series. The in-plane lattice
parameter is reported as a/

√
10, to make it directly comparable to the c parameter

(both related to the size of an NbO6 octahedron).

Phonon calculations, similar to the ones performed for unfilled BN and SN in
Chapter 5, reveal several unstable modes for all compositions. The mode with the
highest imaginary frequency is in all cases a polar mode which gives a polariza-
tion along z. It is similar to the polar mode in SBN, and is mainly due to relative

∗R = Pm was not included, as its extreme radioactivity leads to it being completely deficient from the
Earth’s crust, and thus of limited experimental relevance.278
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displacements of Nb in the NbO6 octahedra. All compositions also have a second
instability, which consists mainly of an in-plane displacement of K and R relative to
the NbO6 framework, resulting in an in-plane polarization which is similar to that
seen in unfilled PN (Chapter 6). The imaginary frequency depends on the radius of R
for both modes, and the squared frequency of both modes is presented in Figure 7.3
as a function of cation radius. The out-of-plane mode follows a strictly linear trend,
while the in-plane mode shows a parabolic dependency on the cation radius. The
trend is opposite for the two modes, in the sense that the largest R (La and Bi) cause
the strongest out-of-plane instability, while the smallest R (Gd) gives the strongest
in-plane instability. The only exception to this trend is the in-plane instability for
KBiN, which in fact is the strongest of all the cases investigated.
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Figure 7.3 — Squared phonon frequencies for unstable polar phonons in KRN in the
aristotype space group P4/mbm. Two phonons are included for each compound, one
giving rise to a polarization along z (left axis) and the other in the xy plane (right
axis). Dashed lines are guides to the eye. Note the deviation from the trend for the
in-plane polar mode of KBiN.

Displacement of the atoms along the eigenvector of the out-of-plane polar mode
(referred to as “freezing in” the mode) leads to lower energy for all compounds, as
shown in Figure 7.4(a). Consistent with the phonon frequencies, Figure 7.3, the Bi
compound experiences the largest energy lowering for this mode, and Gd the least.
The behaviour follows the linear trend in phonon frequencies with ionic radius of
R3+, with only a slight deviation for KBiN. For the in-plane polar mode, Figure 7.4(b),
the situation also mirrors the trend for the phonon frequencies: A slight tendency for
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in-plane distortion is evident for KGdN, while the in-plane distortion in KLaN leads to
no significant energy lowering within the computational uncertainty. KBiN deviates
substantially from all other KRN compounds, with a significant energy lowering of
around 0.16 eV per unit cell (K4R2Nb10O30).
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Figure 7.4 — Energy as function of mode amplitude for the polar out-of-plane (a)
and in-plane (b) phonons in KRN. Note the different energy scales. Arrows indicate
decreasing ionic radius.
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Polarization and chemical bonding

The in-plane polar mode in KBiN was frozen in at an amplitude close to the energy
minimum [Figure 7.4(b)], and the lattice parameters and atomic positions were relaxed.
The resulting structure has an in-plane polarization, which was calculated to be
Ps = 55 µC cm−2, see Figure 7.5. This is a high polarization, comparable in magnitude
to experimental data for PN (38 to 46 µC cm−2277), which is commercially available
as a high-temperature piezoelectric. Similar to the analysis for PN in Chapter 6,
the mechanism that stabilizes this polarization can be understood from the charge
density. Figure 7.6 displays the structure and charge density for the relaxed KBiN
structure, and covalent Bi–O bonds are clearly visible in the section containing Bi
[panel (a)]. In addition, the Nb5+ cations are displaced in the same direction within
the NbO6 octahedra. The polarization therefore has contributions from displacement
of both Bi3+ and Nb5+, which mirrors the behaviour observed for PN (Chapter 6).
K+ is centrosymmetrically positioned in the A2 channels also in the polar structure
[Figure 7.6(a)].
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Figure 7.6 — Charge density sections for KBiN with in-plane polarization: (a) z =
0, showing the Bi–O interactions; (b) z = 1/2, showing the Nb–O bonds defining

the octahedra. Sections defined by isosurface values of 0.14 eÅ
−3

and 0.06 eÅ
−3
,

respectively.

7.2 Discussion

Experimental significance

All calculations performed in this chapter are based on computationally optimized
structures starting with experimental data for the structure of unfilled SBN.271 This
was done due to a lack of detailed structural data for the specific systems investigated,
and is a reasonable approach given the rigidity of the octahedral framework in the TTB
structure. There are, for example, very few degrees of freedom related to octahedral
tilting in TTBs, as demonstrated by a recent group-theoretical analysis,269 with only
one tilt system possible within the rigid unit mode (RUM) picture. While the RUM
picture is in itself an approximation, the octahedra in Nb-based TTBs are quite rigid
due to the highly charged Nb5+. The lattice parameters and volume, Figure 7.2, are
mostly proportional to the radius of R3+ in KRN, indicating that the relaxed structures
are reliable. At the same time, it must be kept in mind that in the current calculations,
only phonons at the gamma point of the Brillouin zone are considered. This rules out
the possibility of instabilities that lead to an increased unit cell, such as the

√
2×√2×2

cell commonly observed in TTBs.123 Nevertheless, as ferroic transitions arise only
from gamma-point instabilities, the present analysis should give a strong indication
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of the ferroic properties.
The smooth, almost linear, variation in lattice parameters with R3+ radius for

KRN compounds is contrasted by the variation in TC as reported by Scott, Figure
2.16(a), where a large step is found between KNdN and KLaN. The same plot was
redrawn by Zhu and colleagues in a recent review of structure–property relations
in TTBs.15 In the present work, unstable phonons are found for all compounds in
the KRN system, with phonon frequencies varying smoothly with the radius of R3+

(Figure 7.3). Assuming that strongly negative frequencies imply large distortion
mode amplitudes in the relaxed structures, this also implies a smooth variation in
TC, which is normally proportional to the distortion mode amplitude in displacive
ferroelectrics.279 This behaviour is in accordance with the TC variation reported by
Neurgaonkar, Figure 2.16(b), and it seems likely that the results reported by Scott are a
consequence of inability to distinguish between the two transitions [4/mmm → 4mm
at TC2 and 4mm →mm2 at TC1 in Figure 2.16(b)]. The trend seen in Figure 7.3 shows
that for smaller R3+ cations, there is less difference in stability between the two modes,
and a significant difference between TC1 and TC2 is to be expected. For larger R3+,
the in-plane mode frequency approaches zero, and the transition at TC1 presumably
becomes difficult to observe.

Ferroelectric mechanism and role of lone pair cations

The out-of-plane polar mode seems to be an inherent feature of ferroelectric TTBs
containing Nb. From previous computational work on unfilled TTBs (Chapter 5 and
ref. [264]), it is known that a similar mode exists for all possible cation configurations
in the unfilled SBN system, and hence can be described as robust with respect to
cation–vacancy disorder. The results in this chapter point to the strongly unstable
in-plane mode in KBiN being an exception, and closely linked to the presence of the
lone pair cation Bi3+ on the A1 sites. To test this hypothesis, a comparison was made
between KLaN and KBiN, and the corresponding compounds where K is replaced by
Tl (TlLaN and TlBiN, respectively). K+ and Tl+ have similar ionic radii (1.64Å and
1.7Å, respectively128), but Tl+ is similar to Pb2+ and Bi3+ in having a stereochemically
active lone pair.† Relaxation and phonon calculations was performed in the same
way for the Tl-containing compounds as for the KRN series. The squared phonon
frequencies for the four compounds are plotted in Figure 7.7 (the data on KBiN and
KLaN were also included previously in Figure 7.3). In general, TlLaN and TlBiN
behave similarly to their potassium counterparts. The out-of-plane frequency is the

†Tl+ is also extremely toxic,280 making the cation substitution K+ −−−→ Tl+ interesting primarily as a
pure computer experiment.
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most strongly negative, and varies little between the four cation combinations. The
in-plane frequency is almost zero for the La-containing compounds, and strongly
negative for the Bi compounds, regardless of which cation occupies the A2 sites. The
tendency for in-plane polar distortions is thus linked to the presence of the lone pair
cation Bi3+ on the A1 sites.
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Figure 7.7 — Squared phonon frequencies for the four end members of the quaternary
system (K, Tl)4(La, Bi)2Nb10O30. Note the dependency of the in-plane frequency on
the presence of Bi at A1 sites.

The above results suggest that the presence of another lone pair cation, Tl+, on the
A2 sites, has no qualitative influence on the lattice dynamical behaviour. To expand
further on this observation, the system M6Ti2Nb8O30 (MTN) with M = Ba, Sr, Pb
was investigated in a similar manner. MTN is a group of filled TTBs with only one
type of cation on the A1 and A2 sites, and the insulating nature of the compounds is
ensured by substituting two out of ten Nb cations with Ti.101 Under the assumption
that Ti4+ and Nb5+ behave similarly (both being d0 cations with six-coordinated radii
of 0.605Å and 0.64Å, respectively128), the MTN system can be regarded as a model
system that is similar to unfilled BN, SN and PN, but without the added complexity of
cation–vacancy disorder on the A1 and A2 sites. Relaxation and phonon calculations
for the MTN system resulted in the squared phonon frequencies plotted in Figure 7.8,
which shows how the out-of-plane and in-plane phonon frequencies vary when Pb is
gradually substituted for Ba and Sr in the (Pb, Ba)6Ti2Nb8O30 and (Pb, Sr)6Ti2Nb8O30

systems. The mixed compositions Pb2M4Ti2Nb8O30 were created by placing Pb on
the A1 sites and Sr or Ba on the A2 sites (vice versa forM2Pb4Ti2Nb8O30), keeping the
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cation distribution at all times in accordance with the general TTB formula. The MTN
compositions studied are therefore not only different in terms of chemical composition,
but also different in terms of cation configuration, and it is not necessarily obvious
how to deconvolute these effects.‡

In analogy to the unfilled PN and SBN systems, the out-of-plane frequency for
MTN [Figure 7.8(a)] is most strongly negative for the Ba/Sr-rich compositions, and
least strongly negative for the Pb-rich. At the same time, the in-plane frequency
[Figure 7.8(b)] reaches its most negative value for the compositions Pb2Ba4Ti2Nb8O30

and Pb2Sr4Ti2Nb8O30, that is, with 33 % Pb and 67% Ba or Sr, and Pb occupying the
A1 sites. The behaviour of the MTN system thus mirrors the behaviour of the KRN
system with respect to the presence and localization of the lone pair cations Pb2+ and
Bi3+ on the A1 sites. One contrasting point is that Pb6Ti2Nb8O30 [rightmost points in
Figures 7.8(a) and (b)] does not have a particularly strong in-plane instability, while
unfilled PN is known experimentally to have an in-plane polarization (see Chapter 6).
One reason for this difference, as discussed above, could be the fact that only zone-
center (gamma-point) phonon calculations have been performed for KRN and MTN,
excluding instabilities that lead to an increase of the unit cell size. Pb6Ti2Nb8O30,
like unfilled PN, has been reported to crystallize in a

√
2 × √2 × 1 supercell with

space group symmetryAmm2,284 and it is possible that phonons at other points in the
Brillouin zone are required to properly describe the behaviour of these compounds.

The unfilled (Pb, Ba)5Nb10O30 (PBN) system is similar to the (Pb, Ba)6Ti2Nb8O30

system (MTN withM = Pb,Ba), apart from the former having only Nb at the B sites
and one vacant A site. The PBN system has been well characterized experimentally,
owing to its morphotropic phase boundary (MPB) and corresponding peak in piezo-
electric properties at 40 % Ba.11 In light of the results discussed here, the location of
the MPB in PBN is probably not directly determined by the chemical composition, but
more likely by the cation distribution, in combination with the effect of cation size
on the lattice parameters, as was also suggested by Francombe.11 Starting from pure
PN and gradually substituting Ba for Pb, the Ba2+ cations preferentially locate on the
A2 sites, while Pb2+ remains on A1. This corresponds to a transition from the Pb6
case towards the Pb2M4 case, without going via the cation distribution of the M2Pb4
case. The presence of Pb2+ on A1 sites ensures the possibility of in-plane distortion,
while the lattice expansion from replacing Pb with Ba on A2 presumably makes

‡One possible strategy to eliminate the effect of cation configuration would be to employ the virtual
crystal approximation (VCA) in the DFT calculations.281 In this approach, “mixed” pseudopotentials are
created by linear interpolation of pseudopotentials for reasonably similar elements. VCA has been used
for phonon calculations in perovskite solid solutions such as Pb(Zr, Ti)O3

282 and (Ba, Sr)TiO3,283 but the
approach was not applicable here, as VCA-based force calculations with vasp are at the time of writing not
fully supported by phonopy.
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the polarization switching process easier, as discussed in Chapter 6. The combined
effect of this is to maximize the piezoelectric properties at the conventional MPB
composition.

What is the origin of the in-plane distortion for compounds with A1-site lone pair
cations? The charge density for KBiN, Figure 7.6, shows clear evidence for covalent
bonds between Bi and O. In the paraelectric P4/mbm structure, Bi is situated in a
centrosymmetric position on the A1 sites, similar to the 12-coordinated A-site in a
tetragonal perovskite. Displacement of the atoms along the eigenvector of the polar
in-plane mode, followed by relaxation of atomic positions and lattice parameters,
makes this coordination environment much less symmetric. In the relaxed structure,
Figure 7.6(a), Bi is displaced towards four of the 12 oxygens in a square-pyramidal
coordination, and the effective coordination number§ goes from 11.9 to 5.4. This
situation is reminiscent of PbTiO3, in which the tetragonal ferroelectric polymorph
has Pb and O arranged in a similar square-pyramidal coordination.268 The Pb–O
covalency which is responsible for this distortion was explained in Cohen’s seminal
paper on the origin of ferroelectricity in perovskites.55 The same Pb–O coordination
is found in the α polymorph of PbO, also known as red PbO or litharge285 (and also in
β-PbO (massicot), although more distorted286). The origin of the structural distortions
in both α- and β-PbO have been investigated computationally,287 and can in a similar
manner to the PbTiO3 case be traced to covalent interactions between the Pb 6s and
O 2p orbitals.288 This type of interaction therefore seems to be inherent to the lone
pair cations Bi3+ and Pb2+. The undistorted BiO12 polyhedron in aristotype KBiN is
slightly elongated along c , with four short (2.60Å) and eight longer (2.69Å) bonds.
The shorter in-plane bond lengths makes it much easier for an in-plane distortion
to optimize chemical bonding than an out-of-plane distortion, and is manifested in
a much larger “lone pair effect” for the in-plane mode than the out-of-plane mode
[compare Figures 7.4(a) and 7.4(b)].

§ The effective coordination number (ECoN) is based on the implementation in vesta,231 which is
defined as follows:

ECoN =
∑
i

wi , wi = exp
⎡⎢⎢⎢⎢⎣1 −
(
li

lav

)6⎤⎥⎥⎥⎥⎦ ,
wherewi is the “bond weight” of bond i , li is the bond length, and lav is the weighted average bond length
in the given coordination polyhedron.





8Partially reduced TTBs

8.1 Results

Electronic structure

Ba6Nb10O30 (“filled” BN, abbreviated as f-BN in the following) has all A1 and A2
sites fully occupied by Ba2+, and electroneutrality is preserved by partially reducing
Nb. There are nominally two Nb4+ and eight Nb5+ per 46-atom unit cell, see Figure
8.1, corresponding to an average electron configuration of d0.2 which opens up for
possible electronic conductivity. It is not known whether the two electrons that
occupy the conduction band localize preferentially on specific Nb atoms, or if they
are delocalized. A metal–insulator transition has also been reported in the system
(SrxBa1–x )6Nb10O30 (f-SBN) for increasing Sr content,102 and the mechanism for this
is not known. In the following, hybrid functional and DFT+U calculations were used
to find computational support for these experimental findings.

b

a
Figure 8.1 — Crystal structure of Ba6Nb10O30 (f-BN), as reported by Kolodiaznyi et
al. (space group symmetry P4/mbm).102

Hybrid functional calculations were performed for the reported crystal structure
of f-BN,102 shown in Figure 8.1. The results were used to calibrate less computationally
expensive DFT+U calculations. A static, non-spin-polarized calculation resulted in an
electronic band gap of 3.17 eV for f-BN (the term “band gap” is used for the energy

105
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difference between the valence band maximum and the conduction band minimum,
although there is a small occupation of the conduction band corresponding to the
average electron configuration d0.2). Similar calculations using DFT+U produced
band gaps ranging from 2.1 to 3.4 eV whenUeff was varied from 0 to 12 eV, see Figure
8.2(a). A value ofUeff = 10 eV was found to reproduce the hybrid functional band gap.
Relaxing the experimental structure in DFT+U calculations suggests a lowerUeff if
experimental lattice parameters are used as the benchmark [Figure 8.2(b)], but the
band gap-calibrated U value was chosen due to the focus on electronic rather than
structural properties.
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Figure 8.2 — Calibration of PBEsol+U calculations for f-BN, showing the effect of
Ueff on electronic band gap (a) and lattice parameters (b). Ueff = 10 eV is necessary to
reproduce the HSEsol band gap of 3.17 eV, while the lattice parameters suggest 0 to
5 eV. The term “band gap” refers here to the energy difference between the valence
band maximum and the conduction band minimum, even though there are occupied
states in the conduction band.

