Finite Element Modelling of Weldments

Gaute Thorson Kolstad

Master of Science in Product Design and Manufacturing
Submission date: June 2012
Supervisor: Christian Thaulow, IPM

MASTER THESIS SPRING 2012 FOR STUD.TECHN. GAUTE THORSON KOLSTAD

FINIT ELEMENT MODELING OF WELDMENTS

Finit element modellering av sveiste forbindelser

A demanding challenge for steel structures in arctic regions is the risk of brittle fracture. Qualifying materials for this conditions is a complex process that demands testing of both the base material and the weldments. The most common way to test materials against brittle fracture is by crack tip opening displacement (CTOD) testing. This test procedure works fine for the base material and the melted material in the weld, but for the heat affected zone around the weld, the results show large scatter. It has therefore been proposed that testing of the heat affected zone could be done by testing of weld simulated specimens. This will remove most of the scatter, and the number of expensive test specimen is thus reduced.

This testing procedure needs to be studied and qualified, before commercial use can take place. This shall be done by comparing weld simulated specimens, with welds by doing simulations with the finite element method (FEM). The results can give a qualitative indication of how conservative a weld simulated specimen is, compared with a real weld.

Comparison of the results shall be done with the Weibull stress as a fracture criterion. This criterion takes both statistical effects and the stress level into account.

Several variables can be studied, to get an overview of the distinctions between a weld simulated specimen and a real weld.

The thesis work will be divided into three parts:

Part 1: Development of a model to transfer CTOD values measured from weld thermal simulated specimens to real welds using FE MBL modeling and the Weibull stress. The model should include the following parameters: Yield strength mismatch of HAZ, yield strength mismatch of the weld metal, and width of the HAZ. It is foreseen that a base material with yield stress 450 MPa being used. Two versions of the base material should be used, one with continuous hardening and one with Lüders strain (3\% lenght). Mismatch levels of the HAZ and weld metal should range from -10 to $+30 \%$. Widths of the HAZ should be in the
range 0.2 to 0.5 mm . Two defect positions should be considered: At the fusion line and in the middle of the HAZ. The model should also consider the effect of geometry constraint.

Part 2: A sensitivity study on selected cases should be carried out. The sensitivity study should address the effects of varying defect positions and hardening mismatch.

Part 3: Weld thermal simulated specimens will have to be smaller than typical plate thicknesses. In order to assess the importance absolute size of the specimens FE modeling of SENB05 specimens with different dimensions should be carried out. The Weibull stress should be used to establish a relation for how to modify the CTOD values obtained for smaller specimens to larger plate thicknesses. It is proposed that the study should consider dimensions in the range $10-100 \mathrm{~mm}$.

The thesis should include the signed problem text, and be written as a research report with summary both in English and Norwegian, conclusion, literature references, table of contents, etc. During preparation of the text, the candidate should make efforts to create a well arranged and well written report. To ease the evaluation of the thesis, it is important to cross-reference text, tables and figures. For evaluation of the work a thorough discussion of results is appreciated.

Three weeks after start of the thesis work, an A3 sheet illustrating the work is to be handed in. A template for this presentation is available on the IPM's web site under the menu "Undervisning". This sheet should be updated when the Master's thesis is submitted.

The thesis shall be submitted electronically via DAIM, NTNU's system for Digital Archiving and Submission of Master's thesis.

Contact person

Erring Østby, SINTEF

Christian Thaulow
Professor/Supervisor

NTNU
Norges teknisk
naturvitenskapelige universities

1. tut for produktutvikling
vg materialer

Preface

This master study has been done at the department of engineering design and materials at the Norwegian University of Science and Technology (NTNU). This thesis complete the course TMM4911 - Materials, Master Thesis. Responsible supervisor at NTNU has been Professor Christian Thaulow. Co-supervisors have been from SINTEF Senior Researcher Erling Østby and Professor Odd Magne Akselsen and from Statoil Professor Mons Hauge. The work has been done in cooperation with SINTEF and the Arctic Materials project.

The thesis was performed in the period from January to June 2012. Parts of this thesis is based on a pre study in the course TMM4511 - Materials, Specialization Project and a summer job at SINTEF in 2011.

I would like to use this opportunity to thank my supervisors, Professor Christian Thaulow, Senior Researcher Erling Østby, Professor Mons Hauge and Professor Odd Magne Akselsen for support, contributions and discussions. Eventually I would like to thank Hedvig Andersen, Inga Ringdalen Vatne and Christer Honoré Ersland for help regarding practical problems and proof reading.

Gaute Thorson Kolstad

Abstract

of finite element simulations. are: - Position of the crack relative to the HAZ. - Size of the HAZ. - Geometry constraint. - Mismatch in WM. - Mismatch in HAZ. - Hardening. - The Weibull exponent m.

Brittle fracture is a large problem for steel structures in the arctic region. It is thus important to qualify materials and welds so they do not behave in a brittle manner. Since fracture testing of the heat affected zone (HAZ) around a weld gives a lot of scatter, doing weld simulated testing is proposed as an alternative method. In this thesis cracks in weld simulated HAZ specimens are compared to cracks in real welds, by use

A weld simulated specimen is usually more brittle than a real weld. The goal of this thesis is thus to find a general rule for how much more brittle a weld simulated test specimen is, compared to a real weld on a structure. It would then be possible to establish how brittle a real weld is based on the result from the weld simulated testing.

As a fracture criterion the Weibull stress is used, which is a statistical criterion. Crack tip opening displacement (CTOD) is used as a measure on how brittle a specimen is.

To compare weld simulated specimens with real welds, two 2D modified boundary layer (MBL) models are used. One homogeneous model to represent weld simulated specimens, and one with three different materials to represent a real weld. The three materials in the weld model are base material, welded material and heat affected zone. On the two models a large parameter study is performed. The variables investigated

There have also been made 3D models to investigate the size effect on the weld simulated specimen. This is because a weld simulated specimen is limited to a cross-section of $10 \times 10 \mathrm{~mm}$.

The parameter study concludes that it is mainly the size of the HAZ, the yield stress mismatch and the geometry constraint, that make weld simulated specimens more brittle than welds. The 3D simulations are however concluding that the geometry constraint effect can not be included, due to the size of the small test specimen.

Based on these results a general relationship is proposed between the critical CTOD for a weld simulated specimen $\left(\delta_{w s}\right)$, and the critical CTOD for a real weld $\left(\delta_{w}\right)$:

$$
\begin{array}{ll}
\delta_{w}=\delta_{w s} & \delta_{w s} \in[0,0.05\rangle \\
\delta_{w}=20 \delta_{w s}^{2} & \delta_{w s} \in[0.05,0.1\rangle
\end{array}
$$

There are three requirements for this relationship to be valid:

- At least 10% overmatch in HAZ compared to base material.
- No more than 10% undermatch in HAZ compared to welded material.
- Maximal brittle HAZ thickness of 0.5 mm .

Sammendrag

Sprøbrudd er et stort problem for stålkonstruksjoner i arktiske strøk. Det er derfor viktig å kvalifisere materialer og sveiser så de ikke oppfører seg sprøtt. Sprøbruddtesting av det varmepåvirkede området rundt en sveis, gir ved bruk av ekte sveiser stor spredning i resultatene. Et forslag til en alternativ metode, er å gjøre sprøbruddtester på sveisesimulerte prøver. I denne masteroppgaven blir sprekker i sveisesimulerte prøver sammenlignet med sprekker i sveiste prøver med elementmetoden.

En sveisesimulert bruddprøve er vanligvis sprøere enn en ekte sveis vil være. Målet i denne masteren er derfor å finne en generell regel for hvor mye sprøere en sveisesimulert prøve er, sammenlignet med en ekte sveis på en konstruksjon. Med en slik regel vill det bli mulig å finne ut hvor sprø en ekte sveis er, på bakgrunn av sveisesimulerte prøver.

Som sprøbruddparameter brukes Weibullspenningen, som er et statistisk sprøbruddkriterium. CTOD brukes til å si noe om hvor sprø en prøve er.

For å sammenligne sveisesimulerte prøver med ekte sveiser, er det brukt to 2D MBL modeller. Den ene er homogen og skal etterligne en sveisesimulert prøve, mens den andre inneholder tre materialer og etterligner en ekte sveis. De tre materialene er grunnmateriale, sveist metall og varmepåvirket område. På disse to modellene er det gjort et stort parameterstudie. Variablene som er studert er:

- Posisjon på sprekken i forhold til varmepåvirket sone.
- Størrelse på varmepåvirket sone.
- Geometri constraint.
- Flytespenning mismatch i sveist metall.
- Flytespenning mismatch i varmepåvirket sone.
- Fastning.
- Weibulleksponenten m.

Det har også vært laget 3D modeller for å undersøke om det er noen størrelseseffekt fra den sveisesimulerte prøven. Dette gjøres siden den sveisesimulerte prøven kun kan ha et tverrsnitt på 10 x 10 mm .

Parameterstudiet konkluderer at det er i hovedsak størrelsen på den varmepåvirkede sonen, flytespenning-mismatchen og geometriconstrainten som gjør sveisesimulerte prøver sprøere. 3D analysene viser på den annen side at geometrieffekten forsvinner på grunn av størrelsen på den sveisesimulerte prøven.

På bakgrunn av disse resultatene er det lagt fram et forslag til en sammenheng mellom kritisk CTOD for en sveisesimulert prøve ($\delta_{w s}$) og kritisk CTOD for en ekte sveis $\left(\delta_{w}\right):$

$$
\begin{aligned}
& \delta_{w}=\delta_{w s} \\
& \delta_{w}=20 \delta_{w s}^{2}
\end{aligned}
$$

$$
\delta_{w s} \in[0,0.05\rangle
$$

$$
\delta_{w s} \in[0.05,0.1\rangle
$$

Det er tre krav som stilles til sveisen for at denne sammenhengen skal være gyldig:

- Minst 10% overmatch i varmepåvirket sone sammenlignet med grunnmateriale.
- Maksimalt 10% undermatch i varmepåvirket sone sammenlignet med sveistmetall.
- Maksimal utstrekning på sprø varmepåvirket sone på 0.5 mm .

Contents

Preface iii
Abstract v
Sammendrag vii
Nomenclature xii
1 Introduction 1
2 Background 3
2.1 Arctic Materials 3
2.2 Steel weldments 3
2.2.1 CTOD testing of welds 4
2.2.2 CTOD testing of weld simulated specimens 4
2.3 Previous work 5
2.3.1 Experimental testing 5
2.3.2 Pre study 6
2.3.3 Ranestad 7
3 Fracture mechanics 9
3.1 Linear elastic fracture mechanics 9
3.2 Elastic plastic fracture mechanics 10
3.2.1 CTOD 10
3.3 Geometry constraint 10
3.4 Local failure criterion 11
3.4.1 Derivation of the Weibull stress 11
3.4.2 The m parameter 13
3.4.3 Weibull as a fracture parameter 14
3.5 Thickness requirements for CTOD testing 14
3.6 Out of plane sampling 15
4 Heat affected zone 17
4.1 Mismatch 18
4.1.1 The mismatch effect 18
5 FE modeling of cracks 19
6 Method description and implementation 21
6.1 MBL model 21
6.1.1 Scripting 23
6.1.2 Validity 23
Validity tests 23
Validity area 24
6.1.3 Parameters 25
6.2 3D simulations 26
6.2.1 SENB model 27
6.2.2 SENT model 29
6.2.3 Validity 29
6.3 Materials 31
6.4 Post processing 32
6.4.1 Plots 33
7 Results of parameter study 35
7.1 Real material curves 35
7.2 Placement of the crack 35
7.3 Effect of size 36
$7.4 \quad$ T-stress at MBL model 37
7.5 Mismatch in yield stress 38
7.6 Mismatch in hardening 40
7.7 General hardening 40
7.8 The effect of m 41
8 Discussion 43
8.1 Out of plane sampling 43
8.2 Constraint and specimen size 43
8.2.1 SENB comparison 43
8.2.2 SENT comparison 44
8.3 Mismatch and size effect 46
8.4 Discussion 48
9 Conclusion 51
10 Suggestions for future work 53
11 Bibliography 55
Appendix A Curves 57
Appendix B First Python code 86
Appendix C Second Python code 96
Appendix D Calculate Weibull 103
Appendix E Materials 107

Nomenclature

E	Elasticity modulus [MPa]
ν	Poisson ratio
μ	Shear modulus
$\sigma_{y s}$	Yield stress [MPa]
$\sigma_{x x}$	Normal stress in x-direction [MPa]
σ_{n}	Stress normal to crack plane [MPa]
$\sigma_{0.2}$	Stress at 0.2% plastic strain [MPa]
σ_{1}	Maximal principle stress [MPa]
r	Distance from crack tip [mm]
θ	Angle from crack plane
K	Stress intensity factor [MPa $\sqrt{\mathrm{m}}]$
K_{I}	Stress intensity factor, mode I [$\mathrm{MPa} \sqrt{\mathrm{m}}]$
$K_{I I}$	Stress intensity factor, mode II [$\mathrm{MPa} \sqrt{\mathrm{m}}]$
$K_{I I I}$	Stress intensity factor, mode III [$\mathrm{MPa} \sqrt{\mathrm{m}}]$
$K_{\text {Ic }}$	Critical stress intensity factor [$\mathrm{MPa} \sqrt{\mathrm{m}}]$
T	T-stress [MPa]
δ	Crack tip opening displacement (CTOD) [mm]
δ_{c}	Critical CTOD [mm]
δ_{w}	CTOD for welded specimens [mm]
$\delta_{w s}$	CTOD for welded simulated specimens [mm]
J	The J-contour integral [MPam]
a	Crack depth [mm]
a_{0}	Crack depth [mm]
a_{c}	Critical microcrack size [mm]
b_{0}	Ligament length [mm]
R	Radius of crack tip [mm]
W	Specimen thicness [mm]

$B \quad$ Specimen thicness out of plane [mm]
$L \quad$ Specimen length [mm]
$m \quad$ Scalar dependent on stress state
$\sigma_{W} \quad$ Weibull stress [MPa]
$m \quad$ Weibull modulus
$V \quad$ Volume of plastic zone $\left[\mathrm{mm}^{3}\right]$
$V_{0} \quad$ Characteristic volume $\left[\mathrm{mm}^{3}\right]$
$\gamma \quad$ Effective surface energy [J/ mm^{2}]
$b \quad$ Microcrack density distribution
$\alpha \quad$ Numerical constant related to the choice of V_{0}
$\beta \quad$ Constants assumed independent of V_{0}
$C \quad$ Numerical constant dependent on crack geometry
$\sigma \quad$ Stress normal to microcrack plane [MPa]
$\sigma_{u} \quad$ Weibull parameter
$k \quad$ Weibull parameter
$p \quad$ Probability of fracture in volume V_{0}
$P \quad$ Probability of fracture
$N \quad$ Number of volumes V_{0}
$n \quad$ Number of elements in the plastic zone
$C_{1} \quad$ Constant dependent of m
$C_{2} \quad$ Constant dependent of m
$\Delta t_{8 / 5} \quad$ Time used to cool down from $800^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$ [s]

1 Introduction

Brittle fracture is a large problem for steel structures in the arctic region. Qualifying materials for these conditions is a complex process that requires testing of both base material (BM) and the weldments. Today the most common way to test welded materials against brittle fracture is by crack tip opening displacement (CTOD) testing. Both welded metal (WM) and heat affected zone (HAZ) need to be tested. This is performed on welded test specimens. When doing CTOD tests in the HAZ, a large problem is that there is a lot of scatter. This complicates the testing, and it is thus desirable to find a better test procedure. Testing of homogeneous weld simulated specimens could be a solution to this problem. This will remove most of the scatter, and the number of expensive test specimens is thus reduced. Testing of weld simulated specimens is quite new and needs to be studied and qualified, before commercial use.

This thesis compares weld simulated specimens with welds, by doing simulations with the finite element method (FEM). The results can give an indication of how much more brittle a weld simulated specimen is, compared to a real weld.

Two types of 2D modified boundary layer (MBL) models are made to compare weld simulated specimens with real welds. One homogeneous model to represent a weld simulated specimen, and one model with three materials to simulate a real weld. The three materials in the weld model are BM, HAZ and WM. With these models, a large parameter study is performed in order to explore qualitative effects of different variables. The variables studied are:

- Position of the crack relative to the HAZ.
- Size of the HAZ.
- Geometry constraint.
- Mismatch in WM.
- Mismatch in HAZ.
- Hardening.
- The Weibull exponent m.

3D models of CTOD test specimens are also made, to investigate if there are any size effects, compared to a real structure.

The comparison of different CTODs is performed with Weibull stress as a fracture criterion. This criterion takes both statistical effects and stress level into account.

The goal of the thesis is to make a first proposal for a general relation between the CTOD of weld simulated specimens and the CTOD of a real weld on a structure.

Figure 1.1: The different models, for CTOD comparison.

2 Background

2.1 Arctic Materials

SINTEF is carrying out a large research project called Arctic Materials. Major industry companies like Aker Solutions, Statoil, Total, ENI, DNV, Nippon Steel, JFE, Scana and Bruck are participating. The main goal of the project is to establish criteria and solutions for safe and cost-effective applications of materials for hydrocarbon exploration and production in arctic regions. Sub goals are:

- Extend the application range for structural steels by characterization of brittle fracture resistance in welded steel structures. Including the effects of geometry constraint and local variation of material properties.
- Define criteria for low temperature application for steel and weldments including safety factors (design temperatures down to $-60^{\circ} \mathrm{C}$).
- Develop specifications for qualification testing of materials to be applied down to $-60^{\circ} \mathrm{C}$.
- Define material criteria for safe application under large deformation (strains > $5 \%)$ of pipelines and other structures, including safety factors.
- Develop requirements for polymer coatings to be used down to $-60^{\circ} \mathrm{C}$, and under large temperature variations.
- Develop basis for applications of light weight structures using materials like high strength steel, composites, and hybrid solutions.

The project is divided into four main work packages [1]:

- WP 1 - Steel fabrication and mechanical characterization
- WP 2 - Strength and toughness criteria for safe material utilization
- WP 3 - Polymer coatings
- WP 4 - New concepts and materials solutions

One of the most challenging problems for steel structures in arctic conditions is brittle fracture. With a decrease in temperature, the steel changes from ductile to brittle. It is therefore important to develop and qualify steels that are ductile even at low temperatures. One of the main topics of this research project is thus to develop guidelines, procedures and criteria for qualifying steels to use under arctic conditions.

2.2 Steel weldments

Welds are critical areas of a steel structure, especially concerning brittle fracture. It is thus important to establish efficient and stable test procedures for the welds to qualify a material.

To test a material with respect to brittle fracture, CTOD testing is the most common test procedure. Today most of material testing considering brittle fracture in weldments, are done with CTOD testing of cracks using welded specimens. Another way of testing is to use CTOD testing on a weld simulated specimen. Both these test procedures have their benefits and faults.

In the research project Arctic materials a requirement has been proposed that a structure has to withstand a CTOD of 0.1 mm to avoid brittle fracture [2]. Two demands to this requirement are that the global stress is no more than 80% of the yield stress, and that no crack has a depth larger 5 mm . These requirements are for the global structure, it is thus important to be able to link the CTOD from the test results, to a CTOD for the global structure.

2.2.1 CTOD testing of welds

CTOD testing of real welds is today the most common way of testing a material and its welds for brittle fracture. Both WM and HAZ is then tested. A common test procedure is single edge notched bending (SENB). This test uses three point bending, see figure 2.1. The crack is first machined out, and then made sharp by fatigue. The size of the test can vary, but it is common to have the relationship $a / w=0.5$, where a is crack depth and w the thickness of the specimen.

Figure 2.1: A SENB test specimen.

One of the main problems by this test method is that there is a lot of scatter in the results for the HAZ. This is due to large toughness gradients in an small area, and that the brittle areas may be of limited size. The crack fronts may therefore have large variations in toughness. This causes a lot more scatter in the weld testing, than the real brittle microstructure actually has [3]. It is thus desirable to find better test procedures.

Using this type of high constraint specimen is an efficient but conservative way of testing. This is because a real structure will always have a lower constraint level than a SENB05 (SENB with $a / w=0.5$). To link the critical CTOD measured in the testing to the real structure, there should be a factor taking the constraint effect into account [2].

2.2.2 CTOD testing of weld simulated specimens

Weld simulated specimens are specimens that are given a certain heat cycle in an oven to get the same microstructure as an area in the HAZ. The specimens are thus homogeneous and the crack will hit the same microstructure every time. This reduce the scatter compared with testing of real welds. The specimen can today only have a $10 \times 10 \mathrm{~mm}$ cross section and still be homogeneous, because of the oven. CTOD testing of weld simulated specimens are usually done with SENB05 [4].

Compared to real welds, there are four major factors making the probability of brittle fracture in weld simulated specimens higher:

- The probability of brittle fracture is depending on the size of the brittle area. The brittle area is much larger in a weld simulation specimen than in a real weld and the probability for fracture is thus higher.
- The brittle area where crack propagation often occurs has a high yield stress. In a weld the surrounding materials will lower the effective yield stress because of the mismatch effect. This will reduce the probability for brittle fracture in a weld compared to a weld simulated specimen.
- Since the level of constraint is high in a SENB05 specimen and low in a real structure, brittle fracture should occur at a lower deformation for a weld simulated specimen.
- There are also an effect from the crack sampling out-of-plane when testing several specimens.

