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Summary

Skirted caissons are frequently used as foundations in the offshore industry. It was first

introduced as a gravity based foundation in the early 1980’s related to the development

of the first oil platforms in the North Sea. Over the last two decades the concept has

shown applicability in deepwater manifolds, jackets and offshore wind turbines.

Dynamic soil-structure interaction are traditionally analyzed numerically, analytically or a

combination of the two. Analytical methods can either evolve from advanced mathematics

or rather simple physical spring models. Simplified methods are generally more efficient

than numerical models. They also provide useful insight and a better understanding of

the underlying physical concepts. Although a great number of substructure methods has

been developed, no distinctive approach towards closed caisson foundation has yet been

established.

As part of an ongoing research project Multiconsult have developed the Simplified Modal

Non-linear Analysis. This is a simplified method estimating earthquake induced loads

and displacements on a superstructure founded on a closed caisson. The method is

based on a two degree of freedom system with a lumped mass representing the super-

structure. The subgrade is represented through non-linear translational and rotational

springs. Non-linearity is maintained through externally obtained backbone curves from

static soil-caisson analyses. Modal analyses are conducted on the system, for each iter-

ation the spring stiffness are updated giving rise to new natural frequencies. Dynamic

loads and displacements are then retrieved from an acceleration response spectrum. The

procedure aims to become an efficient alternative to numerical analyses.

A case study is performed comparing a numerical model and the Simplified Modal Non-

linear Analysis on a deepwater manifold structure. Assuming that the numerical model

is responding correctly, a parametric study is conducted to calibrate amount and distri-

bution of mass used in the simplified analysis. The scope of this work is limited to study

one specific structure subjected to one particular earthquake. All numerical earthquake

analyses are conducted using linear elastic perfectly plastic Mohr-Coulomb model. Ma-

terial damping is introduced to the soil using Rayleigh-damping. Hydrodynamic effects

and water added mass in the manifold are not considered in this thesis.

The numerical analyses are conducted in PLAXIS 3D and involve three parts: (1) free-

surface analysis, (2) kinematic interaction analysis and (3) full analysis. The free-surface

analysis is done by applying accelerations to the bottom of a soil layer and record surface

response. Kinematic interaction analysis is done by introducing a massless caisson and

record resulting motion at the top plate. Recordings later serve as the foundation input

motion in the simplified method.
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Then the superstructure is set in place before applying the same accelerations. In this

analysis accelerations, displacements and rocking are recorded.

The numerical soil model gave adequate results through correct amplification and rea-

sonable filtering of high frequencies in initial analyses. Kinematic interaction also showed

good compliance with theory. Slightly lower accelerations than free-surface and more high

frequency filtering was observed. The full model analysis gave maximum responses of

4.9 cm and 0.0010 radians in lateral displacement and rocking respectively. Equivalent

loads were calculated to be 1 227.9 kN and 8 598.1 kNm in horizontal force and overturning

moment, working at the base of the manifold.

To establish the non-linear spring stiffness relations (backbone-curves), static soil-caisson

interaction analyses are carried out using PLAXIS 3D. Horizontal force and overturning

moment are applied to the foundation top. The loads are increased at a constant ra-

tio while translation and rotation of the caisson are recorded. Force-displacement and

moment-rotation relations are accordingly plotted.

The simplified analyses are carried out using MODAN, a code developed at Multiconsult

performing the modal analysis procedure in the Simplified Modal Non-linear Analysis.

First massless foundation and no added mass are analyzed. Further analyses are done

introducing soil added mass stepwise inside the caisson. The results show very low forces

and excessively large moments. The divergent tendencies observed indicate a too high

ratio of rotation to translation stiffness.

In order to achieve comparable results from the two models reduction in mass, mass

moment of inertia and spring stiffness are needed. Best results suggest only to consider

manifold mass, and reduce mass moment of inertia with a factor of 0.33. Soil stiffness are

reduced accordingly by factors of 0.25 and 0.33 in translation and rotation respectively.

The results then give Qdyn = 2003 kN , Mdyn = 9749 kNm, δdyn = 0.039 m and

θdyn = 0.0019 radians, which provide best compliance with numerical results.
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Chapter 1

Introduction

1.1 Background

Earthquakes impose many challenges to the design of subsea strucures and their foun-

dations. Since the development of the first oil platforms in the North Sea in the 1980’s

a huge effort has been done in the field, leading way for new technology and foundation

designs. Gravity based offshore foundations require high demands to seismic resistance,

whether to protect sensitive equipment, or prevent disastrous events. The introduction of

the closed caisson foundation in 1982 was a breakthrough in the industry due to reliability

and easy installation. Today the closed caisson is a frequent choice of seabed foundation

for jackets, templates, manifolds and offshore wind turbines.

Traditionally geotechnical earthquake engineering and soil-structure interaction use both

analytical methods and simplified models. Some analytical approaches involve advanced

mathematics while others simplifies the subgrade using springs such as the Winkler-model,

see for example Gerolymos and Gazetas (2006). Hybrid approaches combining numerical

and analytical methods are often called substructure methods, such as the multi-step

method presented in Kausel et al. (1978). Due to complex geometry and 3D effects, limited

efforts has been done to develop good analytical solutions for closed caisson foundations.

Technological development in recent years has led to an increased use of sophisticated

numerical tools such as the finite element method (FEM). Easy access to powerful com-

puters and well developed software makes this the most commonly used tool in analysing

dynamic response today. However, these analyses are often time consuming, expensive

and require good insight by the user.

A study conducted by Transparency Market Research (2015) predicts that oil recovery

from more complex offshore reservoirs in the years to come will boost the subsea manifold

market. Also offshore wind farms will continue to develop. Today more than one hundred

1
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offshore wind farms are planned world wide according to Offshore Center Danmark (2016).

These forecasts suggest a high demand of gravity based subsea structures in the future

and suggests that more specialized analysis tools could be beneficial.

At the ISFOG-conference held in Oslo 2015, Corneliu Athanasiu at Multiconsult pre-

sented the Simplified Modal Non-linear Analysis (Athanasiu et al., 2015). The method

is presented in chapter 3, and will hereafter be abbreviated as the SMNA-method. The

method is based on modal analysis and a simplified spring model, which provide good

physical insight to the user. The method intend to be an alternative to numerical analy-

ses and has already shown adequate results, despite significant simplifications of the mass

matrix.

Problem Formulation

Analytical soil-structure interaction analyses of subsea structures founded on closed cais-

sons require realistic input of soil added mass inside and around the caisson. This work is

a further step in developing the SMNA-method by applying foundation mass and study

the effects of soil added mass. The thesis is part of a larger research project in Multicon-

sult aiming to create more effective design activities related to subsea foundations in the

years to come.

The first step of the thesis is to perform numerical analyses in PLAXIS 3D of a manifold

structure founded on a closed caisson. Acceleration response spectrum from kinematic

interaction analyses will serve as foundation input motion in the SMNA-method. Results

from the full analysis is assumed to be the correct dynamic behavior of the structure.

A modal analysis parametric study will then be conducted in MODAN, a software exe-

cuting the SMNA-procedure. The effects of mass and its distribution will then be studied

by varying relevant parameters. The study is aimed to recommend appropriate amount

and distribution of mass to be used in modal analyses. The correct combination will be

based on similar results as with finite element analyses.

Literature Survey

The thesis originates from a best practice report and the paper by Athanasiu et al.

(2015) published and presented at the International Symposium on Frontiers in Offshore

Geotechnics III, (Meyer, 2015). The paper introduce the SMNA-method which is a pro-

posed simplified method handling non-linear behavior of closed caisson foundations in

earthquake loading. Chapter 3 in this thesis is entirely based on the report by Athanasiu

et al..
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Although no widely used practical procedure has been established for dynamics analyses

of closed caisson foundations, similarities can be found in many well known publications.

In the multi-step method presented by Kausel et al. (1978) embedded foundations are

analysed stepwise making use of superposition. Kinematic and inertial interaction gives

foundation input while the subgrade are represented as a simplified spring model. Dy-

namic soil stiffness and damping are in these cases represented as frequency dependent

impedance functions. Traditionally these functions have been found using analytical half

space solutions. Numerous of closed form solutions has been obtained for common foun-

dation designs, see for example Richart et al. (1970) and Luco and Wong (1987).

Due to the complexity of dynamic soil-structure interaction problems the use of simplified

methods has been important to understand the main physical effects. A good presentation

of spring models used in soil-structure interaction are found in the book Foundation

Vibration Analysis Using Simple Physical Models (Wolf, 1994). In the Winkler-model the

subgrade are represented as a series of independent springs and dashpots connected to

the foundation. The model is used in both static and dynamic analyses, see for example

Gerolymos and Gazetas (2006). For comprehensive overview of simplified models and

their importance, the reader is refered to Dobry (2014).

The theory presented in chapter 2 are based on a study of literature and backround

theory towards this thesis. The study was conducted as a student project and focused

on theory and methods in geotechnical earthquake engineering, structural dynamics and

soil-structure interaction. A brief historical introduction of skirted foundations is also

included. The theory are found in well known books within the field, e.g. Geotech-

nical Earthquake Engineering (Kramer, 1996), Dynamics of Structures (Chopra, 2007),

Dynamic Soil-Structure Interaction (Wolf, 1985).

1.2 Objectives

The thesis has four objectives of which the last is considered to be the primary objective.

The first three objectives are considered to be secondary objectives.

1. Analyze the dynamic response of a subsea manifold structure founded a closed

caisson, subjected to earthquake induced loads, using a numerical time domain

analysis performed in PLAXIS 3D.

2. Study inertial effects by varying mass parameters in analyses conducted at the same

structure, using the simplified SMNA-approach in frequency domain.

3. Obtain comparable estimations of maximum dynamic displacement, rotation, force

and overturning moment from the two different methods.
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4. Propose an adequate amount and distribution of mass, including soil added mass,

to be considered using the simplified SMNA-method, based on similarity with nu-

merical analysis.

1.3 Limitations

Obtaining a properly functioning numerical model for dynamic earthquake analysis has

proven to be a time consuming activity. The scope of this research is therefore limited

to involve only one manifold structure subjected to one particular earthquake. Also the

calculation time in PLAXIS 3D had to be restricted. This involved use of the linear-

elastic perfectly-plastic Mohr-Coulomb soil model and artificial Rayleigh-damping. These

simplifications bring some uncertainties to a realistic behavior of the model.

Comparing two fundamentally different approaches require some simplifications in col-

lecting comparable output. In the SMNA-approach a modal analysis decouples two mode

shapes an looses time dependency. To estimate maximum response the square root of the

sum of squares (SRSS) are used. This is a then a statistical approximation of maximum

modal response from the two modes at the same time.

Uncertainties are also related to retrieval of dynamic loads from time domain analysis.

Inertial considerations was used in this study. Both analysis are conducted assuming

the water table to be at seabed level. Hydrodynamic effects and water added mass are

therefore not considered.

1.4 Approach

This thesis present a quantitative study in which two conceptually different models are

set up against each other. By the assumption that one model gives correct response the

other method is adapted based on comparable output from both models.

First the numerical analysis is carried out and assumed to be correct. A parametric

study are then conducted on the simplified model calibrating previously neglected mass

parameters based on consistency with the numerical results.

Conclusive estimates of inertial parameters to be used in the simplified method are then

established.
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1.5 Structure of the Report

The report is hereafter divided into two parts structured as follows.

• Part 1: Theory

– Chapter 2: Theoretical Background and Analytical Methods

The chapter gives an introduction to the theory and well known analytical and

numerical approaches related to earthquake engineering.

