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Drillstring Washout Diagnosis using Friction
Estimation and Statistical Change Detection

Anders Willersrud, Mogens Blanke, SM IEEE,, Lars Imsland, Alexey Pavlov

Abstract—In oil and gas drilling, corrosion or tensile stress can
give small holes in the drillstring, which can cause leakage and
prevent sufficient flow of drilling fluid. If such washout remains
undetected and develops, the consequence can be a complete
twist-off of the drillstring. Aiming at early washout diagnosis,
this paper employs an adaptive observer to estimate friction
parameters in the nonlinear process. Non-Gaussian noise is a
nuisance in the parameter estimates, and dedicated generalized
likelihood tests are developed to make efficient washout detection
with the multivariate t-distribution encountered in data. Change
detection methods are developed using logged sensor data from a
horizontal 1400 m managed pressure drilling test rig. Detection
scheme design is conducted using probabilities for false alarm
and detection to determine thresholds in hypothesis tests. A
multivariate approach is demonstrated to have superior diag-
nostic properties and is able to diagnose a washout at very low
levels. The paper demonstrates the feasibility of fault diagnosis
technology in oil and gas drilling.

Index Terms—Managed pressure drilling, fault diagnosis,
statistical change detection, adaptive observer, multivariate t-
distribution, generalized likelihood ratio test

I. INTRODUCTION

Drilling is a major part of the total oil or gas field develop-
ment cost. As the easy available reservoirs are being depleted,
there is a trend that boundaries for drilling is pushed in the
sense of more extreme environments, such as the arctic, or
deep wells with high pressure and high temperature. With
increasing depth and drilling at more remote locations, the cost
of drilling is further increased and it is essential to minimize
non-productive time, that amounts to 20-25 % of total time in
operation [1].

Different incidents can happen downhole or topside that
cause downtime, or even abandonment of a well. Emerging
advanced drilling methods such as managed pressure drilling
(MPD) [1], [2] brings along new instrumentation to the rig,
which allows one to have methods for detecting abnormal
situations. One such situation is drillstring washout, which
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will be studied in this paper. A drillstring washout is a hole
or cracks in the drillstring caused by wear, such as corrosion
or tensile stress [3]. Such weakness can result in a complete
twist-off of the pipe, which may cause an extra three to twelve
days of drilling, in worst case abandonment of the well [4].
Early yet sure diagnosis of a drillstring washout is essential.
The challenge is that a small washout gives tiny changes in
pressure and flow rate of the circulated drilling fluid, and is
difficult to detect in noisy measurements signals. In addition
to detecting the occurrence of the washout it is of great value
to isolate the position of the defect, making inspection and
replacement more effective.

Detection of other critical incidents have been studied using
different detection methods. Probably the most studied case is
an influx of formation fluid, or kick, see [5], [6], [7], [8]. Others
are lost circulation of drilling fluid to the formation, pack-off
of drilling cuttings around the drillstring, and plugging of the
drill bit nozzles. All of these will affect drilling operation. Sim-
ulation and detection of different downhole drilling incidents,
including drillstring washout, were discussed in [9] with some
tests on real data in [7]. There a high fidelity model was fitted
to data and used to detect abnormalities. Knowledge-modeling
was used for classification of different incidents by [10] and
a Bayesian network was shown to detect sensor and process
faults in [11].

A challenge with monitoring and diagnosis of downhole
conditions in drilling is the lack of measurements. Most
commonly, low frequency measurements with mud pulse
telemetry from the downhole assembly has been available [1].
With high data rate, low latency transmission from downhole
sensors, actions can be taken at an earlier stage in order to
avoid borehole stability problems [12]. Recently, wired drill
pipe technology has emerged as a technology with distributed
sensors along the drillstring, providing measurements at high
sample rate in real time [1], [13].

Although increased instrumentation facilitates increased di-
agnosis, there are still problems with measurement noise.
Different statistical methods can be applied in order to increase
detection. In [5], a statistical cumulative sum (CUSUM) algo-
rithm was applied in order to increase kick detection while
maintaining a low false alarm rate. In [14], skewness of the
statistical distribution was used to detect poor hole cleaning.
An adaptive observer for friction estimation was presented in
[15] and applied on data in [16], but direct washout diagnosis
was not feasible due to very poor signal to noise properties
on the parameter estimates.

This paper proposes to use statistical change detection
methods to diagnose downhole drilling incidents. The focus



2

Figure 1. Overview of fault diagnosis method using an adaptive observer and
statistical change detection for fault diagnosis, where y are measurements, θ̂
are estimated parameters, and ∆µ(θ̂) is the change in mean of the estimated
parameters.

is on drillstring washout. The proposed method, depicted in
Fig. 1, consists of using a reasonably simple mathematical
model together with a nonlinear adaptive observer to estimate
a set of friction parameters and combine this with dedicated
change detection. The estimated parameters will remain (close
to) constant during normal operation, but change when there
is a washout in the system. Data from a medium scale flow
loop designed and tested by the oil and gas company Statoil
ASA is used to test the diagnosis method. Due to noise in the
measurements the friction estimates are shown to be noticeably
affected. Detection and isolation possibilities are studied using
the changes that develop in estimated parameters during a
washout. Dedicated change detection algorithms are derived
for the multivariate t-distribution that is observed from data,
based on a generalized likelihood ratio test (GLRT) approach.
A GLRT for each parameter is tested against a threshold using
univariate probability distributions of the noise, and changes
to all parameters jointly can be considered using multivariate
distributions. Detectors are derived for both univariate and
multivariate distributions and their performances are com-
pared.

Referring to Fig. 1, the scope of the paper is as follows.
Sec. II presents the test rig and test scenarios, Sec. III presents
the nonlinear dynamic model of the process, and the nonlinear
adaptive observer used for parameter estimation (first block
in the figure). Sec. IV motivates the need for statistical
change detection, and Sec. V presents an analysis of the noise
distribution of the estimated parameters. A dedicated diagnosis
scheme is derived in Sec. VI for the multivariate t-distribution
at hand (second block), and isolation of the washout position is
analyzed in Sec. VII (third block). Findings are validated using
experimental data in Sec. VIII. A discussion and conclusion
completes the paper.

II. FLOW-LOOP TEST FACILITY

To test the diagnosis methodology, we will use data from
tests on managed pressure drilling technology conducted by
Statoil in a 1400 m horizontal flow loop test setup at premises
of the International Research Institute of Stavanger (IRIS),
Norway. The flow loop was rigged with the possibility of
emulating various faults including drillstring washout.

