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Summary and Conclusions

A material model, based on total stresses, has been developed to represent the
undrained cyclic behavior of clay for finite element analyses. The material be-
havior is split into an average- and a cyclic part, formulated as two material
models with a coupling. The cyclic loading is, for the model, assumed to be
defined in terms of forces and have a frequency within the "cyclic" range (º 0.1
Hz), which implies that mass and damping considerations are omitted.

Degradation of the maximum average shear stress and the cyclic shear stiffness
is accounted for using the cyclic shear strain accumulation principle. The re-
sulting accumulation of plastic shear strains is a byproduct of the degradation
of maximum average shear stress.

The average model and the cyclic model are verified individually by Plaxis simu-
lations with satisfactory results. A bearing capacity problem was simulated with
the average model and compared directly to a simulation done by an acknowl-
edged undrained model. The average model exhibited the expected behavior
and the authors believe it can be used in similar boundary value problems when
used with care.

The cyclic model was used in a cyclic direct simple shear simulation with no
average shear stresses. The simulation result was compared directly to a similar
calculation and the conclusion is that the cyclic model is able to represent the
undrained cyclic behavior in a direct simple shear test. The interaction between
the average and the cyclic model was tested in another direct simple shear test.
The results obtained was satisfying and prove that the interaction is working as
desired.

Another objective was to compare the presented model directly to results from
model tests of a gravity base structure. Due to time limitations and the complex-
ity of the problem, only a hypothetical analysis is undertaken. Results indicate
further investigation is necessary to confirm the applicability of the soil model
on gravity base structures.
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Sammendrag og konklusjon

En materialmodell for udrenert, syklisk belastning av leire har blitt utviklet med
grunnlag i totalspenninger. Materialmodellen er delt i en gjennomsnittsmodell
og en syklisk modell, hvor den gjennomsnittlige modellen analyserer den gjen-
nomsnittlige lasten på jordvolumet, mens den sykliske modellen analyserer den
sykliske lasten. De er så koblet sammen for å representere den totale oppførse-
len til leiren. Den sykliske lasthistorien er definert som et antall sykler med
en viss kraftamplitude. Det er antatt at frekvensen til de sykliske lastene er
tilstrekkelig lav, slik at hensynet til masse eller dempning kan sees bort fra.

Degradaring av den maksimale, gjennomsnittelige skjærspenningen og den syk-
liske skjærstivheten uttrykkes ved hjelp av "Cyclic Shear Strain Accumulation
Principle". Akkumulering av plastiske skjærtøyninger er et resultat av degraderin-
gen av den maksimale, gjennomsnittlige skjærspenningen.

De to delene av materialmodellen er individuelt verifisert gjennom simuleringer
i elementmetodeprogrammet, Plaxis. Et bæreevneproblem ble simulert med
den gjennomsnittlige modellen og resultatene ble sammenlignet med resultater
fra en annerkjent materialmodell. De to modellene viste, som forventet, lig-
nende oppførsel og det konkluderes derfor med at gjennomsnittsmodellen skal
kunne brukes med forsiktighet for liknende grenseverdiproblemer når udrenert
oppførsel kan antas.

Den sykliske modellen har blitt testet i DSS uten gjennomsnittlig skjærspen-
ninger. Resultatet ble sammenlignet direkte med en tilsvarende beregning og
konklusjonen er at den sykliske modellen er i stand til å representere den ønskede
oppførselen. Koblingen mellom den gjennomsnittlige- og sykliske modellen ble
testet i en annen DSS test. De oppnådde resultatene var tilfredsstillende og in-
dikerer at samspillet fungerer som forventet.

Et annet mål var å sammenligne modellresultater direkte med resultater fra mod-
ellforsøk av en gravitasjonsplatform. På grunn av tidsbegrensning og komplek-
siteten til problemet, er bare en hypotetisk analyse foretatt. Resultatene in-
dikerer at videre undersøkelser er nødvendig for å bekrefte anvendeligheten av
jordmodellen på gravitasjonsplatformer.
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Chapter 1

Introduction

1.1 Background

Offshore wind turbines (OWT) have predominantly been installed in shallow
waters and have so far been relatively small. The optimal capacity of future tur-
bines is expected to increase, leading to an increase in structural weight, impos-
ing larger loads on the soil.

Cyclic loading may cause a degradation of soil stiffness and shear strength, and
lead to accumulation of permanent displacements. This affects the design of
offshore installations, quays, bridges etc. Offshore wind turbines are relatively
sensitive to rotation and in design the serviceability limit state is often critical.
In design of offshore gravity base structures (GBS) the ultimate limit state is of-
ten critical.

Besides the design for the maximum static load, the fatigue design is a very im-
portant aspect for offshore structures. The effect of cyclic loading on the soil has
to be considered, since the number of load cycles due to wind and waves could
exceed 108 over the lifetime of the structure.

A standard design procedure for a laterally loaded offshore pile is the p–y curve
method, which is described in the guidelines of the American Petroleum Insti-
tute (API). The p–y curves formulated for cyclic loading conditions are based on
field tests with fewer than 200 cycles. Similarly for other design states there is
possible to use hand calculation procedures, however they will all be subject to

1
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some limitations.

Using sophisticated material laws and finite element analysis (FEA), the prin-
ciple behavior of undrained soil under cyclic loading can be simulated cycle
by cycle. However, the accumulation of displacement for every cycle is usually
very small, and thus the accumulation of numerical errors could become large
in comparison. Implicit calculation concepts are therefore often restricted to
design cases with low number of cycles.

The Norwegian Geotechnical Institute (NGI) has developed an explicit finite ele-
ment soil model to analyse undrained clay subjected to cyclic loading - Undrained
Cyclic Accumulation Model (UDCAM). This model is based on contour diagrams
from laboratory tests and has been used to design foundations for offshore oil
and gas structures, predominantly in the North Sea. The user need extensive
schooling in order to use the program. It has been suggested to improve the
model by adding mathematical expressions for the soil behavior and make it
easier to use.

The problem of this master’s thesis is to calculate the accumulated displace-
ments and undrained bearing capacity of offshore foundations on clay when
subjected to cyclic loading. The offshore industry is interested in finding the
most efficient and correct way to calculate the response due to cyclic loading. A
solution may be to use FE analysis with a material model which can account for
cyclic behavior. This model should be user friendly and implemented as a User
Defined Soil Model (UDSM) in a finite element calculation program.

1.2 Objectives

The main objectives of this master’s thesis are as follows:

1. Develop a soil model which can describe the undrained behavior of clay
under cyclic loading

2. Implement the soil model into a finite element calculation program

3. Simulate benchmark designs in finite element and compare them to theory
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1.3 Limitations and Approach

The soil model is based on average soil parameters e.g. average shear strength
of compression- and extension shear strength, and the assumption of isotropic
initial stress. The mathematical framework used in the soil model is inspired
by contour diagrams e.g. for Drammen Clay. Plaxis is the chosen FEA platform
which imposes certain limitations to how the material model is formulated. The
model is only capable of representing undrained- and stress controlled behav-
ior. The model is formulated with a von Mises criterion, which results in a higher
strength in certain stress states than what is expected from theory.

A literature survey of material modelling and the behavior of undrained clay
subjected to cyclic loading is used as a basis for understanding how to construct
a cyclic soil model. This includes gathering of articles, selecting the important
ones and adopting the knowledge. Analysis and characterisation of existing data
sets on undrained cyclic behavior of clay are used to find mathematical rela-
tions to be used in the soil model. Numerical calculations of problems where
the result is known and a qualitative and quantitative analysis of the results are
included.

1.4 Structure of the Report

The rest of the report is structured as follows:

Chapter 2 Literature review of material modelling

Chapter 3 Introduction to cyclic loading characteristics.

Chapter 4 Study of the undrained behavior of clay subjected to cyclic loading.

Chapter 5 Literature review of existing soil models.

Chapter 6 Presentation of the developed soil model.

Chapter 7 Discussion of the simulation results from Plaxis.

Chapter 8 Summarizing of the findings from this master’s thesis.





Chapter 2

Preliminaries to Soil Modelling

An important part of a FE analysis is to use a material model which is able to
represent the soil behavior with the specific loading scenario and describe pa-
rameters of interest properly. FE material models are described by a set of math-
ematical equations that give a relationship between stresses and strains. These
expressions are often on incremental form.

This chapter presents an introduction to stresses and strains as well as basic
concepts of the FE theory. There will be shown how material models can be
mathematically described from an energy balance point of view and divided in
elastic and plastic behavior.

2.1 General Definition of Stress

Stress is a 2nd order tensor defined as force per area. In this paper, extension
stress is defined positive, while compression stress is defined negative. The
stress tensor can be written in matrix notation as follows:

æ=

2

6

4

æ11 æ12 æ13

æ21 æ22 æ23

æ31 æ32 æ33

3

7

5

(2.1)

5
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In classical deformation theory a symmetric stress tensor can be derived from
Cauchy’s tetrahedron (Ottosen and Petersson, 1992). This leads to a simplified
and convenient expression for the stress state as the following vector:

æT =
£

æ11 æ22 æ33 æ12 æ23 æ31
§

(2.2)

For soils it can be useful to divide the total stress vector into what is known as
the effective stress, æ0, and the pore pressure, æw , such that:

æ=æ0+æw (2.3)

which is known as the Terzaghi’s principle, first stated in Terzaghi (1925). The
pore pressure is hydrostatic which can be represented by a single value, u
(Brinkgreve et al., 2016):

æT
w =

£

u u u 0 0 0
§

(2.4)

The effective stress is stated as:

æ0T =
£

æ0
11 æ0

22 æ0
33 æ12 æ23 æ31

§

(2.5)

So far the stresses and strains are dependent on the coordinate system. In soil
modelling it is convenient to use stress invariants which is independent of the
orientation of the coordinate system. In the geotechnical FEM software Plaxis,
the following invariants are used (Brinkgreve et al., 2016). The isotropic effective
stress, p’, is the mean value of the diagonal axis in the stress matrix.

p 0 = 1
3

(æ0
11 +æ0

22 +æ0
33) (2.6)

The equivalent shear stress, q, is the deviatoric stress invariant:

q =
r

1
2

£

(æ11 °æ22)2 + (æ22 °æ33)2 + (æ33 °æ11)2 +6(æ2
12 +æ2

23 +æ2
31)

§

(2.7)
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This is equivalent to the following expression:

q =
p

3J2 (2.8)

where J2 is the second principal stress invariant. A third invariant used in Plaxis
is the Lode angle, µ,

µ = 1
3

ar csi n
µ

27J3

2q3

∂

(2.9)

where J3 is defined as:

J3 = (æ0
11 °p 0)(æ0

22 °p 0)(æ0
33 °p 0)° (æ0

11 °p 0)æ2
23

° (æ0
22 °p 0)æ2

31 ° (æ0
33 °p 0)æ2

12 +2æ12æ23æ31
(2.10)

2.2 General Definition of Strain

In small deformation theory the definition of strain is the deformation relative to
the original geometry. In this paper, positive strain values is defined as extension
and negative as compression. The strain state in 3D can be stated as a matrix,

"=

2

6

4

"11 "12 "13

"21 "22 "23

"31 "32 "33

3

7

5

(2.11)

and similar to the stress, the strain matrix can be simplified to the following
strain vector:

"T =
£

"11 "22 "33 ∞12 ∞23 ∞31
§

(2.12)

where

∞12 = "12 +"21, ∞23 = "23 +"32, ∞31 = "13 +"31
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For strains, it is also useful to define invariants. The following invariants are
defined in Brinkgreve et al. (2016). The volumetric strain, "V , is defined as:

"V = "11 +"22 +"33 (2.13)

The deviatoric strain, "q , which is energy conjugate to the deviatoric stress in-
variant q , is defined as:

"q =
r

2
9

£

("11 °"22)2 + ("22 °"33)2 + ("33 °"11)2
§

+ 1
3

(∞2
12 +∞2

23 +∞2
31) (2.14)

which have the following relation to the second principal strain invariant, J2,":

= 2
3

p

3J2," (2.15)

2.3 Deformation Theory

The basics of finite element soil modelling is continuum mechanics. One of
the main ideas behind continuum mechanics is that materials are a continuous
mass, rather than an assembly of many particles. Another assumption is that
deformations applied to a continuum body are infinitely small. This assump-
tion is not required, but it simplifies the expressions.

Figure 2.1: Internal forces acting on a continuum body (from Hopperstad and Børvik (2014))
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A general problem as seen in figure 2.1 will serve as a basis for derivation of the
deformation theory. The body is subjected to external forces, such as gravity
and pressure, and the aim is to calculate the static equilibrium. There are two
different types of forces, the body forces (b) acting on the volume and the trac-
tion forces (t) acting on the surface. These forces all need to be in equilibrium in
every direction as well as in moment equilibrium, which leads to the following
expression:

Z

V
bdV +

Z

S
tdS = 0 (2.16)

Z

V
b xdV +

Z

S
t xdS = 0 (2.17)

were x is the moment arm.

Figure 2.2: Internal forces acting on an infinitesimal continuum body (from Hopperstad and
Børvik (2014))
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The external forces give rise to internal forces which will be traction forces acting
on the surface of every infinitesimal part of the body, as shown in figure 2.2. The
infinitesimal elements of the body must also be in static equilibrium according
to equations 2.16 and 2.17. For the internal forces the traction vectors are made
up of the stresses acting on each plane as shown in figure 2.2. The traction vector
will have the following form, were e are the unit vectors.

t =

2

6

4

t1

t2

t3

3

7

5

=æ e =

2

6

4

æ11e1 +æ12e2 +æ13e3

æ21e1 +æ22e2 +æ23e3

æ31e1 +æ32e2 +æ33e3

3

7

5

(2.18)

Inserting equation 2.18 into 2.16 gives the local form of the force equilibrium
(Hopperstad and Børvik, 2014) in equation 2.19. The same derivation for the
moment equilibrium can readily be done by using equation 2.17.

Z

V
bdV +

Z

S
æ edS = 0 (2.19)

In the finite element method the continuum body is split into several finite sized
elements. These elements consist of nodes with a certain number of degrees
of freedom. The displacement of one node is connected to the displacement
of the element through interpolation functions, N. These functions multiplied
with the nodal displacement, v, will give the displacement field, u, describing
the displacement all over the element (Brinkgreve et al., 2016).

u = N v = 0 (2.20)

As mentioned in section 2.2 the strain can be expressed as deformation relative
to the original geometry. The infinitesimal strain of the element can therefore
be found by spatial differentiation of the displacement field such that:

"=r u =r N v (2.21)

where r is the vector differential operator handling the spatial differentiations.
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2.4 Elastic Materials

A material is elastic if stresses depend only on strains (Hopperstad and Børvik,
2014). Since the stress-strain dependency do not change from loading to un-
loading, the material returns to its original configuration when all loading is re-
moved. The internal elastic energy stored within the material can be expressed
by the strain energy function, U0("), as:

U0(") =
Z"

0
æ(")d" (2.22)

The stresses obtained from rearranging equation 2.22 to 2.23 gives a material
behavior which is reversible and path independent. This means that strains will
be recovered if the material is unloaded and the path of getting to a certain stress
state have nothing to say for the further response from the material.