These factors should be taken into account when comparing the critical CTOD from the testing, with the requirement for the global structure. This master thesis is looking into these effects, especially the three first.

When testing weld simulated specimens several tests have to be performed to get a statistical foundation. For weld simulated specimens a test series of ten samples is proposed, [2]. When testing welds, this amount need to be larger since the scatter is high.

2.3 Previous work

2.3.1 Experimental testing

In the Arctic Material project material testing have been performed comparing the two mentioned test methods, welds and weld simulated specimens [5]. The testing has been done at different temperature levels, and when comparing the behaviour on the different temperature levels, an interesting trend appears. For low temperatures, when the weld simulated specimen shows very brittle behaviour the welded specimen shows the same brittle behaviour. The two test procedures then have an approximately $1: 1$ relationship, see figure 2 b . For higher temperature the weld simulation specimens show a slightly more ductile behaviour. This leads to a large increase in ductility for the welded specimens, see figure 2a. This indicates that the toughness of the weld increase rapidly if the toughness of the weld simulated specimen exceeds a threshold value [5].

The points in figure 2.2 where the CTOD is very large arise because the crack missed the fusion line (FL) [5]. This shows how large the scatter is for testing of welds.

Figure 2.2: CTOD plotted against cumulative failure probability for experimental results [5].

2.3.2 Pre study

A pre study has been done to this master thesis [6], with a parameter study using the same 2D model as used here. For the pre study real material data was used for simulations. The material was a rolled plate with yield strength of 420 MPa . Coarse grained HAZ was used with two different cooling rates, $\Delta t_{8 / 5}=15 \mathrm{~s}$ and $\Delta t_{8 / 5}=5 \mathrm{~s}$. The material curves are plotted in figure 3a,

When comparing a simulation of a real weld and a simulation of a weld simulated specimen, the weld simulated specimen is much more brittle, see figure 3b. This figure is explained later, see figure 6.13. The HAZ width used on $\Delta t_{8 / 5}=15 \mathrm{~s}$ is 1 mm , and 0.5 mm for $\Delta t_{8 / 5}=5 \mathrm{~s}$. The crack is placed at FL and $T=0$. This result is later compared with the more general parameter study done in this thesis.

3a: True stress plotted against true plastic strain at 3 b : Comparison of simulations of real welds and $-60^{\circ} \mathrm{C}$.
weld simulated specimens. Crack is placed at FL and $T=0$.

Figure 2.3: Some material and simulation data from the pre study [6].
The pre study concludes, as mentioned above [5], that there is a nonlinear rela-
tionship in fracture toughness between welds and weld simulated specimens. It also concludes that this relationship is dependent on several factors. The two factors which contribute the most, are level of mismatch between the HAZ and the other materials, and the size of the HAZ. The position of the crack also has some influence.

An interesting conclusion of the pre study is that the results are quite independent of level of T-stress and the Weibull parameter m. This assertion is discussed in more detail later in this thesis, see chapter 7 .

2.3.3 Ranestad

A great deal of research has been done on the effect of mismatch in welds. The effect of mismatch has been studied with FEM in a PhD thesis by \emptyset. Ranestad [7]. In his thesis he uses a MBL model to simulate a three material system in a weld, as shown in figure 1b. The materials are welded metal, heat affected zone and base metal. For the three materials he assumes that elastic properties and plastic hardening are equal, but with different yield stresses. For the base material the yield stress is set equal to 500 MPa , while the heat affected zone have a yield stress at 600 MPa . The yield stress in the welded metal is then changed to vary the local mismatch. The simulations are run with a yield stress of $700 \mathrm{MPa}, 650 \mathrm{MPa}, 600 \mathrm{MPa}$ and 550 MPa . He also performed a reference simulation where the model is homogeneous with a yield stress of 600 MPa .

From the simulations a normalized plot with the maximal principle stress at the ligament is shown. In figure 2.4 the constraint effect of the local mismatch is illustrated. The reference simulations with no mismatch have the highest level of stress, since there is no soft material to lower the stresses. In the other simulations the stress level in the ligament decreases with decreasing yield stress in the welded metal.

Figure 2.4: The normalized stress against normalized length, over the ligament [7] p.1-7].

3 Fracture mechanics

Fracture is a complex mechanism which scientists have tried to understand for generations. The models that exist are all based on assumptions. In this report, crack tip opening displacement (CTOD, δ) and the Weibull stress (σ_{W}) are the main parameters used. Therefore this theory focuses on these, but there are also other parameters mentioned.

Figure 3.1: The different modes of loading to the left, and the definition of r and θ to the right [8].

It is common to say that a crack have three main types of loading: mode I, II and III. Mode I is loading normal to the crack plane, mode II is shear loading in the crack direction and mode III is shear loading out of plane, see figure 3.1. The stress around a crack tip is often described in terms of r, the distance from the crack tip, and θ, the angle with respect to the crack plane, see right side of figure 3.1.

3.1 Linear elastic fracture mechanics

The stress intensity factor K is a widely used parameter to describe the loading of a crack. This parameter is based on an isotropic linear elastic material, and can be calculated from the global stress field and the crack geometry. K is depending on the loading mode and it is thus usually divided into $K_{I}, K_{I I}$ and $K_{I I I}$, for the three modes of loading. The geometry of the crack is also important for K, for instance type of crack and size. An important characteristic of the stress intensity factor is that it uniquely describes the stress field around the crack tip, with a $1 / \sqrt{r}$ singular field. The equations for the stress field are based on a series expansion where at least the terms of order \sqrt{r} and higher are neglected.

In this project only K_{I} will be used since only mode I will be considered. The displacement field around the crack tip for mode I loading is described by these expressions [9]:

$$
\begin{align*}
& u_{x}=\frac{K_{I}}{2 \mu} \sqrt{\frac{r}{2 \pi}} \cos \left(\frac{\theta}{2}\right)\left[\kappa-1+2 \sin ^{2}\left(\frac{\theta}{2}\right)\right]+T \frac{\left(1-\nu^{2}\right)}{E} r \cos (\theta) \tag{1}\\
& u_{y}=\frac{K_{I}}{2 \mu} \sqrt{\frac{r}{2 \pi}} \sin \left(\frac{\theta}{2}\right)\left[\kappa+1-2 \cos ^{2}\left(\frac{\theta}{2}\right)\right]-T \frac{\nu(1+\nu)}{E} r \sin (\theta) \tag{2}
\end{align*}
$$

where ν is the Poisson rate, μ the shear modulus, T the T-stress which is described in chapter $3.3, \kappa=3-4 \nu$ for plane strain and $\kappa=\frac{3-\nu}{1+\nu}$ for plane stress and E is the elastic
modulus. These equations also consist of a term which depend on $K_{I I}$ and \sqrt{r}, but it is not included here.

The stress intensity factor can also be used as a fracture criterion. Since linear elasticity is assumed, this criterion only holds for very brittle materials where there is little plastic deformation prior to failure. The critical stress intensity $K_{I c}$ then works as a material constant, and failure occur when K_{I} reaches $K_{I c}$.

3.2 Elastic plastic fracture mechanics

To have a fracture criterion that is valid for more plastic deformation, elastic-plastic fracture mechanics has to be used. This introduces two new fracture parameters, CTOD and J. The J contour integral is not used in this report.

3.2.1 CTOD

CTOD is one of the most commonly used fracture parameters. Under loading a sharp crack will experience plastic deformations and blunt, see figure 3.2. The CTOD can then be defined as the distance across the crack where the blunting stops, but this is no clear definition. In FE modeling of cracks, the CTOD is usually defined as the displacement normal to the crack plane for the first two nodes away from the crack tip.

Figure 3.2: CTOD (δ) [8].

It is possible to link K_{I} to CTOD for small plastic zones and linear elastic behavior [9]:

$$
\begin{equation*}
\delta=\frac{K_{I}^{2}}{m \sigma_{y s} E^{\prime}} \tag{3}
\end{equation*}
$$

where $\sigma_{y s}$ is the yield stress and m is a dimensionless constant that is approximately 1 for plane stress and 2 for plane strain. E^{\prime} is equal E for plane stress and equal $\frac{E}{1-\nu^{2}}$ for plane strain.

CTOD can also be used as a fracture criterion where fracture occurs when $\delta=\delta_{c}$. CTOD is then a material constant, but usually depends on both temperature and constraint level.

3.3 Geometry constraint

In equations (11) and (2) there are terms which are scaled by the T-stress (T). T-stress is defined as the global stress in the crack direction ($\sigma_{x x}$). The T-stress comes from the second, constant term in the stress field series expansion.
T-stress is often used as a parameter to describe the level of geometry constraint on the crack. The level of constraint in a model has a large influence on the plastic zone
around the crack tip. This is due to the formation of a more hydrostatic stress field, if the constraint level is high (high T-stress). According to the Mises yield criterion it is only the deviatoric stress level that defines when a material yield [10]. This implies that a highly constrained crack can have very high stresses around the crack tip without a big plastic zone. A crack with low constrain will have more stress relaxation due to plastic deformation. This may have a big influence on the crack behavior and how much global load it can stand.

Typical level of T-stress for a single edge notch bending (SENB) specimen with crack depth thickness ratio $\frac{a}{w}=0.5$ is $T=0$. For a single edge notch tension (SENT) specimen with $\frac{a}{w}=0.5$ the constraint level is typically $T=-0.5 \sigma_{0.2}$. Here $\sigma_{0.2}$ is the stress at 0.2% plastic strain.

3.4 Local failure criterion

The classic fracture criteria using K, J and CTOD have several weaknesses when it comes to predict fracture in real structures. When the geometry becomes complex, the deformation high or the temperature is changing, none of them are valid any more. Another problem is that they can not predict the scatter in fracture testing, especially for brittle fracture. One of the approaches to overcome these problems has been to connect micromechanical fracture criterion, with the global fracture behaviour. These methods use as a basis that fracture occurs from a defect in the material, and the critical step is the propagation from this. The most promising of the local failure criteria is the Local Approach. This was developed by a French research group, Beremin [11]. They had two main assumptions in the method [12]:

- The failure probability inside a small uniformly stressed volume can be expressed by the stress level and the distribution of microcracks in this volume.
- The total failure probability of the whole component follows a weakest link mechanism, and failure in one part of the component results in final failure of the whole component.

The method is based on dividing a volume V into small volumes V_{0}, and calculate the probability of fracture in each of these volumes. Then use them to calculate the fracture probability of the volume V. The volume V is set as the plastic zone because it is shown that there has to be some plastic deformation for fracture to occur in steel [13].

3.4.1 Derivation of the Weibull stress

To get a local fracture criterion for each volume part, a relation between stress and the critical microcrack size is used. Beremin assumed that this could be described by a Griffith relation [12]:

$$
\begin{equation*}
a_{c}=\frac{2 E \gamma}{C \sigma^{2}} \tag{4}
\end{equation*}
$$

where γ is the effective surface energy, a_{c} the critical microcrack size, σ the tension stress normal to the microcrack plane and C a numeric constant dependent on the crack geometry. To get a statistical approach they needed a statistical distribution of
microcracks, which could be changed for different materials. To get this they proposed that the microcrack density distribution $b(a)$ inside a volume V_{0} could be expressed as [12]:

$$
\begin{equation*}
b(a)=\frac{\alpha}{a^{\beta}} \tag{5}
\end{equation*}
$$

where α is a numerical constant related to the choice of V_{0}, and β is a constant assumed independent of V_{0}. The probability to find a microcrack larger than a_{c} is then:

$$
\begin{equation*}
p(a)=\int_{a_{c}}^{\infty} b(a) d a=\int_{a_{c}}^{\infty} \frac{\alpha}{a^{\beta}} d a \tag{6}
\end{equation*}
$$

Introducing $k=\frac{2 E \gamma}{C}$ and inserting equation (4) into (6) the probability of fracture for a given stress can be written as:

$$
\begin{equation*}
p(\sigma)=\int_{0}^{\sigma} \frac{2 \alpha}{k^{\beta-1}} \sigma^{2 \beta-3} d \sigma \tag{7}
\end{equation*}
$$

By introducing $m=2 \beta-2$ the integral becomes:

$$
\begin{equation*}
p(\sigma)=\int_{0}^{\sigma} \frac{2 \alpha}{k^{\frac{m}{2}}} \sigma^{m-1} d \sigma=\frac{2 \alpha}{m k^{\frac{m}{2}}} \sigma^{m} \tag{8}
\end{equation*}
$$

Into this expression a new variable is introduced: $\sigma_{u}=\sqrt{k}\left[\frac{m}{2 \alpha}\right]^{\frac{1}{m}}$ which leads to:

$$
\begin{equation*}
p(\sigma)=\left(\frac{\sigma}{\sigma_{u}}\right)^{m} \tag{9}
\end{equation*}
$$

In this equation σ_{u} and m are assumed material constants that are independent of temperature. They also link the local fracture behavior to the continuum mechanics stress field. Whether σ_{u} really is temperature independent, can be discussed. In equation (5) α is assumed dependent of V_{0}. Then from the definition of σ_{u}, the independent parameter should be $V_{0} \sigma_{u}^{m}$.

To link the local fracture probability (9) to the global fracture probability, a weakest link approach is used. Then the probability of failure in a volume V_{0} is assumed statistically independent, and failure in one volume is critical. The total failure probability is then:

$$
\begin{equation*}
P_{f}=1-\prod_{i=1}^{N}\left(1-p\left(\sigma_{i}\right)\right) \tag{10}
\end{equation*}
$$

Where N is the number of volumes, and $p\left(\sigma_{i}\right)$ is the failure probability in volume i. This can be rewritten if $p\left(\sigma_{i}\right)$ is small for a uniformly stressed volume:

$$
\begin{align*}
\ln \left(1-P_{f}\right) & =\ln \prod_{i=1}^{N}\left(1-p\left(\sigma_{i}\right)\right)=\sum_{i=1}^{N} \ln \left(1-p\left(\sigma_{i}\right)\right) \approx-\sum_{i=1}^{N} p\left(\sigma_{i}\right) \tag{11}\\
\ln \left(1-P_{f}\right) & \approx \sum_{i=1}^{N}\left(\frac{\sigma_{i}}{\sigma_{u}}\right)^{m}=-\frac{V}{V_{0}}\left(\frac{\sigma_{i}}{\sigma_{u}}\right)^{m} \tag{12}\\
P_{f} & \approx 1-\exp \left(-\frac{V}{V_{0}}\left(\frac{\sigma}{\sigma_{u}}\right)^{m}\right) \tag{13}
\end{align*}
$$

This equation is valid only for a uniformly stressed volume. To get a model that can handle inhomogeneous stresses and are suited for finite element calculations, $\sum_{i=1}^{N} p\left(\sigma_{i}\right)$ is replaced with $\sum_{j=1}^{n}\left(\frac{\sigma_{1}^{j}}{\sigma_{u}}\right)^{m} \frac{V_{j}}{V_{0}}$ in equation (11). Where n is the number of volumes V_{j}, or elements in a FEM calculation and σ_{1}^{j} the maximal principle stress of the element j. $\frac{V_{j}}{V_{0}}$ is just a scaling based on the assumption that the probability scales with the volume. This gives:

$$
\begin{equation*}
P_{f}=1-\exp \left(-\sum_{j=1}^{n}\left(\left(\frac{\sigma_{1}^{j}}{\sigma_{u}}\right)^{m} \frac{V_{j}}{V_{0}}\right)\right) \tag{14}
\end{equation*}
$$

Beremin introduced the Weibull stress (σ_{W}) defined as [11]:

$$
\begin{equation*}
\sigma_{W}=\sqrt[m]{\sum_{j=1}^{n}\left(\sigma_{1}^{j}\right)^{m} \frac{V_{j}}{V_{0}}} \tag{15}
\end{equation*}
$$

By inserting this in equation (14) the probability of failure becomes:

$$
\begin{equation*}
P_{f}=1-\exp \left(-\left(\frac{\sigma_{W}}{\sigma_{u}}\right)^{m}\right) \tag{16}
\end{equation*}
$$

3.4.2 The m parameter

m is one of the two constants in the Weibull stress, see equation (15). Later in this thesis this parameter show some interesting effects. It is therefore studied in more detail here. m is meant to be a material constant and is defined by:

$$
\begin{equation*}
m=2 \beta-2 \tag{17}
\end{equation*}
$$

where β is defined in equation (5). Equation (5) represents a Poisson distribution over the microcrack density. β is then a parameter saying something about the width of this distribution. Since the length of the microcrack (a) is raised to the power of β, the distribution gets very sensitive to m.

The width of the Poisson distribution is important for how a material behaves, and which factors that are most critical for fracture to occur. A narrow distribution, high β and m, means a lot of microcracks of a certain size. This implicate that it is the height of the stress peak that decides when fracture occurs, since this stress peak will hit one of the many equally sized microcracks. For a wide distribution, low β and m, there will be microcracks in many sizes, but fewer of each type. This will implicate that it is the size of the plastic zone that is important for when fracture occur. This is because a large plastic zone has an increased probability of hitting a large microcrack. The height of the stress peak is no longer very important since the probability for a large crack in this area is small.

Ideally m should be found without material testing, and established just by metallurgical methods. However what m a material has, is not only dependent on the crack density. For instance how the material arrests cracks is also important. Because of this m has become more of a fitting parameter than the physical parameter it was meant to be. There has thus been developed other solutions for estimating m.

Finding m was first done by testing of notch tensile specimens. The results from these tests were however not correct when a crack was present. Therefore fracture mechanics
testing for estimating m was proposed. For fracture testing with small scale yielding it was shown that σ_{u} and m are non-unique, because of this the test procedure has to be more complex, and involve testing of specimens with different constraint [14]. The testing procedure then becomes an iteration process to get the correct m. For a normal steel m is usually in the range $7-20$.

3.4.3 Weibull as a fracture parameter

The validity of the Weibull stress as a fracture parameter has been discussed a lot after it was introduced by Beremin [11]. The method has several flaws, like the assumption that the parameter m is insensitive to temperature and constraint and that microcrack distribution does not vary under plastic deformation [15]. Because of this there has been published several improvements. The problem with these improvements is that all of them are very complex, and therefore not useful from an engineering point of view.

A lot of testing has been performed of the Weibull stress, with different conclusions. Some find very good relationship between the Weibull stress and the fracture testing [16]. Others find good relationships by introducing some extra equations [15], [17]. Since brittle fracture is such a complex phenomena and dependent on several parameters, there is probably no ideal model applicable to all microstructures. In this thesis the general Weibull stress is used, despite its limitations. It is thus important to know its restrictions.

One approach to compare different geometries and constraints, is to use toughness scaling [18]. By toughness scaling different models are compared with each other, based on a fracture parameter. It is assumed that the probability for fracture is set by this fracture parameter, regardless of geometry and constraint. The load, or deformation level, of different models can then be compared, to see the effect of geometry or constraint, on this fracture parameter, see figure 6.13 .

For the Weibull stress this implies that the two variables V_{0} and σ_{u} can be disregarded when using toughness scaling.

3.5 Thickness requirements for CTOD testing

When preforming fracture mechanics testing there are some requirements for the size of the test specimens. This is to avoid influence of the boundaries and the free surfaces. In BS7448 [19] and ASTM E-1820 [20] there is developed a standard which is based on K from linear elastic fracture mechanics:

$$
\begin{equation*}
B, a_{0}, b_{0} \leq 2.5\left(\frac{K_{Q}}{\sigma_{y s}}\right)^{2} \tag{18}
\end{equation*}
$$

K_{Q} is the largest K used or the critical, B is the out of plane thickness, a_{0} crack depth and b_{0} the length of the ligament $(b=w-a)$. The requirement needs to be valid for B, a_{0} and b_{0}. By inserting the relationship between δ and K from equation (3) the requirement can be rewritten as:

$$
\begin{equation*}
B, a_{0}, b_{0} \leq 2.5 \frac{m E^{\prime} \delta_{Q}}{\sigma_{y s}} \tag{19}
\end{equation*}
$$

m is not the Weibull exponent but a dimensionless constant. This requirement is very stringent and is based on materials which behave in an almost perfectly brittle manner.

Another requirement from ASTM E-1921 [21] is based on J as the fracture parameter, and include thus small scale yielding:

$$
\begin{equation*}
K_{j c} \leq \sqrt{\frac{E b_{0} \sigma_{y s}}{30\left(1-\nu^{2}\right)}} \tag{20}
\end{equation*}
$$

Substitute K with δ from equation (3) leads to:

$$
\begin{equation*}
\delta_{j c} \leq \frac{b_{0}}{30 m} \tag{21}
\end{equation*}
$$

3.6 Out of plane sampling

When using statistical fracture mechanic it is not only the in-plane sampling effect, that needs to be counted for. There is also a sampling effect out-of-plane, longer cracks leads to higher probability for hitting a critical microcrack. This effect is important when comparing different sizes of test specimens or a real crack with a finite length. To be able to compare different crack lengths a reference length needs to be made, the different crack length should be corrected to this reference length [22].