Fig. 2 shows a schematics with drillstring washout high-
lighted, and parts of the physical setup is shown in Fig. 3.
Water is used as drilling fluid and pumped by a piston rig pump
with flow rates in the range of 0–2000 L/min (0–0.033 m3/s).
The drill bit consists of three parallel valves, and the pipes
are 700 meter circular steel pipes of 0.124 m and 0.155 m
inner diameter, for drillstring and annulus respectively. The
flow loop is instrumented with topside measurements including

Figure 2. Drilling system with measurements p, q, choke opening uc, and
friction parameters θ. A drillstring washout is a leakage from the drillstring
to the annulus, resulting in less flow in the lower part of the system and drill
bit.

standpipe and choke pressure, and pump and choke flow. Four
pressure sensors in the annulus and one in the drillstring,
upstream the bit, emulate a wired drill pipe. The technology
quality for wired drill pipe pressure sensors is presently not as
good as the pressure sensors used in the flow loop. Whether
the accuracy is sufficient for the use we propose here, has not
been investigated.

Figure 3. Flow-loop setup components for drillstring washout and gas
injection (left) and for drill bit nozzles (right).

Although the flow loop is designed to capture key dynamics
in a real drilling circulation system, there are some obvious
differences. Since the loop is horizontal, the effects of gas
expanding as is percolates up the annulus will not be captured.
Other differences is lack of annular effects and drillstring
rotation. Cuttings (crushed formation rocks) transportation is
also not included. However, the flow loop uses pumps and
chokes that are used in real drilling, and measurements will
be affected by bias and noise as at a real rig.

Data from a series of tests carried out by Statoil at the test
rig is used to test the fault diagnosis method. Even though
several incidents are tested, for clarity of presentation only the
drillstring washout case will be used in this paper. Diagnosis
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of other incidents is the topic in [17]. Drillstring washout is a
challenging case with small changes to pressure due to friction,
without any net change of flow in and out of the well. To
emulate drillstring washout, a valve located half way along
the flow loop was gradually open, releasing the flow from the
drillstring section of the flow loop to the annulus section.

Table I
FLOW-LOOP PHYSICAL PARAMETERS.

βd,a 2.2× 109 Pa Effective bulk modulus
ρd,a 1000 kg/m3 Drilling fluid density
Ma 3.74× 107 Pa s2/m3 Integrated density per cross section
Md 5.81× 107 Pa s2/m3 Integrated density per cross section
Va 13.2 m3 Volume of fluid in annulus
Vd 8.56 m3 Volume of fluid in drillstring
hTVD 2.14 m True vertical depth of bit
Ld, La 700 m Length of drillstring/annulus

III. SYSTEM MODEL AND ADAPTIVE OBSERVER

The model-based fault diagnosis method in this paper is
based on parameter estimation using the simplified hydraulics
model in [18] as a process model together with an adaptive
observer. As the authors argue, the simple model manages to
capture the key components of the flow dynamics in drilling.
Furthermore, a high-fidelity model with many parameters may
not give a better result in practice, due to challenges in
configuration and calibration. However, the simple model has
some limitations. In realistic situations, the particular bottom
hole assembly (tools at the end of the drillstring) used may give
other setups near the bottom which may imply that detected
changes in friction can be caused by other incidents than
those considered herein. Moreover, we assume that the friction
pressure loss is in steady state, which means that care must
be taken in interpreting detections in periods just after known
transients such as changing pump rates, drilling bit off bottom,
and change of drillstring rotational velocity.

The simple model has been applied for estimation and
control purposes in [8], [19], [20], [21]. This section presents
the model as well as the adaptive observer utilizing wired
drill pipe measurements. The adaptive observer was derived
in [15], and used in a preliminary study on fault diagnosis
of the flow loop data in [16], with simpler assumptions about
the noise probability distribution, detecting changes to each
friction parameter separately.

A. Simplified hydraulic model

Referring to Fig. 2, let pp be the pressure at the pump, pc be
the pressure upstream the choke, and qbit the flow through the
bit. The pump flow is denoted by qp, and qc is flow through
the choke. The model used is based on the model in [18],
given by

dpp
dt

=
βd
Vd

(qp − qbit), (1a)

dpc
dt

=
βa
Va

(qbit − qc(pc, u)) , (1b)

dqbit

dt
=

1

M
(pp−pc−F (θ, qbit)−(ρa−ρd)ghTVD) , (1c)

where ρj is the density, Vj the volume, and βj the bulk mod-
ulus of the control volume indexed j ∈ {d, a} for drillstring
and annulus, respectively. The true vertical depth of the well
is hTVD, g is the acceleration of gravity, and the integrated
fluid density per cross section is M =

∫ L
0

ρ(x)
A(x)dx where L is

the total length from pump to choke, and A(x) is the cross
section at position x. The unknown friction parameter vector
θ is estimated by the adaptive observer. The total friction is
modeled by

F (θ, q) = θbfb(q) +

Nd∑
i=1

θd,ifd(q) +

Na∑
i=1

θa,ifa(q), (2)

where fd(q), fb(q), and fd(q) model the flow characteristics
in the drillstring, bit, and annulus, respectively, and θ is a
vector of assumed constant friction parameters to be estimated.
The friction is more accurately modeled by complex models
depending on well geometry and the non-Newtonian properties
of drilling fluids, but in the spirit of simple models to be
updated by measurements, we will here assume that f(q)
is given by f(q) = q for laminar flow and f(q) = q2 for
turbulent flow. The flow through the choke is given by

qc(pc, u) = sgn(pc − pc,0)gc(uc)
√
|pc − pc,0|, (3)

where gc(uc) is the choke characteristics found empirically for
choke opening uc ∈ [0, 100], pc,0 is the pressure downstream
the choke.

Wired drill pipe technology extends the number of pressure
measurements downhole. Let pd,i, i ∈ {1, . . . , Nd} be the
measurements in the drillstring, and pa,i, i ∈ {1, . . . , Na} in
the annulus, see Fig. 2. The pressure difference is a function
of friction and hydrostatic pressure,

pd,i = pd,i+1 − θd,ifd(q) +Gd,i, (4a)
pa,i = pa,i+1 + θa,ifa(q) +Ga,i, (4b)

where Gj,i = ρjg(hj,i − hj,i+1) is the hydrostatic pressure
difference between sensor pj,i at depth hj,i and sensor pj,i+1 at
depth hj,i+1. The corresponding friction between the sensors is
given by θj,ifj(q), where θj,i is the constant friction parameter
and fj(q) is the flow characteristics in the drillstring and
annulus, respectively. For typical flow rates in the test rig the
Reynolds number is large enough to indicate turbulent flow
in both drillstring and annulus, giving fd(q) = fa(q) = q2,
which also was found empirically in [17]. The pressure drop
over the drill bit is given by

pa,1 = pd,1 − θbfb(q), (5)

where θb is the friction parameter in the drill bit. The flow
characteristics fb(q) is typically given by fb(q) = q2, see,
e.g., [22].

B. Nonlinear adaptive observer

Estimation of parameters in the nonlinear system could be
achieved by extensions to the extended Kalman filtering (EKF)
techniques that estimate noise covariance online and hence
would not need knowledge of noise and process disturbance
covariances. This is described for linear systems in [23],
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and [24] extended the EKF to continuous nonlinear systems
with discrete time measurements. Also the later particle fil-
ter approaches could be applied. Here, a nonlinear observer
approach is used that is based on deterministic stability anal-
ysis but still relies on persistent excitation to get parameter
convergence.

