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Figure 7.7: Shear stress distribution at failure NGI-ADP.

A load-strain curve for a node in a passive stress state at the failure surface is
shown in figure 7.8. By using S2D

u from section 6.1, a satisfying bearing capacity
for UCCM-Average compared to NGI-ADP is achieved.

Figure 7.8 shows a difference in development of strains for the two models. This
is likely due to the mobilization of the active shear strength at low shear strains.
The strain is only expected to show the same behavior for a DSS stress state due
to the difference in mobilization between the models.
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for UCCM, with the same geometry and cyclic load history, are presented in
table 7.4. The input parameters are deduced from DSS contour diagrams for
NC Drammen Clay presented in Gustav Grimstad (2012).

UCCM-Average Input Parameters:

Su = 6, kPa
∞

p
a, f = 0.04

G = 1500 kPa

UCCM-Cyclic Input Parameters:

SC
u = 10 kPa SDSS

u = 7 kPa Su = 6 kPa, t = 0.29
ømax

c y,1 = 7.9 kPa, ømax
c y,1 = 2.9 kPa

∞c y,1 = 0.5%, ∞c y,1 = 0.08%
Ø1 = 0.15, Ø1 = 0

Table 7.4: Input parameters used in the DSS tests

Cyclic Coupling
The first DSS test was done with no average shear stress, and essentially the test
is used to check the interaction between multiple cyclic phases. The load history
and resulting equivalent number of cycles is shown in table 7.5.

Parcel ¢Neq øc y [kPa] NUCC M
eq NU DC AM

eq

1 14 4.58 14 14
2 8 4.98 15 15
3 4 5.31 13 13
4 2 5.71 10 10
5 1 5.98 8 8

Table 7.5: Load history and simulation results from DSS test with UCCM and UDCAM

Results from the UCCM simulation show similar behavior as predicted by UD-
CAM. The final number of equivalent cycles, Neq , is the same as UDCAM, and
the final shear strain corresponds well (see figure 7.9). The stress-strain curve
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from the UCCM simulation, shows a softer behavior in the start of the calcula-
tion and a stiffer behavior towards the end. The difference in behavior may be
related to the formulation of UCCM.

The behavior of UDCAM depends on laboratory results organized in contour
diagrams and the interpolation function defining the behavior for intermediate
stress states. The contour diagrams are presented in Gustav Grimstad (2012)
and are defined for N = 1, N = 10, N = 100 and N = 1000 number of cycles. The
difference between the results for number of cycles greater than 10, may also be
related to the interpolation between the two relatively nonadjacent contour di-
agrams, N = 10 and N = 100. UCCM predicts a higher final strain compared to
the in-house NGI program Accumul which predicts a final strain of 2.3% (Gus-
tav Grimstad, 2012).

Figure 7.9: Stress-strain response for cyclic DSS simulation with UCCM

Average-Cyclic Coupling
A DSS test including nonzero average load was simulated with UCCM. The load-
ing history and resulting Neq is presented in table 7.6. The results achieved will



CHAPTER 7. SIMULATION RESULTS AND DISCUSSION 104

give some indication of how well the interaction between UCCM-Average and
UCCM-Cyclic is working.

Input Parameters:

SC
u = 10 kPa SDSS

u = 7 kPa Su = 6 kPa, t = 0.29
ømax

c y,1 = 7.9 kPa, ømax
c y,1 = 2.9 kPa

∞c y,1 = 0.5%, ∞c y,1 = 0.08%
Ø1 = 0.15, Ø1 = 0

Parcel ¢Neq øc y [kPa] øav [kPa] Neq

1 10 3 2 10
2 5 4 2 7
3 15 5 2 17

Table 7.6: Overview and simulation results from DSS test with UCCM with average loading

The results from the test i presented in figure 7.10. It can been seen that the
cyclic phase is degrading the average material strength leading to development
of strains. It can be concluded that the interaction seem to work satisfying.

Figure 7.10: Stress-strain response for cyclic DSS simulation with UCCM



CHAPTER 7. SIMULATION RESULTS AND DISCUSSION 106

Geometry:
Foundation width (D): 0.346 [m]
Foundation height (H): 0.095 [m]
Depth of model (h): 0.2 [m]
Width of model (b): 1.0 [m]
Load point to surface (a): 0.4 [m]
Weight, line load (w): 22.44 [kPa]

Table 7.7: Geometry and weight used in the simulation of the GBS model test with UCCM

Static Test
The first test of the GBS design is a static test where a horizontal static load is
applied at the top of the model (see figur 7.11). The input parameters of UCCM-
Average are summarized in table 7.8.