For the Weibull stress the out-of-plane correction can be calculated by replacing V_{j} with $A_{j} L_{j}$ in equation $15, L_{j}$ can then be substituted by \tilde{L} / L_{j} to calculate $\tilde{\sigma_{W}}$, which is σ_{W} for reference length L :

$$
\begin{align*}
\sigma_{W} & =\sqrt[m]{\sum_{j=1}^{n}\left(\sigma_{1}^{j}\right)^{m} \frac{A_{j} L_{j}}{V_{0}}} \tag{22}\\
\sigma_{W} & =L_{j}^{\frac{1}{m}} \sqrt[m]{\sum_{j=1}^{n}\left(\sigma_{1}^{j}\right)^{m} \frac{A_{j}}{V_{0}}} \tag{23}\\
\sigma_{W} & =\left(\frac{\tilde{L}}{L_{j}}\right)^{\frac{1}{m}} \sqrt[m]{\sum_{j=1}^{n}\left(\sigma_{1}^{j}\right)^{m}} \frac{A_{j}}{V_{0}} \tag{24}
\end{align*}
$$

4 Heat affected zone

A weld is made by melting two materials together. Next to the melted metal there is a zone where the temperature has been high enough for the base material to change material properties. This area is called the heat affected zone (HAZ). In steel this area reaches from the fusion line (FL) and down to approximately $600^{\circ} \mathrm{C}$. Throughout this zone the maximal temperature decreases and the material properties are therefore changing continuously. In steels, the HAZ is usually divided into four zones. This is because of the different changes in microstructure steel undergoes during heating. The zones are the tempered zone, the partly recrystallized zone, the recrystallized zone and the grain growth zone, see figure 4.1.

Figure 4.1: Overview of the different zones in a weld, compared with a phase diagram for steel [23].

The tempered zone is where the material has been influenced by the heat, but the material experiences no phase transformation. This zone goes up to the $A 1$ line at approximately $730^{\circ} \mathrm{C}$, where the transition to austenite (γ-iron) starts. This transformation continues up to the $A 3$ line, where all ferrite (α-iron) is transformed to austenite. At what temperature this partly recrystallized zone ends, is depending on the alloying elements, as shown in figure 4.1. The next zone is the recrystallized zone. For low temperatures this zone consists of small austenite grains, but when the maximal temperature increases, the grains start to grow. The grain growth zone is where considerable grain growth has occurred and it is often called the coarse grained heat affected zone
(CGHAZ). This is often one of the most brittle microstructures in a weld, and the one which is simulated in this thesis.

4.1 Mismatch

When there are different material properties in two connected materials, this will cause a stress and strain effect called mismatch. Since there are big differences in material properties for the material zones in a weld, this effect will be important to the stress field.

In a weld two forms of mismatch are defined: global and local. The global mismatch is between WM and BM, and the local mismatch is between the HAZ and either the WM or BM. There is also local mismatch between the different zones in the HAZ but this is not considered in this thesis. Materials can have mismatch in different material properties, but only mismatch in yield stress and hardening is considered here. These are also considered the most important mismatch properties. Young's modulus and Poissons ratio are assumed equal in the different materials.

4.1.1 The mismatch effect

On the interface between two materials certain laws from the continuum mechanics have to be satisfied. One of them is that the strain on the interface plane needs to be continuous over the interface. This law causes a mismatch effect when yielding occurs, if the two materials have different yield stresses. The soft material will yield first and the strain will increase, since plastic flow is incompressible. Since the strain needs to be continuous over the interface, the hard material will stop the strain increase in the soft material. This implies an increase of stresses in the interface plane in the opposite to strain direction for the soft material, and stresses in the strain direction for the hard material. The stress in the opposite direction of the strain from yielding will cause a lower deviatoric stress state in the soft material. A less deviatoric stress state will reduce further yielding since it is assumed that yielding is independent of the hydrostatic stress. In the hard material there will be a higher deviatoric stress state and yielding will occur earlier than if it was alone.

The mismatch effect induces, for the soft material, an increase of the stresses at the interface along with higher mismatch. And for the hard material a decrease of stresses along with higher mismatch.

Hardening mismatch will cause some of the same effect, but then later than at the yielding point.

5 FE modeling of cracks

Modeling of welds using the finite element method (FEM) has been performed for a long time. There are several factors to consider when doing an analysis of this kind.

There are two ways to model a crack tip: either it can start sharp where the crack tip is defined as one node, or it can start as a half circle. The sharp crack is probably most realistic but can cause convergence problems, since all deformation around the crack tip will be taken by one element. A circular crack can take larger deformations, but is not valid until there has been some deformation. A rule of thumb is that the result is not valid until the CTOD (δ) is five times the initial diameter, [9, p.576].

The mesh around the crack tip should be very fine, which implies a large scaling of the mesh. There are two main methods to scale the mesh. The easiest one is to define an element size at the crack tip, and let the finite element program make a scaling of the mesh. The other, and more work demanding way is to define the mesh scaling yourself. This is easy for a circular crack tip and circular model, but can get quite complex. The best way to have a huge scaling is a circular mesh, see figure 3a. It has been discussed a lot whether the irregular mesh that the program generates makes more numerical errors. For few and big elements this might be a non-neglectable argument, but it is probably no problem for the number of elements that are used today. However it is usually favourable to have a regular mesh if you are going to present the model to other people, since a nice mesh appears more valid.

For modelling cracks, it is common to use an MBL approach. This is a method using a displacement controlled boundary. On this boundary there can be displacement fields which are dependent on the load. The distance from the crack tip to the boundary should be so large that the plastic field does not reach the boundary. This is to avoid that the boundary influences the stress field.

If the stress field close to the crack tip is going to be examined, or a large deformation is applied, it is important to do a geometric nonlinear analysis. In this way the stiffness matrices, and therefore the geometry, is updated each time step [24].

For 2D simulations the element type should be plane strain elements, as long as the model is not a thin sheet. For the 3D models, regular 3D elements will make the stress field plane-stress-like at the surface, and plane-strain-like in the middle, as long as the model is of a certain size.

6 Method description and implementation

To investigate the effect HAZ has on the stress field, FEM is used. The FEM program that is used is ABAQUS 6.10 [25].

In this master thesis two types of models have been used, 2D MBL model and 3D models of different test specimens. The MBL model have been used to run a large parameter study to qualitatively investigate the effect of different variables. It was also used quantitatively to make a proposal for a design line to compare weld simulated specimens with real structures. The 3D models were mainly used to validate the MBL model.

6.1 MBL model

A good way to control the loading parameters around a crack in FEM is to use an MBL model. The displacement field around the boundary is controlled by the equations (1) and (2), where K_{I} and T can be controlled, see figure 6.1. The crack emerges from the left and ends in the middle of the model. The model is built by two Python scripts, see Appendix B and Appendix C.

Two types of MBL of MBL models have been used. The weld simulated model is a homogeneous model where all the material is HAZ, see figure 1b, This is often called reference simulation. The other model is a simulations of a weld, where the model consist of three different materials, see figure 1 a .

Figure 6.1: Schematic drawing of the MBL model with the displacement field.
To avoid the boundary influencing the stress field around the crack, the model has a radius of 5000 mm , with the crack in the middle.

To achieve convergence for larger deformation the crack tip is modelled circular. Two different sizes of the crack tip radius have been used, $R=0.005 \mathrm{~mm}$ and 0.01 mm . This is to test the validity and convergence of the model.

In order to simulate a weld with three different material zones, have a circular crack tip and a large boundary, certain restrictions have to by applied to the mesh. To have a model with a traditional structural mesh, the mesh is divided into five zones. Zone one is the innermost zone around the crack tip. It has to have a circular mesh on the right side of the crack tip. On the left side there is a square mesh to scale up the element size, see figure 2 a .

2a: The mesh around the crack tip. Mesh zone 1.

2b: The transition to square mesh. Mesh zone 2.

Figure 6.2: The inner mesh.

In the area where the HAZ can move a square mesh is needed to get a HAZ with a smooth surface. Because of this a transition zone between the mesh in zone 1 and zone 3 , which is the square mesh, is necessary. This transition zone is zone 2 , see figure 2 b .

Zone 3 consists of elements which are $0.01 \times 0.01 \mathrm{~mm}$. The zone is $4 \times 4 \mathrm{~mm}$, and the crack reaches 0.5 mm into it. Inside this area it is possible to change the thickness and position of the HAZ, see figure 3b,

Between the fine square mesh and the boundary a large scaling of the mesh is necessary. The best way to have this scaling of element size is by a circular mesh, see figure 3a. This circular mesh consists of 64 elements in each circle and is mesh zone 5 . Between the fine square mesh and the circular mesh there needs to be a transition zone, to get 64 elements around the square. This is mesh zone 4, see figure 3b,

The mesh consists of four nodes, linear, plane strain, continuum elements. In ABAQUS this is called a CPE4 element [25]. Since the mesh is so fine, a simple element like CPE4 is sufficient to gain enough accuracy. The meshing algorithm is implemented in the code in Appendix B.

The simulations are calculated with ABAQUS standard, and nonlinear geometry is used.

Figure 6.3: The outer mesh.

6.1.1 Scripting

The MBL model has been made by scripting in Python instead of using a GUI, like ABAQUS CAE. This way of generating a model usually takes more time, and requires more of the user. This method was still chosen due to several factors. The main factor was that a structural mesh in the transition zones requires every element to be drawn. The user would then have to draw several thousand lines by hand. By scripting this is done with some code loops. Another important benefit from scripting is that the model can be parametrized, and changes are easily applied. For a more complex model than the MBL, scripting would be harder. An other advantage of scripting is the controllability of the model. If the model is made by the use of a GUI it is hard to control what have been done. Since the script is saved it is easy to change, reuse and study by others.

6.1.2 Validity

Validity tests

For FEM calculations it is important to validate the model and the results. To validate the Weibull stress calculated in the model there is a connection between K_{I} and the σ_{W} that can be used. It can be shown that for a self-similar stress field around a crack a relationship between σ_{W} and J exists [26]:

$$
\begin{equation*}
\sigma_{W}=C_{1}(m) J^{\frac{2}{m}} \tag{25}
\end{equation*}
$$

Here C_{1} is a constant dependent on m. Since $J \propto K_{I}^{2}$ equation (25) can be rewritten to:

$$
\begin{equation*}
\sigma_{W}=C_{2}(m) K_{I}^{\frac{4}{m}} \tag{26}
\end{equation*}
$$

Also here C_{2} is a constant dependent on m. This is just valid for a self similar-stress field, and thus only for the homogeneous reference simulations. By approximating the relation between the numerical Weibull stress and applied K_{I} with a power function, it is possible, from equation (26), to estimate what m is used. This estimated value of m can then be compared with the m used in the calculation. If they are equal it is a validation of the model and the post processing. This calculation has been done for the two different crack radii and for two values of m, [6].

$R[\mathrm{~mm}]$	m	Numeric m	m	Numeric m
0.005	10	10.002	20	19.904
0.01	10	10.011	20	19.998

This result show that the model is accurate enough.

Validity area

Since the crack tip starts with a finite radius the simulations are not valid until there has been some deformation.

One way to control if the stress field has converged, is by plotting stress field in the ligament. The normal to crack stress (σ_{n}) is then plotted against normalized distance r / δ, for different values of CTOD. These curves should be equal if the stress field is self-similar. Figure 4a shows these curves for different levels of CTOD for the reference simulation at $-60^{\circ} \mathrm{C}, T=0$ and $R=0.01 \mathrm{~mm}$. The stress field becomes self-similar when $\delta \approx 0.1 \mathrm{~mm}$, and have thus converged. This is in accordance with Anderson [9, p.576], see chapter 5 .

4a: σ_{n} plotted against normalized distance form
4b: σ_{W} plotted against CTOD for $R=0.01 \mathrm{~mm}$. crack tip for $R=0.01 \mathrm{~mm}$.

Figure 6.4: These figures gives an indication of the validity area to the models with a finite start radius at the crack tip.

For the Weibull stress however, the effect of the wrong stress field is not that large. Figure 4b shows the σ_{W} plotted against CTOD for a simulation with $R=0.01 \mathrm{~mm}$ compared to a simulation where the crack tip radius is halved to $R=0.005 \mathrm{~mm}$. Here it is clear that there is not any large effect from R on σ_{W}. This is because the calculation
of σ_{W} is integrated over a larger area. The effect of some elements around the crack tip having slightly lower stress level is thus negligible. This effect should be highly dependent on m, but even for $m=20$ the Weibull stress is just slightly lower for the large crack. Since it is only the Weibull stress that is used in this thesis, the results are considered valid for smaller deformations as well.

6.1.3 Parameters

With the MBL model one large parameter study and two smaller series have been performed. These are described in the following sections.

The large parameter study

In the large parameter study the variables have been: material type, position of the crack, size of the crack, mismatch in HAZ, mismatch in WM and T-stress, see figure 6.5 .

Material	Crack position	Width of HAZ	Mismatch in HAZ	Mismatch in WM	T-stress
Theoretic material curve with $\sigma_{0.2}=450 \mathrm{MPa}$	At fusion line	1 mm		1.0	0
			1.0		
			1.1	1.1	$-0.25 \sigma_{0.2}$
					-0.5 $\sigma_{0.2}$
		0.5 mm	1.0		
				1.0	
				1.1	-0.25 $\sigma_{0.2}$
				1.2	-0.5 $\sigma_{0.2}$
			1.1		
				$\begin{aligned} & 1.3 \\ & 1.4 \end{aligned}$	0
Material curve from the rolled steel with yield limit 420 MPa , tested at $-60^{\circ} \mathrm{C}$	In middle of HAZ		1.2	1.0	0
				1.1	-0.25 $\sigma_{0.2}$
				1.2	-0.5 $\sigma_{0.2}$
		0.25 mm	1.0	1.0	0
			1.1	1.1	$-0.25 \sigma_{0.2}$
			1.2		
			1.3	1.2	-0.5 $\sigma_{0.2}$

Figure 6.5: Overview of the parameter study.

The parameter study contains of 340 weld simulations, and 8 reference (weld simulated) simulations. The parameter matrix has been increased on basis of the results obtained from the start matrix.

Two different material types are used, they are explained in detail in chapter 6.3.
There have been performed simulations with two different positions of the crack. One where the crack is at FL between WM and HAZ, and one where the crack is in the middle of the HAZ.

Mismatch level is chosen based on empirical experience. For a wide HAZ the yield stress in the HAZ will not be that high as in a small HAZ, [2]. This is due to changes in cooling time, and thus different microstructures. The pre study takes a closer look at
this [6]. The HAZ with a width of 0.5 mm have the largest study, since this turned out to be the most interesting case.

Three different values of T-stresses have been used:

- $T=0$
- $T=-0.25 \sigma_{0.2}$
- $T=-0.5 \sigma_{0.2}$
T-stress is calculated relative to $\sigma_{0.2}$ of BM . All the simulations are compared with a reference simulation where $T=0$.

Side studies

One of the minor parameter studies was done to investigate the effect of undermatch in yield stress for HAZ, as long as there was a vigorous overmatch in hardening. A higher hardening in HAZ than in the two other materials are quite common. Yield stress and hardening in WM and BM where kept constant at $\sigma_{0.2}=450$ and $n=0.07$ (black line in figure 12a). Four simulations with different different yield stress and hardening in HAZ were performed:

- $\sigma_{0.2}=400 \mathrm{MPa}, n=0.012$
- $\sigma_{0.2}=400 \mathrm{MPa}, n=0.015$
- $\sigma_{0.2}=350 \mathrm{MPa}, n=0.012$
- $\sigma_{0.2}=350 \mathrm{MPa}, n=0.015$

Four reference simulations where also made for comparison.
In the second minor parameter study the effect of general hardening is investigated. BM still has $\sigma_{0.2}=450 \mathrm{MPa}$, but the hardening is changed between three levels:

- $n=0.07$
- $n=0.12$
- $n=0.15$

The hardening is set equal for the three different materials, but with three different mismatch conditions:

- Even match.
- 10% overmatch in HAZ and 20% overmatch in WM.
- 20% overmatch in HAZ and 30% overmatch in WM.

6.2 3D simulations

Common CTOD specimens of welds can be made in many sizes, but weld simulated specimens can only practically be made with a cross section of $10 \times 10 \mathrm{~mm}$. Because of this some simulations should be made to investigate the effect of specimen size on the Weibull stress. It is the in plane area effect that is interesting as well as any 3D effect from thickness.

To investigate the size effect on the test specimen, four different SENB models where made, all with $a / w=0.5$ to keep the constraint level constant. Based on the results from
these simulations, it was decided that some simulations should be made to compare the $10 \times 10 \mathrm{~mm}$ specimen with SENT specimens. This was to validate the constraint effect on the small SENB specimen.

The middle of the specimen will have the highest stresses, because of a plane strain like condition there. The Weibull stress is thus only calculated for a 1 mm thick element layer in the middle of the specimen, see blue elements in figure 8a. This will make the calculation conservative, and the Weibull stress will be comparable with the MBL result without any correction.

A theoretic material with $\sigma_{0.2}=450$ and $n=0.07$ is used in all the 3D simulations, see chapter 6.3. The models are homogeneous and made using ABAQUS cae.

6.2.1 SENB model

The sizes simulated for SENB were:

- $w=10 \mathrm{~mm}$
- $w=25 \mathrm{~mm}$
- $w=50 \mathrm{~mm}$
- $w=100 \mathrm{~mm}$
w is the thickness of the quadratic cross section. The length of the specimens is set equal $4 w$. The specimens are loaded with three point bending, see figure 2.1, with $a / w=0.5$. The symmetry of the model is utilised, so only one forth of the model is simulated, see red symmetry planes in figure 8b. The crack tip is 0.01 mm in radius to get convergence in a larger strain area, a validity simulation is run with a radius of 0.005 mm . The mesh is circular around the crack tip with ten elements at the tip, see figure 6a. The mesh transitions into a circular pattern until it ends in a quadratic mesh for the rest of the model, see figure 6b and 6.7. The model with $w=10$ has an element size of 0.5 mm in the general area, the rest of the simulations have an general element size of 1 mm .

In the out of plane direction there are large elements, see figure 8a, which is done to keep the simulation time down. Closest to the symmetry plane there is an element set who is 1 mm thick. It is from these elements that the Weibull stress is calculated, see blue elements in figure 8a. After this element set, there are ten more planes with elements, with a bias such that the mesh is densest close to the free surface. This is because the stress gradient in this direction, is largest close to the free surface due to a change of stress field from plane stain to plane stress.

The force is applied by keeping the nodes along the bottom of the ligament fixed in y direction, while pushing the nodes in the upper end of the model down. The elements which these two node sets are attached to are elastic, see orange elements in figure 6.7 and 8a. This is to avoid large deformations in the loading areas. These elastic elements are excluded in the Weibull calculation. The loading is displacement controlled.

The elements used are a quadratic eight node element type without reduced integration, in ABAQUS called C3D8. The mesh is generated structured. The simulations are calculated with ABAQUS standard, and nonlinear geometry is used.

Figure 6.6: Mesh.

Figure 6.7: The mesh for the model with $w=10 \mathrm{~mm}$. Elastic elements are orange.

8a: Elastic elements are orange and Weibull elements are blue.

8b: Symmetry planes are marked red.

Figure 6.8: 3D model with $w=10 \mathrm{~mm}$.

6.2.2 SENT model

Simulations with SENT are made to simulate the constraint level of a crack in a real plate. The plate thickness is set to:

- $w=20 \mathrm{~mm}$
- $w=50 \mathrm{~mm}$
- $w=100 \mathrm{~mm}$

Crack depth is set to 5 mm since this is the proposed maximal allowed crack depth [2].
The SENT models have the same meshing algorithm, elements and calculation procedure as the SENB model. The only differences are the loading and where the crack is placed, see figure 6.9. The loading is in the normal to crack plane direction, and all the elements in the end of the specimen are used as boundary. There is no need of any elastic elements since the load is applied over a such large area. The length of the SENT specimens is 10 w . The long length is to avoid boundary effects from the displacement controlled boundary.

6.2.3 Validity

The validity of the mesh is tested by refining the mesh for the model with $w=10 \mathrm{~mm}$, since this will have the coarsest mesh. The elements in the general region is then set to be 0.25 mm . One simulation with 0.005 mm radius on the crack tip is also run, to see the influence of this. This simulation also has the fine mesh. In the plot for the Weibull stress the mesh size shows a small effect, see figure 10b. There is no differences for the two simulations with fine mesh and different crack radius.

Figure 6.9: The mesh for the sent model with $w=50 \mathrm{~mm}, a=5 \mathrm{~mm}$.

The stress field in front of the crack tip vary some for different crack tip radii, see figure 10a. This is for a CTOD of 0.02 mm . The model with $R=0.05$ have a higher stress close to the crack tip, since the stress field for the models with $R=0.01$ have not converged yet. This effect is neglected since it is only the Weibull stress that is used, and the effect here is small, since it integrates over a large area.