An adaptive observer for system (1) was suggested in [15]
and is repeated here for completeness. The model is developed
such that all states are measured, and such that the friction
parameters, θ, are unknown but constant (on the time scale
considered here) in the fault-free case. The system (1) can be
written as

ẋ = α(x, u) + β(x)θ, (6a)
z = η(x, z) + λ(x)θ, (6b)

where x(t) ∈ RNx are the states, z(t) ∈ RNz are the additional
measurements, u(t) ∈ RNu are the inputs, θ ∈ RNθ are
unknown parameters, and α(x, u) ∈ RNx , β(x) ∈ RNx×Nθ ,
η(x, z) ∈ RNz and λ(x) ∈ RNu×Nθ are locally Lipschitz
functions. The observer is based on a nonlinear observer in
[25], adapted to the system representation (6) with additional
measurements z. It is assumed that z in (6b) is given explicitly.

Specifically, the system (1) with measurements (4) written
on the form (6) will have system vectors and matrices

x =
[
pp, pc, qbit

]>
, u =

[
qp, uc

]>
, (7a)

z =
[
pd,1, . . . , pd,Nd , pa,1, pa,1, . . . , pa,Na

]>
, (7b)

θ =
[
θd,1, . . . , θd,Nd , θb, θa,1, . . . , θa,Na

]>
, (7c)

α(x, u) =

 βd
Vd

(u1 − x3)
βa
Va

(x3 + u2 − qc(x1, u3))
1
M (x1−x2−(ρa − ρd)ghTVD)

 , (7d)

β(x) =

 0 0
0 · · · 0

− 1
M x2

3 − 1
M x2

3

 , (7e)

λ(x) =

−x
2
3

. . .
x2

3

 , (7f)

η(x, z) =
[
z2 +Gd,1, . . . , zNd +Gd,Nd−1,

x1 +Gd,Nd , z1, zNd+3 +Ga,1, . . . ,

zNd+Na+1 +Ga,Na−1, x2 +Ga,Na
]>
.

(7g)

Theorem 1 (Willersrud and Imsland [15]): Given an ob-
server on the form

˙̂x = α(x, u) + β(x)θ̂ −Kx(x̂− x), (8a)
˙̂
θ = −Γβ>(x)(x̂− x)− Λλ>(x)(ẑ − z), (8b)

ẑ = η(x, z) + λ(x)θ̂, (8c)

where Kx,Λ,Γ > 0 are tuning matrices, and with θ̇ = 0. Let
ex = x̂−x and eθ = θ̂−θ be variables for the error dynamics,
where e =

[
e>x , e>θ

]>
= 0 is an equilibrium point. Then

e = 0 is globally exponentially stable if

Γ−1Λλ>(·)λ(·)− β>(·)K>Kβ(·) > kINθ , (9)

for some constant k > 0, where K = 1
2 (INx − K−1

x ), and
IN ∈ RN×N is the identity matrix.

The proof of Thm. 1 is given in [15] and is based on a
Lyapunov function for the error dynamics (see also, e.g., [25],
[26]). Note that if β(·) is bounded and λ>(·)λ(·) > 0, there
exist some tuning parameters Kx, Γ and Λ such that (9) is
fulfilled. The matrix function β(·) is bounded as the physical
flow x3 = qbit through the system always will be bounded,
while λ>(·)λ(·) > 0 can be interpreted as a requirement for
persistence of excitation and will be fulfilled whenever there is
flow through the well. If Γ > 0 and Λ > 0 are fixed, it can be
seen from (9) that there is a maximum value of K>K, thus a
minimum and maximum value of Kx, with K>K smallest for
Kx = INx . Furthermore, (9) shows that there is a lower bound
on Γ−1Λ as a function of Kx, β(·) and λ(·), where increasing
Λ and Γ gives higher noise magnification, while lowering them
gives slower parameter updates. Since these estimates are used
for detection, it is desirable with fast updates of estimated
parameters after a change, giving requirements on the tuning
matrices. Noise in the estimates is hence inevitable.

C. Estimating parameters from flow-loop measurements
The adaptive observer (8), with system vectors and matrices

(7) is applied on data from the flow-loop experiments sampled
at 10 Hz, during a time interval when a drillstring washout is
occurring. The actual washout in the experiment is plotted in
Fig. 4, measured as a pressure drop over an opened valve. This
information is not known to the detection algorithm, but shown
for reference. As described in Sec. II, the test setup has Na = 4
pressure measurements in the annulus and Nd = 1 pressure
measurements in the drillstring. For appropriate scaling in
the model, bar is used as unit for pressures, and L/s for
flow rates. All parameters in Tab. I are scaled accordingly.
The observer is initialized with x̂(0) =

[
16, 5, 15

]>
,

θ̂(0) = 10−4×
[
9.7, 23.5, 1.7, 0.24, 0.34, 4.9

]>
, and

configured with the parameters listed in Tab. I. The observer
gains are chosen such that (9) is fulfilled and with sufficiently
fast response of the observer such that a stepwise change
in a friction parameter could be tracked with a rise time
of 1 s. The values used are Kx = diag(3, 3, 3), Γ = Λ =
5 × 10−5 × diag(1, 1, 10, 10, 10, 10), where ‘diag’ denotes a
diagonal matrix.

The estimated topside pump pressures pp and pc are shown
in the upper panel of Fig. 5, and the flow through the bit in
the lower panel. Both pressures are directly measured, giving
good estimates as expected. The flow through the bit qbit is
not measured. By ignoring flow dynamics in the drillstring, bit
flow can be assumed equal to the pump flow, qbit = qp. This
assumption is no longer valid during a washout, resulting in a
change in estimated parameters θ̂. The estimated parameters
are shown in Fig. 6. These plots show that the effect of a
washout is visible in the parameters θ̂d and θ̂b, but much less
in θ̂a,1, . . . , θ̂a,4. The latter are essential to isolate the washout
location.

IV. STATISTICAL CHANGE DETECTION

Detecting change of parameters in a linear system is a
classical problem in statistics. An overview of methods that are
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Figure 4. Actual washout in experiment measured over washout emulation
valve, measured as pressure loss at different flow rates {q0, . . . , q6}. The
color coding shown to the right shows the pressure drop ∆p(qi) for each flow
rate qi, where higher flow rates give higher pressure drop. This information
is not known to the diagnosis methods, but shown for reference.

Figure 5. State estimation and measurements of pump pressure (pp), choke
pressure (pc), and bit flow/pump flow (qbit/qp) during a washout. The flow
rate and choke pressure is constant, while the pump pressure decreases during
the washout due to reduced friction in the system.