– Chapter 3: The SMNA-method

The chapter presents the basic concept and calculation procedures in the sim-

plified method.

• Part 2: Case study

– Chapter 4: Descripton of Analyses

The chapter gives a review of the all the analyses conducted in the case study.

– Chapter 5: Results and Discussion

The chapter presents the results of all analyses and a discussion of the findings.

– Chapter 6: Conclusions and Further Work

The conclusions are made and recommendations for further work are given.





Part I

Theory
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Chapter 2

Theoretical Background and

Analytical Methods

2.1 Background

Earthquakes involve complicated mechanisms to be analysed by structural and geotechni-

cal engineers. It is necessary to understand wave propagation through soils, soil-structure

interaction and resulting structural response. These cases require insight in dynamic dif-

ferential equations, eigenanalysis and non-linear considerations, concepts that constitutes

the majority of the mathematical basis in relevant analytical methods. This chapter first

give a brief introduction of the closed caisson foundation, before presenting the funda-

mental background theory and some of the methods used in earthquake engineering. The

chapter is based on a preliminary literature survey conducted towards this thesis.

2.2 Closed Caisson Foundations

A closed caisson foundation is a skirted foundation consisting of a steel cylinder of varying

length-diameter and a closing top plate, see figure 2.1. The foundation is penetrated into

the ground using gravity and suction from pumping water out of the caisson during

installation. The foundation acts as a hybrid between traditional piles and gravity based

foundations. The concept was first introduced in the offshore industry by Senpere et al.

(1982) in early 1980’s. The technology wasn’t really accepted at first, due to complications

installing the first suction anchors in the Gorm field in 1980 (Tjelta, 2001).

In 1985 the largest offshore penetration test was carried out in the Gullfaks field where 22

meter steel cylinders got penetrated into the seabed at 200 meter depth by suction and

submerged weight (Tjelta et al., 1986).

9



CHAPTER 2. THEORETICAL BACKGROUND AND ANALYTICAL METHODS 10

Figure 2.1: Bucket foundation. Figure from SubseaWorldNews.

When Statoil in 1989 started the construction of their platform for the Gullfaks C platform

the concept finally got its appreciation. Suction caissons is today a frequent choice of

subsea foundations due to reliability, material use, cost efficiency and relatively simple

installation procedure. The technology is applicable in most soil conditions and requires

little or no preparation on the seabed.

2.3 Seismic Wave Propagation

Seismic waves are devided into body waves and surface waves. Body waves propagates

through the interior of the earth and consists of primary waves and secondary waves, see

figure 2.2. Primary waves or p-waves are compressional waves with particles travelling

in the longitudinal direction of the wave. Secondary waves, or s-waves, has particles

moving perpendicular to the travelling direction. S-waves are generally more destructive

to surface structures although they propagates in about half the speed of p-waves.
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(a) p-waves

(b) s-wave

Figure 2.2: Seismic body waves.

(a) Rayleigh wave

(b) Love wave

Figure 2.3: Seismic surface waves

Surface waves consists of Rayleigh waves and Love waves, see figure 2.3. These waves

travel along the earth surface. Rayleigh waves have particle motion in circles like ocean

waves while the Love waves travels with side wise particle motion like a snake. Surface

waves travels slower than body waves but has predominant amplitudes at great distances.

The travelling motion of body waves can be expressed by the following differential equa-

tions derived from the stress equilibrium of an infinitesimal part of a constrained infinite

rod, illustrated in figure 2.4, (Kramer, 1996).
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∂2u

∂t2
=
M

ρ

∂u

∂x2

∂2v

∂t2
=
G

ρ

∂v

∂x2

(2.1)

Figure 2.4: Constrained infinite rod (Kramer, 1996).

Where u and v is the longitudinal and perpendicular particle motion respectively, as

functions of time and location along the rod. M and G is the constrained and shear

modulus while ρ is the material mass density.

Compressional and shear wave velocities can be expressed as follows:

Vp =

√
M

ρ
and Vs =

√
G

ρ
(2.2)

Which gives the following simplified differential equations for p-waves and s-waves:

∂2u

∂t2
= V 2

p

∂u

∂x2

∂2v

∂t2
= V 2

s

∂v

∂x2

(2.3)

2.4 Site Response Analysis

Determination of local effects due to an earthquake some distance away is called site

response analysis. Prediction of local ground motion is necessary to obtain useful response

spectres, investigating soil strains and estimate earthquake induced forces on structures

(Kramer, 1996). Historically it is observed crucial consequences of local soil amplification

effects, such as the Mexico City earthquake in 1985, where a selection of structures were

especially vulnerable to destruction.
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One Dimensional Approach

Site response effects depends on the layering and geometry of the soil deposit at the site.

The principles is briefly presented to establish the basis for an approach calculating a

simple case of uniformly layered, undamped elastic soil over rigid rock. The approach can

be extended to account for more complicated cases including non-linear soil and damping

effects.

Figure 2.5: Wave propagation from hypocenter to surface (Kramer, 1996).

When earthquake energy is released from the location of a rupture, seismic waves propa-

gate in all directions of which some reaches the surface. Due to increasingly stiffer medium

with depth, waves tend bend upwards transmitting into softer layers, according to Snell’s

law, see figure 2.5. It is therefore common to analyze vertically propagating shear waves

in site response analysis. The aim is to determine the surface response of a soil deposit,

and the problem narrows down to how the incoming waves amplifies through the soil

layer, see figure 2.6.

Figure 2.6: Incoming and reflected wave in uniform soil layer (Kramer, 1996).

Propagating incidental and reflected waves are expressed in terms of horizontal harmonic

particle oscillation. Resulting displacement are found by the sum of the two.

u(z, t) = Aei(ωt+kz) +Bei(ωt−kz) (2.4)

Where A and B are the incidental and reflected wave amplitudes, t is the time, ω is the

frequency in radians per second, z is soil depth, i =
√
−1 is the imaginary constant and
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k = ω/Vs is the wave number, where Vs is the shear wave velocity in the homogeneous

soil.

The shear strains in the soil layer are found differentiating the displacement with respect

to the soil depth.

γ(z, t) =
∂u

∂z
(2.5)

Shear stresses do not occur on the surface which provide an useful boundary condition.

τ(0, t) = G · γ(0, t) = G · ∂u
∂z

= 0 (2.6)

The boundary condition reformulates the wave equation to:

u(z, t) = 2A
eikz + e−ikz

2
eiωt = 2A cos (kz) · eiωt (2.7)

Equation 2.7 represents a standing wave used to establish ratio between surface motion

and bedrock motion called the transfer function.

F1(ω) =
umax(0, t)

umax(H, t)
=

2A · eiωt

2A cos (kH) · eiωt
=

1

cos(kH)
=

1

cos

(
ωH
Vs

) (2.8)

Amplification of the soil layer is then determined by the mode of the transfer function

called the amplification function.

|F1(ω)| =
√

Im(F1(ω))2 + Re(F1(ω))2 =
1∣∣∣∣cos

(
ωH
Vs

)∣∣∣∣ (2.9)
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Figure 2.7: Amplification of a undamped soil layer (Kramer, 1996).

The amplification function show that the soil layer is only able to amplify, not de-amplify

the incoming motion and in this undamped case could cause infinitely large amplifications

as shown by the asymptotes in figure 2.7. The phenomenon is called resonance and occurs

when the incoming oscillations coincides with the natural frequencies of the soil layer.

In a damped case the frequency dependent amplification will look like figure 2.8.

Figure 2.8: Amplification of a damped soil layer (Kramer, 1996).

By inspecting the resulting deformations of the soil layer at resonance the natural mode

shapes can be found, see figure 2.9.

It is important to emphasize that the amplification function (2.9) is defined in the fre-

quency domain. This means that in order to use the amplification function it is necessary

to perform a Fourier transformation on the time series before amplifying the response.

Then perform an inverse Fourier transformation to obtain desired time series at the sur-

face. This procedure is well illustrated in figure 2.10 by Kramer (1996) on the bext page,

where the surface amplification of Gilroy No. 2 is considered.



CHAPTER 2. THEORETICAL BACKGROUND AND ANALYTICAL METHODS 16

Figure 2.9: Mode shapes of a 10 meter deep soil layer with shear wave velocity of Vs = 10m/s oscillating
at ω1 = π

2 , ω2 = 3π
2 and ω3 = 5π

2

Figure 2.10: Amplification of time series (Kramer, 1996)
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2.5 Response Spectrum Analysis

Evaluating single degree of freedom (SDOF) systems and their frequency dependent be-

havior is a convenient tool in dynamic analysis and is the basis in obtaining the response

spectrum.

2.5.1 Single Degree of Freedom Model

The lollipop model is a simple way describing dynamic behavior of a SDOF-mechanism.

It is convenient to use a massless column, providing stiffness and damping, and a lumped

mass on top, see figure 2.11. In earthquake analysis the system is exited by an acceleration

at the base and response at the lumped mass is measured.

Figure 2.11: The single degree of freedom lollipop model.

Equations of motion

The dynamic equilibrium condition of the SDOF-system excited by the ground accelera-

tion üg(t) is given by the equation.

m ·
(
ü(t) + üg(t)

)
+ c · u̇(t) + k · u(t) = 0 (2.10)

Where m, c and k is the mass, damping and stiffness of the structure, and u(t) is the

relative displacement of the mass to the ground motion. The stiffness and damping are

only dependent on the relative displacement in the structure. It is then possible to move

the ground motion term over to the right hand side and consider it as an equivalent force

acting on the structure.



CHAPTER 2. THEORETICAL BACKGROUND AND ANALYTICAL METHODS 18

m · ü(t) + c · u̇(t) + k · u(t) = −m · üg(t) (2.11)

Natural Frequency

Considering the homogeneous equation without damping provides the following dynamic

equation.

m · ü(t) + k · u(t) = 0 (2.12)

By the technique of Fourier transformation the response can always be expressed as the

sum of harmonic oscillations of all frequencies with corresponding amplitudes, hence.

u(t) = Re

( ∞∑
n=1

An · eiωnt
)

(2.13)

For the homogeneous conditions it is only one frequency dominating the response.

u(t) = Re(A1 · eiω1t) (2.14)

Substituting 2.14 into 2.12 gives.

(k − ω2
1 ·m) · A1 = 0 (2.15)

since A1 6= 0 we get the natural frequency of the system.

ω1 =

√
k

m
(2.16)

2.5.2 The Response Spectrum

In creating the response spectrum, SDOF-oscillators of all natural frequencies are con-

sidered. All of them are subjected to the same dynamic input and maximum response is

measured in each case. The response spectrum is then obtained by plotting this response

against the fundamental periods. In figure 2.12 the colored time series represent the

response of six different oscillators and the black graph is the obtained response spectra.
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Figure 2.12: Construction of the response spectrum. Figure from QuakeManager (2015).

It is common to create response spectres for both displacement and acceleration. The

acceleration response is convenient to use calculating earthquake induces forces. Fig-

ure 2.13 and figure 2.14 shows the acceleration time series from the Imperial Valley 1979

earthquake and the corresponding response spectra for this ground acceleration.

Figure 2.13: Acceleration time series from the Imperial Valley earthquake in 1979.

The Fourier spectrum probably gives a more accurate illustration of the frequency content

of an earthquake, but the response spectrum gives important information about which

natural frequencies to avoid when designing structures. By inspecting figure 2.14 we see
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that the critical situation occurs in a structure with fundamental period of about 0.2

seconds, which gives the acceleration:

SA(0.2) = 0.49 g

And the equivalent base shear at a simplified 1000 kg structure:

Feq = 4.8 m/s2 · 1000 kg = 4.8 kN

Figure 2.14: Acceleration response spectrum for the Imperial Valley earthquake 1979.