The relation between stresses and strains for an elastic material can be linear
or nonlinear. If the material in 1D is simplified by a spring, the linear elastic
material will have a constant spring stiffness, E , known as the Young‘s Modulus.
If the material has nonlinear elastic behavior the spring stiffness depends on the
strain, E("). This is visualized in figure 2.3.

Figure 2.3: Linear and nonlinear elastic behavior (from Hopperstad and Børvik (2014))



CHAPTER 2. PRELIMINARIES TO SOIL MODELLING 12

The stress-strain relation in elasticity can be described in a 3D space by an elas-
ticity matrix, C, which gives the relation between the stresses and strains in dif-
ferent directions. It leads to the expression known as the generalized hooke’s
law (Hopperstad and Børvik, 2014).

æ=C "e (2.23)

The elasticity matrix can describe an isotropic or an anisotropic behavior of a
material. The elasticity matrix works in the exact same way as for the 1D case
which makes an elastic 3D model reversible and path independent in every di-
rection. The generalized Hooke’s law for an isotropic material can be described
by the poisson’s ratio, ∫, and the Young‘s Modulus as follows:

æ= E
(1+∫)(1°2∫)

2

6

6

6

6

6

6

6

4

(1°∫) ∫ ∫ 0 0 0
∫ (1°∫) ∫ 0 0 0
∫ ∫ (1°∫) 0 0 0
0 0 0 (1°2∫)

2 0 0
0 0 0 0 (1°2∫)

2 0
0 0 0 0 0 (1°2∫)

2

3

7

7

7

7

7

7

7

5

"e (2.24)

2.5 Elastic-Plastic Materials

At a certain point the elastic capacity is reached and the material starts to yield.
The yielding introduces irreversible deformations and the total strains can then
be separated into two parts, elastic and plastic strains. The elastic strains will act
as in a normal elastic material where all the strains will be fully reversible. The
plastic strains are irreversible and elastic-plastic materials are therefore path de-
pendent, which means that the path to a certain stress state influence the fur-
ther material behavior.

To describe an elastic-plastic material, a yield criterion defining the boundary
of the purely elastic behavior is necessary. This elastic limit is the capacity if the
material is perfectly plastic. Otherwise, the behavior after reaching the elastic
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limit is described by a hardening rule (R). The mathematical difference is seen
from the following expressions and the visualization can be seen in figure 2.4.

f =æeq °æ0 = 0 (2.25)

f =æeq °æ0 °R = 0 (2.26)

where f is called the yield function, æ0 is called the yield strength and æeq is
the equivalent stress in the spring. Elastic behavior is defined by f < 0, plastic
behavior by f = 0 and f > 0 is inadmissible.

Figure 2.4: Idealized elastic-plastic behavior (from Hopperstad and Børvik (2014))

2.5.1 Yield Criterion
The yield function is a mathematical expression which describes the yield crite-
rion. The Tresca and von Mises criteria are often used to demonstrate the princi-
pal of a yield function. They are both pressure independent and are therefore of-
ten used for ductile metals. They can also be used for describing the undrained
behavior of clay.
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The Tresca yield criterion
The Tresca criterion’s yielding condition is based on the maximum shear stress
reaching a critical shear value, øY . This maximum shear stress, ømax , is de-
scribed as:

ømax =
1
2

(æmax °æmi n) (2.27)

Extended to 3D and formulated as a yield function, f , the Tresca criterion can
be stated in terms of the principal stresses as:

f (æ1,æ2,æ3) = 1
2

(|æ1 °æ2|+ |æ2 °æ3|+ |æ3 °æ1|)°æ0 (2.28)

In order to express the Tresca criterion with the components of the stress vector,
æ, the geometry in a Mohr circle can be used to derive the following relation to
the principal stresses:

æ1 =
1
2

(æ11 +æ22)+

s

∑

1
2

(æ11 °æ22)
∏2

+æ2
12

æ2 =
1
2

(æ22 +æ33)+

s

∑

1
2

(æ22 °æ33)
∏2

+æ2
23

æ3 =
1
2

(æ11 +æ33)°

s

∑

1
2

(æ11 °æ33)
∏2

+æ2
31

Inserted into the expression for the Tresca yield surface, the result following on
the next page can be obtained.



CHAPTER 2. PRELIMINARIES TO SOIL MODELLING 15

f (æ) =°æ0+
1
2

0

@
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Ø

Ø

Ø

Ø
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1
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1
2

(æ11 °æ22)
∏2

+æ2
12 °

s

∑

1
2
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∏2

+æ2
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Ø

Ø

Ø

Ø

Ø
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Ø

Ø
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1
2

(æ22 +æ33)+
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1
2

(æ22 °æ33)
∏2

+æ2
23 +

s

∑

1
2

(æ11 °æ33)
∏2

+æ2
31

Ø

Ø

Ø

Ø

Ø

Ø

+

Ø

Ø

Ø

Ø

Ø
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(æ22 +æ33)°
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1
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(æ11 °æ33)
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+æ2
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s

∑

1
2

(æ11 °æ22)
∏2

+æ2
12

Ø

Ø

Ø

Ø

Ø

Ø

1

A

A more convenient and compact way to express the Tresca yield function is by
using the lode angle (equation 2.9) and the equivalent shear stress (equation
2.8) such that:

f (æ) = q
p

3
cos(µ)°æ0 (2.29)

The von Mises yield criterion
The von Mises criterion is based on isotropy and pressure insensitivity of the
material. The equivalent stress is described by the second principal invariant
of the stress deviator, J2 (Hopperstad and Børvik, 2014). The second principal
stress invariant has the following form:

J2 =
1
2

(æ2
11+æ2

22+æ2
33+æ2

12+æ2
21+æ2

23+æ2
32+æ2

13+æ2
31)°1

6
(æ11+æ22+æ33)2 (2.30)

If the yield strength, æ0, is set to the uniaxial yield stress at failure the value of J2

is:

J2 =
1
3
æ2

0 (2.31)
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This gives the final expression for the von Mises yield function:

f =
p

3J2 °æ0 = 0 (2.32)

The difference between the Tresca and von-Mises yield criteria in the º-plane
can be seen in figure 2.5. It is evident that the von-Mises criterion overshoots
the Tresca criterion. The Tresca criterion is discontinuous around the corners,
which may induce numerical problems to a FE simulation. This can be cir-
cumvented by using an approximate Tresca criterion after Billington (1988) with
rounded corners.

Figure 2.5: Tresca and von-Mises yield criteria in º-plane

2.5.2 Plasticity
To utilize the full capacity of materials, a description of the material behavior in
the plastic region is necessary. Soil is a highly nonlinear material where elastic
behavior can only be assumed for very small strains. In plasticity the work en-
ergy is irreversible and translates to other forms, e.g. heat energy. This leads to
permanent (plastic) strains.
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Within a yield surface the stress - strain relationship is purely elastic. If the stress
state tries to surpass the yield surface the result will be a irreversible plastic re-
sponse. This response is described by the plastic strain, "p , while the elastic
reversible response is described by the elastic strain, "e . Summed together they
will be the total strain, ".

"= "e +"p (2.33)

The balance of mechanical energy is important for deriving the necessary equa-
tions for the framework used in FEM plasticity. The balance can be stated as "...
the work per unit time of the external forces equals the work per unit time of the
internal forces."(Hopperstad and Børvik, 2014). The work per unit time, known
as the power, can be achieved by using the equilibrium equation for forces 2.16
and 2.17. By multiplying them by the velocity and integrating over the volume
the following equation can be achieved:

Z

V
æ "̇ dV =

Z

V
b v dV +

Z

S
t v dS (2.34)

(i nter nal ) = (exter nal )

where "̇ is the strain rate, v is the velocity, b is the body force and t is the traction
force which is integrated over the volume or the surface respectively. Because of
the possibility for strain decomposition, the internal work per unit time, called
the deformation power (Pd ), can be split into an elastic and a plastic part.

Pd =
Z

V
æ "̇ dV =

Z

V
æ "̇e dV +

Z

V
æ "̇p dV (2.35)

It is assumed that plastic deformation can not happen without external work
and since the energy from the plastic deformation is irreversible, the following
restriction applies:

Z

V
æ "̇p dV ∏ 0
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Another assumption is that this restriction holds for all parts of the volume. This
leads to the expression for the plastic dissipastion, Dp , which will always have
to be positive.

Dp =æ "̇p ∏ 0 (2.36)

To ensure a non-negative plastic dissipation in a material model, the plastic flow
rule is defined as:

"̇p = ∏̇@g
@æ

(2.37)

The plastic flow rule consists of the plastic potential function, g , differentiated
with respect to the stress vector and the plastic parameter, ∏̇. The plastic param-
eter is defined to be a non-negative scalar and will be derived in the next section.
The plastic potential function is assumed to be a positive homogeneous func-
tion of first order and by using Euler’s theorem, positive plastic dissipation is
achieved (Ottosen and Ristinmaa, 2005):

Dp = ∏̇æ @g
@æ

= ∏̇g ∏ 0

The plastic potential function can for some materials be equal to the yield func-
tion, f . When g equals f the flow is said to be associated and when it is not the
flow is called non-associated. If the flow is associated and the equivalent stress
is a positive homogeneous function, a positive plastic dissipation is assured.

Dp = ∏̇æ @ f
@æ

= ∏̇æ
@æeq

@æ
= ∏̇æeq ∏ 0 (2.38)

All derivations above are done for rate dependent materials. The same deriva-
tions are valid for a rate independent material. The only difference is changing
∏̇ and "̇p with ¢∏ and ¢"p . This will also be the case for all the upcoming equa-
tions on rate form.
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The von Mises flow rule
Based on equation 2.37, the associated von Mises flow rule will get the following
form:

"̇p =

2

6

6

6

6

6

6

6

4

"̇
p
11

"̇
p
22

"̇
p
33

"̇
p
12

"̇
p
23

"̇
p
31

3

7

7

7

7

7

7

7

5

= ∏̇@ f
@æ

= ∏̇

2æeq

2

6

6

6

6

6

6

6

4

2æ11 °æ22 °æ33

2æ22 °æ11 °æ33

2æ33 °æ22 °æ11

3æ12

3æ23

3æ31

3

7

7

7

7

7

7

7

5

(2.39)

which leads to the following expression for the plastic dissipation:

Dp =æ "̇p =æ∏̇@ f
@æ

=æ ∏̇

2æeq

2

6

6

6

6

6

6

6

4

2æ11 °æ22 °æ33

2æ22 °æ11 °æ33

2æ33 °æ22 °æ11

6æ12

6æ23

6æ31

3

7

7

7

7

7

7

7

5

this is equivalent to:

∏̇æ2
eq

æeq
= ∏̇æeq ∏ 0

the plastic dissipation is therefore assured to be positive for the associated von
Mises flow rule.

2.5.3 Loading/unloading Conditions
An essential part of a material model is to be able to distinguish between elastic
loading/unloading and plastic loading. For elastic loading/unloading the stress
state will be within the yield surface i.e. f < 0 (see figure 2.6). There will be no
change in plastic strains during elastic loading/unloading, which means that
the plastic parameter, ∏̇, will have to be zero.
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Figure 2.6: Visualization of the loading/unloading conditions (from Hopperstad and Børvik
(2014))

For the plastic loading, on the other hand, the stress state will be on the yield
surface which means that f = 0. The plastic strains will now start to accumulate
and the plastic parameter will therefore be greater than zero. These stress states
can be expressed by the Kuhn-Tucker conditions, which are:

f ∑ 0, ∏̇∏ 0, ∏̇ f = 0 (2.40)

To be able to solve the plastic behavior of a material model, the plastic param-
eter needs to be determined. In order to do so the fact that plastic loading re-
quire the stress state to be on the yield surface is being used. This means that
the change in f will have to be zero for plastic loading and combined with the
Kuhn-Tucker conditions the consistency condition in theory of plasticity (Hop-
perstad and Børvik, 2014) is derived:

∏̇ ḟ = 0 (2.41)
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The plastic parameter can be derived for plastic loading by a first order taylor
linearization of ḟ :

ḟ = @ f
@æ

æ̇= 0, (2.42)

Then by using Hookes law on rate form and equation 2.33 and 2.37, the follow-
ing expression for the plastic parameter can be derived for a perfectly plastic
material :

∏̇=
@ f
@æ

C "̇

@ f
@æ

T
C @ f

@æ

> 0 (2.43)

2.5.4 Work-hardening
Work-hardening is the phenomena when a material increases its strength when
plastic work is done. Mathematically this can be described by work-hardening
rules which expand, translate or both expand and translate the material’s yield
surface.

Isotropic hardening
The yield function can include the work-hardening, R. This work-hardening will
together with the initial yield stress, æ0, form the flow stress, æY ,(Hopperstad
and Børvik, 2014). This leads to the following formulation of the yield function:

f =æeq °æ0 °R =æeq °æY (R)

This formulation gives a hardening which expands the yield surface the same
amount in every direction i.e. isotropic hardening (see figure 2.7) .
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Figure 2.7: Expansion of the yield surface related to the stress path for isotropic hardening (from
Hopperstad and Børvik (2014))

Usually the work-hardening is assumed dependent on the equivalent plastic
strain, p, which can be found from the equivalent plastic strain rate, ṗ. The
definition of the equivalent plastic strain is the energy conjugate variable to the
equivalent stress equal to the plastic dissipation (Hopperstad and Børvik, 2014)
such that:

Dp =æT "̇p =æeq ṗ (2.44)

Which means that the plastic multiplier for an associated flow rule, as seen in
equation 2.38, equals the equivalent plastic strain. For a non-associated flow
rule the plastic strain rate can be derived from equation 2.44 as:

ṗ =
æT "̇p

æeq
(2.45)
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The equivalent plastic strain is subsequently found by integration of the equiva-
lent plastic strain rate over the time period or by summation of¢∏ if the material
is rate independent.

Power law is an example of an isotropic hardening rule which make use of the
equivalent plastic strain and is formulated in the following way:

R = K pn (2.46)

where K and n are parameters which can be calibrated from material tests such
as an extension test.

The plastic parameter can be derived in a similar manner as before, starting at
the following Taylor linearization of ḟ :

ḟ = @ f
@æ

æ̇+ @ f
@R

@R
@p

ṗ = 0 (2.47)

and ending up with the following expression for the plastic parameter:

∏̇=
@ f
@æ

C "̇

@ f
@æ

T
C @ f

@æ
° @ f

@R
@R
@p

> 0 (2.48)

2.6 Update of Stresses and Stiffness

A material model’s purpose is to calculate the proper stresses and stiffness in
a node for a FE-program. The FE-program uses the output to solve a global
problem existing of multiple nodes. This section describes how the stress and
stiffness can be calculated.

2.6.1 Elastic Material
For a purely linear elastic material the stiffness is constant and described by
the elasticity matrix, C . The stress can easily be calculated from equation 2.23.
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For nonlinear elasticity, stresses can be calculated considering the total strain in
each calculation. The global stiffness can be set to a small strain stiffness so that
a solution to the global iteration exists.

2.6.2 Elastic-Plastic Material
The FE-program gives strain increments as input and the material model will
have to be able to update stresses and stiffness for each increment. Therefore
the program provides information from the previous increment, such as the
stress, stiffness matrix and state parameters. The state parameters of a certain
material model is used to describe the material behavior. The equivalent plastic
strain is an example of such a variable.