Figure 6. Estimated parameters θ̂d, θ̂b and θ̂a1 to θ̂a4.

applicable for linear systems with Gaussian noise is provided
in [27]. When the quantities for which change detection
are desired have non-Gaussian distributed noise, the change
detection problem is harder but solvable. When the quantities
under test are time-wise correlated and non-Gaussian, tests
can be achieved but analytical methods may not be available
to determine thresholds that give desired false alarm and
detection probabilities.

A widely applied methodology is based on a likelihood ratio
test, which maximizes the probability of detection PD with a
given false alarm probability PFA [28]. The test will differ-
entiate between the null hypothesis H0 and the alternative
hypothesis H1 using the probability density function (PDF)
under each hypothesis. If the statistical parameters under H1

are unknown, the generalized likelihood ratio test (GLRT) can
be applied.

The proposed method in this paper is to use parameter
estimation to track physical changes in friction. With noise in
the measurement, and with desired fast detection, parameter
estimates are inevitably subjected to random variation. Thus
is statistical change detection used to obtain desired false
alarm rate and detection properties. Statistical change detection
furthermore gives us isolation capability with known statistical
properties. Methods for statistical change detection in fault
diagnosis were applied in [29], [30] and applications are
referred in [31] where GLRT was employed for detecting
change in estimated parameters.

The need for statistical change detection is illustrated by
inspecting θ̂d and θ̂b plotted in Fig. 6, which are affected
the most by a drillstring washout. Fig. 7 shows the fault free
case H0, and the fault-case H1(qi) for different washout flow
rates qi, see Fig. 4. The contour lines show two and three
standard deviations calculated as if data were Gaussian. The
upper plot illustrates that the small washout flow rate q1 is
difficult to detect from the parameters while keeping the false
alarm rate low. For the friction parameters θ̂a,1 and θ̂a,2 in
the annulus in the lower plot in Fig. 7, it is not possible to
distinguish the different cases. Without a statistical change
detection approach, it may be possible to detect a washout
through change in θ̂d and θ̂b, albeit with poor false alarm
versus detection performance, but it would not be possible to
determine the washout position.

V. PROBABILITY DISTRIBUTION

The statistical change detection algorithm presented in
Sec. VI utilizes the probability density function (PDF) of
the noise in order to detect a change. With a vector of
estimated parameters θ̂, it is possible to detect a change in each
parameter isolated, using univariate distributions, or to jointly
detect change in the multivariate distribution. The different
distributions will be presented in this section.

A. Probability distribution of estimated parameters

Most commonly the noise of a signal is assumed to be in-
dependent, identically distributed (IID) Gaussian white noise.
However, if the noise of the signal has heavier tails it will
be more accurately represented with another distribution. The
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Figure 7. Scatter plot of estimated parameters without washout (H0), and
with different flows of washout (H1(qi)), where flow rates are corresponding
to the washout pressure drop shown in Fig. 4. Ellipsoids show 2σ and 3σ for
no washout (blue), minimum (yellow) and maximum washout (dark red).

estimated parameters are nonlinear functions of the measure-
ments, which are not independent due to the nature of the
observer, where the innovations are integrated from one time
step to the next. For most distributions, it is rather difficult to
find analytical expressions for the likelihood ratio L(x) over
a window N ,

L(x) =
f(xk−N+1, . . . xk;H1)

f(xk−N+1, . . . xk;H0)

=
f(xk;H1|xk−1, . . . xk−N+1) · · · f(xk−N+1;H1)

f(xk;H0|xk−1, . . . xk−N+1) · · · f(xk−N+1;H0)
, (10)

if the signal is non-white, since conditional probabilities would
have to be included. If the signal has non-white noise, a
whitening filter can be applied in order to get close to white
noise. IID Gaussian noise for θ̂ was assumed in [16], whereas
a closer look on the distribution after white-filtering will be
studied in this paper.

To find a candidate distribution, the cumulative distribution
of the white-filtered estimated parameter θ̂b is plotted as
illustration in the probability plot in Fig. 8 for different
distributions. The dashed straight line represents the Gaussian

Figure 8. Normal probability plot of white-filtered estimated parameter θ̂b
for different distributions. Data plotted in blue.

cumulative distribution function (CDF), whereas the heavier-
tails distributions Student’s t, Laplace and Cauchy will have
a curved profile. Laplace and Cauchy distributions have been
applied in other detection problems in [30], [32]. Comparing
with the estimated parameter in blue, these heavier tail-
distributions clearly better fit the data. The Kolmogorov-
Smirnov test p-values of the white-filtered estimated param-
eters for the different distributions are given in Tab. II. Here
only Student’s t and Cauchy distributions have a p-value above
0.05 for all estimated parameters, which is a typical threshold
used to reject the hypothesis that data have the corresponding
distribution. Due to the high p-value for the Student’s t-
distribution, this is chosen as best fit, although the Cauchy
distribution could also be a candidate.

Table II
p-VALUE FOR DIFFERENT DISTRIBUTIONS.

Parameter Gaussian Student’s t Laplace Cauchy
θ̂d ∼ 10−10 0.57 (ν = 2.2) 0.14 0.16

θ̂b < 10−12 0.94 (ν = 2.1) 0.069 0.14

θ̂a1 < 10−12 0.26 (ν = 1.8) 0.0024 0.28

θ̂a2 < 10−12 0.58 (ν = 1.7) 0.075 0.17

θ̂a3 ∼ 10−8 0.58 (ν = 2.4) 0.38 0.16

θ̂a4 < 10−12 0.44 (ν = 1.6) 0.0031 0.49

B. p-variate t-distribution

Generally, the p-variate t-distribution with center µ, corre-
lation matrix S, and degrees of freedom ν > 0 has the joint
probability density function

f(x;µ, S, ν) =
Γ((p+ν)/2)

Γ(ν/2)(πν)p/2|S|1/2

×
[
1+

1

ν
(x−µ)>S−1(x−µ)

]− p+ν2
, (11)

where Γ(z) =
∫∞

0
tz−1e−1dt is the Gamma function. For

ν > 1, E(x) = µ, for ν > 2,Var(x) = Sν/(ν − 2) [33].
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If each parameter is considered individually, a univariate t-
distribution with p = 1 can be used to represent the distribution
of the estimated parameters. If changes to all parameters are
considered simultaneously, the p = Nθ multivariate distribu-
tion will have to be used.

The degrees of freedom ν in the univariate Student’s t-
distribution are also listed in Tab. II for each estimated
parameter. Note that the if ν = 1, (11) is the p-variate
Cauchy distribution. If ν →∞, (11) is the p-variate Gaussian
distribution [33].

VI. GENERALIZED LIKELIHOOD RATIO TEST

The size of the washout affects the magnitude of change
in the friction parameters, but the magnitude of change is
unknown. A generalized likelihood ratio test (GLRT) can
hence be applied for change detection. The GLRT utilizes
the distribution of the noise in the estimated parameters
to best fit a t-distribution. In this section, the GLRT for
univariate distributions is described, together with multivariate
distributions where the direction of change is assumed known
or unknown, respectively.