In practice several time series are taken into account when obtaining a response spectrum.

The time series should be in relevant magnitude for the geographical area and give an

adequate range in frequency content. This can be taken care of by seismic zonation maps,

giving expected acceleration for a given return period of an area. Through proper scaling

of the considered time series it is established simplified methods used in building codes,

for example Eurocode 8 (Norge, 2004).

2.6 Dynamic Soil-Structure Interaction

A foundation on the surface or embedded in a soil layer causes deviation in the sur-

rounding soil motion compared to the free field motion. This effect is called soil-structure

interaction (SSI) and it is able to change expected response in a system considerably from

a fixed base analysis. The phenomenon is dependent on the foundation geometry, em-

bedment and dynamic properties of the soil. In general the SSI effects will always cause

softer behavior and increase the natural periods. A fixed base analysis will therefore be
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more conservative regarding overturning moments and base shear, but the effects of foun-

dation rocking can contribute to much larger displacements of a structure. SSI-analysis

is necessarily of great importance in dense areas with high rise buildings or motion in

sensitive connection devices such as manifolds. Economic considerations suggest that a

SSI-analysis are beneficial in design activities due to the reduction in induced forces (Wolf,

1985).

The theory of dynamic soil-structure interaction is complex and will only be discussed

briefly in this thesis. For more detailed derivation of the subject see for example Wolf

(1985). Traditionally dynamic SSI analysis can be divided into two groups: the direct

methods in time domain and the substructure methods in the frequency domain.

2.6.1 Direct Methods

Direct methods involve analyzing both soil and structure directly integrating numerically

through the time domain. The advantage of this approach is that it is performed in one

step and copes with non-linearity directly. The discrete element methods constitutes the

family of direct methods including the finite element method (FEM). The methods use

small elements coupled together to build up a calculation model and is the most general

methods used in geotechnical engineering today. In dynamic analyses large models are

required to radiate out unwanted boundary reflected waves. This has traditionally been

an issue due to excessive calculation time and has lead to development of other techniques,

such as the substructure methods.

2.6.2 Substructure Methods

The substructure methods are based on the general superposition theorem that permits

breaking the problem into parts that later are added together. The different steps include

kinematic interaction analyses and internal interaction analyses which are only valid for

linear and equivalent linear system. The methods are therefore less accurate analysing

highly non-linear soil in strong ground motion, but provides a remarkable agreement with

a full direct analysis in most cases (Kausel et al., 1978). The technique is in general

reliable, economic and less time consuming than numerical methods.

To illustrate the principles of a substructure method a very brief stepwise description of

the Three-Step Method from Elsabee (1975) is presented.
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The Three-Step Method

The Three-Step Method illustrates well how the concept of superposition is used and also

explain the different steps in the analysis, see figure 2.15.

Figure 2.15: Three-step method (Kausel et al., 1978).

1. Step 1, Kinematic Interaction: Assume a massless rigid foundation embedded

in a soil deposit subjected to ground motion. A stiff foundation cannot necessarily

follow the free field motions and a dynamic analysis will generate the foundation

input motion.

2. Step 2, Dynamic Impedance: The frequency dependent soil properties are de-

termined. These properties are expressed through the dynamic impedance function,

a complex frequency dependent function related to soil stiffness and damping. This

step requires finite element or finite difference analysis. Numerous of closed form

solution has been tabulated for conventional foundation designs.

3. Step 3, Inertial Interaction: Inertial forces from the foundation input motion is

applied to the structure founded on springs representing the soil properties through

the impedance function. The response of the structure including SSI-effects can then

be analysed in both frequency and time domain.

2.7 The Normal Mode Method

A fundamental discipline in dynamic calculations is linear (matrix) algebra and eigen-

analysis. The normal mode method is an approach based on eigenanalysis that uncouples

any dynamic motion into independent modes. A mode is a particular dynamic motion
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of a system oscillating at a natural frequency. The modal superposition property ensures

capability of representing any motion by adding up mode shapes with their respective

modal amplitudes. This method also requires the use of Fourier transformations. The

fundamental concepts in using the normal mode method will now be presented on a multi

degree of freedom system. Starting with the undamped equation of motion.

Mü(t) + Ku(t) = Q(t) (2.17)

Where M and K is the mass and stiffness matrix, Q is the corresponding load vector

and u is the degrees of freedom. By Fourier transformation we can express the degrees of

freedom by a sum of harmonic oscillations:

u(t) = Re

( ∞∑
n=1

An · eiωnt
)

(2.18)

We will now consider the homogeneous case and apply 2.18 into equation 2.17, which

simplifies to:

(
K− ωnM

)
Ane

iωnt = 0

(
K− ω2

nM
)

= 0

(2.19)

Now the eigenfrequencies or natural frequencies can be retrieved from the determinant of

the assembled matrix.

det
(
K− ω2

nM
)
= 0 (2.20)

For every eigenfrequency, ωn, there is a corresponding eigenvector, ϕn, that solves the

system, thus:

(
K− ω2

nM
)
ϕn = 0 (2.21)

These eigenvectors constitutes the mode shapes of the dynamic response to a natural

frequency. Modal superposition now states that every mode shape can be multiplied by

a corresponding modal degree of freedom and summed up to get the physical response:
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u(t) =
N∑
n=1

ϕn · qn(t) (2.22)

Where qn is the modal degrees of freedom. Substitute into 2.17 and premultiply by the

transposed mode shapes gives n equations of the form:

ϕTnMϕnq̈n +ϕTnKϕnqn = ϕTnQ l (2.23)

Where l =
[
1 1

]T
. The equation can further be simplified to:

M̃nq̈n + K̃nqn = Q̃n (2.24)

Where M̃n, K̃n and Q̃n is the modal mass, modal stiffness and modal load respectively.

The system is now fully uncoupled and we have n linearly independent SDOF-equations.

The modal degrees of freedom is now found solving the differential equations. By modal

superposition (equation 2.22) the physical degrees of freedom can be back calculated.

2.8 The Finite Element Method

The finite element method (FEM) is an approximate technique of solving boundary value

problems originated from the field of aerospace engineering. Today the method are widely

used in several fields of engineering including structural engineering, geotechnical engi-

neering, thermodynamics and bio-mechanics, to mention a few. The method is based on

discretization of a continuous system into a finite number of elements. By prescribing

node displacements or stresses in the boundary nodes (boundary conditions) it is possible

to solve the system for nodal degrees of freedom inside the discretized model.

The method has become very popular over the last decades due to the easy access to

powerful computers. However, the method also represents a danger if the user don’t have

sufficient knowledge. The advanced tool then can be used as a ”black box”, resulting in

good looking output that can cause engineering decisions with great consequences (Liu

and Quek, 2013). The user should therefore have good understanding of the theoretical

background and also make use of simplified methods to make quick comparable estimates.
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2.8.1 Basic FEM-theory

In recent times there has been done a lot in the field of finite element technology and a

thoroughly description of the theory will be too comprehensive for the purpose of this the-

sis. A very brief description without any derivation of equations will rather be of priority.

Overall the finite element method can be be summarized in the following concepts:

• Discretization of a physical model into smaller elements.

• Establish local set of equations in terms nodal quantities in each element.

• Interpolate between nodes using shape functions.

• Establish global set of equations assembling all elements.

• Determine sufficient amount of boundary conditions and ensure compatibility.

• Solve the global set of equations.

The finite element method is an approximate numerical solution. It can either aim to

find the highest possible accuracy of a solution by using small sized elements and many

iterations costing computational time. Or prioritize fast calculations including large sized

elements and fewer iterations on the cost of accuracy. A coarse mesh generally gives less

accurate solutions due to fewer nodes and a higher degree of interpolation between nodes.

Figure 2.16 shows a FEM-model of a symmetric half of a soil medium used in dynamic

closed caisson analysis (Brandt, 2014).

Figure 2.16: FEM-model used in dynamic analysis of closed caisson foundation. Figure from Brandt
(2014).
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The choice of element type used in the model is another issue when it comes to accuracy

and CPU time. Many different types of elements, each with their pros and cons, have

been developed. The basic element types are beam elements, plate elements and volu-

metric elements. Generally the elements are determined by the distribution of nodes and

Gaussian stress points. Each element has a specific number of nodes distributed along its

boundary ensuring continuity with neighbouring elements. Figure 2.17 shows an example

of a 10-noded tetrahedral element with nodes and stress points.

Figure 2.17: 10-noded tetrahedral element. Nodes marked as black dots and stress points as x.

Nodal quantities, like forces and displacements, are calculated in each node and makes

number of equations and CPU time proportional to number of nodes. Shape functions

provide an appropriate interpolation of the discrete nodal quantities in between nodes.

The order of the shape functions also influences accuracy and calculation time. Typically,

low order polynomials or linear shape functions gives sufficient results.

2.8.2 Challenges in Dynamic FEM-Analyses

Boundary Issues

In geotechnical earthquake engineering it is common to model a soil deposit over bedrock

using volumetric elements, see figure 2.16. This makes number of nodes exponentially

increasing with the size of the model and cause excessive calculation time. With this in

mind, small models are desirable. However, in dynamic analyses propagating waves even-

tually hits vertical boundaries that represents a continuous soil medium. From basic wave

propagation theory it is known that waves gets reflected back when hitting a boundary.

This also happens when waves propagates inside an element model. Unfortunately, this

causes trapped energy that in nature would dissipate through continuous soil.
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There are two ways to solve this problem. (1) create a sufficiently large model so that the

wave energy dissipates in damping. This will increase the computational time significantly.

Or (2) introduce viscous boundaries that absorbs wave energy. These boundaries typi-

cally work properly on perpendicularly incoming waves, but tend to generate unwanted

boundary effects otherwise, see for example Brandt (2014).

Although the first absorbing boundaries was invented by Lysmer and Kuhlemeyer already

in 1969, there is still a huge challenge adapting these in a general manner. The best

absorbing boundaries developed is by Lindman (1975), but are only applicable in finite

difference calculations.

Time Stepping

In dynamic FEM-analyses numerical time integration is used, such as the Newmark

Method (Newmark, 1959). In numerical integration a global set of equations are solved

at a particular time (ti) before stepping one time step (∆t) ahead and solve the equations

once again and so on.

Both explicit and implicit formulations of the time integration scheme are used in FEM.

Explicit methods calculate next step based on current step while implicit methods solve

an equation based on both current and the next time step. Explicit methods are gen-

erally easier to formulate but are very sensitive to time stepping. Implicit methods are

more advanced but provide robust integration and are therefore suitable for dynamic

calculations.

Essentially the time step should be set to be smaller than a critical value. This value is

roughly said to be the time a wave use to travel over an element. Too large time steps

could skip the smallest elements and cause less accurate solutions and unstable numerical

behavior.

2.9 Soil Stiffness and Damping

2.9.1 Soil Stiffness Parameters

Soils are highly non-linear which has a significant impact on the shear stiffness. The shear

stiffness is essential in wave propagation due to the shear wave velocity relation:

Vs =

√
G

ρ
(2.25)
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From laboratory tests it is widely proven that the shear stiffness is dependent on shear

strain. Soils subjected to incoming shear waves will experience cyclic shear which simpli-

fied can be illustrated as a hysteretic loop, see figure 2.18 below.

Figure 2.18: Equivalent linear cyclic shear hysteresis. Figure from BuildingResearchInstitute.