The charge density from spin-polarized hybrid functional calculations was an-
alyzed according to the Bader partitioning scheme, Figure 8.3. The Bader analysis
shows no support for charge ordering of the Nb d electrons between the B1 and B2
sites, as both the charges [Figure 8.3(a)] and radii [Figure 8.3(b)] are very similar for
all Nb atoms. Four different Bader radii were used for each structure in the subsequent
analysis: A1, A2, Nb and O, with the latter two calculated as averages of the values
shown in Figure 8.3(b). The Bader radii were used to decompose the electronic density
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of states (DOS) into atomic and orbital contributions. Orbital-projected DOSes for
f-BN with experimental lattice parameters and atomic positions are shown in Figure
8.4. Panel (a) shows the spin-polarized DOS with ferromagnetic (FM) ordering of
the spins along c . The corresponding non-spin-polarized DOS is shown in panel (b),
both are obtained by hybrid functional calculations. The DOS obtained by DFT+U
calculations after calibrating U versus the band gap of the non-spin-polarized hybrid
functional calculations is shown in panel (c). All DOSes in Figure 8.4 were calculated
using the experimental structure of f-BN reported by Kolodiaznyi et al.102 (Figure
8.1). The FM ordering used in the spin-polarized calculations gave a lower total
energy than any of the antiferromagnetic (AFM) orderings that were tested,∗ even
though no net magnetic moment is found experimentally.102 Based on the relatively
symmetric spin-polarized DOS and the low electronic occupancy at the Fermi level,
non-spin-polarized calculations were used for all subsequent calculations for f-BN
and f-SN (Sr6Nb10O30).
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Figure 8.3 — (a) Bader charges and (b) Bader radii for f-BN at experimental geometry,
obtained from spin-polarized hybrid functional calculations of the charge density.
Notice the similar charge and radius on the Nb ions (atoms 7–16), and the different
radii of Ba at A1 (atoms 1 and 2) and A2 (atoms 3–6) sites.

Full geometry optimization was performed for both compounds using DFT+U.
For f-BN, the relaxation started from the crystal structure reported by Kolodiaznyi

∗Both spin-polarized AFM and non-spin-polarized calculations give a higher energy of around 0.2 to
0.3 eV per 46 atoms compared to spin-polarized FM ordering.
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et al.,102 which is given in the aristotype TTB unit cell with space group symmetry
P4/mbm (Figure 8.1). A corresponding tetragonal f-SN structure was obtained by
using experimental atomic positions for f-BN and experimental lattice parameters
for f-SN (Table 8.1), where the orthorhombic lattice parameters (o) are converted to
tetragonal (t) by a2t = aobo. Consistent with Figure 8.2(b), the highUeff employed here
leads to an expansion of the lattice parameters for both f-BN and f-SN relative to the
experimental data (Table 8.1).

Table 8.1 — Experimental and calculated lattice parameters for f-BN and f-SN during
the mode following procedure. Experimental values are from Kolodiaznyi et al.,102 and
calculated values are reported with the same numerical precision as the experimental
values. Space groups (SG) marked with an asterisk (∗) correspond to larger super-
cells, for which the lattice parameters have been converted to “pseudo-tetragonal”
parameters for easy comparison with P4/mbm.

f-BN f-SN

SG a b c SG a b c

Experimental Experimental
P4/mbm 12.584 3.9995 Amam∗ 12.379 12.350 3.8889

Calculated Calculated
P4/mbm 12.754 4.0220 P4/mbm 12.593 3.9834

Pbam 12.680 12.623 3.9874
Pnma∗ 12.648 12.472 3.9323
P21/m∗ 12.623 12.568 3.9380

(γ = 90.245°)

Dynamical stability

Phonons were calculated for f-BN and f-SN in space group P4/mbm at the Γ and Z
high-symmetry points of the Brillouin zone. This is assumed to capture any ferroic
distortions, which arise from Γ-point instabilities, and any Z -point distortions that
lead to doubling of the c parameter. f-BN is stable with respect to Γ-point distortions,
while f-SN has a single unstable zone-center mode, Γ+2 . The mode is non-polar and
ferroelastic, and lowers the symmetry from tetragonal P4/mbm to orthorhombic
Pbam. The Γ+2 mode occurs as a stable vibration in f-BN, and its effect on the energy
of f-BN and f-SN is shown in Figure 8.5(a). In addition, both compounds have a zone-
boundary instability, Z−5 , which doubles the c parameter and lowers the symmetry to
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monoclinic P21/m. The effect of the Z−5 mode amplitude on the energy of f-BN and
f-SN is shown in Figure 8.5(b). For f-BN, the energy lowering is very small, bordering
on the energy resolution limit of DFT, so f-BN is for all practical purposes considered
to be dynamically stable in space group P4/mbm.
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Figure 8.5 — Energy as function of mode amplitude (normalized to one unit cell)265 for
the zone-center (a) and zone-boundary (b) phonons considered in unfilled f-BN and f-
SN. f-BN is dynamically stable in space group P4/mbm, while f-SN has instabilities that
lead to orthorhombic distortion (Γ+2 ) and doubling of c through octahedral tilting (Z−5 ).
Points are calculated energies, lines are fits to a Landau polynomial ΔE = αQ2 + βQ4.

f-SN was found to have significant instabilities both at the center and boundary
of the Brillouin zone, and the ground state was searched for by “following” the
unstable modes. The most strongly unstable mode in f-SN is the doubly degenerate
Z−5 [Figure 8.5(b)], although the energy relaxation for the Γ+2 mode is comparable
[Figure 8.5(a)]. Relaxing the structure with Z−5 frozen in at an amplitude close to the
energy minimum resulted in a 1 × 1 × 2 supercell with space group symmetry P21/m,
which again has further instabilities at Z . If instead the Γ+2 mode is frozen into the
P4/mbm structure and relaxed, an orthorhombic cell with space group symmetry
Pbam results. This structure is stable with respect to Γ-point distortions, but has a
further Z -point instability which leads to a 1 × 1 × 2 cell with Pnma symmetry. The
Pnma structure has no further instabilities and is therefore dynamically stable with
respect to Γ- and Z -point distortions. In addition it has lower energy than the P21/m
structure, Figure 8.6, and is therefore considered the ground state structure for f-SN.
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The group–subgroup relations between the space group symmetries are shown in
the inset of Figure 8.6. Table 8.1 gives a comparison of the lattice parameters for
all the structures considered. Atomic positions are given in Tables 8.2 and 8.3 for
the dynamically stable ground state structures of f-BN and f-SN, respectively. The
stable ground state for f-SN, Pnma, is visualized in Figure 8.7. Finally, the effect of the
symmetry-lowering distortions on the electronic structure of f-SN is shown in Figures
8.8(b) to (d), which show the DOSes for f-SN relaxed in space groups P4/mbm, Pbam
and Pnma, respectively, corresponding to the successive steps of the mode following
procedure.
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type space group used as starting point, and Pnma is the dynamically stable ground
state. Group–subgroup relations are shown in the inset diagram, with arrows marking
energy-lowering distortions (the dashed arrow marks a distortion mode which does
not lower the energy for f-SN).

8.2 Discussion

Choice of method and validity of results

Non-spin-polarized calculations were used for f-BN and f-SN despite the non-zero
occupation of the conduction band in the partially reduced TTB compounds. This
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Table 8.2 — Atomic positions for the dynamically stable structure of f-BN (space
group symmetry P4/mbm).

Atom WP x y z

Ba1 2a 0 0 0
Ba2 4д 0.3318 x + 1/2 0
Nb1 2c 0 1/2 1/2
Nb2 8j 0.2877 0.5770 1/2
O1 2d 0 1/2 0
O2 4h 0.2212 x + 1/2 1/2
O3 8i 0.2930 0.5785 0
O4 8j 0.1569 0.4921 1/2
O5 0.4332 0.6397 1/2

Table 8.3 — Atomic positions for the dynamically stable structure of f-SN (space
group symmetry Pnma).

Atom WP x y z

Sr1 4c 0.0008 1/4 0.4958
Sr2 0.3383 1/4 0.3104
Sr3 0.6322 1/4 0.6985
Nb1 4a 0 0 0
Nb2 8d 0.2134 0.0001 0.5783
Nb3 0.0815 0.0022 0.2922
O1 4c 0.5262 1/4 0.5237
O2 8d 0.2711 0.0247 0.7304
O3 4c 0.7663 1/4 0.4139
O4 0.1781 1/4 0.5877
O5 0.9499 1/4 0.7097
O6 0.1125 1/4 0.3070
O7 8d 0.3413 0.0437 0.4900
O8 0.0000 0.0310 0.1569
O9 0.0686 0.9590 0.6482
O10 0.1274 0.9799 0.4434
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(a) (b)

Figure 8.7 —Visualization of the 1×1×2 Pnma supercell suggested as the dynamically
stable ground state structure for f-SN: (a) “Top” view (projection along the pseudo-
tetragonal axis); (b) perspective view which shows the tilted NbO6 octahedra.

was the most convenient choice, since spin-polarized calculations would introduce
an additional degree of freedom in the choice of magnetic ordering. Test calculations
demonstrated that ferromagnetic (FM) ordering gives a lower total energy than
the antiferromagnetic (AFM) orderings that were tested (both AFM and non-spin-
polarized calculations give approximately 0.2 to 0.3 eV higher energy per 46 atoms
than FM). On the other hand, experimental measurements have shown that the net
magnetic moment is zero down to 1.5 K (and non-zero below due to the Meissner
effect as the material becomes a superconductor),102 so the magnetic ordering is in any
case very weak. In addition, the local magnetic moments obtained in spin-polarized
test calculations were found to be sensitive to changes in computational parameters,
such as k-point density, type of electronic smearing, and even supercell size. The
calculated magnetic structure is therefore also not very robust, which justifies the
use of non-spin-polarized calculations. As stated above, the energy gain from spin-
polarized calculations is low in comparison to non-spin-polarized calculations. This is
consistent with the hybrid functional DOSes for f-BN [Figures 8.4(a) and (b)], which
show a low density of states at the Fermi level. As an added benefit, non-spin-polarized
calculations are less computationally costly than spin-polarized.

DFT+U calculations were used for all structural relaxations in this chapter. This
was a choice of necessity, as the DFT+U calculations in this case performed around 50
times faster than the hybrid functional calculations, so the latter were in practice out
of limits for structural optimization. The functionals used, PBEsol and HSEsol, are
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Figure 8.8 — Density of states for filled TTBs with optimized structures: (a) f-BN
in space group P4/mbm (dynamically stable ground state); (b) f-SN in P4/mbm; (c)
f-SN in orthorhombic Pbam (results from a Γ-point instability in P4/mbm); (d) f-
SN in orthorhombic Pnma (dynamically stable ground state; results from a Z -point
instability in Pbam). DOSes are normalized to 46-atom unit cells. Panels to the right
show magnifications around the Fermi level, which is used as reference for the energy.
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expected to give good correspondence in structural properties,173 although it is not
possible here to compare the effect on lattice parameters of the two functionals. The
DFT+U calculations are calibrated against the electronic band gap obtained in hybrid
functional calculations [Figure 8.2(a)], a choice made since the electronic (and not
structural) properties are in focus in this work. Relaxations performed with DFT+U
consistently lead to larger lattice parameters than the experimental values (Figure
8.2(b) and Table 8.1), although this would likely be the case also if hybrid functional
calculations were used. The most notable difference between DFT+U and hybrid
functional calculations is seen in the DOS for f-BN at experimental geometry (Figure
8.4), where the DFT+U calculation gives a non-zero DOS at the Fermi level (EF), while
a small gap opens up when the calculation is performed with HSEsol. In addition,
the conduction band is much more compact within DFT+U, with a spread of around
4 eV above EF. In hybrid functional calculations, the conduction band has an energy
spread of up to 8 eV above EF. The effect on the valence band is much smaller, which
is not surprising since DFT is fundamentally a theory which describes occupied states,
and the description of the unoccupied states in the conduction band should in any
case be taken with caution, regardless of the level of theory within DFT.

DFT+U calculations were also used for all lattice dynamical calculations for f-BN

and f-SN. Pre-relaxation to a force-based criterion of 10−4 eVÅ
−1

yielded well behaved
phonons, with the expected zero-frequency acoustic branches at Γ in all cases. The
fixed-volume energy profiles for the phonons of the P4/mbm structures, Figure 8.5,
follow the standard Landau polynomial form ΔE = αQ2 + βQ4 reasonably well. The
small deviation for the Γ+2 mode in f-SN is most likely an effect of the fixed volume,
since the mode is ferroelastic and leads to an orthorhombic strain of 0.5 % when the
structure is relaxed (Table 8.1).

Consistency with experimental results

The mode following procedure followed here suggests the orthorhombic space group
Pnma as the dynamically stable ground state for f-SN. Kolodiaznyi and colleagues102

reported that single crystal and powder X-ray diffraction data of f-SN could be fitted
“reasonably well” by using a

√
2 × 2√2 × 2 TTB supercell in the orthorhombic space

groupAmam. Fitting the same diffraction data to the 1×1×2 Pnma structure suggested
here would be illuminating, since a detailed explanation of the choice of the Amam
cell was not given in the work cited above. In order for lattice dynamics calculations
to suggest a larger supercell, such as

√
2 × 2√2 × 2, it would be necessary to employ

equally large supercells in the phonon calculations, which would again increase the
computational effort. All phonon calculations performed in this work were performed
with 1 × 1 × 2 supercells, which limits the instability search to the Γ and Z points of
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the Brillouin zone. The present approach still seems to describe much of the essential
physics of the filled TTBs correctly, since it predicts f-BN to be stable in P4/mbm and
f-SN to have an orthorhombic distortion and a cell doubling along c . Despite this,
there is of course a possibility that using larger supercells in the calculations would
lead to the discovery of further instabilities than the ones presented here.

The structural properties of f-BN and f-SN are, at least on a qualitative level, well
reproduced by the chosen computational procedure. The electronic properties are not
known in as much detail, and one of the obvious questions to ask for a compound
with a partially occupied conduction band is whether the d electrons are localized
on particular Nb atoms. Bader charge analysis, Figure 8.3(a), does not support this,
as Nb1 and Nb2 are calculated to have identical charges (the small difference in
charge between Nb1 and Nb2 is within the accuracy limit of the method, since also
Ba and O show small variations in charge between non-equivalent atomic positions).
It is assumed that hybrid functional calculations give an improved description of
electronic properties with respect to DFT+U, and the effect of the different levels
of theory is easily seen by comparing the DOSes for f-BN calculated with the two
methods [Figures 8.4(b) and (c)]. The DFT+U DOS predicts metallic behaviour, with
a non-zero occupancy at EF, while the hybrid DOS approaches zero, which can be
attributed to an improved description of electron correlation. Still, even the hybrid
functional results should be taken with caution, as metal–insulator transitions are in
general not easily described by DFT.† The charge analysis in Figure 8.3 is performed
for a spin-polarized charge density calculated with HSEsol, but this does still not
predict charge ordering on Nb. It is of course possible that the d electrons actually
are perfectly delocalized, corresponding to the average d0.2 electron configuration
dictated by the stoichiometry.

The electronic densities of states for f-BN and f-SN optimized in the P4/mbm
structure (Figures 8.8(a) and (b), respectively) are qualitatively more or less identical.
In both materials, the DOS around the Fermi level is split in two bands, as shown in
the magnified sections in Figure 8.8. In each case, the lower band contains the two
d electrons, while the upper band is empty. The structural distortions in f-SN have
the effect of splitting these bands further, as shown in the DOS for f-SN optimized
in Pbam and Pnma (Figures 8.8(c) and (d), respectively). In the Pnma structure, the
first band above EF contains only a single empty state, and all higher-lying states
are a part of the continuous conduction band. Anderson localization295 has been

†This is a fundamental difficulty in all mean-field theories, DFT included, in which individual electron–
electron interactions (correlation) are replaced by interactions between single electrons and the average
electron density. One alternative is dynamical mean-field theory (DMFT),289–292 which has been shown to
be able to describe metal–insulator transitions (MITs) in strongly correlated materials such as VO2

293 and
LaTiO3.294
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suggested as the mechanism behind the metal–insulator transition in the filled SBN
system [(Sr, Ba)6Nb10O30 or f-SBN],102 and also in the unfilled, reduced SBN system
[(Sr, Ba)5Nb10O30–δ or r-SBN].84 For the latter, a schematic DOS was suggested based
on the Anderson localization mechanism (Figure 8.9).

Figure 8.9 — Schematic DOS for oxygen-deficient r-SBN proposed by Bock and
co-workers.84 At low temperature, the material is an insulator due to Anderson local-
ization:295 Oxygen vacancies create an impurity band at EF, which splits into upper
(UHB) and lower Hubbard sub-bands (LHB). When the impurity states are disordered,
the states at the edges of the sub-bands are localized, which makes the material
insulating even though there is a non-zero DOS at the Fermi level.

The oxygen-deficient r-SBN is similar to f-SBN in the sense that both materials
contain partially reduced niobium (in f-SBN, there are formally two d1 Nb4+ and eight
d0 Nb5+ per 46-atom unit cell). In the work on r-SBN by Bock et al.,84 the electronic
structure is discussed in terms of defect states induced by the oxygen vacancies. In
f-SBN, on the other hand, the “defect” with respect to stoichiometric, unfilled SBN
((Sr, Ba)5Nb10O30) is an additional Sr2+ or Ba2+, which is not disordered and does not
directly influence the DOS in the vicinity of EF. Instead, the material can be considered
to be “electron doped”, in the sense that only the occupancy of the conduction band
is changed, without any additional defect states in or close to the band gap. The DOS
close to EF in f-BN and f-SN (Figure 8.8) does indeed bear resemblance to the sub-
band structure shown schematically in Figure 8.9, and it can be noted that Anderson
localization is possible in f-SN in light of the disordered distribution of Nb4+ suggested
by the charge analysis.





9Rhombohedral lead metaniobate

The content of this chapter is based on ref. [276].

9.1 Results

Diffraction experiments

Rhombohedral lead metaniobate, (PbNb2O6, abbreviated r-PN in the following), has
attracted far less attention than the TTB polymorph. The initial report on r-PN in 1956
by Francombe6 claimed that there was no evidence for any ferroelectric behaviour in
the material. Much of the subsequent literature has therefore focused on avoiding
formation of the r-PN phase and stabilizing the ferroelectric TTB-PN phase, which is
thermodynamically metastable with respect to r-PN. The crystal structure of r-PN,
shown in Figure 9.1, is not known to occur in other compounds except PbRe2O6

296

and possibly PbTa2O6.100

Figure 9.1 — Crystal structure of r-PN as reported by Mahé in 1967,118 and used
as starting point for the Rietveld refinement. Space group R3m, hexagonal setting,
projection along c (unit cell marked by dashed line).