Change detection for parameters with Gaussian noise were
thoroughly treated in [27], a GLRT detector was derived for
Cauchy distributed test quantities in [34], but a GLRT detector
for the t-distribution has not been found in the literature.

A. GLRT with univariate Student’s t-distribution

To detect changes in the vector of estimated friction pa-
rameters, changes to each parameter can be considered in-
dependently, using a generalized likelihood ratio test with
univariate Student’s t-distributions. The detection problem
is to differentiate whether a signal x belongs to the null
hypothesis H0 or the alternative hypothesis H1. If only the
statistical parameter µ changes, whereas σ and ν are assumed
constant, the detection problem with θ̂ ∈ R is

H0 : θ̂ ∼ t(µ0, σ, ν), (12a)

H1 : θ̂ ∼ t(µ1, σ, ν). (12b)

To reduce computational cost, the window-limited GLRT is
used where 0 ≤ Ñ < N [35], [36], which is given by

g(k) = max
k−N+1≤j≤k−Ñ

ln

∏k
i=j f(θ̂(i); µ̂1, σ, ν)∏k
i=j f(θ̂(i);µ0, σ, ν)

, (13)

where µ̂1 is the maximum likelihood estimate of the mean µ1

at H1, and f(x;µ, σ, ν) is the univariate PDF (11) with p = 1.
A change between the hypotheses (12) is detected if the

decision function g(k) is above a threshold h,

if g(k) ≤ h accept H0,

if g(k) > h accept H1.

With univariate distributions, Nθ decision functions g(k; θi)
will have to be checked against corresponding thresholds hi.

B. GLRT with multivariate t-distribution and known direction
of change

Detecting a change in a multivariate Gaussian distribution
where the direction is known but magnitude unknown, is
described in [37], [38]. This is generalized to the multivariate
t-distribution in this section, and the derivation is provided in
Appendix B.

Let the change detection problem with θ̂ ∈ RNθ be

H0 : θ̂ ∼ t(µ0, S, ν),

H1 : θ̂ ∼ t(µ0 + wΥ, S, ν),

where w is the change magnitude and Υ is the change direction
with ‖Υ‖ = 1, assuming that S and ν are unchanged. The
generalized likelihood ratio decision function [37], [28] is
given by

g(k) = max
k−N+1≤j≤k−Ñ

ln
supw

∏k
i=j f(θ̂(i);µ0+wΥ, S, ν)∏k
i=j f(θ̂(i);µ0, S, ν)

.

(14)

With a derivation (see Appendix B) similar to that of a
multivariate normal distribution in [37], [38], the estimate of
magnitude of change with distribution (11) is

ŵ(k, j) =
Υ>S−1(Θ̄(k, j)− µ0)

Υ>S−1Υ
, (15)

where

Θ̄(k, j) =
1

k−j+1

k∑
i=j

θ̂(i). (16)

The resulting decision function will then be

g(k) = max
k−N+1≤j≤k−Ñ

p+ν

2

k∑
i=j[

− ln

(
1 +

1

ν
(θ̂(i)−µ0−ŵΥ)>S−1(θ̂(i)−µ0−ŵΥ)

)
+ ln

(
1 +

1

ν
(θ̂(i)−µ0)>S−1(θ̂(i)−µ0

)
)

]
. (17)

C. GLRT with multivariate t-distribution and unknown direc-
tion of change

If no assumption of direction of change is assumed, the
MLE µ̂1 of the mean at H1 has to be found. From Appendix
A, the MLE of the mean µ1 is given by

µ̂1 =
1

k−j+1

k∑
i=j

θ̂(i), (18)

and the GLR decision function is given by

g(k) = max
k−N+1≤j≤k−Ñ

p+ν

2

k∑
i=j[

− ln

(
1 +

1

ν
(θ̂(i)−µ̂1)>S−1(θ̂(i)−µ̂1)

)
+ ln

(
1 +

1

ν
(θ̂(i)−µ0)>S−1(θ̂(i)−µ0)

)]
. (19)
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D. Thresholds based on GLRT test statistic approximated by
a Weibull distribution

If the GLRT input was Gaussian and IID, the test statistic
g(k) would asymptotically follow a χ2

r distribution and with
r unknown parameters, r degrees of freedom under H0, and a
non-central χ′2r (λ) distribution with non-centrality parameter λ
under H1 [28]. This would make it possible to set a threshold
corresponding to a desired probability of false alarms and
of detection. However, for real applications with correlated
input, g(k) is not χ2

r distributed. Distributions seen in real
applications depend on properties of the case. A Weibull
distribution best fitted residuals from aircraft attitude data in
[30]; a lognormal distribution best fitted the GLRT test statistic
from narrow band correlated ship motion data in [29]. The
distribution of the test statistic is therefore studied in this
section, based on real data.

Having tested several possibilities, the Weibull distribution
was found to give a good fit to the test statistic. The Weibull
distribution has the probability distribution F (x;α, β) and the
density function f(x;α, β), given by

F (x;α, β) = 1− e−(x/α)β , x ≥ 0, (20a)

f(x;α, β) =
β

α

(x
α

)β−1

e−(x/α)β , x ≥ 0, (20b)

where α > 0 is the scale parameter and β > 0 the shape
parameter.

Let PFA be the probability of false alarm under H0. Then
using the inverse CDF gives a threshold h with the given
probability PFA,

h = Q(1− PFA;H0, α0, β0) = β0 (− ln(PFA))
1/α0 . (21)

The given threshold h will also determine the probability
of detecting a fault under hypothesis H1 with probability PD,

PD = 1− F (h;H1, α1, β1) = e−(h/α1)β1 . (22)

VII. FAULT DIAGNOSIS

Changes to the different parameters are used to detect a
washout and isolate its position. As seen in Fig. 2, a washout
will decrease the flow in the lower parts of the drillstring and
the annulus, as well as in the drill bit. This will result in
a decrease in the estimated parameters, since the estimator
assumes equal flow throughout the system. Friction changes
in the drillstring and bit are considerably higher than in the
annulus, and they are thus used for detection. A washout is
detected if both θ̂d and θ̂b have a negative change, as listed
in Tab. III. At the position of the washout, the related friction
parameter will have a positive change. There will still be some
friction loss in this section, however only the pressure sensor
in the beginning of the section will be affected by reduced
flow. The net effect is an increase in pressure drop in this
section, which is used to isolate the washout. The other annular
friction parameters must be unchanged or changing in negative
direction.

Table III
FAULT ISOLATION OF DRILLSTRING WASHOUT WITH INCREASING (+),

DECREASING (−) AND UNCHANGED (0) VARIABLES. X DENOTES
IGNORED CHANGE IN PARAMETER.