10a: Stress field in front of crack with normalized 10b: Weibull stress plotted against CTOD. Blue and length, for CTOD on 0.02 mm .
magenta line are on top of each other.
Figure 6.10: Comparison of the specimen with $w=10 \mathrm{~mm}$ and crack tip raidus 0.01 mm (blue line), with a simulations where the mesh is finer (magenta), and a simulation with fine mesh and crack radius of 0.005 mm (red).

6.3 Materials

In this master thesis two different types of BM have been used, one real and one theoretic. The real material is a rolled steel with yield stress at 420 MPa , tested at $-60^{\circ} \mathrm{C}$. This material then has a yield stress at 519 MPa . There is a clear Lüders band in this material see figure 11b. The theoretic material is constructed with a power law:

$$
\begin{equation*}
\sigma=\sigma_{y}\left(1+\frac{\varepsilon_{p} E}{\sigma_{y}}\right)^{n} \tag{27}
\end{equation*}
$$

n is the hardening modulus and σ_{y} is the yield stress. The materials used in this thesis are defined from $\sigma_{0.2}$ instead of σ_{y}. An iteration is thus done to find σ_{y} for the different materials, the code for this is included in Appendix E.

For the large parameter study performed, the materials from figure 6.11 are used. For these simulations the hardening is constant for a material type. BM is always one of the black lines in the figure. For the real $\mathrm{BM} \sigma_{0.2}$ is equal 509 MPa and $\sigma_{y}=507.8 \mathrm{MPa}$. The theoretic BM has $\sigma_{0.2}=450 \mathrm{MPa}$ and $\sigma_{y}=429.1 \mathrm{MPa}$.

11a: Theoretic materials with different yield stress, $n=0.07$.

11b: Real materials with different yield stress.

Figure 6.11: Stress-strain curves for different materials.

In the simulations different levels of $\sigma_{0.2}$ mismatch is used, see chapter 6.1.3. The different levels of mismatch are indicated in figure 6.11 and 12 b with a factor times $\sigma_{0.2}$ for the BM. Materials with $10 \%, 20 \%, 30 \%$ and $40 \% \sigma_{0.2}$ mismatch are made.

There has also been run some simulations with both hardening and yield stress mismatch. These materials have $n=0.12$ and 0.15 and $\sigma_{0.2}=350 \mathrm{MPa}$ and 400 MPa , see chapter 6.1.3 and figure 12a.

The simulations where the effect of general hardening is studied, the hardening used are $n=0.07, n=0.10$ and $n=0.15$. There has also been different levels of mismatch in $W M$ and HAZ, see chapter 6.1 .3 and figure 12 b .

12a: Materials used to investigate effect of harden- 12b: Materials used to investigate effect of general ing mismatch.

Figure 6.12: Stress-strain curves for materials with different yield stress and hardening.

6.4 Post processing

One of the main parameters used in this project is the Weibull stress. The Weibull stress is calculated by equation (15). ABAQUS does not calculate this stress, so it is necessary to do by post processing. The post processing is done by Matlab and a shell script. During simulation ABAQUS saves data for each increment in a text file (filename.dat). This file is then divided into one file for each increment by a shell script. These files are possible to read with Matlab and then calculate and save the desired data to a new file for each simulation, see Appendix D. These files can be used for plotting and study.

To calculate the Weibull stress three variables need to be saved from each element at each time increment. From equation (15) it is clear that the maximal principle stress and the volume for each element must be saved. Since the calculation shall be done only over the plastic area, equivalent plastic strain is also saved to know if an element is in the plastic area. For the SENB simulations pressure is also saved, since elements that yield due to pressure should be excluded. The Matlab script loops through all the elements at each time increment and calculate the Weibull stress for this increment with equation (15). This calculation is done with four different levels of m ($m=7.5$, $m=10, m=15$ and $m=20$). Since the Weibull stress is only used to compare different simulations, the volume V_{0} is irrelevant and set equal to 1 . For both the MBL model and for the 2D models, the Weibull stress is calculated for a 1 mm thick element layer.

For the 2D models, only half of the model is used to the Weibull calculation, because of the symmetry. From equation (15) the Weibull stress thus needs to be multiplied by $\sqrt[m]{2}$ to double the integration volume.

In addition to the Weibull stress, the CTOD and the stress normal to the crack plane at the ligament is saved. The CTOD is the displacement normal to the crack plane, of the first nodes where the crack tip ends. The stress normal to the crack plane is saved for the centroidal of the element on one side of the ligament, as well as position of the centroid. This data is also rewritten to new files by the Matlab script.

6.4.1 Plots

Figure 6.13: Illustration of how the $\delta_{w} / \delta_{w s}-\delta_{w s}$ plot is made.
To compare the results from the three material, weld, simulation with the reference weld simulated simulations, a special plot is used. This plot assumes Weibull stress as a fracture criterion and uses toughness scaling. The plot assumes that it is equal possibility of fracture in a weld simulated specimen and a weld, when the Weibull stress is equal. To compare how critical different load levels are for the two types of simulations, the CTOD for different Weibull stresses are compared. This is done by dividing the CTOD for a given Weibull stress in the weld, with the CTOD at the same Weibull stress for the reference simulation. The CTOD ratio between the two simulations is then plotted against the CTOD in the reference simulation, see figure 6.13. This plot shows how many times more deformation the weld can take if a certain deformation level is achieved with a weld simulated specimen.

Due to the use of toughness scaling the parameter V_{0} and σ_{u} can be disregarded. The Weibull exponent m is however still important, this is commented on later. Most of the plots are for both $m=10$ and $m=20$.

Some of these plots are added in the results and discussion chapters, for the rest see Appendix A.

7 Results of parameter study

In this chapter the different parameters and their effects on the CTOD ratio, between CTOD in a weld simulated specimen and CTOD in a weld, are studied and discussed in detail.

In the plots used there are some special indexes for level of $\sigma_{0.2}$ mismatch in the legends. For instance h20 means 20% overmatch in HAZ compared to BM, and w00 means evenmatch in WM compared to BM.

7.1 Material type

For the simulations with real material all the materials have Lüder bands. This is not realistic since Lüder band do not occur in HAZ. The simulations should therefore have been performed with Lüder band in WM and BM, but with a theoretical material curve for HAZ. Without Lüder band in HAZ the graphs with real material in figure 7.1 would probably have raised faster.

Figure 7.1: Comparing effects of material type for three levels of mismatch in HAZ. Blue line is theoretic material and magenta is real material. $T=0$, crack at FL, HAZ thickness 0.5 mm and evenmatch between WM and BM .

One conclusion can however be drawn from these simulations: The general yield stress does not contribute significantly to the results. The difference between the results for the two material types is quite small, see figure 7.1. This is even though the yield stress in the real material is higher, $\sigma_{y}=507.1 \mathrm{MPa}$, than for the theoretic material, $\sigma_{y}=429.1 \mathrm{MPa}$. The hardening is almost equal, but with a Lüder band in the real material, see figure 6.11

7.2 Placement of the crack

There have been performed simulations with the crack at FL and with the crack in the middle of the HAZ. Figure 7.2 is comparing the position of the crack for different
mismatch levels. From the curves there is a clear trend that to position the crack in the middle of the HAZ is worse than at FL. This is perfectly natural since it is only the stress field of the HAZ that is considered. Placing the crack in the middle of the HAZ will give more high stresses in the HAZ, and thus a higher Weibull stress.

For a real crack this effect will probably be the opposite [5]. This is because the material is usually most brittle and contains most inclusions close to FL. The simulations with the crack on FL will thus be used mostly in the rest of this thesis, since this is the most critical case in a real weld.

Figure 7.2: Comparing effect of crack position for three levels of mismatch in HAZ. Black line is crack at FL and magenta is crack in middle of HAZ. $T=0$, theoretic material, HAZ thickness 0.5 mm and evenmatch between WM and $B M$.

When comparing figure 2 a and 2 b the black and purple lines are further apart for $m=20$ then for $m=10$. This can be explained by how m is influencing the Weibull stress, see chapter 3.4.2. For $m=20$ the high stresses are important and the position of the crack has a larger effect. $m=10$ makes the area of the HAZ more important and therefore less difference since this is kept the same.

There is also a large difference in the behaviour of the general curves dependent on m. This is discussed later, see chapter 7.8.

7.3 Effect of size

One of the main parameters that makes weld simulations more brittle than welds, is that the brittle area of the HAZ is much larger in a weld simulated specimen. Since brittle fracture is a statistical phenomena the size of the brittle zone is important. From figure 7.3 this appears clearly. The CTOD ratio between the two models is increasing with smaller HAZ size. The lines with dots on are for simulations with a homogeneous material, these lines shows therefore only the size effect.

A similar study was performed in the pre study, but with mismatch in the materials and thus without the effect of size only.

Figure 7.3: Comparing effect of HAZ size for three different levels of HAZ mismatch. Blue line is HAZ width 0.25 mm , purple 0.5 mm and red $1 \mathrm{~mm} . T=0$, theoretic material, crack at FL and evenmatch between WM and BM.

For real welds the fracture rarely appears far away from FL [2], a 1 mm brittle HAZ is thus quite unrealistic. A HAZ width of 0.5 mm will thus mainly be used further in this thesis. The 0.5 mm HAZ will always be conservative compared with the 0.25 mm HAZ for a realistic CTOD. The HAZ size can also be estimated with Rosenthal equation [27], this was performed in the pre study [6].

7.4 T-stress at MBL model

In the pre study [6] a parameter study of the T-stress effect on the Weibull stress was performed. The Weibull stress for these simulations has been compared with reference simulations with the same T-stress level. Since the weld simulated specimens are tested with SENB05 the T-stress is equal zero. The different weld specimen should thus be compared to a reference simulation with $T=0$.

This comparison is done in the parameter study of this thesis. The result is very different from the result obtained in the pre study. In the pre study it was concluded that the T-stress had almost no effect. When comparing reference simulations with $T=0$ the effect is large, see figure 7.4. This indicates that it might be possible to make an addition in critical CTOD for a weld simulated specimen, compared to a real weld, based on the geometry effect. This is further discussed in chapter 8.2.

The large effect can be explained by a difference in stress state in front of the crack tip, between the welded specimens and the reference simulation. The reference simulation will have a much higher level of hydrostatic stress, and thus obtain higher principal stress before yielding. This will imply a higher Weibull stress since it is calculated from the principal stress. The effect will be largest for $m=20$ since this is extra sensitive to the maximal principal stress.

Figure 7.4: Comparing the effect of T-stress for three different HAZ thicknesses. Blue line is $T=0 \mathrm{MPa}$, purple $T=-0.25 \sigma_{0.2}$ and red $-0.5 \sigma_{0.2}$. Theoretic material, crack at FL and evenmatch between WM, BM and HAZ.

7.5 Mismatch in yield stress

One of the key variables in this thesis is the level of mismatch between the different materials. The CTOD ratio is highly dependent of the mismatch properties, see figure 7.5. In this figure both WM and HAZ have different levels of mismatch compared with BM. The blue line with dots is a homogeneous simulation where only the sampling size effect occurs.

Figure 7.5: Different mismatch properties. Colour indicate level of mismatch in HAZ and marker indicate level of mismatch in WM. Mismatch is relatively to BM. These simulations are with the theoretic material, crack at FL, crack width 0.5 mm and $T=0$.

The trends of figure 7.5 are quite clear. High mismatch in HAZ make the ratio between CTODs high, while high mismatch in WM does the opposite. This is as expected
from chapter 4.1, and in accordance with the results of \emptyset. Ranestad [7]. For a HAZ with high overmatch to both BM and WM, the two soft materials will make the HAZ softer, since they will yield first. For the reference simulation without this soft material, yielding will occur later, and the stress level will be higher. This will cause a higher Weibull stress in the homogeneous material, and larger probability for fracture, see figure 7.6 .

Figure 7.6: Comparison of Weibull stress in weld and weld simulated specimens. These simulations are with the theoretic material, crack at FL, crack width $0.5 \mathrm{~mm}, T=0$ and $m=10$.

In figure 6adifferent mismatch levels in the HAZ are compared for the weld and the weld simulated analyses. An interesting effect is that the Weibull stress in the welded specimens is almost independent of the yield stress in the HAZ. This is because the softer materials, WM and BM, lower the stress field so much that the yield stress in the HAZ almost has no influence. It is thus just the Weibull stress in the reference simulation that makes the difference for the graphs in figure 7.5. This means that a real weld will break at almost the same CTOD for different yield stresses in the HAZ. A weld simulated specimen with high yield stress will, on the other hand, break at much lower CTOD than one with lower yield stress.

For different levels of mismatch in WM, see figure 6B, it is the Weibull stress in the welded specimens that changes. This simulations uses the same reference simulation (dashed line), since the yield stress in the HAZ is constant. The high yield stress in WM will here increase the stress level, and prevent yielding. The yield stress in WM is therefore an important factor regarding brittle fracture, since it actually changes the critical CTOD for the weld.

There are some simulations where the CTOD ratio is below 1 , see figure 7.5. These simulations either have undermatch between HAZ and WM, and no overmatch between HAZ and BM, or a larger overmatch than 10% between HAZ and WM. A CTOD ratio below 1 means that the weld has higher probability of fracture than the weld simulated one. This even though the brittle area is smaller.

7.6 Mismatch in hardening

Usually the hardening is higher in HAZ than in WM and BM. A small parameter study was therefore performed where there was undermatch in yield stress for the HAZ, but higher hardening. BM and WM had even match, in both yield stress and hardening, $\sigma_{0.2}=450$ and $n=0.07$.

Figure 7.7: Different hardening and yield stresses for HAZ, even match for WM and BM. These simulations are with the theoretic material, crack at FL, crack width 0.5 mm and $T=0$.

From figure 7.7 it is clear that both yield stress and hardening are important factors when comparing welds and weld simulated specimens. The yield stress is however the dominating factor for relatively small CTODs. It is thus only the simulation with $n=0.15$ and 50 MPa undermatch which gives good result for both m values. These simulations show that it is very important to not have yield stress undermatch in the HAZ. Hardening overmatch in HAZ with even match or better in yield stress, would most likely give a very positive effect. This is not studied here since evenmatch in hardening is most critical, and thus conservative.

7.7 General hardening

Since hardening may have a large influence on the CTOD ratio between weld simulated specimens and welds, a series of simulations with different hardening properties was performed. All the simulations have evenmatch in hardening, but different mismatch properties for WM and HAZ.

Figure 7.8 shows the effect of different hardening in the materials. From the figure it appears clearly that a high general hardening lowers the CTOD ratio. This effect may arise from a change in the stress field when the hardening increases. For a higher hardening the stress peak will be higher and closer to the crack tip, see figure 7.9. Higher stress level will lead to higher Weibull stress, in both weld and weld simulated specimen, which may cause a change in the CTOD ratio.

Figure 7.8: Different yield stress mismatch for WM and HAZ, equal hardening for all materials. These simulations are with the theoretic material, crack at FL, crack width 0.5 mm and $T=0$.

Figure 7.9: Stress normal to crack plane in front of crack with normalized length, $\delta=0.1 \mathrm{~mm}$. $T=0$, crack at FL and theoretic material.

A hardening of $n=0.15$ for WM and BM is unlikely to occur [2], and these simulations was only performed to see the qualitative effect.

7.8 The effect of m

From the pre study [6] it was concluded that the Weibull parameter m had almost no effect. From the plots made here this conclusion is clearly wrong. The plots from the pre study are however not wrong. In the pre study all the simulations were done with high overmatch in the HAZ, which implies a fast growing CTOD ratio. When studying figure 7.3 and 7.5 it is clear that as long as the CTOD ratio is growing fast, the result is almost independent of m. For a slowly growing ratio, m has larger influence.

Figure 7.10: Comparing the effect of m on the Weibull stress, for different mismatch level in the HAZ. These simulations are with the theoretic material, crack at FL, crack width 0.5 mm and $T=0$.

This effect can be explained by the graphs in figure 7.10. This graphs are for the same simulations as the purple lines in figure 7.2 . In figure 7.2 the purple line with dots are dependent of m, but the two other purple lines are almost independent. In figure 7.10, however, m has a large influence on all the weld simulated simulations (dashed lines). The reason why just one of the purple lines is affected by m is due to the shape of the Weibull stress curve. All the Weibull stress graphs are raising fast until a turning point where they flatten. The weld specimens are then converging against a threshold Weibull stress. The shape and the CTOD before the turning point is almost independent of m, and m only affects the Weibull stress at the turning and threshold point. This implies that as long as the weld simulated turning point is higher than the threshold point of the weld, the CTOD ratio is almost independent of m, since how much higher the turning point is, is irrelevant.

The Weibull stress in the weld simulated specimens are often higher for $m=10$ than for $m=20$. The simulations with $m=20$ will thus reach the point where the threshold of the welded specimen is higher than the turning point of the weld simulated specimen, earlier. This will then make a large difference in plots like figure 7.2 .
m is therefore important for the Weibull stress curve, and the probability for fracture. For comparison of MBL models $m=20$ is the most critical, and should be used as design reference to avoid estimating m for the material.

8 Discussion

In chapter 2.2 .2 four different effects that may make CTOD testing of weld simulated specimens more brittle than real welds were mentioned. In this chapter it is discussed if it is possible to make a general relationship between weld simulated CTOD and CTOD for a structure, and take these effects into account.

8.1 Out of plane sampling

For weld simulated specimens the whole crack front will be in the brittle microstructure. Statistically this implies, from equation (24), that ten specimens with $w=10 \mathrm{~mm}$ are the same as a test with a 100 mm long crack front. Practically this will however not be exact. A test specimen has free surfaces on both sides, and will therefore not have plane strain all the way through. The area without plan strain, will have a lower probability for fracture and can thus not be used in the calculation. How large the area without plane strain is, is not calculated here, but this area should be subtracted. Testing of several specimens give however an increased probability for fracture. In real structures a 100 mm long crack where the the whole crack front is in a brittle microstructure will rarely appear. Often only a small part of a crack will hit the brittle microstructure, testing of ten specimens will thus make the testing conservative.

8.2 Constraint and specimen size

Chapter 7.4 concludes that there is a large positive effect from geometry constraint in a real weld compared to a weld simulated specimen. Before these results are used, there should be investigated if the small size of the weld simulated specimen have any affect. A weld simulated specimen can only have a cross section of $10 \times 10 \mathrm{~mm}$, due to the oven. This implies certain restrictions to how large deformation the sample can take, and still be valid.

In chapter 3.5 there are listed two requirements to the size of a fracture mechanics test specimen. The first requirement, equation (19), is based on linear elastic behaviour and is very stringent. This equation demands, depending on m and $\sigma_{y s}$, that a specimen needs to be in the size area of $50-400 \mathrm{~mm}$, for $\delta=0.1 \mathrm{~mm}$ to be valid. This requirement is too stringent since there will be plasticity around the crack tip, and a plastic requirement should be used, [9, p.311]

The second requirement, equation (21), is based on the J-integral, and takes some plasticity into account. This requirement treats the size of the ligament, and is only dependent on δ and the constant m. The weld simulated test specimens, with $w=$ 10 mm and $a / w=0.5$, should from this equation be valid until $\delta=0.08 \mathrm{~mm}$ for $m=2$ and $\delta=0.11 \mathrm{~mm}$ for $m=1.5$.

8.2.1 SENB comparison

From the second requirement there should not be any large size effect in the weld simulated specimens, as long as the deformation is small. To control this there has been run a simulation series of SENB05 specimens with different heights, see figure 8.2
and 1a. Form these figures it is clear that the small specimens deviate from the larger samples quite early. The Weibull stress for $m=10$ deviates already at $\delta=0.02 \mathrm{~mm}$. At the stress field plot for $\delta=0.1 \mathrm{~mm}$, there is a clear drop in stress already at $r / \delta=4$, for the specimen with $w=10 \mathrm{~mm}$. Figure 1b shows the stress in the ligament of the simulation with $w=10 \mathrm{~mm}$, for different CTODs. The lines should ideally be equal, for $r / \delta>3$, if the ligament size was large enough. The figure shows that the stress field is dropping already for $\delta=0.02 \mathrm{~mm}$. This concludes that the size of the ligament is influencing the stress field for $\delta>0.02 \mathrm{~mm}$, and that the requirement in equation (21) is not strict enough.

On the left side of figure 1b the lines are deviating for small CTODs. This is an effect of the large crack tip radius.

Figure 8.1: Stress field in front of crack with normalized length, $\delta=0.1 \mathrm{~mm}$.
The stress field for the simulation with $w=10 \mathrm{~mm}$ has almost the same stress peak as the other specimens, see figure, 1a. The stress is however dropping more rapidly for increasing r. This influence of the ligament size is thus affecting the Weibull stress with $m=10$ the most, since the size of the stress field is important. For $m=20$ the height of the stress peak is most important, and the effect is therefore smaller even though it appears at the same CTOD, see figure 2 a and 2 b .

8.2.2 SENT comparison

Since the validity area was so small for the SENB05 specimen with $w=10$, some simulations were performed to compare this simulation with lower constrained specimens. SENT specimens with a crack depth of 5 mm was made in different sizes. Figure 8.4 and 8.3 compare the small SENB05 specimen with different SENT specimens.