Elastic or Plastic Increment?
For each strain increment the material model checks violation of the yield sur-
face. This is done by assuming a fully elastic step and calculating the corre-
sponding stresses in the following way:

ætr =æn +C
n
¢" (2.49)

where the subscript n refers to the step number, while subscript tr is short for
trial.

If the trial stress, ætr , do not violate the yield surface, the step is elastic and the
trial stress will be the new stress and the stiffness remains unchanged. If the
yield surface is violated, the strain increment needs to be split into a purely
elastic and an elastic-plastic part. In Cook et al. (2007) the following method
is suggested.

The elastic fraction of the strain increment is described by the variable Ø such
that:

æC =æn +ØC
n
¢" (2.50)

where æC describes the stress at the yield surface.
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Equation 2.50 will be a nonlinear set of equations where Ø and æC are the un-
knowns. The first approximation of the unkowns will be:

Ø1 =
f (æn)

f (æn)° f (ætr )
(2.51)

and

æC 1 =æn +Ø1C
n
¢" (2.52)

When the two first points are decided a secant iterations can be used. This type
of iteration is a root-finding algorithm. The secant iteration for this specific
problem has the following form:

Øi+1 =Øi °
f (æCi )
¢ f (æC )
¢Ø

(2.53)

where

¢ f (æC )

¢Ø
=

f (æC (i°1))° f (æCi )

Øi°1 °Øi
(2.54)

The start value for Ø0 is set to 0, and the start value for æC 0 equals æn.

Plastic Step
The remaining part of the strain increment, ¢"ep , is described by:

¢"ep = (1°Ø)¢" (2.55)

If the hardening of the material is linear the solution for the new stress will have
the same form as in equation 2.49, with a linear constant plastic stiffness ma-
trix, C t . If the hardening is nonlinear, the plastic stiffness matrix depends on
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the stress state. By using equation 2.23, 2.33, 2.37 and 2.48, the plastic stiffness
matrix for an associated, isotropic hardening law can be derived:

C t =C °

≥

C @ f
@æ

¥≥

@ f
@æ

C
¥

@ f
@æ

T
C @ f

@æ
° @ f

@R
@R
@p

> 0 (2.56)

The plastic stiffness matrix for a nonlinear hardening can be used to solve the
new stress state directly. This is done by forward Euler integration which makes
use of the plastic stiffness matrix atæC and smaller increments of the elastoplas-
tic strain increment to calculate a stress increment. The calculation is done by
an incremental form of the Hooke’s law giving the following expression:

±æ=C ±" (2.57)

This method is explicit because the stresses are found directly. The drawback
with such a method is that the calculated stress have the tendency to drift away
from the real solution if the increment size is not chosen small enough. Another
problem is the calculation cost for the plastic stiffness matrix which can make
the procedure time consuming.

A more robust method when it comes to handling larger strain increments ±",
is the implicit method known as the backward Euler integration. The back-
ward Euler integration is a truncated Taylor series expansion describing the next
stress state by the following equation:

æn+1 =ætr °C¢"p
n+1 =ætr °C¢∏n+1

@g
@æn+1

(2.58)

The equation set consists of seven unknown variables and there is a need for
another equation to be able to solve the problem. By rearranging the expression
to a residual function, and including the yield function as the seventh equation,
the system of equations gets the form in equation 2.59.
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r n+1 =
∑

r 1,n+1

r2,n+1

∏

=
"

æn+1 °ætr +C (∏n+1 °∏n)@g
@æn+1

fn+1

#

= 0 (2.59)

The system of equations can be solved by a Newton-Raphson iteration. The first
step is to linearize the residual function in order to find the roots. The lineariza-
tion is expressed as:

r i+1
n+1 º r i

n+1 +
@r i

n+1

@xi
n+1

¢xi
n+1 º 0 (2.60)

where i refers to the iteration number and the unknown variables are repre-
sented by:

xn+1 =
∑

æn+1
∏n+1

∏

(2.61)

Then by solving for the change in the unknown variables

¢xi
n+1 =°

r i
n+1

J i

n+1

(2.62)

The new iteration attempt for the unknown variables can be described by:

xi+1
n+1 = xi

n+1 +¢xi
n+1 (2.63)

The iteration continues until a certain criteria is reached. The criteria can for
example be the norm of the residual less than a tolerance, i.e:

Ø

Ø

Ø

Ør n+1

Ø

Ø

Ø

Ø< tol er ance (2.64)

The final vector xn+1 contains the updated stresses and the plastic parameter.





Chapter 3

Cyclic Loading

Knowledge of cyclic loading is important for certain foundation designs of struc-
tures offshore, along the coast and on land. Investigations of cyclic loading on
soils are often related to foundation design of offshore structures, structures
subjected to loading from earthquakes or vibration machinery (Andersen (2015),
Kramer (1996), Das and Ramana (2011)). This chapter presents some character-
istics of cyclic loading, typical soil reaction for two offshore foundation types i.e.
gravity base and monopile and transformation of irregular load history.

3.1 Characteristics of Cyclic Loading

There are many different sources to cyclic loading e.g. waves, wind, drifting ice
sheets, earthquakes, tidal variations, traffic, blasting and machine vibrations.
Structures experience loads with vastly different amplitudes, periods and dura-
tions, and the cyclic load history is irregular with cyclic amplitude varying from
one wave to the next. In many cases there can also be an average load com-
ponent that vary during the storm. Different sources may also generate cyclic
loading simultaneously, like wind and wave for an offshore wind power struc-
ture. Additionally, resonance of the structure can be a source that generates
additional cyclic loading on the soil as a reaction to the primary source. A brief
overview of load frequencies for some given situations are summarized in Table
3.1 (developed from Andersen (2015) and Head and Epps (1986)).

29
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Situation Frequency of load application
Offshore structures:

- Tidal loading Usually 2 cycles per day
- Wave loading º 0.1 Hz
- Wind loading 0.01-0.1 Hz

Earthquake on structures 0.1-10 Hz
Subbase for roads and railways 10-100 Hz

Foundations for machinery Up to 100 Hz

Table 3.1: Load frequencies for given situations

3.2 Soil Reaction to Offshore Cyclic Loading

Offshore foundations are usually fixed to the seafloor by means of gravity only
(e.g. GBS) or a combination of soil friction and gravity (e.g. monopiles, skirted
foundations). Soil elements beneath offshore foundations experience different
stress paths depending on foundation type, type of loading and the geological
history. Figure 3.1 shows simplified Ultimate State (US) stress paths beneath a
GBS foundation when subjected to cyclic horizontal forces.

Figure 3.1: Simplified stress paths beneath offshore GBS (from Andersen and Lauritzsen (1988))
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Stress paths along potential failure surfaces beneath GBS foundations may be
related to stress paths in triaxial compression- and extension, and direct sim-
ple shear tests according to figure 3.1. The assumption of strain compatibil-
ity along the failure surface may be applied to calculate bearing capacity using
the limit equilibrium framework established by NGI (Andersen and Lauritzsen,
1988). Cyclic loading may lead to permanent foundation displacements in a
Serviceability State (SS) for the soil, which may induce stresses in structural ele-
ments resulting in an US for the structural components.

Figure 3.2 displays simplified stress paths around a monopile foundation. Sim-
ilar to figure 3.1, the stress paths around a monopile can be related to stress
paths found in laboratory testing, however no strain compatibility in US can be
assumed and the degree of soil strength mobilization varies throughout the soil
volume.

Figure 3.2: Simplified stress paths around offshore monopiles (from (Andersen, 2015))

Monopiles are often used as foundation for Offshore Wind Turbines (OWT). Low
turbine efficiency due to tilting leads to strict criterion for acceptable displace-
ments and the design state is often in SS.
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3.3 Transformation of Irregular Load History

For design purposes it may be convenient to transform the real, irregular load
history to an idealized load history. A Rain Flow Method or other methods may
be used (Amzallag et al., 1994). An example is taken from Andersen (2015) and
presented in figure 3.3 to demonstrate the principle. This load history yields
eleven load parcels which become input to FE calculations. In the figure, maxi-
mum load is only repeated once and the other load parcels are defined as frac-
tions of the maximum load.

Figure 3.3: Transformation from real load history to idealized load history.



Chapter 4

Undrained Behavior of Clay Subjected to
Cyclic Loading

Soils are classified as undrained if significant pore pressure dissipation is pre-
vented within a specific time of interest. This applies to design situations in
which soil permeability is low and/or the rate of loading is such that signifi-
cant pore pressure dissipation does not occur. In this case an undrained shear
strength approach may be adopted (Grimstad et al., 2012).

Cyclic loading tends to break down the soil structure i.e. change the properties
of the soil (Andersen (2015), Kramer (1996)). The strength and stiffness of the
soil is, for instance, expected to decrease due to cyclic loading. The ability to
describe the cyclic soil behavior is therefore highly dependent on the ability to
describe this change in soil properties. This chapter presents the basic theory
of undrained cyclic behavior of clay. The first section introduces some parame-
ters which are important in describing the cyclic soil behavior. Subsequently an
overview of the most frequently used laboratory tests to obtain cyclic soil prop-
erties and typical laboratory test results are presented. Finally, the degradation
of soil strength and stiffness, as well as the shear strain accumulation principle
are discussed.

33
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4.1 Introduction to Important Parameters

Shear Stresses- and Strains
Shear stress beneath offshore foundations can be divided into initial shear stress
(ø0), additional shear stress due to the structure (øs) and additional shear stress
induced by environmental loads (øenv ). Both additional shear stresses are as-
sumed to act undrained herein. Shear stress beneath offshore foundations can
be related to shear stress in different laboratory tests. In a triaxial test, the initial
shear stress can be expressed as ø0 = 0.5(1°K 0

0)p 0
0, while ø0 = 0 in a direct simple

shear (DSS) test. p 0
0 is the effective vertical overburden pressure while K 0

0 is the
coefficient of earth pressure at rest (Andersen, 2015).

The shear stress induced by environmental loads can be divided into an average
part (øenv

a ) and a cyclic part (øenv
c y = øc y ). From figure 4.1, the cyclic shear stress

øc y can be regarded as the shear stress amplitude. This shear stress amplitude
is further referred to as the "cyclic shear stress". The subdivision of shear stress
finally gives the expression for the total average shear stress beneath offshore
foundations.

øa = ø0 +øs +øenv
a (4.1)

Similarly, the shear strain can be described by average, cyclic and permanent
shear strain (∞a, ∞c y and ∞p) according to figure 4.1. ∞a can be regarded as the
mean value of the peak shear strains within a cycle and ∞c y as the cyclic shear
strain amplitude i.e. half the peak to peak value within a cycle. The cyclic shear
strain amplitude is further referred to as the "cyclic shear strain".

∞p is the shear strain at the end of each cycle, but is often assumed equal to the
average shear strain, ∞p = ∞a. This can be a good approximation when there is
no shear stress reversal. The difference is greater when the cyclic shear strain is
predominant, but the difference between the permanent and the average shear
strains will be less than the cyclic shear strain, i.e. |∞p-∞a | < ∞c y .
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Figure 4.1: Shear stress- and strain induced by cyclic loading (from Andersen (2015))

Many laboratory tests on clay with undrained cyclic loading have been con-
ducted to study the behavior. The undrained cyclic loading can be imposed as a
number of harmonic stress- or strain cycles (N ) with specific values of the aver-
age shear stress (øa) and cyclic shear stress (øc y ), or a specific value for the cyclic
shear strain (∞c y ), respectively. The number of harmonic cycles is therefore an
important parameter in order to describe the material behavior.

Pore Water Pressure
Soft clays may have very low permeability i.e. during rapid loading or unloading
of saturated clays, the pore water cannot dissipate, which leads to an increase
in pore pressure. As for the shear strain, the pore pressure can be described by
average (ua), permanent (up) and cyclic pore pressure (uc y ), all defined in the
same way as for the shear strains (see figure 4.2).
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Figure 4.2: Development of excess pore pressure with time (from Andersen (2015))

The permanent pore pressure (up) is the preferred measure of the accumulated
effect of a previous cyclic load history within a cyclic event (Andersen, 2015). If
no pore pressure dissipation occurs during the cyclic event, only negligible vol-
umetric strains develop due to the high bulk stiffness of pore water. From this, it
has been assumed that also the cyclic shear strain (∞c y ) uniquely represents the
accumulated effect. The cyclic shear strain is used to quantify this accumulated
effect on soil properties in the Undrained Cyclic Clay Model presented in chap-
ter 6. Andersen (2015) presents how to calculate this accumulated effect and a
further demonstration is given in section 4.5. If dissipation of pore pressure do
occur during the cyclic event, only the permanent pore pressure can be used.

Shear Modulus
The shear modulus is an important parameter in geotechnical engineering. Lab-
oratory tests have shown that the shear stiffness is influenced by cyclic strain
amplitude, void ratio, mean principal effective stress, plasticity index, overcon-
solidation ratio and number of cycles (Kramer, 1996). A linear relationship be-
tween shear stress- and strain is described by the secant shear modulus and can
be used in both static and dynamic soil modelling :

Gsec =
øc y

∞c y
(4.2)

Since soil behavior is highly nonlinear this approach can only seek to estimate
two shear stress-strain points within each cycle, except at very low strains where
Gsec !Gmax .
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Undrained Shear Strength
The peak shear stress that can be mobilized during undrained cyclic loading is
defined by Andersen and Lauritzsen (1988).

ø f ,c y = (øa +øc y ) f (4.3)

ø f ,c y is referred to as the cyclic shear strength and depends on inherent soil
properties, loading characteristics (øa, øc y , N ) and the stress path. Cyclic fail-
ure can occur either as large cyclic shear strains, large average shear strains, or
a combination of the two. Cyclic shear strength can be both higher and lower
than the undrained static shear strength due to rate effects and degradation re-
spectively (Åhnberg et al.). Figure 4.3 illustrates undrained cyclic shear strength
compared to undrained static shear strength in a triaxial compression test. It
can be seen that the cyclic shear strength is degraded to a lower value than the
static shear strength.

Figure 4.3: Undrained static and cyclic shear strengths of triaxial compression test
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Static soil parameters can be used as reference for cyclic soil parameters. It is
in particular convenient to normalize shear stress by the static undrained shear
strength (Su = cu). The static undrained shear strength is the highest possible
stress that can be mobilized during static loading (see fig. 4.3). Similar to the
undrained cyclic shear strength, the undrained static shear strength has differ-
ent magnitude depending on the stress path. Static shear strengths normally
obtained from laboratory tests are compression-, direct- and extension shear
strength (SC

u , SDSS
u , SE

u respectively).

4.2 Important Laboratory Tests

Triaxial Test
A commonly used test for measuring dynamic- and cyclic soil properties at high
strain levels is the cyclic triaxial test (Kramer (1996), Andersen (2015)). A cylin-
drical specimen is surrounded by a thin rubber membrane and placed between
top and bottom loading plates (see fig. 4.4). The specimen is subjected to radial
and axial stress. Given the boundary conditions, the principal stresses in the
specimen are always vertical and horizontal.