The initially reported space group symmetry R3m is polar, which in principle
allows for functional properties such as pyro- and ferroelectricity. This was also
suggested in 1985 by a Soviet group who found evidence for a polar–non-polar phase

119
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transition in r-PN at 815 ◦C.119 However, as the available structural data was of low
quality, a re-examination of the crystal structure of r-PN was done in order to obtain a
good starting point for computational investigations of possible functional properties.
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Figure 9.2 — (a) Powder X-ray and (b) powder neutron diffractograms, showing
observed (blue circles) and calculated (orange line) intensity for space group R3, and
their difference (black line) as a function of the scattering vectorQ = 2π/d . Black tick
marks show the position of individual Bragg reflections. Zoom-in to the right shows
a comparison between refinements within space groups R3 and R3m.

Both X-ray and neutron diffraction experiments were performed on r-PN powder
samples, and full Rietveld refinement was performed starting from the structural
data reported by Mahé118 (Appendix B). Five possible space group symmetries were
considered: R3, R3̄, R32, R3m and R3̄m. All five have the same selection rules for
diffraction, so the distinction between the different candidate space groups relies
only on the intensities of the Bragg reflections. X-ray and neutron diffractograms
are shown in Figure 9.2 together with Rietveld refinements within space group R3,
which gave the best fit both for the two datasets separately and for simultaneous
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refinement. The goodness of fit for the different space groups is summarized in
Table 9.1 together with lattice parameters from the refinements. Space group R3̄m
yielded the worst fit, and gave rise to a systematic deviation for certain reflections
between experimental data and the fit. Also the previously reported117 space group
R3m gave systematic deviations for certain reflections, and a magnification of the
representative (321) reflection is shown in the insets of Figure 9.2, comparing the
fit for space group R3m and R3. Similar deviations of comparable magnitude are
apparent also in other reflections throughout theQ range, notably the (14̄3̄) and (037̄)

reflections at approximately Q = 4.55Å
−1

and Q = 6.52Å
−1
, respectively. For space

group R3, which gave the best fit, both the experimental (joint refinement of X-ray
and neutron diffraction data) and the optimized atomic coordinates are given in Table
9.2. For all space groups, the refined structures show distinct differences from the
previously reported structures, which have been refined in space group R3m.118,275

The most pronounced difference is that the NbO6/2 octahedra are far less deformed,
with less variation in the Nb–O bond lengths (further discussed below).

Table 9.1 — Lattice parameters at room temperature, and quality of fit for joint
refinement of X-ray and neutron data within each of the five space groups considered
(estimated standard deviations in parenthesis). Literature values for R3m (converted
from hexagonal setting) are included at the bottom.

Space group Lattice parameters Quality of fit

a (Å) α (°) Rp (%) Rwp (%) χ 2

R3 7.17530(7) 93.9548(5) 6.62 9.05 1.89
R3̄ 7.17530(7) 93.9552(5) 6.85 9.29 1.94
R32 7.17508(9) 93.9566(6) 8.21 11.66 2.44
R3m 7.17521(8) 93.9555(6) 7.65 10.69 2.23
R3̄m 7.17516(10) 93.9564(6) 8.51 11.93 2.49

R3m117 7.183 93.94
R3m275 7.1654 93.908

Computational results

Additional information on the relative stability of the different space groups is obtained
from the calculated energies of the candidate structures. The energies of the possible
structures are shown in Figures 9.3(a) to (c), corresponding to three different relaxation
constraints. For full relaxation with no volume constraints, the volume after relaxation
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Figure 9.3 — Calculated energy per formula unit for each of the space groups con-
sidered, after ionic relaxation at (a) experimental lattice parameters; (b) relaxation
of ions and lattice vectors at constant experimental volume; (c) unconstrained relax-
ation of ions and lattice vectors. (d) Relaxed unit cell volumes in comparison to the
experimental value.

is shown in Figure 9.3(d). All energies are reported per formula unit of PbNb2O6, and
given relative to the structure with the lowest symmetry, R3. The energy of the R32
structure is omitted from the figures, since this experimental structure relaxes into
the higher-symmetry space group R3̄m. Because of this apparent instability, and the
relatively poor goodness of fit for Rietveld refinement within this space group (Table
9.1), R32 was not considered further as a plausible space group symmetry for r-PN at
ambient temperature.

For the three space groups R3̄m, R3m and R3, the calculated energies correlate
with the degree of symmetry, with R3̄m having the highest symmetry and the highest
calculated energy, R3m intermediate, and R3 the lowest. R3̄, however, does not follow
this trend: It has essentially the same energy as R3, while at the same time possessing
a higher symmetry and merely half as many atomic degrees of freedom as R3 (Table
9.2). This result is the same for all the relaxation methods used. Lattice dynamical
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calculations similarly show negligible difference between the dynamical stability of
the R3̄ and R3 structures, while the R3m and R3̄m structures have instabilities which
correlate with their higher energy.

Atomic positions for the R3 structure, both experimental (joint refinement) and
after computational optimization (full relaxation with the PBEsol functional), are
given in Table 9.2.

Table 9.2 — Atomic positions and unit cell parameters (R3, rhombohedral setting)
based on joint refinement of diffraction data, and after geometry optimization by
DFT calculations (PBEsol, unconstrained relaxation). Biso are isotropic thermal dis-
placement factors, constrained to be the same for all atoms of the same element.

Experimental Optimized

Atom x y z Biso (Å
2
) x y z

Pb1 0 0 0 1.48(3) 0 0 0
Pb2 0.3527(4) 0.3527(4) 0.3527(4) 1.48(3) 0.3527 0.3527 0.3527
Pb3 0.6889(5) 0.6889(5) 0.6889(5) 1.48(3) 0.6764 0.6764 0.6764
Nb1 0.5338(11) 0.2006(9) 0.8384(10) 0.06(3) 0.5403 0.1965 0.8405
Nb2 0.1531(10) 0.5117(8) 0.8068(9) 0.06(3) 0.1562 0.5122 0.8123
O1 0.404(2) 0.947(2) 0.678(2) 0.40(3) 0.403 0.959 0.678
O2 0.9617(14) 0.3878(14) 0.668(2) 0.40(3) 0.9501 0.3941 0.675
O3 0.760(2) 0.773(2) 0.065(2) 0.40(3) 0.772 0.772 0.058
O4 0.055(2) 0.053(2) 0.5216(14) 0.40(3) 0.058 0.058 0.5129
O5 0.571(2) 0.580(2) 0.293(2) 0.40(3) 0.581 0.581 0.294
O6 0.292(2) 0.294(2) 0.8515(12) 0.40(3) 0.295 0.295 0.8398

a (Å) 7.17530(7) 7.15572
α (°) 93.9548(5) 94.0297

Vcell (Å
3
) 366.652(11) 363.551

High-temperature behaviour

High-temperature X-ray diffraction (HTXRD) was used to characterize the crystal
structure of r-PN at non-ambient temperatures. Two separate experiments were
performed in order to cover a wide range of temperatures. Lattice parameters for
both experiments, obtained by Pawley fitting at each temperature, are presented as a
function of temperature in Figure 9.4. The hexagonal c parameter, which corresponds
to the polar direction in space group R3, contracts up to a temperature of (780 ± 5) ◦C,
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after which it expands again. The a parameter is less affected, but shows a clear
change in slope at this temperature.
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Figure 9.4 — Lattice parameters, obtained by Pawley fitting, for r-PN as a function of
temperature (hexagonal setting). Space group R3 was used for fitting up toT = 780 ◦C,
and R3̄m above. The relative change with respect to the ambient temperature lattice
parameters (dashed lines) are given on the secondary axis.

The possible phase transition at 780 ◦C was investigated by dilatometry and dif-
ferential thermal analysis (DTA). The results of the thermal characterization are
presented in Figure 9.5. The DTA data, Figure 9.5(a), show an endothermic (exother-
mic) response during heating (cooling), in both cases at a temperature of (780 ± 5) ◦C,
with little thermal hysteresis. The dilatometry data, Figure 9.5(b), demonstrate a
significant thermal hysteresis, with a change in slope of the thermal expansion curve
at around 800 ◦C upon heating, and at 520 ◦C during cooling.

Finally, dielectric impedance spectroscopy was used to check for a possible dielec-
tric response associated with the phase transition. The relative dielectric permittivity
is plotted in Figure 9.6, with emphasis on the temperature range where the phase
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Figure 9.5 — Thermal analysis of r-PN. (a) DTA: Full heating and cooling curves
are shown in main plot; inset shows a magnification of the relevant temperature
range, with curves shifted in the y direction for easier comparison of peak positions
(heating and cooling rate 5 ◦Cmin−1). (b) Thermal expansion of a dense ceramic
sample (heating and cooling rate 5 ◦Cmin−1).

transition is observed by HTXRD, DTA and dilatometry. From room temperature and
up to around 300 ◦C, the permittivity is constant at values of 100–1000 depending
on measurement frequency. At higher temperatures, the dielectric response shows a
monotonic increase, visible from around 500 ◦C in the main plot in Figure 9.6. This
increase is presumably due to electrical conductivity, and the inset of Figure 9.6
demonstrates that the response is completely regular in the temperature range where
the phase transition is expected. There is in other words no significant dielectric
response associated with the phase transition. Dielectric loss data (not shown) did
not contribute to additional knowledge about the material.
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Figure 9.6 — Relative permittivity for r-PN as a function of temperature. Inset shows
a logarithmic plot for the same temperature range as the inset of Figure 9.5.

9.2 Discussion

Space group symmetry at ambient temperature

Both refinement of the diffraction data and comparison of DFT energies point to
either of R3̄ or R3 as the most likely space group symmetries for r-PN at ambient
conditions. This is in contrast to earlier works,117,118 which conclude that the space
group is R3m. Figure 9.7 gives the group–subgroup relations between the five space
groups considered in this work. The path involving space group R32 can be excluded
based on the poor Rietveld fit (Table 9.1) and the instability with respect to force-based
geometry optimization.

The difference in quality of fit is quite small between R3 and R3̄, as is evident from
Table 9.1. A reasonable way of testing the statistical significance of this difference
is by Hamilton’s R-ratio test,297,298 which is based on the well-known F-test. In the
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Figure 9.7 — Group–subgroup relations between the space group symmetries con-
sidered for r-PN.

present case, the ratio of Rwp factors for the R3̄ and R3 refinements is R = 1.027. For
the joint refinement, the total number of (hkl ) reflections is 730, with 60 parameters
refined for R3 and 47 for R3̄ (the difference of 13 corresponding to the difference in
atomic degrees of freedom between the space groups). From Hamilton’s table,297 the
value R13,670,0.005 = 1.023 can be read off, meaning that the probability of R3 actually
being a better model than R3̄ for this particular refinement, is higher than 0.995. The
same result is obtained if the X-ray and neutron diffraction data are refined and tested
individually, so it is safe to conclude that R3 is a significantly better model than R3̄.

In addition to the rhombohedral space group symmetries shown in Figure 9.7,
refinements within further subgroups of R3 and R3̄ could in principle also be included,
i.e., the trigonal groups P3 (143), P31 (144), P32 (145) and P 3̄ (147). P31 and P32,
however, can be excluded, as the 3-fold screw axes are not compatible with the
stacking pattern found in this structure (further described below). P3 and P 3̄, although
possible from a structural point of view, do not yield a better fit than R3, despite a
higher number of refined parameters for the trigonal groups. Based on this, there is
no apparent reason not to keep the rhombohedral lattice centering, restricting the
possible space groups to those shown in Figure 9.7.

A general observation for all energy calculations, is that R3̄m has the highest
energy, R3m intermediate, and R3̄ and R3 are essentially at the same, lowest energy.
This is true for all methods of geometry optimization, and for all functionals, as shown
in Figures 9.3(a) to (c). In practice, the experimental R3 structure relaxes towards
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R3̄ symmetry, and the distinction between them is ultimately a matter of tolerance
during the symmetry analysis.255 For the constrained relaxations, Figures 9.3(a) and
(b), the R3 structure is regarded as having R3̄ symmetry for tolerances higher than
3 · 10−4 if relaxed with PBE, and 3 · 10−2 if relaxed with PBEsol. For the unconstrained
relaxation, Figure 9.3(c), the threshold values are 5 · 10−4 for LDA and 1 · 10−3 for
PBEsol. In other words, the structures relaxed using PBEsol give the largest structural
differences between R3 and R3̄, although the two space groups are hard to distinguish
in all cases.

The graphs in Figure 9.3 confirm certain well-known properties of the functionals
used.182 LDA has an inherent tendency to over-bind, which is reflected in a relaxed cell
volumewhich is smaller than the experimental volume by around 5%, as seen in Figure
9.3(d). The PBE functional, on the other hand, slightly over-corrects this deviation,
producing a unit cell volume which is around 5% larger than the experimental value.
The PBEsol functional is intended to improve on PBE for equilibrium properties of
solids such as bond lengths and lattice parameters,229 and the volume calculated
with PBEsol comes very close to the experimental volume. This difference between
the functionals is also reflected in the energies for the different space groups. As
spontaneous polarization in solids requires a certain volume for the displacement
of ions, the under-binding PBE functional is expected to favour polar space groups
more than the over-binding LDA. For all calculations, PBE gives the largest energy
difference between the polar R3 and the non-polar R3̄m, and LDA the smallest. The
effect of this is most pronounced for the unconstrained relaxations as shown in Figure
9.3(c).

While the diffraction data is convincing, R3 and R3̄ are still so similar in structure
and energy that care must be taken to properly distinguish between them. The differ-
ence between the space group symmetries R3 and R3̄ is the presence of an inversion
center in the latter, making the space group non-polar. This is obviously important for
applications of the material, as for example pyro- and ferroelectricity requires a polar
space group. A Soviet work from 1985 suggests that the rhombohedral R3m poly-
morph transforms to the non-polar space group R3̄m at high temperatures,119 based on
the observed contraction of the polar axis (hexagonal [001] direction, rhombohedral
[111] direction) upon heating to 815 ◦C, followed by regular thermal expansion. Such
an anisotropic thermal expansion would be expected to accompany the transition
from a polar to a non-polar space group, e.g., from R3m to R3̄m or from R3 to R3̄,
while a transition between two polar (or two non-polar) space groups is likely to be
much more subtle. The anisotropic thermal expansion, Figure 9.4,suggests that the
ambient-temperature space group is polar and that the high-temperature structure is
non-polar. This, in addition to the statistical significance of the Rwp factors from the
refinement, makes R3 the most probable space group symmetry for r-PN at ambient



9.2. DISCUSSION 129

temperature.

Description of the crystal structure

The main characteristic features of the crystal structure of r-PN are illustrated in
Figure 9.8. Rhombohedral lead metaniobate is not a “layered” structure in the usual
sense, although it is natural to picture it as being built from layers due to the anisotropy
in crystal structure, polyhedral connectivity and bonding. The fundamental building
blocks are dimer units, made up of two edge-sharing NbO6 octahedra as shown in
Figure 9.8(a). The dimers are corner-linked, creating layers or sheets as shown in
Figure 9.8(b). The layers have a point group symmetry which is nearly hexagonal,
although, as will be further discussed below, the point group symmetry of the crystal
is trigonal due to the stacking sequence and the polyhedral connectivity between
layers.

Three different kinds of rings of corner- and edge-sharing octahedra can be iden-
tified in the layers: One hexagonal, and two triangular rings that are symmetrically
inequivalent. In Figure 9.8(b), the hexagonal ring (yellow) is in the middle, surrounded
by six triangular rings (red and blue). Each of the triangular rings is pointing either
up (red) or down (blue) within the plane of the figure, thereby distinguishing the two
types. In a single layer of ideal hexagonal symmetry (P6/mmm), the two triangular
rings would be equivalent. The layers are stacked as shown in Figure 9.8(c), with a
repeating sequence of three layers. The rings in each layer form channels parallel
to the hexagonal c axis. Lead cations are positioned inside these channels, between
the layers. In the three-dimensional structure, every hexagonal ring has a triangular
ring both above and below. This stacking sequence, with mixing of hexagonal and
triangular rings, lowers the symmetry of the crystal from the ideal 6-fold, to the 3-fold
symmetry observed. It can be noted that each of the three rings is associated with
one of the three Wyckoff positions for lead in space group R3 (Table 9.2).

In addition to the stacking sequence, the polyhedral connectivity itself introduces
tilts and distortions that prevent the ideal hexagonal symmetry from being realized.
Between the layers, only corner-sharing connects the NbO6 octahedra, whereas both
corners and edges are shared within the layers. It is not possible to connect the
layers as shown in Figure 9.8(c) without introducing symmetry-breaking distortions
of the octahedra. The octahedral deformation in the crystal structure reported here is
much less than reported in the previous work by Mahé.118 He pointed out the large
variation in Nb–O bond lengths, but remarked that this variation was not significant
considering the experimental uncertainty in the oxygen positions. The uncertainty
in oxygen positions in Mahé’s work was on the order of 0.1Å, while in the present
work it is an order of magnitude less (Table 9.2), as a consequence of the neutron
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(a)

(b) (c)

Figure 9.8 — Layered structure of PN: (a) Single dimer consisting of two edge-sharing
NbO6 octahedra. Experimental Nb–O bond lengths for space group R3 given in Å;
edges coloured as in panels (b) and (c). (b) Single layer showing the hexagonal rings
(yellow) and the two types of triangular rings (red and blue). Black line marks one
hexagonal unit cell. (c) Stacking sequence. The layers are stretched apart in the
hexagonal c direction for clarity. Lead ions (grey spheres) are situated inside channels
formed by openings in the layers.
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scattering cross section of oxygen being comparable to those of lead and niobium,
hence improving the accuracy considerably.