The shear stiffness can be determined by the inclination of the loop in every point at the

curve, Gtan in the figure. However, a convenient simplification is to look at the mean

shear stiffness over one cycle, namely the secant shear stiffness, Gsec (Kramer, 1996).

This provide the foundation for an equivalent linear approximation of non-linear response

much used in earthquake engineering. However, the method cannot be used when plastic

deformations or failure occurs, these cases require a more realistic path of the hysteresis

loop, see figure 2.19.

Figure 2.19: Non-linear degrading hysteresis loop. Figure from BuildingResearchInstitute.

The figure clearly illustrates how the secant stiffness degrades with shear strains and

number of cycles. This can be illustrated by the stress-strain curve running through the
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origin and each of the tips in every loop, called the back-bone curve, illustrated in figure

2.20. The inclination of the backbone curve at the origin will provide the maximum shear

stiffness, Gmax. The secant stiffness are now found as a straight line from the origin to

a point on the back-bone curve at current shear strain. The ratio between the secant

stiffness and the max stiffness can graphically be shown using a modulus reduction curve,

figure 2.21.

Figure 2.20: Backbone curve. Figure from BuildingResearchInstitute.

Figure 2.21: Backbone curve and modulus reduction curve. Figure from Kramer (1996).

2.9.2 Damping in Soil

Damping effects is present in all natural dynamic mechanisms. When waves propagates

through a soil medium energy will dissipate through friction and heat generation before

the waves eventually dies out. The phenomenon of damping is difficult to quantify and

there is developed many crude techniques removing energy from a dynamic system.
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Damping Ratio

Damping is often quantified as the ratio between the actual damping coeffecient and a

critical damping defined as the minimum damping necessary to prevent the system to

oscillate, see figure 2.22. The damping ratio is used as a helpful parameter frequently

used in techniques of describing damping.

Figure 2.22: Effect of damping ratios on a system, figure from PLAXIS 3D reference manual.

ξ =
c

ccritical
(2.26)

It can be shown that:

ccritical = 2mω0 ⇒ ξ =
c

2mω0

=
cω0

2k
(2.27)

Where m and k are the mass and stiffness of the system and ω0 represents the natural

frequency.

Hysteretic Damping

In relation to soil stiffness degradation presented in the previous section (2.9) there are

also equivalent-linear and non-linear techniques of describing damping, Kramer (1996).

The basic idea is to evaluate the amount of work from the area inside one hysteretic

loop. This is the total work done over one cycle and can be expressed as the force times

deformation of a infinitesimal soil element integrated over one cycle, hence:
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WD =

∫ t0+T

t0

F
du

dt
dt = πcω̄u20 (2.28)

Where F is the induced force on a soil element deformed, u. u0 is the maximum displace-

ment, ω̄ is the frequency of the applied force and c is the damping coefficient from the

dynamic equilibrium equations. WD then expresses the dissipated energy over one cycle.

The stored energy at maximum displacement can be expressed as:

WS =
1

2
ku20 (2.29)

Where k is representing the soil stiffness. Assuming ω̄ = ω0 the equation 2.28 and 2.29

can be reformulated and combined to give the damping ratio:

ξ =
WD

4πWS

=
1

2π

Aloop
Gsecγ2c

(2.30)

This strain based damping ratio is then to be used in non-linear computational tools. The

strain dependent damping ratio can be graphically illustrated the same way as the shear

stiffness reduction curve, see figure 2.23 below.

Figure 2.23: Strain dependent damping ratio. Figure from Kramer (1996).
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Rayleigh Damping

Rayleigh damping is a simplified method of imposing energy dissipation to a dynamic

system. The damping consists of a mass proportional and a stiffness proportional term,

both frequency dependent.

C = αM + βK (2.31)

α and β are the Rayleigh coefficients used to tune the damping ratio ξ into relevant

frequency band between f1 and f2 and are obtained by the following set of equations.

ξ1 =
α

4πf1
+ βπf1

ξ2 =
α

4πf2
+ βπf2

(2.32)

Here ξ1 and ξ2 represents the desired damping ratios at the two target frequencies. Within

the frequency band the damping gets below ξ1 and ξ2 whereas outside the damping ratios

increase quickly, see figure 2.24. It is crucial to pick the target frequencies wisely to avoid

artificial over damping. There are several techniques of finding f1 and f2, see for example

Hashash and Park (2002).

Figure 2.24: Rayleigh damping, red line is the mass proportional part, blue line is the stiffness proportional
part. f1 = 1.5 Hz, f2 = 8 Hz, ξ1 = ξ2 = 8%.



Chapter 3

The Simplified Modal Non-Linear

Analysis

3.1 Background

The Simplified Modal Non-linear Aanalysis is a method calculating earthquake induced

loads and response of a subsea superstructure founded on a closed caisson. The method

was developed by Athanasiu et al. (2015) and presented at the ISFOG conference held in

Oslo June 2015. The desire to develop a robust approach giving reasonable estimates of

dynamic response avoiding time consuming numerical analyses is the motivation behind

the method. This chapter is based on the paper published in Meyer (2015).

3.2 Model

The simplified physical model creating the basis of the method is a two degree of freedom

model illustrated in figure 3.1. The model illustrates a foundation embedded in the seabed

with a mass lumped at the center of gravity. Pure lateral displacement and rotation are

prevented by two non-linear springs representing the soil-stiffness.

The model has translational and rotational degrees of freedom at the base of the structure

given by δ and θ. These can be expressed in terms of δm and θm, which is the corresponding

degrees of freedom at the center of gravity in the structure. Hence:

δ = δm − θm · hc
θ = θm

(3.1)

33
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Figure 3.1: The SMNA-model. Figure from Athanasiu et al..

The equivalent force and overturning moment on the system can then be expressed as:

Q0 = Kδ · δ +Kδθ · θ
M0 = Kθδ · δ +Kθ · θ

(3.2)

Where Kδθ and Kθδ are the off-diagonal entries in the stiffness matrix.

3.3 Input

The set of input used can be segmented into three groups separately obtained. The

different input segments are briefly explained in this section.

Physical Parameters

Physical parameters for the caisson and superstructure are combined into total mass,

center of gravity and total mass moment of inertia. These parameters constitutes the

mass matrix in the dynamic equation of motion.
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Back-Bone Curves

An external soil-caisson interaction analysis are conducted to consider non-linear proper-

ties of the soil. The analysis can be done in a discrete element program or a finite element

program such as PLAXIS 3D.

The analysis involves modelling relevant caisson geometry and soil conditions before ap-

plying lateral force and overturning moment at the top plate of the caisson. The load

increases incrementally at a constant load ratio, h = M
Q

, illustrating different eccentrici-

ties. Failure are gradually reached and Q− δ and M − θ relations are obtained. The plots

from these relations are called back-bone curves, see figure 3.2. Note that different load

ratios represents different stiffness conditions.

Figure 3.2: Example of back-bone curves obtained in PLAXIS 3D.

From the ultimate loads found in the analysis the yield-surface can be expressed through

following equation:

(
Qult

Qult,0

)α

+

(
Mult

Mult,0

)β

= 1 (3.3)

Where Qult,0 and Mult,0 are ultimate loads for hmin and hmax respectively. α and β

are curve fitting parameters. Equation 3.3 are further developed using the degree of

mobilization, f.
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(
Q

f ·Qult,0

)α

+

(
M

f ·Mult,0

)β

= 1 (3.4)

The Q − M space are den constructed assembling different load ratios and degrees of

mobilization.

Figure 3.3: Q-M space. Figure from Athanasiu et al.

Acceleration Response Spectrum

The acceleration response spectrum is constructed from a foundation input motion sub-

jected to the structure. Due to soil-structure interaction effects this motion deviate from a

free surface motion. The input motion can be found from a kinematic-interaction analysis.

It is convenient to normalize the spectrum such that the response is averaged over a

certain frequency band width, see figure 3.4.
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Figure 3.4: Acceleration response spectrum from foundation input motion.

3.4 Method of Solution

Executing the SMNA-method are done in a modal analysis iteration procedure called the

variable secant stiffness procedure, which implies that the stiffness properties are changing

each iteration. In this section a review of the modal analysis and given before the iteration

procedure and convergence criteria are explained.

3.4.1 Modal Analysis

Equations of Motion

The undamped homogeneous equations of motion for the two degree of freedom system

are:

Mü + Ku = 0 (3.5)

Where:

M =

[
m 0

0 Iθ

]
K =

[
Kδ −Kδhc
−Kδhc Kδh

2
c +Kθ

]
u =

{
δm
θm

}
(3.6)
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m · δ̈m +Kδ · (δm − hc · θm) = 0

Iθ · θ̈m −Kδ · (δm − hc · θm) · hc +Kθ · θm = 0
(3.7)

Hence:

[
m 0

0 Iθ

]{
δ̈m
θ̈m

}
+

[
Kδ −Kδhc
−Kδhc Kδh

2
c +Kθ

]{
δm
θm

}
=

{
0

0

}
(3.8)

Where δm is the lateral displacement of the lumped mass, m, of the structure and foun-

dation. θm is the rotation at the base, Iθ is the mass moment of inertia of the foundation

and superstructure combined. hc is the height to center of gravity in the structure and

Kδ and Kθ are the translation and rotation stiffnesses representing the subgrade.

Natural Frequencies and Mode Shapes

By assuming harmonic response in both degrees of freedom and perform a Fourier trans-

formation (see 2.13) on the two, substitution of the transformed expression will result in

equation 3.9. Solving the equation in terms of ωn will give the system’s natural frequen-

cies:

det

([
Kδ −Kδhc
−Kδhc Kδh

2
c +Kθ

]
− ω2

n

[
m 0

0 Iθ

])
= 0 (3.9)

Where ωn is the natural frequencies, n = 1, 2 on this case. Both natural frequencies has

corresponding mode shapes, ϕ1 and ϕ2, solving the equation:

[
Kδ − ω2

nm −Kδhc
−Kδhc (Kδh

2
c +Kθ)− ω2

nIθ

]{
ϕ1,n

ϕ2,n

}
= 0 (3.10)

Modal Decoupling

The two modes are linearly independent of each other and makes it possible to decouple

the system into two distinct modes. The modal degrees of freedom are expressed as:

u(t) = ϕn · qn (3.11)

Substitute into 3.5 and pre-multiply by the the modeshape gives:
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ϕT
nMϕn +ϕT

nKϕn = 0 (3.12)

Introducing the modal mass and modal stiffness:

M̃n = ϕT
nMϕn K̃n = ϕT

nKϕn (3.13)

The decoupled equations of motion for n = 1 and n = 2 are then established:

M̃nq̈n(t) + K̃nqn(t) = 0 (3.14)

Where q(t)n is the modal coordinates, M̃n and K̃n is are the modal mass and stiffness for

the two modes. The response can also be back calculated to real degrees of freedom:

{
δ(t)m
θ(t)m

}
=

{
ϕ1

ϕ2

}
1

q1(t) +

{
ϕ1

ϕ2

}
2

q2(t) (3.15)

3.4.2 System Response and Dynamic Loads

Response

From the modal equations obtained above, response to a given earthquake can now be

computed using the response spectra. First the modal excitation factor are introduced:

Ln = ϕTn ·M · l (3.16)

Where

l =

{
1

1

}

This gives the modal distribution of the earthquake induced loads from üg, hence:

M̃nq̈n(t) + K̃nqn(t) = −ϕTn ·M · l · üg(t) (3.17)
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Dividing by the modal mass and simplify:

q̈n(t) + ω2
nqn(t) = − Ln

M̃n

üg(t) (3.18)

Solving the differential equation 3.18 it can be shown that the maximum modal response

can be expressed as:

qn,max =
Ln

M̃n

· Sd(ωn) (3.19)

Where Sd is the displacement response spectrum of the given time series. From now the

frequency will be expressed in periods, Tn = 2π
ωn

. It is also possible to express modal

maximum acceleration in the terms of pseudo spectral acceleration PS(Tn) = ω2
n ·Sd(Tn):

q̈n,max =
Ln

M̃n

PSA(Tn) (3.20)

Maximum response for a given earthquake can now be expressed through equation 3.15.