Before studying figure 3a a Weibull artefact should be explained. The green line for the SENT 100 mm specimen behaves quite different than the others. For a certain level of CTOD the Weibull stress starts increasing to a higher stress than expected. This is due to a phenomena that the Weibull stress cannot handle. Since the crack

Figure 8.2: Weibull stress plotted against CTOD for different w on the 3D SENB specimens.
depth of this simulation is so small compared to the ligament, a lot of force need to be applied to reach a large CTOD. Because of this the specimen reach global yielding before a large CTOD occurs. The global stress level is just above the yield limit, but since the integration area for the Weibull stress becomes so large, these low stresses get an influence. This only happens for $m=10$, since area has so little influence for larger m. Also for the specimen with $w=50$ this effect occurs, but not in the same scale.

This effect is not realistic and should not be taken into account. The Weibull stress for $w=100 \mathrm{~mm}$ and $w=50 \mathrm{~mm}$ is thus only valid until $\delta \approx 0.04 \mathrm{~mm}$, for $m=10$.

Figure 8.3: Weibull stress plotted against CTOD for different w on the 3D SENT specimens.
When comparing SENB05 with SENT specimens, the Weibull stress in the SENB05 specimen should be higher, due to higher constraint level. For the SENB05 with $w=$ 10 mm this effect does however not occur, see figure 3a. This is because the small ligament influences the stress field when $w=10 \mathrm{~mm}$, as mentioned above. The ligament size only affects the lower region of the stress field and the stress peak is still higher in
the SENB specimen, see figure 8.4. This implies that the ligament effect only occurs for $m=10$. The constraint effect is thus normal for $m=20$, see figure 3b,

Figure 8.4: Stress field in front of crack with normalized length, $\delta=0.1 \mathrm{~mm}$.

This implies that the CTOD from the weld simulated specimens gets no positive effect because of constraint. There is a positive effect for $m=20$, but this cannot be counted for, since an general constraint benefit should be valid for both $m=10$ and $m=20$.

8.3 Mismatch and size effect

From the results of the parameter study it is clear that the size of the the HAZ and mismatch have large influence on the CTOD ratio between a weld simulated specimen and a real weld. These are the two main factors that make weld simulated specimens more brittle than welds. Figure 8.5 shows the effect of size and mismatch by plotting all the simulations in the parameter study.

Figure 8.5: All the simulations in the large parameter study.

From figure 8.5 it is clear that there are a lot of simulations where the weld simulated specimens are much more brittle than the weld. It is however also some simulations were the difference is smaller, and even some were the weld is more brittle. To be able to make a general relationship between the CTOD for a weld and the CTOD for a weld simulated specimen, it is thus important to establish some realistic requirements to the weld:

- At least 10% overmatch in HAZ compared to BM.
- Not more than 10% undermatch in HAZ compared to WM.
- Maximal brittle HAZ thickness of 0.5 mm .

With these three requirements a much more consistent trend occurs, see figure 8.6. It is now possible to propose a first suggestion to a lower design line, for size and mismatch effects. This line establishes a conservative relationship between a weld and a weld simulated specimen, to take the effect of HAZ size and mismatch into account. If given a certain critical CTOD for a weld simulated specimen, it is possible to use this line to find the critical CTOD for a weld, as long as the requirements are fulfilled. The line is valid for both $m=10$ and $m=20$ and will thus be valid for a large spectrum of microstructures.

Figure 8.6: Simulations with at least 10% overmatch in HAZ compared with BM and not more than 10% undermatch between HAZ and WM. Without the simulations with 1 mm HAZ.

The design line says that there is no positive effect for a weld simulated specimen as long as the critical CTOD is less than 0.05 mm . For such low CTOD values the positive effect from size and mismatch in the weld have not jet occurred. This is due to that the high stresses and the plastic zone needs to reach the boundary of the HAZ first. From a $\delta=0.05 \mathrm{~mm}$ to $\delta=0.1 \mathrm{~mm}$, the design line grows linearly to the point where the CTOD of a weld simulated specimen may be multiplied by 2 . This means that if the critical CTOD is 0.1 mm in a weld simulated specimen, it is 0.2 mm in a real weld.

The relationship between a weld simulated specimen and a real weld is now possible to describe mathematically. $\delta_{w s}$ is tested CTOD of weld simulated specimen and δ_{w} is
equivalent CTOD of a weld.

$$
\begin{array}{ll}
\delta_{w}=\delta_{w s} & \delta_{w s} \in[0,0.05\rangle \\
\delta_{w}=20 \delta_{w s}^{2} & \delta_{w s} \in[0.05,0.1\rangle
\end{array}
$$

This non linear relationship between CTOD in weld simulated specimens and CTOD in real welds is qualitatively in accordance with the real testing mentioned in chapter 2.3.1. For small CTODs the relation is approximately $1: 1$, but for larger CTODs weld simulated specimens are more brittle than real welds.

A factor that is not included in this model is general hardening. From chapter 7.7 it is concluded that an increased hardening in all the materials will have a negative effect. From figure 7.8 it can be shown that the relationship above is not valid even for $n=0.10$. How large this effect is and how it can be taken into account needs further study.

There are however some positive effects which are not included either. One is that there is usually higher hardening in HAZ, than in the two other materials. In chapter 7.6 this is discussed and might give an indication of how large this effect is. Also the Lüder band that often occurs in BM and WM will give a positive effect. Higher hardening in HAZ and Lüder in BM and WM might together give a large positive effect, but this also needs further study.

8.4 Discussion

This proposed design line is a first sketch and there are several factors that need to be studied before it can be used by the industry. It was designed to be as general as possible, and it might be too general, and more requirements need to be applied. It is also possible to make several design lines, where higher lines have more requirements, and demands more testing.

This parameter study has been performed with theoretical materials, and the qualitative effect of mismatch is studied. In the pre study, real materials were used in the simulations. These simulations show very different results, see figure 2.3. In this figure weld simulation is very brittle compared to real welds. This is due to higher mismatch conditions and Lüders band. It is therefore probably possible to establish a more favourable relationship, where welds are even more ductile compared to weld simulated specimens, if a real material is tested, and several design lines are made. Even to move the threshold CTOD for when the weld simulation gets a benefit, should be possible.

From chapter 8.2 it is concluded that there is, at this point, not possible to give a positive effect from high constraint in a weld simulated test specimen. This is based on the lack of constraint effect for $m=10$, for $m=20$ it is however a large constraint effect. In the design line based on size and mismatch, $m=20$ is the lower bound. For only $m=10$ the design line would be higher and with fever requirements. This means that the worst effect of both $m=10$ and $m=20$ is taken into account. If a material has $m=10$, there should be no constraint effect, but the effect of size and mismatch should be higher. For a material with $m=20$ the effect of size and mismatch is correct, but there should be an effect of constraint. This indicates that the design line is very conservative. To utilise the effect of m better and take it into account, more simulations need to be performed.

When comparing the design equation with the requirement proposed in the Artic Material research project, a minimum critical CTOD in the weld simulation specimen is possible to establish. A minimum CTOD of 0.1 mm in the structure will from equation (29) be equivalent to at least a critical CTOD of 0.07 mm in the weld simulated specimen.

9 Conclusion

The parameter study investigated several variables, and what effect they cause on the ratio between the CTOD on a weld simulated specimen and the CTOD on a real weld. The different variables are first studied one by one:

- From the study of different material types, there was not much effect on the CTOD ratio. The main conclusion from this comparison was that general yield stress level, is of minor importance.
- The position of the crack has some influence. For numerical simulations a crack placed in the middle of HAZ is the worst case. For real welds, the crack is however most critical if it is positioned at FL.
- The effect of HAZ size is quite important. The probability of fracture in a weld reduces with smaller HAZ area, and the CTOD ratio between the two models is thus increasing.
- Mismatch in yield stress compared to BM has large influence on the CTOD ratio. It is most sensitive to mismatch in HAZ, but also mismatch in WM is important. Higher overmatch in HAZ makes the weld simulated specimen more brittle compared to a real weld. Overmatch in WM is however making the weld more brittle while the weld simulated specimen is the same. With overmatch in WM compared to both BM and HAZ the weld may even behave more brittle than a weld simulated specimen.
- Overmatch in hardening for HAZ, makes the weld simulated specimen more brittle compared to a weld. The effect is however not so strong that undermatch in HAZ can be accepted if the hardening is high.
- Increase in general hardening makes the weld simulated specimen less brittle compared to a weld. This effect might be important and should be studied further.
- The Weibull exponent m shows large influence on the result from the MBL model, as long as the difference between weld and weld simulation is not too large. It is then $m=20$ which is the most critical case.
- Geometry constraint should make weld simulated testing more brittle than testing of real welds. The MBL simulations with different level of T-stress confirm this. The effect does however disappear for the 3D model of a weld simulated specimen, due to its small size. The ligament on the test specimen is too short and influences therefore the stress field, even though it is valid from the requirement in ASTM E-1921 [21]. This only occur for $m=10$.

When all the different variables are studied, there are only the size and the mismatch effects which contribute significantly, to make a weld simulated specimen more brittle than a weld. To avoid that a weld is more brittle than a weld simulated specimen, three requirements are suggested:

- At least 10% overmatch in HAZ compared to BM.
- Not more than 10% undermatch in HAZ compared to WM.
- Maximal brittle HAZ thickness of 0.5 mm .

With these requirements fulfilled a conservative and general relationship between CTOD in a weld and CTOD in a weld simulated specimen can be proposed:

$$
\begin{array}{ll}
\delta_{w}=\delta_{w s} & \delta_{w s} \in[0,0.05\rangle \\
\delta_{w}=20 \delta_{w s}^{2} & \delta_{w s} \in[0.05,0.1\rangle
\end{array}
$$

This design line is a first proposal and has large potential for improvements. Some effects that are not included are, general hardening and Lüder band in WM and BM. It is also important to remember that it is based on the Weibull stress as an fracture parameter, and the limitations this implies.

The design line is taking the worst effects from both $m=10$ and $m=20$ into account. $m=20$ is most critical regarding size and mismatch, while $m=10$ is most critical for geometry constraint. Combining these effects may give a less strict design line.

In the Arctic Materials research project it has been proposed that a structure needs to withstand a CTOD of 0.1 mm . This implies, from the design line, that the minimum allowed CTOD in a weld simulated specimen is 0.07 mm .

10 Suggestions for future work

This master thesis has several limitations that is possible to study further:

- The HAZ can be made more complex. This is done by including several of the microstructures in the HAZ. In the model used in this thesis this is easy to implement. The calculation of the Weibull stress becomes however more complex. This is because the Weibull parameter σ_{u} needs to be calculated for the different microstructures, to be able to compare them. Material curves for all the different microstructures need to be established as well.
- General hardening reduces the CTOD ratio between the two models. This effect is not studied thoroughly in this thesis, and could be investigated in more detail.
- The parameter study performed here is very general, real materials and welds would probably have a larger difference in critical CTOD. For instance the Lüder band might have big influence. The design line proposed here might thus be too conservative.
- The design line made is very general and applicable for most cases. Some special lines might be established as well, but with more strict requirements.
- The worst sides of both $m=10$ and $m=20$ is taken into account in the design line, this makes the line very conservative. It might be possible to establish a less strict design line if this effect was studied in more detail.

11 Bibliography

[1] Artic Materials. www.sintef.no/projectweb/arctic-materials/task-descriptions/, 10/11 2011.
[2] E. Østby. Personal conversation, 032012.
[3] O.M. Akselsen E. Østby and C. Thaulow. Low temperature toughness in SA welding of 420 MPa steel. 2011. The 21st ISOPE Conf., Maui, USA, June 19-24.
[4] E. Østby C. Thaulow and O.M. Akselsen. Fracture toughness scatter and effect of constraint in weld thermal simulated HAZ microstructures at $-60^{\circ} \mathrm{c}$. 2011. The 21st ISOPE Conf., Maui, USA, June 19-24.
[5] E. Østby G.T Kolstad O.M. Akselsen C. Thaulow and M. Hauge. Comparison of fracture toughness in real weld and thermally simulated CGHAZ of a 420 MPa rolled plate. 2012.
[6] G.T Kolstad. FEM modeling of weldments, 2011. NTNU.
[7] Ø. Ranestad. The effect of strength mismatch and local geometry on the brittle behaviour of steel weldments. PhD thesis, NTNU, 1998.
[8] E. Zimmermann. FE modelling of local stress level i second phase particles in steel. Bachlor's Thesis, 2011.
[9] T. L. Anderson. Fracture mechanics. CRC Press Taylor \& Francis Group, 3rd edition, 2005.
[10] R. C. Hibbeler. Mechanics of materials. Prentice Hall College Div, 4th edition, 1999.
[11] F. M. Beremin. A local criterion for clevage fracture of nuclerar pressure vessel of steel, volume 14 A. Met. Trans. A, 1983.
[12] E. Østby. State of the art of models and treatement of brittle fracture in steels. Technical report, SINTEF, 2008.
[13] J. R. Low. volume 46A. Trans. AMS, 1945. (Taken from Østby [1998]).
[14] Procedure to measure and calculate material parameters for the local approach to fracture using notched tensile specimens. ESIS P6-94, 1998.
[15] G. Bernauer W. Brocks and W. Schmitt. Modification of the beremin model for clavage fracture in the transition region of a ferritic steel. Engineering Fracture Mechanics, 64:305-325, 1999.
[16] C. Sainte-Catherine M. Di Fant B. Duquaire and P. Balladon. Prediction of toughness scatter in heat affected zones with local approach. Engineering Fracture Mechanics, 46:115-125, 1993.
[17] C. Ruggieri. An engineering methodology to assess effect of weld strength mismatch on clevage fracture toughness using the Weibull stress approach. International Journal of Fracture, 164:231-252, 2010.
[18] C. Ruggieri and R. H. Dodds jr. A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach. International Journal of Fracture, 79:309-340, 1996.
[19] British Standard. Fracture mechanics toughness tests, 2005. BS 7448.
[20] American Society for Testing and Materials. Standard test method for measurement of fracture toughness, 2005. ASTM E-1820, Philadelphia.
[21] American Society for Testing and Materials. Standard test method for determination of reference temperature, T_{0}, for ferritic steels in the transition range, 2008. ASTM E-1921, Philadelphia.
[22] K. Wallin. Master curve analysis of the "Euro" fracture toughness dataset. Engineering Fracture Mechanics, 69, 2002.
[23] K. Easterling. Introduction to the physical metallurgy of welding. Butterworths, 1983.
[24] R.D.Cook D.S.Malkus M.E.Plesha and R.J.Witt. Concepts and Applications of Finite Element Analysis. John Wiley, 4th edition, 2002.
[25] Abaqus documentation. https://www.sharcnet.ca/software/abaqus610/documentation/docs/v6.10/index.html, 20/9 2011.
[26] E. Østby. Prediction of brittle fracture in steel based on local fracture criteria. Technical report, 1998.
[27] D. Rosenthal and R. Schmerber. Thermal study of arc welding, volume 17. Welding J, 1938.

Appendix A Curves

All the simulations in the parameter study are plotted in this appendix, for both $m=$ 10 and $m=20$. The Figures have equal T-stress, position of crack, size of HAZ and mismatch level in WM. Type of material and mismatch level in HAZ vary in the figures. The labels indicate mismatch level in HAZ, and whether the material type is real or theoretic. All the figures have the same scale at the axes, this causes some strange plots.

Figure A.1: Crack at FL, HAZ width 0.25 mm , w00, $T=0$.

Figure A.2: Crack at FL, HAZ width 0.25 mm , w00, $T=-0.25 \sigma_{0.2}$.

Figure A.3: Crack at FL, HAZ width 0.25 mm , w00, $T=-0.5 \sigma_{0.2}$.

Figure A.4: Crack at FL, HAZ width $0.25 \mathrm{~mm}, \mathrm{w} 10, T=0$.

Figure A.5: Crack at FL, HAZ width 0.25 mm , w10, $T=-0.25 \sigma_{0.2}$.

Figure A.6: Crack at FL, HAZ width 0.25 mm , w10, $T=-0.5 \sigma_{0.2}$.

Figure A.7: Crack at FL, HAZ width 0.25 mm , w20, $T=0$.

Figure A.8: Crack at FL, HAZ width 0.25 mm , w20, $T=-0.25 \sigma_{0.2}$.

Figure A.9: Crack at FL, HAZ width 0.25 mm , w20, $T=-0.5 \sigma_{0.2}$.

Figure A.10: Crack at FL, HAZ width 0.5 mm , w00, $T=0$.

Figure A.11: Crack at FL, HAZ width 0.5 mm , w00, $T=-0.25 \sigma_{0.2}$.

Figure A.12: Crack at FL, HAZ width 0.5 mm , w00, $T=-0.5 \sigma_{0.2}$.

A.13a: $m=10$.

A.13b: $m=20$.

Figure A.13: Crack at FL, HAZ width 0.5 mm , w10, $T=0$.

Figure A.14: Crack at FL, HAZ width 0.5 mm , w10, $T=-0.25 \sigma_{0.2}$.

Figure A.15: Crack at FL, HAZ width 0.5 mm , w10, $T=-0.5 \sigma_{0.2}$.

Figure A.16: Crack at FL, HAZ width $0.5 \mathrm{~mm}, \mathrm{w} 20, T=0$.

Figure A.17: Crack at FL, HAZ width 0.5 mm , w20, $T=-0.25 \sigma_{0.2}$.

Figure A.18: Crack at FL, HAZ width 0.5 mm , w20, $T=-0.5 \sigma_{0.2}$.

A.19a: $m=10$.

A. $19 \mathrm{~b}: m=20$.

Figure A.19: Crack at FL, HAZ width 0.5 mm , w30, $T=0$.

Figure A.20: Crack at FL, HAZ width $0.5 \mathrm{~mm}, \mathrm{w} 40, T=0$.

A.21a: $m=10$.

A.21b: $m=20$.

Figure A.21: Crack at FL, HAZ width $1 \mathrm{~mm}, \mathrm{w} 00, T=0$.

Figure A.22: Crack at FL, HAZ width 1 mm , w00, $T=-0.25 \sigma_{0.2}$.

Figure A.23: Crack at FL, HAZ width 1 mm , w00, $T=-0.5 \sigma_{0.2}$.

Figure A.24: Crack at FL, HAZ width $1 \mathrm{~mm}, \mathrm{w} 10, T=0$.

Figure A.25: Crack at FL, HAZ width 1 mm , w10, $T=-0.25 \sigma_{0.2}$.

Figure A.26: Crack at FL, HAZ width $1 \mathrm{~mm}, \mathrm{w} 10, T=-0.5 \sigma_{0.2}$.

Figure A.27: Crack at FL, HAZ width 1 mm , w20, $T=0$.

Figure A.28: Crack at FL, HAZ width 1 mm , w20, $T=-0.25 \sigma_{0.2}$.

A.29a: $m=10$.

A.29b: $m=20$.

Figure A.29: Crack at FL, HAZ width $1 \mathrm{~mm}, \mathrm{w} 20, T=-0.5 \sigma_{0.2}$.

Figure A.30: Crack in middle of HAZ, HAZ width 0.25 mm , w00, $T=0$.

A.31a: $m=10$.

A.31b: $m=20$.

Figure A.31: Crack in middle of HAZ, HAZ width 0.25 mm , $\mathrm{w} 00, T=-0.25 \sigma_{0.2}$.

Figure A.32: Crack in middle of HAZ, HAZ width 0.25 mm , w00, $T=-0.5 \sigma_{0.2}$.

Figure A.33: Crack in middle of HAZ, HAZ width 0.25 mm , w10, $T=0$.

Figure A.34: Crack in middle of HAZ, HAZ width 0.25 mm , w10, $T=-0.25 \sigma_{0.2}$.

A.35a: $m=10$.

A.35b: $m=20$.

Figure A.35: Crack in middle of HAZ, HAZ width 0.25 mm , w10, $T=-0.5 \sigma_{0.2}$.

Figure A.36: Crack in middle of HAZ, HAZ width $0.25 \mathrm{~mm}, \mathrm{w} 20, T=0$.

Figure A.37: Crack in middle of HAZ, HAZ width 0.25 mm , w20, $T=-0.25 \sigma_{0.2}$.

Figure A.38: Crack in middle of HAZ, HAZ width 0.25 mm , w20, $T=-0.5 \sigma_{0.2}$.

Figure A.39: Crack in middle of HAZ, HAZ width $0.5 \mathrm{~mm}, \mathrm{w} 00, T=0$.

Figure A.40: Crack in middle of HAZ, HAZ width 0.5 mm , w00, $T=-0.25 \sigma_{0.2}$.

A.41a: $m=10$.

A. $41 \mathrm{~b}: m=20$.

Figure A.41: Crack in middle of HAZ, HAZ width 0.5 mm , w00, $T=-0.5 \sigma_{0.2}$.

Figure A.42: Crack in middle of HAZ, HAZ width 0.5 mm , w10, $T=0$.