Figure 4.4: Typical triaxial apparatus (from Kramer (1996))
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In an undrained triaxial test, the difference between the axial and radial stress is
the deviator stress (q), while the shear strain is defined as:

∞= "a °"r =
3
2
"a (4.4)

The deviator stress will have the same value as the equivalent shear stress de-
fined in section 2.2. In a cyclic triaxial test the deviator stress is applied cyclically,
either under stress- or strain-controlled conditions. Stress-controlled testing is
considered the best representation for cyclic events defined in terms of forces
(GBS), while soil elements reaching the same deformation configuration after
each cycle is best represented by strain-controlled tests. Stress-controlled test-
ing is preferred by some researchers to keep control of the average- and cyclic
shear stress. Cyclic triaxial tests are most commonly performed with the radial
stress held constant and the axial stress cycled at a frequency in the range of 0.1
to 1 Hz (Åhnberg et al.).

As seen in section 4.1, the permanent pore pressure is the preferred measure of
the accumulated cyclic effect on soils. For clays, it should be noted that it is chal-
lenging to measure the cyclic pore pressure reliably in the laboratory (Andersen
(2015), Åhnberg et al.). Due to rapid stress changes and short testing durations
the requirement to the system compliance can be difficult to fulfill

Both static and cyclic triaxial tests can be performed under isotropically or anisotrop-
ically consolidated conditions. Isotropically consolidated tests are performed
on soil elements where K 0

0 is close to 1. Anisotropically consolidated tests are
used for K 0

0 values between 0.5-1 and is most commonly used in Norway.

Direct Simple Shear Test
The cyclic direct simple shear (DSS) test is capable of reproducing certain stress
states as shown in section 3.2. A short, cylindrical specimen is restrained against
lateral expansion by for instance rigid boundary plates, a wire-reinforced mem-
brane or a series of stacked rings. Cyclic horizontal shear stresses are applied to
the top or the bottom of the specimen (see figure 4.5).
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Figure 4.5: NGI cyclic simple shear apparatus (from Kramer (1996))

In this configuration no complimentary shear stresses are imposed on the ver-
tical sides. Moment caused by the horizontal shear stresses at top and bot-
tom must be balanced by non-uniformly distributed shear and normal stresses
within the soil specimen. The effects of non-uniformity of stresses can be re-
duced by increasing the diameter/height ratio of the specimen. Conventional
simple shear apparatuses are limited by their inability to impose initial stresses
other than those corresponding to K0 conditions (Kramer, 1996).

4.3 Typical Laboratory Test Results

Stress-controlled Tests
Figure 4.6 shows the undrained stress-strain response to cyclic loading (1 Hz)
in stress-controlled, active triaxial testing (Åhnberg et al.). After the accumu-
lated deformations reach the failure deformation in the undrained static test,
the cyclic deformation accelerates until cyclic failure occurs. The stress-strain
response after cyclic failure approaches the stress-strain response obtained in
the static test past failure. In tests where no failure occur, the stress-strain curves
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in static tests, after a rest period, closely follow those in the ordinary static test
(see figure 4.7). Results from the same study suggests that the accumulated ex-
cess pore pressure accelerates after passing the static failure deformation.

Figure 4.6: Stress-strain response to cyclic and static loading on Äsperöd clay (from Åhnberg
et al.)

Figure 4.8 illustrates typical cyclic triaxial- and direct simple shear test results
from Andersen (2015). The two leftmost tests in figure 4.8 have symmetrical
cyclic loading with approximately the same cyclic shear stress. Their behavior is
different and shows that the response to symmetrical cyclic loading is different
in DSS and triaxial tests. In DSS tests, the shear strain develops relatively sym-
metrically. In the triaxial test, the shear strain development is unsymmetrical.
This is due to the strength anisotropy under triaxial loading, with an extension
strength that is smaller than the compression strength. The triaxial test develops
larger shear strains at a lower number of cycles than the DSS test.
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Figure 4.7: Stress-strain response to cyclic and static loading on Mellösa clay (from Åhnberg
et al.)

Figure 4.8: Typical laboratory test results (from Andersen (2015))
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The rightmost test result in figure 4.8 has a shear stress with equal average and
cyclic components. The result is a shear strain development where the average
and permanent shear strains dominate and increase with number of cycles. The
small cyclic shear strain does not increase significantly with number of cycles.

The three tests in figure 4.9 have the same maximum shear stress, but different
average and cyclic shear stress components. The test with øa = 0 fails after 10
cycles, whereas the tests with øa = 0.5ømax and øa = 0.85ømax have developed
only small shear strains after 2500 cycles, and the test with the highest øa has
the smallest shear strains. Hence figure 4.9 shows that the cyclic behavior is not
governed by the maximum shear stress alone and the strain development under
cyclic loading cannot be explained by creep.

Figure 4.9: Typical laboratory results (from Andersen (2015))

Results from laboratory tests can be organized in contour diagrams (Andersen,
2015). ∞c y and ∞a can be recorded and illustrated, as in figure 4.10, for specific
values of N , øc y and øa. Figure 4.10 shows a contour diagram of the first loading
cycle (N = 1) for NC Drammen Clay. If øa is constant throughout the soil testing,
results can be illustrated in a N -øc y diagram as illustrated in figure 4.11. Here
each line represents a cyclic shear strain level which is given in percent in the
figure.



CHAPTER 4. UNDRAINED BEHAVIOR OF CLAY SUBJECTED TO CYCLIC LOADING 44

Figure 4.10: Laboratory test results Drammen Clay OC R = 1 (from Gustav Grimstad (2012))

Figure 4.11: N -øc y diagram for Drammen Clay OC R = 1 (developed from Gustav Grimstad
(2012))
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Strain-Controlled Tests
Strain controlled cyclic triaxial tests were performed at Statens Geotekniska In-
stitut (SGI) with 100 cycles (Åhnberg et al.). Two cyclic strain amplitudes were
tested:

1. Axial failure strain in static triaxial test

2. Two times the axial failure strain in static triaxial test

At the first strain level, the cyclic shear stress decreased gradually from values
considerably above the shear strength to values below the shear strength in static
tests. (see fig. 4.12).

Figure 4.12: Stress-strain response to strain-controlled cyclic loading (from Åhnberg et al.)

The specimens were then subjected to further deformation at the normal rate
of strain and the stress-strain curves rapidly adhered to those obtained in the
normal static tests.

A reduction in maximum shear stress with increasing number of cycles was
observed as seen in figure 4.13. At the first strain level, the stress generally
decreased to values close to the undrained shear strength. The decrease was
largest during the first cycles and almost evened out towards the end of the cy-
cling. At the second cyclic strain level, the shear stresses decreased more rapidly.
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Figure 4.13: N -øc y diagram for strain-controlled Fultaga clay (∞c y ' 1.4 %) (from Åhnberg et al.)

4.4 Stiffness and Strength

Two principal mechanical properties of all materials are required for engineer-
ing design - strength and stiffness. These properties inspired, and essentially
form the basis of, the limit state design approach including ultimate limit state
(ULS) and serviceability limit state (SLS) respectively (Wood, 1990). This section
presents the undrained strength- and stiffness of clays subjected to both static
and cyclic loading.

Undrained Static Stiffness
Soil reaction to loading is in general nonlinear (strain dependent), but in many
cases a linear elastic approach is adopted. The soil stiffness is an important pa-
rameter in defining the behavior in this assumed elastic- or serviceability-state
zone. In soil mechanics, a distinction is often made between bulk stiffness and
shear stiffness. The bulk stiffness defines the volumetric change in geometry,
while the shear stiffness represents the material reaction to shear loading or de-
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formation.
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(4.5)

Water is close to volumetrically incompressible and unable to take shear forces,
i.e. the bulk stiffness is high and shear stiffness is zero. Bulk stiffness of the soil
skeleton is low compared to the bulk stiffness of water (Ks << Kw ). Hence, in
undrained saturated soils, the volumetric stresses are mostly carried by the pore
water, while shear forces must be taken by the soil skeleton. Since the volumet-
ric change in geometry is prevented by the incompressible water, shear stiff-
ness plays an important role in describing the undrained soil behavior (Nordal,
2014).

A typical stress-strain curve from a triaxial test is presented in figure 4.14. The
stress-strain response is nonlinear, but the shear modulus can be interpreted as
a secant modulus (linear) or a tangent modulus (nonlinear). If the shear mod-
ulus is approximated to a secant value, it is common practice to approximate
with the value G50

u (Brinkgreve et al., 2016). This value describes a straight line
that intersects the stress-strain curve at ø= 0.5cu, as seen in figure 4.14.

Figure 4.14: Typical stress-strain response from triaxial test (from Nordal (2014))
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A tangent shear stiffness describes the real stress-strain curve, which may be
convenient in incremental analyses:

¢ø=G¢∞ (4.6)

Along the stress-strain curve in figure 4.14, both the tangent- and secant shear
modulus decreases with increasing shear strain level. This is normally referred
to as modulus reduction, which is frequently used in geotechnical earthquake
engineering, as well as in some Plaxis soil models.

Figure 4.15 shows typical stress-strain response in undrained triaxial compression-
and extension tests for soft clays. The response is clearly different and the ma-
terial is said to show anisotropic behavior. Hence, the static shear stiffness can
be assumed to depend on both the shear strain level and the soil element stress
path.

Figure 4.15: Typical stress-strain response from triaxial test (from Grimstad et al. (2012))

Undrained Cyclic Stiffness
Undrained cyclic loading can generate permanent pore pressure and structural
changes of a soil element. Under stress-controlled harmonic loading this leads
to an increased shear strain amplitude with increasing number of cycles. Under
strain-controlled undrained conditions, the shear stress amplitude decreases
with increasing number of cycles, as observed from laboratory tests in section
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4.3. Both conditions illustrate the tendency of repeated cyclic loading to de-
grade the shear stiffness of the specimen.

It has been suggested that the cyclic soil stiffness is influence by the cyclic strain
amplitude, void ratio, mean principal effective stress, plasticity index, overcon-
solidation ratio and number of loading cycles (Kramer, 1996). For cohesive soils
the following equation for the shear stiffness with number of cycles was pro-
posed by Idriss et al. (1978):

GN =G1N°t (4.7)

Here, G1 is the shear modulus in the first stress-strain cycle, N is the number
of harmonic loading cycles and t is a degradation parameter. The degradation
parameter has been shown to decrease with increasing plasticity index (PI) and
overconsolidation ratio (OCR), and to increase with increasing cyclic strain am-
plitude (∞c y ) (Kramer, 1996). Figure 4.16 shows the effect of cyclic degradation
on the shear modulus reduction behavior.

Figure 4.16: Effect of cyclic degradation on shear modulus (from Kramer (1996))
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Undrained Static Shear Strength
The undrained static shear strength (Su) can be used in engineering practice for
the short-term condition in clay. If the soil is fully saturated and the pore water
(and minerals) are assumed incompressible the volume of a soil element will be
constant for undrained conditions (Nordal, 2014):

¢"v =¢p 0 °D¢q = 0 (4.8)

If Janbu’s dilatancy parameter D > 0, the soil is said to dilate. This means more
normal forces are taken by the soil skeleton compared to the undrained purely
elastic condition, D = 0 (see equation 4.9). If D < 0, which is normal for NC
clay and loose sands, more normal forces must be taken by the pore pressure
according to equation 4.9.

¢u =¢p °D¢q (4.9)

The static strength can be derived from an effective stress based consideration
combining Coulomb’s law and the undrained condition ¢"v = 0. Given the ini-
tial stress state and the dilatancy parameter (D), the effective stress path (ESP)
can be determined. Failure is reached when the ESP reach the Coulomb-line
(see figure 4.17).

The critical state line, CSL, presented in figure 4.17 depends on the friction angle
and the stress path parameter (b). The failure line for a triaxial compression test
where ¡ = 30° has M = 6/5, while in extension the inclination is M = 6/7. This
will lead to an anisotropic value of the undrained shear strength as observed in
laboratory test results for undrained clays.
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Figure 4.17: Undrained triaxial stress path in p 0-q plot (developed from Nordal (2014))

Undrained Cyclic Shear Strength
Cyclic loading will generally tend to break down the structure of the soil skele-
ton and cause a tendency for volumetric compression (Andersen, 2015). With
repeated cycles of loading where the soil dilates and contracts, a permanent ex-
cess pore pressure may develop. The development of permanent excess pore
pressure with number of cycles may be similar to figure 4.2 (Åhnberg et al.).

The accumulation of excess pore pressure leads to a decrease in effective stresses
in the soil, and the stress state moves towards the critical state line seen in figure
4.18-4.20. Figure 4.18 shows a NTNU-plot for an undrained cyclic triaxial test as
well as a monotonic triaxial test. In the monotonic test the soil exhibits a peak
shear stress, softens and follows the critical state line.
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Figure 4.18: NTNU plot of undrained static and cyclic triaxial test (from Andersen (2015))

In the cyclic test, the soil is loaded with a maximum shear stress lower than the
undrained static shear strength. During the first cycle the stress path forms a
loop that ends up to the left of the initial effective stress. This corresponds to a
permanent pore pressure, up . Each cycle gives an additional increment in per-
manent pore pressure as seen in figure 4.2, and after some cycles the effective
stress path reaches the critical state line. The shear strains may not necessar-
ily become excessive once the failure line is reached, as the soil may dilate and
follow the CSL.

Results from different studies indicate there exist a lower limit for cyclic actions.
Cyclic loading below this limit only results in temporary elastic strains and no
accumulation of permanent pore pressure. This limit has been reported to be
about 20 to 40% of the undrained shear strength in both triaxial and direct sim-
ple shear tests. These results were obtained in tests where no static shear stress
were imposed before, during or after the cyclic loading (Thiers and Seed (1969),
Ansal and Erken (1989)).

The undrained stiffness of the soil skeleton depends on the stress path as seen
above. The stiffness is usually lower in extension compared to compression.
This indicates more normal forces must be taken by the pore water if stress re-
versal takes place in a triaxial test as seen in figure 4.19 and 4.20. The excess
pore pressure will therefore accumulate more rapidly compared to triaxial tests
where no shear stress reversal takes place. This is illustrated in figure 4.19 and
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4.20 where the stress path with two-ways loading reaches the critical state line
after a lower number of loading cycles compared to the test with one-way load-
ing.

Figure 4.19: Triaxial test with one-way loading (from Yasuhara et al. (1992))

Figure 4.20: Triaxial test with two-way loading (from Yasuhara et al. (1992))
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4.5 Cyclic Shear Strain Accumulation Principle

As introduced in section 4.1, the cyclic shear strain (∞c y ) can be used to quan-
tify the accumulated effect of a cyclic load history if only negligible pore water
dissipation takes place during the cyclic event (Andersen, 2015). Figure 4.21 il-
lustrates the cyclic stress-strain behavior of NC Drammen Clay in the first cycle
and the development of cyclic shear strain with number of shear stress cycles.
The cyclic shear strain is constant along the yellow- and green line, 0.5% and 5%
respectively. No average shear stress (øa = 0) is present in the soil element for
the material behavior presented in figure 4.21.

There must be compatibility between the current and previous cyclic load his-
tories in order to add them, i.e. they must have the same cyclic shear stress
(øn+1

c y = øn
c y ). The index n refers to the parcel number defined in section 3.3.