However, since there is no longer any time dependency and the modes are independent

of each other it is necessary need to use SRSS (Square Root of the Sum of Squares) to

obtain a statistical approximation for the combined modal response.

{
δm
θm

}
max

=

√(
ϕ1q1,max

)2
+
(
ϕ2q2,max

)2
(3.21)

Equivalent Forces

The earthquake induced loads on the system can be expressed as equivalent dynamic

forces using the spectral acceleration. These equivalent forces are given in terms of the

maximum SRSS acceleration.

Fn = m · Ln
M̃n

· SA(Tn) · ϕ1,n

Mn = Iθ ·
Ln

M̃n

· SA(Tn) · ϕ2,n

(3.22)

and
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Fdyn =
√
F 2
1 + F 2

2

Mdyn =
√
M2

1 +M2
2

(3.23)

3.4.3 Variable Secant Stiffness Procedure

From the previous sections all necessary tools to begin the iteration procedure are pre-

sented. Each step of the iteration process will here be presented, including the convergence

criterion.

• Step 1

Initial loading ratio, h0 is assumed, represented by the dotted line in the M − Q-

diagram. Corresponding back-bone curves are constructed and initial stiffnesses

values are found.

Figure 3.5: SMNA: Iteration step 1

• Step 2

First modal analysis is conducted using the initial stiffnesses, Kδ,0 and Kθ,0. Equiv-

alent load, Qdyn and Mdyn, from the analysis are illustrated by the red dots in

figure 3.6. The loads are then projected onto the back-bone in order to find the

displacement based loads, Q and M , whence the displacement based mobilization

is found:

fM =
M

Mult

fQ =
Q

Qult
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Figure 3.6: SMNA: Iteration step 2

• Step 3

The loading ratio is updated (h1) according to the load response from previous

step, and new back-bone curves are drawn. Mobilization degrees are plotted onto

the load ratio line and average degree of mobilization is represented by the yellow

dot. Secant stiffnesses are determined from fave in the newly obtained back-bone

curves.

Figure 3.7: SMNA: Iteration step 3

• Step 4

Then step 2 is repeated using updated secant stiffnesses. The procedure are repeated

until convergence is obtained from the following criteria:

– Dynamic stiffness is compatible to the soil-caisson response stiffness.

– Loading ratio are the same over the iteration step, hi = hi−1.

– The ratio between dynamic displacement and rotation, θdyn/δdyn, is the same

as the response ratio obtained in soil-caisson interaction analyses.
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– The same mobilization degree is obtained for both resulting moment and re-

sulting force, f =
Qdyn
Qult

=
Mdyn

Mult

3.4.4 Assumptions and Simplifications

Hysteretic Damping of Soil

As discussed in chapter 2.9.2 there is never any simple way to account for damping. In the

SMNA-method it is assumed that the equivalent damping of the system can be expressed

as the sum of structural and soil damping.

ξ̃ = ξ0 +D (3.24)

Where ξ̃ is the equivalent damping, ξ0 is the structural damping (usually set to 5%) and

D is the hysteretic damping in the soil. It is necessary to introduce equivalent damping

as a reduction factor in the response spectrum analysis in order to get proper output for

the response. Starting by expressing hysteretic damping in terms of the secans stiffnesses

ratio K0/Kmax.

D = D0 + (Dmax −D0) ·

(
1−

[
K

Kmax

]β0)
(3.25)

Where D0 and Dmax is the damping ratios at K/Kmax = 1 (low damping) and

K/Kmax = 0 (high damping) respectively. β0 is an empirical factor, here set to 0.6.

Damping ratios may also be determined numerically by integrating the back-bone curve

(Ishihara, 1996):

D =
1

4π
· ∆W

W
(3.26)

For each modal analysis a new period, Tn, is obtained from the secant stiffness ratios.

The corresponding damping ration will den produce the reduction factor, η:

η =
√

(a+ ξo)/(a+ ξ0 +D) (3.27)
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Where a is a frequency dependent coefficient assumed to be 5% in this case. The reduced

response acceleration can finally be calculated:

PSA,d(Tn) = PSA(Tn) · η (3.28)

Added Mass

Until now there has not been considered any foundation mass or soil added mass in the

SMNA-calculations. This assumption is justified due to a stiffer behavior and increase in

overturning moment, thus a conservative decision regarding safe design.



Part II

Case Study
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Chapter 4

Description of Analyses

4.1 Introduction

A hypothetical case study of a deepwater manifold subjected to earthquake loads will

be presented in this chapter. The manifold is founded on a closed caisson penetrated 20

meters into the seabed. The structure is illustrated in figure 4.1, geometry and physical

data are given in appendix B.2. The seabed consists of a 60 meter deep layer of soft

North Sea clay with linear increasing shear stiffness. Soil parameters was provided from

preliminary research at Multiconsult.

Figure 4.1: Illustration of a subsea manifold founded on closed caisson.

In this case study the dynamic response from in comprehensive numerical model was

compared to the simplified SMNA-model. The following sections present methods and

47
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procedures of how the different analyses were built up, verified and carried out. Explana-

tion of how input was retrieved and chosen are considered when necessary. The analyses

are presented in the order they where conducted.

Software

All FEM-analyses were done in PLAXIS 3D (AE.01), a software developed especially

for deformation and stability problems in geotechnical engineering. The dynamic add-on

module was used to apply and analyze the dynamic responses throughout each analysis.

The SMNA-analyses were done in MODAN, a software developed by Multiconsult in

Oslo. MODAN carries out the variable secant stiffness procedure, presented in section

3.4.3. Foundation input motion and back-bone curves were obtained using PLAXIS 3D

before implementing relevant parameters into MODAN.

Dynamic Input

Acceleration time series from the Upland (CA) earthquake in 1990 was used as dynamic

input for this case study. The earthquake has a Richter magnitude of 5.4 and a peak

ground acceleration of 0.245 g. The acceleration recordings are plotted in figure 4.2.

Figure 4.2: Acceleration time series, Upland (CA), 1990
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4.2 FEM Analyses

4.2.1 Background Information

The FEM-analyses are the most comprehensive of the analyses conducted and will in this

study serve as ”the correct solution”. Despite this assumption the model include some

simplifications and will not necessarily give the complete picture of the physical behavior.

The FEM-analyses are done in three parts serving different purposes listed in the table

below 4.1.

Analysis Objective

Free Surface Soil model verification

Kinematic Interaction Foundation motion input to SMNA-method

Full Analysis Analyse earthquake response of the subsea manifold

Table 4.1: FEM-analyses and objectives.

4.2.2 Soil Model

Geometry

The soil was modelled as a 15 meter wide slice of a 60 meter deep soil deposit of soft

clay over rigid bedrock, see figure 4.3. To save computational time only one symmetric

half was modeled. The extent of the model is 160 meters in the x-direction, parallel to

the direction of the applied dynamic load. This was done to avoid unwanted boundary

effects. Boundary effects from the y-boundaries were assumed not to be significant. The

soil model dimensions are presented in table 4.2.

Soil Model Dimesions

xmin xmax ymin ymax zmin zmax

-80 m 80 m 0 m 15 m -60 m 0 m

Table 4.2: Soil model measurements used in FEM-analyses.
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Figure 4.3: PLAXIS 3D soil model

Mesh Refinement

The soil volume was modelled using 10-noded tetrahedral elements. Mesh refinement

was set to medium using a coarseness factor of 0.7 on the whole soil volume, in order

to maintain an evenly distributed element size. For more detailed mesh information see

appendix C.

Material Model

The soil material used was an undrained linear elastic perfectly plastic Mohr-Coulomb

model. The material represent soft North Sea clay with increasing shear modulus with

depth. To account for strain based modulus reduction a stiffness approximately equal

to E50 was used. Energy dissipation in the soil material was considered using Rayleigh

damping. A damping ratio of ξ = 5% was tuned over the critical frequencies f1 and f2.

The target frequencies was calibrated after the principles of Hashash and Park (2002).

Soil parameters are listed in table 4.3. For soil profiles and additional information see

appendix A.



CHAPTER 4. DESCRIPTION OF ANALYSES 51

Soil Model

Depth 0-60 meters

Water Table 0 m

Material Model Mohr-Coulomb

Drainage Undrained B

Unit Weight γ = 16.4 kN/m3

Poisson’s Ratio ν ′ = 0.35

Youngs Modulus E’ = 2575 kPa

Einc’ = 2788 kPa/m · z

Shear Modulus G = 953.7 kPa

Shear Strength Su = 1.87 kPa

Su,inc = 2.025 kPa/m · z

Rayleigh Damping α = 0.2377

β = 2.151 · 10−3

Table 4.3: Soil parameters

Boundary Conditions

Allowing correct dynamic behavior and avoiding unwanted boundary effects required im-

portant considerations choosing boundary conditions. Due to material damping and a

sufficiently large model, it was not necessary to assess viscous boundaries in this case.

Proper displacements was ensured using vertically fixed x-boundaries and fixed motion

in the y-direction. To keep the model from collapsing sideways and at the same time

allow dynamic motion in situ horizontal stresses was applied to the x-boundaries working

together with to the hydrostatic pressure, see equation 4.1 and figure 4.4.

σ′inc = γ′ ·K ′0 (4.1)

Figure 4.4: Application of in situ horizontal stresses to the numerical soil model.
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The boundary conditions used are listed in table 4.4 below.

Boundary Displacement Dynamic Incremental In Situ Stresses

xmin vertically fixed - 3.84 kPa/m ·z
xmax vertically fixed - −3.84 kPa/m ·z
ymin normally fixed - -

ymax normally fixed - -

zmin prescribed motion - -

zmax free - -

Table 4.4: Boundary conditions used in FEM-analyses.

4.2.3 Free-Field Analyses

In order to verify the model there were initially conducted a series of free-field tests. Both

harmonic motion and earthquake acceleration were considered.

Harmonic Free-Field Analysis

Harmonic displacements were applied to the bottom boundary of the soil model. Then

the surface displacements at steady state were recorded at a control node and compared

with theory, see figure 4.5 . In these analyses linear elastic soil with constant shear wave

velocity of Vs = 150m
s

was used. Although this is not always a proper material model for

soils, it was satisfactory for the purpose of verifying the boundary conditions and wave

propagation properties.

Twelve different frequencies were tested. Expected amplification of shear waves propa-

gating through the soil was found from site response theory, discussed in chapter 2.4. The

natural frequencies and amplification function were found by the equations 4.2, where ωn
represents the n’th natural frequency and |F (ω)| is the amplification function.

ωn =
Vs
H

(
π

2
+ nπ

)

|F (ω)| = 1√
cos2

(
ωH
Vs

)
+

(
ξ ωH
Vs

)2

(4.2)
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Earthquake Free-Field Analysis

The main focus of this analysis was to see how the soil amplifies and filters out frequencies

resulting in a output acceleration time series on the surface. Dynamic input acceleration

was applied at the bottom boundary and the surface acceleration was recorded in the

control node. Additional information is presented in appendix C.

Figure 4.5: Soil model with control node.