Detection Isolation
θ̂d θ̂b θ̂a,1 θ̂a,2 θ̂a,3 θ̂a,4

Washout 1 (f1) − − + −/0 −/0 −/0
Washout 2 (f2) − − −/0 + −/0 −/0
Washout 3 (f3) − − −/0 −/0 + −/0
Washout 4 (f4) − − −/0 −/0 −/0 +

W.o., unknown pos. (f0) − − X X X X

A. Isolation based on individual parameter changes with
univariate distributions

If changes to each parameter are individually considered, a
GLRT on each estimated parameter is used for fault diagnosis.
There will be one threshold for each estimated parameter,
determined based on a specified probability PFA of false alarm.
Let the possible faults be

fi ∈ F , (23)

where fi represents a washout between sensor pa,i and pa,i+1,
corresponding to friction parameter θa,i, and F are all possible
locations of washout. Location of washout position from
friction parameters are listed in Tab. III, based on the changes
to friction shown in Fig. 2. If the changes in estimated annulus
parameters are inconsistent with regards to rows in Tab. III,
the position cannot be isolated, although a washout may still
detected if θ̂d and θ̂b have a negative change (f0).

B. Isolation in multivariate distribution with known direction
of change

If the direction of change is limited to the possible known
vectors of change directions Υi ∈ Y , isolation is done by
finding the Υi with the largest change magnitude w. This
will reduce the problem of inconsistent changes to parameters
as found in the univariate case in Sec. VII-A, due to some
parameters being below its threshold.

For each data sample, the largest ŵ(Υi) is found from (15)
with fault isolation position

fisol := arg maxi ŵ(Υi) =
Υ>i S

−1(Θ̄(k, j)− µ0)

Υ>i S
−1Υi

, (24)

and used to find the value of g(k) in (17) with ŵ(Υi|i = fisol).
Hence is it only necessary to calculate g(k) for one type of
fault, although (15) will have to be calculated for each Υi.

C. Isolation in multivariate distribution with unknown direc-
tion of change

In this case, the fault fisol ∈ F can be isolated by finding
the largest projection of change in mean (µ̂1 − µ0) onto the
vectors Υi ∈ Y ,

fisol = arg maxi
Υ>i (µ̂1 − µ0)

Υ>i Υi
. (25)

The difference between this method and the known direction
case in Sec. VII-B is that µ̂1 is used explicitly in the decision
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Figure 9. Estimated flow rate of drillstring washout. Can not be validated
due to lack of measurements.

function g(k), giving the possibility to detect other faults not
specified in Y . If the change direction is close to orthogonal
to Y , g(k) in (19) would still be affected, whereas ŵ in (15)
would be close to zero, giving close to zero value for the
decision function (17). However, isolation is still dependent on
finding the minimum distance to some possible fault vectors,
such as Y . Comparing isolation (24) and (25), the difference
is in fact that the changes are scaled with S−1 in ŵ in (17),
taking the correlation into account.

D. Estimating washout magnitude

In addition to isolating the position of the washout, de-
scribed in Sec. VII, it is also of great value to get an estimate
of the leakage magnitude. During normal operation, the flow
through the bit will be equal to the pump flow at steady state,
qbit = qp. During a washout, some of the flow is diverted
through the leaking hole, giving qwo = qp−qbit at steady state,
where qwo denotes the washout flow rate. Since the observer
(8) assumes all states measured, including qbit, the estimated
friction parameters will change during a washout. Friction
loss over the bit will be ∆pH0

bit = kbitq
2
p with no washout,

and ∆pH1

bit = kbit(qp − qwo)2 during a washout, where the
bit friction parameter kbit is unknown. However, the pressure
losses are estimated to be ∆p̂H0

bit = θ̂H0

b q2
p, ∆p̂H1

bit = θ̂H1

b q2
p.

An estimate for steady state washout is therefore

q̂wo = qp

(
1−

√
θ̂H1

b

θ̂H0

b

)
. (26)

The estimated washout (26) is low-pass filtered and plotted
in Fig. 9, showing flow rates in the range 0–60 L/min (0–
0.001 m3/s), which is up to 6 % of the total flow. Note that
the actual washout plotted in Fig. 4 is measured in pressure
loss, not in flow rate, and thus cannot be used to validate
(26), although a significant co-variation can be observed.
Furthermore is the estimated washout flow rate only valid if a
fault is isolated as a washout. If not, the change in estimated
parameter θ̂b could have other causes.

VIII. FAULT DIAGNOSIS BASED ON EXPERIMENTAL DATA

The estimated parameters from the case of drillstring
washout are analyzed using the three different methods de-
scribed in Sec. VI for change detection, namely univariate

Figure 10. Decision function g(k) for each estimated parameter and resulting
fault isolation. Actual washout shown in gray.

change detection, multivariate change detection with known
direction, and multivariate change detection with unknown
change in mean and unknown direction.

A. Change in univariate distributions

The first approach is to consider each parameter individu-
ally, testing each estimated parameter against a corresponding
threshold. As seen in Tab. III, a washout is detected if θ̂d and θ̂b
have a negative change, and the estimated annular parameters
θ̂a,i are used to locate the washout.

The parameters during H0 are assumed known in the
decision function (13). However, relevant data for the fault
free case before the washout is sparse, hence are the statistical
parameters µ0, σ and ν found by using maximum likelihood
estimation of the estimated parameters between 685 and 775
seconds (11:30 and 13:00 minutes), and between 1045 and
1100 seconds in a previous test. The GLRT decision function
(13) for each estimated parameter is plotted in the two upper
panels in Fig. 10, using window lengths N = 150 samples
for detection and N = 400 for isolation, with Ñ = N/4. To
find thresholds, the probability of false alarm is specified to
be PFA = 10−5 (0.0024 false alarms per hour) for detection
and PFA = 10−3 (0.09 false alarms per hour) for isolation.
Comparing these plots with the actual washout in Fig. 4,
changes to θ̂d and θ̂b seem quite easy to detect, with large
numerical values of g(k) during a washout and small without
it. However, θ̂a,i are less affected making isolation more
challenging, although in a real drilling situation the isolation
window could easily be chosen 10 to 20 times larger.

In Fig 11, the GLRT of θ̂a,3 with data during H0 is plotted
in a probability plot together with a fitted Weibull distribution.
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Figure 11. Weibull probability plot of GLRT underH0,H1(q1) andH1(q6)
for estimated parameter θ̂a,3 fitted to Weibull distributions. Threshold shown
with dashed line.

This friction parameter will determine isolation of the washout.
Also plotted is data under hypothesis H1 with washout flow
rate q1 corresponding to a pressure loss between 1 and 2
bar, see Fig. 5, and flow rate q6 with pressure loss of 8 bar.
The statistical parameters of the fitted Weibull distributions
(20a) during H0, H1(q1) and H1(q6) are listed in Tab. IV,
also showing the corresponding threshold values and detection
probabilities PD. For convenience, the table shows the missed
detection probability PM = 1− PD.

As illustrated in Fig. 11, θ̂a,3 has a quite small value for
probability of detection at q1, meaning that isolation for small
washout flow rates is quite uncertain. If PD was to increase,
the threshold should be lower with a penalty in increased PFA.