If the current and previous load histories are not compatible, the cyclic shear
strain accumulation principle enables a transformation of the previous load his-
tory to an intermediate, equivalent load history. The intermediate, equivalent
cyclic load history has the same cyclic shear stress as the current load history
(øi ntm

c y = øn+1
c y ). It is referred to as intermediate equivalent because, according to

the principle, it represents the same state of material degradation as the previ-
ous load history. The cyclic shear strain accumulation principle can be stated
as:

∞i ntm
c y,eq = ∞n

c y,eq +¢∞i nst
c y (4.10)

∞i ntm
c y,eq is the cyclic shear strain as result of the intermediate equivalent load his-

tory and ∞n
c y,eq is the cyclic shear strain due to the previous cyclic load history.

¢∞i nst
c y is an instantaneous change in the cyclic shear strain due to the change in

cyclic shear stress, and is defined as:

¢∞i nst
c y = ∞c y,√°∞c y,¡ (4.11)

where ∞c y,√ is the cyclic shear strain in the first loading cycle corresponding to
the current cyclic shear stress (see figure 4.21). ∞c y,¡ is the cyclic shear strain in
the first loading cycle corresponding to the previous cyclic shear stress.
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Figure 4.21: Undrained triaxial test results, NC Drammen Clay (developed from Gustav Grim-
stad (2012))

For instance, a previous cyclic load history of N n
eq = 104 and øn

c y = 0.2Su yields a
previous cyclic shear strain of ∞n

c y,eq = 0.5% (stress state A in figure 4.21). For a
change in cyclic shear stress of ¢øc y = 0.2Su, the intermediate equivalent cyclic
shear strain would be ∞i ntm

c y,eq = 0.77%. The intermediate equivalent number of
cycles is then, from figure 4.21, N i ntm

eq = 4. Stress state B is defined by N i ntm
eq = 4,

∞i ntm
c y,eq = 0.77% and øi ntm

c y = 0.4Su. The current cyclic load history, given by¢N n+1
eq

and a cyclic shear stress of øn+1
c y = 0.4Su, can be added from this stress state.

From the cyclic shear strain accumulation principle, the blue line in figure 4.21
can be defined. This line represents loading histories leading to the same amount
of material degradation as the previous load history (StatusQuo-line). Stress
state A and B are clearly on the line. All stress states (load histories) above the
line represent a more degraded material compared to the stress states below.





Chapter 5

Existing Cyclic Soil Models

A variety of models have been proposed to describe the cyclic behavior of soils.
In this chapter, a distinction is made between implicit- and explicit soil models.
Implicit models follow the stress path within every loading cycle, while explicit
models describe the cyclic behavior in terms of the number of loading cycles.
Implicit models tend to accumulate errors for every cycle and is time consum-
ing. If the number of cycles is high, the accumulated error may be significant
and the computational time increases in order to decrease the error. Explicit
models tend to give more accurate results for cyclic load histories with a large
number of loading cycles and is more time efficient. The implicit models have
the advantage of describing the complete stress path and have a physical behav-
ior related to energy considerations.

Some approaches to implicit representation of cyclic soil behavior are multi-
surface plasticity models, nonlinear kinematic- and isotropic hardening rules
or a bounding surface. Approaches for the explicit methods are based on em-
pirical laws relating the soil behavior to the number of cycles. Many empirical
laws have been proposed based on ideas like stiffness degradation, accumulated
strains or accumulated pore pressure.

In the following sections a presentation of the implicit models Extended Mas-
ing Model, IWAN model and the coupled NGI-ADP model is given. The ex-
plicit models presented in this chapter are Undrained Cyclic Accumlation Model
(UDCAM), High-Cycle Accumulation Model (HCAM) and Stiffness Degradation
Model (SDM).

57
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5.1 Extended Masing Models

Extended Masing Models are described by a backbone curve depending on the
low-strain stiffness (Gmax) and the high-strain shear strength (ømax), and differ-
ent rules for the unloading-reloading behavior (Kramer, 1996). The backbone
curve can be described as:

ø= Gmax∞

1+
≥

Gmax
ømax

¥

Ø

Ø∞
Ø

Ø

(5.1)

The quantities Gmax and ømax may be measured directly, computed, or obtained
by empirical correlation. The response of the soil to cyclic loading is governed
by the following 4 rules:

1. The stress-strain response follows the backbone curve in initial loading as
seen in figure 5.1:

Figure 5.1: Backbone curve extended Masing Models (from Kramer (1996))

2. If a stress reversal occurs at a point defined by (∞r , ør ), the stress-strain
curve follows a path given by:

ø= ør °
Gmax(∞r °∞)

1+
≥

Gmax
2ømax

¥

Ø

Ø∞r °∞
Ø

Ø

(5.2)
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3. If the unloading or reloading curve exceeds the maximum past strain and
intersects the backbone curve, it follows the backbone curve until the next
stress reversal.

4. If an unloading or reloading curve crosses another unloading or reloading
curve from the previous cycle, the stress-strain curve follows that of the
previous cycle.

This model does not account for pore pressure development in undrained con-
ditions. As pore pressures increase, effective stresses decrease, and consequently
the values of Gmax and ømax decrease. Since the shape and position of the back-
bone curve depends on Gmax and ømax , the backbone curve degrades with in-
creasing pores pressure. Using constant values for Gmax and ømax will therefore
have limited possibility of representing the degradation of strength and stiff-
ness.

5.2 IWAN Model

Iwan proposed a mathematically tractable model in order to study the effect
of hysteretic behavior on a general system (Iwan, 1966). The general hysteretic
system is regarded as a high number of ideal elasto-plastic elements. Each ele-
ment, originally called Jenkin’s elements, have different stiffness and yield level.
The configuration of this system could either be series-parallel or parallel-series.
The first term refers to the coupling of the Jenkin’s elements, and the second
term refers to the coupling between the linear elastic- and rigid plastic part of
the Jenkin’s element. For simplicity, this presentation will focus only on the
parallel-series system as presented in figure 5.2.
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Figure 5.2: Parallel-series system (from Iwan (1967))

In figure 5.2, all Jenkin’s elements consist of a linear spring in series with a slip
element. The linear spring and the slip element is defined by the stiffness (Ei )
and the critical slipping stress (æ§

i ) respectively. If N is the number of elements,
the initial loading behavior is described by:

æ= F
A
=

n
X

i=1

Ei

N
"+

N
X

i=n+1

æ§
i

N
(5.3)

where the summation from 1 to n includes all elements which remain elastic af-
ter loading to a strain ", and the summation from n+1 to N includes all elements
which have yielded.

An example with three Jenkin’s elements is used to demonstrate the principle
of this model. The characteristic parameters of the system are summarised in
table 5.1 and the resulting stress-strain curve is presented in figure 5.3.



CHAPTER 5. EXISTING CYCLIC SOIL MODELS 61

Index (i) æi [kPa] Ei [MPa]

1 40 9
2 50 10
3 60 11

Table 5.1: Example demonstrating the principle of the IWAN model

Figure 5.3: Initial loading with 3 elements

If the total number of elements becomes very large the backbone curve of the
system will have a similar shape as presented in figure 5.4. In unloading, three
different groups of elements contribute to the relationship between stresses and
strains. One group of elements reach positive yielding during initial loading and
are in a state of negative yielding. Other elements reached positive yielding,
but has not yet reached negative yielding, and some elements have not reached
yielding at all.

The model was proposed for general hysteretic systems and is limited to undrained
situations. It predicts an isotropic shear strength and cannot model cyclic degra-
dation, which can be seen as a drawback with this model. In order to include
shear strength anisotropy, a coupled NGI-ADP has been suggested (Grimstad
et al. (2014)).
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Figure 5.4: General hysteresis response (from Iwan (1967))

5.3 Coupled NGI-ADP Model

Although analysis of undrained behavior of clay is of interest in many geotech-
nical problems, most of the material models are effective stress based, and the
undrained shear strength (Su) is therefore a prediction. The NGI-ADP material
model is based on total stresses and consequently undrained shear strengths
are direct input to the model (Grimstad et al. (2012)).

Soft clays normally exhibit anisotropic behavior i.e. strength and stiffness char-
acteristics depend on the stress path. The NGI-ADP model accounts for anisotropy
in shear strength and stiffness by a modified Tresca criterion after Billington
(1988) and an elliptical interpolation between failure strains. The initial stress
state is included in the modified deviatoric stress vector used in the yield crite-
rion. The general 3D yield criterion is defined as:

F =
q

H(!) Ĵ2 °∑
S A

u +SP
u

2
(5.4)
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where ! and Ĵ2 depend on the modified deviatoric stress vector and ∑ is the
hardening function which is an elliptical interpolation between the failure strains
from laboratory tests, within the 3D stress space.

The model itself has limited possibility of reproducing the behavior seen in fig-
ure 5.4 due to its linear elastic behavior in stress reversal. To improve the ability
to represent cyclically loaded soils, a coupling of several NGI-ADP models has
been suggested by Grimstad et al. (2014).

The elements with NGI-ADP properties can either be coupled in parallel or se-
ries as described in section 5.2. The basic assumption for the parallel coupling is
that strain is compatible (figure 5.5). For the series coupling, it is assumed that
stresses are in equilibrium (figure 5.6). Different coupling algorithms are used
and can be found in Grimstad et al. (2014).

Figure 5.5: Parallel-series coupling of NGI ADP elements (from Grimstad et al. (2014)).

Figure 5.6: Series-parallel coupling of NGI ADP models (from Grimstad et al. (2014)).

A major drawback with this model is that it cannot predict cyclic degradation
unless a softening term is included. This model is additionally limited to undrained
situations only.
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5.4 Undrained Cyclic Accumulation Model

A framework, based on contour diagrams from laboratory testing, has been de-
veloped at NGI for the design of offshore structures. The framework has been
verified by several model tests and used in the design of a large number of off-
shore structures with satisfactory results. UDCAM is the FE version of this frame-
work and is implemented as a user-defined soil model in Plaxis (Jostad et al.,
2014).

Contour diagrams and the load history are input to the model. The load his-
tory is idealized as a number of load parcels, in which average- and cyclic loads
are constant, as described in section 3.3. The contour diagrams are contained
inside tables (øa,øc y ,∞a,∞c y , N ) and interpolation methods are used for interme-
diate points.

UDCAM analyzes the soil behavior when subjected to load parcels. It accounts
for the soil degradation using the strain accumulation principle described in
Andersen (2015) and in section 4.5. From this principle the equivalent number
of cycles (Neq ) is calculated in each integration point.

Interpolation between the specific laboratory stress states in the contour dia-
grams is used to make a complete soil model. The contribution of triaxial be-
havior is indicated by the ratio between a vertical deviatoric strain and the devi-
atoric strain invariant:

X =
p

3ey

2
p

J2"
(5.5)

The shear stress for a general principal stress orientation is then found by an
elliptic interpolation between the triaxial- and DSS stress state:

ø= 1
2

q

(øT XC °øT X E )2X 2 +4ø2
DSS(1°X 2) (5.6)

The principal deviatoric stress can be calculated from the assumption of coaxi-
ality between strains and stresses.
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A cyclic DSS example taken from Jostad et al. (2014) is reproduced here to demon-
strate the principle of this model. The idealized load history and the calculation
result is summarised in table 5.2.

Load History & Calculation Results
Parcel 1 2 3 4 5
øc y /sC

u 0.458 0.498 0.531 0.571 0.598
¢N 15 8 4 2 1

Calculated Neq 15 15 13 10 8

Table 5.2: Load history and calculation results DSS example (from Jostad et al. (2014))

Contour diagrams defining the material behavior are presented in figure 5.7 and
the resulting cyclic shear stress-strain relationship is illustrated in figure 5.8. The
calculation history of Neq is illustrated to the left in figure 5.9.

In order to use the material model, the user needs extensive understanding of
how the model works and access to a large amount of laboratory test results.
This is the major limitation of this model. It has been suggested to replace the
laboratory test results with a mathematical description of the contour diagrams.
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Figure 5.7: Soil behavior in DSS stress state (from Jostad et al. (2014))
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Figure 5.8: Stress-strain response (from Jostad et al. (2014))

Figure 5.9: Calculation of Neq (from Jostad et al. (2014))
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5.5 High-Cycle Accumulation Model

This section gives a brief introduction to the High-Cycle Accumulation Model
as presented in Niemunis et al. (2005). The model is based on an explicit for-
mulation where time is replaced by the number of cycles, N . This formulation
gives a framework which requires less computational time and gives a lower ac-
cumulation of numerical errors compared to implicit formulations. The model
is suitable for sand and other granular soils.

Even though this model is considered explicit, it makes use of an implicit calcu-
lation for a first set of cycles. The strain amplitude is found in these steps and
used for the explicit calculations. Since the strain amplitude can change during
cycling, there is occasionally done a control cycle to update the strain ampli-
tude. In addition, the control cycle is used to check whether the stress state
violates the yield criteria.

When the strain amplitude is known, the explicit calculation can be done in or-
der to describe the accumulation of the average strain with number of cycles.
Niemunis et al. (2005) proposed the following equation for the rate of strain ac-
cumulation:

D acc = m fampl ḟN fp fY fe fº (5.7)

The parameters fampl , ḟN , fp , fY , fe and fº are functions relating different vari-
ables to the rate of strain accumulation, D acc . The function fampl gives the effect
of the strain amplitude, "ampl and fN relates to the number of cycles, N. fe is re-
latet to void ratio, fp to the average mean pressure, fY to the average stress ratio
and fº to the change of the polarization of the strain loop. All these functions
are proposed in Niemunis et al. (2005).

m is a unit tensor which points in the direction of the accumulation in strain
space. The unit tensor can according to Niemunis et al. (2005) be well approxi-
mated by the associated flow rule:

m ª °1
3

(p ° q2

M 2p
)1+ 3

M 2
T § (5.8)



CHAPTER 5. EXISTING CYCLIC SOIL MODELS 69

where M is the inclination of the critical state line in the p-q plot, T § is the stress
state and 1 is a 6£6 identity matrix.

The rate of strain accumulation, D acc , will produce the path of the accumulated
average strain, "av , as shown in figure 5.10.

Figure 5.10: The basic idea of explicit calculation of the cumulative deformation (from Niemunis
et al. (2005))

The rate of Cauchy stress (Ṫ ) can be found from the following equation:

Ṫ = E : (D °D acc °D pl ) (5.9)

where the plastic strain rate, D pl , describes the plastic strain related to mono-
tonic loading. The monotonic loading uses the Matsuoka and Nakai yield con-
dition (Niemunis et al., 2005).
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5.6 Stiffness Degradation Model

The Stiffness Degradation Model was proposed by Achmus et al. (2009) to de-
scribe the behavior of sand subjected to cyclic loading with purpose of analyz-
ing pile–soil systems. The underlying concept is that the stiffness of the finite
elements depends on the number of cycles, the stress state and the material pa-
rameters determined in cyclic triaxial tests.

Figure 5.11 shows typical results from stress-controlled cyclic triaxial tests un-
der drained conditions. Results indicate an increase in plastic axial strain ("a

p)
with the number of load cycles (N ). The quantity of the plastic strain increase is
mainly dependent on the initial stress state (confining stress) and on the mag-
nitude of the cyclic load portion, similar to Andersen (2015).

Figure 5.11: Cyclic behavior of sand in triaxial tests (from Achmus et al. (2009))
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The increase in strain is interpreted as a decrease of the secant stiffness modulus
(EsN ). If the elastic strain is negligible, the degradation of the secant stiffness
modulus can be formulated in the following way:

EsN

Es1

ª=
"a

p,N=1

"a
p,N

(5.10)

Here, "a
p,N=1 and "a

p,N are the plastic strains in the first and the N th cycle respec-
tively. Es1 is the secant stiffness modulus for N equals 1.