4.2.4 Kinematic Interaction Analysis

The kinematic interaction analysis was carried out introducing a massless closed caisson

foundation into the soil, before applying earthquake loading, see figure 4.6. The main

objective was to obtain the foundation input motion for the SMNA-method, but it was

also of interest to see how the stiffness of the foundation constrained the soil motion.

Foundation geometry and material properties are presented in table 4.5 and 4.6. The

caisson was modelled using 6-node triangular plate elements. Mesh refinement was set

to medium using a coarseness factor of 0.5, see figure 4.7. For a more detailed element

information see appendix C. Interface elements were introduced to the outside of the

caisson allowing slip between soil and structure, roughness was set to R=0.5.

Caisson Top Plate

Diameter Dcaisson = 7.50 m Dplate = 7.50 m

Skirt length Lcaisson = 20.00 m -

Wall thickness tcaisson = 0.03 m tplate = 0.04 m

Table 4.5: Geometry of caisson
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Plate Material

Young’s Modulus E = 210 000 GPa
Unit Weight γ = 0 kN/m2

Poisson’s Ratio ν = 0.3
Roughness R = 0.5

Table 4.6: Caisson plate material properties.

Figure 4.6: Mesh used in the kinematic interaction analysis

Figure 4.7: Caisson model, medium mesh
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4.2.5 Full Model Analysis

The full model analysis was carried out in the same soil model used for the previous

analyses. Mass was applied to the foundation and the manifold was installed on top of the

foundation supported by a massless column, see figure 4.9. The objective in this analysis

was to study the response and equivalent forces acting on the base of the superstructure.

For simplification the manifold structure was modelled as a solid volume with evenly dis-

tributed mass, see figure 4.8. Mesh refinement was set to medium, for detailed information

see appendix C.4. Geometry and material properties were set to give correct mass, center

of gravity and mass moment of inertia as the real structure. The materials and physical

properties used the the PLAXIS-model are presented in 4.7. Note that these quantities

are for the full geometry of the structure while only one symmetric half is modelled in

PLAXIS 3D.

Figure 4.8: Simplified geometry of the manifold structure installed on the caisson foundation.

Once more acceleration was applied to the bottom boundary. During the analysis accel-

eration and displacement were recorded in control nodes seen in figure 4.9. From these

recordings translation and rotation was found. Full PLAXIS setup for the analysis are

given in appendix C.4.
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Figure 4.9: Full PLAXIS 3D model used in analyses.

Structure Data

Manifold geometry

Length L 18.9 m

Depth D 14.2 m

Height H 8.0 m

Material

Young’s modulus Emanifold 210 · 109 kPa

Unit weigth γmanifold 1.62 kN/m3

Poisson’s raitio ν 0.3

Physical data

Weigth Wmanifold 4 041.0 kN

Wcaisson 1 240.5 kN

Wtotal 5 281.5 kN

Moment of inertia Imanifold 15 599.3 tm2

Icaisson 4 530.9 tm2

Itotal 39 904.9 tm2

Center of gravity hc 1.68 m

Table 4.7: Properties of the simplified structure modelled in Plaxis 3D.
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4.3 SMNA-analyses

4.3.1 Backround Information

In this section analyses conducted using the SMNA-method are presented. The soft-

ware MODAN was used to perform the analyses. External analyses obtaining necessary

MODAN-input parameters were carried out in PLAXIS 3D and will also be presented

in this section. The objectives for the analyses presented are divided into primary and

secondary objectives.

• Primary Objective

– Perform SMNA-analyses with varying mass parameters to study effects of soil

added mass parameters.

• Secondary Objective

– Obtain back-bone curves by static analyses to retrieve necessary MODAN-

input parameters.

– Construct normalized acceleration response spectrum from kinematic interac-

tion record.

4.3.2 MODAN-input

The different segments of input used in MODAN will be presented in this section. Method

of how the parameters are obtained are presented if necessary.

Structure Data

The physical parameters used in MODAN constitutes the mass matrix used in the modal

calculations. A total mass, mass moment of inertia and center of gravity are calculated

externally before put into MODAN. The structure geometry is only used for basic visual

purposes in MODAN. Rigid behavior of all structural components is assumed (E →∞).

Structure data including foundation mass are presented in table 4.8.

Back-Bone Curves

Non-linear soil stiffness is considered using back-bone curves, externally obtained by static

load-displacement analysis in PLAXIS 3D. The analyses were done in the same soil mate-

rial used in the dynamic analyses. In the analyses both symmetric halves was modelled,



CHAPTER 4. DESCRIPTION OF ANALYSES 58

STRUCTURE DATA MODAN

Geometry
Manifold length 18.9 m
Manifold depth 14.2 m
Manifold height 9.86 m
Caisson diameter 7.5 m
Caisson length 20.0 m
Caisson thickness 0.03 m
Inertial Parameters
Wtotal 5 281.5 kN
Itotal 39 881.1 tm2

hc 1.68 m

Table 4.8: Initial structure data used in MODAN calculations

seen in appendix C.5. First the massless foundation was installed in the soil, then follow-

ing steps were performed:

1. Horizontal force and overturning moment were applied in the center of the caisson

top lid, see figure 4.10.

2. Loads were increased incrementally at constant load ratio, h = M
Q

, until failure.

3. Q− δ and M − θ curves were plotted for the different load ratios.

Figure 4.10: Loads applied to foundation in the soil-caisson interaction analyses.

In total five analyses at different load ratios were performed. The lateral displacement,

δ was measured at the center of the caisson top lid while θ was measured as the relative
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vertical displacements of the edges of the lid divided by the diameter, see equation below

and figure 4.11. Load ratios and applied target loads are listed in table 4.9. Load in-

crements were controlled by
∑
Mstage and adjusted automatically by PLAXIS. Ultimate

state criteria was defined manually from the curvature of the plot. A well defined failure

state is unavailable in such numerical analyses.

From the back-bone curves necessary stiffness and ultimate state parameters can be ex-

tracted. In table 4.10 all parameters used in MODAN is tabulated. Note that MODAN

only uses maximum initial stiffness parameters. From the ultimate load and ultimate

displacement MODAN interpolates and generate all possible back-bone curves.

θ =
δz,x=−D/2 − δz,x=D/2

D
(4.3)

SOIL-CAISSON INTERACTION ANALYSES

Test, # Load ratio, h Qtarget [kN] Mtarget [kNm]

1 0.001 15 000 15

2 1 20 000 20 000

3 10 10 000 100 000

4 100 5 000 500 000

5 1000 2 000 2 000 000

Table 4.9: Load ratios and target loads from static analyses.

Figure 4.11: Measured displacements of the caisson during static analyses.
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Stiffness and Ultimate Parameters

Parameter Load Ratio Description

Kx,max,max h0 maximum initial displacement stiffness

Kθ,max,max hult maximum initial rotation stiffness

Qult,0 h0 ultimate lateral force resistance

Mult,0 hult ultimate moment resistance

δult,max h0 ultimate lateral displacement

δult,min hult ultimate lateral displacement

θult,max hult ultimate lateral rotation

θult,min h0 ultimate lateral rotation

Table 4.10: MODAN-parameters found from back-bone curves. h0 = 0.001 and hult = 1000 in the
analyses.

Failure Surface

From the results found in the soil-caisson interaction analyses the ultimate loads at failure

was plotted against each other in a Q − M -diagram. Throughout the variable secant

stiffness iteration forces and moments from each iteration can be used to find the average

degree of mobilization within the yield surface making use of equation 3.4.

Earthquake Loads

As discussed in section 3.3, the modal analysis procedure uses an acceleration response

spectrum as an equivalent dynamic input. The input can be interpreted as a founda-

tion input motion and was obtained creating a normalized response spectrum from the

acceleration time series obtained in the kinematic interaction analysis.

From the time series the acceleration response spectrum was generated using the curve

manager option in PLAXIS 3D.

4.3.3 MODAN-analyses

The MODAN-analyses were initially conducted in five stages, gradually adding more

soil mass inside the foundation. Based on the initial results, a parametric study was

further carried out varying selected parameters. Effects of reducing response spectrum

and stiffness relations were studied in addition to inertial effects. The initial five analyses

are summarized in table 4.11. Corresponding mass distributions are illustrated in figure

4.12.
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MODAN-Analyses

Mass Components Input

Initial-Analyses m [t] Iθ [tm2] hc [m]

1 Manifold 411.9 15599.3 4.93

2 Manifold+Caisson+1/7 soil 749.0 52132.0 0.81

3 Manifold+Caisson+3/7 soil 1171.0 65796.0 -1.54

4 Manifold+Caisson+5/7 soil 1593.0 98302.0 -4.16

5 Manifold+Caisson+7/7 soil 2016.0 156719.0 -6.87

Table 4.11: Setup for initial MODAN-analyses.

Figure 4.12: Added mass distribution in MODAN-analyses.





Chapter 5

Results and Discussion

5.1 PLAXIS 3D Analyses

5.1.1 Free-Field

Harmonic Results

Harmonic input of twelve different frequencies were tested. Input frequency and amplifica-

tion results are tabulated in table 5.1 and plotted together with theoretical amplification

factor in figure 5.1. The four mode shapes included in the bandwidth are shown in figure

5.2.

Figure 5.1: Verification of soil amplification.
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Harmonic Free-Field Testing

|F (fn)|
n fn Theoretical Plaxis 3D Error [%]

1 0.400 1.86 1.86 0.0

2 0.625 12.73 12.68 0.4

3 1.000 1.22 1.22 0.0

4 1.600 1.50 1.50 0.0

5 1.870 4.25 4.19 1.4

6 2.200 1.28 1.28 0.0

7 2.800 1.24 1.25 0.8

8 3.115 2.55 2.46 3.5

9 3.400 1.30 1.25 3.8

10 4.000 1.05 1.06 0.9

11 4.365 1.82 1.68 7.6

12 4.800 0.94 0.90 4.3

Table 5.1: FEM-analysis compared to theory

(a) 1st mode (b) 2nd mode

(c) 3rd mode (d) 4th mode

Figure 5.2: Mode shapes of soil layer at natural frequencies

Earthquake Results

Earthquake acceleration was applied to the bottom of the output soil model. Accelerations

recorded at the surface node are plotted on top the input motion in figure 5.3. Maximum

accelerations were amplified from 0.245 g in the input motion to 0.374 g at the surface.
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Figure 5.3: Acceleration time series from free-surface recordings on top of the input acceleration time
series.

Discussion of Free-Field Results

The harmonic analyses generally gave a very good compliance with theoretical response.

At the lower frequencies high amplification are recorded with low error. Although there is

seen a slightly increasing error ratio at the higher frequencies, a maximum error of 7.6% are

satisfactory to verify the amplification properties within the bandwidth of interest. The

mode shapes illustrated that the pre-calculated natural frequencies show a well defined

deformation according to theory. These results show that the soil model is able to deform

freely in the x-direction and at the same time being fixed from deforming in y-direction,

which suggest that proper boundary conditions are used.

From the acceleration plot 5.3 it is seen that the soil layer filters out some of the high

frequencies from the input motion. This is even clearer in the Fourier spectres in figure

5.10, where the input energy at 6-10 Hz are completely gone in the surface recordings.

This is expected behavior due to the stiffness proportional effect of Rayleigh damping

which over-damps high frequencies.

It is seen an increase in peak acceleration from 0.245 g to 0.374 g from input to surface.