Figure A.43: Crack in middle of HAZ, HAZ width $0.5 \mathrm{~mm}, \mathrm{w} 10, T=-0.25 \sigma_{0.2}$.

Figure A.44: Crack in middle of HAZ, HAZ width 0.5 mm , w10, $T=-0.5 \sigma_{0.2}$.

A. $45 \mathrm{a}: m=10$.

A. $45 \mathrm{~b}: m=20$.

Figure A.45: Crack in middle of HAZ, HAZ width 0.5 mm , w20, $T=0$.

Figure A.46: Crack in middle of HAZ, HAZ width $0.5 \mathrm{~mm}, \mathrm{w} 20, T=-0.25 \sigma_{0.2}$.

Figure A.47: Crack in middle of HAZ, HAZ width 0.5 mm , w20, $T=-0.5 \sigma_{0.2}$.

Figure A.48: Crack in middle of HAZ, HAZ width 0.5 mm , w30, $T=0$.

Figure A.49: Crack in middle of HAZ, HAZ width $0.5 \mathrm{~mm}, \mathrm{w} 40, T=0$.

Figure A.50: Crack in middle of HAZ, HAZ width $1 \mathrm{~mm}, \mathrm{w} 00, T=0$.

Figure A.51: Crack in middle of HAZ, HAZ width 1 mm , w00, $T=-0.25 \sigma_{0.2}$.

Figure A.52: Crack in middle of HAZ, HAZ width 1 mm , w00, $T=-0.5 \sigma_{0.2}$.

A.53a: $m=10$.

A.53b: $m=20$.

Figure A.53: Crack in middle of HAZ, HAZ width $1 \mathrm{~mm}, \mathrm{w} 10, T=0$.

Figure A.54: Crack in middle of HAZ, HAZ width 1 mm , w10, $T=-0.25 \sigma_{0.2}$.

Figure A.55: Crack in middle of HAZ, HAZ width 1 mm , w10, $T=-0.5 \sigma_{0.2}$.

Figure A.56: Crack in middle of HAZ, HAZ width 1 mm , w20, $T=0$.

Figure A.57: Crack in middle of HAZ, HAZ width $1 \mathrm{~mm}, \mathrm{w} 20, T=-0.25 \sigma_{0.2}$.

Figure A.58: Crack in middle of HAZ, HAZ width 1 mm , w20, $T=-0.5 \sigma_{0.2}$.

Appendix B First Python code

This Python code makes the basis model. It first makes the model then partition, seed and mesh it:

```
from abaqus import *
from abaqusConstants import *
backwardCompatibility.setValues(includeDeprecated=True, reportDeprecated=
    False)
import sketch
import part
import fields
import mesh
from part import *
from material import *
from section import *
from assembly import *
from step import *
from interaction import *
from load import *
from mesh import *
from job import *
from sketch import *
from visualization import *
from connectorBehavior import *
#Input:
A=0.5 #Length of HAZ on crack
###For s=0.01 and Z=1.92
N=int(192) #Number of elements along one edge
n=int(5)
S=0.01
Z=N*S
    approximately 1.92mm
###
B}=2*\textrm{Z}-\textrm{A}\quad\mathrm{ #Length of HAZ on ligament
r=5000 #Radius MBL
C=Z #Half thickness of fine region
R=0.01 #Radius of crack tip
37
38 ##PART:
39
40 #Make model: MBLmodell
MBLmodel = mdb.Model(name='Model-1')
#Make sketch of geometry
rr=sqrt(r**2-R**2)
MBLsketch = MBLmodel.ConstrainedSketch(name='MBLs', sheetSize= 2*r)
MBLsketch.Arc3Points(point1 = (-rr, R), point2=(r,0), point3=(0, r))
MBLsketch.Arc3Points(point1=(-rr,-R), point2=(r,0), point3=(0, -r))
MBLsketch.Arc3Points(point1 = (0,R), point2=(0,-R), point3=(R, 0))
MBLsketch.Line(point1=(-rr,R), point2=(0,R))
```

```
MBLsketch.Line(point1=(-rr,-R), point2=(0,-R))
#Make part from sketch
MBLpart = MBLmodel.Part(name='MBLp', dimensionality=TWO_D_PLANAR, type=
    DEFORMABLE_BODY)
MBLpart.BaseShell(sketch=MBLsketch)
##Partition: Generate lines for meshing:
# The mesh consist of five zones
# The firs zone is the area around the crack that have a circular mesh in
    front of the crack tip and a square mesh behind. This zone has a radius
    defined by the variabel "le" and starts form zero.
# The second zone is the zone where the square mesh behind the crack
    becomes a circular mesh. This zone is defined from "le" to a square
    around the crack with size "Si" times "Si"
# The third zone is the square zone that goes form }x=-A\mathrm{ to }x=B\mathrm{ and from }y
        C to y=C
# The fourth zone is a transition zone from the fine square mesh to the
        coarse circular. The zone is square.
# The fifth zone is the circular mesh out to the surface of the model.
#Crack tip area, zone one and two
CRACKTIPsketch = MBLmodel.ConstrainedSketch(name='CRACKTIP', sheetSize=2*r)
                                    #Define sketch
Si=0.05 #size of transition sone to square mesh, zone two.
ant=int(Si/S) #half the number of elements along a side of zone two
b}=\textrm{pi}*\textrm{R}/(\mathrm{ ant*4) #element size at crack tip
le=0
for i in range(ant):
    bn=pi*(R+le)/(ant*4) #element size outwards
    le=le+bn #length of transition zone to round mesh
biasratio=bn/b #Bias ratio for meshing
#lines around zone one
CRACKTIPsketch.Line(point1 = (0,R+le), point2=(-le,R+le))
CRACKTIPsketch.Line(point1=(-le,R), point2=(-le,R+le))
CRACKTIPsketch.Line (point1 = (0,-R-le), point2=(-le,-R-le))
CRACKTIPsketch.Line (point1=(-le, -R), point2=(-le,-R-le))
#CRACKTIPsketch.Arc3Points(point1=(0,R+le), point2=(0,-R-le), point3=(R+le,
    0))
xone=R+le
yone=0
xtwo=(R+le)/sqrt(2)
ytwo=(R+le)/sqrt(2)
xthree=R+le
ythree=0
xfour=(R+le)/sqrt(2)
yfour=-(R+le)/sqrt(2)
for i in range(ant):
        xstart=R*\operatorname{cos}((i+1)*pi/(ant*4))
        ystart=R*\operatorname{sin}((i+1)*pi/(ant*4))
```

```
    xsi=Si
    ysi=(i+1)*S
    xend=xstart+le *(xsi-xstart)/sqrt((xsi-xstart) **2+(ysi-ystart) **2)
    yend=ystart+le*(ysi-ystart)/sqrt((xsi-xstart) **2+(ysi-ystart) **2)
    CRACKTIPsketch.Line(point1=(xstart, ystart), point2=(xend,yend))
    CRACKTIPsketch.Line(point1=(xone, yone), point2=(xend,yend))
    xone=xend
    yone=yend
    xstart=R*\operatorname{cos}((i+1+ant)*pi/(ant*4))
    ystart=R*sin}((i+1+ant)*pi/(ant*4)
    x Si=Si-(i+1)*S
    ysi=Si
    xend=xstart+le*(xsi-xstart)/sqrt((xsi-xstart) **2+(ysi-ystart) **2)
    yend=ystart+le*(ysi-ystart)/sqrt((xsi-xstart)**2+(ysi-ystart) **2)
    CRACKTIPsketch.Line(point1=(xstart, ystart), point2=(xend,yend))
    CRACKTIPsketch.Line (point1=(xtwo,ytwo), point2=(xend,yend))
    xtwo=xend
    ytwo=yend
    xstart=R*\operatorname{cos}((i+1)*pi/(ant*4))
    ystart=-R*sin ((i+1)*pi/(ant*4))
    xsi=Si
    ysi=-(i+1)*S
    xend=xstart+le *(xsi-xstart)/sqrt((xsi-xstart) **2+(ysi-ystart) **2)
    yend=ystart+le*(ysi-ystart)/sqrt((xsi-xstart)**2+(ysi-ystart) **2)
    CRACKTIPsketch.Line(point1=(xstart,ystart), point2=(xend,yend))
    CRACKTIPsketch.Line(point1=(xthree, ythree), point2=(xend,yend))
    xthree=xend
    ythree=yend
    xstart=R*\operatorname{cos}((i+1+ant)*pi/(ant*4))
    ystart=-R*sin((i+1+ant)*pi/(ant*4))
    xsi=Si-(i+1)*S
    ysi=-Si
    xend=xstart+le*(xsi-xstart)/sqrt((xsi-xstart) **2+(ysi-ystart) **2)
    yend=ystart+le*(ysi-ystart)/sqrt((xsi-xstart)**2+(ysi-ystart) **2)
            CRACKTIPsketch.Line(point1=(xstart, ystart), point2=(xend,yend))
    CRACKTIPsketch.Line(point1=(xfour, yfour), point2=(xend,yend))
    xfour=xend
    yfour=yend
CRACKTIPsketch.Line(point1=(R,0), point2=(R+le,0))
#lines in front of crack, circular through zone one.
#for i in range(2*ant):
# xstart=R*\operatorname{cos}((i+1)*pi/(ant*4)
# xend=
xtemp=R*\operatorname{cos}((i+1)*pi/(ant*4)
# CRACKTIPsketch.Line(point1=(R*\operatorname{cos}((i+1)*pi/(ant*4)),R*\operatorname{sin}((i+1)*pi/(
        ant*4))), point2=((R+le)*\operatorname{cos}((i+1)*pi/(ant*4)),(R+le) *sin ((i+1)*pi/(ant
        *4)) ))
```



```
        ant*4))), point2=((R+le)*\operatorname{cos}((i+1)*pi/(ant*4)),(-(R+le)*sin ((i+1)*pi/(
        ant*4))))(
148 #box around zone two
```

147

```
CRACKTIPsketch.Line(point1=(-Si,R), point2=(-Si,Si))
CRACKTIPsketch.Line(point1=(Si,Si), point2=(Si,-Si))
CRACKTIPsketch.Line(point1=(-Si,-Si), point2=(-Si,-R))
CRACKTIPsketch.Line (point1=(-A,Si), point2=(B,Si))
CRACKTIPsketch.Line(point1=(-A,-Si), point2=(B,-Si))
#Lines throught zone two behind crack
CRACKTIPsketch.Line (point1=(-le,R+le), point2=(-Si,Si))
CRACKTIPsketch.Line (point1=(-le,-R-le), point2=(-Si,-Si))
#Lines throught zone one and two in front of crack
CRACKTIPsketch.Line (point1 = (R,0), point2=(Si,0))
CRACKTIPsketch.Line (point1 = (0,R), point2 = (0,Si))
CRACKTIPsketch.Line (point1 = (0,-R), point2=(0,-Si))
CRACKTIPsketch.Line(point1 = ((R)/sqrt(2),(R)/sqrt (2)), point2=(Si,Si))
CRACKTIPsketch.Line(point1 = ((R)/sqrt(2),-(R)/sqrt(2)), point2=(Si,-Si))
MESHpartiton = MBLpart. PartitionFaceBySketch(faces=MBLpart.faces, sketch=
    CRACKTIPsketch) #Partiion faces by sketch, zone one and two
#Lines between fine and coarse mesh, zone four
MESHsketch = MBLmodel. ConstrainedSketch (name='MESH', sheetSize= 2*r)
    #Define sketch
k=int(N) #Old number of nodes
Ss=S #Old element size
Aa=A #Old position A
Bb=B #Old position B
Cc=C #Old position C
for i in range (n):
    l=int(k/2) #New number of nodes
    SS=Ss*2 #New element size
    AA=Aa+SS #New length A
    aa=Aa+Ss #Between new and old A
    BB=Bb+SS #New length B
    bb=Bb+Ss #Between new and old B
    CC=Cc+SS #New length C
    cc=Cc+Ss #Between new and old C
    LINES = ((-AA,-C), (-AA,-R),(-AA,-R), (-AA,C), (BB,-C), (BB,C),(-A,CC), (B,CC)
        ,(-A,-CC),(B,-CC)) #Position for main lines, exept first
    for p in range(5):
        MESHsketch.Line(point1=LINES[int(2*p)], point2=LINES[int((p*2+1))])
            #Make main lines, exept first
        for j in range (k):
        js=Ss+(j-l)*SS
        JS=(1+j-l)*SS
        cJ=-A+Ss+j*SS
        CJ=-A+j*SS
        JSA=JS
        jsA=js
        if i==0:
            if j==l:
            JSA=(1+j-l)*SS+Ss/2 # Get better element shape at crack
        elif j==l-2:
            JSA=(1+j-l)*SS-Ss/2
        elif i==1:
        if j==l:
```

$$
\mathrm{jsA}=\mathrm{S} s+(\mathrm{j}-1) * \mathrm{SS}+\mathrm{Ss} / 4
$$

 elif \(\mathrm{j}==1-1\) :
 \(\mathrm{jsA}=\mathrm{Ss}+(\mathrm{j}-\mathrm{l}) * \mathrm{SS}-\mathrm{Ss} / 4\)
 LINES \(=((-A a, j s A),(-a a, j s A),(-A a, J S),(-A A, J S A),(b b, j s),(B b, j s),(B b\),