Structures built from BO6 dimer units are well known for niobates and tantalates
of AB2O6 stoichiometry, with A = Ca, Sr,Ba.299 In particular, the hexagonal high-
temperature form of BaTa2O6 bears a resemblance to the layer-like structure of r-PN
described here,300 with a combination of dimers and corner-sharing octahedra. The
hexagonal BaTa2O6 structure is arguably even more complex than r-PN, containing
both three-, five- and six-membered rings. Half of the TaO6 octahedra in hexagonal
BaTa2O6 share only corners with other octahedra, while in the r-PN structure, every
NbO6 octahedron is part of a dimer. The particular crystal structure found in r-PN
is not commonly encountered, and is rather unique. It was not reported to exist for
any other AB2O6 compounds in a recent review series,301–304 although PbRe2O6 has
previously been reported as isotypic with r-PN, with space group R3̄m.296 PbTa2O6 has
also been reported to exist in a non-ferroelectric rhombohedral form,100 analogous
to r-PN, but no detailed structural study of this compound appears to have been
conducted.

Possible ferroic phase transition

The presence of a polar space group symmetry (R3) in r-PN is interesting, since it is a
requirement for pyro- and ferroelectricity. The HTXRD (Figure 9.4) and dilatometry
data [Figure 9.5(b)] show that the polar axis contracts up to the phase transition tem-
perature before it continues to expand, which suggests a polar–nonpolar transition.
This was also suggested in 1985 by Lopatin and co-workers119 based on dilatome-
try studies on a textured sample of r-PN [see Figure 2.14(b)], who hypothesized a
transition from R3m to R3̄m with 815 ◦C as the phase transition temperature. The
thermal expansion, Figure 9.5(b), demonstrates that the same behaviour is also dis-
played by a dense ceramic with no particular texture. From the group-subgroup
relations given in Figure 9.7, there are two possible such transitions: (i) R3 → R3̄
and (ii) R3→ R3̄m. Alternative (i) appears less likely, since the structural distortion
separating these space group symmetries is small, and the transition would not be
expected to appear as clearly in structural and thermal analysis. Alternative (ii) is
not a direct group–subgroup transition, which implies that the transition cannot be
of second order. A distinct thermal event is observed by DTA, 9.5(a), pointing to a
first-order phase transition. A first-order R3→ R3̄m transition is therefore plausible
based on the present data, and the transition temperature is (780 ± 5) ◦C.

Upon cooling through the phase transition temperature, a spontaneous strain
develops in the structure. The strain is confined to lie along the trigonal axis, meaning
that there are only two possible polar domains. The strain is identical for these two
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domains, which implies that the phase transition is co-elastic, but not ferroelastic.52,54

The transition could still be ferroelectric if the spontaneous polarization could be
switched 180° along the trigonal axis, but this does not seem to be the case based on
the absence of any dielectric response at the phase transition temperature (Figure 9.6).
The spontaneous polarization in the R3 structure near the phase transition is also
likely to be low (on the order of 1 µC cm−2 from test calculations) due to the small
distortion from non-polar R3̄ symmetry as discussed above. The claim by Lopatin
and co-workers119 of ferroelectric properties in r-PN is therefore not supported by
the present data. A plausible explanation is that the solid solutions that were studied
in the previous work were in reality not phase pure, but contained certain amounts
of TTB-PN. The TTB phase has a high solid solubility, as discussed in Chapter 2,
and would have been stabilized with respect to the rhombohedral phase by solid
solution. This phenomenon was studied in detail by Sahini and co-workers,7 who
found that TTB-PN can be stabilized by addition of as little as 2 to 5 % of BiTiNbO6,
Na1/2Bi1/2Nb2O6, K1/2Bi1/2Nb2O6 or CaTiO3 (CaTiO3 being especially attractive as it
does not simultaneously decrease TC), eliminating the need to quench the samples
in order to obtain the TTB phase. Lopatin and colleagues used the compositions
PbSb2O6, BiTiSbO6 and PbTiWO6 (the latter not actually a stable phase in pure form)
in concentrations of up to 16 %, 9 % and 40%, respectively. It therefore seems likely
that r-PN is not ferroelectric, and that previous claims of this is due to unintentional
entropy stabilization of the TTB phase rather than ferroelectric properties of r-PN.
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In this study several aspects of the tetragonal tungsten bronzes have been investi-
gated by a combination of first principles density functional theory calculations and
experiments. The major part of the work has focused on the “unfilled” metaniobates
of barium, strontium and lead (SBN and PN). The possibility for cation and vacancy or-
dering in these tungsten bronzes was analysed by first-principles calculations, where
it was found that the three compositions PN, BN and SN behave differently with re-
spect to cation interchange between the A1 and A2 sublattices in the tungsten bronze.
The energetics of the cation configurations was further applied in a thermodynamic
model, originally devised for spinels, which predicted that the cation order in Ba-rich
SBN compositions should depend most strongly on the thermal history. This is due
to the configurational energy landscape being particularly flat for BN, while for SN
and PN, the energy differences are large reducing the temperature dependence of
cation interchange. For none of the three compounds are the energy differences large
enough that long-range cation ordering is expected, but short-range order is likely
and due to the large energy barriers between the different cation configurations the
short-range order will be frozen in during material processing.

SBN and PN are both ferroelectric, but differ in terms of symmetry change and
dielectric behaviour at the phase transition. SBN, represented by the end components
BN and SN, was found to be ferroelectric due to a single polar instability, manifested
as phonons with imaginary frequencies for all cation configurations that were inves-
tigated. This polar instability is robust with respect to cation disorder, and does not
vanish for any cation configuration, although the absolute value varies significantly.
The ferroelectric mechanism is similar to well-known perovskite ferroelectrics such
as BaTiO3, where the polar distortion is stabilized by covalent bonding between an
octahedrally coordinated d0 cation, such as Ti4+ or Nb5+, and the surrounding oxygen
anions. This mechanism, typically described as a second-order Jahn–Teller effect, is
expected to be valid also for other Nb-based TTB ferroelectrics. In the case of PN, the
nature of the ferroelectric distortion is determined by an in-plane distortion from the
aristotype tetragonal structure. This is facilitated by the lone pair cation Pb2+, which
bonds strongly to oxygen, in a manner similar to tetragonal PbTiO3. This creates a
high spontaneous polarization for PN, calculated to be 109 µC cm−2, which is stable
with respect to cation disorder for the cation configurations that were examined. It
was discussed that the high polarization and strain makes domain switching hard
in PN, which explains why optimal piezoelectric properties are achieved for solid
solutions where Pb is partially substituted by Ba.

Several “filled” TTBs were investigated as model compounds. The series K4R2-
Nb10O30 with R = La, . . . ,Gd,Bi was investigated by lattice dynamics calculations,
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and the main conclusion is that all compounds display two types of polar instabilities:
One producing an out-of-plane polarization along the tetragonal axis, similar to
SBN, and one producing an in-plane polarization, similar to PN. The out-of-plane
instability dominates in all cases, except when R = Bi, where the in-plane polarization
is stronger, and leads to a spontaneous polarization of 55 µC cm−2. The polarization
is stabilized by Bi–O covalent bonding in the A1 sites of the TTB structure, similar
to the Pb–O covalency found in PN. Calculations where K+ on the A2 sites was
replaced by the lone-pair cation Tl+ did not lead to additional in-plane distortion,
demonstrating that this “lone-pair effect” is largely confined to the A1 sites in TTBs.
When Bi3+ is combined with a large cation such as K+, the size difference leads to
cation ordering where Bi goes to the A1 sites, and the lone pair effect results in a
ferroelectric distortion even though the concentration of lone pair cations is relatively
low.

The TTB compounds (Sr, Ba)6Nb10O30 with partly reduced Nb were also analysed
by the first-principles lattice dynamics approach. In order to include possible effects
of electron correlation related to the partially occupied conduction band, benchmark
calculations were performed on experimental structures using a hybrid functional,
and used to calibrate less computationally expensive DFT+U calculations. The latter
was used for structural optimization and phonon calculations, which proved that
the end component Ba6Nb10O30 is dynamically stable in the aristotype structure,
whereas Sr6Nb10O30 has instabilities that lead to an orthorhombic ground state, both
in accordance with experimental reports. Contrary to experiments, no evidence for a
metal–insulator transition could be discerned from the calculations performed.

Finally, the rhombohedral polymorph of lead metaniobate (r-PN) was examined
by a combination of diffraction experiments at ambient and elevated temperatures,
thermal characterization and first-principles calculations. The main finding is that
the space group symmetry at ambient temperature is R3, and not R3m as previously
reported. Evidence for a polar–nonpolar phase transition was found from high-
temperature structural and thermal characterization. While this could in principle
allow for ferroelectric properties, the data instead suggests that rhombohedral lead
metaniobate is co-elastic, but not ferroelastic or -electric, and that previous reports
of ferroelectricity in r-PN are most likely due to TTB impurities stabilized by solid
solution.

From a materials point of view, this thesis provides new fundamental understand-
ing of some of the most characteristic ferroelectric tungsten bronzes. Especially
PN and SBN, and the mechanisms that stabilize ferroelectric polarization in these
materials, were investigated in depth. The results, especially regarding the role of the
lone pair cations, should be of general interest in the search for lead-free ferroelectrics.
The cation order–disorder phenomena that are inherent to the TTB structure are also
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a possible route towards new functionality, for example through suitable thermal
treatment. From a computational viewpoint, the computer experiments performed in
this project are original, as, to the best of the author’s knowledge, no first-principles
calculations on ferroelectric tungsten bronzes have been reported previously. The
work has shown that both functional properties, such as ferroelectricity, and ther-
modynamic properties can be studied in depth using reasonable assumptions. In
cases such as the partially reduced TTBs, which are particularly challenging for DFT
calculations, there is still a lot left to be learned about computational methods, and
the current work has demonstrated just one of several possible strategies.

The fundamental understanding of perovskite ferroelectrics has benefited enor-
mously from the emergence of first-principles calculations during the last two to
three decades. With computational power becoming ever more available, it is ex-
pected that also TTBs and other complex crystal structures will be the subject of
more computational investigations in the years to follow.
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ABSTRACT: Lead metaniobate (PbNb2O6) can exist both as a stable
rhombohedral and a metastable orthorhombic tungsten-bronze-type polymorph.
Although the orthorhombic is a well-known ferroelectric material, the
rhombohedral polymorph has been far less studied. The crystal structure and
energetic stability of the stable rhombohedral polymorph of lead metaniobate is
re-examined by powder X-ray diffraction and powder neutron diffraction in
combination with ab initio calculations. We show that this structure is described
by the polar space group R3, in contradiction to the previously reported space
group R3m. The crystal structure is unusual, consisting of edge-sharing dimers of NbO6/2 octahedra forming layers with 6- and 3-
fold rings of octahedra and lead ions in channels formed by these rings. The layers are connected by corner-sharing between
octahedra. Finally, the crystal structure is discussed in relation to other AB2O6 compounds with B = Nb, Ta.

■ INTRODUCTION

Lead metaniobate (PbNb2O6 or PN) is one of the simplest
compounds to crystallize in the tungsten-bronze-type struc-
ture.1 The tungsten-bronze polymorph is orthorhombic
(denoted o-PN) and ferroelectric with a high Curie temper-
ature of 570 °C.2 The paraelectric tungsten-bronze has a
tetragonal crystal structure (t-PN). A large anisotropy in
electromechanical coupling factors and a very low mechanical
quality factor makes the material suitable for high-temperature
electroacoustic applications.3 The t-PN polymorph is, however,
metastable with respect to a rhombohedral polymorph (r-PN)
below a transition temperature reported at 1200−1250 °C,4−6

and this thermodynamically stable low-temperature phase has
not been reported to have attractive properties. The phase
transition between the t-PN and r-PN polymorphs is
reconstructive and sluggish, so the metastable tungsten-bronze
phase can be obtained by quenching the material from above
the r-PN to t-PN transition at 1200−1250 °C.4

Numerous attempts have been done to stabilize the tungsten-
bronze phase, for example, by molten salt methods,7,8

hydrothermal synthesis,9 or formation of solid solutions.10

The rhombohedral polymorph, on the other hand, has received
comparatively little attention, although the possibility of
attractive piezoelectric properties has been suggested also for
this polymorph, with one work reporting a possible ferroelectric
phase transition at 815 °C.11 Still, investigations on the crystal
structure and properties of the r-PN polymorph are few.11−14

Here, we re-examine the crystal structure of r-PN by powder X-
ray- and powder neutron diffraction combined with density
functional theory calculations, with particular focus on
determining the correct space group symmetry. We show
that, contrary to previous assumptions,12,13 R3m is not the
correct space group symmetry for r-PN. On the basis of

experimental and computational data, we demonstrate that the
structure is described by the space group R3 or the closely
related space group R3 ̅. We argue that R3 is the more plausible
of the two because of the reported high-temperature properties
of r-PN, which indicate that the low-temperature space group
symmetry is polar. The fact that the space group is polar
motivates further studies of possible piezoelectric properties.

■ EXPERIMENTAL SECTION
Powders of lead metaniobate were prepared by conventional solid-
state synthesis. PbO (Aldrich, 99.999%) and Nb2O5 (Aldrich, 99.99%)
powders were mixed in equimolar amounts with a mortar and pestle,
uniaxially pressed into 25 mm pellets and fired at 850 °C for 2 h in a
sealed alumina crucible. The pellets were crushed, and pressing and
firing was repeated twice, for a total of three 2 h firings at 850 °C. The
sample was finally crushed to a powder and annealed for 30 min at 550
°C prior to structural analysis in order to remove possible strain from
the crushing.

Powder X-ray diffraction was performed at room temperature with a
Siemens D5005 diffractometer in Bragg−Brentano geometry, with Cu
Kα1 radiation, a primary graphite monochromator, and a Braun
position sensitive detector. Data were collected in a 2θ range of 5°−
110° with a step size of 0.015°.

Powder neutron diffraction data were collected with the PUS
diffractometer at the JEEP II reactor at Institute for Energy
Technology at Kjeller, Norway. Neutrons with a wavelength of
1.5555 Å were provided from a vertically focusing Ge monochromator
using the (511) reflection and a takeoff angle of 90°. Data were
collected at room temperature in a 2θ range of 10°−130° in steps of
0.05° with two detector banks; each contained six horizontally stacked
3He-filled position sensitive detector tubes covering 20° in 2θ.15
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Rietveld refinements were performed with both data sets
simultaneously using the Bruker AXS Topas 4.2 software, with
structural data from Mahe ́13 used as starting point. The data sets were
refined according to the symmetry constraints of five distinct
rhombohedral space groups: R3̅m (166), R3m (160), R32 (155), R3̅
(148), and R3 (146). The rhombohedral setting was used for all the
space groups, and Pb was anchored at (0,0,0) for the Pb1 Wyckoff
position for the polar space groups R3m and R3 (see Table 1). The
background intensity was fitted to a Chebychev polynomial, and peak
shapes were fitted to a Pearson type VII profile for X-ray data and a
Thompson−Cox−Hastings pseudo-Voigt profile for neutron data.
Lattice parameters and atomic positions were refined according to the
atomic degrees of freedom described in Table 1, and isotropic thermal
displacement factors were refined under the constraint that all atoms
of the same element on the same Wyckoff site have the same
displacement factors.

■ COMPUTATIONAL DETAILS
Density functional theory (DFT) calculations were done with the
VASP code.16−19 Calculations of the exchange-correlation energy were
done both within the local density approximation (LDA), and within
the generalized gradient approximation (GGA) with the functionals
PBE20 and PBEsol.21 Projector-augmented wave potentials22,23 were
used, treating 14 valence electrons for Pb (5d106s26p2), 13 for Nb
(4s24p64d35s2), and 6 for O (2s22p4). Well-converged results were
achieved when wave functions were expanded in a plane wave basis set
up to an energy cutoff of 550 eV, and Brillouin zone integration was
performed on a 2 × 2 × 2 Monkhorst−Pack grid.24 For geometry
optimization, lattice vectors and atomic coordinates were relaxed until
the forces on the ions were less than 1 × 10−4 eV Å−1.
The experimental structures, as obtained by refinement of

diffraction data, were relaxed using the three functionals described
above. Three different contraints were applied: (a) ionic relaxation at
the experimental lattice parameters; (b) relaxation of ions and lattice
vectors with the constraint that the unit cell volume be constant and
equal to the experimental volume; (c) full relaxation of both ions and
lattice vectors with no constraints on the unit cell volume (see Figure

2). The total energies were then compared between cells of different
space group symmetries.

Lattice dynamical calculations were performed with the force
constant method,25 using VASP for calculation of Hellmann−
Feynman forces and the Phonopy code for calculation of the
approximate dynamical matrix and the full phonon dispersion. A 2
× 2 × 2 supercell was used, and symmetry-inequivalent atoms
displaced by 0.01 Å in each direction (see Supporting Information for
details).