Huurman (1996) proposed a semi-empirical equation describing the develop-
ment of plastic strains in a cyclic triaxial test. It is used in the stiffness degrada-
tion model and reads as follow:

EsN

Es1
=
"a

p,N=1

"a
p,N

= N°b1(X )b2 (5.11)

where N is the number of cycles, X is the cyclic stress ratio, and bi are regression
parameters determined from triaxial tests. The cyclic stress ratio is defined as:

X =
æ1,c yc

æ1,s f
(5.12)

where æ1,s f is the major principal stress at failure in a monotonic test and æ1,c yc

is the major principal stress for the actual cyclic stress state. In other words, the
stress ratio depends on the initial stress state (confining stress) and the cyclic
loading.

Equation 5.11 and 5.12 were derived from triaxial tests with isotropic confining
pressure and constant radial stress during the application of cyclic loading. In
a pile–soil system, the initial stress condition is anisotropic. Additionally, the
minor principal stress and the direction of the principal stresses change with the
application of loads. Hence equation 5.11 and 5.12 are not valid. To overcome
this problem, a characteristic cyclic stress ratio XC is suggested by Achmus et al.
(2009).
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XC = X (1) °X (0)

1°X (0)
(5.13)

where X (1) and X (0) represent the cyclic stress ratio in the loading and unloading
phase respectively. XC varies from 0 to 1 due to the denominator. The accumu-
lation of plastic strain and the degradation of stiffness can be obtained from
equation 5.11 by replacing X by XC .



Chapter 6

Undrained Cyclic Clay Model

The idea of splitting external and internal forces into cyclic and average parts
has been explored at NGI (Andersen, 2015). This has resulted in the finite ele-
ment material model UDCAM presented in (Gustav Grimstad, 2012) and in sec-
tion 5.4.

The material model presented in this paper is referred to as Undrained Cyclic
Clay Model (UCCM). To represent the behavior of undrained clay, a coupling
of an average model (UCCM-Average) and a cyclic model (UCCM-Cyclic) has
been chosen, inspired by UDCAM. The reaction to the cyclic part of the load-
ing is determined by UCCM-Cyclic, while UCCM-Average finds equilibrium be-
tween average external- and internal forces. An explicit formulation is chosen
for UCCM-Cyclic where the cyclic loading is imposed as load parcels, as defined
in section 3.3. This chapter presents the details of UCCM-Average and UCCM-
Cyclic, and some important aspects of UCCM.

6.1 UCCM-Average

Both drained and undrained soil behavior can be described, based on effec-
tive stresses, however the undrained behavior may also be described in terms
of total stresses. UCCM-Average is described in terms of total stresses and ef-
fective stresses are therefore unknown. One of the features is direct input of the
undrained shear strength (Su), which is readily obtained from laboratory tests.
The first section presents UCCM-Average in a general 3D stress state. A presen-
tation of the response in triaxial stress state and plane strain is also included.

73
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UCCM-Average in 3D
A yield criterion, which is modified from the von-Mises yield criterion presented
in section 2.5.1, is used in UCCM-Average. The criterion is isotropic and based
on a single deviatoric strength, 2Su.

f = 0.5q °∑Su±= 0 (6.1)

Su is the average of the undrained shear strength in triaxial compression- and
extension testing, and herein referred to as the undrained shear strength.

Su =
SC

u +SE
u

2
(6.2)

The deviatoric stress invariant, q , is defined in section 2.1 and± is a shear strength
degradation parameter defined in section 6.2 due to cyclic loading. ∑ is an
isotropic hardening parameter developed from Vermeer and De Borst (1984):

∑=

8

>

<

>

:

2

q

∞
p
a /∞p

a, f

1+∞p
a /∞p

a, f
, ∞

p
a < ∞p

a, f

1, ∞
p
a ∏ ∞p

a, f

(6.3)

Here, ∞p
a /∞p

a, f is a deviatoric, plastic strain invariant indicating the degree of mo-

bilization of the ultimate shear strength, Su. If ∞p
a /∞p

a, f is equal to one, the shear
strength is fully mobilized and further deviatoric loading leads to large plastic
shear strains. ∞p

a and ∞p
a, f are defined in equations 6.4 and 6.5 respectively.

∞
p
a = 3

2
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p
q (6.4)
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2
(6.5)
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∞
p
f C and ∞

p
f E are obtained from triaxial compression- and extension tests as the

plastic shear strain when the maximum shear stress, SC
u and SE

u , is reached. An
associated flow rule is chosen such that the principle of maximum plastic dissi-
pation is fulfilled and thereby the increment in plastic strain is assured normal
to the failure surface.

d"p = d∏
@F
@æ

(6.6)

The internal response of the soil volume when subjected to cyclic forces is de-
pendent on the average shear stress level of the cyclic loading (Andersen, 2015).
A deviatoric shear stress from UCCM-Average is therefore input to UCCM-Cyclic,
as illustrated in section 6.3, and defined as:

øa = 0.5q (6.7)

UCCM-Average in Triaxial Test with ±= 1

In a triaxial test, no shear stresses are imposed directly (ø12 = ø23 = ø31 = 0), but
invoked through deviatoric compression or extension i.e. æ11 6=æ33. If the shear
strength degradation parameter is equal to one, ± = 1, equation 6.1 reduces to
the following expression for the triaxial stress state:

f =
Ø

Ø

Ø

æ11 °æ33

2

Ø

Ø

Ø

°∑Su = 0 (6.8)

The expected triaxial test results for normally consolidated Drammen Clay, and
from simulations with UCCM-Average are illustrated in figure 6.1. The shear
stress is normalized by the shear strength in compression SC

u .
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Figure 6.1: Expected hardening response for NC Drammen Clay and simulation results for
UCCM-Average

Figure 6.1 illustrates how UCCM-Average tends to underestimate the shear stre-
ngth in compression, and overestimate the capacity in extension.

UCCM-Average in Plane Strain with ±= 1

The plane strain yield surface of UCCM-Average can be illustrated in a deviatoric
plot as in figure 6.2 with ± = 1. The yield surface can either be an ellipse or a
circle depending on the second principle stress (æ2 = æ22). A plane strain state
is subject to the following constraint:

d"22 = d"e
22 +d"p

22 = 0 (6.9)
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If the undrained shear strength is fully mobilized, no further elastic strains can
develop. A von Mises associated flow (section 2.5.2) and the plane strain con-
straint then leads to:

d"e
22 =°d"p

22 = 0 = ¢∏

2æeq

°

2æ22 °æ11 °æ33
¢

)æ22 =
æ11 +æ33

2
(6.10)

The plane strain yield criterion can therefore be written in the following way,
when the shear strength is fully mobilized (∑= 1):

f =
r

≥æ11 °æ33

2

¥2
+ø2

13 =
2S2D

up
3

= S§
u (6.11)

The resulting yield surface is illustrated in a deviatoric stress space in figure 6.2.

Figure 6.2: Yield surface of Average Model in plain strain
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The failure shear strain (∞p
f ) is taken as the values obtained in triaxial testing

according to equation 6.5. The deviatoric strength in 2D (S2D
u ) is defined as:

S2D
u =

p
3

2
Su =

p
3
°

SC
u +SE

u

¢

4
(6.12)

Stress Integration Procedure
UCCM-Average is implemented as a user defined soil model in Plaxis (UDSM).
An implicit stress integration scheme, explained in section 2.6, is used and pre-
sented in the following. The principle of the integration scheme is illustrated in
figure 6.3.

Figure 6.3: Principle of integration scheme
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A residual vector for the current step n+1, r n+1, can be developed from the flow
rule and the consistency condition as follows:

r n+1 =
∑

r 1,n+1

r2,n+1

∏

=
"

æn+1 °æn +D
£©@ f

@æ

™

n+1(∏n+1 °∏n)° ("n+1 °"n)
§

fn+1

#

= 0 (6.13)

Here D is the stress independent elastic stiffness matrix and æn+1 is the un-
known stress at this step. fn+1 is the value of the yield function at the current
step and (∏n+1 °∏n) is the unknown finite increment of the plastic multiplier. A
vector with the unknown variables can be established as:

xn+1 =
∑

æn+1
∏n+1

∏

(6.14)

The elastoplastic finite step is solved with a Newton-Raphson iteration method
when r n+1 º 0. This is achieved by setting a tolerance for the norm of r n+1 as de-
scribed in section 2.6. The vector of unknowns, xn+1, which contains the current
stress state and the updated plastic multiplier can be determined from equation
6.15.

r i+1
n+1 º r i

n+1 +
@r i

n+1

@xi
n+1

¢xi
n+1 º 0

) xi+1
n+1 = xi

n+1 °
n

J i

n+1

o°1
r i

n+1 = xn+1 (6.15)

The derivatives are as follows:

@r 1

@æn+1

= 1+¢∏D
Ω

@2 f
@æ2

æ

n+1
(6.16)

@r 1
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@r2

@æn+1
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Ω

@ f
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n+1
(6.18)

@r2

@∏n+1
= @ f
@∑

d∑

d∞p
a

d∞p
a

d∏
(6.19)

where 1 is a 6£6 identity matrix, and the full expressions for the derivatives are
presented in appendix B.

6.2 UCCM-Cyclic

UCCM-Average obtains equilibrium between average external and internal forces
in a FE calculation. In order to be in equilibrium with the cyclic external forces,
a nonlinear elastic cyclic model is developed. The assumption of no volumet-
ric changes during the cyclic event and a description based on total stresses is
chosen. Isotropic contour diagrams define the material behavior in which the
cyclic shear strain accumulation principle describes the degradation of cyclic
shear stiffness and average shear strength (Su) (see Andersen (2015) and sec-
tion 4.5). This section presents UCCM-Cyclic, starting with the mathematical
description of the isotropic contour diagrams. The degradation of cyclic shear
stiffness and undrained shear strength in UCCM-Average (equation 6.1) is also
described.

Mathematical Description of Contour Diagrams
As stated in section 4.4, a simple equation for the degradation of secant shear
modulus is given by Idriss et al. (1978):

GN =G1N°t (6.20)

G1 is the shear modulus in the first stress-strain cycle, N is the number of har-
monic loading cycles and t is a degradation parameter. The equation can be
further developed, assuming the soil has an undrained residual strength- (Su,1)
and stiffness (G1). This leads to equation 6.21 and 6.22.
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GN = (G1 °G1)N°t +G1 (6.21)

øc y,N

∞c y,N
=

≥øc y,1

∞c y,1
°
øc y,1

∞c y,1

¥

N°t +
øc y,1

∞c y,1
(6.22)

where øc y,# represents the cyclic shear stress during a specific number of cycles
(#). In a N -øc y contour diagram, a constant ∞c y defines a continuous line which
indicates the degradation of the material (see figure 4.11 and 4.21).

∞c y,N = ∞c y,1 = ∞c y,1 = ∞c y (6.23)

Normalizing with respect to the undrained shear strength, Su, equation 6.22 can
be expressed as:

øc y,N

Su
=
øc y,1

Su
N°t +

øc y,1

Su
(1°N°t ) (6.24)

Equation 6.24 describes the isotropic contour diagram used to calculate the in-
ternal response to external cyclic forces in UCCM-Cyclic. øc y,# can be estimated
from laboratory tests using a maximum cyclic shear stress, ømax

c y,# , and a specific
cyclic shear strain ∞c y,# as follows:

øc y,# = ømax
c y,#

s

∞c y

∞c y,# +∞c y
(6.25)

∞c y is a cyclic deviatoric strain invariant defined as:

∞c y =
p

3J2," (6.26)

=
r
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[("11 °"22)2 + ("22 °"33)2 + ("33 °"11)2]+ 3
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[(∞12)2 + (∞23)2 + (∞31)2]
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Figure 6.4 illustrates results developed from contour diagrams in Gustav Grim-
stad (2012), for øa = 0. The estimated values for equation 6.25 is included in
the figure. The contour diagrams represent results from undrained cyclic triax-
ial tests on NC Drammen Clay. According to figure 6.4, an element subjected
to N = 103 cycles with a cyclic shear stress of øc y = 0.23Su has a cyclic shear
strain of ∞c y = 1%. NC Drammen Clay parameters, for the first stress-strain cy-
cle, can be estimated to: ømax

c y,1 = 0.67Su and ∞c y,1 = 0.9%. Parameters for a high
number of cycles can be delimited to; ømax

c y,1 < 0.26Su and ∞c y,1 < 0.15%. ømax
c y,1

is further referred to as the cyclic fatigue shear strength and the authors believe
the remolded undrained shear strength provides a conservative value for this
parameter, ømax

c y,1 ∏ Su,r em.

Figure 6.4: Estimation of ømax
c y,# and ∞c y,# for NC Drammen Clay
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The cyclic response of clay is expected to depend on the average shear stress
level (Andersen, 2015). The results presented in figure 6.4 are only valid for øa =
0. A simplification of this dependency can be described by a constant, Ø#, with
the same dependency to the cyclic shear strain as the cyclic shear stress:

Ø# =
dømax

c y,#

døa
(6.27)

This leads to the final expression for the maximum cyclic shear stress:

ømax
c y,# = ømax

c y,#

Ø

Ø

Ø

øa=0
°Ø#øa (6.28)

øa represents the average shear stress level from UCCM-Average, presented in
equation 6.7.

Degradation of Cyclic Shear Stiffness
The degradation of secant shear stiffness is regarded as equivalent to the de-
crease in cyclic shear strain for a constant cyclic shear stress. The mathematical
expressions used to calculate the cyclic shear strain is closely connected to the
concept of the StatusQuo-line presented in section 4.5. The equivalent number
of load cycles at any stress state (∞c y , øc y ) is given as:

Neq =
µ

øc y,1 °øc y,1

øc y °øc y,1

∂1/t

(6.29)

where øc y,# can be described by equation 6.25. The condition ∞c y = ∞i ntm
c y,eq defines

the StatusQuo-line introduced in section 4.5 and ∞c y = ∞n+1
c y,eq defines the current

equivalent number of cycles, N n+1
eq . The index n refers to the parcel number

defined in section 3.3. In a finite element analysis, ∞n+1
c y,eq is input to the mate-

rial model. Adding the intermediate equivalent number of cycles to the current
change in number of cycles, yields the current equivalent number of cycles:

N n+1
eq = N i ntm

eq +¢N n+1
eq (6.30)
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While both N n+1
eq and N i ntm

eq depend on the current cyclic shear stress, ¢N n+1
eq is

input to the material model. ∞i ntm
c y,eq must be calculated according to the mathe-

matical expressions for the contour diagrams and the cyclic shear strain accu-
mulation principle:

∞i ntm
c y,eq = ∞n

c y,eq +¢∞i nst
c y

¢∞i nst
c y = ∞c y,√°∞c y,¡

∞c y,¡ is known from the previous cyclic loading historie, while the expression for
∞c y,√ is developed from equation 6.25 as:

∞c y,√ =
∞c y,1

µ

ømax
c y,1

øn+1
c y

∂2

°1

(6.31)

where øn+1
c y is the current cyclic shear stress defined by the contour diagrams.