This suggest a max amplification of 1.53. Between the ξ = 5% calibrated Rayleigh

frequencies at f1 = 0.4 Hz and f2 = 7 Hz an even higher amplification could have been

expected due to under-damping of the soil. Additional hysteric damping at high strain

ratios most likely affect the result and cause decreased amplification.
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5.1.2 Kinematic Interaction Analyses

Results

The acceleration recorded on top of the caisson is plotted in figure 5.4. The maximum

acceleration recorded is 0.310 g after 3.0 seconds.

Figure 5.4: Acceleration at top of the closed caisson.

Discussion

Soil-structure interaction theory suggest that the embedded foundation restricts soil from

moving freely and gives an approximately averaging of the free field motion in the adja-

cent soil. The results from the analyses clearly show that the foundation cannot follow

the highest frequencies of the free-surface motion and filters out even more of the high

frequencies, see figure 5.10. The motion averaging also results in reduced amplitudes,

which are confirmed by the results. Peak acceleration at the foundation top plate was

measured to be 0.310 g which is significant reduction from the free-field results. This

motion represents which motion the structure ”feels” during the earthquake and was used

for the foundation input motion in the SMNA-analyses.

5.1.3 Manifold Analysis

Manifold Response Results

All relevant time series from the dynamic analyses including the full structure geometry

are presented in this section. In figure 5.8 the model are shown in early and late stage of

the analysis. A compilation of the frequency content of all acceleration time series from
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the FEM-analyses are plotted in the Fourier spectra 5.10. Essential maximum response

values from all FEM-analyses are presented in table 5.2 and 5.3. At the end the maximum

equivalent dynamic loads on the structure are calculated from the ultimate parameters,

presented in table 5.4.

Figure 5.5: Recorded horizontal displacement at the base of the manifold structure from PLAXIS 3D

Figure 5.6: Recorded rotation at the base of the manifold structure from PLAXIS 3D
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Figure 5.7: Recorded horizontal acceleration at the base of the manifold structure from PLAXIS 3D

(a) Early stage

(b) Late stage

Figure 5.8: Deformed mesh scaled by a scaling factor of 50, from the dynamic PLAXIS 3D analysis.
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Figure 5.9: Recorded angular acceleration at the base of the manifold structure from PLAXIS 3D.

Figure 5.10: Compilation of the Fourier spectres of all output time series from PLAXIS 3D.
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Ultimate Accelerations

Analysis Ultimate Value

Earthquake input δ̈max = 0.245 g

Free surface δ̈max = 0.374 g

Kinematic interaction δ̈max = 0.310 g

Manifold acceleration δ̈max = 0.232 g

Manifold angular acceleration θ̈max = 0.215 rad/s2

Table 5.2: Compilation of the results from PLAXIS 3D analyses.

Ultimate horizontal displacement and rotation of the structure are found directly from

the analysis and are presented in table 5.3.

Ultimate Dynamic Displacement and Rotation

Horizontal displacement δult = 4.9 cm

Rotation θult = 0.0010 rad

Table 5.3: Ultimate response from PLAXIS 3D Analyses.

From the accelerations a set of ultimate dynamic loads working on the structure are

approximated from the equations below.

Qdyn = m · δ̈ Mdyn = I · θ̈ (5.1)

The resulting loads are found from structure data in appendix B and are presented in the

table below.

Ultimate Dynamic Loads and Displacements

Inertial Mass Parameters Acceleration Dynamic Load

mtot = 534.4 t δ̈ult = 0.232 g Qdyn = 1 227.9 kN

Itot = 39 904.9 tm2 θ̈ult = 0.215 rad/s2 Mdyn= 8 598.1 kNm

Table 5.4: Ultimate results from PLAXIS 3D Analyses.

Discussion of Manifold Results

The response of the manifold suggest a maximum lateral displacement of 4.9 cm and a

maximum rotation of 0.0012 radians at the base of the structure. Maximum rotation

occurs after 2.7 seconds which is a critical time period with high accelerations seen from

both free-surface and kinematic interaction analyses. Maximum displacement occurs after

6.2 seconds which may seem a little late. Both displacement and rotations indicate that
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there is a slight displacement drift towards the positive x-direction. Whether this is caused

by accumulation of numerical error from integration operations or caused randomly by

plastic deformations may have been determined using smoothing techniques. However,

by inspecting the exaggerated deformed mesh in figure 5.8, it is seen that some plastic

strains accumulates at shallow depths during the analysis. This sideways collapse is small

but could cause some permanent deformation around the caisson. A more sophisticated

horizontal boundary support would in this case be desirable.

Maximum lateral acceleration at the base was recorded to be 0.232 g and maximum angu-

lar acceleration is recorded to be 0.215 rad/s2. Both ultimate accelerations are recorded

in the critical phase of the analysis which is reasonable.

The decrease in accelerations from the kinematic interaction analysis was expected due

to inertial effects. These effects cause a more mass dependent response unlike free surface

and kinematic interaction analyses. The effect is clearly seen in the Fourier spectres

(figure 5.10), where the analysis respond lowest of all in high frequencies but dominate

the low frequency motions.

The dynamic loads was in this thesis determined with respect to inertial effects due to

mass and accelerations. For comparison reasons and probably more accurate results other

consideration could have been done. This may include measuring relative soil displacement

around the caisson and calculate loads with respect to the soil stiffness. Or integrate the

stress distribution over the caisson at critical stages during the analyses. However, there

was not found any straight forward solution to this problem, nor was a lot of effort devoted

to establish these alternative considerations.

5.2 SMNA-analyses

5.2.1 MODAN-input

Static Soil-Caisson Analysis

Results from the static soil-caisson interaction analyses are plotted in figure 5.11 and 5.12

on the next page. Essential ultimate values and stiffness parameters are presented in table

5.5. Figure 5.13 show how the static PLAXIS-model deformed at ultimate state.
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Figure 5.11: Back-bone curves for force-displacement relations.

Figure 5.12: Back-bone curves for moment-rotation relations.
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Back-Bone Parameters

Kx,max,max 375 189.7 kN/m
Kθ,max,max 99 852 984.0 kNm/rad
Qult,0 11 075.7 kN
Mult,0 185 245.0 kNm
δult,max 0.793 m
δult,min 0.624 m
θult,max 0.045 rad
θult,min 0.039 rad

Table 5.5: Ultimate parameters used in MODAN analyses

Figure 5.13: Deformed mesh from static analyses.

Failure Surface

The ultimate loads from the static analyses are plotted in the Q−M diagram and com-

pared to the proposed yield surface by Kay and Palix (2011), see figure 5.14. Since the

failure criteria was manually defined the overshoot seen in the figure is not of importance

in these analyses.
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Figure 5.14: Failure surface.

Foundation Input Motion

The response spectra representing the equivalent foundation input motion, was con-

structed from the kinematic interaction recordings (figure 5.4). Pseudo spectral accelera-

tions (PSA) were generated in the curves manager in PLAXIS 3D. According to Newmark

and Hall (1982) the response spectrum should be reduced if the PSA exceed PGA over

a certain period range. Accordingly, in the range T = 0.28 − 0.44 seconds the PSA was

scaled by the factor of α = 0.231 multiplied by PGA. Both normalized and generated

response spectres are plotted in figure 5.15.

PSA = α · PGA = 3.21 · 0.31 g = 0.995 g (5.2)
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Figure 5.15: Real and normalized pseudo spectral response spectrum constructed from PLAXIS 3D

5.2.2 MODAN-analysis

Five initial analyses were conducted in MODAN. The first analysis was performed with

inertial effects from the superstructure alone. The following analyses were done adding

foundation mass, and increasing amount of soil added mass inside the caisson.

Three series of additional analyses were conducted in order to further study the effects

of selected parameters. Accelerations, spring stiffness and mass moment of inertia were

reduced aiming at a better consistency with previous results. A compilation of the input

parameters, reduction factors and resulting output from initial and additional analyses is

presented in table 5.6 on the next page.
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Discussion of MODAN-Results

All the initial analyses gave abnormally high dynamic moments. At the same time the

lateral force dropped to very low values when adding soil mass. Increasing the mass

will normally cause increased natural periods, hence lower input accelerations for low

rise structures. However, these results suggest that the variable spring stiffness cause an

unbalanced response. Initial max spring stiffness ratio of
Kθ,max

Kδ,max,max
= 266 was noted to be

rather large and may affect the load ratio to grow during the iterations. This causes low

lateral stiffness and high rotation stiffness. Increasing inertial parameters then rapidly

cause excessively large moments on the structure while forces degrade, as shown by the

results.

The analyses show divergent tendencies and indicate that adding soil mass to the model

cause an unstable effect in the dynamic system. Based on this, additional parametric

analyses were conducted, in order to study other effects that may provide a more stable

behavior.

First series of additional analyses was conducted with inertial effects from manifold and

caisson. Reducing input accelerations was not sufficient to give proper results (test 6, 7

and 8). Only considering the inertial effects of the manifold and reducing accelerations

(2nd series) gave more adequate dynamic forces, but still excessive dynamic moments

(tests 6, 9 and 10).

In the 3rd series of additional analyses the mass moment of inertia and initial stiffness

parameters was reduced. Scaling the mass moment of inertia by a factor of 0.1 (test 11)

gave a significant reduction of about 60% in dynamic moments. Further reduction of

0.001 gave less significant changes (test 12). Test 13 only gave a small reduction in loads

reducing rotation stiffness by a factor of 0.33, rotation was doubled. Test 14 and 15 first

show an large increase in moment when reducing the rotation stiffness by a factor of 0.33.

Further reduction to 0.1 gave a significant reduction in moments and rotations.

Best consistency with previous results was obtained using 10% of the Iθ and scaling the

Kδ and Kθ by 0.25 and 0.33 respectively (test 17).

In modal analyses the added mass is considered to act together with the structure as a

rigid body, while the flexibility of the structure and of the soil inside and outside the

caisson may reduce the “acting” mass moment of inertia. This is shown by the fact that

the closest results PLAXIS/MODAN were obtained when the chosen ratio Iθ/m was a

minimum.

The additional parametric analyses suggest that the spring stiffness ratio are too high

causing unstable responses. Reducing mass moment of inertia and rotational spring stiff-

ness provided better stability in the system. A factor of 1.32 between rotational and

translational stiffness gave best fit with previous results.
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5.2.3 Comparing PLAXIS 3D and MODAN

Results from the case study proved that obtaining compliance between the two approaches

could not be obtained from adding soil added mass alone. These analyses gave peculiar

results not suitable for proposing any parameter values. For this purpose the model need

to be further developed.

Better compliance was obtained by manipulating a set of parameters, including spring

stiffness and inertial effects in MODAN. The best results were obtained by neglecting

foundation mass and soil added mass, reduce mass moment of inertia and reduce both

stiffness parameters. A comparison between the analyses are presented in the table below.

Compared Results

Analysis Qdyn [kN ] δdyn [m] Mdyn [kNm] θdyn [rad]

PLAXIS 3D 1227.9 0.059 8 598.1 0.0010

MODAN 2003.0 0.039 9 749.0 0.0019

Ratio PLAXIS/MODAN 0.613 1.51 0.882 0.579

Table 5.7: Comparison of PLAXIS 3D and MODAN results.

The parametric study shows that MODAN results are generally more conservative than

PLAXIS. The earthquake loads and displacements from MODAN (except horizontal trans-

lation) are about 15%- 60% higher than those from PLAXIS.

Comparing the two models proved to be more intricate than initially assumed. Apart from

known differences between time-domain and frequency-domain solutions, the discrepancy

between the two models can be attributed to the following facts:

• Static soil-caisson interaction analyses conducted in PLAXIS 3D, provides too high

stiffness values to be used in MODAN.

• The effect of the two modes of vibration may not be equally contributing to the

earthquake loading. Deviations may occur as the MODAN caisson is completely

rigid, while PLAXIS caisson are modeled as a steel structure with soil inside.