■ RESULTS

Diffraction Experiments. The five space groups consid-
ered (R3, R3̅, R32, R3m, and R3 ̅m) have the same selection
rules for diffraction, so the distinction between the different
candidate space groups relies only on the intensities of the
Bragg reflections.
X-ray and neutron diffractograms are shown in Figure 1

together with Rietveld refinements within space group R3,
which gave the best fit both for the two data sets separately and
for simultaneous refinement (individual refinements and
relevant parameters are given in Supporting Information).
The goodness of fit for the different space groups is
summarized in Table 2 together with lattice parameters from
the refinements. Space group R3 ̅m yielded the worst fit and
gave rise to a systematic deviation for certain reflections
between experimental data and the fit. Also, the previously
reported12 space group R3m gave systematic deviations for
certain reflections, and a magnification of the representative
(321) reflection is shown in the insets of Figure 1, comparing
the fit for space group R3m and R3. Similar deviations of
comparable magnitude are apparent also in other reflections
throughout the Q range, notably the (14̅3 ̅) and (037 ̅)
reflections at approximately Q = 4.55 Å−1 and Q = 6.52 Å−1,
respectively (see Supporting Information). For space group R3,

Table 1. Wyckoff Sites and Atomic Positions for Each of the Five Space Groups Considered in This Worka

atom R3 R3̅ R32 R3m R3̅m

Pb1 1a 1a 1a 1a 1a
(x,x,x) (0,0,0) (0,0,0) (x,x,x) (0,0,0)

Pb2 1a 2c 2c 1a 2c
(x,x,x) (x,x,x) (x,x,x) (x,x,x) (x,x,x)

Pb3 1a 1a
(x,x,x) (x,x,x)

Nb1 3b 6f 3e 6c 6g
(x,y,z) (x,y,z) (1/2,y,−y) (x,y,z) (x,−x,1/2)

Nb2 3b 3e
(x,y,z) (1/2,y,−y)

O1 3b 6f 3d 6c 6f
(x,y,z) (x,y,z) (0,y,−y) (x,y,z) (x,−x,0)

O2 3b 6f 3d 3b 6h
(x,y,z) (x,y,z) (0,y,−y) (x,x,z) (x,x,z)

O3 3b 6f 6f 3b 6h
(x,y,z) (x,y,z) (x,y,z) (x,x,z) (x,x,z)

O4 3b 6f 3b
(x,y,z) (x,y,z) (x,x,z)

O5 3b 3b
(x,y,z) (x,x,z)

O6 3b
(x,y,z)

atomic DOF 26 13 11 16 7
aThe notation (x, x, x) means x = y = z). The bottom line gives the atomic degrees of freedom (DOF) for each space group (i.e., the total number of
free variables in the atomic coordinates). For the polar groups R3 and R3m, the atomic DOF is 1 less than the number of free variables due to
anchoring of Pb1 at (0,0,0).
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which gave the best fit, both the experimental (joint refinement
of X-ray and neutron diffraction data) and the optimized atomic
coordinates are given in Table 3.
For all space groups, the refined structures show distinct

differences from the previously reported structures, refined in
space group R3m.13,14 The most pronounced difference is that
the NbO6/2 octahedra are far less deformed, with less variation
in the Nb−O bond lengths. This will be further discussed
below.
Computational Results. Additional information on the

relative stability of the different space groups is obtained from

the calculated energies of the candidate structures. The energies
of the possible structures are shown in Figure 2a−c,
corresponding to the three different relaxation constraints
described above. For full relaxation with no volume constraints,
the volume after relaxation is shown in Figure 2d. All energies
are reported per formula unit of PbNb2O6 and given relative to
the structure with the lowest symmetry, R3. The energy of the
R32 structure is omitted from the figures, because this
experimental structure relaxes into the higher-symmetry space
group R3 ̅m. Because of this apparent instability and the
relatively poor goodness of fit for Rietveld refinement within
this space group (Table 2), R32 was not considered further as a
plausible space group symmetry for r-PN at ambient temper-
ature.
For the three space groups R3̅m, R3m, and R3, the calculated

energies correlate with the degree of symmetry, with R3 ̅m
having the highest symmetry and the highest calculated energy,
R3m intermediate, and R3 the lowest. R3 ̅, however, does not
follow this trend: it has essentially the same energy as R3, while
at the same time possessing a higher symmetry and merely half
as many atomic degrees of freedom as R3 (Table 1). This result
is the same for all the relaxation methods used. Lattice
dynamical calculations similarly show negligible difference
between the dynamical stability of the R3 ̅ and R3 structures,
while the R3m and R3̅m structures have instabilities which
correlate with their higher energy (phonon dispersions are
included in Supporting Information).

Figure 1. (a) Powder X-ray and (b) powder neutron diffractograms, showing observed (blue circles) and calculated (red line) intensity for space
group R3, and their difference (black line) as a function of the scattering vector (Q = 2π/d). Black tick marks show the position of individual Bragg
reflections. Close-up image to the right shows a comparison between refinements within space groups R3 and R3m.

Table 2. Lattice Parameters at Room Temperature and
Quality of Fit for Joint Refinement of X-ray and Neutron
Data within Each of the Five Space Groups Considereda

space group

lattice parameters quality of fit

a (Å) α (deg) Rp (%) Rwp (%) χ2

R3 7.17530(7) 93.9548(5) 6.62 9.05 1.89
R3̅ 7.17530(7) 93.9552(5) 6.85 9.29 1.94
R32 7.17508(9) 93.9566(6) 8.21 11.66 2.44
R3m 7.17521(8) 93.9555(6) 7.65 10.69 2.23
R3̅m 7.17516(10) 93.9564(6) 8.51 11.93 2.49
R3m12 7.183 93.94
R3m14 7.1654 93.908

aEstimated standard deviations are in parentheses. Literature values for
R3m (converted from hexagonal setting) are included at the bottom.
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Atomic positions for the R3 structure, both experimental
(joint refinement) and after computational optimization (full
relaxation with the PBEsol functional), are given in in Table 3.

■ DISCUSSION
Determination of Space Group Symmetry. Both

refinement of the diffraction data and comparison of DFT
energies, point to either of R3 ̅ or R3 as the most likely space
group symmetries for r-PN at ambient conditions. This is in
contrast to earlier works,12,13 which conclude that the space
group is R3m. Figure 3 gives the group−subgroup relations
between all five space groups considered in this work. The path
involving space group R32 can be excluded based on the poor

Rietveld fit (Table 2) and the instability with respect to force-
based geometry optimization.
The difference in quality of fit is quite small between R3 and

R3 ̅, as is evident from Table 2. A reasonable way of testing the
significance of this difference is by Hamilton′s R-ratio test,26

which is based on the well-known F-test. In our case, the ratio
of Rwp factors for the R3̅ and R3 refinements is = 1.027. For
the joint refinement, the total number of (hkl) reflections is
730, with 60 parameters refined for R3 and 47 for R3 ̅ (the
difference of 13 corresponding to the difference in atomic
degrees of freedom, as given in Table 1). From Hamilton′s
table,26 we read off 13,670,0.005 = 1.023, meaning that the
probability of R3 actually being a better model than R3 ̅ for this
refinement, is higher than 0.995. The same result is obtained if
the X-ray and neutron diffraction data is refined and tested
individually, so we conclude that R3 is a significantly better
model than R3̅.
In addition to the rhombohedral space group symmetries

shown in Figure 3, one could in principle also consider
refinements within further subgroups of R3 and R3 ̅, that is, the
trigonal groups P3 (143), P31 (144), P32 (145), and P3̅ (147).
P31 and P32, however, can be excluded, as the 3-fold screw axes
are not compatible with the stacking pattern found in this

Table 3. Atomic Positions and Unit Cell Parameters (R3, Rhombohedral Setting) Based on Joint Refinement of Diffraction
Data, and after Geometry Optimization by DFT Calculations (PBEsol, Unconstrained Relaxation)a

atom

experimental optimized

x y z Beq (Å
2) x y z

Pb1 0 0 0 1.48(3) 0 0 0
Pb2 0.3527(4) 0.3527(4) 0.3527(4) 1.48(3) 0.3527 0.3527 0.3527
Pb3 0.6889(5) 0.6889(5) 0.6889(5) 1.48(3) 0.6764 0.6764 0.6764
Nb1 0.5338(11) 0.2006(9) 0.8384(10) 0.06(3) 0.5403 0.1965 0.8405
Nb2 0.1531(10) 0.5117(8) 0.8068(9) 0.06(3) 0.1562 0.5122 0.8123
O1 0.404(2) 0.947(2) 0.678(2) 0.40(3) 0.403 0.959 0.678
O2 0.9617(14) 0.3878(14) 0.668(2) 0.40(3) 0.9501 0.3941 0.675
O3 0.760(2) 0.773(2) 0.065(2) 0.40(3) 0.772 0.772 0.058
O4 0.055(2) 0.053(2) 0.5216(14) 0.40(3) 0.058 0.058 0.5129
O5 0.571(2) 0.580(2) 0.293(2) 0.40(3) 0.581 0.581 0.294
O6 0.292(2) 0.294(2) 0.8515(12) 0.40(3) 0.295 0.295 0.8398
a (Å) 7.17530(7) 7.15572
α (deg) 93.9548(5) 94.0297
Vcell (Å

3) 366.652(11) 363.551
aBeq is the isotropic thermal displacement factors, constrained to be the same for all atoms of the same element. Optimized atomic positions from
DFT calculations are reported with a numerical precision corresponding to the uncertainty in the experimental data.

Figure 2. Calculated energy per formula unit for each of the space
groups considered, after (a) ionic relaxation at experimental lattice
parameters; (b) relaxation of ions and lattice vectors at constant
experimental volume; (c) unconstrained relaxation of ions and lattice
vectors. Energies are given relative to the lowest-energy space group
R3. (d) Unit cell volume after unconstrained relaxation with the three
functionals, including the experimental volume.

Figure 3. Group−subgroup relations between the space group
symmetries considered in this study.
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structure (further described below). P3 and P3 ̅, although
possible from a structural point of view, do not yield a better fit
than R3, despite a higher number of refined parameters for the
trigonal groups. Because of this, we see no reason not to keep
the rhombohedral lattice centering, restricting the possible
space groups to those shown in Figure 3.
A general observation for all energy calculations is that R3 ̅m

has the highest energy, R3m intermediate, and R3 ̅ and R3 are
essentially at the same, lowest energy. This is true for all
methods of geometry optimization, and for all functionals, as
shown in Figures 2a−c. In practice, the experimental R3
structure relaxes toward R3 ̅ symmetry, and the distinction
between them is ultimately a matter of tolerance during the
symmetry analysis.27 For the constrained relaxations (Figure
2a,b), the R3 structure is regarded as having R3̅ symmetry for
tolerances higher than 3 × 10−4 if relaxed with PBE, and 3 ×
10−2 if relaxed with PBEsol. For the unconstrained relaxation
(Figure 2c), the threshold values are 5 × 10−4 for LDA and 1 ×
10−3 for PBEsol. In other words, the structures relaxed using
PBEsol give the largest structural differences between R3 and
R3̅, although the two space groups are hard to distinguish in all
cases.
The graphs in Figure 2 confirm certain well-known

properties of the functionals used.28 LDA has an inherent
tendency to overbind, which is reflected in a relaxed cell volume
which is smaller than the experimental volume by around 5%,
as seen in Figure 2d. The PBE functional, on the other hand,
slightly overcorrects this deviation, producing a unit cell volume
which is around 5% larger than the experimental value. The
PBEsol functional is intended to improve on PBE for
equilibrium properties of solids such as bond lengths and
lattice parameters, and the volume calculated with PBEsol
comes very close to the experimental volume. This difference
between the functionals is also reflected in the energies for the
different space groups. As spontaneous polarization in solids
requires a certain volume for the displacement of ions, the
underbinding PBE functional is expected to favor polar space
groups more than the overbinding LDA. For all calculations,
PBE gives the largest energy difference between the polar R3
and the nonpolar R3 ̅m, and LDA the smallest. The effect of this
is most pronounced for the unconstrained relaxations, as shown
in Figure 2c.
Although the diffraction data is convincing, R3 and R3 ̅ are

still so similar in structure and energy that care must be taken
to properly distinguish between them. The difference between
the space group symmetries R3 and R3 ̅ is the presence of an
inversion center in the latter, making the space group nonpolar.
This is obviously important for applications of the material,
because, for example, pyro- and ferroelectricity requires a polar
space group. Lopatin11 suggested that a rhombohedral R3m
polymorph might transform to the nonpolar space group R3 ̅m
at high temperatures, based on an observed contraction of the
polar axis (hexagonal [001] direction, rhombohedral [111]
direction) upon heating to 815 °C, followed by normal thermal
expansion. Such an anisotropic thermal expansion would be
expected to accompany the transition from a polar to a
nonpolar space group (e.g., from R3m to R3 ̅m or from R3 to
R3̅), whereas a transition between two polar (or two nonpolar)
space groups is likely to be much more subtle. To explain the
anisotropic thermal expansion reported by Lopatin,11 it is
therefore required that the ambient-temperature space group be
polar. This, in addition to the statistical significance of the Rwp

factors from the refinement, makes R3 the most probable space
group symmetry.

Description of the Crystal Structure. The main
characteristic features of the crystal structure of r-PN are
illustrated in Figure 4. Rhombohedral lead metaniobate is not a
“layered” structure in the usual sense, although it is natural to
picture it as being built from layers due to the anisotropy in
crystal structure, polyhedral connectivity, and bonding. The
fundamental building blocks are dimer units, made up of two
edge-sharing NbO6/2 octahedra as shown in Figure 4a. The
dimers are corner-linked, creating layers or sheets, as shown in
Figure 4b. The layers have a point group symmetry which is
nearly hexagonal, although, as will be further discussed below,
the point group symmetry of the crystal is trigonal due to the
stacking sequence and the polyhedral connectivity between
layers.
Three different kinds of rings of corner- and edge-sharing

octahedra can be identified in the layers: one hexagonal and
two triangular rings that are symmetrically inequivalent. In
Figure 4b, the hexagonal ring (yellow) is in the middle,
surrounded by six triangular rings (red and blue). Each of the
triangular rings is pointing either up (red) or down (blue)
within the plane of the figure, thereby distinguishing the two
types. In a single layer of ideal hexagonal symmetry (P6/mmm),
the two triangular rings would be equivalent.
The layers are stacked as shown in Figure 4c, with a

repeating sequence of three layers. The rings in each layer form
channels parallel to the hexagonal c axis. Lead cations are
positioned inside these channels, between the layers. In the
three-dimensional structure, every hexagonal ring has a
triangular ring both above and below. This stacking sequence,
with mixing of hexagonal and triangular rings, lowers the
symmetry of the crystal from the ideal 6-fold, to the 3-fold
symmetry observed. It can be noted that each of the three rings
is associated with one of the three Wyckoff positions for lead in
space group R3 (Table 1).
In addition to the stacking sequence, the polyhedral

connectivity itself introduces tilts and distortions that prevent
the ideal hexagonal symmetry from being realized. Between the
layers, only corner-sharing connects the NbO6/2 octahedra,
whereas both corners and edges are shared within the layers. It
is not possible to connect the layers, as shown in Figure 4c,
without introducing symmetry-breaking distortions of the
octahedra.
The octahedral deformation in the crystal structure reported

here, is much less than reported in the previous work by
Mahe.́13 He pointed out the large variation in Nb−O bond
lengths, but remarked that this variation was not significant
considering the experimental uncertainty in the oxygen
positions. The uncertainty in oxygen positions in Mahe′́s
work13 was on the order of 0.1 Å, while here it is an order of
magnitude less (Table 3), as a consequence of the neutron
scattering cross section of oxygen being comparable to those of
lead and niobium.
Structures built from BO6/2 dimer units are well-known for

niobates and tantalates of AB2O6 stoichiometry, with A = Ca, Sr
or Ba.29 In particular, the hexagonal high-temperature form of
BaTa2O6

30 bears a resemblance to the layer-like structure of r-
PN described here, with a combination of dimers and corner-
sharing octahedra. The hexagonal BaTa2O6 structure is arguably
even more complex than r-PN, containing both three-, five- and
six-membered rings. Half of the TaO6/2 octahedra in hexagonal
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BaTa2O6 share only corners with other octahedra, while in the
r-PN structure, every NbO6/2 octahedron is part of a dimer.
The particular crystal structure found in r-PN is not

commonly encountered and is rather unique. It was not

reported to exist for other compounds in a recent review31 of
AB2O6 compounds, although PbRe2O6 has previously been
reported32 as isotypic with r-PN, with space group R3 ̅m.
PbTa2O6 has also been reported33 to exist in a nonferroelectric
rhombohedral form, analogous to r-PN, but no detailed
structural study of this compund has to our knowledge been
performed.
The presence of a polar space group symmetry in r-PN is

interesting, because it is a requirement for pyro- and
ferroelectricity. It thereby opens up for possible device
applications, such as in piezoelectric sensors.

■ CONCLUSION
The ambient-temperature phase of lead metaniobate has been
investigated by powder X-ray diffraction and powder neutron
diffraction in combination with ab initio DFT calculations. It is
found that the space group symmetry of r-PN is most likely the
polar group R3, in contrast to previous assumptions of R3m
being the correct space group for this structure. Furthermore,
the new data on atomic positions in r-PN shows a structure
with significantly less deformation of the NbO6/2 octahedra
than in previous works. Rhombohedral lead metaniobate has a
highly anisotropic structure and is conveniently described as
being built from layers. Within the layers, NbO6/2 octahedra
share edges to form dimers, which are connected by corner-
sharing, at the same time forming triangular and hexagonal
rings in the layers. The layers are connected by corner-sharing,
with the rings in each layer forming channels that accommodate
the lead cations.
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On the energetics of cation ordering in tungsten-
bronze-type oxides†

Gerhard Henning Olsen, Sverre Magnus Selbach and Tor Grande*

Oxides with the tetragonal tungsten bronze (TTB) structure are well-known ferroelectrics that show a

large flexibility both with respect to chemical composition and cation ordering. Two of the simplest

compounds in this family are lead metaniobate (PbNb2O6 or PN) and strontium barium niobate

(SrxBa1�xNb2O6 or SBN). While PN is a classical ferroelectric, SBN goes from ferroelectric to relaxor-like

with increasing Sr content, with a polar direction different from that in PN. The partially occupied

sublattices in both systems give the possibility for cation order–disorder phenomena, but it is not known

if or how this influences the polarization and ferroelectricity. Here, we use density functional theory (DFT)

calculations to investigate how cation and cation vacancy ordering influences the energetics of these

compounds, by comparing both the energy differences and the barriers for transition between different

cation configurations. We extend the thermodynamic model of O’Neill and Navrotsky, originally developed

for cation interchange in spinels, to describe the order–disorder phenomenology in TTB oxides. The influ-

ence of order–disorder processes on the functional properties of PN and SBN is discussed.