Finally, equation 6.30 is solved using an implicit Newton-Raphson iteration pro-
cedure. The residual function can be defined as:

r = N n+1
eq °N i ntm

eq °¢N n+1
eq (6.32)

The nonlinear elastic finite step is solved when r º 0. This is achieved by setting
a tolerance for the norm of r as described in section 2.6

ri+1 = ri +
n dr

døn+1
c y

o

i
¢øn+1

c y º 0 (6.33)

where the index i is the iteration number. The derivatives are presented in ap-
pendix B and the current cyclic shear stress, øn+1

c y , can then be solved for using
the following equation:

øn+1
c y = øn+1

c y,i+1 = øn+1
c y,i °

n dr
døn+1

c y

o°1

i
ri (6.34)
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The secant, cyclic shear stiffness, Gn+1
c y is then defined as:

Gn+1
c y =

øn+1
c y

∞n+1
c y,eq

(6.35)

Degradation of Maximum Average Shear Stress
The maximum average shear stress the material can sustain, when subjected to
N number of loading cycles, is called ømax

a,N . This strength is assumed to decrease
with increasing cyclic shear stress (øc y ) and/or equivalent number of loading cy-
cles (Neq ). The strength degradation parameter, ±, is input to UCCM-Average.
UCCM-Cyclic uses the following expression to determine the degradation pa-
rameter:

±=
ømax

a,N

Su
= 1°

dømax
a,N

døc y,N

¢øc y,N

Su
= 1°ÆN t

eq

øc y,N

Su
(6.36)

Æ is a constant value defining the slope in the contour diagram for N = 1. Neq

is the equivalent number of cycles and t is the degradation parameter. A typical
Æ-value for NC Drammen Clay in a DSS stress state is Æ= 0.375.

The set of equations presented in this chapter define isotropic contour diagrams
similar to figure 6.5. The details of the contour diagrams depend on the param-
eters ømax

c y,#

Ø

Ø

øa=0, Ø#,Æ, ∞c y,# and t . The definition ofØ1 andÆ can be seen in figure
6.5 and the isotropy is evident.
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Figure 6.5: Typical contour diagram produced by UCCM

6.3 Aspects of UCCM

In order to use the model correctly, some important aspects must be consid-
ered. This section presents aspects of UCCM, including how calculations should
be executed, how loads should be applied and the limitations of the material
model.

Global Iteration
Plaxis works well for different global iteration schemes using the arc-length met-
hod as default. Most material models are implemented with the initial stiff-
ness method (Brinkgreve et al., 2016). UCCM-Average uses a modified Newton-
Raphson procedure to find global equilibrium between average internal and ex-
ternal forces. UCCM-Cyclic uses the initial stiffness method.



CHAPTER 6. UNDRAINED CYCLIC CLAY MODEL 87

Calculation

Total Stresses
UCCM is defined in terms of total stress and cannot give information about ef-
fective stresses. For simplicity the model is implemented into drained settings
in Plaxis. A calculation must therefore be executed as drained and the resulting
effective stresses are, in reality, the undrained stresses. If an undrained calcu-
lation is executed, Plaxis will add a large bulk stiffness to the global stiffness
matrix, and the calculation will be more time consuming.

Initial Phases
Due to the semi-explicit formulation of UCCCM, a Plaxis calculation must fol-
low a certain setup. Two initial phases are needed, one for UCCM-Cyclic, and
one for UCCM-Average. The weight of the soil is regarded as an average action
and is considered in the average calculation only. An average initial phase is
therefore needed to initialize the weight of the soil. In the cyclic initial phase,
the soil weight is set equal to zero. The average initial phase must set the ini-
tial effective stress state in the material. The isotropic nature of UCCM requires
a coefficient of earth pressure at rest equal to one (K0 = 1) imposing no initial
shear stresses in the soil volume.

Application of Loads
UCCM-Average has a linear elastic behavior in unloading. It is therefore recom-
mended to impose average forces in ascending order. For most purposes, the
average load component can be assumed constant throughout the calculation
(Gustav Grimstad, 2012).

In UCCM-Cyclic, the cyclic loads are imposed as a number of loading cycles
with a specific cyclic load magnitude, as opposed to specific displacement mag-
nitude. This is referred to as a cyclic load history or a cyclic load parcel. A total
cyclic load history normally contains several cyclic load parcels as seen in sec-
tion 3.3. It is further assumed that the frequency of the cyclic loads are within the
"cyclic" range (º 0.1Hz) i.e. mass and damping considerations can be omitted.
In UCCM-Cyclic, there are in principal three different cyclic load case scenarios:
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Case:
1. Current cyclic load is higher than the previous, F n+1

c y > F n
c y

2. Current cyclic load is lower than the previous, F n+1
c y < F n

c y

3. Current cyclic load is much lower than the previous, F n+1
c y << F n

c y

It is generally recommended to apply cyclic loads in ascending order, i.e. load
case 1. In this way the cyclic shear strain accumulation principle is used through-
out the full calculation. This is regarded as the most severe total cyclic load his-
tory, giving a conservative design. For unloading, the cyclic shear strain accu-
mulation principle is used to some degree, depending on the magnitude of the
cyclic loading. If the magnitude of the cyclic loading is below a certain limit,
the degradation will be negligible and the material will be linear elastic. This
limit separates load case scenario 2 and 3, where 3 is linear elastic with no cyclic
degradation.

Interaction Between UCCM-Average & UCCM-Cyclic
The two material models are mutually dependent and their interaction imposes
certain restrictions on the setup of the calculation phases. As stated in section
6.2, ± is input to UCCM-Average and øa is input to UCCM-Cyclic. An itera-
tion between average- and cyclic phases can be executed until two consecutive
average- and cyclic phases obtain the same results. For practical purposes, it is
chosen to only do two iterations on phase level and according to Gustav Grim-
stad (2012) this should be sufficient. Table 6.1 presents the information flow
between UCCM-Average and UCCM-Cyclic for every integration point.

Parcel No. Phase No. Average/Cyclic Applied Load Input Output

1 1 UCCM-Average Fa,1 ±0 = 1 øa,1

1 2 UCCM-Cyclic Fc y,1 øa,1 ±1

1 3 UCCM-Average Fa,1 ±1 øa,2

1 4 UCCM-Cyclic Fc y,1 øa,2 ±2

2 5 UCCM-Average Fa,2 ±2 øa,3

2 6 UCCM-Cyclic Fc y,2 øa,3 ±3

2 7 UCCM-Average Fa,2 ±3 øa,4

2 8 UCCM-Cyclic Fc y,2 øa,4 ±4

Table 6.1: Interaction between UCCM-Average and UCCM-Cyclic
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Applicability
UCCM is an isotropic model based on the mean value of active and passive
parameters. Hence, it is first and foremost applicable for scenarios where ac-
tive and passive stress states contribute equally to the equilibrium. It is there-
fore believed that symmetric boundary value problems can be solved satisfacto-
rily. Bearing capacity and monopiles are examples of such symmetric problems,
while special considerations are needed before modelling excavations and sup-
porting sheet piles etc.

The concept of the NGI-ADP model was introduced in section 5.3. The model
uses the undrained shear strength approach, similar to the UCCM-Average, and
is assumed to represent the behavior of undrained clays in a precise way. Any
deviation between the two models can be regarded as a limitation for the UCCM-
Average model.

In a general 3D stress state, UCCM-Average overestimates the DSS shear strength
compared to the default value used in NGI-ADP by 15%. In a plane strain stress
state the DSS shear strength will coincide between NGI-ADP and UCCM-average
as long as S2D

u described in section 6.1 is used.

The isotropic contour diagrams define the material behavior when subjected to
stress controlled loading cycles. Strain controlled loading cycles, above a certain
magnitude, leads to faster degradation of shear strength and stiffness. The cyclic
fatigue shear strength, ømax

c y,1, also tends to approach a lower value for strain con-
trolled tests, as shown in figure 6.6. The current formulation of the UCCM-Cyclic
model is therefore not applicable for strain controlled loading scenarios. Pile
foundations is one type of design which often tends to show strain controlled
behavior.

Strain controlled cycles can be regarded as stress controlled cycles where the
cyclic shear stress changes for each stress-strain cycle (see figure 4.12). A solu-
tion to the limitation above, is therefore to utilize the cyclic shear strain accumu-
lation principle to create the strain controlled behavior from stress controlled
contour diagrams (Andersen, 2015). This feature is so far not incorporated in
UCCM, but could readily be done.
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Figure 6.6: Results from strain-controlled cyclic tests plotted in diagram with strain contours
from stress-controlled cyclic tests (from Andersen (2015))

Accumulation of Plastic Strains
UCCM consists of an elastic-plastic average model (UCCM-Average) and a non-
linear elastic cyclic model (UCCM-Cyclic). Undrained cyclic loading above a
specific magnitude is expected to lead to an accumulation of plastic shear strains.
In UCCM, no explicit formulation of the plastic strain accumulation is included.
The increase in plastic strains is implemented through the factor ±. A decrease
in ± is equivalent to a decrease in maximum average shear stress. To still obtain
equilibrium in the average phase, an increase in plastic strains must take place.

± is therefore an important parameter for the estimation of accumulated plas-
tic shear strains. The current formulation of the contour diagrams in UCCM-
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Cyclic is expected to be able to represent the plastic strains developed in a DSS
stress state (see figure 6.5). From laboratory results, the accumulation of plastic
strains is faster in extension compared to compression. The model only seek to
estimate the average plastic shear strains in these stress states (see figure 4.8).





Chapter 7

Simulation Results and Discussion

This chapter verifies and demonstrates the applicability of the Undrained Cyclic
Clay Model (UCCM) in Plaxis. The first sections are individual verifications of
the UCCM-Average and UCCM-Cyclic. This is demonstrated through the soil
test facility in Plaxis. Results from a bearing capacity problem using UCCM-
Average is included in addition to a cyclic DSS simulated with UCCM-Cyclic.
Finally, the results from an analysis of a gravity base foundation with UCCM is
presented.

7.1 Soil Tests

Plaxis provides the possibility of performing soil tests with all material models,
either they are default or user defined. This feature is a convenient tool to cal-
ibrate a Plaxis material model to results from laboratory tests, field tests etc. It
is also convenient to confirm that a UDSM works as expected. In this section,
some results from Plaxis Soil Test are presented.

UCCM-Average
Soil test results for UCCM-Average are illustrated in figure 7.1 and 7.2. Input pa-
rameters and an overview of the tests are presented in table 7.1. Figure 7.1 illus-
trates the stress-strain response in a triaxial stress state and figure 7.2 presents
the behavior in a DSS stress state. Results from soil tests using the Plaxis default
material model, NGI-ADP, are included in the figures for direct comparison.
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Input Parameters:

SC
u = 10 kPa, SE

u = 4 kPa, i.e. SDSS
u = 7 kPa

∞C
f = 0.015, ∞E

f = 0.05, i.e. ∞DSS
f = 0.03

Su = 7 kPa, ∞p
a, f = 0.03

Type of Test Soil Model Curve

Triax. Compression UCCM-Average A
Triax. Compression NGI-ADP B

Triax. Extension NGI-ADP C
DSS UCCM-Average D
DSS NGI-ADP E

Table 7.1: Summary of soil tests UCCM-Average and NGI-ADP

Figure 7.1: Triaxial test results UCCM-Average and NGI-ADP
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In a triaxial stress state, UCCM-Average represents the mean response between
the compression- and extension behavior defined by the NGI-ADP model, as
seen in figure 7.1. The undrained shear strength of UCCM-Average is fully mo-
bilized at an intermediate shear strain, as expected.

Figure 7.2: Direct Simple Shear test results UCCM-Average and NGI-ADP

Figure 7.2 illustrates the tendency of UCCM-Average to overestimate the DSS
undrained shear strength in the general 3D formulation.

UCCM-Cyclic

Different soil tests have been simulated with UCCM-Cyclic. An overview of the
soil tests are summarized in table 7.2. Figure 7.3 and 7.4 display the cyclic shear
strain when subjected to a number of cycles

°

¢Neq
¢

with specific cyclic shear
stress (øc y ).
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Input Parameters:

Su = 10 kPa,t = 0.29
ømax

c y,1 = 7 kPa, ømax
c y,1 = 2 kPa

∞c y,1 = 0.9%, ∞c y,1 = 0.1%
Ø1 = 0.4, Ø1 = 0.2

Type of Test ¢Neq øa [kPa] Curve

Triax 1 0 A
Triax 1 3 B
Triax 106 0 C
Triax 106 3 D
DSS 1 0 E
DSS 1 3 F
DSS 106 0 G
DSS 106 3 H

Table 7.2: Overview of soil tests with UCCM-Cyclic

Figure 7.3: Cyclic triaxial test results with UCCM-Cyclic
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The expected cyclic response according to figure 6.4 is illustrated in figure 7.3.
The maximum cyclic shear stress is lower for a nonzero average shear stress, as
the intention of the model formulation is to represent the mean response be-
tween triaxial compression- and extension stress states. The difference in maxi-
mum cyclic shear stress with respect to the average shear stress is controlled by
the input parameters, Ø#.

Figure 7.4: Cyclic Direct Simple Shear test results with UCCM-Cyclic

The maximum cyclic shear stress in a DSS type is more than the specified value.
This is due to the von-Mises type formulation of the cyclic shear strain invariant.
One can expect a DSS shear strength of 2p

3
times the average shear strength in a

triaxial stress state.
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7.2 Bearing Capacity UCCM-Average

A bearing capacity model made in Plaxis 2D is used to check the behavior of
UCCM-Average. The same model has been calculated with the use of NGI-ADP
in order to verify the results.

UCCM-Average Input Parameters:

Su = 8,66 kPa
∞

p
a, f = 0.0203

G = 1500 kPa

NGI-ADP Input Parameters:

SC
u = 15 kPa, SE

u = 5 kPa, SDSS
u = 10 kPa

∞ f C = 2.2%, ∞ f E = 3.2%, ∞ f DSS = 2.47%
G = 1500 kPa

Table 7.3: Input parameters for UCCM-Average and NGI-ADP

The parameters presented in table 7.3 are chosen to give similar bearing capac-
ity for the two models. The calculations illustrate a similar failure surface for
both models and the result from UCCM-Average is illustrated in figure 7.5.

Figure 7.5: Shear strain at failure with UCCM-Average
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A visualization of the shear stress, on the other hand, reveals two different shapes
of stress distribution through the ground, as shown in figure 7.6 and 7.7. This
can be due to the difference in shear strain at failure for Active, Passive and
DSS stress states for NGI-ADP. This leads to a faster mobilization of the active
strength compared to passive and DSS. Because of the strain compatibility, most
of the stress is distributed to active soil elements right under the foundation.
For UCCM-Average the shear strain until full mobilization is equal for all stress
states, i.e. isotropic mobilization. The stress will therefore be equally distributed
both vertically and horizontally.

Figure 7.6: Shear stress distribution at failure UCCM-Average.
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Figure 7.7: Shear stress distribution at failure NGI-ADP.

A load-strain curve for a node in a passive stress state at the failure surface is
shown in figure 7.8. By using S2D

u from section 6.1, a satisfying bearing capacity
for UCCM-Average compared to NGI-ADP is achieved.