UCCM-Average Input Parameters:

Su = 6.67 kPa
∞

p
a, f = 0.020

G = 3000 kPa

Table 7.8: Input parameters of UCCM-Average in GBS simulation

The maximum static horizontal load in plane strain, using UCCM-Average for
the chosen geometry and boundary conditions, is 2 kN. For the model test pre-
sented in Dyvik et al. (1989), a maximum static horizontal load of 1 kN was
reached. It is not possible to compare results from the FE simulation with re-
sults from the model test directly. This is due to the difference in geometry and
boundary conditions. The load-displacement curve for the FE-simulation is il-
lustrated in figure 7.12. The failure surface illustrated in figure 7.13 is similar to
one of the potential failure mechanisms suggested by Andersen et al. (1989).
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Figure 7.12: Load-displacement curve from static simulation with UCCM-Average

Figure 7.13: Failure surface for the static GBS simulation
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Cyclic Test with Neq = 40
A cyclic test of the plane strain FE model presented in figure 7.11 is simulated for
an equivalent number of cycles, Neq = 40, and a cyclic load of 1.75 kN. Andersen
et al. (1989) found the critical state of the GBS model test presented in Dyvik
et al. (1989) to be Neq = 38 for a cyclic load of 0,72 kN. A finite element simulation
of this model test was reported by Gustav Grimstad (2012) with a similar result.

Figure 7.14: The alternative loading application for the cyclic phase

As for the static test, the UCCM results are not directly comparable for the strength
and stiffness, but the overall behavior should have the same trend. For the
UCCM test, the overturning moment was transferred to the soil as a horizon-
tal and vertical force as seen in figure 7.14. It was introduced to transfer the
stresses to the soil in a more correct manner for the cyclic phase, which lack
the weight of the platform to prevent the foundation from overturning. The in-
put parameters for UCCM-Cyclic are developed from DSS contour diagrams in
Gustav Grimstad (2012) presented in table 7.9.

UCCM-Cyclic Input Parameters:

Su = 6.67 kPa, t = 0.28
ømax

c y,1 = 10.48 kPa, ømax
c y,1 = 2.94 kPa,

∞c y,1 = 0.6%, ∞c y,1 = 0.1%
Ø1 = 0.05, Ø1 = 0.0, Æ= 0.2

Table 7.9: Input parameters to UCCM for cyclic GBS simulation
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Figure 7.15 illustrates the load-displacement curve in the cyclic phase for the
plane strain simulation. The load displacement curve depends on the boundary
values of the finite element model and how the loads are transferred to the soil
volume. The development of the curve seems reasonable with a form that is
similar to UDCAM. The GBS-soil system reaches a high horizontal load for a
relatively small horizontal displacement of the clay surface.

Figure 7.15: Cyclic load versus horizontal displacement of clay surface for cyclic GBS simulation
with Neq = 40

Two failure surfaces develop as seen in figure 7.16. The failure surface most
similar to the GBS static test, appear to be critical. Bot failure mechanisms seem
realistic and are suggested as potential failure surfaces by Andersen et al. (1989).

Figure 7.16: Failure surface for the cyclic GBS simulation with Neq = 40
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Cyclic Test
A cyclic GBS test is simulated using the cyclic load history presented in table
7.10. The test is simulated to investigate the behavior predicted by UCCM for a
full cyclic FE simulation.

Parcel ¢N Fc y,h [kN] Fav g ,v

1 15 0.582 w
2 10 1.163 w
3 7 1.236 w
4 4 1.302 w
5 3 1.394 w
6 20 1.457 w
7 10 1.600 w
8 7 1.719 w
9 4 1.844 w

10 1 1.959 w
11 20 1.743 w

Table 7.10: Cyclic- and average loads applied in GBS simulation, inspired by similar test from
Gustav Grimstad (2012).

The cyclic test was not fully calculated and stopped after six parcels. The reason
may be due to singularities for certain vulnerable soil clusters. Before the nu-
merical difficulties were encountered, the results looked promising, as shown
in figure 7.17. The numerical problems started in parcel 3, as seen in the figure.

Figure 7.17 shows that the response to the two first cyclic load histories are softer
than the response predicted by the cyclic test with Neq = 40. This is not expected
and illustrates the uncertainties in the results. For parcels from 3 to 6, figure 7.17
shows that Plaxis must redistribute displacements to obtain equilibrium. The
maximum redistribution takes place in the start of the ultimate phase, where
the calculation finally stops.
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Figure 7.17: Load-displacement curve for cyclic test and cyclic test with Neq = 40

A deviatoric shear strain plot from the phase, in which the calculation stops, is
presented in figure 7.18. The figure demonstrates what is believed to be the start
of a similar failure surface as seen in figure 7.16.

Figure 7.18: The total deviatoric shear strain accumulated up to the 6th cyclic parcel.
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The average material model is formulated with a modified von-Mises yield sur-
face. It is believed that a modified Tresca criterion with direct input of clay pa-
rameters from laboratory results represents the average behavior more accu-
rately. It can therefore be recommended to implement this yield criterion as the
average criterion. An extension into an anisotropic formulated model, similar to
NGI-ADP, is yet another possibility to represent the soil behavior more accurate.

There should be an iteration process on phase level which ensures the correct
solution. A platform which controls the iteration on phase level should there-
fore be developed. Implementation of a possibility to do calculations for strain-
controlled designs will be a natural development.
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