1 Introduction

In the family of ferroelectric oxides based on BO6/2 octahedra,
oxides with the tetragonal tungsten bronze (TTB) structure
form the second largest group after the perovskites.1 The
simplest of these compounds is lead metaniobate, PbNb2O6

or PN, which has a high Curie temperature of 570 1C.2 It is,
however, only stable at temperatures above 1200–1250 1C, and
metastable with respect to a rhombohedral polymorph below this
temperature range.3–5 A lead-free analogue to PN is strontium
barium niobate, SrxBa1�xNb2O6 or SBN, which is apparently stable
in the TTB structure down to ambient temperature, although with
a lower TC of 70–200 1C, depending on composition.6,7

Both PN and SBN have the general formula (A1)2(A2)4-
C4(B1)2(B2)8O30, with five formula units in the unit cell, and
space group symmetry P4/mbm in the aristotype structure. The
A1 and A2 sites form, respectively, pentagonal and square
channels that run parallel to the tetragonal axis, and which
accommodate the Pb2+, Sr2+ and Ba2+ cations. The C sites form
narrow triangular channels, and are usually vacant, as only a few
cations such as Li+ andNb5+ are small enough for these sites.8,9 The
B1 and B2 sites are symmetrically different octahedral positions,
and are fully occupied by Nb5+ in both PN and SBN. With all A-site

cations divalent and Nb in the pentavalent state, as is the case in
PN and SBN, charge neutrality requires that 5 out of 6 A-sites are
occupied.

While PN and SBN are similar in terms of structure, there
are fundamental differences in the behaviour of the two com-
pounds. PN is a classical ferroelectric, while SBN is ferroelectric
for barium-rich compositions, but becomes relaxor-like for
strontium contents higher than approximately x = 0.6.10 The
ferroelectric transitions are also different in terms of symmetry:
while SBN remains tetragonal at all temperatures, with a
spontaneous polarization in the [001] direction below TC,

6 PN
has an in-plane polarization along the [110] direction referred
to the aristotype cell, leading to an orthorhombic distortion in
the ferroelectric state.11 The explanation of this difference, or
indeed the mechanism for ferroelectricity in general, is not
fully understood for these compounds. It has been suggested
that in the ferroelectric state, the main contribution to the
polarization is displacement of Nb5+ along [001] for SBN, and
in-plane displacement of the A-site cations for PN.12 This
difference could be related to the stereochemically active 6s2

lone pair on Pb2+, in analogy with the perovskite titanates of
lead and barium.13 Nevertheless, the picture is less clear for
TTB compounds, due to the significantly more complicated
structure.

In addition to the complexity of the crystal structure itself,
the partial occupancies in the tungsten-bronze oxides give rise
to the possibility of cation order–disorder phenomena. Non-
convergent ordering is well known in spinels with AB2O4

stoichiometry, but has to our knowledge never been addressed
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for materials with the TTB-type crystal structure. In spinels, the
cation exchange between the tetrahedral and octahedral sub-
lattices can be thought of as a chemical reaction,14 and the
cation distribution can thus be modelled as a simple chemical
equilibrium.15–17 The tungsten-bronzes are similar to the spinels
in terms of cation distribution between two non-equivalent
sublattices, so a similar hypothesis should also apply here.
Intuitively, the larger ionic radius of Ba2+ relative to Sr2+ and
Pb2+ implies that the former will preferentially occupy the larger
pentagonal sites, which has also been found experimentally.6,18

However, even this simple effect of atomic size is not obvious:
large cations preferentially occupy the larger octahedral sites in
4–2 spinels, while the opposite is actually true for 2–3 spinels.16

There is therefore no guarantee that a simple argument based on
atomic size also holds for a different crystal structure such as the
TTB-type.

In this study, we examine the differences between the tungsten-
bronze-type oxides PN and SBN by density functional theory (DFT)
calculations. Particular attention is given to the effect of cation
ordering between the A1 and A2 sites, and the effect of this on
energetic stability. This line of thinking has previously been
applied to perovskite relaxors,19,20 but no first-principles study of
cation ordering in TTB materials has to our knowledge been done.
In our work, we seek to study the energetics of order–disorder
effects in the paraelectric state of the materials, where sufficient
cation mobility may occur only during synthesis far above TC. The
influence of cation ordering on polarization and lattice instabilities
due to ferroelectric order is not included in this study, but will be
followed up in future work. For computational treatment of these
effects, we employ a supercell approach whichmakes it possible to
sample several different cation configurations. We analyze the
energy landscape between the configurations, consider the
plausibility of cation ordering in tungsten-bronze-type oxides,
and discuss possible reasons for the relaxor properties of
strontium-rich compounds in the SBN system.

2 Methodology
2.1 Combinatorial aspects

An analysis is made of the different orderings possible in
ANb2O6-type tungsten-bronzes. Starting with a single unit cell
containing 45 atoms (5 formula units of ANb2O6), there are
6 sites among which to distribute 5 cations (or, equivalently
and more convenient, six sites among which to distribute 1
vacancy). The four pentagonal (P) sites are equivalent, as are
also the two square (S) sites (see Fig. 1a), so for a single unit
cell, there are only two unique configurations.

A more realistic approach is to look at the possible config-
urations in a 1 � 1 � 2 supercell, by doubling the unit cell in
the c direction. In such a cell, there are a total of 12 A-sites
(pentagonal and square), as shown in Fig. 1b. Among these
12 sites, there are 10 atoms and 2 vacancies to be distributed.
For the rest of this discussion we focus on distribution of the
vacancies, and count and name the configurations according to
the following scheme:

� The two vacancies can be distributed between square and
pentagonal sites in three ways: both pentagonal (PP), both
square (SS), or one of each (SP).

� If the first vacancy is located on a square site, there are three
possible ways to place the second vacancy on another square site: on
the other square site in the same layer; diagonally in the layer above;
or directly above the first. Hence, there are three SS configurations.

� If the first vacancy is located on a pentagonal site, there are
five possible ways to place the second vacancy on another penta-
gonal site: two in the same layer (next to the first or diagonally
opposite from it); the same two positions in the layer above; or
directly above the first. Hence, there are five PP configurations.

� If the first vacancy is located on a square site and the
second on a pentagonal, they can either be in the same layer, or
in different layers. Hence, there are two SP configurations.

� We use a triplet [hkl] to describe the (approximate) vector
between the two vacancies. For example, two pentagonal vacancies
within the same layer can be designated as PP[100] or PP[110]
configurations, depending on whether the vacancies are ‘‘nearest
neighbours’’ within the unit cell, or diagonally opposite from each
other, respectively.

This scheme leads to a total of 10 unique configurations for
each composition. These are summarized in Table 1, which

Fig. 1 (a) Projection along the c axis of the tetragonal tungsten-bronze
unit cell in the P4/mbm aristotype, with labels for the different cation sites.
The A1 and A2 sites are represented by grey and black spheres, respec-
tively, while the B1 and B2 sites are shown as grey and white octahedra. (b)
Supercell with a doubled c axis, showing only the A1 and A2 sites with the
same colors as in panel (a). Figures created with the aid of VESTA.21

Table 1 The 10 cation configurations possible for the 1 � 1 � 2 supercell
considered in this work, showing the systematic name, local space group
symmetry, and a sketch of the configuration (cations represented by grey
spheres, vacant sites white)
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gives the systematic name for each configuration, and the local
space group symmetry arising from the cation ordering.22 As
the table shows, the five PP configurations lead to local
orthorhombic space group symmetries, the three SS configura-
tions preserve the tetragonal symmetry (with SS[110] even
preserving the aristotype space group P4/mbm), and the two
SP configurations lead to local monoclinic symmetry. The 10
configurations for a 1 � 1 � 2 supercell also include the two
configurations possible for a single unit cell: PP[001] is iden-
tical to a single unit cell with the vacancy on a pentagonal site,
while SS[001] is identical to a single unit cell with the vacancy
on a square site.

In principle it is possible to extend the investigation to even
larger supercells, such as 1 � 1 � 3 or 1 � 1 � 4, but this was
not performed. Possible effects of increasing the supercell size
is included in the discussion.

2.2 Thermodynamic model

To gain insight into the possibility of cation ordering, we
extend the thermodynamic model of O’Neill and Navrotsky16

for the cation distribution in spinels. The fundamental assump-
tion, introduced by Schmalzried14 and elaborated by Navrotsky
and Kleppa,15 is that the interchange of cations between two
distinct sublattices can be viewed as a chemical equilibrium:

[Av](A4)Nb10O30 " [A1+xv1�x](A4�xvx)Nb10O30, (1)

where [A] denotes a cation A on an A1 or square site, (A) denotes
a cation A on an A2 or pentagonal site, and v denotes a cation
vacancy. This also introduces an interchange parameter, x,
which ranges from 0 (all vacancies on square sites, i.e., SS
configurations) to 1 (all vacancies on pentagonal sites, i.e., PP
configurations). It is then assumed that the free energy of the
cation interchange reaction (1) can be expressed as

DGintðxÞ ¼ axþ bx2 þ RT
X

s

bs
X

i

xi;s lnxi;s; (2)

where the last term on the right side is the entropy of mixing for
an ideal solution, with xi,s being the fractional occupancy of
species i on site s, and bs the multiplicity of site s. This is a
purely configurational entropy contribution, i.e. it is assumed
that all other entropy changes following reaction (1) are negli-
gible. The enthalpy consists of two terms, one linear and one
quadratic in the interchange parameter x, as was proposed by
O’Neill and Navrotsky16 as an expansion of the original model
by Navrotsky and Kleppa.15 Effects of volume and non-
configurational entropy are neglected. The energy difference
between different configurations with the same degree of
cation interchange is not taken into account at this stage, so
all SS configurations are for now assumed to be degenerate,
and the same applies for the PP and SP configurations. A
simple differentiation of the entropy part shows that maximal
configurational entropy is obtained for x = 2/3. This is analo-
gous to AB2O4 spinels, which also have a maximal configura-
tional entropy for x = 2/3 when x is the fraction of B cations on
tetrahedral sites (this is referred to as a random spinel).

By writing out (2) for the TTB structure (see ESI† for details),
and differentiating with respect to x, the following expression is
found for equilibrium conditions:

lnK ¼ ln
xð1þ xÞ

ð1� xÞð4� xÞ ¼ �aþ 2bx
RT

; (3)

where K can be recognized as the equilibrium constant for the
simplified cation exchange reaction [v] + (A) " (v) + [A], using
the same notation as in (1). Eqn (3) gives the relation between
temperature and degree of inversion once the enthalpy coeffi-
cients a and b are determined. This can be done experimentally
by determining x from refinement of diffraction data at different
T, although it could be challenging to obtain high-quality data at
temperatures high enough for the cation mobility to be appreci-
able. Here, we will instead estimate the parameters by calculating
the enthalpy term in (2) from first principles for cation config-
urations with different x.

2.3 Computational details

A non-polar SBN unit cell was created by starting from structural
data from literature18 and searching for pseudosymmetry23 in the
non-polar space group P4/mbm (127). The end members of the SBN
system, SrNb2O6 (SN) and BaNb2O6 (BN), were modelled by replac-
ing all Sr and Ba in the unit cell with only one of the two elements,
and setting the lattice parameters a and c to the values extrapolated
from the polynomial expressions given by Podlozhenov et al.18

For PN, lattice parameters from Labbé12 were used, after extract-
ing the pseudosymmetric P4/mbm structure from the experi-
mental space group Amm2 as described above.

Total energies were obtained by density functional theory
(DFT) calculations with the VASP code,24–27 where the exchange–
correlation energy was calculated with the gradient-corrected
PBEsol functional.28 Core electrons were described by the
projector-augmented wave (PAW) method,29,30 with pseudo-
potentials treating 10 valence electrons for Sr (4s24p65s2) and
Ba (5s25p66s2), 14 for Pb (5d106s26p2), 13 for Nb (4s24p64d35s2)
and 6 for O (2s22p4). Valence electrons were described by wave
functions expanded in plane waves up to an energy cutoff of 550,
which gave well converged lattice parameters in test calculations.
Brillouin-zone integration was done on a 2 � 2 � 6 Monkhorst–
Pack mesh31 for the 45-atom TTB unit cell, and reduced to a
2 � 2 � 3 mesh for the 90-atom supercells. Atomic positions and
lattice vectors were relaxed until the forces on the ions were less
than 0.01 eV Å�1.

For estimation of the energy barrier between differently
ordered configurations, we performed climbing-image nudged
elastic band calculations.32,33 For each composition, we con-
sidered two diffusion paths: between the configurations
PP[100] and PP[101]; and between SS[110] and SS[111]. Both
consist of a single cation diffusing from one layer to another
inside the pentagonal and square tunnels, respectively. The
minimum energy paths (MEPs) were found by considering
3 intermediate images between the endpoints, and optimizing
atomic positions until the forces on the ions were less than
0.05 eV Å�1.
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3 Results
3.1 Energy landscape of cation configurations

We have calculated the total energy of BN, SN and PN in all 10
configurations considered above, and the results are shown in
Fig. 2. Both the energy of the initial structures, and the energy
after optimisation of ionic positions and lattice parameters, are
shown. The two configurations that correspond to a single unit
cell, PP[001] and SS[001], are the least energetically favourable
among the initial structures, and for all three compounds, it is
one of these two configurations that has the highest energy
initially. The relative energies of the configurations change,
however, when ionic relaxation is taken into account. Especially
for BN, the initial configurations of highest energy are the ones

that gain most by relaxation, giving an overall energy landscape
which is quite flat. Subsequent relaxation of the unit cell
volume and change of lattice parameters does not contribute
as much, as the main energy gain lies in the relaxation of the
ionic positions.

For SN and PN, the energy landscape is not quite as flat
as for BN, although for both compounds there are several
configurations that are very close in energy. The effect of
volume relaxation is even lower for SN and PN than for BN,
contributing very little to the total energy gain upon optimiza-
tion of the structure. The effect of ionic relaxation is significant,
making the total energy gain larger, at the most around 3.8 eV.
The energy for the fully relaxed structures is summarized in
Fig. 3a, where dashed lines mark the range of energies for each
composition. In general, there is no single configuration, or a
few configurations, that stand out as significantly more plausible
than the others for any of the three compounds.

The change in the unit cell volume following the relaxation
of lattice parameters is shown in Fig. 3b. The volume change is
positive in almost all cases, and as large as up to 2% with
respect to the initial volumes. Some trends are evident: for BN,
the expansion is largest for the PP configurations, where Ba2+

completely occupies the narrow square channels, and smaller
and slightly negative for the SS configurations. This is as
expected, as the large Ba2+ cations preferentially occupy penta-
gonal sites, and will expand the lattice if forced into the smaller
square sites. A closer inspection of the lattice parameters shows

Fig. 2 Relative energy per unit cell (A5B10O30) of the different configura-
tions for (a) BN, (b) SN and (c) PN. The blue bars labeled ‘‘Aristotype’’ show
the energies of the initial structures, with space group symmetry as
described in Table 1. The red and yellow bars show the additional energy
contribution from relaxation of ionic positions and unit cell volume,
respectively. The zero level is set at the highest initial energy for each
composition (configurations PP[001] or SS[001]).

Fig. 3 (a) Relative energy per unit cell (A5B10O30) of the fully relaxed
structures, corresponding to the total energy shown in Fig. 2. The lowest-
energy structure is used as reference state for each compound (SS[001] for
BN, PP[100] for SN and SP[111] for PN). Dashed lines mark the highest-
energy configuration for each composition. (b) Volume change corres-
ponding to the relaxed structures in panel a, showing the difference in unit
cell expansion associated with different cation configurations.
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that the volume change for BN comes from an expansion of the
a and b parameters, and a contraction of c with respect to the
initial values. Also for SN and PN, the a and b parameters
mostly expand (the sole exception being PP[110] for PN, where
they slightly contract), while the c parameter either expands or
contracts.

3.2 Transition barriers between cation configurations

Due to the similarity in energetic stability between the different
configurations, we calculated the energy barriers for transitions
between some of these configurations in order to get an
impression of how the configurations compare also kinetically.
Two cases were considered, namely diffusion of A2+ cations in
the two different types of channels in the structure. To visualize
these cases, the unit cell is shown again in Fig. 4a (left panel)
together with an alternative view emphasizing the pentagonal
and square channels (right panel). Fig. 4b illustrates a perspec-
tive view of the channel shapes, with grey and black arrows
defines the diffusion paths through the square and pentagonal
channels, respectively. Fig. 4c shows the minimum energy path
(MEP) for these two diffusion processes, where the end con-
figurations are the PP[100] and PP[101] configurations for the
pentagonal channel case, and SS[110] and SS[111] for the
square channel case. As expected, the energy maximummidway
along the path is higher for the square channel than for the
pentagonal channel, as the square channels are narrower. In
Fig. 4d, the height of the energy barriers are compared for the
two cases in all three compositions, and the larger size of Ba2+

relative to Sr2+ and Pb2+ is again manifested in the increased
transition barrier. The height of the barriers is significant, and
dominates over the energy differences between the start and
end points, as demonstrated in Fig. 4c.

3.3 Application of the thermodynamic model

As stated above, the thermodynamic model we employ here
does not take into consideration the energetic differences
between configurations with the same value of the cation
interchange parameter x. In an attempt to meet this problem,
we fitted the enthalpic part of eqn (2) to Boltzmann averages of
the energies for each x:

hEiðTÞ ¼
P
n

Ene
�En=kBT

P
n

e�En=kBT
; (4)

where En is the energy of configuration n, and the sums are over
configurations with the same value of x (i.e., the PP, SS and SP
configurations are averaged separately). In this way, at zero
kelvin the energies are identical to the single lowest energy for
each x, while at finite temperatures there is also a contribution
to the energy from population of configurations with higher
energy.

Fitting the energies of the fully relaxed structures to eqn (2)
as described above leads to the plot shown in Fig. 5a. As is
evident from this plot, the energies for each x spread out
significantly, especially for the PP cases (x = 1.0), as was also
seen in Fig. 3a. Fits to eqn (2) for T = 0 K and T = 1800 K are both

displayed in Fig. 5a, in order to get an impression of how much
the higher-energy configurations contribute for each x at finite
temperatures. In general, this contribution is small, and a and
b show very little variation with temperature.

