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Figure 6.13 The effect of 𝐂𝐨𝐕	on 𝑭𝒔 and 𝒑𝒇 for simulations 1, 2 and 3 

Normal distribution is best fit for simulation 1 and 3 while simulation 2 is most likely to 

follow generalized extreme value distribution with an extending left tail.   

6.5.3 The effect of horizontal correlation length 

The effect of horizontal correlation length is studied from simulation 4, 5 and 6, having 

horizontal correlation length 1m, 15m and 100m respectively. To get a good effect of 𝜃ö 

over 𝑝B,  2	 CoV	1  is used for the simulations with the same mean, Mean1.  The output of 

𝐹- is shown in Fig 6.14 as a histogram plot with the corresponding distribution fit. 

 
Figure 6.14 The effect of horizontal correlation length on 𝑭𝒔 and 𝒑𝒇 for simulations 
4, 5 and 6 (𝜽𝑯 = 𝟏𝒎,𝟏𝟓𝒎	𝒂𝒏𝒅	𝟏𝟎𝟎𝒎 respectively) 
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As shown in Fig. 6.14, the increase in horizontal correlation length does not affect the mean 

value of the factor of safety. But for this particular case study, it increases the standard 

deviation of 𝐹-,  which follows increase in probability of failure. The increase in 𝜃ö does 

not have much effect on 𝑝B for the first two simulations (𝜃ö = 1𝑚	𝑎𝑛𝑑	15𝑚). But, when 

extending 𝜃ö further to 𝜃ö = 100𝑚,	𝑝B increases significantly. When the correlation 

length increases to positive infinity, the parameters will become perfectly correlated, and 

the random finite element approach will convert to single random variable approach, SRV. 

Fig. 6.14 also shows that, for every decrease in standard deviation of 𝐹-, the the peak height 

of the curve increases. This is to fulfill the criteria of probability density function, that 

states, the area under the curve is always unity. Therefor, the peak extends higher to com-

pensate the loss in area due to decrease in standard deviation and makes the area unity.  

6.5.4 Effect of local averaging  

The procedure of local averaging is implemented for the same input parameters of simula-

tion 3 and the effect is shown in Fig. 6.15 as simulation 7.   

 

 
Figure 6.15 The effect of local averaging, simulation 7 on 𝑭𝒔 and 𝒑𝒇 implemented on 
simulation 3 
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The main effect of local averaging is reduction in variance of input parameters, which 

causes the reduction in standard deviation of 𝐹-. This reduction of variance depends on the 

size of the random field discretization (element size). The bigger the element size, the 

higher the variance reduction will be. Fig. 6.15 shows that the standard deviation of simu-

lation 7 (0.015) is half of simulation 3 (0.030). This relatively low variability in the results 

is because of the random field discretization being not fine enough. This results in a sig-

nificant variance reduction in the input parameters and correspondingly reduction in the 

variability of the calculated factor of safety. Beside the variability, mean value of 𝐹- is also 

increased from 1.02 to 1.12 and results very low failure probability. This can be due to the 

variance reduction in the input parameters, the effect of weaker elements is reduced in the 

distribution for this particular slope.  
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Chapter 7                                        

Discussions 
 

The over all procedure followed in this thesis are categorized in to three main parts. The 

sections can be classified into; uncertainty quantification and probabilistic interpretation of 

parameters, conditional random field generation and sampling technique, output probabil-

ity density function of 𝐹- and failure probability. The overall scheme of these sections can 

be summarized in Fig. 7.1.   

 

 
Figure 7.1 Overall procedure for application of advanced probabilistic slope stabil-
ity analysis 
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7.1 Uncertainty and parameters interpretation  

7.1.1 Spatial variability  

The main part of reliability analysis is modelling of uncertainty. Uncertainty may arise 

because of limited information or limited number of observations on the studied variable, 

form imperfection of measuring equipment, fault in measurement procedure, or due to the 

estimation capability of design model on the real phenomena. 

Quantitative characterization and reduction of uncertainties are executed through the 

knowledge of probability theory and statistical analysis. Such modeling of uncertainty in-

creases the confidence on the estimation of the corresponding likelihood of certain out-

come. 

Spatial variability of soil parameters can be modeled by random field theory. For this study, 

corrected tip resistance from CPT measurement is studied as random field. Correlation 

length is one of the parameters that represent spatial variability of soil. Maximum likeli-

hood method is used to estimate the vertical correlation length, trend mean value and stand-

ard deviation of corrected tip resistance for each profile on Rissa slope, section 3-3. Like-

lihood function is a function of mean, standard deviation and correlation length so that it 

identifies the values of the properties, that make the likelihood function a maximum.    

7.1.2 Probabilistic interpretation of parameters 

Factor of safety in slope stability analysis can be defined as the ratio between average shear 

strength of the soil, 𝜏B to the average mobilized shear stress developed along the potential 

failure surface, 𝜏urv  𝐹- =
²¼

²½¾¿
. Therefore, the main parameter in slope stability analysis 

is shear strength of the soil. That is, undrained shear strength for clay soils, and friction 

angle for sand. To implement the advanced probabilistic slope stability analysis, these 

shear strength parameters are needed to pass trough two steps. The first one is, creating a 

link between the strength parameters and the corrected tip resistance from CPT measure-

ment. Secondly, constructing a probabilistic interpretation of strength parameters which 
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accounts for uncertainties of the measured values. Both processes are described in detail in 

chapter 5.  