Using the thresholds listed in Tab. IV, the resulting fault
isolation is shown in the bottom of Fig. 10. Isolation of the
position is quite uncertain in the first 3 minutes where the
washout is ramping up (q1 and q2). When the washout rate
reaches a high level, isolation is quite certain. The reason for
no isolation for a short period at around 13 and 15 minutes
is due to a longer window for isolation than for detection,
combined with a sudden change in washout flow rate. The
estimated θ̂a,3 is above the threshold for the first two minutes,
even though there are no faults. The reason is probably due
to external factors (disturbances) in the process.

B. Multivariate distribution with known direction of change

The second case is to use the multivariate distribution, and
limit the possible directions of change to a predefined set of
vectors Υi ∈ Y , as described in Sec.VI-B, with isolation
as described in Sec. VII-B. The assumed possible change
directions for detection and isolation are column vectors of

Ῡdet =

[
−1
−3

]
, Ῡisol =


1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
0 0 0 1

 , (27)

Figure 12. Decision function g(k) with known direction of change Υ.
Isolation based on largest ŵ for each direction of change Υi ∈ Y , with
g(k) plotted for each direction. Actual washout shown in gray.

where Υi = Ῡi/||Ῡi||. The magnitude of the friction pa-
rameter in the bit increases approximately three times the
magnitude of the friction parameter in the drillstring. It is
assumed that all parameters in the annulus are affected equally.

The white-filtered estimated parameters θ̂det ∈ RNd+1 and
θ̂isol ∈ RNa are fitted to a multivariate t-distributions using the
ECME algorithm [39]. The decision functions for detection
and isolation are plotted in Fig. 12, together with resulting
isolation. In the middle panel, the isolation functions gisol(k)
are plotted for each Υi ∈ Y , showing that a washout at
position three gives the highest value. Note that isolation
is based on maximum ŵ(Υi) given by (24), and thus only
one decision function is required to be calculated. Parameter
values, thresholds and detection probabilities are listed in
Tab. V. The threshold value h for gdet(k) was selected to give
a false alarm probability PFA = 10−5 from the data under
H0, for isolation PFA = 10−3 is used.

No washout is isolated in the first three minutes. The reason
may be that changes in the parameters do not correspond
directly to the directions (27). Furthermore may these di-
rections not be entirely accurate, where also correlation S
affects the change direction (15). Compared to the univariate
case in Fig. 10, accuracy in isolated position is increased for
higher washout flow rates (after six minutes). The detection
probability PD is higher for the multivariate method, and for
higher washout rates the detection probability in isolation is
significantly higher (lower PM ).
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Table IV
THRESHOLD AND PROBABILITY OF DETECTION BASED ON FITTED WEIBULL DISTRIBUTIONS WITH PARAMETERS α AND β , WITH CHANGES TO

INDEPENDENT UNIVARIATE DISTRIBUTIONS.

PFA N h α0 β0 α1(q1) β1(q1) α1(q6) β1(q6) PM (q1) PM (q6)

θ̂d 10−5 150 39.0 3.68 1.04 141 4.65 264 8.62 2.54× 10−3 ∼ 10−9

θ̂b 10−5 150 38.3 3.1 0.971 405 8.07 645 28 ∼ 10−10 < 10−12

θ̂a,1 10−3 400 40.1 6.49 1.06 78.7 4.36 187 4.21 0.0515 1.54× 10−3

θ̂a,2 10−3 400 15.7 3.98 1.41 11.5 1.28 65.2 5.56 0.775 3.66× 10−4

θ̂a,3 10−3 400 21.8 5.56 1.41 24 1.2 58.3 2.26 0.59 0.102
θ̂a,4 10−3 400 11.0 4.19 2.0 31.9 3.52 4.99 1.61 0.0233 0.972

Table V
THRESHOLD AND PROBABILITY OF MISSED DETECTION PM BASED ON WEIBULL FIT WITH KNOWN CHANGE DIRECTION Υ OF A MULTIVARIATE

DISTRIBUTION.

PFA N h α0 β0 α1(q1) β1(q1) α1(q6) β1(q6) PM (q1) PM (q6)

Detection 10−5 150 65.6 3.81 0.858 527 7.70 782 17.6 ∼ 10−7 < 10−12

Isolation 10−3 400 76.5 14.1 1.14 55.8 1.14 592 14.2 0.761 ∼ 10−12

C. Multivariate distribution with unknown change in mean
and unknown direction

In the third case, no assumption about change direction
is made in the decision function, making it sensitive to all
changes. Isolation given by (25) is done by finding the change
in mean closest to possible change vectors, here given by (27).

The decision function gdet(k) for the multivariate distri-
bution of θ̂d and θ̂b is plotted in the top of Fig. 13, which
is used for detection. Parameters θ̂a,i are used for isolation,
with detection function gisol(k) plotted in the middle panel.
Isolation is plotted in the lower panel. The thresholds are
based on fitted data to Weibull probability functions, plotted
for gisol(k) in Fig. 14. Comparing with the univariate method in
Fig. 11, much less of theH1 data is left of the threshold, giving
better isolation. Parameter values, thresholds and detection
probabilities are listed in Tab. VI.

With this method a washout is detected almost immediately
and is isolated around the 3 minutes time stamp. The differ-
ence between this very successful approach and the previous
method is that assumption about direction is only made for
isolation. Furthermore, isolation is only done based on changes
in mean (25), not scaled with S as in (24).

IX. DISCUSSION

The friction model used in the adaptive observer is quite
simple, but proved to work satisfactory for the washout case.
If the method was to be applied during a large range of pump
flow rates and with different drilling fluid densities, a more
sophisticated friction model may be required. Nevertheless, for
the current process, it has been sufficient in order to provide
convincing detection of washout and isolation of the position
of the leakage.

Two vector-based (multivariate) methods were compared.
Method one, GLRTwΥ, assumed a known direction Υ, but
unknown magnitude w. The direction vectors were deter-
mined from expected changes to the parameters with different
washout locations. The second method, GLRTµ1

, assumed an
unknown direction and magnitude of change in the vector µ1.

Figure 13. Decision function g(k) with unknown change in mean and
unknown direction of change. Isolation based on finding change in mean
closest to possible change directions Υi ∈ Y . Actual washout shown in gray.

The main difference between the two multivariate methods
was that method one limits detection to already specified
fault directions, other faults may not be detected. Method
two calculates g(k) based on the new estimated direction
of change, and then isolates the position based on already
assumed known directions. A disturbance not corresponding
to the defined directions would impact the decision function
in the second case, but much less in the first. A challenge can
be to find the correct change directions. In this study, there
was only data from one washout location available, the others
are assumed with same structure and values.

Detection was based on both drillstring and bit parameters
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Table VI
THRESHOLD AND PROBABILITY OF MISSED DETECTION PM BASED ON WEIBULL FIT WITH CHANGE IN µ1 OF A MULTIVARIATE DISTRIBUTION.