CJ,-Cc),(CJ,-CC))\#Lines normal to main line
for p in range (len(LINES)/2):
MESHsketch. Line (point1=LINES[int ($2 * \mathrm{p}$)], point2=LINES [int ($(\mathrm{p}$
*2+1))]
for j in range (1):
\#Lines parallel to main line
MESHsketch. Line (point1 $=(-\mathrm{A}+\mathrm{j} * 2 * \mathrm{SS}, \mathrm{CC})$, point2 $=(-\mathrm{A}+\mathrm{Ss}+\mathrm{j} * 2 * \mathrm{SS}, \mathrm{cc})$)
MESHsketch. Line (point $1=(-A+2 * S S+j * 2 * S S, C C)$, point $2=(-A+3 * S s+j * 2 * S S$,
cc))
MESHsketch. Line (point1 $=(-A+S s+j * 2 * S S, c c)$, point $2=(-A+3 * S s+j * 2 * S S, c c$
))
MESHsketch. Line (point1 $=(-\mathrm{A}+\mathrm{j} * 2 * \mathrm{SS},-\mathrm{CC})$, point2 $=(-\mathrm{A}+\mathrm{Ss}+\mathrm{j} * 2 * \mathrm{SS},-\mathrm{cc})$)
MESHsketch. Line (point1 $=(-A+2 * S S+j * 2 * S S,-C C)$, point $2=(-A+3 * S s+j * 2 * S S$
, - cc))
MESHsketch. Line (point1 $=(-A+S s+j * 2 * S S,-c c), \quad$ point $2=(-A+3 * S s+j * 2 * S S,-$
cc))
for j in range (1/2):
\#Sloping lines
if $\mathrm{i}==1$:
if $\mathrm{j}==0$:
MESHsketch. Line (point1 $=(-\mathrm{aa}, \mathrm{Ss}+\mathrm{Ss} / 4)$, point2 $=(-\mathrm{aa}, 3 * S s+\mathrm{j} * 2 * S S)$)
MESHsketch. Line (point1 $=(-a a,-S s-S s / 4)$, point $2=(-a a,-3 * S s-j * 2 * S S$
))
else:
MESHsketch. Line (point1 $=(-$ aa, $S s+j * 2 * S S)$, point2 $=(-a a, 3 * S s+j * 2 * S S$
))
MESHsketch. Line (point1 $=(-$ aa,$-S s-j * 2 * S S)$, point2 $=(-a a,-3 * S s-j * 2 *$
SS))
else:
MESHsketch. Line (point1 $=(-\mathrm{aa}, \mathrm{Ss}+\mathrm{j} * 2 * S S)$, point2 $=(-\mathrm{aa}, 3 * S s+j * 2 * S S)$)
MESHsketch. Line (point1 $=(-a a,-S s-j * 2 * S S)$, point $2=(-a a,-3 * S s-j * 2 * S S$
))
MESHsketch. Line (point1 $=(-A A, 2 * S S+j * 2 * S S)$, point2 $=(-a a, 3 * S s+j * 2 * S S)$)
MESHsketch. Line (point1 $=(-A A,-2 * S S-j * 2 * S S)$, point $2=(-a a,-3 * S s-j * 2 * S S$
))
if $\mathbf{j}==0$: \#Stop loap lines from going into the crack
if $\mathrm{i}==1$:
MESHsketch. Line (point1 $=(-A A, R), \quad$ point2 $=(-a a, S s+S s / 4)$)
MESHsketch. Line (point1 $=(-\mathrm{AA},-\mathrm{R})$, point2 $=(-\mathrm{aa},-\mathrm{Ss}-\mathrm{Ss} / 4)$)
else:
MESHsketch. Line (point1 $=(-A A, R)$, point2 $=(-a a, S s+j * 2 * S S))$
MESHsketch. Line (point1 $=(-A A,-R)$, point $2=(-a a,-S s-j * 2 * S S))$
else:
MESHsketch. Line (point1 $=(-A A, j * 2 * S S), \quad$ point2 $=(-a a, S s+j * 2 * S S))$
MESHsketch. Line (point1 $=(-A A,-j * 2 * S S), \quad$ point2 $=(-a a,-S s-j * 2 * S S))$
MESHsketch. Line (point1 $=(\mathrm{bb}, \mathrm{Ss}+\mathrm{j} * 2 * \mathrm{SS})$, point2 $=(\mathrm{bb}, 3 * S \mathrm{~S}+\mathrm{j} * 2 * \mathrm{SS})$)
MESHsketch. Line (point1 $=(\mathrm{bb},-\mathrm{Ss}-\mathrm{j} * 2 * S S)$, point2 $=(\mathrm{bb},-3 * S s-j * 2 * S S)$)

```
MESHsketch.Line (point1 =(BB, 2*SS+j * 2*SS), point2=(bb, 3*Ss+j * 2*SS))
MESHsketch.Line (point1 = (BB, -2*SS-j * 2*SS), point2=(bb, -3*Ss-j * 2*SS))
MESHsketch.Line (point1=(BB, j*2*SS), point2=(bb,Ss+j * 2*SS))
MESHsketch.Line(point1=(BB, - j *2*SS), point2=(bb, -Ss-j*2*SS))
Aa=AA #Update Aa
Bb=BB #Update Bb
Cc=CC #Update Cc
Ss=SS #Update Ss
k=int(l) #Update k
MESHsketch.Line (point1=(-A, -CC), point2=(-A,CC))
    Inner main lines
MESHsketch.Line (point1 = (B,-CC), point2=(B,CC))
MESHsketch.Line(point1=(-AA,C), point2=(BB,C))
MESHsketch.Line (point1 = (-AA, -C), point2=(BB,-C))
MESHpartiton = MBLpart. PartitionFaceBySketch(faces=MBLpart.faces, sketch=
    MESHsketch) #Partiion faces by sketch, zone four
#Corners in the the area between fine and coarse mesh, zone four
CORNERsketch = MBLmodel.ConstrainedSketch(name='CORNER', sheetSize=2*r) #
    Define sketch
s=2*S
CORNERsketch.Line(point1 = (-A-s,C), point2=(-A-s,C+3*s)) #upper left corner
CORNERsketch.Line(point1 = (-A-3*s,C), point2=(-A-3*s,C+3*s))
CORNERsketch.Line(point1 = (-A-7*s,C), point2=(-A-7*s,C+7*s))
CORNERsketch.Line (point1 = (-A - 15*s,C), point2=(-A - 15*s,C+15*s))
CORNERsketch.Line (point1 = (-A - 31*s, C), point2=(-A-31*s,C+31*s))
CORNERsketch.Line (point1 = (-A,C+s), point2 = (-A - 3*s,C+s))
CORNERsketch.Line(point1=(-A,C+3*s), point2=(-A-3*s,C+3*s))
CORNERsketch.Line (point1=(-A,C+7*s), point2=(-A-7*s,C+7*s))
CORNERsketch.Line (point1 = (-A,C+15*s), point2=(-A - 15*s,C+15*s))
CORNERsketch.Line (point1 = (-A,C+31*s), point2=(-A - 31*s,C+31*s))
CORNERsketch.Line(point1 = (-A - 3*s,C+3*s), point2=(-A - 31*s,C+31*s))
CORNERsketch.Line (point1 = (-A - 3*s,C+s), point2=(-A-7*s,C+7/2*s))
CORNERsketch.Line (point1 = (-A - 7*s, C+7/2*s), point2=(-A-31*s,C+31/2*s))
CORNERsketch.Line (point1 = (-A-s,C+3*s), point2=(-A-7/2*s,C+7*s))
CORNERsketch.Line (point1 = (-A - 7/2*s,C+7*s), point2=(-A-31/2*s,C+31*s))
CORNERsketch.Line(point1=(B+s,C), point2=(B+s,C+3*s)) #upper right corner
CORNERsketch.Line (point1 = (B+3*s,C), point2=(B+3*s,C+3*s))
CORNERsketch.Line (point1 = (B+7*s,C), point2=(B+7*s,C+7*s))
CORNERsketch.Line (point1 = (B+15*s,C), point2=(B+15*s,C+15*s))
CORNERsketch.Line (point1 = (B+31*s,C), point2=(B+31*s,C+31*s))
CORNERsketch.Line (point1 = (B,C+s), point2=(B+3*s,C+s))
CORNERsketch.Line (point1 = (B,C+3*s), point2=(B+3*s,C+3*s))
CORNERsketch.Line (point1 = (B,C+7*s), point2=(B+7*s,C+7*s))
CORNERsketch.Line (point1 = (B,C+15*s), point2=(B+15*s,C+15*s))
CORNERsketch.Line (point1 = (B,C+31*s), point2=(B+31*s,C+31*s))
CORNERsketch.Line (point1 = (B+3*s,C+3*s), point2=(B+31*s,C+31*s))
CORNERsketch. Line (point1 = (B+3*s,C+s), point2=(B+7*s,C+7/2*s))
CORNERsketch.Line (point1 = (B+7*s,C+7/2*s), point2=(B+31*s,C+31/2*s))
CORNERsketch.Line (point1 = (B+s,C+3*s), point2=(B+7/2*s,C+7*s))
```

```
94
295
296
297
298
2 9 9
30
301
302
303
304
305
306
307
308
309
310
3 1 1
312
313
314
315
316
317
318
319
32
321
322
323
324
325
326
327
32
MESHcorner = MBLpart.PartitionFaceBySketch(faces=MBLpart.faces, sketch=
    CORNERsketch) #Partition face by sketch, zone four.
329
LINESsketch = MBLmodel.ConstrainedSketch(name='LINES',sheetSize=2*r) #
        Define sketc
s=2*S
for i in range (7):
    LINESsketch.Line(point1 = (-A-31*s,16*s*(i)), point2=(-r* cos((i)*pi/32)
        ,r*sin((i)*pi/32)))
    LINESsketch.Line(point1 = (B+31*s,16*s*(i)), point2=(r*cos((i)*pi/32),r
        *sin((i)*pi/32)))
        LINESsketch.Line(point1 = (-A-31*s, -16*s*(i)), point2=(-r*\operatorname{cos ((i)*pi}
        /32),-r*sin((i)*pi/32)))
        LINESsketch.Line(point1 = (B+31*s, -16*s*(i)), point2 = (r*cos((i)*pi/32)
        , -r*sin((i)*pi/32)))
for i in range (7):
    LINESsketch.Line(point1 = (-A+s*16*(i) , C+31*s), point2=(-r* cos ((i+10)*
        pi/32),r*sin((i+10)*pi/32)))
```change the edges which will hav more elements
MBLpart. seedEdgeByBias (end2Edges=MBLmesh, minSize=ratio *pi*(R+le)/(ant*4),
 maxSize \(=\) ratio \(* S\), constraint=FIXED)
404
 05 MBLmesh=MBLpart. edges. findAt ((\(-\mathrm{Si}+0.000002, \mathrm{Si}-0.000002,0),),((-\mathrm{Si}\)
 \(+0.000002,-\mathrm{Si}+0.000002,0),()\) \#Seed digonal lines in left side
 of zone two by bias
 ratio \(=\) sqrt \(((\mathrm{Si}-\mathrm{le}-\mathrm{R}) * * 2+(\mathrm{Si}-\mathrm{le}) * * 2) /(\mathrm{Si}-\mathrm{le}-\mathrm{R})\) \#Ratio
 to get correct number of elements
 MBLpart. seedEdgeByBias (end1Edges=MBLmesh, minSize=ratio \(* \mathrm{pi} *(\mathrm{R}+\mathrm{le}) /(\operatorname{ant} * 4)\),
 maxSize=ratio \(* S\), constraint=FIXED)
408
409
 \#\#Seed zone one:
 for \(i\) in range (\(4 *\) ant +1):
 MBLmesh=MBLpart. edges.findAt \((((\mathrm{R}+0.000002) * \cos ((\mathrm{i}-2 * \operatorname{ant}) * \mathrm{pi} /(\operatorname{ant} * 4)),(\mathrm{R}\)
 \(+0.000002) * \sin ((\mathrm{i}-2 * \mathrm{ant}) * \mathrm{pi} /(\operatorname{ant} * 4)), 0)),\),) \#Seed by bias the
 cicular part of zone one
 MBLpart. seedEdgeByBias (end1Edges=MBLmesh, number=ant-1, ratio=biasratio,
 constraint=FIXED)
 MBLmesh=MBLpart.edges.findAt ((\((R+0.000002,0,0),),((0, R+0.0002,0)),,((0,-R\)
 \(-0.0002,0),((R, R, 0)),,((R,-R, 0)),\),
 MBLpart.seedEdgeByBias (end1Edges=MBLmesh, number=ant -1 , ratio=biasratio,
 constraint=FIXED)
 MBLmesh=MBLpart.edges.findAt ((\(-0.000002, R, 0),),((-0.000002,-R, 0)),\),
 \#Seed fist line at upper and lower side of the crack by bias
MBLpart.seedEdgeByBias (end2Edges=MBLmesh, number=ant, ratio=biasratio,
 constraint=FIXED)
 MBLmesh=MBLpart.edges.findAt (((-0.000002,R+le, 0) ,) , (\(-0.000002,-R-l e, 0)),\),
 \#Seed box around zone one by number
MBLpart. seedEdgeByBias (end1Edges=MBLmesh, number=ant, ratio=biasratio,
 constraint=FIXED)
 MBLmesh=MBLpart.edges.findAt ((\((-\mathrm{le}, \mathrm{R}+0.000002,0),),((-\mathrm{le},-\mathrm{R}-0.000002,0)),\),
 \#Seed box around zone one by number
MBLpart.seedEdgeByBias (end1Edges=MBLmesh, number=ant -1 , ratio=biasratio,
 constraint=FIXED)
\#\# Sees zone two:
MBLmesh=MBLpart.edges.findAt (((0, Si-0.005,0))) ((\(0,-\mathrm{Si}+0.005,0),),((\mathrm{Si}\)
 \(-0.005,0,0)\), ,) \#Seed normal and parallel lines in zone two
 by bias
 MBLpart. seedEdgeByBias (end1Edges=MBLmesh, minSize=pi*(R+le)/(ant*4),
 maxSize=S, constraint=FIXED)
MBLmesh=MBLpart.edges.findAt ((\((-1 \mathrm{e}-0.000002, R, 0),),((-\mathrm{le}-0.000002,-\mathrm{R}, 0)),\),
 \#Seed crack lines in zone two by bias
ratio \(=(\mathrm{Si}-\mathrm{le}) /(\mathrm{Si}-\mathrm{le}-\mathrm{R}) \quad\) \#Ratio to get correct
 number of elements
 9 MBLmesh=MBLpart.edges.findAt (((Si-0.005,Si-0.005,0) ,) , ((Si-0.005,-Si
 \(+0.005,0)\), , \#Seed digonal lines in rigth side ofzone two
 by bias, but free
```

MBLpart.seedEdgeByBias(end1Edges=MBLmesh, minSize=sqrt(2)*pi*(R+le)/(ant*4)
, maxSize=sqrt(2)*S, constraint=FREE)
4 1 1
12 MBLmesh=MBLpart.edges.findAt(((-Si,R+0.000002,0),),((-Si,-R-0.000002,0) ,),)
\#Seed outer edges in the left par of zone two by number
MBLpart.seedEdgeByNumber(edges=MBLmesh, number=ant-1, constraint=FIXED)
MBLmesh=MBLpart.edges.findAt (((0.000002,Si,0) ,),((Si ,R+0.000002,0) ,)
,((0.000002,-Si,0) ,) ,((Si,-R-0.000002,0) ,) ,((-0.000002,Si,0) ,)
,((-0.000002,-Si,0),),)\#Seed outer edges in the rigth par of zone two by number
MBLpart.seedEdgeByNumber(edges=MBLmesh, number=ant, constraint=FIXED)

## Seed zone three

MIDDLEmesh=MBLpart.edges.findAt(((-A+0.005,R,0) ,) ,((-A+0.005,-R,0) ,) ,((-A
+0.005,Si,0) ,) ,((-A+0.005,-Si,0) ,) ,((B-0.005,Si,0),),((B-0.005,-Si,0) ,)
,)
MBLpart.seedEdgeBySize(edges=MIDDLEmesh, size=S, constraint=FIXED)
\#Seed the lines which goes through zone three
\#bug fixing for two lines in zone one and two:
\#MBLmesh=MBLpart.edges.findAt(((Si-0.000002,- Si +0.000002,0) ,) ,)
\#MBLpart.seedEdgeByBias (end2Edges=MBLmesh, minSize=pi*(R+le) / (ant*4),
maxSize=S, constraint=FREE)
\#MBLmesh=MBLpart.edges.findAt(((R+0.000002,-R-0.000002,0) ,),)
\#MBLpart.seedEdgeByBias(end2Edges=MBLmesh, number=ant, ratio=biasratio ,
constraint=FIXED)
\#Defines seed by bias for the lines from square mesh to boundary, zone five
for i in range (63):
MBLmesh=MBLpart.edges.findAt ((()r-0.000002)*\operatorname{cos}((i-31)*pi/32) , (r
-0.000002)*sin ((i - 31)*pi/32),0),),)
MBLpart.seedEdgeByBias(end1Edges=MBLmesh, minSize=32*S, maxSize=pi*r/32,
constraint=FIXED) \#circular lines in zone five by bias
MBLmesh=MBLpart.edges.findAt((((-r+0.002),R,0) ,),(((-r+0.002),-R,0) ,),)
MBLpart.seedEdgeByBias(end2Edges=MBLmesh, minSize=32*S, maxSize=pi*r/32,
constraint=FIXED) \#crack lines by bias
\#Define element type and region
elemType = mesh.ElemType(elemCode=CPE4, elemLibrary=STANDARD)
areaset = MBLpart.Set(name='areaset', faces=MBLpart.faces)
MBLpart.setElementType(regions=areaset,elemTypes=(elemType,))
\#Define mesh technique
MBLpart.setMeshControls(elemShape=QUAD, regions= MBLpart.faces, technique=
STRUCTURED)
\#Generate mesh
MBLpart.generateMesh(regions=MBLpart.faces)
\#\#Make assembly:
MBLassembly=MBLmodel.rootAssembly
MBLinstance=MBLassembly.Instance (name='MBLinstance', part=MBLpart, dependent
=ON)

```

\section*{Appendix C Second Python code}

This Python code uses the basis model as input. It then define boundary conditions and material regions before writing input files:
```

from abaqus import *
from abaqusConstants import *
backwardCompatibility.setValues(includeDeprecated=True, reportDeprecated=
False)
import sketch
import part
import fields
import mesh
import regionToolset
import visualization
from part import *
from material import *
from section import *
from assembly import *
from step import *
from interaction import *
from load import *
from mesh import *
from job import *
from sketch import *
from visualization import *
from connectorBehavior import *
\#Ys=((0),(0.5),(0.75),(1),(1.42),(-0.5),(-0.75),(-1),(-1.42))
\#Yss = (('0') , ('0,5') , ('0,75') ,('1') ,('1,42') ,('-0,5'),('-0,75') ,(' - 1')
,('-1,42'))
\#Ds=((0.125),(0.25),(0.375),(0.5),(0.96))
\#Dss = (('1') , ('3') ) \# ('2') , ('3') , ('4') , ('5 ') )
\#Ds=((0.12),(0.37)) \#(0.25),(0.37),(0.5),(0.96))
Ts=((0),(-0.25),(-0.5),(-0.75))
Tss=(('0') , ('mi025 ') , ('mi05') , ('mi075 '))
Temps=((466.4),(480.3),(507.84),(541.04))
Tempss=(('temp0 ') , ('tempmi30') , ('tempmi60') , ('tempmi90'))
\#for tt in range (len(Ts)): \# For making mulitple files

# for TT in range (len(Temps)):

\#Input:
Name= Tempss[TT]+'_T'+Tss[tt]
D=0.5 \#Approximately half thickness of HAZ
Y=-D \#Approximately distance form center of CRACK to center of HAZ
A=0.5 \#Length of HAZ on crack
KI_stress=42000 \#Stress intensity factor mode I
KII=0 \#Stress intensity factor mode II
T_stress=Temps[TT]*Ts[tt]\#T stress
47 \#\#\#For s=0.01 and Z=1.92
48 N=int(192) \#Number of elements along one edge
49 n=int(5) \#Number of scales from fine to coarse mesh

```
```

S=0.01 \#Element size on fine mesh
Z=N*S \#Approximately half size of fine mesh region approximately 1.92
mm

### 

B=2*Z-A \#Length of HAZ on ligament
r=5000 \#Radius MBL
C=Z \#Half thickness of fine region
R=0.01 \#Radius of crack tip
Si=0.05 \#size of transition sone to square mesh, zone two.
ant=int(Si/S) \#half the number of elements along a side of zone two
b=pi*R/(ant*4) \#element size at crack tip
le=0
for i in range(ant):
bn=pi*(R+le)/(ant*4) \#element size outwards
le=le+bn \#length of transition zone to round mesh
biasratio=bn/b \#Bias ratio for meshing
\#Update variables
MBLmodel = mdb.models['Model-1']
MBLpart = mdb.models['Model-1'].parts ['MBLp']
MBLassembly=mdb.models['Model-1'].rootAssembly
MBLinstance=mdb.models['Model-1'].rootAssembly.instances['MBLinstance']
\#Materialdefinsion
\#NM
WME=208.E3 \#Young's modulus
WMv=0.3 \#Poisson's ratio
WMtable=((461.4397891 , 0),(472.5635995 , 0.000197972))
\#BM
BME=208.E3
BMv=0.3
BMtable=((469.4515098 , 0),(481.2133191 , 0.000253191))
\#HAZ
HAZE=208.E3
HAZv=0.3
HAZtable=((462.3343537 , 0),(473.2364703 , 0.000701631))

```
\#\#Property :
\#NM
\#Material
WMmaterial = MBLmodel. Material (name= 'WM') \#Make material
WMelasticproperties = (WME, WMv) \#Make elastic table
WMmaterial.Elastic (table=(WMelasticproperties,)) \#Give elastic
 properties
WMmaterial. Plastic (table=WMtable) \#Give plastic properties
\#Section
WMsection = MBLmodel. HomogeneousSolidSection(material='WM', name='WMsec',
 thickness=1)
WMarea \(=\) MBLpart.elements.getByBoundingBox \((y M i n=-0.0001, x M a x=-A+0.0001)\),
MBLpart. elements.getByBoundingBox \((\mathrm{yMin}=-0.0001\), \(\mathrm{xMin}=\mathrm{B}-0.0001\)), MBLpart.
elements.getByBoundingBox (\(\mathrm{yMin}=\mathrm{Y}+\mathrm{D}-0.0001, \mathrm{xMin}=-\mathrm{A}-0.0001, x \operatorname{Max}=\mathrm{B}+0.0001\)) , MBLpart.elements.getByBoundingBox (yMin=C-0.0001) \(+0.0001, \mathrm{xMin}=-\mathrm{A}-0.0001, \mathrm{xMax}=\mathrm{B}+0.0001\))
HAZareaset \(=\) MBLpart. Set (name \(=\) 'HAZset', elements \(=\) HAZarea)
MBLpart. SectionAssignment (offset=0.0, offsetField=', offsetType= MIDDLE_SURFACE, region=HAZareaset, sectionName='HAZsec', thicknessAssignment=FROM_SECTION)
129
\#\#Load :
\#Surfaces
\#Find edges in the WM area to set boundary
WMedge \(=\) MBLinstance. edges.findAt \((((r * \cos ((1-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((1-0.5) * \mathrm{pi} / 32)\)
\(, 0),), \quad((\mathrm{r} * \cos ((2-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((2-0.5) * \mathrm{pi} / 32), 0)),,((\mathrm{r} * \cos\)
\(((3-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((3-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((4-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin\)
\(((4-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((5-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((5-0.5) * \mathrm{pi} / 32), 0)),,(()\)
\(\mathrm{r} * \cos ((6-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((6-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((7-0.5) * \mathrm{pi} / 32), \mathrm{r} *\)
\(\sin ((7-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((8-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((8-0.5) * \mathrm{pi} / 32), 0)\),
\(,((\mathrm{r} * \cos ((9-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((9-0.5) * \mathrm{pi} / 32), 0)),,((\mathrm{r} * \cos ((10-0.5) * \mathrm{pi}\)
\(/ 32), \mathrm{r} * \sin ((10-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((11-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((11-0.5) *\)
\(\mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((12-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((12-0.5) * \mathrm{pi} / 32), 0)),,((\mathrm{r} * \cos\)
\(((13-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((13-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((14-0.5) * \mathrm{pi} / 32), \mathrm{r} *\) \(\sin ((14-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((15-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((15-0.5) * \mathrm{pi} / 32)\) \(, 0),(),((r * \cos ((16-0.5) * \mathrm{pi} / 32), r * \sin ((16-0.5) * \mathrm{pi} / 32), 0)),,((r * \cos\) \(((17-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((17-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((18-0.5) * \mathrm{pi} / 32), \mathrm{r} *\) \(\sin ((18-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((19-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((19-0.5) * \mathrm{pi} / 32)\) \(, 0),(),(r * \cos ((20-0.5) * \mathrm{pi} / 32), r * \sin ((20-0.5) * \mathrm{pi} / 32), 0),((r * \cos\) \(((21-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((21-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((22-0.5) * \mathrm{pi} / 32), \mathrm{r} *\) \(\sin ((22-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((23-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((23-0.5) * \mathrm{pi} / 32)\) \(, 0),(),(r * \cos ((24-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((24-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos\) \(((25-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((25-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((26-0.5) * \mathrm{pi} / 32), \mathrm{r} *\) \(\sin ((26-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((27-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((27-0.5) * \mathrm{pi} / 32)\) \(, 0),(),(\mathrm{r} * \cos ((28-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((28-0.5) * \mathrm{pi} / 32), 0),((\mathrm{r} * \cos\) \(((29-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((29-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((30-0.5) * \mathrm{pi} / 32), \mathrm{r} *\) \(\sin ((30-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((31-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((31-0.5) * \mathrm{pi} / 32)\) \(, 0),),((r * \cos ((32-0.5) * \mathrm{pi} / 32), \mathrm{r} * \sin ((32-0.5) * \mathrm{pi} / 32), 0)),\),
134 WMsurfaceset \(=\) regionToolset.Region(edges=WMedge)
135 \#Find edges in the BM area to set boundary
BMedge \(=\) MBLinstance . edges. findAt \((((r * \cos ((1-0.5) * \mathrm{pi} / 32),-r * \sin ((1-0.5) * \mathrm{pi}\) \(/ 32), 0), \quad, \quad((r * \cos ((2-0.5) * \mathrm{pi} / 32),-r * \sin ((2-0.5) * \mathrm{pi} / 32), 0)),,((r * \cos\) \(((3-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((3-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((4-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin\) \(((4-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((5-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((5-0.5) * \mathrm{pi} / 32), 0)\), \(,((\mathrm{r} * \cos ((6-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((6-0.5) * \mathrm{pi} / 32), 0)),,((\mathrm{r} * \cos ((7-0.5) * \mathrm{pi}\) \(/ 32),-\mathrm{r} * \sin ((7-0.5) * \mathrm{pi} / 32), 0),(,(\mathrm{r} * \cos ((8-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((8-0.5) * \mathrm{pi}\)
 \(((10-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((10-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((11-0.5) * \mathrm{pi} / 32),-\mathrm{r} *\) \(\sin ((11-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((12-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((12-0.5) * \mathrm{pi} / 32)\) \(, 0),),((\mathrm{r} * \cos ((13-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((13-0.5) * \mathrm{pi} / 32), 0)),,((\mathrm{r} * \cos\) \(((14-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((14-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((15-0.5) * \mathrm{pi} / 32),-\mathrm{r} *\) \(\sin ((15-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((16-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((16-0.5) * \mathrm{pi} / 32)\) \(, 0),),((\mathrm{r} * \cos ((17-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((17-0.5) * \mathrm{pi} / 32), 0)),,((\mathrm{r} * \cos\) \(((18-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((18-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((19-0.5) * \mathrm{pi} / 32),-\mathrm{r} *\) \(\sin ((19-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((20-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((20-0.5) * \mathrm{pi} / 32)\) \(, 0)\),) \(((\mathrm{r} * \cos ((21-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((21-0.5) * \mathrm{pi} / 32), 0)),,((\mathrm{r} * \cos\) \(((22-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((22-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((23-0.5) * \mathrm{pi} / 32),-\mathrm{r} *\) \(\sin ((23-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((24-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((24-0.5) * \mathrm{pi} / 32)\) \(, 0),),((r * \cos ((25-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((25-0.5) * \mathrm{pi} / 32), 0)),,((\mathrm{r} * \cos\) \(((26-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((26-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((27-0.5) * \mathrm{pi} / 32),-\mathrm{r} *\) \(\sin ((27-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((28-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((28-0.5) * \mathrm{pi} / 32)\) \(, 0),),((r * \cos ((29-0.5) * \mathrm{pi} / 32),-r * \sin ((29-0.5) * \mathrm{pi} / 32), 0)),,((\mathrm{r} * \cos\) \(((30-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((30-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((31-0.5) * \mathrm{pi} / 32),-\mathrm{r} *\) \(\sin ((31-0.5) * \mathrm{pi} / 32), 0),),((\mathrm{r} * \cos ((32-0.5) * \mathrm{pi} / 32),-\mathrm{r} * \sin ((32-0.5) * \mathrm{pi} / 32)\) ,0) ,) ,
37 BMsurfaceset \(=\) regionToolset.Region(edges=BMedge)
\#\#Step :
MBLmodel. StaticStep (name='T', previous='Initial', timePeriod=1.0, initialInc \(=0.1\), maxInc \(=0.1\), maxNumInc \(=6000\), nlgeom \(=0 N\))
41 MBLmodel. StaticStep (name='Load', previous='T', timePeriod=1.0, initialInc \(=0.001\), maxInc \(=0.1\), minInc \(=0.00000000001\), maxNumInc \(=6000\), nlgeom \(=0 N\)) Make step