7.2 Conditional random field 

In advanced probabilistic slope stability approach, each element in the generated mesh 

takes one unique shear strength property. Conditional random field is the techniques used 

to facilitate this assigning process.  

Once the shear strength parameters are probabilistically interpreted in measured locations, 

the parameters at unknown points are estimated from those known values by generating 

conditional random field. The main concept behind is, elements which are near to measured 

locations will possess similar property to the observed values than those which are far 

away. This property of conditional random field is shown in Fig. 7.2. The PLAXIS 2D 

output is assigned to display the mean values of the elements.   

 

 
Figure 7.2 Conditionality effect on the generated random field for simulation 3 

 

The elements within the boundary box centering the measured location, are assigned meas-

ured values that are probabilistically interpreted form corrected tip resistance of CPT. For 

the others, conditional random field is generated and the effect of conditionality is clearly 

shown in Fig. 7.2. The elements next to the boundary box have the same or nearly same 
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color as elements within the box (observed elements) and the effect will decrease (change 

in color will observe) when the unobserved elements get far and far away from the observed 

elements. In other words, when the distance between an observed and an unobserved ele-

ment increases, the correlation and link between these elements will decrease and for fairly 

enough separation distance, the unobserved element will be treated as random field with 

out conditionality. These is the effect of conditional random field with correlation length. 

In Fig. 7.2, to get a clear view of the color differences, the slope is divided into three sec-

tions by varying the color legend and for each section, the color legend is presented next 

to the sectioned piece.   

7.2.1 Monte Carlo sampling  

In the application of conditional random field, Monte Carlo sampling technique is used to 

generate sequence of random numbers. The generating process is guided by the distribution 

type, mean value and standard deviation of the random field parameters. Monte Carlo sam-

pling has two advantages which makes it preferable for this study. First, its simple and 

straight forward to apply and doesn’t require detail knowledge of probability theory. The 

second reason is, compared to other sophisticated sampling techniques, it does not take 

much calculation time.  

For each conditional random finite element simulation, 1000 MC realization is assumed to 

be enough to give reliable and reproducible estimate of failure probability. Normally, total 

number of realization can be estimated for the required coefficient of variation of failure 

probability which in most cases given by 𝐶𝑜𝑉 𝑝B < 0.1.  The coefficient of variation of 

the estimate for number of realization, 𝑁-can be calculated as: 

 

 𝐶𝑜𝑉 𝑝B =
1 − 𝑝B
𝑁-𝑝B

 (7.1) 

 

The highest failure probability calculated in this study is occurred during simulation 3 with 

a value of 36% as described in Table 6.6. The corresponding 𝐶𝑜𝑉 is then calculated using 

Eq. 7.1 and gives a value, 𝐶𝑜𝑉 𝑝B = 0.042 which is in the acceptable range. 
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7.3 Factor of safety and failure probability   

Three different slope stability analysis methods are implemented on Rissa Slope. Initially, 

the slope is investigated using traditional approach with a constant, one deterministic value 

for each soil layer. Simple probabilistic concept is then implemented with single random 

variable technique. Finally, different simulations have been made using CRFEM approach. 

For comparison of the methods, the result from all three methods, for nearly equivalent 

input values of parameters are shown in Table 7.1.  

 

Table 7.1 Comparison between deterministic, SRV and CRFEM approaches 

Methods	 𝜇óô 	 𝜎óô 	 𝑝B 	

Deterministic	 1.022	 -	 -	

SRV	 1.075	 0.152	 30.1%	

CRFEM	 1.153	 0.020	 0.24%	

 

The traditional deterministic approach provides only one factor of safety value for the cor-

responding single value input, without any further information. This value is less than the 

other two methods. There is a result difference between the SRV and CRFEM approach. 

The main reason for this particular case is, SRV approach underestimates the shear strength 

parameters of the soil while representing the whole soil layer with one single value. In 

addition, one single value input with relatively high variation, increases the output varia-

bility, 𝜎óô followed by raise in failure probability as shown in Table 7.1.   

CRFEM is effected for different input values of unobserved parameters using a number of 

different simulations. First three simulations are made by changing the coefficient of vari-

ation for unobserved location. The results are described in detail in section 6.5.2. In here, 

the corresponding effect on failure probability for the changes in 𝐶𝑜𝑉 is plotted as shown 

in Fig.7.3. 
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Figure 7.3 Relation between coefficient of variation and probability of failure 

   

Since the slope is combination of different layers, the increment in 𝐶𝑜𝑉 is made in terms 

of the first simulation input which is 𝐶𝑜𝑉1. The figure clearly shows that the increase in 

𝐶𝑜𝑉 increases the failure probability. this is due to the effect that, for each increase in 𝐶𝑜𝑉, 

weaker elements dominate the strength in the distribution for this particular slope. 