PFA N h α0 β0 α1(q1) β1(q1) α1(q6) β1(q6) PM (q1) PM (q6)

Detection 10−5 150 61.6 6.64 1.10 550 7.11 810 16.5 ∼ 10−7 < 10−12

Isolation 10−3 400 88.5 24.2 1.49 154 5.82 711 7.34 0.0392 ∼ 10−7

Figure 14. GLRT for isolation under H0, H1(q1) and H1(q6) for
multivariate distribution with unknown direction of change, fitted to Weibull
distributions in a Weibull probability plot. Threshold shown with dashed line.

changing in the negative direction, and probability of detection
was clearly best using the multivariate methods.

Isolation was also efficiently done with the multivari-
ate methods, with the multivariate GLRTµ1 approach being
clearly superior in isolation performance. Isolation during the
first three minutes was difficult, both due to transients in
the system during the test but definitely also due to the tiny
changes in friction compared to a significant noise level in the
parameter estimates. In a real drilling operation, the window
size could be 10 minutes or more instead of the 40 seconds
used here for reasons of the short duration of each washout
level during the experiments. The longer isolation window
would give significantly better isolation properties while fast
detection could still be obtained since different window sizes
are used for detection and isolation.

Based on the experiments reported here, it would be feasible
to implement a diagnostic method using H0 data from normal
operation to learn a feasible threshold h from test statistic
data for given operational conditions. The detection scheme
would be sufficiently sensitive to detect and locate a drillstring
washout.

The methods presented in this paper have been success-
fully tested on the difficult drillstring washout case, but are
applicable on all downhole incidents during drilling, that
would cause detectable changes to friction and flow. This is
studied in [17], detecting and isolating numerous incidents. It
is noted that the validation of the proposed method is based on
drilling conditions and problems represented by the test rig.
In other drilling configurations, the models used for parameter
estimation and incident isolation may need to be adjusted.

Examples include drilling operation that uses a hole-opener or
an under-reamer inside the bottom hole assembly. Such tools
have side ports and this would need to be accounted for in the
model. The state of cutter arms (extended or retracted) might
also need be included in the model and, if a downhole motor is
used, the associated bottom leakage at the motor shaft should
be included.

X. CONCLUSION

This paper has developed change detection methods for
washout detection and localization in oil and gas drilling, and
tested the methods on data from a managed pressure drilling
test facility. Using estimated friction coefficients in pipe seg-
ments as indicators for change, the combination of an adaptive
observer to estimate friction parameters and stochastic change
detection provides a setup that is able to detect and locate a
washout with convincing performance. The parameters were
determined to be t-distributed, and generalized likelihood ratio
tests were derived for this particular distribution. Different
diagnostic algorithms were tested, showing that a multivariate
test with unknown change direction and unknown magnitude
gave the most accurate detection and isolation as judged
from experimental data. The methods presented in this paper
are believed to be generic but application to other drilling
conditions and problems would require that the model used
for parameter estimation and the incident isolation approach
are adopted to the specific conditions of the operation.

APPENDIX

A. GLRT for unknown change in mean of a multivariate t-
distribution

Given a sequence of N IID observations of a vector z(j),
j = k−N+1, ..., k. Determine whether z most likely belongs
to p(z;H0) or to p(z;H1), where

H0 : p(z(j)) ∼ t(µ0, S, ν), j = k−N+1, ..., k, (28)
H1 : p(z(j)) ∼ t(µ1, S, ν), j = k−N+1, ..., k, (29)

where µ0 is a known vector, µ1 is unknown, S and ν are
known parameters of the multivariate t-distribution (11). The
generalized likelihood ratio decision function [37] is given by

g(k) = max
k−N+1≤j≤k

ln
supµ1

∏k
i=j f(z(i);µ1, S, ν)∏k

i=j f(z(i);µ0, S, ν)

= max
k−N+1≤j≤k

sup
µ1

Gkj (µ1),

(30)

detecting a change in mean vector µ from µ0 to µ1, with S
and ν constant. Using that

f(z(i);µ1, S, ν)

f(z(i);µ0, S, ν)
=

[
1 + 1

ν (z(i)−µ1)>S−1(z(i)−µ1)
]− p+ν2[

1 + 1
ν (z(i)−µ0)>S−1(z(i)−µ0)

]− p+ν2
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for the multivariate t-distribution with S and ν constant,
Gkj (µ1) is given by

Gkj (µ1) =

k∑
i=j

ln
f(z(i);µ1, S, ν)

f(z(i);µ0, S, ν)

=
p+ν

2

k∑
i=j

[
− ln

(
1 +

1

ν
(z(i)−µ1)>S−1(z(i)−µ1)

)
+ ln

(
1 +

1

ν
(z(i)−µ0)>S−1(z(i)−µ0)

)]
.

The supremum is found by equating
∂Gkj (µ1)

∂µ1
to zero, yielding

k∑
i=j

∂

∂µ1
ln

(
1 +

1

ν
(z(i)−µ1)>S−1(z(i)−µ1)

)
= 0

=⇒
k∑
i=j

−2S−1(z(i)− µ1)

ν + (z(i)−µ1)>S−1(z(i)−µ1)
= 0.

Hence is the maximum likelihood estimate (MLE) of the mean
µ1 given by

µ̂1 =
1

k−j+1

k∑
i=j

z(i), (31)

and the GLRT decision function

g(k) = max
k−N+1≤j≤k

p+ν

2

k∑
i=j[

− ln

(
1 +

1

ν
(z(i)−µ̂1)>S−1(z(i)−µ̂1)

)
+ ln

(
1 +

1

ν
(z(i)−µ0)>S−1(z(i)−µ0)

)]
. (32)

B. Change in mean with known direction but unknown mag-
nitude

If the direction of change is known, the mean after change
is represented by µ1 = µ0 +wΥ, where Υ is the unit direction
vector and w is the unknown magnitude. Now the GLRT
decision function will be slightly different, using that

∂

∂w
(z(i)− µ0 − wΥ)>S−1(z(i)− µ0 − wΥ)

= 2wΥ>S−1Υ− 2Υ>S−1(z(i)− µ0) (33)

∂Gkj (w)

∂w
= 0

=⇒
k∑
i=j

[
wΥ>S−1Υ−Υ>S−1(z(i)− µ0)

]
= 0. (34)

The MLE of change magnitude is given by

ŵ(k, j) =
Υ>S−1(Z̄kj − µ0)

Υ>S−1Υ
, (35)

Z̄kj =
1

k−j+1

k∑
i=j

z(i). (36)

Using (32) with µ̂1 = µ0 + ŵΥ, and ŵ from (35), the GLRT
test statistic will hence be

g(k) = max
k−N+1≤j≤k

p+ν

2

k∑
i=j[

− ln

(
1 +

1

ν
(z(i)−µ0−ŵΥ)>S−1(z(i)−µ0−ŵΥ)

)
+ ln

(
1 +

1

ν
(z(i)−µ0)>S−1(z(i)−µ0)

)]
. (37)
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