142
143 \#Output for the .odb file
144
145
145 CTODnodes1=MBLassembly. Set (name='CTODnodes1', nodes=MBLinstance. nodes. getByBoundingBox \((x M i n=-0.00005, y M a x=R+0.00005, y M i n=-R-0.00005, x M a x\) \(=0.00005)\) \#CTOD first node definition
MBLmodel. ExpressionField (description=' ', expression=' ((1+WMv) *sqrt (r/(2*pi)
 \() / \mathrm{WME}) *((0 * \cos (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(3-4 * \mathrm{WMv}-\mathrm{X} / \mathrm{r}))+\mathrm{KII} * \sin (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(5-4 * \mathrm{WMv}\)
 \(+\mathrm{X} / \mathrm{r}))+\mathrm{T} *(1-\operatorname{pow}(\mathrm{WMv}, 2)) * \mathrm{X} / \mathrm{WME}\), localCsys=None, name='WMu1_T') \#
 Expression
\#U2 direction
MBLmodel. ExpressionField (description=', , expression=' ((1+WMv) \(*\) sqrt (r/(2*pi)
 \() / \mathrm{WME}) *((0 * \sin (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(3-4 * \mathrm{WMv}-\mathrm{X} / \mathrm{r}))-\mathrm{KII} * \cos (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(1-4 * \mathrm{WMv}\)
 \(+\mathrm{X} / \mathrm{r}))-\mathrm{T} * \mathrm{r} *(\mathrm{WMv}+\operatorname{pow}(\mathrm{WMv}, 2)) * \sin (\operatorname{acos}(\mathrm{X} / \mathrm{r})) / \mathrm{WME}, \quad\) localCsys=None, name='
 WMu2_T')
MBLmodel. ExpressionField(description \(=,\), expression \(=\) ' ((\(1+\mathrm{BMv}\)) * sqrt (r/(2*pi)
 \() / \mathrm{BME}) *((-0 * \sin (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(3-4 * \mathrm{BMv}-\mathrm{X} / \mathrm{r}))-\mathrm{KII} * \cos (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(1-4 *\)
 \(\mathrm{BMv}+\mathrm{X} / \mathrm{r}))+\mathrm{T} * \mathrm{r} *(\mathrm{BMv}+\operatorname{pow}(\mathrm{BMv}, 2)) * \sin (\operatorname{acos}(\mathrm{X} / \mathrm{r})) / \mathrm{BME}\), , localCsys=None, name
 = 'BMu2_T')
162
163
69 MBLmodel. boundaryConditions ['WMdispu2_T']. deactivate ('Load')
70 MBLmodel. boundaryConditions ['BMdispu1_T'].deactivate ('Load')
MBLmodel. boundaryConditions ['BMdispu2_T']. deactivate ('Load')
172
173 KI=KI_stress
4 \#Displacementfield on WM surface
\# \#U1 direction

 \() / \mathrm{WME}) *((\mathrm{KI} * \cos (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(3-4 * \mathrm{WMv}-\mathrm{X} / \mathrm{r}))+\mathrm{KII} * \sin (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(5-4 *\)
\(\mathrm{WMv}+\mathrm{X} / \mathrm{r}) \mathrm{)}+\mathrm{T} *(1-\operatorname{pow}(\mathrm{WMv}, 2)) * \mathrm{X} / \mathrm{WME}\), , localCsys=\(=\mathrm{None}, \quad\) name= 'WMu1') Expression
\#U2 direction
MBLmodel. ExpressionField (description=' ', expression='((1+WMv) *sqrt (r/(2*pi)) /WME \() *((\mathrm{KI} * \sin (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(3-4 * \mathrm{WMv}-\mathrm{X} / \mathrm{r}))-\mathrm{KII} * \cos (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(1-4 *\) \(\mathrm{WMv}+\mathrm{X} / \mathrm{r}) \mathrm{)}-\mathrm{T} * \mathrm{r} *(\mathrm{WMv}+\operatorname{pow}(\mathrm{WMv}, 2)) * \sin (\operatorname{acos}(\mathrm{X} / \mathrm{r})) / \mathrm{WME}\), localCsys=None, name = 'WMu2')
 MBLmodel. ExpressionField (description \(=\) ', , expression='((1+BMv) *sqrt(r/(2*pi)
) /BME) \(*((\mathrm{KI} * \cos (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(3-4 * \mathrm{BMv}-\mathrm{X} / \mathrm{r}))-\mathrm{KII} * \sin (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(5-4 *\)
 \(\mathrm{BMv}+\mathrm{X} / \mathrm{r}))+\mathrm{T} *(1-\operatorname{pow}(\mathrm{BMv}, 2)) * \mathrm{X} / \mathrm{BME}\) ', localCsys=None, name='BMu1')
182 \#U2 direction
 MBLmodel. ExpressionField (description=' ', expression=' ((1+BMv) *sqrt (r/(2*pi)
 \() / \mathrm{BME}) *((-\mathrm{KI} * \sin (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(3-4 * \mathrm{BMv}-\mathrm{X} / \mathrm{r}))-\mathrm{KII} * \cos (\operatorname{acos}(\mathrm{X} / \mathrm{r}) / 2) *(1-4 *\)
 \(\mathrm{BMv}+\mathrm{X} / \mathrm{r}) \mathrm{)}+\mathrm{T} * \mathrm{r} *(\mathrm{BMv}+\operatorname{pow}(\mathrm{BMv}, 2)) * \sin (\operatorname{acos}(\mathrm{X} / \mathrm{r})) / \mathrm{BME}\), localCsys=None, name
 = 'BMu2')
 distributionType=FIELD, fieldName='WMul', fixed=OFF, localCsys=None, name
 \(=\) 'WMdispu1_KI', region=WMsurfaceset, u1=1.0, u2=UNSET, ur3=UNSET)

185 MBLmodel. DisplacementBC (amplitude=UNSET, createStepName='Load', distributionType=FIELD, fieldName='WMu2', fixed=OFF, localCsys=None, name \(=\) 'WMdispu2_KI', region=WMsurfaceset, u1=UNSET, u2=1,ur3=UNSET)
MBLmodel. DisplacementBC (amplitude=UNSET, createStepName='Load ', distributionType=FIELD, fieldName='BMu1', fixed=OFF, localCsys=None, name ='BMdispu1_KI', region=BMsurfaceset, \(u 1=1.0, \mathrm{u} 2=\) UNSET, ur3=UNSET)
187 MBLmodel. DisplacementBC (amplitude=UNSET, createStepName='Load', distributionType=FIELD, fieldName='BMu2', fixed=OFF, localCsys=None, name \(=\) 'BMdispu2_KI', region=BMsurfaceset, u1=UNSET, u2 \(=1\), ur3=UNSET)

188
189 \#\#Make set for output data to . dat fil. Define the output in .inp file
190 \#CRACKfront \(=\) MBLassembly. Set (name \(=\) 'CRACKfront', nodes \(=\) MBLinstance. nodes.getByBoundingBox \((x M i n=0.05, y M i n=0.1, x M a x=B+0.1, y M a x=0.1))\) j smal
191 \#CRACKfront \(=\) MBLassembly. Set (name \(=\) 'CRACKfront', nodes \(=\) MBLinstance nodes. getByBoundingBox (\(\mathrm{xMin}=-\mathrm{A}-0.005, \mathrm{yMin}=-\mathrm{C}-0.005, \mathrm{xMax}=\mathrm{B}+0.005, \mathrm{yMax}=\mathrm{C}\) +0.005) \#j ABC
192 \#CRACKfront_ABC = MBLassembly. Set (name = 'CRACKfront_ABC', nodes = MBLinstance. nodes. getByBoundingBox (xMin=-A-62*S -0.005 ,yMin \(=-C-62 * S\) \(-0.005, x M a x=B+62 * S+0.005, y M a x=C+62 * S+0.005)) ~ \# j \quad A B C+\)
193 \#CRACKfront_far = MBLassembly. Set (name = 'CRACKfront_far', nodes = MBLinstance. nodes.getByBoundingBox \((x M i n=-100, y M i n=-100, x M a x=100, y M a x\) =100)) \#j far out
194 \#CRACKtip=MBLassembly.Set (name \(=\) 'CRACKtip', vertices= MBLinstance.vertices getByBoundingBox \((x \operatorname{Min}=-0.00005, y \operatorname{Min}=-0.00005, x M a x=0.00005, y M a x=0.00005)\))
195 \#ALL \(=\) MBLassembly. Set (name \(=\) 'ALL', elements \(=\) MBLinstance.elements) 196
197 MBLassembly.Set (name \(=\) 'WMele', elements \(=\) (MBLinstance.elements. getByBoundingBox \((y \operatorname{Min}=-0.0001, x M a x=-A+0.0001)\), MBLinstance.elements. getByBoundingBox (\(y\) Min \(=-0.0001, x \operatorname{Min}=B-0.0001\)) , MBLinstance . elements . getByBoundingBox (\(\mathrm{yMin}=\mathrm{Y}+\mathrm{D}-0.0001, \mathrm{xMin}=-\mathrm{A}-0.0001\), \(\mathrm{xMax}=\mathrm{B}+0.0001\)), MBLinstance.elements.getByBoundingBox (yMin=C-0.0001)))
198 MBLassembly.Set (name \(=\) 'BMele', elements \(=\) (MBLinstance.elements. getByBoundingBox \((y M a x=0.0001, x M a x=-A+0.0001)\), MBLinstance.elements. getByBoundingBox \((y M a x=0.0001, x M i n=B-0.0001)\), MBLinstance. elements .
getByBoundingBox \((y M a x=Y-D+0.0001, x M i n=-A-0.0001, x M a x=B+0.0001)\), MBLinstance.elements.getByBoundingBox (yMax=-C+0.0001)))
199 MBLassembly.Set (name \(=\) 'HAZele', elements \(=\) (MBLinstance.elements. getByBoundingBox (\(\mathrm{yMin}=\mathrm{Y}-\mathrm{D}-0.0001, \mathrm{yMax}=\mathrm{Y}+\mathrm{D}+0.0001, \mathrm{xMin}=-\mathrm{A}-0.0001, \mathrm{xMax}=\mathrm{B}\) +0.0001)))
200
201 ligamentelements \(=\) MBLinstance. elements.getByBoundingBox \((x M i n=S i-0.00005, y M i n\) \(=-0.0005, \mathrm{xMax}=\mathrm{B}-0.005, \mathrm{yMax}=0.015\))
202 \#inner=MBLinstance.faces.findAt ((\((\mathrm{R}+0.005,0.00005,0)),\),
203 \#ligamentelements=ligamentelements, MBLinstance. elements. sequenceFromLabels \(((156567,156568,156569,156570,156571,156756,156761,156766,156771,156776,156781,156786\), ,) \(\# \mathrm{R}=0.0005\)
204 ligamentelements=ligamentelements, MBLinstance. elements. sequenceFromLabels (\((156463,156462,156461,156460,156579,156584,156589,156594,156599),\),\() \#R\) \(=0.001\)

205
206 ligament=MBLassembly.Set (name \(=\) 'ligament', elements=ligamentelements)
207 elall=MBLassembly.Set (name \(=\) 'elall', elements=MBLinstance.elements)
208 \#change work dir
209 os.chdir (r'/home/gaute/Gaute_sommer_2011/simuleringer/3_material_T_10/')
210 \#Make job and write input file to WRD
211 job=mdb. Job (model='Model-1', multiprocessingMode=THREADS, name=Name, numCpus \(=8\), numDomains \(=8\))
212 job. writeInput()

\section*{Appendix D Calculate Weibull}

This Matlab script reads the files generated by the shell script. It then calculates the Weibull stress and saves new data in a new file.
```

clc
clear all
close all

```

```

KImax =42000; % KI at time 1
R=0.01; % Radius of crack
m=[7.5, 10, 15, 20]; % Weibull parameters
V0=1; % Weibull parameter
ny=0.3; % Poison ratio
E=208000; % Elastisity modulus
sigmau=450; % Yield stress

```

```

%88%8%8%%%%%%%%%/8/8/WMMend=[ 4587, 20715, 30315, 39915, 59115, 78600,
88485, 98085, 114213];BMend=[118796, 118796, 118796, 118511, 118226,
118511, 118796, 118796, 118796];
%ser={'1te'};
%serie={'1 _temat'};
ser={'2re'};
serie={'2_realmat'};
pos={'F025', 'F05', 'F1', 'M025', 'M05', 'M1'};
MWM={'00', , 10', '20'};
T={'0', '025', '05'};
WMend=78500;
BMend=118411;
con =0;

```

```

for i=1:length(pos)
if i==3 || i==6
M_HAZ={'00', '10'};
elseif i==2 || i==5
M_HAZ={'00', '10', '20'};
else
M_HAZ={'20', '30'};
end
for j=1:length (M_HAZ)
for k=1:length (MWM)
for l=1:length(T)
folder=char(strcat('../', serie,'/', pos(i),'/h',MHAZ(j) ,'/w',MWM(k) ,'/
T',T(l),'/'));
name=char(strcat(ser,'_', pos(i),'_h ',M_HAZ(j),'_w',MWM(k),'_T',T(1)));
placein=char(strcat(folder,'data/'));
placeout=char(strcat(folder,'results/'));
0/88/8/8%8/8/8/8/8/8/8%8/8/8/8/8/8/8/8/8/8/8% Number of time steps %/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8%

```
```

4 9
nn=1;
n0=0;
temp=0;
while nn>n0
temp=exist(strcat(placein,'out',int2str(nn),'.txt'),'file');
% Check if timestep n exist
n0=nn;
nn=nn+temp/2;
end
N=nn-2;
% Number of time steps eksept first
ctod=zeros(N+1,1);
KI=zeros(N+1,1);
J=zeros(N+1,1);
if N==0
N
end

```

```

for n=1:N
readtemp=dlmread(strcat(placein,'out',int2str(n),'.txt'),',,[[$$
\begin{array}{lll}{3}&{8}&{3}\\{8}\end{array}
$$]);
% Reading time at time step
KI (n+1,1)=readtemp *KImax ;
% Finding KI
J (n+1,1)=KI (n+1,1) ^2*(1-ny ^ 2)/E;
% Finding J
% Finding T
end

```

```

if i==1
WMend=78374;
BMend=147468;
elseif i==2
WMend=78374;
BMend=137484;
elseif i==3
WMend=78374;
BMend=118284;
elseif i==4
WMend=73706;
BMend=147408;
elseif i==5
WMend=68714;
BMend=137424;
elseif i==6
WMend=59114;
BMend=118224;
end
for n=1:N
WMtemp=dlmread(strcat(placein,'out',int2str(n),'.txt'),'',[20 1 WMend
3]);
HAZtemp=dlmread(strcat(placein,'out',int2str(n),'.txt'),',',[BMend+16 1
156759 3]);
if n==1

```
```

        [rt1,~]= size (WMtemp);
        [rt3,leng]=size(HAZtemp);
        WM=zeros(N, rt1, leng);
        HAZ=zeros(N,rt3,leng);
    end
    for o=1:leng
        for p=1:rt1
                WM(n, p , o)=WMtemp(p,o);
            end
        for p=1:rt3
        HAZ(n, p,o)=HAZtemp(p,o);
        end
    end
    end
WMsigmaw=zeros(N+1,4);
HAZsigmaw=zeros(N+1,4);
for mm=1:4
for n=1:N
WMtemp=0;
for p=1:rt1
if WM(n,p,3)>0 \&\& WM(n,p,3)<0.5
WMtemp=WMtemp+(WM(n, p, 1) )^m(1,mm) *WM(n, p, 2); % Temporary
weibull
end
end
WMsigmaw (n+1,mm)=(WMtemp/V0) ^(1/m(1,mm) );
HAZtemp=0;
temp=1;
for p=1:rt3
if HAZ(n,p,3)>0 \&\& HAZ(n,p,3)<0.5
HAZtemp=HAZtemp+(HAZ(n, p, 1)) ^m(1,mm)*HAZ(n, p, 2); %
Temporary weibull
end
end
HAZsigmaw (n+1,mm)=(HAZtemp/VO) ^(1/m(1,mm) );
end
end

```

```

for n=1:N
readtemp1=dlmread(strcat(placein,'out',int2str(n),'.txt'),'',[156775 1
157111 2]); % Read S22 and r
readtemp2=sortrows(readtemp1);
if n==1
[L, t]=size(readtemp1);
Lig=zeros(N+1,L,2);
end
for p=1:L
Lig(n+1,p,1)=readtemp2(p,1)-R;
Lig(n+1,p,2)=readtemp2(p,2);
end
end
% set length for first increment

```

```

for n=1:N
readtemp1=dlmread(strcat(placein, 'out',int2str(n),'.txt') ,'',[157132 1
157133 1]) ; % Read CTOD
if n==1
ctod=zeros(N+1,1);
end
ctod (n+1,1)=abs(readtemp1 (1,1)-readtemp1 (2,1));
% Calculate CTOD
end
fit_J_ctod = polyfit(J, ctod, 1);
%%8%%%%% Write: Time, KI, J, CTOD, WM and HAZ Sigmaw: 7.5, 10, 15, 20 %%/%%%%%/8%
write=zeros (N+1,12);
write (:,1)=KI (:,1)/KImax ;
write (:,2)=KI (:,1);
write (:,3)=J (:, 1);
write (:,4)=ctod (:,1);
write (:,5)=real (HAZsigmaw (:,1));
write (:,6)=real (HAZsigmaw (:,2));
write (:,7)=real (HAZsigmaw (:,3));
write (:,8)=real (HAZsigmaw (:,4));
write (:,9)=real (WMsigmaw (:, 1));
write (:, 10)=real (WMsigmaw (:,2));
write (:,11)=real (WMsigmaw (:,3));
write (:, 12)=real (WMsigmaw (:,4));
dlmwrite(strcat (placeout, 'Ti_KI_J_CTOD_sigmaw'), write, '\t');
%/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8%8/8/8/8/8% Write_lig: r, S22 %/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8%
write_lig=zeros((N+1)*2,L);
for n=1:N
for p=1:L
write_lig(2*n+1,p)=Lig(n+1,p,1);
write_lig(2*n+2,p)=Lig(n+1,p,2);
end
end
write_lig(1,:)=write_lig(3,:); % set length for
first increment
dlmwrite(strcat(placeout,'r_S22'), write_lig, '\t');
con=con +1;
end
end
end
end

```

\section*{Appendix E Materials}

This Matlab script makes a stress strain relationship for a theoretic material.
```

clc
clear all
close all
sigma02=450;
E=208000;
n=0.07;
sig=(420:0.001:440);
sigy=sig(1);
for i=1:length(sig)
sigtemp=sigma02/(1+0.002*E/sigy ) ^n;
if sigtemp>sigy
sigy=sig(i+1);
end
end
ept = [0:0.0005:0.002,0.003:0.001:0.01,0.02:0.01:0.15,0.3,0.6,1,2];
mat0=zeros(length(ept),2);
mat0(:,2)= transpose(ept);
mat1=mat0;
mat2=mat0;
mat3=mat0;
mat4=mat0;
for i=1:length (ept)
mat0(i, 1)=sigy*(1+mat0(i, 2) *E/ sigy)^n;
mat1 (i,1)=sigy*(1+mat1 (i,2) *E/ sigy) ^n+0.1*sigma02;
mat2 (i,1)=sigy*(1+mat2 (i,2) *E/ sigy)^n+0.2*sigma02;
mat3 (i,1)=sigy*(1+mat3 (i,2) *E/ sigy)^n+0.3*sigma02;
mat4(i,1)=sigy*(1+mat4(i,2)*E/sigy)^n+0.4*sigma02;
end
hold on
plot(mat0 (:,2) ,mat0 (:,1))
plot(mat1 (:,2),mat1 (:,1))
plot(mat2(:,2),mat2(:,1))
plot(mat3(:,2),mat3(:,1))
plot(mat4(:,2),mat4(:,1))
hold off
dlmwrite('00r', mat0, ',');
dlmwrite('10r', mat1, ',');
dlmwrite('20r', mat2, ',');
dlmwrite('30r', mat3, ',');
dlmwrite('40r', mat4, ',');

```
```