• Retrieving static loads from inertial considerations in dynamic time domain analyses

may not give an adequate representation of actual loads working on the structure.

• The depth of application of the soil motion to MODAN is not necessarily best at

the top plate of the foundation.
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It is difficult to determine from the field of displacements during earthquake loading in

PLAXIS how the soil movements are transmitted to the caisson. In modal analysis the

response acceleration spectrum is applied at the end of soil-structure springs (seabed

level) which may differ from the soil-caisson movement transfer simulated by PLAXIS.

This issue must be further studied.





Chapter 6

Conclusions and Further Work

6.1 Summary and Conclusions

In this thesis two fundamentally different models of dynamic analyses were compared.

A comprehensive numerical FEM-model provided indicative results. Then a parametric

study was conducted to calibrate mass parameters in a simplified method based on non-

linear modal analysis. Both models analyzed the dynamic response of a subsea manifold

structure on a closed caisson foundation, founded on soft North Sea clay.

Numerical analyses were carried out in PLAXIS 3D and conducted in three stages. Initial

free-field analyses gave results within small error from site response theory in harmonic

analyses. Free-surface earthquake response showed proper frequency filtering and amplifi-

cation, according to theory. No significant boundary issues was observed. Next, kinematic

interaction was analysed introducing a massless caisson into the soil. Accelerations was

recorded at the top of the foundation during an earthquake, and showed realistic soil-

structure interaction effects.

The primary FEM-analysis involved installing the manifold structure on the foundation

and apply mass. Response was recorded at the base and top of the manifold during the

same earthquake as in the preliminary analyses. Maximum response was observed to be

4.9 cm and 0.0010 radians in lateral displacement and rocking. In order to compare the two

models inertial considerations were done to obtain equivalent loads from the numerical

results. Maximum accelerations gave Qdyn = 1 227.9 kN and Mdyn = 8 598.1 kNm.

Although some simplifications in material model and damping properties provide some

uncertainties to the realistic behavior, the results gave sufficiently accuracy to be used in

the parametric study.

81
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The simplified SMNA-method was used to analyse the same manifold structure. The

analyses were conducted in MODAN, a code developed at Multiconsult, executing the

SMNA-procedure. Secant stiffness relations was obtained through static soil-caisson anal-

yses in PLAXIS 3D and used as MODAN-input. A normalized pseudo spectral response

spectrum from the kinematic analysis was used as dynamic input.

First five initial tests was carried out, gradually increasing added soil mass inside the

caisson. The results gave unstable results including excessively large dynamic moments

and very low lateral forces. The analyses clearly showed that adding soil added mass to

the system alone, was not applicable in this case.

Based on initial tests 17 additional analyses was conducted. The analyses was set up as an

effort to stabilize and study selected parameters. Reducing accelerations gave convergence,

but still unsatisfactory high load ratio. In further tests reducing both spring stiffness and

mass moment of inertia gave results within realistic magnitudes. Best compliance was

achieved by neglecting soil added mass, reducing mass moment of inertia by a factor of

0.1, and reducing soil stiffness by factors of 0.25 and 0.33 in translation and rotation

respectively. Best estimate predicted δdyn = 0.039 m, θdyn = 0.0019 radians,

Qdyn = 2003 kN and Mdyn = 9749 kNm. Thus, in the range of -50% to +40% compliance

to the numerical model.

According to this study the simplified SMNA-method is currently not applicable to handle

soil added mass, based on the considerations done in this study. Uncertainties are espe-

cially associated with too high ratios between rotational and translational soil stiffness

acquired from numerical analyses.

In order to obtain results within a reasonable range, three measures needs to be adopted.

(1) A reduced mass moment of inertia, only including the manifold structure must be

used. (2) Reduced stiffness of soil support must be used. (3) The ration between rotation

and translation stiffness must be increased by a factor of 1.32.

6.2 Further Work

Further research is needed to fully understand the differences between the two methods

and to evaluate the level of conservatism associated with analyses, using the SMNA-

approach.

During this work the writer and supervisors have realized that the study involve effects

other than those considered from the start. Particularly the soil stiffness considerations

must be better adapted to represent dynamic conditions. A proposal for further work

would be to study how the static stiffness parameters evolve under dynamic loading, in

order to determine which reduction to consider in a modal analysis.
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More effort should also be done studying the modal contributions in the frequency anal-

ysis. These are not necessarily equally contributing to the overall response and may have

a significant impact on dynamic behavior related to added mass in a completely rigid

structure.
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Nomenclature

Greek Letters

α Mass proportional Rayleigh coefficient

β Stiffness proportional Rayleigh coefficient

δ Lateral degree of freedom

γ Volumetric unit weight

ν Poisson’s ratio

ω Angular frequency

ωn Angular natural frequency

ρ Volumetric mass density

σ Normal stress

τ Shear stress

θ Rotational degree of freedom

ξ Damping ratio

Latin Letters

ü Horizontal acceleration

üg Ground acceleration

K̃n Modal stiffness

M̃n Modal mass

Q̃n Modal force

An Fourier amplitude

c One degree of freedom damping coefficient

E Young’s Modulus

F Force

f Frequency

F (ω) The site response transfer function

87



BIBLIOGRAPHY 88

fn Natural frequency

G Shear modulus

g Gravitational acceleration

Gmax Maximum shear modulus for small strains

Gsec Secant shear modulus

Gtan Tangential shear modulus

H Height

hc Center of gravity

i The imaginary unit

Iθ Mass moment of inertia

k One degree of freedom stiffness coefficient

Kδ Lateral stiffness coefficient

Kθ Rotational stiffness coefficient

Kδ,θ Coupled stiffness coefficient

M Overturning moment

m One degree of freedom mass coefficient

PSA Pseudo spectral acceleration

qn Modal degree of freedom

SA Acceleration response spectrum

Su Undrained shear strength

T Period

t Time in seconds

Tn Natural period

u Horizontal displacement

Vp Primary or compressional wave velocity

Vs Secondary or shear wave velocity

W Weigth

Matrices and Vectors

ϕn The system mode shape

l Unit vector

C Damping matrix

K Stiffness matrix

M Mass matrix
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Q Load vector

Others

det The matrix determinant

Im Imaginary part of an imaginary number

Re Real part of an imaginary number

Abbreviations

CCF Closed Caisson Foundation

CPU Central Processing Unit

FEM Finite Element Method

PGA Peak Ground Acceleration

PSA Pseudo Spectral Acceleration

SDOF Single Degree Of Freedom

SMNA Simplified Modal Non-linear Analysis

SSI Soil-Structure Interaction
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Appendix A

Soil Profiles

The soil parameters are provided by Multiconsult ASA and have been used in preliminary

research. The material properties represent a soft North Sea clay.

Soil Model

General
Depth 0-60 meters
Water Table 0 m
Material Model Mohr-Coulomb
Drainage Undrained B
Unit Weight γ = 16.4 kN/m3

K ′0 K0,x = K0,y = 0.6

Stiffness
Youngs Modulus E’ = 2575 kPa

E’inc = 2788 kPa/m · z
Poisson’s Ratio ν ′ = 0.35
Shear Modulus G = 953.7 kPa
Initial shear wave velocity Vs = 23.9 m/s

Strength
Shear Strength Su = 1.87 kPa

Su,inc = 2.025 kPa/m · z
Tensile strength 0 kPa

Damping
Rayleigh Damping ξ=5%

f1 = 0.4 Hz
f2 = 7.0 Hz
α = 0.2377
β = 2.151 · 10−3

Table A.1: Soil parameters
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Appendix B

Structure Data

B.1 Structure Measurements

Figure B.1: Geometric measurements of structure.
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B.2 Real Structure

Figure B.2: Real structure geometry and physical parameters.

B.3 PLAXIS 3D Structure

Figure B.3: PLAXIS 3D equivalent geometry and physical parameters.



Appendix C

PLAXIS 3D Setup

General setup information for the different PLAXIS 3D analyses are presented here.

C.1 Harmonic Free-Field

Figure C.1: Linear elastic soil model used in harmonic free field analyses

Model Information

Material model Linear Elastic

Mesh refinement Medium

Coarseness factor 0.70

Number of elements 8738

Elements 10-noded tetrahedral

Average element size 4.05 m

Table C.1: Elastic soil model
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Phases

Identification Phase Start from Calculation type

Initial phase Initial phase - K0’

Dynamic loading Phase 0 Initial phase Dynamic

Table C.2: Calculation phases in harmonic free-field analyses.

C.2 Free-Field Earthquake

Figure C.2: Mohr-Coulomb soil model used in free field analyses.

Model Information

Material model Mohr-Coulomb

Mesh refinement Medium

Coarseness factor 0.70

Number of elements 10756

Elements 10-noded tetrahedral

Average element size 3.92 m

Table C.3: Mohr-Coulomb free-field model

Phases

Identification Phase Start from Calculation type

Initial phase Initial phase - K0’

Apply side support Phase 0 Initial Phase Plastic

Dynamic loading Phase 1 Phase 0 Dynamic

Table C.4: Calculation phases in earthquake free-field analyses.
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C.3 Kinematic Interaction Analysis

Figure C.3: Mohr-Coulomb soil model used in kinematic interaction analysis.

Model Information

Soil Closed Caisson

Material model Mohr-Coulomb Linear Elastic

Mesh refinement Medium Medium

Coarseness factor 0.70 0.50

Number of soil elements 10756 -

Elements 10-noded 6-noded

Tetrahedral Plate

Average element size 3.92 m -

Table C.5: Mohr-Coulomb kinematic interaction model information.

Phases

Identification Phase Start from Calculation type

Initial phase Initial phase - K0’

Caisson installation Phase 0 Initial phase Plastic (drained)

Apply side support Phase 1 Phase 0 Plastic

Dynamic loading Phase 2 Phase Phase 1 Dynamic

Table C.6: Calculation phases in kinematic interaction analyses.
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C.4 Manifold Analysis

Figure C.4: Mohr-Coulomb soil model used in manifold analysis.

Model Information

Soil Closed Caisson Manifold

Material model Mohr-Coulomb Linear Elastic Linear Elastic

Mesh refinement Medium Medium Medium

Coarseness factor 0.70 0.50 4.0

Number of soil elements 10756 - -

Elements 10-noded 6-noded 10-noded

Tetrahedral Plate Tetrahedral

Average element size 3.92 m - -

Table C.7: Mohr-Coulomb manifold model information.

Phases

Identification Phase Start from Calculation type

Initial phase Initial phase - K0’

Structure installation Phase 0 Initial phase Plastic (drained)

Apply side support Phase 1 Phase 0 Plastic

Dynamic loading Phase 2 Phase Phase 1 Dynamic

Table C.8: Calculation phases in kinematic interaction analyses.



APPENDIX C. PLAXIS 3D SETUP 105

C.5 Static Analysis

Figure C.5: Mohr-Coulomb soil model used in static analysis.

Model Information

Soil Closed Caisson

Material model Mohr-Coulomb Linear Elastic

Linear Elastic

Mesh refinement Medium Medium

Coarseness factor 0.50 0.45

Number of soil elements 13006 -

-

Elements 10-noded 6-noded

Tetrahedral Plate

Average element size 1.39 m -

Table C.9: Mohr-Coulomb static model information.

Phases

Identification Phase Start from Calculation type

Initial phase Initial phase - K0’

Structure installation Phase 0 Initial phase Plastic (drained)

Apply loads Phase 1 Phase 0 Plastic

Table C.10: Calculation phases in static analyses.
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