Figure 7.8 shows a difference in development of strains for the two models. This
is likely due to the mobilization of the active shear strength at low shear strains.
The strain is only expected to show the same behavior for a DSS stress state due
to the difference in mobilization between the models.
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Figure 7.8: Load versus shear strain at failure surface

The results from the bearing capacity test seem to give satisfying behavior for
UCCM-Average. The simulation fails at a loading equal to 51,55 kPa which is
close to the theoretical value:

æv = 5.14Sav g
u = 5.14S2D

u
2
p

3
= 51.4kPa (7.1)

7.3 Direct Simple Shear Test UCCM

A DSS test with multiple calculation phases was constructed in Plaxis in order to
check the behavior of UCCM compared to the soil model UDCAM, introduced
in section 5.4. The geometry, input values and simulation results for UDCAM
are found in Gustav Grimstad (2012). Input parameters and simulation results
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for UCCM, with the same geometry and cyclic load history, are presented in
table 7.4. The input parameters are deduced from DSS contour diagrams for
NC Drammen Clay presented in Gustav Grimstad (2012).

UCCM-Average Input Parameters:

Su = 6, kPa
∞

p
a, f = 0.04

G = 1500 kPa

UCCM-Cyclic Input Parameters:

SC
u = 10 kPa SDSS

u = 7 kPa Su = 6 kPa, t = 0.29
ømax

c y,1 = 7.9 kPa, ømax
c y,1 = 2.9 kPa

∞c y,1 = 0.5%, ∞c y,1 = 0.08%
Ø1 = 0.15, Ø1 = 0

Table 7.4: Input parameters used in the DSS tests

Cyclic Coupling
The first DSS test was done with no average shear stress, and essentially the test
is used to check the interaction between multiple cyclic phases. The load history
and resulting equivalent number of cycles is shown in table 7.5.

Parcel ¢Neq øc y [kPa] NUCC M
eq NU DC AM

eq

1 14 4.58 14 14
2 8 4.98 15 15
3 4 5.31 13 13
4 2 5.71 10 10
5 1 5.98 8 8

Table 7.5: Load history and simulation results from DSS test with UCCM and UDCAM

Results from the UCCM simulation show similar behavior as predicted by UD-
CAM. The final number of equivalent cycles, Neq , is the same as UDCAM, and
the final shear strain corresponds well (see figure 7.9). The stress-strain curve
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from the UCCM simulation, shows a softer behavior in the start of the calcula-
tion and a stiffer behavior towards the end. The difference in behavior may be
related to the formulation of UCCM.

The behavior of UDCAM depends on laboratory results organized in contour
diagrams and the interpolation function defining the behavior for intermediate
stress states. The contour diagrams are presented in Gustav Grimstad (2012)
and are defined for N = 1, N = 10, N = 100 and N = 1000 number of cycles. The
difference between the results for number of cycles greater than 10, may also be
related to the interpolation between the two relatively nonadjacent contour di-
agrams, N = 10 and N = 100. UCCM predicts a higher final strain compared to
the in-house NGI program Accumul which predicts a final strain of 2.3% (Gus-
tav Grimstad, 2012).

Figure 7.9: Stress-strain response for cyclic DSS simulation with UCCM

Average-Cyclic Coupling
A DSS test including nonzero average load was simulated with UCCM. The load-
ing history and resulting Neq is presented in table 7.6. The results achieved will
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give some indication of how well the interaction between UCCM-Average and
UCCM-Cyclic is working.

Input Parameters:

SC
u = 10 kPa SDSS

u = 7 kPa Su = 6 kPa, t = 0.29
ømax

c y,1 = 7.9 kPa, ømax
c y,1 = 2.9 kPa

∞c y,1 = 0.5%, ∞c y,1 = 0.08%
Ø1 = 0.15, Ø1 = 0

Parcel ¢Neq øc y [kPa] øav [kPa] Neq

1 10 3 2 10
2 5 4 2 7
3 15 5 2 17

Table 7.6: Overview and simulation results from DSS test with UCCM with average loading

The results from the test i presented in figure 7.10. It can been seen that the
cyclic phase is degrading the average material strength leading to development
of strains. It can be concluded that the interaction seem to work satisfying.

Figure 7.10: Stress-strain response for cyclic DSS simulation with UCCM
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7.4 Gravity Base Foundation UCCM

A plane strain simulation of a gravity base foundation is used to further test the
interaction between UCCM-Average and UCCM-Cyclic. The FE geometry is in-
spired by GBS model tests performed at NGI (see figure 7.11). The GBS model
tests were subjected to cyclic and static actions representing an offshore envi-
ronment (Dyvik et al., 1989). A FE analysis for direct comparison with the GBS
model tests was reported by Gustav Grimstad (2012). The details of the plane
strain geometry, used in the UCCM simulation, are summarized in table 7.7.
The weight of the platform is modelled as a line load applied at the bottom of the
GBS foundation as seen in figure 7.11. The frame of weightless and stiff plates
are used to represent the gravity base structure.

Figure 7.11: Finite element model for GBS simulation
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Geometry:
Foundation width (D): 0.346 [m]
Foundation height (H): 0.095 [m]
Depth of model (h): 0.2 [m]
Width of model (b): 1.0 [m]
Load point to surface (a): 0.4 [m]
Weight, line load (w): 22.44 [kPa]

Table 7.7: Geometry and weight used in the simulation of the GBS model test with UCCM

Static Test
The first test of the GBS design is a static test where a horizontal static load is
applied at the top of the model (see figur 7.11). The input parameters of UCCM-
Average are summarized in table 7.8.

UCCM-Average Input Parameters:

Su = 6.67 kPa
∞

p
a, f = 0.020

G = 3000 kPa

Table 7.8: Input parameters of UCCM-Average in GBS simulation

The maximum static horizontal load in plane strain, using UCCM-Average for
the chosen geometry and boundary conditions, is 2 kN. For the model test pre-
sented in Dyvik et al. (1989), a maximum static horizontal load of 1 kN was
reached. It is not possible to compare results from the FE simulation with re-
sults from the model test directly. This is due to the difference in geometry and
boundary conditions. The load-displacement curve for the FE-simulation is il-
lustrated in figure 7.12. The failure surface illustrated in figure 7.13 is similar to
one of the potential failure mechanisms suggested by Andersen et al. (1989).
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Figure 7.12: Load-displacement curve from static simulation with UCCM-Average

Figure 7.13: Failure surface for the static GBS simulation
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Cyclic Test with Neq = 40
A cyclic test of the plane strain FE model presented in figure 7.11 is simulated for
an equivalent number of cycles, Neq = 40, and a cyclic load of 1.75 kN. Andersen
et al. (1989) found the critical state of the GBS model test presented in Dyvik
et al. (1989) to be Neq = 38 for a cyclic load of 0,72 kN. A finite element simulation
of this model test was reported by Gustav Grimstad (2012) with a similar result.

Figure 7.14: The alternative loading application for the cyclic phase

As for the static test, the UCCM results are not directly comparable for the strength
and stiffness, but the overall behavior should have the same trend. For the
UCCM test, the overturning moment was transferred to the soil as a horizon-
tal and vertical force as seen in figure 7.14. It was introduced to transfer the
stresses to the soil in a more correct manner for the cyclic phase, which lack
the weight of the platform to prevent the foundation from overturning. The in-
put parameters for UCCM-Cyclic are developed from DSS contour diagrams in
Gustav Grimstad (2012) presented in table 7.9.

UCCM-Cyclic Input Parameters:

Su = 6.67 kPa, t = 0.28
ømax

c y,1 = 10.48 kPa, ømax
c y,1 = 2.94 kPa,

∞c y,1 = 0.6%, ∞c y,1 = 0.1%
Ø1 = 0.05, Ø1 = 0.0, Æ= 0.2

Table 7.9: Input parameters to UCCM for cyclic GBS simulation
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Figure 7.15 illustrates the load-displacement curve in the cyclic phase for the
plane strain simulation. The load displacement curve depends on the boundary
values of the finite element model and how the loads are transferred to the soil
volume. The development of the curve seems reasonable with a form that is
similar to UDCAM. The GBS-soil system reaches a high horizontal load for a
relatively small horizontal displacement of the clay surface.

Figure 7.15: Cyclic load versus horizontal displacement of clay surface for cyclic GBS simulation
with Neq = 40

Two failure surfaces develop as seen in figure 7.16. The failure surface most
similar to the GBS static test, appear to be critical. Bot failure mechanisms seem
realistic and are suggested as potential failure surfaces by Andersen et al. (1989).

Figure 7.16: Failure surface for the cyclic GBS simulation with Neq = 40
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Cyclic Test
A cyclic GBS test is simulated using the cyclic load history presented in table
7.10. The test is simulated to investigate the behavior predicted by UCCM for a
full cyclic FE simulation.

Parcel ¢N Fc y,h [kN] Fav g ,v

1 15 0.582 w
2 10 1.163 w
3 7 1.236 w
4 4 1.302 w
5 3 1.394 w
6 20 1.457 w
7 10 1.600 w
8 7 1.719 w
9 4 1.844 w

10 1 1.959 w
11 20 1.743 w

Table 7.10: Cyclic- and average loads applied in GBS simulation, inspired by similar test from
Gustav Grimstad (2012).

The cyclic test was not fully calculated and stopped after six parcels. The reason
may be due to singularities for certain vulnerable soil clusters. Before the nu-
merical difficulties were encountered, the results looked promising, as shown
in figure 7.17. The numerical problems started in parcel 3, as seen in the figure.

Figure 7.17 shows that the response to the two first cyclic load histories are softer
than the response predicted by the cyclic test with Neq = 40. This is not expected
and illustrates the uncertainties in the results. For parcels from 3 to 6, figure 7.17
shows that Plaxis must redistribute displacements to obtain equilibrium. The
maximum redistribution takes place in the start of the ultimate phase, where
the calculation finally stops.
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Figure 7.17: Load-displacement curve for cyclic test and cyclic test with Neq = 40

A deviatoric shear strain plot from the phase, in which the calculation stops, is
presented in figure 7.18. The figure demonstrates what is believed to be the start
of a similar failure surface as seen in figure 7.16.

Figure 7.18: The total deviatoric shear strain accumulated up to the 6th cyclic parcel.
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7.5 General Discussion

The overall result from UCCM seems satisfying. Especially the results of the sim-
pler tests, where the model seems to be able to reproduce the desired behavior.
Both UCCM-average and UCCM-Cyclic have proven to get reasonable results
compared to already well established calculation methods. The interaction be-
tween UCCM-Cyclic and UCCM-Average also seem to be working well. The last
DSS test clearly shows a degradation of the average strength due to the cyclic
phase and thereby an accumulation of plastic shear strains.

The more complicated simulation of the GBS test, lacks verification as the ge-
ometry and boundary conditions play an important role in the general behav-
ior of the system. With the limited amount of testing, it is hard to say what
inflicts the problem for the full cyclic GBS calculation. The authors acknowl-
edge the difficulty of the calibration of input parameters, as well as the design
itself. There can also be problems connected to the interaction between UCCM-
Average and UCCM-Cyclic. The authors believe the most likely explanation is a
singularity problem related to stress distribution interaction between Plaxis and
UCCM. Further investigation is needed to clarify and fix this problem. The GBS
results are obtained using a high number of desired iterations. For further work
it is recommended to try a strict equilibrium criterion and a high number of
unloading steps in the simulation.

The UCCM formulation with two different phases for average and cyclic loading,
entails a problem connected to the load application for certain designs. The
GBS tests in this chapter are such a design. These type of problems need extra
assessment in order to represent a realistic foundation-soil interaction. This
requires a user which is familiar with the mechanical problem, and in general
this makes UCCM less user-friendly.



Chapter 8

Summary and Recommendations for
Further Work

8.1 Summary and Conclusions

A material model, based on total stresses, has been developed to represent the
undrained cyclic behavior of clay for FE analyses. The material behavior is split
into an average- and a cyclic part, formulated as two material models, UCCM-
Average and UCCM-Cyclic. A coupling between these models is implemented
such that the overall behavior of an element can be visualized as isotropic con-
tour diagrams. The isotropic contour diagrams represent an explicit formula-
tion for the undrained cyclic behavior, and the loads are therefore defined by a
number of cycles with specific cyclic load magnitude. The cyclic loads are as-
sumed to be defined in terms of forces and have a frequency within the "cyclic"
range (º 0.1 Hz), which implies that mass and damping considerations can be
omitted.

Degradation of the maximum average shear stress and the cyclic shear stiffness
is accounted for using the mathematical expressions for the isotropic contour
diagrams and the cyclic shear strain accumulation principle. The resulting ac-
cumulation of plastic shear strains is a byproduct of the degradation of maxi-
mum average shear stress.

The average model and the cyclic model are verified individually by Plaxis simu-
lations with satisfactory results. A bearing capacity problem was simulated with
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the average model and compared directly to a simulation with NGI-ADP. The
average model exhibited the expected behavior and the authors believe it can
be used in similar boundary value problems when used with care.

The cyclic model was used in a cyclic DSS simulation with no average shear
stresses. The simulation result was compared directly to a similar calculation
presented in Gustav Grimstad (2012) and can be concluded that the cyclic model
is able to represent the undrained cyclic behavior in DSS.

A DSS model included average stress was calculated with UCCM to check the
average-cyclic interaction. The results seem satisfying and it is therefore be-
lieved that the UCCM-Cyclic-Average coupling should be able to describe the
total response for a cyclic loaded design adequately.

An objective was to compare the presented model directly to results from the
GBS model test presented in Dyvik et al. (1989). Due to time limitations and the
complexity of the problem, only a hypothetical analysis is undertaken. Results
indicate further investigation is necessary to confirm the applicability of the soil
model on gravity base structures.

8.2 Recommendations for Further Work

A new set of parameters is introduced in UCCM to define the isotropic contour
diagrams. A further study of these parameters is recommended in order to use
the material model in design. The cyclic model is based on a mathematical ex-
pression defined by a maximum cyclic shear stress at a high strain level and a
curve fit parameter. It is recommended to replace the curve fit parameter by the
maximum shear modulus, which is readily obtained from field- or laboratory
tests. The fatigue shear stress should be investigated further and correlated to
existing soil parameters e.g. remolded shear strength, Sr , if possible.

To investigate the coupling between the average- and cyclic model further, mul-
tiple cyclic DSS and triaxial tests should be simulated and compared directly to
laboratory test result. A simplified expression for the degradation of the max-
imum average shear stress is used in the current formulation of the material
model. This expression should be further investigated to obtain reliable results.
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The average material model is formulated with a modified von-Mises yield sur-
face. It is believed that a modified Tresca criterion with direct input of clay pa-
rameters from laboratory results represents the average behavior more accu-
rately. It can therefore be recommended to implement this yield criterion as the
average criterion. An extension into an anisotropic formulated model, similar to
NGI-ADP, is yet another possibility to represent the soil behavior more accurate.

There should be an iteration process on phase level which ensures the correct
solution. A platform which controls the iteration on phase level should there-
fore be developed. Implementation of a possibility to do calculations for strain-
controlled designs will be a natural development.
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Appendix A

Fortran Source Code

UCCM was written in FORTRAN using a programming environment called PLATO,
and compiled to a Dynamic Link Library file. The soil model provides informa-
tion to Plaxis structured into six different tasks which Plaxis calls IDTask. Start
of the source code is presented below.
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Appendix B

Derivatives UCCM

The double derivative of the yield function with respect to the current stress
state is omitted due to space limitations.
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