The entropic part of (2) is purely configurational, and is
shown in Fig. 5b. For comparison, the configurational entropy
of a simple spinel is also given, and both are normalized with
respect to the number of sites in the structure. It is noteworthy
that both the spinel and the tungsten-bronze-type structure
possess a maximal configurational entropy for x = 2/3 with the
definitions of x used here, which is therefore predicted to be

Fig. 4 (a) Projection of TTB unit cell along c (left), highlighting the shape
of the channels considered for diffusion (right). (b) Perspective view of
diffusion paths through the square (grey arrow) and pentagonal (black
arrow) channels. (c) Minimum energy paths (MEP) for cation diffusion
through square and pentagonal channels in BN. The square channel
diffusion is represented by the transition SS[110] to SS[111], while the
pentagonal channel is represented by PP[100] to PP[101]. The dashed line
marks the energy of the initial configuration in the diffusion process. (d)
Comparison of the barrier heights for the MEPs for all three compositions.
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the high-temperature limit of x in both structure types. How-
ever, the difference between maximum and minimum config-
urational entropy is almost three times larger for spinel than
for the TTB structure. This is justified by the fact that a normal
spinel (x = 0) can be defined as having zero configurational
entropy, as both sublattices are fully occupied by only one
cation. For the TTB structure, on the other hand, there is
always a mixed occupancy between cations and vacancies on

at least one of the sublattices, and so the configurational
entropy is never zero. This means that there is less driving
force for disordering for the TTB structure than for spinels, and
that enthalpic effects can be expected to dominate the tungsten-
bronze-type oxides also at higher temperatures.

Using a and b obtained above, we calculate the degree of
cation interchange, x in (1), as a function of temperature. The
result is plotted in Fig. 6, which also gives the temperature
dependence of a and b (inset panel). For BN, both a and b are
quite small, which means that entropy is the main factor that
governs the degree of cation inversion. BN therefore has a
prominent temperature dependency, while both PN and SN,
which have much more distinct minima in enthalpy (Fig. 5a),
show only a weak dependency of x on temperature (Fig. 6). As is
also the case for spinels,16 a and b are of similar magnitude, but
with opposite sign (inset of Fig. 6).

4 Discussion
4.1 Possibility of cation ordering in tungsten-bronze-type
oxides

As Fig. 3a demonstrates, the energy differences between different
cation configurations are quite small, with a maximal difference
of 1.32 eV per unit cell (0.263 eV or 25.4 kJ mol�1 per formula
unit) for fully relaxed SN, and less for the other compositions.
This is somewhat unexpected, as Ba2+ is significantly larger than
Sr2+ and Pb2+, so especially the PP configurations, with more
cations in the narrow square channels, would be expected to lie
high in energy for BN. This is the case for the initial structures

Fig. 5 (a) Calculated total energies (points) plotted against the inter-
change parameter x as defined in reaction (1). x = 0 corresponds to the
three SS configurations, x = 0.5 to the two SP, and x = 1 to the five PP
configurations. The energy is given per unit cell, corresponding to reaction
(1), with the lowest energy configuration at x = 0 used as reference. Lines
show fits to the enthalpic part of eqn (2), where dashed lines represent
zero temperature (only the lowest energy for each x is used) and dashed
lines represent T = 1800 K through a Boltzmann average of the energies
for each x. (b) Configurational entropy as a function of the degree of
inversion for the TTB structure considered in this work, compared to the
configurational entropy of a simple spinel. Values are normalized per site
(three for spinel and six for TTB), to make it possible to compare the
entropy between two structures with different stoichiometry. In both
structures, maximal configurational entropy occurs at x = 2/3.

Fig. 6 Degree of cation interchange as a function of temperature for BN,
SN and PN, calculated from eqn (3). The high-temperature limit x = 2/3,
corresponding to maximal configurational entropy, is marked with a
dotted black line. Inset plot shows the temperature dependency of the
fitting parameters a (solid lines) and b (dashed).
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(blue bars in Fig. 2a–c), where two of the SS configurations have a
much lower energy than the others, as expected from atomic size
considerations. After relaxation of the structure is taken into
account, the energy landscape is relatively flat, with energy
differences smaller for BN than for both SN and PN. The main
contribution to this energy landscape flattening comes from the
ionic movements (red bars in Fig. 2a�c), and only to a lesser
extent from volume change (yellow bars). Although the energetic
contribution from volume change is larger for BN than for SN
and PN, the volume change itself is not systematically larger for
BN, as seen in Fig. 3b.

The flatness of the energy landscape, particularly for BN, is
striking, see Fig. 2. This difference in behaviour of BN relative
to SN and PN can be rationalized from the relative size of the
cations and the coordination environment inside the channels.
The square channels are formally 12-coordinated and similar to
the A-sites in ABO3 perovskites. The pentagonal channels are
formally 15-coordinated, although in practice both the square
and pentagonal coordination polyhedra are to some degree
distorted and the effective coordination number is therefore
less than the formal value. This distortion of A-site coordina-
tion polyhedra happens to a larger degree for Sr2+ and less for
Ba2+, since Sr2+ is significantly smaller than Ba2+ (ionic radii of
1.58 Å and 1.74 Å, respectively, when extrapolating Shannon
values34 to CN = 15). Sr2+ therefore has higher ability to shift
towards an off-centered position in the channel, thus obtaining
a smaller effective coordination number than Ba2+. This
enhanced ability to off-center and distort the structure enables
the SN configurations to relax further towards their local energy
minima than BN, where full relaxation is partially restricted by
the large Ba2+ ions. In the case of Pb2+, additional contributions
may result from covalent bonding between Pb and O.

Although the energy differences shown in Fig. 3a are small,
the transition barriers between configurations are large, on the
order of 1.0–2.5 eV. This is far above the thermal energy at
synthesis conditions, which is on the order of 0.1–0.2 eV. We
have only looked at transitions corresponding to diffusion
within the square or pentagonal channels, i.e., transitions that
do not change the value of x. We expect that since the channel
cross-sections are larger than the openings between the channels,
transitions that change x will have even higher barriers than those
investigated at present.

Although our zero-kelvin DFT calculations indicate that the
structure is not able to explore its entire configurational space,
the situation might be very different at higher temperatures.
During cooling from synthesis temperatures of typically 1300–
1400 1C, it is possible that certain configurations are ‘‘frozen
in’’ and persist to lower temperatures, where the different local
space group symmetries (some of which are polar, cf. Table 1)
can aid in the nucleation of the ferroelectric phase. This is
similar to the scheme suggested for the lead-free perovskite
relaxors studied by Gröting et al.,19 where it was concluded that
the small energy differences between different A-site configura-
tions are not sufficient to create long-range order, but that
short-range ordering may still be possible. Locally ordered
regions that freeze in at high temperature in the paraelectric

state, will most likely influence the nature of the ferroelectric
ground state. For example, the relatively flat energy landscape
predicted for BN might allow more of a long-range cooperativity
in the ferroelectric phase, while the larger energetic differences
between configurations of SN could lead to less long-range
ordering in the ferroelectric state. This could in turn be an
explanation for the tendency for SBN materials to become more
relaxor-like for Sr-rich compositions. For PN, although more
similar to SN in terms of energetics and cation radius, we
expect the stereochemically active 6s2 lone pair on Pb2+ to play a
significant role in the ferroelectric transition, and this might
trump the contribution from energetics which would otherwise
have made the material more similar to SN.

The volume change shown in Fig. 3b is, in effect, the DV
associated with reaction (1). Volume change for order–disorder
processes has been addressed previously in the case of spinels.35

In general, the order–disorder volume DV = Vdisorder � Vorder for
spinels can be positive or negative, but more often positive, and
largest (up to 5%) when the disordering process involves
changes in coordination numbers of the cations. Largely normal
spinels such as MgAl2O4 tend to become more inverse with
increasing pressure, and it has been observed that this com-
pound disorders more with temperature under high-pressure
conditions.35,36 However, at ambient temperature, high pressure
alone has only a negligible effect on the cation distribution,37

which is also one of the assumptions in the thermodynamic
model employed in this work.

4.2 Analogy to spinels and adaptation of O’Neill–Navrotsky
model

As stated in the introduction, it should be possible to exploit
the similarities between TTBs and spinels in the phenomeno-
logical analysis of order–disorder processes. A central question
in this respect concerns the transferability of the O’Neill–
Navrotsky model. First, it is assumed that non-configurational
contributions to the entropy of reaction (1) are negligible. This
works well for the interchange process in spinels, and we have
made the same assumption here. In addition to the configura-
tional entropy, there could in principle be a contribution from
change in vibrational entropy. Since the cation configurations
differ with respect to local space group symmetry (Table 1), the
number of vibrational modes will also be different, with more
modes for configurations of lower symmetry. We do not attempt
here to explicitly include this presumably small entropy con-
tribution in the thermodynamic model.

Accepting the premise of configurational entropy only, the
conceptually most important difference between TTBs and
spinels is revealed by the entropy plot shown in Fig. 5b: since
at least one of the sublattices in TTB has a mixed occupancy for
all x, the configurational entropy is never zero. In other words,
there is no value of x for which the structure must necessarily be
fully ordered. This is in contrast to spinels, where a normal
spinel (x = 0) must be perfectly ordered, while an inverse spinel
(x = 1) can be either ordered or disordered, depending on how
the A and B cations distribute over the octahedral sites (the latter
is not given by the value of x). Even a ‘‘random’’ spinel (x = 2/3)
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can have different degrees of order, even though the configura-
tional entropy is at a maximum for this degree of inversion. For
TTBs, however, any degree of inversion can have varying degrees
of order, so there is no a priori reason for x = 0 to be defined as
the ground state.

In light of the above considerations, it is clear that x in itself
is not a measure of the degree of disorder, but should merely be
though of as a parameter describing the distribution of cations
between two sublattices. Order–disorder can take place on each
of these sublattices. In a spinel, a transition from normal to
(partially or completely) inverse, must necessarily be accompa-
nied by disorder, and so it is expected that the parameter a
always be positive for spinels. This is indeed found to be the
case,16,38 so the negative values obtained for a for the TTB
materials (inset of Fig. 6) may seem counter-intuitive when
compared to a values for spinels. However, once it is realized
that reaction (1) is not in itself a disordering process, a negative
a is not problematic: it merely reflects the fact that a cation
interchange from the SS configurations towards the SP (and
possibly PP) configurations is energetically favoured—to a large
degree for SN; to a somewhat lesser degree for PN; and for BN,
the flat energy landscape is reflected in the very small values
of a and b.

Turning to the plot of x as a function of temperature (Fig. 6),
the different behaviour of BN, SN and PN can be understood
in light of the above considerations. For BN, x increases
with temperature, since the lowest-energy configuration at zero
temperature has x = 0. The contribution from configurational
entropy acts to push the structure towards a higher degree
of cation interchange at higher temperature, similar to the
behaviour of normal spinels. As the energy landscape for BN is
so flat, the effect of entropy is large, and x rapidly approaches
2/3 when the temperature increases. For SN, however, the
energy differences between the configurations are much larger,
with a pronounced enthalpy minimum at around x = 0.9, which
does not change significantly with temperature, as shown in
Fig. 5a. The effect of increased temperature is therefore to push
x towards a slightly lower value, giving the behaviour of
decreasing x shown for SN in Fig. 6. PN is intermediate between
BN and SN in terms of how deep the enthalpy minimum is
(Fig. 5), but as this minimum is located at around x = 0.65, very
close to the high-temperature limit of x = 2/3, the temperature
dependence of x becomes extremely weak for this compound,
resulting in the almost flat curve for PN in Fig. 6.

The use of a thermodynamic model provides a more com-
plete picture of the behaviour of BN, SN and PN at realistic
temperatures, as compared to simply calculating the zero-
kelvin energy of the different configurations. It should be kept
in mind that the transition barriers between configurations are
high. The development of x with temperature (Fig. 6) represents
the true equilibrium state, while in reality the relaxation time
for cation ordering will increase exponentially upon reduction
of temperature, and a certain configuration will eventually
freeze in, as has also been shown for spinels.38 The main
finding is that the preferred value of x differs significantly for
BN and SN, which is likely connected to the gradual change in

dielectric and ferroelectric properties with changing Sr/Ba-ratio
in the SBN system. The strong temperature dependence of x for
Ba suggests that changes in the cation configuration due to
thermal history is most likely to occur at high Ba content.

In this study, we have only sampled three different values of
x, namely 0 (the SS configurations), 0.5 (SP) and 1 (PP), via a
total of 10 configurations. These are all the possibilities acces-
sible using a 1 � 1 � 2 supercell, while a larger supercell would
make it possible to sample more of configurational space
(e.g., a 1 � 1 � 3 supercell would give access to configurations
with x = 0.33 and x = 0.67, as well as more configurations with
x = 0 and x = 1). However, already when using a 1 � 1 � 2
supercell, we see a substantial variation of the energies between
different configurations of the same x value, and a sampling of
more x values would not necessarily improve significantly on
the model. At the same time, an advantage of larger supercells
would be to remove artifacts from the periodic boundary
conditions. The supercells used here contain two octahedral
layers, and therefore have a repeat distance of nearly 8 Å along
the shortest dimension (the c axis). Larger cells would be
advantageous to eliminate all artificial ordering of vacancies,
although it is not known if this contribution is significant. In
any case, larger supercells would lead to many more configura-
tions to investigate, and also make each configuration signifi-
cantly more computationally demanding.

5 Conclusion

The energetics of cation ordering in oxides with tetragonal
tungsten bronze (TTB) oxides was investigated by ab initio DFT
calculations. It was found that different degrees of cation
interchange between the A1 and A2 sublattices are preferred
for the TTB metaniobates of barium, strontium and lead.
Furthermore, a thermodynamic model was developed for the
phenomenology of cation interchange in TTB oxides, based on
the model developed for spinels by O’Neill and Navrotsky. Due
to the relatively small energy differences between several of the
configurations, there is little driving force for long-range cation
ordering. For barium metaniobate, the configurational energy
landscape is very flat, and a certain temperature dependence of
the cation ordering is to be expected. Due to quite high barriers
for transitions between different configurations, we suggest
that certain configurations will be ‘‘frozen in’’ during synthesis,
and that different local configurations, some of which lead to
polar space group symmetries, can act as seeds for nucleation
of the ferroelectric phase below TC.
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Origin of ferroelectric polarization in tetragonal tungsten-bronze-type oxides
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The origin of ferroelectric polarization in tetragonal tungsten-bronze- (TTB-) type oxide strontium barium
niobate (SBN) is investigated using first-principles density functional calculations. We study in particular the
relationship between the polarization and the cation and vacancy ordering on alkali-earth metal lattice sites.
Lattice dynamical calculations for paraelectric structures demonstrate that all cation configurations that can be
accommodated in a 1× 1× 2 supercell result in a single unstable polar phonon, composed primarily of relative
Nb-O displacements along the polar axis, as their dominant instability. The majority of the configurations also
have a second octahedral tilt-mode instability which couples weakly to the polar mode. The existence of the tilt
mode is strongly dependent on the local cation ordering, consistent with the fact that it is not found experimentally.
Our results suggest that ferroelectricity in the SBN system is driven by a conventional second-order Jahn-Teller
mechanism caused by the d0 Nb5+ cations, and demonstrate the strong influence of the size of Sr and Ba on the
lattice distortions associated with polarization and octahedral tilting. Finally, we suggest a mechanism for the
relaxor behavior in Sr-rich SBN based on Sr displacement inside pentagonal channels in the TTB structure.

DOI: 10.1103/PhysRevB.93.180101

Ferroelectric oxides with a tetragonal tungsten-bronze
(TTB) structure have been known since 1953 [1], and their
polar properties are both widely studied and used in applica-
tions. One of the simplest TTB compounds, lead metaniobate
(Pb5Nb10O30 or PN), is commercially available and attractive
for high-temperature piezoelectric sensor applications. In
spite of their popularity, however, a fundamental explanation
of the mechanism leading to spontaneous polarization in
TTBs is still missing. One possible origin is Nb5+, which
is a ferroelectrically active cation in perovskites owing to
a second-order Jahn-Teller mechanism enabled by its d0

electron configuration [2,3]. Fundamental studies on TTBs are
challenging, partly due to multiple competing phases: PN, for
example, is, at ambient temperature, metastable in the TTB
structure with respect to a rhombohedral polymorph [4–6].
Most other tungsten-bronze oxides are solid solutions with
structural and chemical disorder, consistent with many of them
being relaxor ferroelectrics [7–9].
The aristotype unit cell with the general formula

(A1)2(A2)4C4(B1)2(B2)8O30 has six sites available for A-type
cations and ten for B-type cations. The structure is highly
anisotropic, with the A1 and A2 sites forming channels along
the c direction. The A1 sites are formally 12-coordinated
and similar to the A sites in perovskites, while the A2 sites
are pentagonal and formally 15-coordinated. The B1 and B2
sites are octahedrally coordinated, with corner-sharing BO6
octahedra forming the structural framework. Many niobates
and tantalates crystallize as TTBswhereNborTa resides on the
octahedral B sites. The A sites can accommodate a wide range
of cations, from alkali and alkaline-earth metals to p block
cations such as Pb2+ and Bi3+. The triangular, 9-coordinated
C sites can only accommodate small cations such as Li+ and
Nb5+ and are therefore often completely vacant, while the
A sites can be partially or completely filled [10–12]. Due to