 

The next three simulations are made by changing the horizontal correlation length. The 

results are described in detail in section 6.5.3. In here, the corresponding effect on failure 

probability for change in horizontal correlation length is plotted as shown in Fig.7.4. 

 

 
Figure 7.4 Relation between horizontal correlation length and probability of failure 
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The increase in 𝜃ö does not show much effect on 𝑝B for the first two simulations (𝜃ö =

1𝑚	𝑎𝑛𝑑	15𝑚). But when extending 𝜃ö further to 𝜃ö = 100𝑚,	𝑝B increases significantly.  

 

Finally, the concept of local average is applied on Rissa slope. The main consequence of 

local average is variance reduction which causes reduction in the variability of the calcu-

lated factor of safety. The resulted output can also be described similarly as the effect of 

𝐶𝑜𝑉 reduction.  

All and all, the CRFEM results show that the inclusion of local averaging, reduction in 

𝐶𝑜𝑉 and horizontal correlation length will lead to a smaller probability of failure for the 

particular case, Rissa.   
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Chapter 8  

Conclusions and recommendations 

8.1 Conclusions  

Geotechnical design is traditionally based on deterministic analysis using global or partial 

safety factors to take soil variability into account and does not give a complete indication 

of the safety margin. These traditional approaches are mainly based on experience or expert 

judgment and does not explicitly account for the effect of uncertainties in soil parameters. 

Therefore, the safety margins should be assessed within a mathematical framework by us-

ing probabilistic methods to evaluate the probability of failure. One of the most important 

issues in geotechnical design is the quantification of soil variability. Variability in soil 

properties, uncertainty in measurements, uncertainty in analysis models etc. all contribute 

to a failure probability (Veritas, 1992). It is not possible to completely remove uncertain-

ties. But, such advanced probabilistic approaches provide a way to handle the uncertainty 

in a controlled manner and give a reliable way to calculate probability of failure.  

 

Probabilistic analysis is powerful in investigating the influence of uncertainties on a given 

geotechnical problem. The way to conduct an uncertainty quantification in geotechnical 

engineering is shown in a particular case study, Rissa slope. Advanced probabilistic slope 

stability analysis is conducted to calculate the factor of safety and failure probability of 

Rissa slope. Probabilistic assessments are made to study the relative influence of variability 

and spatial correlation. To account for uncertainties, interpretations of soil properties are 

made based on a probabilistic link between the CPT data and soil parameters. Accounting 

for uncertainties while determining soil parameters brought confidence in predicting the 
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output behavior. Conditional random field is generated to characterize spatial variability of 

soil parameters. Lastly, the potential of the framework of uncertainty quantification, the 

effects of spatial soil variability and local averaging are realized by conducting probabilis-

tic analysis with a Monte Carlo sampling technique. 

All in all, this case study shows the effect of soil variability, spatial variability, and local 

averaging at different scales for the random input parameters.  

 

It is also very important to be aware of the limitations that lie in a probabilistic analysis. 

Geostatistical evaluation in geotechnical parameters are difficult to make due to the limi-

tation of the available data from ground investigation. In order to make probabilistic anal-

ysis, one should be aware of the need for bigger investigation campaign. Beside this, in 

applied engineering, probabilistic concepts are not adapted because of the deficiency in 

statistical background knowledge that is needed to understand the result of probabilistic 

analysis.  

 

In conclusion, within chapter 2 the basic theoretical background that are a base for initiating 

the advanced probabilistic approach are presented. The basics of safety and uncertainty are 

summarized in chapter 3. Chapter 4 concentrates on the characterization of the case study 

area and summarize the available measured values from the ground investigation, CPT. 

Uncertainty quantification and probabilistic interpretation of parameters are developed in 

chapter 5. The the results and discussion of advanced probabilistic approach are presented 

in chapter 6 and 7. These case study shows the application of uncertainty quantification 

and shall guide the reader to a comprehensive understanding of the presented approaches.  

8.2 Recommendations for further work  

Probabilistic approach is a wide and more of a subjective topic. It can be extended unlim-

itedly and can be made more sophisticated. In this study, only shear strength parameters 

are taken as random variables because of time limitation. However, it is possible to further 

extend the amount of random variables in the advanced probabilistic slope stability analysis 

by considering geometry of the slope, boundary of soil layers, height of ground water table, 
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and other soil parameters to be random. This is expected to give more accurate estimation 

for the reliability analysis. The contribution of each random parameter for the probability 

of failure can also be studied with sensitivity analysis.   

The other perception worth mentioning for future work is the integration of Bayesian up-

dating concept while assigning distribution type for the parameters. Application of Bayes-

ian inference identifies the actual range of distribution of the parameter in the probability 

distribution function. This is expected to reduce the domain range for the sampling algo-

rithms so that reduction in variability of the outputs will follow. 

Finally, there are more sophisticated sampling techniques than MC simulation method. As 

a proposition for further work, it would be interesting to apply the more effective sampling 

method on the advanced slope stability analysis.  
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