*tor.grande@ntnu.no

this flexibility, disorder in TTBs takes place both through site
interchange and partial occupancy.
We choose the simple (SrxBa1−x)5Nb10O30 (SBN) as a

model system for investigating the ferroelectric polarization
in TTBs. The divalent cations Sr2+ and Ba2+ occupy the A1
and A2 sites, with one of the six total A sites unoccupied to
maintain electroneutrality [10]. Only intermediate SBN com-
positions (0.25 < x < 0.75) are accessible by conventional
synthesis methods, while the end members are metastable
with respect to other more stable polymorphs [13,14]. SBN
materials with a TTB structure have attractive electro-optical
properties, such as high second harmonic yield and good
pyroelectric performance [15], and they are also of interest
as lead-free ferroelectrics [16,17]. Ba-rich SBN compositions
are classical ferroelectrics with a sharp dielectric maximum
at TC and Curie-Weiss behavior in the paraelectric state,
while Sr-rich compositions are relaxor ferroelectrics with a
broad dielectric maximum and a strong frequency dispersion
in dielectric permittivity [7]. The transition is gradual, but
relaxor behavior dominates for compositions with x > 0.50
[7,9,15]. The mechanism triggering this crossover is not
known, although a recent study found relaxor behavior in
TTBs to correlate with the existence of incommensurate
superstructures [9]. Here, we present first-principles calcu-
lations of the stability and lattice dynamics of the end-point
compounds of SBN, Ba5Nb10O30 (BN) and Sr5Nb10O30 (SN).
We study ten different cation-vacancy configurations, and
in each case calculate the structural ground state and its
associated spontaneous polarization. Based on the behavior
of the end members, we discuss how the Sr/Ba ratio affects the
properties of SBN, with particular focus on the ferroelectric
mechanism and how it is influenced by different A-site cation
sizes.
Structural data for BN and SN with TTB structure were

taken from our previous work [18] where we calculated
the high-symmetry paraelectric structures for the ten distinct
cation configurations that can be accommodated in a 1× 1× 2

2469-9950/2016/93(18)/180101(5) 180101-1 ©2016 American Physical Society
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PP[100] PP[110] PP[101] PP[111] PP[001]
11Pmc2 Cmmm Pmn2 Cmcm Amm2

SS[110] SS[111] SS[001] SP[110] SP[111]
P4/mbm P4/mcn P4/m Pm Pm

A1

A2C

B2

B1

(a)

(b)

FIG. 1. (a) Projection along c of the aristotype tetragonal
tungsten-bronze (TTB) unit cell with space group symmetry
P4/mbm and general formula (A1)2(A2)4C4(B1)2(B2)8O30. (b) The
ten cation configurations possible for a 1× 1× 2 supercell. Each
entry gives the systematic name, local space group symmetry, and
a sketch of the configuration (cations gray, vacancies white). Boxes
separate orthorhombic (PP), tetragonal (SS), and monoclinic (SP)
configurations. Figures created with VESTA [20].

supercell of the aristotype unit cell [Fig. 1(a)]. The con-
figurations are shown in Fig. 1(b), along with their space
group symmetries [19] and a label indicating the location
of the vacancies. The nomenclature describes whether the
two vacancies are located on pentagonal A2 sites (P) or on
square A1 sites (S), as well as the approximate vector between
the vacancies ([100], etc.) [18]. Vacancy ordering lowers
the symmetry from the aristotype space group P4/mbm to
either tetragonal (SS configurations), orthorhombic (PP), or
monoclinic (SP) space group symmetries [Fig. 1(b)].
Starting from these ten paraelectric structures, we calcu-

lated the phonon instabilities and the fully relaxed ground
states using density functional theory as implemented in the
VASP code [21].Weused the gradient-corrected Perdew-Burke-
Ernzerhof exchange-correlation density functional optimized
for solids (PBEsol) [22] and the projector-augmented wave
method [23] with standard VASP potentials and valence
electron configurations 4s24p65s2 for Sr, 5s25p66s2 for Ba,
4s24p64d35s2 for Nb, and 2s22p4 for O. Wave functions
were expanded in plane waves up to an energy cutoff of 550
eV, and reciprocal space integrals were done on a 2× 2× 3
Monkhorst-Pack grid [24] for the 90-atom supercells. All
structures were relaxed until the forces on all ions converged

to below 10−4 eV Å
−1
. Phonon calculations were performed

with the finite displacement method as implemented in the
PHONOPY code [25,26], with displacements of 0.01 Å used for
calculation of the force constants. Spontaneous polarization
in periodic structures was calculated using the Berry phase

0.0 0.1 0.2 0.3 0.4 0.5
Polar mode amplitude (Å)

0.00

0.25

0.50

0.75

1.00

1.25

T
il

tm
od

e
am

pl
it

ud
e

(Å
) (b) BN

0.0 0.1 0.2 0.3 0.4 0.5
Polar mode amplitude (Å)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

T
il

tm
od

e
am

pl
it

ud
e

(Å
)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

E
ne

rg
y

(e
V

)

(c) SN

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

(a)

E
ne

rg
y

(e
V

)

Mode amplitude (Å)

BN
SN

Polar

Tilt

FIG. 2. (a) Potential energy curves for Ba5Nb10O30 (BN) and
Sr5Nb10O30 (SN) in the SS[001] configuration, showing energy low-
ering from freezing in polar and tilt-mode instabilities independently
from the paraelectric structure. Points show calculated energies, and
lines are polynomial fits to �E = αQ2 + βQ4 whereQ is the mode
amplitude (Q = 1 Å means that Q2 = ∑

i u
2
i = 1 Å where ui is the

distortion of atom i and the sum is over all atoms in a unit cell).
Insets show the structural distortions associated with the phonons.
(b) and (c) Contour plots for BN and SN, respectively, showing
the weak coupling between the polarization and tilt modes (SS[001]
configuration).

method [27–29], and Born effective charges (BECs) were
obtained using the linear response routines in VASP.
Phonon calculations for the paraelectric structures reveal

imaginary frequency phonons, corresponding to structural
instabilities, for all ten configurations of both BN and SN.
The phonon with the highest imaginary frequency is in all
cases a polar mode with �− symmetry, corresponding to the
displacement pattern illustrated in the left inset of Fig. 2(a).
The mode consists primarily of a cooperative displacement
along the tetragonal c direction of all Nb ions relative to the
surrounding oxygens in the NbO6 octahedra. This is a polar
mode, similar to the soft mode responsible for the ferroelectric
transition in perovskite ferroelectrics [30], and produces a
polarization along c. Consistent with the imaginary frequency
of the mode, we find that displacing the atoms according to the
eigenvector of the polar mode (we refer to this as “freezing in”
the mode in what follows) lowers the energy in all cases. The
energy lowering as a function of mode amplitude [31] is shown
in Fig. 2(a) for BN and SN in the SS[001] configuration. A
nonpolar mode consisting of octahedral tilting around axes in
the xy plane [Fig. 2(a), right inset] is also present in all cases.
This mode has a smaller imaginary frequency than the polar
mode for both compounds in all configurations. The energy
lowering associated with the tilt mode is significantly larger
for SN than for BN, as shown in Fig. 2(a). The tilt mode also
lowers the energy more than the polar mode for SN, despite
having a lower imaginary frequency. Simultaneous freezing in

180101-2
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of the polar and tilt modes [Figs. 2(b) and 2(c)] show that the
coupling between the modes is weak for both compounds.
We systematically search for the dynamically stable ground

state of each configuration of both compounds by freezing
in the polar mode, which always has the largest imaginary
frequency of the unstable modes, at a mode amplitude close to
the energetic minimum. We then relax the structures, allowing
the volume and cell parameters to change. After repeating the
phonon calculations for the relaxed polar structures, no further
instabilities are found in nine of the 20 cases. In the remaining
11, a second, nonpolar instability persists, its eigenvector
qualitatively identical to the tilt mode found in the paraelectric
structures. After also freezing in this mode, relaxing the
structures, and repeating phonon calculations, we obtain
the stable ground state structure for both compounds in all
configurations. The relative energies of all the configurations
are shown in Figs. 3(a) and 3(b). The energy landscape is
different for the two compounds: The SS[001] configuration
has the lowest ground state energy for BN, while for SN the
lowest energy is obtained for PP[100]. No single configuration
has a substantially lower energy than the others, especially
for SN, where PP[101] and SS[111] are particularly close in
energy to the lowest-energy configuration. Consistent with the
fixed-volume mapping of unstable modes shown in Fig. 2,
the energy relaxation following the polar distortion is more
pronounced for BN, while the tilt mode has a larger impact
on the ground state energy for SN. For SN there are large
energy differences between the paraelectric structures, but
the substantial contribution from tilt-mode distortions reduces
these differences. The resulting spontaneous polarizations are
shown in Fig. 3(c) and compared to literature data. Several
of the paraelectric reference structures have polar space group
symmetries [Fig. 1(b)], but none allow a polarization along
z. We focus here on the polarization component along the
tetragonal axis, Pz, which results from freezing in the unstable
polar phonon. For the majority of the configurations, BN has a
larger Pz compared to the same configuration for SN. Eleven
of the 20 ground state structures have tilt-mode instabilities,
but the polar nature remains in all cases.
We now turn to understanding the chemical bonding which

stabilizes the polarization. In Figs. 4(a) and 4(b) we show
the charge density for the paraelectric and ground state
structures for BN and SN in the SS[001] configuration. This
configuration is suitable for comparing the effects of polar
and tilt-mode instabilities, in addition to being the true 0-K
ground state for SN. At the chosen isosurface value, we see a
distinct “necking” between Nb and O in the direction of the
polar distortion, pointing to a covalent bonding between the
atoms. As further evidence for the role of Nb-O covalency,
we calculate BECs (Z∗) [32] for all configurations of both
compounds in their paraelectric states (see Supplemental
Material [33]). Consistentwith the charge density visualization
in Figs. 4(a) and 4(b), the BECs for Nb and O along c are large,
exceeding +9 for Nb and −7 for oxygen, in comparison to
their respective formal charges of +5 and −2. The values are
similar to BECs reported for KNbO3 and NaNbO3, following
the trend of Z∗ being proportional to the formal charge of the
B-site cation [32,34]. The variation in BEC between BN and
SN is minor, pointing to a similar degree of Nb-O covalency
in the two compounds, which is also indicated by their similar
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FIG. 3. Energy landscape for (a) Ba5Nb10O30 (BN) and
(b) Sr5Nb10O30 (SN), showing the stepwise energy lowering from
freezing in the unstable phonons in sequence. All configurations
have a polar instability (“Polarization”), while 11 of 20 (marked
with *) have a secondary tilt-mode instability (“Tilt”) after freezing
in the polar mode. Energies are per 45-atom unit cell, with the zero
level set to the highest-energy paraelectric structure (“Paraelectric”).
(c) Spontaneous polarization for BN and SN in their fully relaxed
ground states. Pz is the polarization along the tetragonal c direction.
The shaded region marks values reported by Glass [15].

electronic densities of states [33]. In addition, the BECs for
Ba and Sr are similar and close to the formal charge of +2,
demonstrating that these ions do not significantly change their
covalency in the ferroelectric transition.
Our results point to a conventional ferroelectric mechanism

in which polarization arises from off centering of d0 Nb5+

ions in the NbO6 octahedra, which is in turn stabilized by
the resulting enhanced Nb-O covalency. Partial covalency
is well known as the origin of ferroelectricity in perovskite
oxides [35–37], and is classified as a second-order Jahn-Teller
effect [2]. The charge densities we obtain for BN and SN
[Figs. 4(a) and 4(b)] are visually similar to those found
experimentally for the prototype ferroelectrics BaTiO3 and
PbTiO3 [38], and the large BECs we find are close to previous
calculations for Nb and O in KNbO3 [32]. The interpretation
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FIG. 4. (a) and (b) Charge density plots for Ba5Nb10O30 (BN)
and Sr5Nb10O30 (SN) in paraelectric and ground state structures
(isosurface value 0.15 r Å−3). (c) and (d) Potential energy surfaces
for the A2-site cation in BN and SN in the paraelectric SS[001]
configuration (energy per 45-atom unit cell). The reference position
of the cation is in the middle of each plot, and the inset shows the
location and size of the mapped area (red square).

of large BECs is that additional covalency associated with
the polar distortion occurs through electron transfer from O
2p to the formally empty Nb 4d orbitals, thereby enhancing
the charge transfer compared to simple ionic displacement
with nominal charges. The calculated Pz [Fig. 3(c)] show
that the polarization is robust with respect to cation-vacancy
disorder, and that a significant polarization persists for all ten
configurations for both compounds. This is also evident from
the charge densities [Figs. 4(a) and 4(b)] which demonstrate
that the off centering of Nb5+ is significant even for the
ground state of SN in the SS[001] configuration, where the
tilt-mode amplitude is large. Octahedral tilting in TTBs is
otherwise restricted by the connectivity in the xy plane,
which prevents tilting around the z axis. Tilts around axes
in the xy plane are, however, possible, and often lead to a√
2× √

2× 2 supercell relative to the aristotype [8,39], in
line with a recent group-theoretical analysis [40]. A

√
2×√

2× 2 supercell was also reported for pure SN with a TTB
structure [41], although for intermediate SBN compositions,
doubling of the c parameter has to our knowledge not been
reported.
It is generally accepted that chemical or structural disorder

is necessary for relaxor properties [7], and both are possible

in SBN due to Sr2+, Ba2+, and vacancies occupying the same
sublattices. In disordered perovskite relaxors the two cations
occupying the same sublattice are always aliovalent, examples
being B-site disordered PbMg1/3Nb2/3O3 (PMN) [7,42] and
A-site disordered Bi1/2Na1/2TiO3 (BNT) [17,43]. In PMN and
BNT the cation ratios are fixed by electroneutrality, whereas
in SBN the A-site composition can be varied continuously
and relaxor properties emerge gradually for higher Sr content.
This points to a different relaxor mechanism for SBN than for
the perovskites. We investigate the possible role of the A-site
cations in SBNbydisplacingBa andSr away from their relaxed
positions in the A2 channels and mapping the potential energy
surface (PES) as shown in Figs. 4(c) and 4(d). The PES is flatter
for SN than for BN, which is explained by Sr2+ being smaller
than Ba2+. Due to the restrictions imposed by the octahedral
connectivity, and the fact that not all cation configurations in
SBN produce tilted ground states, the TTB structure cannot
compensate for this by octahedral tilting. Based on this, we
suggest that Sr2+ is able to displace inside the A2 channels
under application of an electric field, thereby producing an
additional dielectric response which creates a diffuse phase
transition for Sr-rich SBN. Sr preferentially occupies the A1
sites in SBN [18,44], but for x > 0.40, Sr must also occupy
A2 sites. For x > 0.50, the amount of Sr on A2 is high
enough for this displacement effect to be appreciable, and
we propose that this induces relaxor behavior. The mechanism
is different from perovskite relaxors in which cation ordering
determines the type of dielectric response [45]. The properties
demonstrated here should apply also to other TTB oxides with
[001] polarization.
In conclusion, we have shown that the ferroelectric polar-

ization in BN and SN with TTB structure originates from a
single polar instability. Charge densities and Born effective
charges point to a conventional ferroelectric mechanism in the
form of a second-order Jahn-Teller effect acting on the d0

Nb5+ cations. A second unstable mode leads to tilting of the
NbO6 octahedra in the xy plane. The ferroelectric polarization
is robust with respect to cation-vacancy disorder, even when
the ground state involves significant octahedral tilting. We
suggest that this ferroelectric mechanism is present for all
compositions of SBN, and that relaxor behavior emerges as an
additional contribution for high Sr content due to the smaller
Sr2+ displacing inside the pentagonal channels.
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BStructural data from literature

Tables B.1 and B.2 give the reported structural data (lattice parameters and atomic
positions) used as starting point for the Rietveld refinements in Chapters 9 and 6,
respectively. Nomenclature: WP, Wyckoff position; Occ., occupancy; Biso, isotropic
thermal displacement factors.

Table B.1 — Atomic positions for r-PN reported by Mahé118 (space group R3m, trans-
formed from hexagonal to rhombohedral setting). Lattice parameters: a = 7.183Å,
α = 93.94° (uncertainty in lattice parameters and atomic positions corresponds to the
number of significant digits). The structure is visualized in Figure 9.1.

Atom WP x y z Occ. Biso

Pb1 1a 0 0 0 1 0.47
Pb2 0.357 0.357 0.357 1 0.47
Pb3 0.668 0.668 0.668 1 0.47
Nb 6c 0.507 0.164 0.815 1 0.7
O1 6c 0.387 0.959 0.702 1 2
O2 3b 0.737 0.021 0.737 1 3
O3 0.034 0.531 0.034 1 3
O4 0.618 0.343 0.618 1 3
O5 0.243 0.901 0.243 1 3
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Table B.2 — Atomic positions for TTB-PN reported by Labbé115 (space group
Amm2, transformed from the original Cm2m setting). Lattice parameters: a =
(3.870 ± 0.005) Å, b = (17.65 ± 0.02) Å, c = (17.92 ± 0.02) Å. The structure is vi-
sualized in Figure 2.12(b).

Atom WP x y z Occ. Biso

Pb1 4e 1/2 0.3278(7) 0.0282(11) 1 4.0(2)
Pb2 1/2 0.006(3) 0.1970(13) 1/2 2.7(5)
Pb3 1/2 0.4832(10) 0.3452(13) 1/2 2.7(5)
Pb4 1/2 0.2549(11) 0.2504(14) 1/2 1.5(3)
Nb1 2a 0 0 0 1 0.9(3)
Nb2 0 0 0.500(2) 1 1.4(4)
Nb3 4d 0 0.1807(10) 0.1095(13) 1 1.2(4)
Nb4 0 0.3180(10) 0.3935(13) 1 1.1(4)
Nb5 0 0.3942(13) 0.1802(14) 1 2.2(5)
Nb6 0 0.1100(10) 0.3198(13) 1 0.8(3)
O1 2b 1/2 0 0 1 3
O2 1/2 0 1/2 1 3
O3 4e 1/2 0.151(9) 0.110(9) 1 3
O4 1/2 0.299(8) 0.395(9) 1 3
O5 1/2 0.402(8) 0.182(8) 1 3
O6 1/2 0.119(8) 0.297(8) 1 3
O7 4d 0 0.083(9) 0.092(9) 1 3
O8 0 0.139(9) 0.213(8) 1 3
O9 0 0.221(7) 0.001(9) 1 3
O10 0 0.279(9) 0.135(9) 1 3
O11 0 0.417(9) 0.073(8) 1 3
O12 0 0.081(9) 0.427(8) 1 3
O13 0 0.209(8) 0.334(8) 1 3
O14 0 0.331(8) 0.281(8) 1 3
O15 0 0.433(8) 0.390(9) 1 3
O16 2a 0 0 0.735(12) 1 3
O17 0 0 0.252(12) 1 3
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